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1. INTRODUCTION

We give a new and easy construction of the largest groups of Mathieu
and Conway, as the full automorphism groups of the Golay code and
Leech lattice, respectively. In addition we get a new uniqueness proof for
the Leech lattice and the Golay code. The main technique is intensive use
of semiselfdual sublattices: instead of rank 1 lattices as the basis for coor-
dinate concepts, we use scaled versions of LE8 , the E8 root lattice; the semi-
selfdual lattices we use most of the time are isometric to - 2 LE8

. While it
has been recognized for decades that one can use copies of LE8

to describe
the Leech lattice (see [23, 33, 34]), our uses of it to create the theory of
Conway and Mathieu groups are new. Using these ``smarter coordinates,''
properties of their automorphism groups and appropriate uniqueness
theorems, we get a compact foundation of this theory (see Section 3, esp.
(3.7) and (3.19)).
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The logical order of our steps is new. We first take a Leech lattice (any
rank 24 even integral unimodular lattice without vectors of squared length 2)
then deduce its uniqueness and properties of its automorphism group, the
large Conway group. We use our uniqueness theorems to get transitivity of
42 , 43 , 44 and other configurations of vectors and sublattices without
listing members of these sets or even knowing |Aut(4)|, in contrast with
earlier treatments (some of our transitivity results may not be in the
literature). Next, we deduce existence and uniqueness of the Golay code,
then existence and order of the Mathieu group, M24 . Simple observations
of the Golay code then give immediate results about permutation represen-
tations of M24 . Only minimal examination of particular codes is ever done,
in contrast with [5, 8, 1, 16]. Our logical sequence of first obtaining the
Conway group, then the Mathieu groups, is in defiance of the classical
theories for these groups. Our characterization. Of the Leech lattice is a
logical improvement over that of [6], which depends on the characteriza-
tion of the Golay code because we deduce its characterization.

The construction of the Leech lattice we give (3.3)(i) is not really new
(see [21, 33, 34]), but our treatment of uniqueness and analysis of the
automorphism group is different, notably in avoidance of Conway's charac-
terization [6] and avoidance of displaying explicit ``extra automorphisms''
with respect to a frame basis [5, 7, 16]. Furthermore, our foundation of
the theory of Conway and Mathieu groups is ``elementary,'' if one takes the
structure of the E8 lattice, its automorphism group, and basic lattice
management (2.1) for granted. We emphasize that the present article
contains a complete proof of this foundation (modulo standard background
material about lattices and finite groups in Section 2 and the Appendixes),
a fact which should be taken into account in making comparisons.

Our break with the past is not complete since we still rely on the theta
series of an E8 lattice and a Leech lattice and in (3.4), (3.7), (3.17), (3.18),
we have to use a few elementary properties of a code associated to a frame
(A.4), (A.8) (this code turns out to be the Golay code, but we do not need
to quote its characterization). Possibly, reliance on the theta series can be
lessened; for instance, one would like a direct, elementary proof of the
fact that in a Leech lattice, 4, the orthogonal of a sublattice isometric
to - 2 LE8

contains a copy of - 2 LE8
(and even - 2 LE8

= - 2 LE8
). Even

the weaker statement that a vector x in the Leech lattice contains a
copy of - 2 LE8

in the sublattice [ y # 4 | (x, y) # 2Z] (the ``annihilator of
x mod 2'') would be useful (and seems hard to prove without using theta
series).

We introduce semiselfdual involutions in (2.5), a concept with potential
for wider applications. In case one wishes to follow the spirit of an earlier
construction, one can choose an extra automorphism from our family of
semiselfdual involutions (2.5), (3.6), (5.3).
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2. BASIC NOTATIONS AND DEFINITIONS

Throughout this article, ( } , } ) denotes a positive definite bilinear form on
a lattice of finite rank or a finite dimensional rational vector space. If L is
a lattice, we write QL for the ambient rational vector space, which may be
identified with Q�L. Groups act on the right. The notation A .B stands
for a group extension, with extension kernel A and quotient B, with A : B
and A } B denoting split and nonsplit extensions, respectively. If m is an
integer, mn denotes the direct product of n cyclic groups of order n and
mn+ } } } +q+r denotes a compound extension (mn+ } } } +q) mr.

(2.1) Definition. We recall a few things about lattices and free abelian
groups. The invariants or invariant factors of an integral lattice, L, are the
invariant factors of the integral matrix ((xi , xj)), where x1 , ..., xn is a basis.

For example, LE8 has invariants (18) and - 2 LE8 has invariants (28). All
our lattices are positive definite, so invariants are nonzero; N.B., for
brevity, we may list only the invariants greater than 1 (so, e.g. (22) denotes
the invariants of the D8-lattice, which is more compact than the complete
list (2216)). The determinant of L (not necessarily integral) is the determi-
nant of the matrix ((xi , xj)). If M is a sublattice of finite index, det(M)=
det(L) |L : M|2. If L is a lattice in the rational vector space V (L is not
necessarily integral and does not necessarily span V), the dual of L is
L* :=[x # QL | (L, x)�Z]. Then L* is a lattice, called the dual lattice; we
have (det L*)&1=det L, so if L is integral, L* need not be. A root is a
lattice vector of squared length 2. The radical mod n of L is the sublattice
[x # L | (x, L)�nZ]=nL* & L.

(2.2) Definition. We use the abbreviations EL, EUL for an even
lattice, respectively, even unimodular lattice. An integral lattice L is called
a scaled unimodular lattice (SUL) if and only if there is a unimodular lattice
U and a scalar s so that L$sU. In other words, there is an isomorphism
of abelian groups %: L$U so that for all x, y # L, (x, y)L=s2(x%, y%)U . We
call s the scale or scale factor of L; clearly, s is the square root of an
integer, and we take it to be positive.

(2.3) Lemma. (i) If L is integral and unimodular and M is a direct
summand (as abelian groups), the natural map L � Hom(M, Z) is onto; the
nontrivial invariants of M and M= & L are the same.

(ii) If M is a sublattice of the integral lattice L, and M is SUL with
scale factor s, then [x # L | (x, M)�s2Z]=[M= & L] = M.

(2.4) Definition. Call an integral lattice L semiselfdual (SSD) if and
only if 2L*�L; in this case, 2L*=L & 2L* is the radical mod 2 (2.1).
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The following idea seems to be new.

(2.5) Proposition (Semiselfdual Involutions). If L is an integral lattice
and M a semiselfdual lattice (2.4) contained in L, then the linear map on the
ambient rational vector space which is &1 on M and 1 on M = is an auto-
morphism of the lattice L.

Proof. Let t be the linear map on V :=QL. Let V \ denote the eigen-
spaces for \1. Then t acts on the abelian group V�M$V +� (V &�M) by
+1 on the first summand and &1 on the second. The second summand
contains the subgroup M*�M, left invariant by t, and on it t acts as +1
since M is SSD. Since L lies between M and V + �M*, L is t-invariant
since t acts as +1 on V + � (M*�M). K

(2.6) Lemma. If the lattice L is even and integral, has no roots, and
M$- 2 LE8

is a sublattice, it is a direct summand of L, as an abelian group.
Its image in L�2L is a totally singular subspace, of dimension 8.

Proof. Since det(M)=28, the only torsion in L�M occurs for the prime 2.
If M is not a summand, there is an element u # L so that u # L"M and
2u # M. Then we may assume that 2u is a shortest element in the coset
2u+2M, whence (2u, 2u)=4 or 8 (A.2). Since L is an even unimodular
lattice, we get (u, u)=2, a contradiction since L has no roots. The last
statement follows easily. K

(2.7) Lemma. Suppose that the lattice L is generated by the subset S.
Then L is integral if (S, S)�Z and it is even if it is integral and (x, x) # 2Z
for all x # S.

(2.8) Remark. For basic coding concepts, see [22, 16]. Binary code-
words may be interpreted as subsets of the alphabet, the index set for coor-
dinates. The only special codes we refer to will be the (extended) Hamming
code (A.3), with parameters (length, dimension, minimum weight) [8, 4, 4],
and the binary Golay code, with parameters [24, 12, 8]. Existence and unique-
ness proofs for the Hamming code are elementary exercises, but not so for
the Golay code. We will study a Golay code, any binary code with param-
eters [24, 12, 8], and deduce its existence and uniqueness in (4.2).

(2.9) Proposition (Tower of Scaled E8 -Lattices). Let L$LE8
and

M�L, M$- 2 LE8
(so we have a tower } } } 2L<M<L< 1

2M } } } ). Let
G :=Aut(L)$WE8

and let P :=StabG(M).

(i) P$21+6
+ GL(4, 2).
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(ii) O2(P)�( &1) operates regularly on K, the set of sublattices K of
L such that K$- 2 LE8

and K�2L complements M�2L in L�2L. If K # K,
StabG(M) & StabG(K)=StabP(K)$2 } GL(4, 2) (nonsplit).

Proof. Parts (i) and (ii) follow from basic properties of O+(8, 2); see
(A.3) and Appendix B, also (3.1). K

3. THE AUTOMORPHISM GROUP OF THE LEECH LATTICE

Thoughout this article, we let 4 be a Leech lattice, that is, an EUL
lattice in dimension 24 with no vectors of squared length 2. Such lattices
are easily seen to exist. The standard description involves the Golay code
(A.4), but this can be avoided; we give a version in (3.2), (3.3)(i); this is
not new [21, 33, 34]. Assuming only existence of 4, we prove its uniqueness
(3.7) and get significant information about its automorphism group.

