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VOLUME AND BOUNDED COHOMOLOGY
by Micuae GROMOV

o. INTRODUCTION

0.1, Minimal Volume

Take a C*-manifold V and consider all complete Riemannian metrics g on V whose
sectional curvatures are everywhere bounded in absolute value by one, |K(g)]<1.
We define the minimal volume of V as the lower bound of the total volumes of all such metrics:

Min Vol(V) = lK(lar)llfs ]Vol(V, g).

The minimal volumes of closed connected surfaces V are proportional to the Euler

characteristics,

Min Vol(V) = axn|x(V)].
Indeed by Gauss-Bonnet one has, for |K| = |K(¢g)|<1,

Vol(V) > [ |K do] > |vadv[ = an|y),

with equality for K constant, 1 or — 1. In particular, metrics g of constant curvature 4 1
are extremal: Vol(V, g) = Min Vol(V), while the torus and the Klein bottle, who have
¥ = 0, carry no extremal metrics since their minimal volumes are zero.

The Gauss-Bonnet formula also applies to complete non-compact surfaces V with
|IK(V)]<1 and with Vol(V) < co. Again, metrics of constant curvature —1 are
extremal and so for %(V)<o we get Min Vol(V) = —2ny(V). In particular
%(V) = — oo implies Min Vol(V) = oo. Furthermore, the cylinder and the Mobius
band have zero minimal volume, while for V = R? we only obtain in Appendix 1 the
following estimate

4m + 0.01 < Min Vol(R2) < (2 + 24/2)7.
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6 MICHAEL GROMOV
If n =dim V> 2, then the Gauss-Bonnet formula yields the following inequality
for closed manifolds V,

Min Vol(V) > const, |x(V)| for some const, > o.
There are similar inequalities for the Pontryagin numbers p of V,
Min Vol(V) > const, | p(V)].

In fact by the theorem of Chern-Weil there are certain polynomials P(Q) in the curvature
tensor Q of V, such that

|21 = | [, B(@)ds| < sup || B(@)]| VoL(V),

and |K| <1 implies sup]||P(Q)|] < const}.

Now, if V is an open complete manifold of dimension 7z > g, then the theorem
of Gauss-Bonnet does not apply, in general. In fact, there are manifolds V with zero
minimal volume and with non-zero Euler characteristic. For example, for every > o

there is a complete metric g, on R® with |K(g)| <1 and with Vol(R3 g,) <e. (See
Appendix 2.)

Pontryagin classes are more useful than the Euler characteristic for open manifolds.

Example. — Let V, be a closed 4m-dimensional manifold and let V = Vo x R. If V,
has a non-zero Pontryagin number, then Min Vol(V) = co.

Proof. — We have a non-trivial integral characteristic class
p e H"™(V;R) = H"(V,; R) = R,

and for any given metric g on V this p is represented by a 4m-form P(Q) on V which is
a Chern-Weil polynomial in Q of degree 2m. Then for complete metrics gon V we consider
concentric balls B(R) CV of radii R around a fixed point v, € V and we observe that
for sufficiently large R, the boundary spheres S(R) = ¢B(R) for R > R, support a
non-trivial class in H,,,(V). Therefore

fs(R)[[P(Q)[[a’sZ 1, for R>R,,

R
and so fB(R)HP(Q)Hdz} = 4R o IP@]1 & >R —R,.
Since [|P(Q)|| < const,|K[*" we also get
fB(R) |[K[*™dv > const R for R > 2R,,
and in particular, for |K| <1, we conclude
lién i;lf R~!Vol B(R) > const > o.
This is even stronger than the required relation Vol(V) = ligl_:\iol(B(R)) = 0.
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VOLUME AND BOUNDED COHOMOLOGY 7

Remark. — If a manifold V' is homeomorphic to the infinite connected sum of copies
of the manifold V above, then we have for R — oo,

[ I1B@)]] >0,  where 8" = aB'CV",
8'(R)

and so for |[K(V')| <1 we obtain
R]i_zrcl0 R™'Vol(B'(R)) = co.

At the end of Appendix 2, we shall, for any given smooth manifold V, and any positive
function e(R) for which Rh_)rr}o e(R) = o, construct a complete metric g on V, with
|K(g)] <1, such that

lim ¢(R)R~*Vol B(R) = o.

Now let us give five examples of manifolds V with Min Vol(V) = o.

(1) V is compact and admits a flat Riemannian metric.

(2) V admits a locally free S'-action. In particular, Min Vol(V = V; x S!) = o,
and also Min Vol(S3) = o. The latter is the famous example of Berger (see [10]).

(3) V is a component of the boundary of a compact manifold W whose interior,
Int W, either admits a complete locally symmetric metric of non-positive curvature and
finite volume, or Int W admits the structure of a complex quasiprojective (for instance,
affine) variety.

(4) V is the product of an arbitrary V, by a manifold in one of the above
examples (1)-(3).

(5) Vis odd dimensional and diffeomorphic to a finite or infinite connected sum
of manifolds of example (4). For instance, connected sums of odd dimensional tori
have zero minimal volume. Notice that such connected sums admit no non-trivial
circle action.

The first example is obvious. For the rest see Appendix 2.

