An exotic sphere with nonnegative
sectional curvature

By DETLEF GROMOLL AND WOLFGANG MEYER

In this note we construct an exotic 7-sphere X" with a metric of non-
negative sectional curvature K. It is obtained as the quotient of a certain
isometric action of Sp(1) on Sp(2), and hence as a riemannian submersion
from Sp(2). By a formula of O’Neill, £’ automatically inherits nonnegative
sectional curvature. It turns out that K is even (strictly) positive on an
open dense set of points. It is not known yet whether or not this metric
can be deformed into one with positive curvature everywhere. However,
there is a conjecture that on any manifold, a metric with nonnegative sec-
tional curvature which is positive at some point, can be deformed into one
with positive curvature everywhere. By Aubin’s Theorem, a similar result
holds for Ricci curvature [1]. We shall see that X7 has naturally many
symmetries. In particular, O(2) x SO(8) acts as an isometry group on
z

1. The construction of X7

Let Sp(n) denote the group of symplectic # X » quaternion matrices;
i.e., @ € Sp(n) if and only if QQ* = @*Q = Id, where Q* is the transposed
conjugate matrix of Q. S™ will denote the standard m-sphere. The field of
quaternions will be identified with R*.

We consider an action of S* x S® = Sp(1) x Sp(1) on Sp(2) given by

q. 0 g 0
(qlxqz,Q)l—>(0 ql)Q(o 1),

where g, denotes the conjugate of ¢,. This action is clearly free, and the
quotient manifold Sp(2)/S® x S* is diffeomorphic to S*. A diffeomorphism
Sp(2)/S? x S*— S* is given by

b _
orbitsaxss(“ o) — (@B, 18I = e,
c
as one can check easily. In particular, the diagonal A in S® x S® acts

freely on Sp(2). The quotient manifold %" = Sp(2)/A is an S*-bundle over
St
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St x S3A =S

|

Sp(2)/A =2

l

Sp(2)/S* x §* = S§*.

S-bundles over S* with structure group SO(4) are classified by 7(SO(4)) =
Z@Z. For (m,n) e ZAZ one can construct the corresponding bundle of type
(m, n) by glueing two trivial bundles R* x S® together on (R* — 0) x S* by
identifying (w, ¢) in the first copy with (u ||« (w/|w]])"q(w/||%|])") in the
second copy. According to Milnor [2], whenever m + n =1, the total
space is homeomorphic to S7, and the differentiable structure is exotic if
(m — n)* = 1 mod7. We will identify X with the total space of the bundle
corresponding to (2, —1) and hence with an exotic 7-sphere. It actually was
Milnor’s description of this sphere which suggested consideration of the
above action.

THEOREM 1. X7 is the exotic T-sphere of type (2, —1).
Proof. Consider the maps h,, h,: R* x S®— X"

hi(u, @) = orbit, @(u)( e u) s
—uq 1

or 1
h(v, ¥) = orbit, @(v)( or ) ,
-7 v

where o) = (1 + [|u|[)~". Letting @ = (g 3) e Sp(2), we have

h(R* x S?) = {orbit, Q|d =+ 0},
hy(R* x S%) = {orbit, Q|b = 0} .
Hence, h,(R* X S®)Uhy(R* x S°) = . Furthermore, the maps #,, &, are dif-
ferentiable imbeddings; the inverses are given by
hi'(orbit, Q) = [|d]I7%(bd, dad|lall™),
hi'(orbit, @) = ||b]|7%(bd, —bcb ||c||™) .
Finally, h:'h,(u, @) = (w|l%|]™% (/|| w|)’q(u/||w]])™), which completes the
argument.
2. The action of 0(2) x SO(3) on 7

On Sp(2) we consider the standard bi-invariant metric given by the
Killing form. The actionof S°® x S* described above is isometric. Therefore,
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37 inherits a natural metric from Sp(2) such that the projection Sp(2) — X’
becomes a riemannian submersion. Now observe that the action of A com-
mutes with the action of the group O(2) x S* on Sp(2) given by (4 X q)Q =
AQ((I) g) for Ac O(2), g€ Sp(l) = S°. Thus, O(2) x S° acts on X' by isometries
via

1 0
(A x q)orbit, @ = orbit, AQ(O (7) .

This action on X7 has a kernel Z, = Id x Z,, since

. 1 0 (=1 0 1 0\/—1 0y .
orbltAQ<0 _1)—orb1ta( 0 —I)Q(O _1>( 0 1)—01‘bltAQ.

One can see that O(2) x SO(8) = 0(2) x S¥1d x Z, acts effectively on Z'.

It is known that 4 = dim O(2) x SO(8) is the maximal dimension of com-
pact groups that can act effectively on any exotic 7-sphere.* O(2) x SO(3)
has been realized as an isometry group in a different description of X7 given
by Brieskorn, where the natural metric, however, has sectional curvatures
of either sign.