(3.1) Lemma. Let s be the positive square root of a positive integer.
(i) Given a lattice L$sLE8

, there are 135 sublattices M of L such that M$

- 2 sLE8
; if M is such, M contains 2L and the invariant factors of M are

((2s2)8). The set of such M forms an orbit under Aut(L). For the natural
nonsingular bilinear form on L�2L (which takes the pair (x+2L, y+2L) to
s&2(x, y)+2Z), M�2L may be interpreted as a maximal totally singular
subspace.

(ii) Given a lattice L$sLE8
, there are 135 overlattices M of L such

that M$(s�- 2) LE8
; the set of such forms an orbit under Aut(L); if M is

such and s2 # 2Z, the invariant factors of M are (( 1
2 s2)8).

Proof. Write f for the given bilinear form: f (x, y)=(x, y). Without
loss, we may assume s=1.

(i) If M is between L and 2L and corresponds to a maximal totally
singular subspace, we deduce det(M)=28 from |L : M|=16. Since (x, x) #
4Z, for all x # M, we get (M, M)�2Z and so M is an even unimodular
integral lattice for the bilinear form 1

2 f. From (A.9), we get M$LE8
.

Let M be any such a sublattice of L. Then M*�M$28 and L�M is a sub-
space. Then (M*, 2f ) has determinant 1 and so in the nonsingular space
M*�M with quadratic form x+M [ f (x, x) (mod 2), L maps to a totally
singular subspace. Since det(L)=1 and det(M*)=2&8, M*�L$24. This
forces L to contain 2M*=M and L�2M* to be a maximal totally singular
subspace of M*�2M*. Since the action of Aut(L) on LE8

�2LE8
is that of

O+(8, 2), we have transitivity.

(ii) Take dual lattices and apply (i). K
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We next give results, (3.3)(ii) and (3.7), which characterize Leech lattices
by certain internal data. Note that we ignore 1s when referring to the
invariants of a lattice (2.1), e.g., T below has rank 16 and invariants (28)
(the full set of 16 invariants is (2818) but we drop the 1s (2.1)).

(3.2) Definition. Consider the 6-tuple (M1 , M2 , M3 , %, N1 , `), which
satisfies the following conditions:

The Mi $- 2 LE8 , for i=1, 2, 3, are pairwise orthogonal sublattices in
Q24; for each i, we let pi be the orthogonal projection to QMi ; Wi :=Aut(Mi).

%: M1 � M2 is an isometry (this is independent of the identifications
fixed in the previous line).

M12 :=M12, % :=[(x, x%) | x # M1]$2LE8
.

N1 is a sublattice of M1 ; N1 $2LE8 .

N2 :=N2, % :=N %
1 ; N12 :=N12, % :=[(x, x%) | x # N1]$2 - 2 LE8

.

T :=M1+M2+ 1
2N12 ; its invariants are (28) and the radical mod 2

(2.1) of T is U :=N1+N2+M12 ; U�2T$28 and U$- 2 T (to see this, just
replace Mi , Ni by Ni , 2Mi , respectively, in the definition of T and (3.1)(ii));
we remark that T*= 1

2U$(1�- 2) T ).

`: T*�T � M3* �M3 is an isometry with respect to the nonsingular
quadratic forms x+T [ (x, x)+2Z and x+M3 [ (x, x)+2Z.

L is the sublattice between T = M3 and T* = M3*= 1
2 U = 1

2M3 which
is diagonal with respect to the isometry ` (note, for all i, L pi=M i*$

(1�- 2) LE8
).

Call such an 6-tuple a Leech 6-tuple. An ordered triple of pairwise
orthogonal rank 8 lattices Mi $- 2 LE8

, for i=1, 2, 3, in Q24 is called
a Leech two. We extend above maps on lattices to the ambient rational
vector spaces.

(3.3) Theorem. (i) L is a Leech lattice.

(ii) Any Leech lattice containing a Leech trio comes from a Leech
6-tuple as above.

(iii) The set of Leech 6-tuples which extends a given Leech trio forms
a single orbit under the natural action of Aut(M1)_Aut(M2)_Aut(M3). A
stabilizer has the shape [2_21+6] GL(4, 2); the first factor is (&1) and
the second factor is a diagonal embedding of the stabilizer of a maximal
totally singular subspace for the action of Aut(Mi) on Mi �2Mi , for i=1, 2.
Its projection to Aut(Mi) is 21+6

+ GL(4, 2), for i=1, 2, and its projection to
Aut(M3) is 2 } GL(4, 2).
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Proof. We begin by observing that T is the sublattice T :=M1+M2+
1
2N12 of 1

2 N1 = 1
2N2 $LE8

= LE8
. Since Mi $- 2 LE8

and T�M1 = M2 is
diagonal in M 1* �M1 �M2* �M2 , it is clear that the minimum squared
length in T is 4, so T has no roots.

(i) Use (2.1) (applied to T = M3�L�T* = M3*) to get that L is
unimodular. Since T*$(1�- 2) T, every vector has squared length an
integer, even though T* is not an integral lattice. Similarly, M3* $

(1�- 2) LE8
, whence every vector has squared length an integer. We must

show that L has no roots.
Suppose that r # L is a root. Let ri :=r pi, for i=1, 2, 3. Then ni :=

(ri , ri) # Z and n1+n2+n3=2. For all i, n i<2 (else r=r i # M i* & L=M i ,
which has no roots). So, ni # [0, 1], for all i.

Suppose that n3=1 and [n1 , n2]=[0, 1]. The latter forces T to have a
root since r1 , r2 # L p1+ p2=T*$(1�- 2) T, a contradiction to the first
paragraph.

Suppose that n3=0. Then r # M =
3 & L=T, again a contradiction to the

first paragraph.

(ii) Let L be a Leech lattice. We are given a trio and identifications
M1 $M2 $M3 . Define J :=M =

3 & L; then det(J)=det(M3)=28 (2.1). For
i=1, 2, Mi�J & QMi�M i*. Since L has no roots and Mi $- 2 LE8

, we
have Mi=J & QMi=L & QMi (2.6). Since the invariants for K :=M1 = M2

are (216), J lies between K and 1
2K, and it follows that J has invariants (28)

and J�K corresponds to a 4-dimensional subspace of K*�K$28 which is
diagonally embedded with respect to the decomposition K*�K$M1* �M1_
M2* �M2 . We claim that J pi$LE8

for i=1, 2, which is the same as
saying (3.1) that for the natural nonsingular quadratic form on M i* �Mi , J pi

corresponds to a maximal totally isotropic subspace. If not, there is x # J
which maps to a nonsingular vector of M i* �Mi ; write xj :=x pj for j=1, 2.
Then (xi , xi) is an odd integer, which means that both x1 and x2 corre-
spond to nonsingular vectors since (x, x) # 2Z. Since both cosets xj+Mj

contain vectors of squared length 1 (A.2), we deduce that J contains a root,
a contradiction. So, J pj$LE8

. Define Nj :=2J pj�Mj , for j=1, 2. It follows
that J=M1+M2+D, where 2D is a diagonal subgroup of N1 = N2 defined
by an isometry, %, which carries M1 to M2 and N1 to N2 (use (3.1)(ii)). We
have D$- 2 LE8

.
Define N :=J = M3 ; det(N)=216. Since M3 is a direct summand of L

(2.6) and its invariants are (28), the same is true for M =
3 & L. Since J�

M=
3 & L, J=M =

3 & L.
Since the invariants of M1 = M2 = M3 are (224) and those of J are (28),

L�N corresponds to a subgroup of N*�N$216 of dimension 8 which is
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diagonally embedded with respect to the decomposition N*�N$

J*�J_M3* �M3 . In fact, with respect to the natural nonsingular bilinear
form on N*�N, defined by x+N [ (x, x)+2Z, L�N is diagonally embedded
with respect to an isometry `: J*�J � M3* �M3 since L is even.

(iii) We consider the proof of (ii). Fix identifications M1 $M2 $M3

and corresponding copies of Wi :=Aut(Mi)$WE8
. The choices for % form

an orbit under the natural action of W1 or of W2 ; its stabilizer is a
diagonal subgroup W12 of W1_W2 .

The subgroup S12 of W12 stabilizing the sublattice T is isomorphic to
a subgroup of WE8

of shape 21+6GL(4, 2), (A.3); S12 acts on T*�T as
GL(4, 2) (since [Mi , O2(S12)]=Ni and [N i , O2(S12)]=2Mi , for i=1, 2;
see (3.2)). The set of isometries T*�T � M3*�M3 forms a single orbit under
the natural action of W3 . It follows that the isometry of (ii) has stabilizer
S contained in S12 _W3 and is isomorphic to [2_21+6

+ ] GL(4, 2); the
projection of S to W1_W2 is S12 and the projection to W3 is isomorphic
to 2.GL(4, 2) since the normal subgroup of shape 21+6 acts trivially on
T*�T. K

(3.4) Corollary. If L is a Leech lattice and M is a sublattice isometric
to - 2 LE8

, then isomorphism type of M = is determined.