The main purpose of this paper is to provide new estimates from below for the
minimal volume in terms of the simplicial volume defined in section (0.2). In particular,
we exhibit in section (0.4) closed odd dimensional manifolds with non-vanishing minimal
volume. One’s interest in such estimates is motivated, in part, by the following theorem
of J. Cheeger [g] which relates the ¢ topological complexity >’ of a manifold to its geometric
size:

Cheeger’s finiteness theorem. — For any given numbers D > o and > o there are at most
[initely many diffeomorphism classes of closed Riemannian manifolds V of a fixed dimension n such that
| KWV)[ <1,
Diameter(V) < D,
Vol(V) > e.
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8 MICHAEL GROMOV

0.2. Simplicial volume

Let X be any topological space. Denote by G, = C,(X) the real chain complex
of X: a chain ¢ € C, is a finite combination 2 7;6; of singular simplices o; in X with real

coefficients 7;, We define the simplicial ¢*-norm in C, by setting ||¢|| = 2 |r;|. This
norm gives rise to a pseudo-norm on the homology H, = H,(X; R) as follows:
]} = inf [ 2]],

where z runs over all singular cycles representing « € H,.
For a closed manifold V we define its simplicial volume || V|| as the simplicial norm

of its fundamental class. When V is not orientable we pass to the double covering Y%
1

and set || V|| =5||V||. ]

IfVis open, then its fundamental class is represented by locally finite cycles ¢ = X r;q;,
such that each compact subset of V intersects only finitely many (images of) simpl'i:és ;.
Now, the ¢-norm [|¢|| = § |r;] may be infinite and the corresponding simplicial
volume || V|| also may be ;rjfilnite.

Example. — For the real line one has ||R!|| = oo.

The following functorial property of the simplicial volume is immediate from the
definition:

Let f:V > V' be a proper map of degree d. Then |[V|| > d||V'||. Furthermore,
if f is a d-sheeted covering, then ||V|| =d||V'||.

Corollary. — If a closed manifold V admits a self-mapping f of degree d > 2, then || V|| = o.

For example, all spheres and tori have zero simplicial volume.
If V is an open manifold which admits a proper self-mapping of degree > 2, then

one can only claim that either [|[V||=o0 or ||V|] = . In fact, both cases occur,
but if V is homeomorphic to the interior of a compact manifold with boundary, V = Int V,
then the case |[|V|| = o is excluded. Moreover,

If the boundary oV of V admits a self mapping f with |d| = |degf|> 2, then
|| Int V|| < oo.

Proof. — First we represent the fundamental class of V by a chain ¢ with boundary &
in V. Then we attach to V the cylinder 8V X [0, ), and observe that the resulting
manifold V is exactly Int V. Now we extend the chain ¢ to an ¢!<cycle of V as follows.
Denote by 4, the image f,(b) in 8V X 1 = @V and let ¢, be a chainin 9V X [o, 1] with
the boundary dc; = d~'b, —b for d = degf. Next we consider the iterates f* of f,
for Rk =o0,1, ..., and take the maps

f¥r oV x[o,1] >0V X [k, k + 1]CV X [o, ),
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VOLUME AND BOUNDED COHOMOLOGY 9

defined by f*: (v, t) > (f®(v), ¢ + k). Then thelocally finite chain T=¢ -+ X d7*f¥(,)
is a fundamental cycle of V of finite {!-norm, Foo

121 = llell + Z,a=llall = llell + 7l

Corollary. — The simplicial volume of Euclidean spaces R" is: ||R"|| = o0, for n> 2.

Indeed, the space R" has self-mappings of any degree.
Now comes our first interesting example of a closed manifold V with [|V]| > o,
which is a special case of a theorem of Thurston (see section (0.3)).

Example. — Let || V|| be a closed oriented surface with Euler characteristic y < o

of constant negative curvature — 1. The fundamental class is represented by a cycle
q

2. r;6;, where oy, ..., are singular 2-simplices. The total (algebraic) volume is
i=1

q
2 r;Vol(s;) = — 2ny.
i=1
Straighten all singular simplices involved, keeping the vertices fixed, by lifting to the
universal covering, that is, the hyperbolic plane H = V. Observe moreover that the
absolute value of the volume of any straight triangle in H with positive angles is majorized
by = (use the excess formula in hyperbolic geometry). So we find

: q
27T IX] = 2 7 (VO]. Straight Gi)
i=1
q
< Z|nl.m
i=1
q
Hence [|V][ = inf 2 || > 2 |x(V)]
i=1

VI 2 2|x(V)] for x<o.

This is the precise bound. The simplicial volume is
VIl = 2 x(V)]

for closed surfaces V of constant negative curvature. In order to see elementarily that
[IVI| < 2]x| we consider the standard model of a fundamental domain in H, a regular
k-gon Fy, B = 2]|x| + 4. It can be covered by a cycle of £ —2 = 2|y| + 2 straight
triangles so that in any case [|V|| < 2[y| + 2. Then we apply this construction to
d-sheeted coverings of V and thus we cover d times the fundamental class of V by 2d |y | + 2
triangles. Hence we find ||V|| < 2]x] + 2d~' and by letting d - o we obtain

VI < 2]xl.
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10 MICHAEL GROMOV

Finally, we indicate two general useful properties of the simplicial volume.
(1) If V4 is a closed manifold and V, is arbitrary, then
ClVall I Vall 2 [[Va X Vql| 2 CTH[ V4| [ Vall (%)

where C > 0 is a constant which depends only on n = dim(V, X V,).

Observe that the first inequality above is obvious and it also holds if both manifolds,
V; and V; are open. The second inequality is more interesting since it gives an estimate
JSrom below for ||V, X V,||. We prove this inequality in section (1.1) with the bounded
cohomology technique. The requirement of V; to be closed is essential. Indeed for
example |[|R!|| = oo, while ||R?|] = o.

Notice that both inequalities claim nothing whatsoever for the case of [|V,|| =0
and || V,|| = o. However for all known examples of such manifolds V; and V, one
has ||V, X V|| = o.

(2) For n> 3, connected sums of n-dimensional manifolds satisfy

1V # Vell = [[Vall + [ Vall (%%)
This is proven in section (3.5) where we also establish the following generalization.

