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An exact sequence of Witt groups, motivated by exact sequences obtained by Lewis
and by Parimala, Sridharan and Suresh, is constructed. The behavior of the maps
involved in these sequences with respect to isotropy is completely determined in the
case of division algebras. In particular, the kernels of the maps involved in the previous
sequences are explicitly given, leading to a new proof of their exactness. Similar exact
sequences of equivariamt Witt groups are constructed. As an application, relations
hetween the cardinality of certain Witt groups are obtained.

Key Words:  Central simple algebra with involution; Equivariant Witt group: Exact sequence of Wilt
groups; Hermitian form; Isotropy; Morita equivalence; Witt group.

2000 Mathematics Subject Classification:  Primary 11E39; Secondary 11E81.

1. INTRODUCTION

Base change is an important tool in the algebraic theory of quadratic forms
and of hermitian forms over division algebras. For a field extension L/K (of
characteristic different from 2), one can consider base change from K to L; if
morcover the extension has finite degree, then one also has the Scharlau transfer.
The situation is especially well understood when L/K is of odd degree or a quadratic
extension: see the book of Scharlau (1985) for these basic notions and results.

The Witt group (and Witt ring for quadratic forms) gives a very useful way
to study quadratic and hermitian forms. The above results can be expressed very
efficiently in this framework. One of the basic results in the theory of quadratic
forms is a theorem of Pfister that determines the kernel of the restriction map rj . :
W(K) — W(L) for a quadratic extension L/K. More precisely, this kernel is the ideal
generated by the form (1, —8), where L = K(+/8). One can express this result by the
exactness of the sequence:

W(K) — W(K) K4 W(L), (1)
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966 GRENIER-BOLEY AND MAHMOUDI

where ¢ is multiplication by the two-dimensional form (1, —4}. By a result of Elman-
Lam, the Scharlau transfer map s, : W(L) — W(K), can be used to embed (1) in
the following exact triangle (cf. Scharlau, 1985, Ch. 2, 5.10):

r*

W(K) W(L)
, )

W(K)

For a quadratic extension L/K (resp. a quaternion division algebra
(a, b)Yy = D) with nontrivial automorphism — (resp. with canonical involution —),
one can consider the trace map W(L, —) — W(K) (resp. W(D, —) — W(K)). By a
result of Jacobson, these maps are injective (cf. Scharlau, 1985, Ch. 10, 1.1, 1.2, 1.7
and Jacobson, 1940).

Milnor and Husemoller (1973, App. 2), construct the following exact scquence
of W(K)-modules:

0 —> W(L, =) — W(K) — W(L), (3)

where — is the nontrivial automorphism of the quadratic extension L/K. The results
concerning hermitian forms over quaternion division algebras are given in Lewis
(1979, 1982a). He found the exact sequence

0 50, ~) = Wl WD) 3 Wil G

where L = K(/a) C D is stable under —. In fact, in this sequence, D can also be
split (cf. Scharlau, 1985, Ch. 10, 3.2). Lewis (1982b) uses this sequence to produce
a non-cohomological version of the Bartels invariant, and in Lewis (1985), he
constructed an exact octagon of Witt groups of Clifford algebras (of quadratic
forms) in such a way that (4) and (6) below are special cases of it.

Parimala et al. (1995) obtained the following crucial exact sequence of Witt
groups which is used by Bayer-Fluckiger and Parimala to prove Serre’s conjecture
IT for classical groups:

WE(A, 6) —s WE(A, a,) —> W*(A, 0) —> W°(A, a,). ()

In (5), A is a central simple algebra over a field K with an involution o of any kind,
& is an element of K with o(g)e = 1, A denotes the centralizer of a skew-symmetric
element 1 € A*, L = K(/) is a quadratic extension of K, 4, is the restriction of o to
A, and o, is a certain involution over A that fixes L elementwise. The maps 7¢ and
m, " above are transfers, and p¢ is a restriction map (for more details, see Section 2).
Note that (4) is a particular case of (5).

Lewis (1982a), has found a longer exact sequence,

0 — W(D,—) > W(L,—) > W(D,—) = W(L) - W (D, -)
— W(L,-) = W(D,-) = 0 (6)
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This exact sequence motivated us to define further maps between Witt groups in
order to continue (5) on the right. We obtain

Theorem 1.1. There is an exact sequence of Witt groups (in fact of W(K, alg)-
modules):

. ™ ° ~ 05 X s i
W™(A, 6) — W°(A, 0,) — W2(A, 0) — W4, ay), (7
where 17 (resp. p3) is a transfer (resp. restriction) map defined in Section 2.

Of course, the exactness of (7) can be obtained as Parimala et al. (1995) did.
Our proof is based on the one given by Lewis (1983) in the case of quaternion
division algebras. The proof of 1.1 can be found in Section 3.

[n spite of the exactness of (5), the kernel of each map is not explicitly given
in the literature. In Section 4, we give an explicit description of the kernel of each
map appearing in (5) and (7) in the case where A is a division algebra. More
precisely, Theorem 4.4 describes the behavior of these maps with respect to isotropy
when A is a division algebra. In particular, when we combine 4.4 with the explicit
description of cach image given by Bayer-Fluckiger and Parimala (1995), we obtain
an alternative proof of the exactness of (3).

Lewis (1983), constructs an exact octagon of Witt groups of forms invariant
under the action of a finite group G (Witt groups of equivariant forms) for
quaternion division algebras, In Section 3, we show likewise that the sequences
(5) and (7) are exact if we replace Witt groups by equivariant Witt groups. More
precisely,

Theorem 1.2. We suppose thar A satisfies the same hypotheses as in Theorem 1.1. We
have the two following exact sequences of W(K, 7| )-modules:

We(G, A, 0) —> We(G, A, 6,) > W-5(G, A, 0) 2> W*(G, A,0,)  (8)
W2(G, A, 0) —> W*(G, A, 0,) —> W(G, A, 0) —> W*(G, A, ;). (9)

In Section 6, by using (5) and (7) (resp. Theorem 1.2) we show how to
construct an exact octagon of Witt groups (resp. equivariant Witt groups): see 6.1
and 6.2. In the literature one can find several octagons of Witt groups; for example,
see Lewis (1983, 1985). Andrew Ranicki pointed out to us that the exact octagon
of 6.1 can be viewed as a special case of an exact octagon of L-groups; in fact, in
Ranicki (1987) he found a braid for any “p-twisted quadratic extension” of rings.
When these rings are semisimple, they lead to an exact octagon. For more details
see Ranicki (1987, 1992, p. 242) .

The octagons we obtain are useful when we try to estimate cardinalities of the
underlying Witt groups. In fact, in Section 7, by using 6.1, we obtain the result

Corollary 1.3.  Let A be a K-central simple algebra with an involution @ of the first
kind. Then we have [W®(A, 6)||W *(A, a)| = |W(K)|. In particular, W(K) is finite if and
only if W*(A, a) and W™4(A, o) are finite.
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This result was well known for quaternion algebras: see Lewis (1982a).

Although certain of our results can already be found in the literature, be it in a
hidden or implicit form, be il as consequences of more general principles, we believe
that our very explicit and at times computational approach has its own merits and
may prove useful when working in particular situations, say an explicitly given field.