Proof. Since L is unimodular and M is a direct summand, det(M=)=
det(M)=28. We finish with (3.3)(ii) if we find a sublattice of M= isometric
to - 2 LE8

= - 2 LE8
. This follows from (A.6)�(A.8). K

(3.5) Proposition. Choose a quadratic form on Q24 so that Q24, endowed
with this form, contains a Leech lattice, say 4. Then Q24=Q4 and O(Q24)
acts transitively on the following sets:

(i) pairs (L, M), where L is a Leech lattice in Q4 and M is a sub-
lattice of L isometric to - 2 LE8 ;

(ii) triples (L, M1 , M2), where L is a Leech lattice in Q4 and
M1 , M2 is a pair of orthogonal sublattices, each isometric to - 2 LE8

;

(iii) quadruples (L, M1 , M2 , M3), where L is a Leech lattice in Q4
and (M1 , M2 , M3) is a Leech trio in L.

Proof. For (iii), use (3.3)(iii).

(i) A proof may be obtained from the ideas in the proofs of
(3.3)(ii),(iii) and (3.4).

(ii) It suffices, by (iii), to prove that this ordered pair is part of a
Leech trio. Define Q :=M1 = M2 , M3 :=Q= & L. Since the invariants of Q
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are (216), the invariants of both M3 and R :=M =
3 & L are (2a), for some

a�16. Since rank(M3)=8, a�8. We have |R : Q|=28&a�2 (2.1). If a<8,
then for some k # [1, 2], Rk :=R & QMk>Mk . Since L is an even lattice,
Rk �Mk must be a totally singular subspace with respect to the natural non-
singular bilinear form on Mk* �Mk ; by (A.2)(i) (applied to Mk* $(1�- 2) LE8

),
Rk"Mk , hence L, contains a root, a contradiction. So, a=8, whence
M3=2M3* is doubly even and so M3 $- 2 LE8

(A.9). K

(3.6) Corollary. Aut(4) acts transitively on the set of sublattices
isometric to - 2 LE8

. We also have a conjugacy class of involutions in Aut(4),
the SSD involutions (2.5) associated to these sublattices.

(3.7) Corollary. Any two Leech lattices are isometric.

Proof. Any Leech lattice has a Leech trio (A.7). Now use (3.5). K

At this point, we know little about Aut(L) beyond some transitivity
properties. We need to study the sublattices which occur as M=, for a
sublattice M$- 2 LE8

.

(3.8) Theorem. (i) In a Leech lattice, 4, let M be a sublattice isometric
to - 2 LE8 and set T :=M=. Then Aut(T ) is an extension 21+80+(8, 2).

(ii) The noncentral involutions of Aut(T ) which lie in O2(Aut(T ))
form a single Aut(T ) conjugacy class. For such an involution, the sum of
the fixed point sublattice and the negated sublattice is isometric to
- 2 LE8

=- 2 LE8
.

(iii) There is a bijection between the involutions of (ii) and ordered
pairs of orthogonal sublattices of T, each isometric to - 2 LE8

. If M1 $M2$

- 2 LE8
are orthogonal sublattices of T, then StabAut(T )(M1) & StabAut(T )(M2)

$2_21+6GL(4, 2) and the image of this group in Aut(Mi), for i=1, 2, is
of the form 21+6GL(4, 2).

(iv) The set of unordered pairs of sublattices as in (ii) is in bijection
with the set of maximal totally singular subspaces of T�2T (all of which have
dimension 12 and contain the 8-dimensional radical ).

(v) T & 24=2M1+2M2+N12=2T and T�T & 24$216; also T+M
+24=T+24.

(vi) The actions of Stab(M) on T*�T and M*�M= 1
2M�M$M�2M

are equivalent and may be identified with the action of 0+(8, 2) on the space
F8

2 stabilizing a nondegenerate quadratic form.

(We remark that these actions are equivalent to the irreducible action on
U�U & 24$U+24�24 but not to T�U, where U is the radical modulo 2
of T.)
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Proof. First, we show that B :=[a # Aut(T ) | [T, a]�U]$21+8
+ .

Take the sublattice Q :=M1 = M2 of T, with Mj $- 2 LE8
, for j=1, 2,

as in (3.2). Note that U=N1+N2+M12 . Let A be the stabilizer in Aut(T )
of Q. Note that A lies in a wreath product [Aut(M1)_Aut(M2)] 2 and
that A has the form [21+6

+ _21+6
+ ].[GL(4, 2)_2]; see (A.3) and consider

the subgroup of the above wreath product which stabilizes N1 and N2 . In more
detail, let Ri $21+6

+ , for i=1, 2 be the normal subgroup of StabAut(Mi)(Ni)
as in (A.3); then B�A has the form R12 b E, a central product, where R12

is diagonally embedded in R1 _R2 , E is dihedral of order 8, E & O2(A)$

2_2, and E contains an involution which interchanges R1 and R2 under
conjugation. The statement about B follows.

Since B acts absolutely irreducibly on T, C(B) consists of scalar matrices
and so the quotient Aut(T )�BC(B) embeds in Out(B)$O+(8, 2) (C.3).
Our subgroup A contains B and maps onto a parabolic subgroup P of
Out(B)$ of the form 26 : GL(4, 2).

We may do the above for any sublattice of T which is isometric to
M1 = M2 . One such sublattice is 1

2N12; % = 1
2N12; &% , and we thereby get

a subgroup isomorphic to P and distinct from P. Since P is a maximal
parabolic subgroup of Out(B)$=0+(8, 2) [4], these two subgroups
generate Out(B)$. It follows that Aut(T )�B$O+(8, 2) or 0+(8, 2).

There are several ways to see that Aut(T )�B$3 O+(8, 2): (a) a subgroup
H of GL(C�T ) which contains B as a normal subgroup and with quotient
O+(8, 2) has the property that certain elements of H"H$ have traces of the
form =2c�2, where = is a root of unity and c is an odd integer (C.4); since
the representation of Aut(T ) on T is rational, this does not happen; (b)
study the centralizer in A of B1 , a 21+6

+ subgroup of B; C(B1) lies in
GL(2, Q) and contains a copy of CB(B1)$Dih8 , which is a maximal finite
2-subgroup in GL(2, Q); (c) in case Aut(T )�B were O+(8, 2), we would
get a contradiction when we examine the structure of the frame group;
see (A.5).

We now have (i). For (ii), it is clear since Aut(T ) has index 2 in a
holomorph of an extraspecial group (Appendix C), that the noncentral
involutions in O2(Aut(T )) form a single conjugacy class. Since two such
involutions are the central involutions of R1 and R2 , the connection with
the stated sublattices follows. For (iii), note that such a decompostion
(with ordered summands) leads to a SSD involution t (&1 on M1 , 1 on M2)
which preserves T. It remains to show that t satisfies [T, t]�U. It is clear
from the proof of (3.3)(ii) that there are appropriate sublattices Nk�Mk and
exactly two isometries \%: M1 � M2 so that T=M1+M2+ 1

2N12 as in (3.2).
Then we get [T, t]=N1�U=N1+N2+M12 , as required.

For (iv), note that Aut(T ) induces 0+(8, 2) on T�U$28 and that
M1 = M2 �U represents a maximal totally singular subspace.
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The first part of (v) follows since T is a direct summand of 4. From
(2.3), we get that T+M�24 and T+M�24 has codimension 8 in 4�24.
Since the image of T in 4�24 has dimension 16, T+24=T+M+24.

For the first part of (vi), just note that 4 projects onto each of M*�M
and T*�T. Since T*= 1

2U and U & 24=T & 4=2T, U�2T$T*�T as
modules for Stab(M); these modules are selfdual. Clearly, 4�24 has a
composition series with factors U�2T$U+24�24, T�U (T+24�24 is the
annihilator of U+24�24) and finally 4�T (isomorphic to 4�24 modulo
the annihilator of U+24�24). The first and third are dual, hence
isomorphic. The middle factor turns out to be not isomorphic to these, but
the proof is perhaps not easy (this fact is not a necessary part of our
theory; anyway, here is a nonelementary proof: we take an element x of
order 3 in Stab(M) for which 1 occurs as an eigenvalue in the first and
third factor with multiplicity 6; so, on 4, the multiplicity of 1 is at least 12;
since we know the classes of elements of order 3 in Aut(4) [16, 1]), we
deduce that x has 1 with multiplicity exactly 12 and so on the middle
composition factor, x does not have 1 as an eigenvalue). K

(3.9) Corollary. With notation as in (3.8)(i), the group StabAut(4)(M)
=StabAut(4)(M =) is of the form 21+8

+ .W$E8
(though we do not need it, we

mention that this is a nonsplit extension (C.3)) and it induces W$E8
on M and

Aut(T )$21+8
+ 0+(8, 2) on M=.

Proof. Because of the decompositon (3.2), it is clear that Stab(M)=
Stab(M=) induces exactly W$E8

on M (3.8). The normal extraspecial group
is generated by its involutions. By (3.8)(ii) and how the involutions may be
interpreted as SSD maps that act trivially on M, the normal subgroup of
Stab(M) of shape 21+8

+ acts trivially on M. K

(3.10) Corollary. If (M1 , M2 , M3) is a Leech trio in 4, its stabilizer
in Aut(4) is of the form 23+12GL(4, 2), of order 221325 .7. The stabilizer of
the unordered trio has the form 23+12[GL(4, 2)_Sym3], a group of order
222335.7. This subgroup determines the Leech trio by the three nontrivial
linear characters of the normal eights group which occur in Q24=Q4 (each
with multiplicity 8).