LetV, be a closed simply connected submanifold of V of codimension one.  Then, for dim V> 1,
the simplicial volume of V does not change if the submanifold V, is deleted, ||V\V,]| = || V]|

0.3. Inequalities of Milnor-Sullivan and Thurston

To take the simplicial volume seriously one needs additional examples of manifolds V
for which |[|V]| # 0. The following remarkable theorems provide a variety of such
examples.

Theorem of Milnor-Sullivan ([39], [44]). — If a closed manifold V supports an affine flat
bundle of dimension n = dim 'V, then || V|| > |x| for the Euler number y of this bundle.

Recently, Smillie refined Sullivan’s argument and proved that ||V]|| > 2"|x|.
This is presented in section (1.3), where we also study Pontryagin numbers of non-affine
flat bundles.

The theorem of Milnor-Sullivan is only useful for z evern since odd dimensional
bundles have zero Euler numbers. Our next inequality works for all n.

Thurstow’s Theorem. — Let V be a complete Riemannian manifold of finite volume,
Vol(V) < oo. If the sectional curvature of V satisfies — oo < —k < K(V)< —1, then
Vol(V) < const, || V]|.

Thurston’s proof is presented in section (1.2). (See also [47] and [35].)

I wish to thank Denis Sullivan who introduced me to these results and to a circle
of ideas important for this paper.
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VOLUME AND BOUNDED COHOMOLOGY It

0.4. Complements to Thurston’s inequality

Characteristic numbers of locally homogeneous manifolds V are proportional to
Vol(V) by Hirzebruch’s proportionality principle. In fact characteristic numbers can
be obtained following Chern-Weil by integrating over V some universal polynomials in
the curvature Q = Q(V).

Unlike the characteristic numbers the simplicial volume of Riemannian manifolds V
cannot be obtained by integration of local invariants of V, but the proportionality
phenomenon remains valid (see [47] and also section (2.3)).

Proportionality theorem. — If the universal coverings of two closed Riemannian manifolds V
and V' are isometric, then

[IVI[/Vol(V) = [[V'||/ Vol(V").

This theorem is clearly true for V and V' with a common finite covering. In fact,
the theorem is most useful if the universal covering V of V is a symmetric space and then
[IV]]/Vol(V) = const = const(V). This constant is, probably, non-zero if V has negative
Ricci curvature. Indeed, const + o if V has negative sectional curvature (rank 1 case)
by Thurston’s theorem. Also, as we shall prove in section (1.3), this constant is non-zero
if some characteristic number p of V does not vanish. Furthermore, R. P. Savage recently
proved (see [42]) that const(V) + o for symmetric spaces V whose isometry groups are

special linear groups Is(\Nf) = SL,(R) for n =dimV =éq(q + 1) — 1. These mani-

folds have rank = ¢ — 1 and all their characteristic numbers vanish for ¢ > 2.

Example. — Let V be a product of hyperbolic spaces (K = — 1) of various
dimensions. Then ||V|| = const Vol(V), and by Thurston’s theorem combined with
the inequality (*) of (0.2) we have const > const,> o, for n = dim V. Furthermore,
if all hyperbolic factors have even dimensions, then ||V|| = const’|[x(V)|, where the
last constant only depends on the dimensions of the factors.

Explicit constants are only known for negative curvature —1, V = H" They
are determined as follows. Take all z-dimensional simplices S in the hyperbolic space H*
of curvature — 1 and denote by R, the upper bound of their volumes,

R, = sup Vol(S).
SCHr
(A simplex is, by definition, the convex hull of » 4 1 points in general position in H".)
Then, we have the exact formula:

V] = Ry *Vol(V).

This formula also holds for complete non-compact manifolds of finite volume (see [47]
and section (1.2)) and the extremal value R is always assumed by the regular ideal simplex
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12 MICHAEL GROMOV

in H" with all vertices at infinity (Milnor [47] for » =3, Haagerup and Munkholm [27]

o]
for » > 4). Furthermore, R,==, R; = g 2 i~ %sin E;E ~ 1.0149, and asymptotically
i=1
\Vn

for n o0 one has R, ~ e (See [27].)

Another useful relation for || V|| comes from the following.

The (2b;)-estimate. — Let V be a complete connected real analytic manifold with bounded
non-positive curvature, — k2 < K(V) < o, and let the Ricci tensor of V be negative definite at
some point v € V. Then

2 b,(V) < const, &* Vol(V),
i=0

where n = dim V and b; are the Betti numbers with any given coefficients. (See Appendix 3.)
With Thurston’s theorem and (##) of (0.2) we come to the following

Corollary. — Let V be a connected sum of manifolds of one of the following two types:

(a) Compact locally symmetric spaces with non-zero simplicial volume. For example those which
have non-zero Euler characteristics.
(b) Complete manifolds of finite volume with sectional curvature pinched between two negative constants,

—k <K(V) < —h<o.
Then 2 b,(V) < const || V],
i=0

where the constant depends only on n = dim V and on the ratio k,[k,.

It is unclear whether the constant can be chosen independently of this ratio.

0.5. Estimates from below for the minimal volume

For Riemannian manifolds V we denote by Ricci V the Ricci tensor, and we
write Ricci > —1 if Ricci(r, 1) > — <r, v) for all tangent vectors = e T(V).
Observe that a bound from below for the sectional curvature, K(V) > — %%, implies
RicciV > — (n—1) k2, that is Ricci(r, t) > — (n — 1) k2{=, ). We prove in
section (2.5) the following

Main Inequality. — Let V be a complete n-dimensional Riemannian manifold with
Ricci> —1/(n—1). Then ||V]| < const, Vol(V) for some constant in the interval,
o < const, < nl.

