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normalizes W, and W, . However, Gy = GG, = (NG(W)=), Ng(Wy)=5, so
G, = G/ This contradiction completes the proof of the main theorem.
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commutative. Let SC A[U] be a multiplicative set of monic central poly-
nomials with U in S. Given g(U) = U" + a, LUt 4 G let §(T) =
Ty T = 14 ap T+ + a,T". Let S = {FlgesSh it is a multi-
plicative set of central non-zero-divisors in A[T].

Let End S denote the exact category whose objects are all pairs (P, ), where
Pis an object of P4 , and fisan endomorphism of P such that g( f) = 0 for some
gin S. Let End;SA = ker(K; End S — K 4). Let R be the ring SA[T], and
EK;S = ckr (KA — K,R).

and

(M,N,])HN

xﬁeexatcl;c f}mctors vs}zlhich exhibit an equivalence of H(X, Z) with H(A[U], g)
re the latter is the category of finitel "torsi e
f oroject; i . ' nitely presented g"-torsion A[U]-modul
0 p}rl()).ectwe.dlmensxon 1. This equivalence is a stancTard sort of e:Egigioﬂ b: e(sl
on the inclusion of the closed set Z in the open set Spec(A[U]) se
If we pass to the limit over S we obtain the exact sequence;
Trsorem 2. EKSA = Fadiad: - KX - KR~ K, H(AU), 5)
Fi i i 1, Ly eee
When A4 is commutative, and S is the set of all monic polynomials, we recover !
Theorem 1. The point is that the characteristic polynomial of an endomorphism
is monic locally on Spec(A4), and thus divides a monic polynomial. The Cayley-
Hamilton theorem provides the vanishing [2, p- 631]. On the other hand, when
S is the multiplicative set of powers of U, we recover the Fundamental Theorem.

where H(A[U}, S) = U, H4[U], g)-

. We now use an argument of Quillen’ ) .
' End 5. Define a functor uillen’s from [3] to identify H(A[U], S) with

Proof of Theorem?2. 'The proof is modeled after the proof of the Fundamental b:End,* — H(A[U], 5)
Theorem in [3]. We may assume that each g(U) is S'is divisible by U. Considet
the diagram of rings: (P, f)— Py,

A[T] h ..
where P, is just P as 4-module, with U acting on Pas f:

Au]—— AT, U)TU —1=B8B U-x=f(x) for xeP.

Let M denote the exact category of triples (M, N, j) where M is an A[T]-module, The characteristic exact sequence [2, p. 630]

N is an A[U]-module, and j: M @1 B ~ N Qv B is an isomorphism of
B-modules. This category is better known as the category of quasi-coheren
sheaves on the projective line X =P} :
Now givengin S, the pair (£, £) determines a divisor Z in X because §lg = 1"
is a unit in B. The localization theorem for projective modules [3] yields a long
exact sequence:

0 P[U] > P[U] P, 0

.
Zf 4[[;1]-m0c%ules shows that P, has projective dimension 1. To see that b i
quivalence, it suffices to show that every N in H(A[U], S)isa finitely generztaz
’ €

projective A-module. Let i ial i
e et g(U) be a monic polynomial in S that annihilates N,

e KX — KAT, 1]8] —~ KiaHs Zy—>--
which ends at KoA[T, 1/g]. Here KX denotes KPPy, where P,CM is the
category of vector bundles on X; (M, N, j) in M is a vector bundle if M (resp.
is a finitely generated projective A[T] (resp- A[UT)-module. In addition, H(X, Z)
denotes the category of quasi-coherent sheaves on X which have a short resolt=
tion by vector bundles on X, and which are zero on X — Z; (M, N, ) is zero 08
X — 7 iff M®un AT, 12 = 0 and N @ 4lU, /gl = 0. From
M Q1 ALT, 18] = 0 and the fact that § has constant term 1, it follows that |
M = M ® 41 B. It is easy to see that ‘

be a short resolution of N with B, Cin P 411

. The surjection C/gC
) gC —> N shows that N i i
A[UYg is. The exact sequence a is a finite A-module, because

\8}'10WS that N is a flat 4-module, for B/gB is flat, and B/gC has Tor-dimension 1

. nce N is finite and flat, it i et .
N> (N @1 By N, 1) - at, it is projective. This concludes the proof that b is an
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X = K, A @ KA [6]. Given P in P, let
d let Py = Px(0). Let h,:P,— Pybe the
t of Quillen’s theorem is that

Now we use the calculation K;
P(n) — (P[T}, P[U], ") in P, an

exact functor P> Px(n)- The statemen

(:0 ) KA @ Kid — KX

—1
is an isomorphism. It follows that

(h7 1) KA @ KA —— KX

hy

is also an isomorphism.
The composite

is the natural map, and is thus a split injection.
The characteristic sequence for an object (P, f) in End, extends to an exac

sequence on X:
0————>PX(~1)——”——>PX-———>Pf~———>0.