Proof. Let B and A be these respective subgroups. We have A�B$

Sym3 (3.5)(iii) and CB(M3)$2_21+6 which acts on M1 , M2 with respec-
tive kernels the two direct factor of order 2; see the proofs of (3.5)(iii) and
(3.8). The result follows since A embeds in the subgroup H$[21+6

+ GL(4, 2)]
" Sym3 of Aut(M1 = M2 = M3), where the wreathing is done with the
natural degree 3 action; in other words, B is forced to have shape 23+12

and be the unique normal subgroup of A of index 26 in O2(H). The last
statement is trivial. K
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(3.11) Definition. Write 4n :=[x # 4 | (x, x)=2n], the set of lattice
vectors of type n.

(3.12) Lemma. (i) Aut(4) acts transitively on the set of pairs (x, M),
where M is a sublattice isometric to - 2 LE8

and x # M has type 4;

(ii) Stab((x, M))$[21+8+6] Alt7(�21+1+8+60+(6, 2)) and its
order is 218325 .7;

(iii) 0+(6, 2)$Alt8 .

Proof. By (3.6), it suffices for (i) to prove transitivity of Stab(M) on
M & 44 . Define an equivalence relation on M & 44 by congruence modulo
2M. Each class consists of 16 vectors, two of which are orthogonal or
opposite (A.2). Now, Stab(M) induces W$E8

on M (3.9), which is transitive
on the set of equivalence classes since they correspond to singular points in
M�2M. Let K be a class and a, b, c, d linearly independent vectors in K.
Then 1

2 (a&b) and 1
2 (c&d ) are roots and the product of the corresponding

reflections interchanges a and b. Transitivity follows since all ``even'' trans-
formations on M come from the action of Stab(M) (3.9). Note that the
group Stab(M) has a permutation representation of degree 8 on K�[\1]
and that the simple group 0+(6, 2) has order 8!�2. K

(3.13) Proposition. Let Tn :=[x # T | (x, x)=2n]. Then

(i) Aut(T ) has one orbit on T2 (length 4320=25335, stabilizer of
shape 24+60+(6, 2)) and it has two orbits on T4 , size 522720; one orbit in
U, the radical modulo 2 (length 4320=25335, stabilizer of shape 24+60+(6, 2)),
and the second orbit outside U (length 518400=283452, stablizer of shape
24+3+3GL(3, 2)).

(ii) Aut(T ) has one orbit on T3 (length 61440=2123.5). A stabilizer
is isomorphic to Sp(6, 2).

(iii) The theta series for T begins 1+4320q2+61440q3+522720q4

+ } } } .

Proof. (i) Since Aut(T ) induces 0+(8, 2) on T�U (3.8)(vi), any
singular coset in T�U lies in a natural sublattice of the form M1 = M2 , with
Mi $- 2 LE8

. Since U & M i $2LE8
, (3.5)(iii), (3.10), and (A.3)(ii) imply

the statement about elements of type 2 and show that the elements x of
type 4 in Mi "Ni lie in one Aut(T )-orbit. To get the cardinality of the first
orbit, count ordered triples (x, M1 , M2), where x # T2 & M1 , M1 $M2$

- 2 LE8
, (M1 , M2)=0. Such ordered pairs M1 , M2 correspond to the

2 } 135=2.335 noncentral involutions of O2(Aut(T )). Given M1 , there are
240=243.5 such x, hence 253452 such triples. In T�U, there are 15 totally
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singular subspaces containing the singular vector x+U, and such sub-
spaces have the form M1+M2 �U. So the number of such x is 253452�15=
25335=4320. Since U$- 2 T, we get the same count for the orbit T4 & U.
Now, let S be a stabilizer for this orbit, |S|=22135527�25335=216325.7.
Since &1T � S, S & O2(Aut(T )) is elementary abelian of rank at most 4.
Since S�S & O2(Aut(T )) embeds in a subgroup of shape 26 : 0+(6, 2), this
embedding is onto and S & O2(Aut(T ))$24.

For T4"U, we have transitivity if we show that every element is in the
Aut(T )-orbit of an element of Mi"Ni . Clearly every element of type 4 in
M1 = M2 has the form x=x1+x2 , xi # Mi , where (a) one of the summands
is 0 (whence x has the desired form), or (b) each xi has type 2. Assume
the latter for x and, by way of contradiction, assume that (*) x is not in
the orbit of an element from (a). Then by (3.8)(ii), no involution of
O2(Aut(T )) fixes x, so the orbit of x under O2(Aut(T )) has length 29 and
lies in a single coset of U. Because U is the radical modulo 2, if L is the
span of the orbit of 1

2 x, L is an even integral lattice containing at least 512
roots. Since the action of Aut(T ) on QT is an absolutely irreducible
representation, the action of Aut(Q) on the orthogonally indecomposable
summands of L is transitive, so all have the same isometry type and are
generated by roots. So, the roots of L form a system of type Dn

m , An
m , or

E 2
8 , for mn=16. No such lattice has 512 roots, a contradiction. We count

pairs (x, M1+M2) with M1 , M2 as above, with x a type 4 vector in
M1+M2 "U; in each Mi , there are 2160&240=1920=273 .5 such x, and
the remaining x have the form x1+x2 , where xi # Mi has type 2. The
number of such pairs is 2402, but the requirement x � U requires us to
remove 240.24 such pairs. Given M1+M2 , there are 273 .5+273.5+
283252&283.5=283252 such x. The number of such M1+M2 is 135=335,
so the number of such pairs is 283553. Since these pairs form an orbit under
Aut(T ) and there are 15 such M1+M2 containing a given x, the cardinality
of T4"U is 283553�15=283452.

A stabilizer S for x in this orbit has order 22135527�283452=2133 .7. Since
&1T does not stabilize S, S & Z(Aut(T ))=1 and S & O2(Aut(T )) is an
elementary abelian group of rank at most 4. We may take x to have the
form (b) as above. Then, since S�S & O2(Aut(T )) embeds in a subgroup of
shape Sp(6, 2), the order forces S�S & O2(Aut(T ))$23+3GL(3, 2) because
the index prime to 2 means the subgroup is a parabolic [4], and the order
allows one parabolic, up to conjugacy.

(ii) An element x of T3 maps to a nonsingular vector in T�U, where
Aut(T ) acts as 0+(8, 2), so is transitive on such vectors with the stabilizer
of x+U an Sp(6, 2)-subgroup. We claim that the only element of O2(Aut(T ))
$21+8

+ which stabilizes [x, &x], for x # T3 , is [\1]. But this is clear
from (3.8)(ii) where it is shown that the noncentral involutions of O2(Aut(T ))
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have, for their action on T, fixed point sublattices isometric to - 2 LE8
;

these contain no vectors of odd type. We next claim that O2(Aut(T )) acts
transitively on 43 & (x+U). Since two elements of type 3 are congruent
modulo 24 if and only if they are equal or negatives (an easy exercise), for
any y # 43 & (x+U), the map O2(Aut(T ))�Z(O2(Aut(T )) � U�2T derived
from g [ y& y g+2T is injective, and this proves the claim since U�2T
$28. Therefore, |T3 |=29 .120=2123.5=61440. A stabilizer for this orbit
meets O2(Aut(T )) trivially and embeds in Sp(6, 2) since these vectors have
odd type. Since this |0+(8, 2)|�|Sp(6, 2)|=120, we deduce that this embed-
ding is onto.

(iii) This follows frown (i) and (ii). Also, see (A.10) and (A.11). K

(3.14) Lemma. If x#42_43 , A(x) :=[ y#4 | (x, y) # 2Z], the ``annihilator
mod 2,'' contains a sublattice isometric to - 2 LE8

.

Proof. Let (M1 , M2 , M3) be a Leech triple and let x=x1+x2+x3 ,
where xi is the projection of x to the rational span of Mi . Then each
xi # M i*= 1

2Mi , whence ni :=(x i , xi) is a nonnegative integer. If some ni is
0, we are done, so assume all are positive.

Since 4 is even, we may reindex to assume n3>0 is even. Let y :=
x1+x2 . Each xi is nonzero. If x has type 2, ( y, y)=2 and y # T*$

(1�- 2) T; we quote (3.13)(i) to transform x by Stab(M3) to an element
where some n i is 0. If x has type 3, y has type 1 or 2 and a similar use of
transitivity (3.13) works (there are cases: y # T implies x3 # M3 and this is
impossible since minimum squared lengths in T and M3 are 4; if y � T, then
x3 has type 1 or 2 and y has type 2 or 1). K

(3.15) Lemma. (i) Suppose that x # 4n and M�4, M$- 2 LE8
satisfies

(M, x)�2Z (such M exist if n�3, by (3.14)). Then x # M = (M= & 4), so
we write x=u+v, u # M, v # M=.

(ii) If n=2, u=0 or v=0. In case u=0, there is a sublattice
M1 = M2 of M= as in (3.2) containing x.

(iii) If n=3, x=v # M=.

Proof. For (i), use (2.3)(ii). The remaining statements follow from
(3.13). K

(3.16) Theorem. Aut(4) is transitive on 42 .

Proof. From (3.13)(ii), a type 2 vector lies in a - 2 LE8
sublattice,

say M, of 4. From (3.9), we know that Stab(M) induces W$E8 on M, so all
vectors of type 2 in M lie in a single orbit under Stab(M). K
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(3.17) Theorem. Aut(4) is transitive on

(i) pairs (M, x), where M$LE8
is a sublattice and x # 43 & M=;

(ii) 43 ;

(iii) quadruples (M1 , M2 , M3 , x), where (M1 , M2 , M3) is a Leech
trio and x # 43 & M =

3 .