Corollaries. — (A) The estimate for the Minimal Volume. — All differentiable manifolds V

satisfy
V]| £ (» — 1)"a! Min Vol(V).
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VOLUME AND BOUNDED COHOMOLOGY 13

(B) The (Xb;)-estimate with Ricci curvature. — Let V be a complete Riemannian manifold
with RicciV > — k2. If 'V is homeomorphic to a compact hyperbolic manifold, or, more generally,
0 a connected sum of manifolds (a) and (b) of the last corollary of (0.4), then

3 5,(V) < const! E* Vol(V).
i=0

(G) The Volume comparison theorem. — Let V and V' be complete Riemannian manifolds
of dimension n and let f:V — V' be a continuous proper map. Assume moreover

RicciV > —1/(n—1),
—w< —k<K(V)< —1,
and Vol V' < co. Then
|deg(f)| < G, Vol(V)/Vol(V') (%)

Unfortunately we do not know the explicit value of this constant C,. The most
optimistic conjecture would be C, = (r—1)~". In fact, the proportionality theorem
of (0.4) vields this conjecture when both V and V' have constant negative curvature
(notice that RicciV = 1/(1 —n) here corresponds to K(V) = — (n—1)7%). One
may conjecture further that the equality in (*) with this optimal hypothetic constant C,
may hold only if both manifolds V and V' do have constant curvature, and then by
Thurston’s rigidity theorem ([47], [25]) the map fis homotopic to a locally isometric d-sheeted
covering.

Now let V be homeomorphic to the interior of a (possibly non-compact) manifold W
whose boundary éW is a disjoint union of compact manifolds, called ,W, o,W, ... We
prove in section (2. 5) the following estimate from below for the volumes of balls B(R) CV
around a fixed point vy in V. (Compare the Example of (0.1).)

The asymptotic inequality. — If V is a complete manifold with RicciV > — 1/(n — 1)
then
[[oW]] = [|o,WI| + [|2:W]] + ... < const, liRrr_l)glfR_‘Vol B(R),

Jor o<const, < (n—1)l

The estimate for the minimal volume will be generalized in section (2.5) to products
V =V, XV, where V, is a closed manifold with a nonzero Pontryagin number p = p(V,).

The product Inequality. — The product V = V X V, salisfies
p(V)|I Vel| < const, Min Vol(V, X V,), for n =dim V.

Example. — Take for V, the complex projective plane and let V, be a 3-dimensional
manifold (compact or not) with K(V,) = —1 and Vol(V,) < co. Then

Min Vol(V; X V,) > const Vol(V,), for some const > o,
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14 MICHAEL GROMOV

while ||V; X Vi|| =0 since V; (and so V; X V,) has self-mappings of degree > 2.
Notice that all characteristic numbers of this V; X V, are zero since n = %. We have
no example of a closed five dimensional manifold V with [| V]| = o and Min Vol(V) > o.
On the other hand we shall show in Appendix 2 that for many g3-dimensional manifolds
Min Vol(V) < const’ || V]|.

We shall see in section (g.1) that the simplicial volumes of closed manifolds V are
entirely determined by the fundamental groups Il = =,(V) and by the classifying maps
V — K(II, 1). For example, ||V]| = o for all closed simply connected manifolds V.
However we do not know whether the minimal volume is also zero for all closed odd dimen-
sional simply connected manifolds V.

Another interesting problem concerns the sets of values of Min Vol V and || V||,
when V runs over all manifolds of a given dimension n. The work of Thurston (see [47],
[25]) may suggest that both sets are closed countable well ordered non-discrete subsets
of the real line, but we do not even know whether the value zero is isolated, i.e. if
Min Vol(V) < e for some ¢ =¢,> o implies Min Vol(V) = o. The same question
is open for the simplicial volume. However, we shall see in section (3.4), that
Min Vol(V) <¢,, for some ¢,> 0, does imply |[|V]|| =o0. Moreover, we have the
following

Isolation theorem. — Let V be a complete n-dimensional manifold with Ricci(V) > — 1,
and let the unit ball in V around eack point v eV satisfy Vol B, (1) < e for some sufficiently
small positive € = e(n). Then ||V|| = o. Inparticular, if Vol(V) < e(n), then ||V|| = o.

Corollary. — If a manifold V with RicciV > — 1 admits a proper map of positive
degree onto a manifold V' of negative sectional curvature, for which Vol(V') < oo and
—o< -k <KWV) —k, <o, then for some point veV the unit ball has
Vol(B,(1)) > € = &(n) > o.

Remark. — If V=V’ and V — V' is the identity map then this corollary reduces
to a theorem of Margulis (see [7]) and in this special case one can give an effective estimate
for ¢, for example, one can take & = ¢, = exp(— exp(exp n")). Notice, that our proof
in section (3.4) depends on the polynomial growth theorem (see [23]) that gives no
effective estimate. However, we prove in section (4.3) for manifolds with |K| <1
the following more general result with the above effective value & = ¢,.

The Injectivity Radius estimate. — If |K(V)| < 1 then the simplicial volume ||V || is
bounded from above by const, Vol(U,), where U,CV denotes the set of those points v eV,
JSor which the injectivity radius of V satisfies Inj Rad,(V) > € =¢,. In particular, if for all
v eV one has InjRad, (V) <e,, then ||V]|| =o.

In the general case of Ricci > —%k> — oo we prove in section (4.2) the following
weaker result.
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VOLUME AND BOUNDED COHOMOLOGY 15

The Geometric Finiteness Theorem. — Let V be a complete manifold with
RicciV> —k> —

and let the unit balls B,(1) CV satisfy Vol(B,(1)) -0 for v —o0. Then the simplicial
volume 1is finite, ||V|| < co.

Corollary. — The above manifold V admits no proper map of positive degree onto a connected
sum of infinitely many hyperbolic manifolds of finite volumes.