We use notions like Morita equivalence, isotropy of hermitian forms and Witt
decomposition over a central simple algebra several times in this paper. For the
convenience of the reader, we recall in Appendix A some facts about these notions.
Of course, all of these results are well known, and one can find them in the literature:
sec McEvett (1969) for the notions of isotropy and Witt decomposition and the
book of Knus (1991, 1.9), a paper by Frohlich and McEvett (1969), and a paper by
Dejaiffe (1998) for the notion of Morita equivalence. Again, our approach to these
notions is, however, somewhat different and may be of interest in its own right.

2. NOTATION AND DEFINITION OF THE MAPS

Let K be a field of characteristic different from 2. All modules in this paper
are supposed to be right modules finitely generated, and all the e-hermitian forms
are supposed to be nondegenerate. Let A be a central simple algebra over K with an
involution ¢ (of any kind). For & € K with €o(g) = 1, an e-hermitian form (V, &)
over (A, o) consists of a right A-module V and a biadditive map h:VxV-—> A
such that (xa, yb) = a(a)h(x, y)b and h(y, x) = ea(h(x, y)) for all x, y € V and for
all a, b e A. Let S°(A, ¢) denote the semigroup of isometry classes of e-hermitian
forms over (A, g), and let W*(A, ¢) be the Witt group of (A, g) (i.e., the quotient
of the Grothendieck group corresponding to §(A, o) by the subgroup generated
by metabolic forms, an e-hermitian form (V, h) being metabolic if there exists an
A-submodule W of V such that W = W' for h). If ¢ is of the first kind, &€ = £1. If
a is of the second kind, W*(A, ¢) does not depend on &, so one can always suppose
that & = +1, whereas all the results of this paper can be adapted for an arbitrary
£ € K with ea(e) = 1.

Remark 2.1. As A is simple, there is of course no difference between the notions
of metabolic and hyperbolic hermitian forms. We use any of these two notions
subsequently (except in Section 3).

First, we define the maps involved in the different sequences of this paper. As
in Bayer-Fluckiger and Parimala (1995) and Parimala et al. (1995), we suppose that
there exist 4, 4 € A* such that o(4) = —4, a(p) = —p, A = —iy, and such that I =
K(4) is a quadratic extension of K. We write A for the commutant of L in A: this is a
central simple algebra over L. One can easily verify that ud = Ap, ¢ € A, a(A) = A,
and A = A & ;{E. We define two involutions on A in the following way: let ¢, = al5.
and let 6, = Int(u~") o o, (where Int(x~")(x) = uxp).

¢ Definition of ni and m;.  We have two L-linear projections: T, A—> A:
Gtpa>aand A= Ata +ua, > a IFh: Vx v — Ais an e-hermitian
space over (A, o), we define (for i=1,2) n(h):V xV — A by nf(h)(x,y) =
m;(h(x, v)). One readily verifies that mi(h) is an e-hermitian space over (E, g,) and
that 73(h) is a —e-hermitian space over (4, y). In order to see that =f and 5
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induce homomorphisms of Witt groups. we have to prove that these maps respéct
regularity, isometry classes, orthogonality, and hyperbolicity. All of these properties
come from

h(x, ) =0 Vy <= z{(h}(x,y) =0 Vy < a5(h)(x,y) =0 Yy

Hence 7 and 7% induce homomorphisms of semigroups of isometry _classes of
nondegenerate hermitian forms and homomorphisms of Witt groups (again denoted
by = and =%):

i S9(A, 0) — Ss(;i, a); 5 Wo (A o) — WE(A’LO'I)
5 SE(ALa) = ST (A, ey); ws i WA o) = WA, 03).

o Definition of pj. Let (V,f) be an e-hermitian space over (A, ;). We
associate to it (V &y A, p{(f)), where pj(f)(x @ o,y ® ) = (2)Af(x, y)f for x, : E.V
and z, i € A. We can easily verify that p* is well-defined and that (V ®3 A 27 ()
is a —e-hermitian space over (A, a). Moreover p? induces the homomorphisms

pS i S°(A,0) = S°(A,0); o7 WE(A,0) »> W3(A, o).

o Definition of p5. Let (V, f) be an e-hermitian space over (A, 02)‘. We
associate to it (V ®3 A, p5(f)), where ,o;(f)(x.® o, v & 1) = a(a) Lpflx, y)ff for x,
ye Vand 2, f € A p§ induces the homomorphisms

P 85(A, 0)) — S5(A,0);  pi: WEHA, 6,) = WH(A, o).
¢ Definition of m5. We define n§ to be Anj, so we obtain the homomorphisms

5 8%(A0) > S(A a); ml WA, 0) > WA, 6)).

o Definition of p5. We define: p5(f) = p;o(27'f), ie., pf,(f)(x@ #, vy @ f) 5
ala) f(x, v} for x, ve V and «, f € A. By a straightforward verification we obtain

Table 1
Map Definition
S5(A, &) j') 5&-(2= 7)) (Vo i) = (Vg wi(h)) T (h)(x, y) = 7 (h(x, ¥))
S*(A, 0) % SR ) (Vi h) e (Vg, 75(R)) mE(h)(x, y) = ma(h(x, )
3 w5 () (x. y) = Znf(A(x, ¥))

$(A.0) 3 575 Ro) (Vo h) o (Ve ()

S¢(A, &) i 55A 0 (W) (W A ()
SR 3 5(A0) (W0 (W5 A p5())
S*(A, ) L} SE{A, @) (W, ) = (W @5 A, p5(f)

PHAE® Y f) = o@)if(x. )
PENGx @2y @ f) = alm)ipflx. )b
PN ® 0y ® f) = 6(0)f(x, )
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the homomorphisms
Pt SS(Z, a,) — S°(A, a); i WE(E, a,) — WP(A, o).

Remark 2.2. Note that, in these definitions, ¢ is arbitrary, so for example n;° will
be a homomorphism of Witt groups from W=¢(A, ¢) to W *(4, ¢,) and so on for
the other maps.

A summary of these definitions can be found in Table |,

3. PROOF OF THEOREM 1.1.

In this sect%on we suppose that (A, A, 7, g, g,) satisfies the same hypotheses
as the ones mentioned in Section 2. We prove the result stated in 1.1:

Theorem 1.1. There is an exact sequence of Wit groups (in fact of W(K, aly)-
modules), ‘ . '

s e Pl e o3 —_ e Lol
W™ (A, 0) — W*(A, 0;) — W™°(A,6) — W(A, g)).