The stabilizer of a pair as in (i) has the form 2.Sp(6, 2), order 210345 .7,
and the stabilizer of a quadruple as in (iii) has the form 2.23+3 .GL(3, 2),
order 2103.7.

Proof. Part (i) follows from (3.13). Note that (3.15) tells us that any
type 3 vector is part of a pair as in (i), so (ii) follows from (i). For (iii),
use Witt's theorem to see that H, the stabilizer in Aut(T ) of a maximal
totally singular subspace in T�U, is transitive on nonsingular vectors. As in
the proof of (3.13), we know that if x # T has type 3, O2(Aut(T )) is transi-
tive on the type 3 vectors in x+U, so we get the stabilizer for (i). The
stabilizer for (iii) has index 135 in the stabilizer for (i), so by surveying the
maximal parabolics for Sp(6, 2), we get the indicated subgroup. K

(3.18) Lemma. Let x # 44 . Then the set of sublattices M$- 2 LE8
which

contain x form an orbit of length 253 under StabAut(4)(x).

Proof. See (A.4), (A.7), (3.12)(i). K

(3.19) Theorem. Aut(4) is transitive on frames (A.4) and on 4n , for
n=0, 2, 3, 4; |Aut(4)|=22239547211.13 .23.

Proof. By (3.16) and (3.17), it suffices to prove transitivity on 44 . Let
G :=Aut(4). Any type 4 element lies in a frame and any frame gives rise to
a Golay code (A.4) and so we may take our element x of type 4 and embed
it in a pair (M, x) as in (A.7), (3.12)(i). Transitivities on 44 and frames
follow (3.12). The number of such pairs containing x is 253 (3.18). Then,
we have |G : G(M, x) |=|G : Gx | |Gx : G(M, x) |. The first factor on the right side
is u4=2437537.13 (A.1)(ii) and the second is 253 (A.6). We conclude that
|G : G(M, x) |=2437537.11.13 .23, whence (3.12)(ii), |G|=22239547211.13.23.

K

(3.20) Theorem. Let 4 be any Leech lattice. Then, for any frame 7,
there is an ordered basis 7+/7 and a code so that 4 is as described in
(A.4). The stabilizer 7 in Aut(4) has the form D : P (A.4.1), (A.5).

(3.21) Remark. The preceding statement is not trivial. Moving from a
frame plus Golay code to a containing Leech lattice involves work over
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Z�4Z, where the sign problems are harder to deal with than over Z�2Z, e.g.,
[16, Appendix 9A].

(3.22) Remark (The TU-tower). We call attention to the chain } } } <
2T<U<T< 1

2U< } } } whose every member is a scaled copy of T by a
power of - 2 (3.2). This is an analogue of (2.9).

We get another nice uniqueness result, which makes the Barnes�Wall
lattice a member of the Broue� �Enguehard series; see (A.10) and (A.11).

(3.23) Theorem. There is a unique even integer lattice which has rank
16, theta series which begins like 1+4320q2+ } } } , and has no vectors of
type 2 in its radical modulo 2.

Proof. Let T be such a lattice and U :=[x # T | (x, T )�2Z], the radi-
cal modulo 2. As usual, for an even integral lattice, L, we write Ln for
[x # L | (x, x)=2n]. Our assumption may be expressed T1=<=U2 and
rank(T )=16.

The main thing we have to establish is that the relation ``congruence
modulo U '' is an equivalence relation on T2 whose classes consist of
``frames,'' that is, 16-sets of type 2 vectors, two of which are proportional
or orthogonal. So, let x, y be nonproportional members of T2 such that
x+U= y+U. Then, x+ y=u # U and so (x, x+ y) # 2Z, whence
(x, y) # 2Z. We want (x, y)=0. If nonzero, we may replace y by &y if
necessary to arrange (x, y)<0. Then (x, y)�&2 and 0<(x+ y, x+ y)�
4+4&4=4, whence x+ y # U2=<, a contradiction. So, each class has at
most 16 vectors.

Since 4320�16=135>27, it follows that the finite abelian 2-group T�U is
elementary abelian and that the nonsingular quadratic form on it inherited
from T has maximal Witt index (the other possibility, a quadratic form of
nonmaximal Witt index, would have exactly 119 singular points). It follows
that the 4320 elements of T2 are distributed among these 135 singular
cosets of U in T, whence each class has exactly 16 members.

In case 1
2U�T has maximal Witt index (for its form taking values in

1
2Z�Z), we follow an idea from Section 3. Let Q$- 2 LE8

. There is an
isometry of 1

2Q�Q and 1
2U�T, so can take 4 to be the preimage in 1

2 Q = 1
2U

of the diagonal subgroup of 1
2Q�Q_1

2U�T. Then, 4 is an even unimodular
lattice with no roots (since the minimum norm in T is 4), so L is isometric
to the standard Leech lattice (3.7). From (3.4), we deduce that our T is
isometric to the lattice T of (3.2), and we are done.

The isometry type of 1
2U�T has not been established. However, we did

prove that T�U has maximal Witt index, so if we use (1�- 2) T, (1�- 2) U
for 1

2U, T, respectively, in the argument of the last paragraph, we get a
rootless even unimodular lattice since the minimum norm in T is 4 and we
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deduce from (3.4) that the isometry type of (1�- 2) U is determined.
Uniqueness of T then follows from (3.22). K

4. THE MATHIEU GROUP, WITH THE GOLAY CODE (FINALLY!)

(4.1) Definition. A Golay code, G, is a binary code of length 24, dimen-
sion 12, and minimum weight at least 8. A group M24 is the automorphism
group of a binary Golay code. We use the notations of (A.4), (A.5).

(4.2) Theorem (Uniqueness of the Binary Golay Code). There is a
unique (up to equivalence, i.e., coordinate permutations) binary code of length
24, dimension 12, and minimum weight at least 8 (hence equal to 8).

Proof. Existence of such codes comes from (A.4.3) and existence of a
Leech lattice. To prove uniqueness, we suppose that C is any Golay code.
We define a lattice, L with C following the recipe in (A.4). Let 0 :=
[1, ..., 24] be an index set and [xi | i # 0] be a basis of Euclidean space R0

such that (xi , xj)=2$i, j . For A�0, define xA :=� i # A x i , &i :=&x i+
1
4x0 .

Let L be the span of all 2xi , \xi\x j , &i and all 1
2xA , A # C. Then L is a

EUL without vectors of type 2, hence is isometric to 4 (3.7). By transitivity
of Aut(4) on frames (3.19), we may assume that [\2xi | i # 0] corre-
sponds by our isometry to the standard frame (A.4), whence C$G. K

(4.3) Proposition. Aut(G)=P and |P|=210335 .7 .11 .23 (see (A.5) for
the definition of P; the big Mathieu group M24 is defined to be Aut(G), so
we get |M24 |=210335.7 .11 .23).

Proof. See (A.5), (3.19). K

(4.4) Proposition. P acts transitively (i) on the set of octads; (ii) and
on 0.

Proof. (i) If O and O$ are octads, then M(O) (A.6) contains some
x # 7, the standard frame (A.4), and M(O$) contains some x$ # 7. Now use
(3.12)(i) and note that an element of Aut(4) which carries the first pair to
the second stabilizes 7.

(ii) Given i, j # 0, expand each to an octad to create pairs (M(O), 2:i)
and (M(O$), 2:j). Now use (3.12)(i) and (3.19). K

(4.5) Proposition. The stabilizer in P of an octad is isomorphic to
AGL(4, 2), the affine general linear group, which is a semidirect product of
the general linear group GL(4, 2) by the group of translations, isomorphic
to 24.
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Proof. Let H be the stabilizer in P of the octad O; form the sublattice
M(O) (A.6) and use (3.9) and (A.5) to conclude that the stabilizer of
(M(O), F ), where F is a frame in the sense of (A.2)(i), has the form DH,
order 216 |GL(4, 2)|, whence |D|=212 implies that |H|=24 |GL(4, 2)|=
|AGL(4, 2)|. It is clear from (3.3)(iii) that H has a normal 2-subgroup R
of order 16 whose quotient is 0+(6, 2). We now display R$24.

The involutions of R can be associated to semiselfdual sublattices (2.4)
as follows: the space W of Golay sets disjoint from O consist of 30 octads,
< and O+0 (A.7). Given a codimension 1 subspace, W0 of W which
contains (0) , we define an involution t # P as follows. Let Oi , i=1, 2, 3 be
octads in W0 which are linearly independent modulo O+0. Define an
associated TI (triple intersection) as a set of the form O$1 & O$2 & O$3 , where
O$i represents Oi or its complement Oi+[O+0] in O+0; a TI is a 2-set.
Similarly, call a set a DI, a double intersection, if it has the form O$1 & O$2 ,
notation as above; a DI is a 4-set. The intersection of any two octads
disjoint from O is a 0-, 4-, or 8-set. Define M :=M(O1 , O2 , O3) as the span
of all :i&:j , where [i, j] is an associated TI and all 1

2[:i&:j+:k&:l],
where [i, j] and [k, l] are TIs whose union forms a DI. (It is easy to
check that the definition of M depends just on W0 .) For such an M, we
have a SSD involution, t=tM # P. Its effect on the :i is to interchange two
whose indices form a TI. If W0 , W1 , and W2 are three such subspaces of
W with associated involutions t0 , t1 , t2 , then t0 t1 t2=1 if W0 & W1=W1 &

W2=W2 & W0 .
It is clear that we have 15 involutions which have cycle shape 1828 and

which, with the identity, form an elementary abelian group, R, which acts
regularly on O+0. At once, H splits over R. Let K be a complement. Since
the action of K on T is faithful (because the action of Stab(M) on
M= & 4=4 & [Q4, R] has kernel [\1] (3.8)), we are done. K

(4.6) Remark (A Trio of Sporadic Isomorphism). We note that the
sporadic isomorphisms 0+(6, 2)$GL(4, 2)$Alt8 follow from our analysis
(C.3), (A.3), (3.12), (4.5); this says more than GL(4, 2)$Alt8 , which is
observed in the traditional course of studying M24 and the octad stabilizer
[8, 16].