Plan of the paper. — We start section 1 with the translation of our problems into the
language of bounded cohomology. Then we prove in this language the theorems of Milnor-
Sullivan and Thurston. Next, we construct in section 2 geomelric smoothing operators on
bounded Borel cochains and prove the Main Inequality for compact manifolds. In fact,
we prove this inequality for a modified notion of simplicial volume. The equivalence of the
two simplicial volumes is established in section 3, by means of algebraic averaging operators on
bounded cochains of simplicial multicomplexes. We also prove with these operators the
isolation theorem for compact manifolds and the identity ||V, # V,|| = || Vy]| + || V2l
as well. Finally, in section 4 we return to ¢l-chains on open manifolds. We start with
the algebraic diffusion of chains on these manifolds and then we combine the algebraic
diffusion with the geometric smoothing operators. Thus we prove in section (4.3) the
Main Inequality for open manifolds.

In fact, we establish in (D) of (4.3) a sharper result, called Main Technical Theorem
which relates the simplicial norm on homology to the geometric mass of cycles.

Next, in section (4.4) we refine the simplicial volume for complete non-compact
manifolds by also taking into account the geometric “size’ of singular simplices of fun-
damental cycles. We prove with this refinement the existence of extremal manifolds V
with |K(V)| <1 whose volumes Vol(V) equal their minimal volumes. In fact we
only prove a slightly weaker result for a modified notion of minimal volume, rather than
for the original one. In the final section (4.5) we study “ volumes > of maps between
manifolds who themselves may have infinite volumes. In particular, we generalize the
Volume Comparison Theorem to manifolds of infinite volumes. We also discuss there
the Euler characteristic and the signature of complete non-compact manifolds. In the
Appendices (1), (2) and (3), we briefly discuss surfaces, manifolds V with Min Vol(V) = o
and manifolds with K(V) < o respectively.

Acknowledgements. — 1 owe my gratitude to the referee for the constructive critique
of the first draft of this paper. I am very thankful to Nico Kuiper for his help and encou-
ragement and also for many remarks and geometric examples which are included in this

paper.
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16 MICHAEL GROMOV

1. BOUNDED COHOMOLOGY

A general question, arising when a chain complex C, is equipped with a norm,
is the problem of finding a complete set of its chain homotopy invariants in the category
of topological vector spaces and bounded operators. (If the topology in C, is ignored, then
the homology groups of C, give us all these invariants.) The problem becomes simpler
when we complete G,. For the simplicial norm of section (0.2) the completion leads

i ©
to the complex C, of f-chains ¢ = X 7;6; with [[¢|]| = 2 |r| < oo, like those we
constructed in section (0.2). i=1 i=1

It is more convenient, in some respects, to work with the dual complex
C* = Hom(C,, R) whose elements admit the following independent description.

1.1. Bounded cochains

Denote by X the set of all singular simplicés o : A — X and recall that real cochains
¢ € G = C*(X) are, by definition, certain functions ¢: X — R. We define the /*-norm
of ¢ by setting

llello = sup [¢(s),
ceX
and we call a cochain ¢ bounded if this norm [|¢c||,, is finite.

Counterexample. — Take a closed n-dimensional manifold V with the oriented volume
form » on V. Then the ¢ standard > singular cocycle ¢ which assigns to each ¢: A" -V

the integral ¢(c) = fm 6*(w) is not bounded.

Indeed, if the map o “wraps” A" around V many times, then ¢(c) becomes
arbitrarily large.

For cohomology classes B e H*(C,; R) we set [|B]| = [|Blle = I{}f”_y”w where

_y runs over all cocycles representing 8. Of course, this “ norm * can take infinite values,

aswill become clear below. Wesay that a cohomology class B is bounded ifits ““ norm ”’ || 8]|,
is finite.

Cohomological definition of the simplicial volume

The C®-norm in C* = Hom(GC,, R) is the dual of the #*-norm in G,. We apply
the Hahn-Banach theorem (compare [45]) and conclude that the norms || ||, in H,(X; R)
and || ||, in H*(X; R) are also dual.
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Corollary. — Let V be a closed oriented n-dimensional manifold with dual fundamental classes
«eH, (V,R) and B eH"(V;R). Then

Ble) =1 = [[Bllw [l|ls = lIB]l= [ VII-

Therefore ||V]|™! = ||B|lw; in particular B is bounded if and only if the simplicial volume || V||
does not vanish.

Now, if V is an open manifold then the fundamental cohomology class B of V is
represented by cocycles ¢: X — R with compact support. That is for some compact
subset V,CV which depends on ¢, the cochain ¢(s) vanishes at those singular simplices
6:A -V, whose images do not intersect V.

With these cochains we have again our ¢/*-norm, ||8]|,, and we clearly have the
inequality ||V]||||B]|. < 1. However, the equality [|V||~'=||B||., does not hold
in general.

Example. — Let V be the interior of a compact manifold with boundary, V = Int V.
Then, with the #-norm in the relative chain complex

G,(V, 8V) = C,(V)/C,(3V),

one has the norm of the fundamental class x e H,(V, V) and then one puts
|V, 8V|| = ||2||;. Now #this norm || ||, and the corresponding simplicial volume are
dual to the /*-norm on the cohomology with compact supports in V = Int V, and so

IV, V||~ = ||Bla-

In particular, this simplicial volume ||V, 8V|| = || B||z* is always finite. However if
the simplicial volume ||Int V|| is finite, then clearly the simplicial volume || 8V|| vanishes,
and so one only can claim the inequality

llInt V|| > |V, 8V]].

In order to give a cohomological definition of || V|| we consider locally finite subsets
of the set of singular simplices, ® CZ, i.e. subsets such that every compact subset of V
intersects only finitely many (images of) simplices in ®. Then for cochains with compact
supports in V we define seminorms |[C||, by putting

|Cllo = sup |¢(a)l,
cED
and next we have the corresponding seminorms on the cohomology with compact supports.