(r—f1-— Uf). The exactness theorem [6, Sect. 8, Th. 3.1] shows,

Here v =
then, that the square

K,End S — K (H(A[U], S))

KZA ——pﬂ:’T—_l,_) KZX

m is the natural split surjection.

commutes. The left vertical map in the diagra
splits into shorter ones:

It is now clear that the long exact sequence

s Kiad —— 0,

0 KA "5 KR — K, Endy

yielding the theorem. QED

CoroLLarY 3 [1, p- 3771 The map

ch: Endg4 — 1 + TR,

given by
(P, f) — det(l — Tf),

is an isomorphism, where A is a commutaiive 1ing.

Proof. We take S to be the set of all monic polynomials in A[U]. Since T

is in the Jacobson radical of R, EK;4 = 1 + TR.Itis enough to show that the

composite

1+ TR -""+Endy 4 —*>1+ TR

is the identity, where the first map is the isomorphism induced by the boundary

map
KIR g K() End,,

h p 2-
E om the l()()i ()f I ]160] €m A]Otlce that it 18 enouy, h toc eCk thls de]l
g h 1 tity fOl an
If ZC X 18 thf: dl\/lSOI deﬁIled b} 1ts tructure s eal () 1S
’ (g’ g)’ S Z
(A‘T /g,A lJ /g, I)EM. Let nH denote the leISOr deﬁned bV (I, I/ ), HIS the

hyperplane at infinity. There are two exact sequences in M:

0 —— Ay(—n) —"> Ax ——> Oz —— 0,

P Ay O.u 0.

0 —_— ‘4X(_n)

We must now refer to the proof of the localization theorem for projective
gllo:lullles 11n [3] in order to compute the boundary map explicitly. We will show
at the element § of K, R maps to the cl — in K 4
Krd 8 1 ps to the class [0;] — [0,5] in KH(A[U], S) =

(Ax(—n), Ax(—n)
.

|

(flx(v‘—n), Ay(—n) 2>

\2

U

¢ 0,

FI1GURE 1
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: (0, 0)
l n n
: (R, R)
I
: (R, R)
[ .
: (R, R)
T TR
: (0, 0)

FIGURE 2

Consider the diagram in Fig. 1. Each row represents an object in the category G
[3, p. 230], the data between adjacent rows determ.in'e arrows; th_e syml?ol
represents an injection with splitting given, and all such injections as‘socmted with
the same arrow of G have the same cokernel. The whole diagram is a loop and
represents an element of mG. The restriction of these data to Spec R yields the
loop shown in Fig. 2, which represents the class g(T)/le I.CIR = mS71S(Pp)
(different S, see [3, p. 224]). Forgetting all of the loop in Fig. 1 except for the
left-hand summand in the right column yields:

0>——a-OZ——~++()++——-OnH*—-—<O,

a loop in QH(A[U], S) which represents the class

An, 0 —a, : A", 0
10 —a 10
) . 0 —lpy_o ‘ ]. 0
1 —ay4 10

in EndyA4, where g(U) = U" + a4, U™ + - 4 a,. To compute ch applied

to this difference is easy because these matrices are in rational canonical form; .

if we do so, we obtain the answer Z(T)/L.
This establishes the identity. Q.E.D.

CoROLLARY 4. If A is commutative, then End,A has the following generators
and relations as Abelian group:

K-THEORY OF ENDOMORPHISMS 445

generators: {r, s, r,seR, re TR, or se TR.

relations: {r, s){—s, —r> =1,
< s<r ty = <rys + & rst),
ry styds, try<t, rsy = 1.

Proof. 'This is precisely the presentation given in [4] for ker(K,R — K,A).
Q.E.D.