(4.7) Remark. It follows from (3.13) that if x=2:i # 44 is in the
standard frame, there are two orbits of Stab(x) on the set of M$- 2 LE8

in x= & 4. One is the set of all M(O) (A.4), (4.6), where O is an octad
avoiding i, and a sublattice from the other orbit contains no vectors from
the standard frame and is a sublattice of 4 & �i � O$ Q: i , where O$ is an
octad containing i. K

Next, we will give a uniqueness argument for the ternary Golay code.
We use existence of a ternary Golay code to prove uniqueness. If TG is
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such a code, namely, a [12, 6, 6] code over F3 , then we use a lattice M
which is the orthogonal direct sum of 12 lattices isometric to LA2

. Using
rational linear combinations of elements of the Mi related to the elements
of TG, we will get a rootless even unimodular rank 24 lattice, 4, which by
our characterization (3.7), must be unique up to isomorphism. We give our
version here (cf. [8, 16]).

(4.8) Ternary Construction of the Leech Lattice. Let TG be a ternary
Golay code, a [12, 6, 6] code. One may imitate the analogous construction
of the E8 -lattice, described in [16, (8.22)]. For i=1, ..., 12, take a base
:i , ;i of the A2 root system in Mi $LA2

, define &i := 1
3 [: i&;i]. Then

M i*=Mi+Z&i . Define M0 as the span of all 3M i* and all � ci:i , where
ci # Z and �i ci # 3Z. For c=(ci) # F6

3 and x one of the symbols :, ;, &,
define xS :=� i # S cix i , where we think of F3 as the subset [&1, 0, 1] of Z.
Finally, define #i := 1

3[4:i+� j{i :j]. We define the lattice 40 :=M0+
�c # TG Z&c ; then L0 �M0 $TG. We take 4 :=L0+Z#i (the definition of 4
is independent of i since #i&#j=:i&:j # M0); see (2.7). Since det(Mi)=3
and det(M)=312, we get det(M0)=314, det(L0)=32, and det(4)=1 by
repeated use of the formula det(K)=det(J) |J : K|2, for lattices K�J (2.1).
The rootless property of 4 is easy to verify. Though the code is not
described explicitly, we may still construct a group of automorphisms of 4
which is isomorphic to TG and preserves M, namely the maps =s :=>i =si

i ,
where s=(si) # TG is a codeword and =i is the identity on Mj if j{i and

=i : { : i

; i
[ { ;i

&:i&;i ,

a rotation by 2?�3 on Mi . Note that :=i
i =:i&3&i , ;=i

i =;i&3;i&3&i , and
&=i

i =&i&;i , whence =i satisfies |Mi : Mi (=i&1)k|=3k. Proof that the =c

preserve 4 is routine (one must use the property that all inner products in
TG are zero mod 3). Obviously, Aut(TG) is a group of lattice auto-
morphisms (by coordinate permutations) and it normalizes the above
group of order 36.

From this particular way of constructing 4, we can see an important
property of the Sylow 3-group of Aut(4), which has order 39.

(4.9) Lemma. A Sylow 3-group contains exactly one elementary abelian
subgroup of order 36. Such a subgroup is therefore weakly closed in a Sylow
3-subgroup.

Proof. This follows from the fact that an element of order 3 in
Aut(TG)$2 } M12 acts with Jordan canonical form 2J3or J1 J2J3 . Proof of
this fact is an exercise using Section 7 of [16, (7.37)]. K
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This lemma can be proved with much less work than a general analysis
of TG and Aut(TG). Since we deduce that |Aut(TG)|3=33 from our
knowledge of |Aut(4)|, it would suffice to display a group of automor-
phisms of order 33 (this Sylow 3-group is nonabelian) and just observe the
Jordan canonical forms of its elements; this may be done by selective use
of Section 7 of [16].

(4.10) Theorem. There is a unique ternary code with parameters of the
form [12, 6, 6].

Proof. Any such code may be used with a lattice M :=M1 = } } } = M12 ,
where Mi $LA2

, to construct a Leech lattice, 4, as above.
This group of shape 36 is isomorphic to TG by the inverse of c [ =c

(4.8) and may be used to recover the lattices M0 & M i (in the notation of
(4.8)) as the sublattices affording 12 distinct rational characters of 36; one
gets Mi from M0 & M i as Mi=3[M0 & Mi]*.

The weak closure property of such a group in a Sylow 3-subgroup of
Aut(4) (4.9) then implies that any two such lattices M are in a single orbit
under the action of Aut(4). From this, it follows that the associated code
in M*�M is unique up to equivalence. K

5. OTHER CONSEQUENCES FOR THE LEECH LATTICE AND ITS
AUTOMORPHISM GROUP

We make no attempt to systematically derive the standard results about
Mathieu groups and Conway groups using SDD theory, but merely give a
sample to illustrate use of our theory. The next result analyzes an entry
from the list of triangle stabilizers in Aut(4) [5, 16].

(5.1) Proposition. G is transitive on triangles of type 222. Let a, b, c
form a triangle of type 222, that is, a triple of vectors of type 2 which sum
to 0. Let H :=StabG(a, b, c). Then, H contains 2-central involutions with
centralizers of shapes 21+6

& 0&(6, 2).

Proof. Note that the image mod 24 of any triangle with edges of even
type lies in a maximal totally singular subspace. By (3.16), we may assume
that a # M3 , where (M1 , M2 , M3) is a Leech triple. If b # M1 = M2 = M3 ,
we are done since (b, b)=4, (b, a){0, and Mi $- 2 LE8

imply that
b # M3 . It is therefore enough, by (3.6) to show that any triangle of type
222 lies in a sublattice isometric to - 2 LE8

= - 2 LE8
= - 2 LE8

since
Stab(M3) induces W$E8 on M3 .

For an index k, define T=Tk :=4 & M =
k and let U=Uk �2T be the

radical mod 2 of T (2.3). For an index k and x # 4, define Ak(x) :=[ y #
Tk | (x, y) # 2Z], a sublattice of Tk of index 1 or 2.
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If there is an index i{3 so that (Mi , b)=0, (3.8)(ii) and the first
paragraph imply that we are also done because the images of a, b in Ti �2Ti

lie in a common maximal totally singular subspace, we are done. So, we
may assume that there is no such i.

We let bi be the projection of b to QMi ; each (bi , bi) is a positive integer.
Since 4=(b, b)=(b1 , b1)+(b2 , b2)+(b3 , b3), we conclude that the three
summands on the right side are (1, 1, 2), in some order.

If (b3 , b3)=2, b$ :=b1+b2 # T 3*"T 3. By transitivity (3.13)(i), (3.8)(ii),
and the singularity of b+T3 # T 3* �T3 , we may assume that b$ # 1

2[N1+N2],
whence b$ lies in one of the 1

2 N j . If i is the remaining index, we have [a, b]
# M =

i & 4=Ti , and we are done by another use of (3.8) and the first
paragraph of this proof.

Finally, we assume that (b3 , b3)=1; let j be the index so that (bj , bj)=2
and set b$ :=b&bj # T j*"Tj ; b$+Tj is a singular vector in T j* �Tj . Then the
image in T j* �Tj lies in a totally singular subspace, say R�Tj , where
R=R$ = R"$LE8

= LE8
. By transitivity (3.13)(i), we may assume that a

lies in one summand, say R$. Since (b$, b$)=2, b$ lies in one summand, and
since (a, b$)=(a, b)=&2{0, this summand must be R$. Therefore, [a, b]=

�R" & 4$- 2 LE8 . Now, Stab(R" & 4) will transform the set [a, b] into
a sublattice of (R" & 4)= which is isometric to - 2 LE8

= - 2 LE8
, and

finally we are done.
The structure of the centralizer of an involution follows from making the

choice of triangle of type 222 in the sublattice M of (3.9). K

(5.2) Remark. The proof of (5.1) can be adapted to show that the
group Co2 has an involution with centralizer of the form 21+8

+ Sp(6, 2) and
by looking in 1

2N12 (2.3), we can find another with centralizer of the form
21+624 .GL(4, 2). The stabilizer H of a triangle of type 222 should be
isomorphic to PSU(6, 2), but I am not aware of any proof in the literature;
indeed, in [5], the table of stabilizers had a question mark at 222 (removed
in later versions). Centralizer of involution characterizations of PSU(6, 2)
in the literature seem to require more than the centralizer shape in (5.1).
One can identify H by verifying that it has the 3-transposition property
[12, 13].