Finally we take the upper bound of these seminorms over all locally finite sets of singular
simplices,

l1B]1* = sup [|Bllo
oCE

Now, the theorem of Hahn-Banach does apply and for the fundamental class $
of V we have |[B||” = ||V]||~~
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As the first application we get the second inequality () of (0.2),
Ve X Val| = G V4| [ Vall
by referring to the dual inequality for the cup-product,
118V el < CIBLII™ 1] Rell

which follows from the cup-product formula for singular cochains. Notice that if none
of the manifolds V; and V, is closed, then the product of cochains with compact supports,
¢;in V; and ¢, in V,, may have non-compact support in V; X V,, and so the failure of
the product inequality is not surprising.

1.2 Thurston’s theorem

We prove three slightly different forms of Thurston’s theorem of section (0.3) and
we start with the most transparent original version. We consider maps f of simplicial
m-dimensional polyhedra P into complete Riemannian manifolds V. For a Lipschitz
map f we denote by mass,, f the volume of f counted with geometric multiplicity. This
mass equals the total volume of the singular Riemannian metric in P induced by the map
f:P > V. We denote by [P],, the number of m-dimensional simplices in P.

(A) Homotopy theorem. — If the sectional curvature K = K(V) satisfies K < —1,
and if m = dim P > 2, then every continuous map fo: P — V is homotopic to a Lipschitz map f
such that mass,, f < const,[P,], for some constant const, < n/(m — 1)!. Furthermore,
Jor manifolds V' of constant curvature — 1 one has const,, = R, ~ ¢q/m/m!, where R,, is
the volume of the regular ideal simplex in the m-dimensional hyperbolic space (see (0.3)).

Corollary. — If P and V are moreover closed manifolds of the same dimension m > 2 then
there is an upper bound for the degree of maps fo: P — V. In particular, there is no self-mapping
Jo: V =V of degree > 2.

Indeed, deg f, = deg f < const mass,, f, where const = const(P, V) depends on
the manifolds P and V.

Proof of the theorem. — We construct the required map f by first  straightening ”’
the map f;, on all simplices A of P and then by estimating volumes of straight simplices in V.

First, take an ordered set of m 4 1 points v,, ..., v, in the universal covering v
of V and span these by a straight singular m-simplex o, : A™ -V by induction: the
¢-dimensional simplex &,: A’ — v, =1, ...,m, with ordered vertices v, ..., v, is
defined as the geodesic cone from v, over the (¢/ — 1)-dimensional straight face spanned
by the first £ vertices vy, ..., %_,. Next for an arbitrary simplex ¢:A —V we take
a lift § to V, then we replace this & by the straight simplex ¢: A — ¥ spanned by the
vertices of & and finally we project ¢ back to V. The resulting simplex ¢ : A -V is
called the straightening of ¢ and denoted straight o.
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Now, for a map f;: P -V, we order the vertices of P, and then for each simplex
ACP we straighten the singular simplex f,|A:A — V. Since these straightened
simplices agree on their common faces, we obtain a map f: P — V, which now is straight
on all ACP, and which is homotopic to f;. Observe, that the only property of V we
used here is the uniqueness of the geodesic segments joining pairs of points in V.

What is left to prove is the following

Estimate of the volume of a straight simplex. — If K(V) < — 1 then straight simplices
o: A" >V satisfy for m > 2, mass,c < mf(m—1)l

Proof. — For K = — 1 the sharper result, mass,, ¢ < R,,, is established in [27].
This sharp inequality also holds in the general case for geodesic triangles Azc V.
Indeed, the relative curvature of these triangles, that is their second quadratic form, is
non-positive and so the Gauss curvature of the induced metric in A% satisfies G(s) < — 1

for all s e A2, Then, by Gauss-Bonnet, fA_G(s)dsZ —n and so
mass A? = area A? SfA,IG(s)I ds < m.

Now, for K(¥) < — 1, volumes of geodesic cones over {-dimensional submanifolds
in ¥ satisfy
Vol(Cone) < ¢~*Vol(Base)
(see [5], [10]) and thus the proof is finished. (Compare [35].)

Question. — GCan one take const,, = R,?

Example. — Let P be a closed connected surface. Then, applying the second
example of (0.2), we get for straight maps f: P >V

mass, f < (2 |x(P)] + 2).

In fact, one can even “triangulate” P into exactly 2 |x(P)| ideal triangles (see [47]) and
thus, when V is closed, obtain maps f: P —V with mass, f < 2x|x(P)|.

One can also proceed in a more traditional way by deforming f, to a minimal or
to a harmonic map f: P — V, and then observe that the induced Gauss curvature in P
is everywhere < — 1. This again yields, via Gauss-Bonnet, the sharp inequality
mass, f < 27| (P)].

It is unclear how to obtain sharp inequalities for minimal maps of general polyhedra
(or manifolds) P, but the next version of Thurston’s theorem provides such an estimate
for homology.

First for a singular m-dimensional chain ¢ =2 ryq;, for o;: A" >V, we put

mass ¢ = ? |7;| mass,, o;,

and then for a homology class « € H,(V;R) we define mass(«) as the lower bound of
masses of cycles which represent «.
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(B) Homology theorem (see [47], [35]). — If K(V) < —1 and if m> 2, then all
o e H,(V; R) satisfy
mass o < const,, ||«||y,

where || ||o = || || is the simplicial norm of section (0.2) and ““ const,, > is the same as in
the homotopy theorem (A).

Proof. — First we represent « by a cycle ¢ =216, whose norm ||¢|] =2 |7

is close to ||a||; and then we straighten all its singular simplices o;. Straightening
commutes with the boundary operator on chains, and so the straightened chain

’ ’ ! :
¢ = 21‘4 r,o;, for o] = straight o;,
is, in fact, a cycle homologous to ¢. Therefore
mass « < mass ¢’ = 2 |r;| mass,, o]
i

< const,, % |r;] = const,||¢]], q.e.d.