Proof. First, we prove that this sequence is a complex.

pso 75‘" =0: Let (V, h) be a (—&)-hermitian space over (A, a), so 1;°(h) is
an g-hermitian form over (4, 0,) and pin;°(h) will be a (—&)-hermitian form over
(A, o). Tt is enough to find a self-orthogonal right A-submodule of V @3 A with
respect to p§m, *(h). Let

W={x-u®l+x®@u|xeV). (10)

Now W is readily seen to be a right A-submodule of Vi @5 A. and an easy
Cz-tlculation shows that this space is a totally isotropic subspace of pin; “(h). By
dr‘mension count over K, we have W = W (with respect to pfn;s(:;z)j. and so
sy (h) is hyperbolic. o

—E

my%0p5 =0: Let (V, i) be an e-hermitian space over (A, a,). Let
W={xl|lxeV|CVe;A. (1)

Then W’ is an A-submodule of V,®;3 A, and it is a totally isotropic subspace

for n3¢p5(h). By a dimension argument, one has W' = W'* and so o p5(h) s

hyperbolic. o
Next we prove that the sequence is exact.

ker(p3) C im(n,®): Let (W, f) be an e-hermitian form over (A, a,) such that
,o;(f) is hyperbolic. We may assume that f is anisotropic thanks to A7, There
exists an A-submodule W, of W ®; A such that Wit = W, (with respect to £5(F)).
Let W@u={w@uweWw). Let w, e W,N(W® W (w, =w®pu with wl_e W
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and w e W). As pi(f)(w,, w) =0, flw,w) =0, and so w; = w® p =0 since f is
anisotropic. Moreover,

1 . .
dim, W, = adlmK W®p A=dim; W&,

so We; A=W, @&(W®yu) as A-modules. This implies that for all we W, there
exists w' € W such that w® 1 +w ® ue W,. Since A is a free A-module, w’
is uniquely determined by w, and we write J(w) := w’. By definition of J, we

have J*(w) = wu? and J(wa) = J(w)pap™ for all we W and a € A. As W, =
W ps(AE@T+Jx)@u, y® 1+ J(y) @ p) =0 for all x,y e W, and we obtain
the system

SO ¥) + wf(J(x), J()p =0 (12
J JoNp+ wf(J(x),v) =0

By means of J, we define an A-module structure on W by
wop = J(w)u’

for all w € W. We denote by W, the A-module W equipped with this new action.
Let 7 be the map defined by

h(x.y) = pf(x, JO)u+ uf(x. y) (13)

for all x,y € W,. By the definition of J and (12), we conclude that (W, i) is a
(—&)-hermitian space over (A, o). Let us show that £ is sesquilinear on the left with
respect to o: h is clearly biadditive, so it suffices to show this fact for g and for

elements of A. We have
(-, y) = h(J(X)12, y)
= uf (JQ I+ wf (Jid, y)
(@£ f (I, T+ 1 F(I(x), )
= — 1 f(x, y) — 1 f(x J()u (using (12))
= a(Wh(x, y).

Sesquilinearity on the left for elements of A and linearity on the right are done in
the same way. Let us prove that s is —e-hermitian with respect to o:

h(y, x) = pf(y, J(x))u + ufly. x)
= ea(f(J(x), y))u* + o (fx, ))u
= —ea(u " f(x. J)u)’ — eo(uf(x,y)) (using (12))
= —ea(h(x, y)).
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If i is degenerate, by (13), there exists a nonzero x € W such that f(x, y) =0 for all
¥y € W_ In particular, this implies that f is isotropic, which is a contradiction. Now
(W, h) is the antecedent of (W, f) by n3°, i.e., (W,)5, n;°(h)) is isometric to (W, )
(the isometry is given by the identity map). We conclude that ker(p?) c im(m;*).

ker(n3¥) C im(p5): Let (V. h) be a (—&)-hermitian space over (A, o) such that
ny (/1) is hyperbolic. We can assume that £ is anisotropic thanks to A.7. There exists
an A-submodule W of V; such that W' = W (with respect to 73 %(h)). This implies
that h(x, y) € pA, for all x, y € W. We define a map f: W x W — A where

fry) =127 h(x, y) (14)

for x, y € W. Since h is anisotropic and f is nondegenerate, we can easily see that
(W, f) is an e-hermitian form over (A, g,) and (W ®3 A, pi(f)) is isometric to (V, h)
via ®(w® a) = wa for all we W, a € A. We conclude that ker 7% C im p%, thus
completing the proof. \ O

4. THE BEHAVIOR OF THE MAPS FOR DIVISION ALGEBRAS

In this section LD, 7) is a division algebra with an involution t of any kind.
We assume that (D, D, 1,1y, 1,) satisfies the same hypotheses as the ones mentioned
in Section 2 for (A, A, o, 7,, 7,).

Pr0p0§iti0n 4.1. (i) If h=/(3) is a one-dimensional e-hermitian Jorm over (D, 1)
(with 6 = d| + ud,, d,, d, € D), then the matrix of i (h) over (D, 1,) with respect to

the basis {1, p} is
dy wely
—d, —pd\p)

(ii) If P is the matrix of an e-hermitian form f over (D, Ty) with respect to a
basis B, then )P is the matrix of pS(f) over (D, ©) with respect to the basis B ® 1.

(i) If h = (8) is a one dimensional —e-hermitian Jorm over (D, 7) (with 6 =
dy + pdy, d,, d, € D), then the matrix of my#(h) over (D, 1,) with respect to the basis

{1, u} is
( ds  uldu
—d,  —pdy)
(iv) If P is the matrix of an s-hermitian form f over (D, 75) with respect 1o a
basis B, then JuP is the matrix of p5(f) over (D, ) with respect to the basis B® 1.

(V) For a —&-hermitian form h over (D, t), the matrix of my°(h) with respect
to a basis B is A times the matrix of mi(h) with respect to the basis B\U uB.

(vi) If P is the mairix of an e-hermitian form f over (5, 7)) with respect to a
basis B, then P is the matrix of p5(f) over (D, ©) with respect to the basis B® 1.
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Table 2
Map Form Conditions Image
ny (Orveees 5rr>’;“(jf = dyiy + pdy, Tyldy ) = edy " dyy eyt
diy syl €D T (dy) = —edy; S\ dy —pdy
Py ottt wED n(y) = &y, A i)
fio [/ T— (3”)5”(5‘ =ds;_| + pes;, T (dy_ ) = —&dy; | " dy  p'dy g p
dy; y,dy €D 1,(d>;) = &d>, SN —dy  —pdyp
o5 1o Tudi Vi €D (7)) = &y, (ys - s 2amy)
T {5y 5»;)‘;5.‘ = dy | + pdy. T (dy_)) = —edy @' iffzi 1 At
dy_y,dy €D To(dy) = ady; S\ —Atdy =iy i
I e tadi v €D u() = e, A

Proof. These are straightforward calculations. Almost all of these are mentioned
in Bayer-Fluckiger and Parimala (1993, Sec. 3). O

The summary of the previous proposition can be found in Table 2.

Lemma 4.2. f D is commutative, then D is a quaternion division algebra, say
D=(u,b)y, D=L=KM)with)>=acKand > =>beck.

Proof. _ D is the commutant of L in D, so it is a central simple algebra with center
L. As D is commutative, we have D = £, and the lemma readily follows. O

Lemma 4.3. If E is a noncommutative central simple algebra and * an involution
on E, then for ¢ = L1, the set of nonzero e-hermitian elements with respect to % is
nonempiy.

Proof. This is a consequence of Scharlau (1985, Ch. 8, 7.5). |

The following theorem determines completely the behavior of the maps ,, p,,
T, 5, T3, and p; with respect to isotropy.

Theorem 4.4. (i) Let h e S°(D, 7). If D is commutative and & = 1, then nt(h) e
Se(D, 1)) is isotropic if and only if h is isotropic. Otherwise, nj(h) is isotropic if and
only if there exists ¢ € D* with 1,(c) = —&c such that h contains a subform isometric
to {uc).