(5.3) Remark. There are four classes of involutions in Aut(4) [1, 16].
All may be interpreted as SSD involutions. We know already (3.6) about
involutions associated to M$- 2 LE8

; their negatives are also SSD,
associated to M= & 4. The involutions of trace 0 are associated to the
sublattice of 4 consisting of vectors supported at a dodecad; it is isometric
to the halfspin lattice for D12 [16] and has invariants (212). Finally, the
involution &1 is the SSD involution associated to 4 itself.
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(5.4) Remark. Something like SSD theory should work for elements of
order greater than 2. We would expect a theory of existence and uniqueness
of other codes used in other descriptions of the Leech lattice [16], e.g., the
ternary Golay code which is associated to the subgroup 3122 } M12 .

(5.5) Proposition. A Leech trio stabilizer is a 2-local in Aut(4) of
shape 21+2+12[Sym3 _GL(4, 2)] (3.10) and it acts absolutely irreducibly on
4�p4, for all odd primes p.

Proof. If M is any sublattice isomorphic to - 2 LE8
, O2(StabAut(4)(M))

acts on 4�p4 with an irreducible direct summand of dimension 16. Also,
O2(StabAut(4)(M)) stabilizes any Leech trio containing M (the other two
sublattices of a trio are just the fixed points of x and xz, where z is the
SSD involution associated to M and x is a noncentral involution in
O2(StabAut(4)(M)) (3.8)(ii). If we let M range over members of a Leech
trio, it follows that the trio stabilizer acts irreducibly on 4�p4. K

(5.6) Corollary. 4�p4 is an absolutely irreducible G-module, for all
prime numbers p.

Proof. If p is odd, we use (5.5). Suppose that p=2. Let Q�24 be a
proper submodule of 4�24, of dimension d>0. By transitivity of G on
vectors of type 3 (3.17) and d<24, we have Q & 43=< (A.2)(ii). Then,
Q�24 is totally singular, whence d�12. But then 2d<min[u2 �2, u4 �24], a
contradiction to transitivity on 42 and 44 . So, we have irreducibility.
Suppose that we do not have absolute irreducibility. Then we have a non-
trivial centralizer algebra and an integer e>1 so that when 4�24 is
extended to a splitting field, every irreducible for Aut(4) occurs with multi-
plicity divisible by e. If we take an element x of order 23 in Aut(4) and
note that x23&1 has a single nontrivial irreducible factor, we see that e>1
is impossible, a contradiction. K

(5.7) Remark. We have absolutely irreducible action modulo all primes
for WE8

on LE8
(easy to prove) and also that of the sporadic simple group

F3 on a 248 dimensional lattice. For other examples, see [10, 11, 27�32].

APPENDIXES: BACKGROUND

Appendix A. Elementary Lattice Theory

(A.1) Proposition. Theta functions. For an even integral lattice L, the
theta function is �k�0 uk qk, where uk is the number of lattice vectors of
squared length 2k.
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(i) The theta series for LE8
begins 1+240q+2160q2+ } } } .

(ii) The theta series for a Leech lattice, 4, begins 1+196560q2+
16773120q3+398034000q4+ } } } .

Proof. See [24], for instance; or [8, p. 135]. K

(A.2) Proposition (The E8 Lattice and Leech Lattice mod 2). Let L be
LE8

or a Leech lattice 4 and let Ln :=[x # L | (x, x)=2n].

(i) For L=LE8
, a coset of 2L meets Ln for exactly one value of

n # [0, 1, 2] and such a nonempty intersection has the form [\x], except for
n=2 for which it is a ``frame,'' a set of 16 vectors, two of which are equal,
opposite, or orthogonal.

(ii) For L=4, a coset of 2L meets Ln for exactly one value of
n # [0, 2, 3, 4] and such a nonempty intersection has the form [\x], except
for n=4 for which it is a ``frame,'' a set of 48 vectors, two of which are equal,
opposite, or orthogonal.

Proof. Part (i) is trivial. For (ii), which is almost as trivial, see [5, 16].
K

(A.3) Lemma. (i) In WE8
, the stabilizer P of a maximal totally singular

subspace in LE8
mod 2 has the form 21+6

+ GL(4, 2)$21+6
+ 0+(6, 2); P splits

over O2(P)�Z(P) but not over O2(P), i.e., P contains a perfect group of the
form 2.GL(4, 2) but does not contain GL(4, 2). Also, the nontrivial cosets of
this subspace each contain 16 roots.

(ii) WE8
acts transitively on

(a) pairs (M, x) where M$- 2 LE8
is a sublattice of L=LE8

and
x # M, (x, x)=2;

(b) pairs (M, x) where M$- 2 LE8
is a sublattice of L=LE8

and
x # L"M, (x, x)=4;

(c) pairs (M, x) where M$- 2 LE8
is a sublattice of L=LE8

and
x # M, (x, x)=4.

Proof. (i) Since all such stabilizers are conjugate, it suffices to examine a
convenient one. The chief factors of such a group P are clear; the only issue
is the structure of the maximal normal 2-subgroup. Use the following descrip-
tion of LE8

. Let v1 , ..., v8 be a basis of 8-dimensional Euclidean space such
that (vi , vj)=2$i, j and let H be a dimension 4, length 8, minimum weight
4 extended binary Hamming code, e.g., the span in F8

2 of (11110000),
(11001100), (10101010), (11111111). Its group is a subgroup S$AGL(3, 2)
of the full group Sym8 of coordinate permutations. We may and do identify
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the index set with the normal eights group E :=O2(S) of S; the codewords
of weight 4 may be identified with affine subspaces of dimension 3 in E. For
A�E, define vA :=� i # A vi . Define the lattice L to be the Z-span of all
\vi\vj ,

1
2vA for A # H and all &vi+

1
4vE . This lattice is even and uni-

modular so is isometric to LE8
. Denote by M the sublattice spanned by all

\vi\vj and 1
2vE . Both L and M admit the group S by coordinate permu-

tations and admit the group of sign changes consisting of maps =A , A�E,
which are defined by

vi [ {&vi ,
vi ,

i # A;
i � A.

The group (E, F) is extraspecial (C.1) and acts trivially on both L�M and
M�2L. For a discussion of a related family of lattices, see [2] (A.11). For
the statement about splittings in P, we observe that P has a subgroup of
the form 2.GL(4, 2) which occurs as the stabilizer of a maximal totally
singular subspace complementary to the one stablized by P.

To show that any subgroup 2 .GL(4, 2) of P is nonsplit, we note that,
if split, the ambient 8 dimensional complex representation would have
irreducible constituents of degrees 1 and 7 [1]; on any invariant lattice
taken modulo 2 therefore we would have the trivial module, which is not
the case (we have two 4-dimensional irreducible constituents).

(ii) Let Ln :=[x # L | (x, x)=2n]. By Witt's Theorem and the fact
that WE8

induces the full orthogonal group on L�2L, there is a single orbit
of WE8

on singular vectors outside the subspace M�2L of L�2L and a single
orbit on nonsingular vectors outside this subspace. These nonsingular
vectors are the images in L�2L of L1 and a nonsingular vector corresponds
to a pair [x, &x] in L1 . Since &1 # P, the stabilizer in WE8

of M, we
clearly have one orbit, whence (a).

(b) Now, let X :=M & L2 . A singular vector outside M�2L corre-
sponds via L � L�2L to a subset R of X of 16 vectors, two of which are
equal, negatives, or orthogonal. It suffices to show that StabP(R) is tran-
sitive on R. Since P induces GL(4, 2) on L�M, it suffices to take R to
contain an ``odd'' vector, say &vi+

1
4vE , and show R is contained in a

single K-orbit. Since membership in R is determined by congruence modulo
2L, every vector in R is odd. Finally, it suffices to show that K has a single
orbit on Y, the set of all odd vectors of squared length 4. It is easy to see
that Y consists of [&vi+

1
4vE]=A, for all indices i # E and all even subsets

A�E. Since S is transitive on E and K contains D, the group of all =A ,
transitivity is clear.

98 ROBERT L. GRIESS, JR.



(c) We can view the action of P as that of the stabilizer in Aut(M)
of 2L, so the preceding argument applies here since M$- 2 LE8

and
2L�2M is a maximal totally isotropic in the sense of the associated non-
singular quadratic form (3.1) on M�2M. We deduce (c) from (b). K

(A.4) (Frames, Codes and a Description of the Leech Lattice).

(A.4.1) (Frame and code concepts). Given a Leech lattice, 4, a frame
is a set of 48 vectors in 4 of squared length 8, two of which are opposite
or orthogonal; a frame is an equivalence class of sets of vectors of type 4
in which x and y are equivalent if and only if x& y # 24. An oriented frame
or a frame basis is a subset of a frame which is a basis of Q4.

(A.4.2) (Standard frame and standard description of a Leech lattice).
We now assume the existence of a Golay code, G, and its use in describing
a Leech lattice, 4, in the standard way with a basis consisting of an
orthogonal set of roots [:i | i # 0]. The standard frame is 7 :=[\2:i | i # 0]
and the standard oriented frame is 7+ :=[2:i | i # 0]. We define 4 :=
spanZ[2: i , \:i\:j ,

1
2:S , &i | i, j # 0, S # G], where, for S�0, :S :=

�i # S :i and &i := 1
4 :0&: i] (this set of generators is unnecessarily large, but

shows symmetry). The frame group is the stabilizer of a given frame in
Aut(4). Clearly, in the standard frame group Stab(7), there is a natural
subgroup of the form D : P, where D acts diagonally with respect to the
frame and where P is the group of permutation matrices identified with the
automorphism group of the code G. The orthogonal transformations which
stabilize each 1-space spanned by elements of 7 have the form =A , A # 0,
which are defined by

:i [ {&: i ,
:i ,

i # A;
i � A.