Remark. — The homology theorem, when applied to the fundamental homology
class of a closed n-dimensional manifold V, yields Thurston’s theorem of (o.3),

Vol(V) < const, || V|].

Finally we come to the dual, cohomological version of (B), which relates the
norm || ||, of section (1.1) to the comass norm on cohomology. Recall that the comass
of a differential m-form « on V is defined as the upper bound of the values of « at the
orthonormal m-frames in V. Then for a class § e H*(V;R) we define

comass f = inf comass o,
w

where o runs over all closed m-forms representing P.

(G) Cohomology theorem.— If K(V) < — 1 and m> 2 then one has for all 3 eH™(V;R),

[|Bl] < const,, comass B.

Proof. — First, represent 8 by a form o with comass o close to comass(f). Then
construct a singular cocycle (!) ¢ representing § by putting, for every singular simplex
c: A" >V,

o(0) = o,

where o’ = straight o. Since |¢(c)| < (mass ¢’)(comass w), we get
[¢(s)| < const,, comass o

for all 6, q.e.d.
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Remark. — One can show with the theorem of Hahn-Banach, that the theorems (B)
and (C) are, in fact, equivalent.

The relative case. — Consider a locally convex subset V,CV, for example a totally
geodesic submanifold V,CV. Then for each singular simplex A — V, its straightening
is also contained in V, and so the theorems (A), (B) and (C) hold in their respective
relative forms.

Now we consider proper geodesics y: R —V thatis both ends (f > 4+ o for ¢ e R)
go toinfinity in V. We say that V is concave relative to infinity (one might say that the infinity
of V is convex) if no proper geodesic y extends to a proper map f: R X [0, ) -V with
SfIR X0 =1y (identifying R X o with R).

Examples. — If a manifold V, is closed, then the cylinder V X R is concave relative
to infinity. The space R" for n > 2 is not concave relative to infinity.

If V is concave relative to infinity then every cocycle b in 'V with compact support
“ straightens > to a cocycle b’ which also has compact support. Furthermore, b — b’ = 3,
for some cochain ¢ with compact support. 'Thus we obtain, for the fundamental cohomology
class B of V, our old estimate

VIl = (IBII*)~" = ([|B]lo) ™" = consty * VoI(V).
Example. — If —k<K(V)< —1 and if Vol(V)< o, then V is concave
relative to infinity (see Appendix g) and so
Vol(V) < const, || V]|.

Thus the proof of Thurston’s theorem of (0.3) is complete.

1.3. The theorem of Milnor-Sullivan

We start with the original geometric version of the theorem (see [39], [44]).

Let P be a simplicial polyhedron and let Z — P be a flat n-dimensional vector bundle over P.
Then the Euler class y(Z) € H*(P; Z) can be represented by a simplicial cocycle whose value at
ecach simplex of P is 0, 1 or — 1.

Progf. — Take a section f: P — Z which does not vanish on the (r — 1)-skeleton
of P. The cocycle, which assigns to each oriented 7n-dimensional simplex ACP the
algebraic number of zeros of f in A, is cohomologous to x(Z). (This is the definition
of ¥.) Since the bundle Z is flat we can choose the section P — Z piecewise linear,
such that its restriction to each simplex A in P is the graph of an affine map A — R".
Now, a generic piecewise linear section has at most one simple zero inside each rz-dimensional
simplex. The assertion is proved.

The following argument due to Smillie, provides a rational cocycle whose value
at each n-dimensional simplex equals 4+ 27" for # even and o for #n odd.
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A piecewise linear section f:P —Z is determined over each n-dimensional
simplex ACP by its values f;, ..., f;, ..., [, at the vertices of A. If we multiply some
of f; by — 1, we get a new linear section over A. There are 2"*! such sections over A,
but exactly two (opposite ones) of them have a zero. To see this, study » 4 1 points

goSos - s & fy in R*  for g, =41,

and examine whether their convex hull contains o in the interior. If we assign to each A
the algebraic average number of zeros while averaging over P, we get the required cocycle
representing x(P).

Remarks. — (a) If P is a closed oriented manifold with fundamental class [P] then
we can speak of the Euler numbers, y = (x(Z), [P])>. Any lower bound for the number
of n-simplices of a triangulation of P or of a multicomplex on P (see (3.2)) gives us an
upper bound for |y|. One often obtains better estimates by using triangulations of finite
coverings of P. For surfaces P, applying the second example of (0.2), one gets

%} <5 1x(P)] (%)

This estimate is sharp. Indeed, by taking a metric of constant curvature in P, we get
P = H?/I1 where H? is the hyperbolic plane and II ~ =;(P) is a subgroup in the
orientation preserving isometry group Is(H?) = PSL,(R). The quotient PSL,(R)/II is
canonically isomorphic to the total space of the unit tangent bundle S — P, and since
the Euler number of this bundle is even (= y(P)), there is a double covering S — S such
that the pullbacks 'S'pc§ of the fibers §, = S'CS, p eP, are connected. Thus we
get another circle bundle

S >P (a “square root” of S)

and S = SL,(R)/II for some lift
g: II - SLy(R) — PSL,(R) = SLy(R)/(+ 1).

The vector bundle 'T‘, associated to S, admits a flat structure, since it is also associated to
the principle fibration H2 — P = H?/Il via the linear representation g. Now, T is
“ the square root ” of the tangent bundle T(V) and so

x(T) = Z 1(T(V)).

(b) There is another way (pointed out by Lusztig) to estimate Euler numbers of
n-dimensional flat bundles over a fixed closed n-dimensional manifold P. In fact, flat
bundles over P correspond to linear representations w,;(P) — GL,(R). The set of these
representations is a real algebraic variety and so it has finitely many connected components.
The bundles corresponding to the points of any given component are topologically
equivalent, and in particular, their Euler numbers are equal. Observe furthermore, that
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the number of different values of y(Z) for all flat bundles Z — P is estimated from above
by the fundamental group alone, while the maximal value of |y | may also depend on the
manifold P itself.