(i1) Suppose that f € S"(B, ). If D is commutative, € =1 and dim(f) =2,
then pi(f) € S7°(D, 1) is isotropic if and only if f is isotropic or [ is isometric to
the two-dimensional anisotropic form (¢, —bc), where ¢ € K* and b = 1° (see 4.2).
Otherwise p{(f) is isotropic if and only if there exist d,, dy € D such that ©,(d,) = ed,,
7,(dy) = —&d,, and | = f, L f, for some nondegenerate

. d pidy
jl = 2 : !
—ud, —pdu
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(1) Forh e S 5(D, 1), n,°(h) € S5(D. 1,) is isotropic if and only if there exists
c € D" with 1,(c) = —ec such that h contains a subform isometric to {c).

(iv) For [ € SE(B, 7,), P5(f) € ST8(D, 1) is isotropic if and only if there
exist dy,d, € D such that 1(d|) = —ed,, 1:(d,) = ed, and [ = f, L[, for some

nondegenerate
2 s ( d,  wldp
o —d;  —pudyp)

(v) Let he S *(D,7). If D is commutative and & = —1, then n;°(h) €
S° (D 7,) is isotropic if and only if h is isotropic. Otherwise, ny®(h) is isotropic if and
only if there exists ¢ € D* with T,(c) = ec such that h contains a subform isometric
to {uc).

(vi) Suppose that f € S“(B, ) If D is commutative, £ = —1, and dim(f) =
2, then p§(f) € §°(D. 1) is isotropic if and only if f is isotropic or f is isometric to
the two-dimensional anisotropic form (lc, —ibc), where ¢ € K* and b = 10 (see 4.2).
Otherwise p5(f) is isotropic if and only if there exist d,, d, € D such that 7,(dy) =
—edy, 1,(d,) = ed,, and f = f, L f, for some nondegenerate

£ Aid, Apdy
T \ddy, —apdp)
Proof. Let H, denote an e-hyperbolic plane.

(i) First, suppose that D is commutative and & = 1. By 4.2, we know that D
is a quaternion division algebra. The equivalence comes from the fact that, in this
case, the trace form of /i is isotropic if and only if & is isotropic.

Next, suppose that the previous case is excluded. If 7 is anisotropic and =§(h)
1s isotropic, then we can find x € V — {0} such that ={(h(x, x)) =0, ic., h(x, x) =
e with ¢ € D*. As t(h(x, x)) = gh(x, x), we conclude that 7,(c) = —ec. It readily
follows that 4 contains (uc).

Now consider the case where h is isotropic. We have H, ~ {uc, —uc) for all
¢ € D* with 73(¢) = —&c, provided such a ¢ exists. If & = —1 then we can take ¢ = 1.
If £ = 1 then we only have to show that there exists ¢ € D such that 7,(c) = —c. By
assumption, D is noncommutative, and one can apply 4.3 to conclude the proof.

Conversely, suppose that # contains a subform isometric to {(uc) as in the
assertion. By applying 4.1(i) to the form (uc), we easily deduce that nf(h) is
isotropic.

(i) First suppose that D is commutative, & = 1, and dim(f) = 2. We are in
the situation of 4.2. If f is isotropic or f = (¢, —bc), it is obvious that pi(f) is
isotropic. Conversely suppose that for a two-dimensional form f = {(c, d), pif) =
(4c, Ad) is isotropic. So there exists ¢ € D* such that

(g)icg + Ad = 0. (15)
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Write ¢ = z, + uz, with z,, 2, € D. By replacing g with z, + pz, in (15), by using the
fact that {1, u} is an L-basis of D, and by remarking that 7, = id,, we obtain

tzezy +1(z2)bez; +d =0
213, = 0.

I 7, =0, then 7,(zy)cz; + d = 0; this means that f is isotropic. If z; =0, then
= —1(zy)bczy, s0 f > (¢, —1,(25)bczy) = {c, —bc).
Next, suppose that the previous case is excluded. If f is anisotropic and pf(/f)
is isotropie, let z = x; ® 1 + y; ® u be a nonzero isotropic vector for pf(f). By the
definition of pf, we obtain

(Af(xps %) — pdf(y, vy + (Af(xy, y)p — wif(y, x,)) = 0,

and so we obtain
Sy, xp) + ufr, y)p =0 (16)
J“f(.)’[, x]) JF f(xl, V]),U = 0

As f is anisotropic, thanks to this system, we can suppose that both x; and y, are
nonzero. Moreover, x; and y, are linearly independent over D. In fact, if x, and M
are linearly dependent, then x, = y,d with d € D*, and by replacing x, with y,d in
(16). we obtain
W)y y)d + uf(y, y)u =0 (17)
wf s y)d +o(d) f(y, y)u =0

From the second equation of (17), we obtain t(d)f(y,.y,) = —uf(y,. v,)du '
By replacing t(d) f(y,, _v,) by —uf(y;, y;)dp”! in the first equation of (17), we
obtain puf(y,, v, )(—dp'd + 1) = 0. As the second factor is nonzero for all d € D,
SO, y1) =0, which is a contradiction with the anisotropy of f. Now y, and x,
spdn a two- dlmcnmonal subspace W over D, and if we denote d, = f(y,. y,), d, =
Ly n)u . the matrix M of f|, with respect to the basis {y,, x,} is exactly the
one given in the proposition. As f; = f],, is nondegenerate (since f is anisotropic).
we can write f = f, L f5, so f contains the given form.
Now consider the case where f is isotropic. If D is noncommutative, we take
d, = 0, and we can find d, € D such that ,(d,) = —&d,, and it is obvious that

0 3
m~ (O BB,
‘ —ud, 0

so [ contains the given form. If D is commutative and & = -1, we take d, =
0 and d, =1, and H , is isometric to the matrix given in the proposition. If
D is commutative, £ = I, and dim(f) = 3, then f =~ H,Lf, with dim(f,) = 1. If
fi={a,...), then f =~ (uay, —pap, a,...), so, for d, =a, d, =0, f contains the
given form,
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Conversely, with the same notations as in (i), 4.1(ii) and a straightforward
calculation show that (u. 1) is an isotropic vector for pi(f).

(iii) If % is anisotropic and n3°(h) is isotropic, then we can find x € V — {0}
such that 7;°(h(x, x)) = 0, that is, A(x, x) = ¢ € D*. We conclude as in (i). If his
isotropic and & = 1, then h =~ {1, —A) L h, and we can take ¢ = 4. It & is isotropic
and & = —1, h = H, L h; and all we have to do is to find ¢ € D* such that 7,(c¢) = ¢
we can take ¢ = 1.

The converse is an easy consequence of 4.1(iii).

(iv) If f is anisotropic and p3(f) is isotropic, let z =x, ® 1 +y, ® 1 be an
isotropic vector for p5(f). With a straightforward computation we find the same
system as in the proof of (ii). Proceeding in the same way, we can suppose that
x; and y, are nonzero and span a two-dimensional subspace W over D. If d =
—f(x1.y) and d, = f(y,, y;), then the matrix of f|, with respect to the basis {y,, x;}
is exactly the one given in the proposition. Now consider the case where fis
isotropic. If e = |, we take d, =0 and d;, = 2. If £ = —1, we take d, =0and d, = 1.

Conversely, (u, 1) is an isotropic vector for ps(f,).