(A.4.3) (Deduction of a code from a Leech lattice). Conversely, given
a Leech lattice, 4, and a frame, F (which exists, by (A.1)(ii)), we find that
a code occurs naturally. We define 4(4) :=span[ 1

2(x& y) | x, y # F], 4(2) :=
[x # L | 2x # 4(4)]. Then, by using the 24 coordinate spaces 1

2Zx mod ZF,
x # F, 4(2)�4(4) gives a binary code C and, since 4 is a Leech lattice, it is
straightforward to see that the code is doubly even of dimension 12
(whence the universe set is in C, making it closed under complementation),
the code has minimum weight at least eight and that |4 : 4(2)|=2.

We now prove that the minimum weight is eight. Let S # C have
minumum weight, say w�8. Since C is closed under complementation, we
may assume that w�12. We suppose that w�9 and obtain a contradic-
tion. Consider the map �: C � P(S), the power set, defined by A [ A & S.
Since 4 is integral, all intersections of pairs of sets in C are even, so
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dim(Im(�))�w&1 and dim(Ker(�))�13&w. Assuming that dim(Ker(�))
�2, we have A # Ker(�), A{0, 0+S. Since |A|�9, 18�|A+S|<24,
whence 0<|A+S+0|�6, a contradiction. We have dim(Ker(�))=1 and
w=12 and so every set in C is 0, 0 or a 12-set. Since Im(�) is the co-
dimension 1 space of even sets in P(S), there is A # C so that A & S is a
2-set. Since A is a 12-set, A+S is a 20-set, our final contradiction.

(A.4.4) (The Steiner system, octads, and dodecads). Let S(5, 8, 24)
denote a Steiner system with parameters (5, 8, 24), that is, a family of 8-sets
in a fixed 24-set such that any 5-set is contained in a unique member of this
family. Sets of weight 8 in C are called octads (4.4). The octads in a Golay
code as above form such a Steiner system. Sets of weight 12 in C are called
dodecads; their stabilizers are, by definition, the group M12 .

(A.5) Proposition. StabAut(4)(7)=D : P and D :=[=A | A # G]$212

(see (A.4.2)).

Proof. Since the code G is its annihilator in the power set P(0) (with
addition the symmetric difference and bilinear form (A, B) [ |A & B| mod 2),
application of =A to lattice elements of the form 1

2:S , S # G, shows that if
it stabilizes 4, then A # G. Trivially, =A # Aut(4) if A # G.

Now, let g # Stab(7); then g is a product dp, where d is diagonal and p
is a permutation matrix. Applying g to a vector of the form 1

2:S , S # G gives
a vector of the form 1

2 � i # T\:i in 4, for some T�0. Since its inner
product with every 1

2:S , S # G is an integer, we get |T & S| even, for every
S # G, which implies that T # G. This means that p is in the group of the
code, whence both p and d stabilize 7. K

(A.6) Notation. M(O) is the set of lattice vectors supported at the octad
O (A.4). From (A.4.3), it is clear that 4 & M(O) is just the 112\:i\:j and
all 128 1

2 :O=A , for all A # G.

(A.7) Lemma. For x # 7 (A.4.2), the set of M$- 2 LE8
containing x is

just the set of lattices of the form M(O) where O is an octad containing the
index i, where x=\2:i . (There are 253=11.23 such.)

Proof. It is clear from (3.6) that the stabilizer of x is transitive on the
set of such M which contain it. Since Stab(x)�Stab(7), which acts mono-
mially with respect to the double basis 7, it follows that every such M has
the form M(O). (The count 253=( 23

4 )�( 7
4) follows from (A.4.4).) K

(A.8) Proposition. The Golay sets disjoint from an octad consist of 30
octads, the empty set, and the octad complement. Any octad is part of a trio
(a partition of 0 into three octads).
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Proof. Let O be an octad. Study the map G � P(O), as in (A.4). K

(A.9) Theorem (Classifications of EULs). An EUL has rank divisible by
8. In rank 8, there is, up to isometry, just one EUL, LE8

[36]. In rank 16,
there are two, the halfspin lattice of rank 16 and the direct sum of two copies
of LE8

[36]. In rank 24, there are 24, and they are distinguished by the
systems formed by their sets of roots; the empty root system corresponds to
the Leech lattice [23]. See also [35, 24, 22].

(A.10) [2] (The Lattices of Broue� �Enguehard). Given an integer n�3,
there is a lattice Ln of rank 2n with the following properties:

(i) det(Ln)={1,
28,

n odd;
n even;

(ii) Aut(L3)$WE8
$2 } O+(8, 2);

Aut(Ln)$21+2n
+ 0+(2n, 2) if n�4;

(iii) the minimum squared length is 2[n�2].

(iv) Aut(Ln) is transitive on minimal vectors.

(A.11) Remark. (i) These lattices are beautifully described by an error
correcting code of length 2n based on the action of GL(n, 2) on Fn

2 and the
minimal vectors are listed. In case n=3, the expected group of automor-
phisms 21+6

+ 0+(6, 2) is proper in the full group of automorphisms, the
Weyl group for E8 .

(ii) The Barnes�Wall lattice [3] is a rank 16 lattice with determinant
256 and minimum squared length 4; the theta series begins 1+4320q2+
61440q3+522720q4+ } } } . In [8, p. 131], its occurrence as our lattice T
(3.2) and certain other properties are asserted but no reference or proof is
given. This lattice turns out to be a member of the Broue� �Enguehard
series, by (3.23); in [8, 2] it is mentioned but there seems to be no explana-
tion of its relationship to the Barnes�Wall lattice.

Appendix B. Orthogonal Groups in Characteristic 2

For basic theory, see [9, 1]. We summarize what we need.

(B.1) The Groups. We are in even dimension 2n�2 over the field F,
which is perfect of characteristic 2 (this includes finite fields). There are two
equivalence classes of quadratic forms, according to the Witt index, the
dimension of a maximal totally singular subspace; the possibilities for the
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Witt index are n (plus type) and n&1 (minus type) and the isomorphism
types of the isometry groups are denoted O=(2n, F ), ==\. This group is
not simple since it has a normal subgroup 0=(2n, F ) of index 2, the kernel
of the Dickson invariant [9], which is a simple group except in the case
(n, =)=(2, +).

(B.2) Permutation Representations. By Witt's theorem, which says that
in V, a finite dimensional vector space with a nonsingular quadratic form,
an isometry between subspaces extends to an isometry on V, the groups
O=(2n, F ) are transitive on the totally singular subspaces of a given dimen-
sion d�n; when restricted to 0=(2n, F ) we still have transitivity, except
for d=n, where we have two orbits. For one of these subspaces, the
stabilizer in 0=(2n, F ) or O=(2n, F ) is a parabolic subgroup of the form
F( n

2) : GL(n, F ). The stabilizer in 0=(2n, F ) of a singular, resp. nonsingular
vector, has the shape F 2n&20=(2n&2, F ), 0=(2n&1, F )$Sp(2n&2, F ).

(B.3) Weyl Group of E8 . The Weyl group W :=WE8
satisfies Z(W)=

[\1], W�Z(W)$O+(8, 2), and |W|=21435527.

Appendix C. Extraspecial p-Groups

(C.1) Definition [14, 19]. Given a prime number p, an extraspecial
p-group is a finite p-group P such that Z(P)=P$ has order p. It follows
that 8(P)=Z(P) and that P�Z(P) is a vector space of dimension 2n over
Fp , for some integer n�1 and that the map P�Z(P)_P�Z(P) � Z(P)
based on commutation may be interpreted as a nonsingular alternating
bilinear form. When p=2, the squaring map induces a map P�Z(P) �
Z(P) which may be interpreted as a nonsingular quadratic form.

(C.2) Theorem. Given P as in (C.1), the irreducible representations
consist of p2n linear characters and an algebraically conjugate family of p&1
irreducibles of dimension pn; the latter are faithful.

(C.3) Definition. A holomorph of P, as in (C.1), is a group G so that
P IG and the natural map G � Aut(P) has kernel Z(P) and image
CAut(P)(Z(P)); if the image is a proper subgroup, the G is a partial
holomorph. A holomorph is standard if it exists as a subgroup of GL(2m, C);
otherwise it is a twisted holomorph. For p=2 extensions are generally non-
split [17, 18] but are split for p odd. In any holomorph, G, the conjugacy
classes within P consist of the p elements of Z(P), plus one or two further
ones, distinguished by their orders, p and p2 (either one or both orders may
occur).
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(C.4) Theorem. Let G be a standard holomorph and / the character of
G in the pn dimensional irreducible representation. For g # G, define Pg by
Pg �Z(P) :=CP�Z(P)(g) and dg :=dim(Pg �Z(P)). We say that g acts cleanly
on P if and only if Pg=CP(g) (the other possibility, left unnamed, is |Pg : CP(g)|
= p). Then /(g)==pdg�2 for some root of unity =, if g acts cleanly; and /(g)=0
otherwise.

Proof. See [15]. K
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