What happens if we consider automorphisms instead of endomorphisms ? Let
Aut, denote the full sub-exact-category of End, consisting of all objects (P, f)
for which f is an isomorphism. If 4 is a commutative ring, then we know that f
is an isomorphism iff its determinant is a unit. Thus, if S is the set of monic
polynomials in A[U] whose constant terms are units in 4, then Aut, = End 5.
Now S does not contain g(U) = U, but it does contain g(U) = U — 1, so a
change of coordinates yields:

COROLLARY 5. There is an exact sequence with splittings:

0 K,AS5 KGR, K, Aut,~ "5 K, ,A— 0,

where Spec R, is the intersection of the complements in X = P ! of the divisors Z
defined by g € S.

See Fig. 3 for a picture of this situation.

RISSSovee
/ -
N

(. P

Spec Rl

FiGure 3

It is easy to see that R, comes equipped with two augmentations:

Sos St Ry A4
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corresponding to the sections at 0 and o of X — Spec A Let Aut, il— ieng’;; :1}:;
kernel of the split surjection K; Aut, — K. 4. The difference sy — S

On the Boundedness and the Unboundedness of the
a map

Aut; , A — KA. ™ Number of Generators of Ideals and Multiplicity

When i — 1, this is the canonical surjection [2, p. 34‘18]. To see thlljs, :)r;():

considers the class in KR, determined by the automorph1sx:n (Uf?h )e‘ )t/)E) s
i j f Aut, . A computation o
f P R, , where (P, f) is an object of 4 . :
;)nap CZiiAmillar to that in Corollary 3) yields [P, /] — [P, 1] in Aut, A, and an
i i A.
ication of s, — s, yields the class of fin K, .

apl\?ﬁii?: 20this map is interesting. In a future paper we intend to show that
Milnor’s pairing f % g [5] in KpA lifts in a natural way to AutlA.'In the sazz
paper we will see how to define the map Aut;_;4 — K;A when A is not nec

sarily commutative.
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For an unmixed ideal T in a regular formal power series ring R = K[[x, ,..., ,]]
with the Krull dim of R/I = 1 ordim R/I = 2 ordim R/I = 3 and R/ integrally
closed in its field of quotients, one can give an upper bound for the number of
generators for I over R in terms of the multiplicity-of R/I and the embedding

dimension of R/I. For dim R/I = 4 an example is given to show this is not
possible, even for prime ideals.

COROLLARY 6. Let A(U) = S-*A[U], where S is the multiplicative set of all
monic polynomials in A[U]. Then

K,A(U) = K,A ® KA ® NK;A @ EK 4.

The proof of this corollary is analogous to the proof in S] egf ];c]}}; z(zlt}gr;;éf ;)lf

tal Theorem: K, A[T, T-'] = K4 @ i1 i VK4
:CII}}exeF;lzgimi:ntiat A(U) = R[1/T]; this observation yields a Mayer—Vietoris
sequence that splits up.

In [3], I incorrectly claimed a proof of the following statement. Let ¢(V/, P) =
Oo/I(V, p) be the ring of germs at 2 of holomorphic functions on a complex
dnalytic subvariety I of C* of pure dimension 7 and multiplicity p. Let #I
denote the minimal number of generators of the ideal I(V, p) as a module over
0y Then #I < (u +- 1)". The proof given there for the cases » = 1 or 2 is
_ torrect, but the argument on p. 289 for » > 3 contains some rather large gaps
nd is in fact wrong. (Hochster has given a counterexample.)

_ In this paper we show that for unmixed ideals 7 in a re
serles ring R with residue field of characteristic zero it is possible to give an
ipper bound for the number of generators of I over R in terms of the multiplicity
0fR/T and the embedding codimension of R/I provided either Krull dim R/I = 1,
Krull dim R/I = 2, or Krull dim R/I = 3 and R/I is normal, or depth of

i/l = dim R/I, or depth of R/I = dim R/I — 1. The proofs presented here
rose in discussions with Professor William Heinzer and Professor Melvin
Hochster. These generalize the correct portion of [3] and have the advantage of
g easier to understand. In Section 2 we give Hochster’s counterexample

ch is the local ring of a 4-dimensional nonnormal variety

in affine 7 space.
' The author would like to thank Professor Hochster and Professor Heinzer for

¢ir permission to reproduce these arguments here and Professors Otto Forster
id Raghavan Narasimhan for their skepticism concerning the validity of [3].

Sally has also obtained results similar to those in Section 1 for the Cohen—
acaulay case.
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