(v} If D is commutative and & = —1, then the cquivalence between 75 (h)
being isotropic and & being isotropic readily comes from (). Next, we suppose that
the previous case is excluded. If / is anisotropic and n7°(h) is isotropic, we can
conclude as in (i) and (iii). I 4 is isotropic, then & ~ (uc, —ucy Lk, for all ¢ € D
such that 7,(c) = e, and we only have to find such a ¢. If D is noncommutative, this
is clear. If D is commutative, then 1, = id,. As & = 1 we can take ¢ = 1. Conversely,
we only have to apply 4.1(v).

(vi) First, suppose that D is commutative, & = —1, and dim (f) = 2. Then we
are in the situation of 4.2. The proof goes as in (ii). We leave it to the reader.

Next suppose that the previous case is excluded. If f is anisotropic and 250
Is isotropic, let z = x; ® | + y, ® u be an isotropic vector for p5(f). We have the
system

S xp) — ufGn, y)u =0
FOe, y)u— wf(y, x) =0

Now let o, =/7'f(y,,y)) and d,=p "2 fly,, x) )" Let W be the two-
dimensional D-subspace generated by x; and y, (the proof of the fact that x, and
» are linearly independent over D is similar to that of (ii)). The matrix of f|,, with
respect to the basis {y,, x,} is exactly the one given in the proposition (the form f|,,
is nondegenerate because f is anisotropic).

Now consider the case where f is isotropic, If D is noncommutative, we take
dy =0 and d, € D such that 1,(d,) = ed,. If D is commutative and & = 1, then
f>~MH,Lf and we take d, =1 and d, = 0. If D is commutative, & = —1, and
dim(f) > 3, we conclude as in (ii). Conversely, (u 1) is an isotropic vector
for p5(f)). u

In particular, if f and & are anisotropic, we obtain Table 3.
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Table 3
Behavior with respect to hyperbolicity Conditions

m{(h) is hyperbolic = k2 (uyy, ..., [Ty ) ,(y,) = —ey,

& : ; a ~ (T dyy ey qt T(dy) = edy
1) is hyperbolic = f ~ L, (7#3(1‘3,- —pida_y gt Tldy,) = —sds,
m, °(h) 1s hyperbolic = h=>={y.,.... Tt T, (1) = —ey;

26 is hv ic ~ (T dy g l"J"rszl.“) Tldy ) = —sdy
p5(f) is hyperbolic = f =~ ], (*431_\ —tdypt ,(dy;) = £ds;
m, “(h) is hyperbolic = h = (uy.....up,) T2{y;) = &

S0y iialia (DY Ady oy Apdyp Tldy 1) = —edy
PO Ishypetbolici =, f=iBy (7’14“2(]2? —ipdy g Tldy) = &dy

From 4.1 and 4.4, we obtain the following result.

Corollary 4.5. The sequences (5) and (7) are exact when A is a division algebra.

5. EXACT SEQUENCES OF WITT GROUPS OF EQUIVARIANT FORMS

Let K be a field of characteristic different from 2 and G be a finite group. Let
A be a central simple algebra over K with an involution ¢. We denote by A[G] the
group algebra of G over A. Let & = £1.

Definition 5.1. We¢ say that an e-hermitian space (M, h) over (A,o) is a
G-space if
e G acts on M on the right and for all g € G, the map M — M :m+> m-g is

A-lincar on the right;
e We have h(m- g, n-g) = h(m, n) for all m, n € M and for all ¢ € G.

In this case, 7 is called a G-form (or a G-equivariant form). It is obvious that M is
a right A[G]-module.

Two e-hermitian G-spaces (M, i) and (M’, k') are said to be isometric if there
exists an isomorphism & : M — M’ of right A[G]-modules such that

W (D(m), D(n)) = h(m, n)
for all m, ne M. If M is a right A[G]-module, M* = Hom, (M, A) has a natural
structure of right A{G]-module: (f - g)(m) = f(m- g~V if f e M*, g € Gand m € M.
A G-space (M, h) over (A, o) is said to be nondegenerate if M — M* : x> h(x.-)
is an isomorphism of A-modules. One can define the hyperbolic e-hermitian G-space
associated to such an M by (M & M*, Th,,), where
lhy,(m& f,m' & [) = f(m') + ea(f'(m))

forall m, m" € M and f, f' € M*.
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Remark 5.2, If char K { |G|, then by Maschke’s theorem the group algebra A|G]
is semisimple. Thanks to that, we can show that an e-hermitian G-space (M, h) is
hyperbolic if and only if it is metabolic (i.c., if there exists a right A[G]-submodule
N of M such that N = N* for h): the proof can be adapted from Bayer-Fluckiger
and Lenstra (1990, Corollary 1.4). This fact will not be used here.

Now one can construct a group (as for e-hermitian forms) called the Witt group
of e-hermitian G-forms (also called the Witt group of equivariant forms), which
will be denoted by W¢(G, A, ) (i.e., the quotient of the Grothendieck group
corresponding to isometry classes of nondegenerate s-hermitian G-forms by the
subgroup generated by metabolic forms). An clement of this group is denoted by
[(M. h)] where (M, h) is an e-hermitian G-space over (A, o).

We can easily see that the maps involved in Section 2 induce group
homomoiphisms between the corresponding Witt groups of hermitian G-forms: if
W is an A[G|-module, then W ®; A is an A[G]-module, where G acts on W ®7 A
by (W®a)-g=w-g®a forwe W, ae A, ¢ec G. The notion of anisotropy for
G-forms that we will use is the following (as in Cibils, 1983, p. 29):

Pefinition 5.3. An e-hermitian G-space (M, ) over (A, o) is said to be anisotropic
if for all A[G]-submodules N of M, we have N N N+ = 0 (for h).

Remark 5.4. Note that this notion of anisotropy coincides with the usual notion of
anisotropy (see Section A) when (M, /) is an &-hermitian space over a simple algebra
with involution. But in the case of e-hermitian G-forms, this notion of anisotropy
is weaker than the usual one. For example, let ¢: € x € — € be the quadratic
form defined by g(x,y) = x>+ > and G = {1, 0}, where 0 is the reflection in the
hyperplane orthogonal to (1, 0). Then g is a quadratic G-form that is isotropic as a
quadratic form but anisotropic as a G-form in the sense of 5.3.

Now one can prove a proposition analogous to Cibils (1983), Proposition 2:

Proposition 5.5. If [(M,h)] € W*(G, A, a), [(M,h)] 0, then we can find an
anisotropic e-hermitian G-space (M', I') over (A, o) such that [(M, h)| = [(M', i')].

Proof. The proof goes as in Cibils (1983), Proposition 2. ]
Now we prove the result stated in 1.2,

Theorem. We suppose that A satisfies the same hypotheses as in Theorem 1.1. We
have the two following exact sequences of W(K, a|,)-modules:

W*(G, A, 0) —> W*(G, &, 0,) —> W™*(G, A, a) > W*(G, A, 0,)
WG, A, 6) = W*(G, &, 6,) > W(G, A, 0) = W(G, A, 5,).
Proof.  We only prove the exactness of the second sequence, the proof of the first

one being similar. We only have to adapt the proof of 1.1. Let us keep the same
notations. The fact that this sequence is a complex readily follows from the proof
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of 1.1, as we can easily verify that there exist right G-module structures on W and
W' (see (10) and (11) for the definition of these spaces).