3. The curvature of X7

To fix notations we briefly review some facts about riemannian sub-
mersions. Consider riemannian manifolds M, M with dim > dim M, and
a submersion 7: M — M; i.e., w is surjective and of maximal rank. For each
pe M, we have a submanifold 7~'(p) of M, the fiber of the submersion over
p. The tangent space M, of M at g splits into an orthogonal sum M, =
Al @ A}, where A] is the tangent space of the fiber 77'(7(qg)) and A} is the
orthogonal complement. 7 iscalled a riemannian submersion if 7,: A; — Mz,
is isometric for all ge M. AT and A* are called the vertical and horizontal
distributions of the riemannian submersion. For a vector field Z on 1M, let
Z7 denote its vertical component. Any vector field X on M has a unique
horizontal lift X on M; i.e., X" =0and 7, X = Xor. The sectional curvatures
K of M and K of M are related by O’Neill’s formula (ef. [3]): If X, Y are
orthonormal vector fields on an open subset of M, then

(1) K(X,Y)or = KX, V) + %H[X, Irie.

We shall use this formula to compute the curvature of X7, but first we need
another elementary fact.

* Communicated to us by W. C. Hsiang, unpublished.
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Let G be a Lie group with Lie algebray. L and R denote left and right
translations, Ad = R;'L, the adjoint representation. For u €y consider the
left invariant vector field L,u and the right invariant vector field R, « with
Lyul,= Ly,u, Ryul,= R,,u. For a bi-invariant metric {(, Y onG and a,bey,
define a function f: G — R by f(g9) = <a, Ad, b). Then

(2) (Lysw) f = La, Ad,[u, b]> .

Now we can establish a formula for the curvature of X" which involves only
data of the Lie algebras in question and the adjoint representation.

THEOREM 2. Let Q€ Sp(2). For a quaternion a, set at = <8 8) and
__{00
e = <0 a)'

(a) Thetangent space of the fiber n=(n(Q)) of the submersion : Sp(2)—X'
18 given by
A; = {Rgi(a* + a”) — Lo,a*|Rea = 0} .
(b) Let u, v be orthonormal vectors in the Lie algebra of Sp(2) such
that # = Lo,ue Aj and ¥ = Lo, ve Aj. Then

a0

A @+ a) —a P

In particular, K(r, @, 7,0) = 0 if and only if [w, v] = 0.

(3) KT, 70) = %H[u, v]|IF + % max Adga”ta)+alfwo]?

Proof. (a) The Lie algebra of {(g 2)’q € S3} is{a* + a |Rea = 0}, and
the Lie algebra of {(8 (1)> ‘ qge Ss} is {a*|Rea = 0}. Let @, be the curve with
P.(t) = expt(a* + a")Qexpta*. Then @,(0) = R,.(a* + a”) — Lqg,a*, and
clearly Ay = {#.(0) | Re a = 0}.

(b) Let ac R, Rea = 0. Define w, to be the 1-form on Sp(2) with

0 (X) o = (Rox(a™ + a7) — Losa*, Xo) .
Then

A ={w|w,(w) =0 for alla, Rea =0} .
Since in (1) K(X, )|, = K(#, 7) = K(u, v) = (1/4) || [w, v]||%, we have to compute
the Lie bracket term in O’Neill’s formula. Observe that for any tangent
vector w of Sp(2) at @ we have

2 2
I = max .o, @.(w) — max @(w)
I = e e R + o)~ Zawa T TAdg (@ +a) —a'[F

and therefore,

b

o S @o([X, Y]o)’
X el = max ors R Gta™ + a) —a T -
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Computation of w,([X, Y],):
We have
(4) 2dw,(X, V) = X0.(Y) — Yo X) - 0(X, 7]) = —0.(X, Y],
since X, Y are horizontal, and
dw (X, V)l = dw.(@, 7) .
On the other hand,
(5) 2dw, (i, 7) = 2dw,(Lesu, Lo, v)
= (Losw)@o(Lyv) — (Lox)@o(Lyu) — @o(Loy[u, v]) .
Using the definition of @, and (2) we get
(Losw)@o(Lyv) = (Losu){a™ + a~, Adv) = <{a* + a~, Ade[, v]),
and
(Losv)w (Lw) = {a™ + a~, Ady[v, u]) .
Finally,
@ Loslu, v]) = (a* + a= — Adga*, Adg[u, v]) .
Combining this with (4) and (5) yields
o ([X, Y])lo = —(AdZ(a* + a7) + a7, [u, v]),
which completes the proof of (3).

4. Remarks

It followsfrom (3)thatthecurvatureof X" at 7(Id)is positive for all planes.

For this observe that Aj; = {a~ | Re a = 0}. Hence, Al = {(_% 8) ‘ Rea = 0}.
By Theorem 2, one has only to check: If u, v € Al and [, v] =0, then » and

v are linearly dependent over the reals, which is straightforward. .
On the other hand, we obtain curvatue 0 at 7(Q), @ = (1/v/ _2—)@ {'), ex-
actly for all planes spanned by 7, L, u, 7, Le,v with

i 0 0 0
U = , v = ) , o+ =1,
0 0 0 aj + Bk
The exact set of points in X7 for which zero plane sections occur can be
described in terms of certain quaternion inequalities; it is lower dimensional.
Moreover, at any such point, the distribution of zero sections is fairly thin.
We might discuss details elsewhere.

Looking only at the first term of (3), one observes immediately that the
Ricei curvature of X7 is strictly positive.
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