To show that this sequence is exact, we use Proposition 5.5 to exhibit an
anisotropic representative (in the sense of Definition 5.3) of each form in the
considered kernel.

Let us show that ker(pj) C im(n;°). We only point at the changes to the
original proof. So let (W, f) be an anisotropic e-hermitian G-space (in the sense of
5.3) lying in the kernel of pj. Thanks to 5.2, we know that there exists an A[G]-
submodule W, of W ®; A such that W, = Wi-. To show that W; N (W ® u) = 0, we
consider the following subspace: V ={we Wlw®@ u € W,}. Tt is an A-submodule
of W,and if we W, ge G, we have w-g@u=(w®u)-ge W, as W, is a right
G-module. So V is an A[G]-submodule of W. Now if v, v’ € V, then p5(Nv @ p,
v @ p) =0, and we have f(v,v) =0. So V C V*, and as (W, f) is anisotropic, we
deduce that V =0 and that W N(W® u) =0. Now, W@; A=W, & (W@ y) as
A[G]-modules, and this implies that for all w € W, there exists w' € W such that
wel+w ®upe W,. One can define the map J: W — W as in the proof of 1.1
by J(w) = w'(the map J is well-defined because f is anisotropic). Thanks to the
previous uniqueness, we have J(w - g) = J(w) - g for all w € W, g € G. Thanks to
that, we easily show that W, is an A[G]-module. We define / as in (13). If A is
degenerate, then there exists x # 0 in W, such that a(x,y) =0 for all y € W,. We
deduce that f{x, y) =0 for all y € W, and this shows that x € W N W+, which is a
contradiction to the anisotropy of (W, f). We can conclude as in 1.1.

Now let us show that ker(n;”) C im(p5). Let (V. /) be an anisotropic -
hermitian G-space lying in the kernel of =3¢, Then there exists an E[G]—submodule
W of Vy such that W = Wt. As in the proof of 1.1, we define a map f as in (14),
and all we have to do is to show that the e-hermitian form f is nondegenerate. If f
is degenerate, let U be the right A[G]-module generated by W. Then U is an A[G]-
submodule of V. Now there exists x € W such that A(x. y) = 0 for all y € W, and this
implies that i(x, y) = 0 for all y € U; we have x € U N U, which is a contradiction
to the anisotropy of (V, h). O

Remark 5.6. If the group G is trivial, then (5) and (7) are special cases of 1.2.

6. EXACT OCTAGONS OF WITT GROUPS

Corollary 6.1. With the same hypotheses as in Section 2, there is an exact octagon of
Witt groups (in fact of W(K, a|)-modules) as in Figure 1.

Proof. The definition of the maps easily implies that the exactness at each point
is equivalent to the exactness at the opposite point of the octagon. Now the result
comes from the exact sequence of Parimala et al. (1995) and from Theorem 1.1. [
Corollary 6.2. The ociagon of 6.1 is also exact for G-forms.

Proof. The proof is similar to 6.1 when we use Theorem 1.2. ]

Remark 6.3. One can find a similar exact octagon of Witt groups of Clifford
algebras of quadratic forms with their canonical involution in Lewis (1985).
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We(A, o) We(A, o)

=

1

W54, a)

=
hy
{
m

WH(A, o) We(A, o9)

5

W= (A, o1) - W=5(4, o)
';T:;':

Figure 1

Remark 6.4. David Lewis suggested to us that, in 6.1, one can replace the bottom
left entry of the octagon by W™°(A, g,) because the multiplication by Z induces an
isomorphism W #(A, a,) = W*(A, o,). Thus we obtain “antipodal asymmetry.” In
this case, the exactness of 6.1 is equivalent to the exactness of the following square
obtained by adding opposite entries of 6.1:

W(A, o) ® W*(A,6) ———> W*(A,0,)® W (4, 0,)

| S

We(A, 0,) ® W (A, 0,) «——— W(A, 6) ® WA, o)

Remark 6.5. If A is a split quaternion algebra and o is symplectic, then the exact
octagon of 6.1 becomes:

00— WL, —)—> WK) - W(L) > WIK) —> W(L, —) = 0,

where L/K is a quadratic extension with a nontrivial automorphism — = g|,. If A
1s a quaternion division algebra and « is symplectic, then 6.1 becomes

0— W(A,0) > W(L,a|,) > W (A, 0) = W(L) — W(A, o)
— W(L,a|,) — W(A, o) — 0,
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where L is a maximal subfield of A that is stable under the involution. These
sequences can be found in Lewis (1982a). These two sequences are particular cases
of exact octagons found by Lewis (1983, 1985).

7. ORDER OF WITT GROUPS

Let L/K be a finite extension. One can ask for the relation between the orders
of W(K) and W(L). If L/K is an extension of odd degree, then by the weak version of
Springer’s theorem there is a canonical injection W(K) < W(L), so the finiteness of
W(L) implies that of W(K). If L/K is an extension of even degree, then this property
fails. However, for a quadratic extension L/K, the finiteness of W(K) implies that
of W(L); it is easy to see is that by the exact triangle of Elman-Lam (2) one has
|W(L)| < |[W(K)|*. In Lewis (1982a) the defect of this inequality is calculated; in fact,
the relation has been proved

[W(L)[IW(L, -)I> = [W(K)I, (19)

where — is the nontrivial automorphism of L/K. We have the same situation for a
quaternion algebra Q with its symplectic involution —. In this case, the finiteness of
W(K) implies that of W(Q, —) by the exact sequence of Jacobson. In fact by Lewis
(1982a) we have

[WE(Q, HIIW™(Q, —)| = [W(K)|. (20)
More generally, as stated in 1.3, we have

Corollary. Let A be a K-central simple algebra with an involution a of the first kind.
Then we have |WE(A, o)||W 5(A, )| = |W(K)|. In particular, W(K) is finite if and only
if We(A, o) and W™ (A, o) are finite.

Proof. By Merkurjev's theorem, A is similar to a multiquaternion algebra, say
A~Q ® --®Q, By Morita theory, we have W*(A,a)~ W (0, ® - ®Q,,
g, ® --®a,), where & = g or & = —e and o, is the canonical involution of @, for
1 <i < n. So in order to prove the statement, we can suppose that

(A,(T):(Q1®"'®Q“,U|®”'®O—”).

We proceed by induction on n. If n = 0, 1.e., A is split, the statement becomes
[We(K)|W=#(K)| = |[W(K)|, which is true because {W*(K), W *(K)} = {W(K).0}.
If n = 1, the statement is a consequence of (20).

Suppose that n > 1. Suppose that @, = (a, b)g, where (a, b}, is the quaternion
algebra generated by i and j with # =a, j° =b and ij = —ji, where a,b € K.
Take the split quaternion algebra Q' = (a, 1), generated by i’ and j' with i =
a,j* =1 and i'j = —ji'. If we compare the exact octagon of 6.1 for (A, g) =
0,® - ®0,,20,,0®--Q0, ®c,) with A=1® ---@l®iand u=1®
- ®1®jand also for (A, ¢)=(0,® --®0,.,®0,,0,® - ®0c,,®0d,) (7,
is the canonical involutionof @) with /' =1® - - @1 @iand ' =1®@---@ 1]
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we deduce that |We(A, 0)||[W™9(A, o)| = |W*(A", ¢")||]W™¢(A’, ¢')|. By Morita theory,
we have We(A', ') = W *(A”, ¢") and W *(A’, ¢") > W*(A", ¢"), where

(A", 0") =1 ® ®Q, 1.0,®- -0, )
So by the induction hypothesis we obtain |We(A, a)||W=¢(A, )| = |W(K)|. O
Remark 7.1. If A is a quaternion algebra over K, and o is the canonical involution
of A, then for K = @Q,, both groups W*'(A, ) are finite. For K = R, the group

W=I(A, ¢) is finite and W'(A, o) is infinite.

Corollary 72. Let A be a quaternion algebra over K with an involution o of the
second kind. Then |W(A, a)| = |W(K, o)l

Proof. By a theorem of Albert (Scharlau, 1985, Ch. & 11.2) (A,0) = (A, ®,
K.o,® a|,), where k is the fixed field of ¢ in K, A, is a quaternion algebra over
k. and o, is its canonical involution. Suppose that A, = (a, b),, where (a, b), is the

quaternion algebra generated by i and j with i* = a, j> = b, and ij = —ji, where
a, b ek Take the split quaternion algebra Aj = (a, 1), generated by i’ and j
with " =a, /=1, and i'j = —j'i'. Let ) be the canonical involution of Aj. If

we compare the exact octagon of 6.1 for (A, ®, K, 5, ® ¢|x) with A =i® | and
p=ji®1 and for (A, ¢) = (A, @, K.0,@0|;) with /' =7 &1 and ' =7 ®1,
we deduce that |W#(A, o)||[W °(A, a)] = |[We(A', a")||W* (A", ). As W(A, g) =
W (A, 0) = W(A,a) and WA, o) = W *(A", ¢') > W(A', ¢'), we deduce that
[W(A, )| = |W(A", a')|. By Morita theory, W(A", ¢') = W(K, o) because A’ is split.
This implies the result. 0

Corollary 73. Let A = Q, ®y - - @ O, be a a multiqguaternion algebra over K with
the involution ¢ = 0, @ --- ® @,, where a; is an involution of Q, of the second kind for
i=1,...,n Then |W(A, a)] = |W(K, a|y)|.

Proof. The argument is similar to 1.3: we use an inducticn on n and the case n = |
has already been proved in 7.2. O

The previous corollary gives the motivation to ask the following question for
which we do not know the answer.

Question 74, Let A be a K-central simple algebra with an involution & of the
second kind. Ts it true that |W(A, ¢)| = |[W(K. a|)|?

Remark 75. Using 1.2 and applying the same type of arguments, we can show
that, if A is a central simple algebra with an involution ¢ of the first kind, then
|W#(G, A, 0)||W*(G, A, )| = |W(G, K)||W (G, K)|. In 7.3 one can replace the
Witt groups by equivariant Witt groups.
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APPENDIX
A. Some Basic Facts and Notions About Morita Theory

We recall some facts about isotropy, Witt decomposition of e-hermitian
forms over a central simple algebra with involution (A, ), and Morita equivalence
between two central simple algebras with involution.

Definition A.1. A nondegenerate g-hermitian space (V, h) over (A, g) is said to be
isotropic if there exists x € V — {0} such that h(x, x) = 0.

The following approach is based upon Dejaiffe (1998). See also Frohlich and
McEvett (1969).

Definition A.2. Let (A,0) and (B,t) be two central simple algebras with
involution over K such that ¢ and t have the same restriction to K. Let 6 = 1 if ¢
and 7 are of the second kind or of the first kind and of the same type, and § = —1
otherwise.

A 6-Morita equivalence ((A, @), (B, 1), M, N. f, g, v) between the algebra with
involutions (A, o) and (B, 1) is a tuple consisting of

An (A, B)-bimodule M (ie., a left A-module and a right B-module with
compatible structures)

A (B, A)-bimodule N

Two nonzero bimodule homomorphisms f: M @, N — A and g: N, M —
B, which are associative, 1.e., f(m®@n)-m'=m-gn®m') and gn @ m) - n' =
n-flm@n')tforallm, m e M, n, " e N

A linear bijective map v: M — N that satisfies v(amb) = t(b)v(m)o(a) for all
ac A, me M, beB,

Remark A.3. Note that we do not suppose that ¢ and 7 are of the same type as in
Dejaiffe (1998): that is why we call this notion é-Morita equivalence. This notion 1s
a particular case of the Morita equivalence given in Frohlich and McEvett (1969).

Remark A.4. In fact one can prove that f (resp. g) is a bimodule isomorphism
between M @, N and A (resp. N ®, M and B); see Dejaiffe (1998, Section 1.1).

Now we suppose that B = D denotes the division algebra Brauer equivalent to
A. By Albert’s theorem, we know that there exists an involution t over D such that
7 1s of the same kind as g. By Dejaiffe (1998, Section 1.4) one can find M, N, f, g,
and v as in A.2 and ¢ € {£1} such that ((A, o), (D, 1), M, N, f, g, v) 1s a 6-Morita
cquivalence. We can define semigroup homomorphisms:

F:S°(A,0) = §%(D,7); (V. h)—= (V&, M, byh)
G:8%(D.7) > 5°(A, @) (W.¢) = (W ®p N. byeh),
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where:
(bgh)(v @ m. v @m') = gvim) @ h(v, v )m") Vo, v eV,m, meM

by (w@n,w @n') = f(v'(n) @ ¢p(w, w)n') Yw, w' € W,n, n €N.

In fact, we can prove that F is a semigroup isomorphism and G is its inverse,
and that they induce isomorphisms of Witt groups. The details of proofs can be
found in Knus (1991, 1.9, 3.5) or in Frohlich and McEvett (1969). We have

Lemma A.5. (i) M is a simple left A-module and N is a simple right A-module.

(il The maps F and G respect the rank of hermitian spaces (recall that the rank
of a hermitian space (V, h) over (A, a), where V is a right (resp. left) A-module, is
defined to be the positive integer n such that V > T" where T is a simple right (resp.
left) A-module).

Proof. (i) We prove it for N, the proof for M being similar. As A is a simple
algebra, N is a semisimple right A-module, and we can write N ~ T", where
neIN—{0} and T is a simple right A-module. But we know from A.4 that N ®,
M = D are (D, D)-bimodules, so

-1
DY N®,M=(T®,M

are right D-vector spaces. A dimension argument shows that n = 1 and N is simple
as a right A-module.

(ii) We prove it for F; the proof for G is similar. If (V, ) is a right A-module
of rank n, then we have V =~ T", where T is a simple right A-module; by (i), we can
take T = N. As D is a division algebra, D is a simple right D-module and we have:

Ve, M~ (N, M" % D"

So we deduce that the rank of V ® , M is n. O

Now we can prove (for fixed A, ¢, and D as before)

Proposition A.6. The following statements are equivalent:

(1) (V. h) is isotropic over (A, @).
(il) F(V, h) is isotropic over (D, 1) for some &-Morita equivalence.
(i) F(V, h) is isotropic over (D, T) for every 6-Morita equivalence.

Proof. This result can be found in McEvett (1969) in another context. Let x €
V — {0} be such that A(x, x) = 0 and ((A, o). (D, 1), M. N, f, g, v) be a é-Morita
equivalence. We can casily see that there exists m € M such that x ® m #£ 0; in fact
if x@m =0 for all m € M, then we have V, ®, M =0, where V;, = xA # 0. Now

N is a simple right A-module by A.5, so we have V, = EB:!:, N, d = 1. Therefore

we conclude that 0=V, ®, M =~ @:]:1 (N ®, M) £ D, which is a contradiction.
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Now x ® m is clearly an isotropic vector for byh, so F(V, h) is isotropic. If F(V, ) is
isotropic, and if ((A, ), (D, 1), M, N, f, g, v) is a 5-Morita equivalence, let y # 0 be
an isotropic vector for b,h. By the same argument as before, one can find n € N such
that v ® n # 0. Using the definition of F~'(=G), we see that y ® n is an isotropic
vector for 3bbyh for all n € N. But (V ®, M ®;, N, dbyb,h) is isometric to (V, h), so
we can conclude the existence of an x € V — {0} such that h{x, x) = 0. O

Using this proposition and the fact that the Witt decomposition exists over
(D, 1), we conclude the existence of a Witt decomposition over (A, ¢). Namely,
if (V,h) is an e-hermitian space over (A, g), then F(V, h) =~ ¢ L ¢,, where ¢, is
hyperbolic and ¢, anisotropic over (D, 7). We have

(V,h) = (Go F)(V, h) =~ G(¢) L G(¢,).

By the previous proposition, G(¢,) is hyperbolic, and we can show that G(¢,) is
anisotropic. By the same type of argument, we can show that this decomposition is
unique up to isometry, because it is the case over (D, 7). Thus

Corollary A.7 (McEvett, 1969). (i} There exists a Witt decomposition over (A, @).

(ii) For all |h] € WE(A, o), there exists an anisotropic form hy over (A, o) such
that [1] = [hy] in Wo(A, a).

ACKNOWLEDGMENTS

We thank Eva Bayer-Fluckiger, Detlev Hoffmann, and Emmanuel Lequeu for
useful conversations about this work and for their comments on earlier versions
of this paper. We also thank David Lewis for many helpful comments. We would
also like to thank the referee whose suggestions helped improve a previous version
of this paper. This research was supported by the RT Network “K-theory, Linear
Algebraic Groups and Related Structures™ (contract HPRN-CT-2002-00287).

REFERENCES

Bayer-Fluckiger, E., Lenstra, H. W. Jr. (1990). Forms in odd degree extensions and self-dual
normal bases. Am. J. Math. 112(3):359-373.

Bayer-Fluckiger, E., Parimala, R. (1995). Galois cohomology of the classical groups over
fields of cohomological dimension = 2. Invent. Math. 122(2):195-229.

Cibils, C. (1983). Groupe de Witt d'une algébre avec involution. Enseign. Math. (2)
29(1-2):27-43.

Dejaiffe, 1. (1998). Somme orthogonale d’algebres a4 involution et algébre de Clifford.
Comm. Algebra 26(5):1589-1612.

Frohlich, A., McEvett, A. M. (1969). Forms over rings with involution. J. Alg. 12:79-104.

Jacobson, N, (1940). A notc on hermitian forms. Bull. Am. Math. Soc. 46:264-268.

Knus, M.-A. (1991). Quadratic and Hermitian forms over Rings. Grundlehren der
Mathematischen Wissenschaften 294. Berlin: Springer-Verlag.

Lewis, D. W. (1979). A note on Hermitian and quadratic forms. Bull. London Math. Soc.
11(3):265-267.

Lewis, D. W. (1982a). New improved exact sequences of Witt groups. J. Alg. 74(1):206-210.



986 GRENIER-BOLEY AND MAHMOUDI

Lewis, D. W. (1982b). Quaternionic skew-hermitian forms over a number field. J. Alg.
74:232-240.

Lewis, D. W. (1983). Exact sequences of Witt groups of equivariant forms. Enseign. Math. (2)
29(1-2):45-51.

Lewis, D. W. (1985). Periodicity of Clifford algebras and exact octagons of Witt groups.
Math. Proc. Cambridge Philos. Soc. 98(2):263-269.

McEvett, A. M. (1969). Forms over semisimple algebras with involution. J. Alg. 12:105-113.

Milnor, J., Husemoller, D. (1973). Symmetric Bilinear Forms. Ergebnisse der Mathematik und
ihrer Grenzgebiete 73. New York: Springer-Verlag.

Parimala, R.. Sridharan, R., Suresh, V. (1995). An exact sequence of Witt groups. Appendix
2 in Bayer-Fluckiger and Parimala (1995).

Ranicki, A. A. (1987). The L-theory of twisted quadratic extensions. Canad. J. Math.
39(2):345-364.

Ranicki, A. A, (1992). Algebraic L-theory and Topological Manifolds. Cambridge Tracts in
Mathematics 102, Cambridge:Cambridge University Press.

Scharlau, W. (1985). Quadratic and Hermitian Forms. Grundlehren der Mathematischen
Wissenschaften 270. Berlin: Springer-Verlag.

Communications in Algebra®, 33: 987-997, 2005 Taylor & Francis
Copyright © Taylor & Francis, Inc. Taylar & Francis Group

ISSN: 0092-7872 print/1532-4125 online
DOT: 10.1081 /AGB-200053797

HIGHER TRACES ON GROUP RINGS#

R. Mikhailov

Steklov Mathematical Institute, Moscow, Russia

Inder Bir S. Passi
Harish-Chandra Research Institute, Allahabad, India

Motivated by the works of Cuntz and Quillen on cyclic homology and algebra
extensions, we study higher traces on group rings.

Key Words: Bass® conjecture; Connes—Quillen homomorphism; Cyclic homology: Group rings;
Higher traces.

Mathematics Subject Classification 2000:  16E40; 20J05; 20C07.

1. INTRODUCTION

Let k be a commutative ring with identity and let A be a k-algebra. A trace
map 7: A — M, where M is a k-module, is a k-linear map satisfying t(ab) = t(ba).
If R is an extension of A by a two-sided ideal 7, 1.e., R// >~ A as algebras, then
we call the trace maps on R/I", n > 1, higher traces on A (relative to the extension
A =~ R/I); these are the even higher traces in the sense of Quillen (1989). In this
paper we study higher traces on group rings. This investigation is motivated by
the work of Quillen and of Cuntz and Quillen (1995a,b), where the authors study
the relationship of higher traces on algebras with cyclic homology. Our interest
in the study of higher traces on group rings stems particularly from Quillen’s
characterization (1989, Theorem 5.18) of cyclic homology groups of algebras.

For a group G, let k[G] denote its group ring over k and A(G)(= A (G))
its augmentation ideal. Let H be a normal subgroup of G and 11 = G/H. Then
k[G] 1s an algebra extension of k[I1] with kernel the two-sided ideal A(H)k[G].
To study higher traces on k[II], relative to this extension, it clearly suffices to
investigate the k-module k[G]/(A"(H)k[G] + k[G]")), where for a ring R, R =
[R, R] and for ideals I,/ of R, [/, J] denotes the additive subgroup of R generated
by the elements of the type xy —yx (x €/, y € J). In Section 2 we describe the
structure of the k-module k[G]/(A™(H)k|G] + k[G]®)) (resp. the related k-module
A" (HK[G]/[A"(H)K[G], A(H)k[G]]) as a direct sum of k-modules indexed by the
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