Example. — Let dim P > 4 and let us delete from P an open regular neighborhood
of the 1-skeleton of some triangulation of P. The boundary B of the resulting manifold P’
admits an orientation reversing diffeomorphism D such that the induced homomorphism
D, : =,(B) - =, (B) istheidentity. Next we take two copies of P’ and glue their boundaries
with D. We obtain in this way a closed manifold P’* which admits a map f:P"” — P
of degree 2 and such that the induced homomorphism f, : =,(P"") - =,(P) is an iso-
morphism. Now, for any flat bundle Z — P with Euler number y, we observe that
the induced bundle f*(Z) over P"" has Euler number 2y, and by repeating this process
we obtain flat bundles with arbitrary large y without changing the fundamental group
of the underlying manifolds.

The theorem of Milnor-Sullivan-Smillie can be generalized in the following abstract
form.

Let Z be an n-dimensional flat bundle over an arbitrary topological space X. Then the Euler
class y = y(Z) e HY(X; R) satisfies

xllo < 27

(As before y = o fornodd.) Inparticular, one gets the inequality ||V || > 2" |x| of section (0.3).

We shall show in section (g.2) how the geometric version of the theorem, when
applied to the geometric realization of a particular semi-simplicial set of singular simplices
in X, the “ multicomplex K ”, yields the abstract theorem.

Our version of the theorem of Milnor-Sullivan-Smillie implies in particular bounded-
ness of the Euler class for affine flat bundles.

A generalization. — Let G be an algebraic subgroup in the linear group
GL, = GL,(R). Take the classifying space BG and consider also the classifying
space BG® for G with the discrete topology.

Consider the natural homomorphism in cohomology, H*(BG; R) — H*(BG®; R),
and call an « € H*(BG® R) a characteristic class if it is contained in the image of this
homomorphism.

Theorem. — Eack characteristic class in H*(BG®; R) is bounded.
This theorem follows, as in the case of the Euler class (see (3.2)), from the following

Geometric version. — Let Z be a flat m-dimensional G-bundle (i.e. a vector bundle with a
Sflat G-structure) over a simplicial polyhedron P. Fix a class B e H'(BG; R) and consider the
characteristic class B* € H(P; R) induced by the classifying map P —BG. Then B* can be
represented by a simplicial cocycle whick is bounded in absolute value at each n-dimensional simplex
in P by a constant depending only on B.
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Proof. — We assume P of finite dimension <r and construct the following finite
dimensional  approximation > By of the classifying space BG for large N. It will suffice
to take N>#n + m 4 2. Take first the total space K of the canonical principa
GL,-bundle over the Grassmanian Gr,,(RY) of m-dimensional subspaces in RY. The
group G CGL,, acts on K and the space By = K/G will be our approximation to BG.
The space By now carries the natural structure of a real quasi-projective manifold.

Algebro-Geometric lemma. — Let B be a real quasi-projective manifold. Then for each s
thereis a Zariski closed set C.C B of dimension s such that the inclusion homomorphism F,(C) -, (B)
is surjective, where B, denotes homology with non-compact supports.

Proof of the lemma. — According to Hironaka [30] one can realize B by a Zariski
open dense subset in a non-singular projective manifold A. Furthermore, A has a
triangulation with the following properties (see [31]):

(a) each simplex of this triangulation is a semi-algebraic set in A;
(5) the complement A\B is a closed subcomplex of this triangulation. Denote by C

the Zariski closure of the s-skeleton of our triangulation and take for the required C
the intersection C N B.

Proof of the theorem. — A classifying map P — By for any flat G-bundle Z over P
now comes from the following construction. Take the trivial bundle T =P x RN —>P
and an injective homomorphism Z —T. Such a homomorphism assigns to each fiber Z,,
p €P, an m-dimensional subspace Y,CRY and an isomorphism Z, —Y,. A sub-
space Y, with the G-structure induced from Z, is interpreted as a point in By.

Since Z carries a flat structure we have a notion of piecewise linear homomorphisms
Z —~ T whose corresponding classifying maps P — By are piecewise algebraic. More-
over, these maps are algebraic of degree d on each simplex in P where d depends only on n
and of course on the group GCGL,,.

Now, the class B e ﬁs(BN), s = dim(By) —n, Poincaré dual to B € H*(By), can
be realized, according to the lemma, by a cycle 5 = éc] r,A; which is built of £ s-dimensional
semi-algebraic simplices 4; in C. T

For a generic piecewise algebraic map P — By the image of each simplex ACP
intersects each A,CBy transversally and only at interior points, whose number is at
most d.deg(C). Therefore, the real intersection number v, of A with b is at most

k
d-deg(C) 3 [r| < const,.

Finally we observe that the cocycle A —v, is cohomologous to B* e H"(P;R) thus
concluding the proof of the theorem.

Remark. — In many interesting cases one can realize 3 by a combination of Schubert
cycles and then one gets more precise estimates for || B*||,, like those we obtained for the
Euler class.
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2. ESTIMATES FROM ABOVE FOR THE SIMPLICIAL VOLUME

2.1. A preliminary discussion

Consider a closed oriented Riemannian manifold of dimension » with sectional
curvature bounded in absolute value by one, |K(V)| < 1. In order to prove that
[IV]] £ const, Vol(V) (see (0.5)) we must ““cover ” the fundamental class of V by
at most const, Vol(V) simplices. First, suppose that at all points v € V the injectivity
radius of V satisfies Inj Rad,(V) > ¢, for some fixed number ¢,> o. Then the expo-
nential map exp:T,(V) -V at every point v € V embeds the eyball B(ey) in T, (V)
around the origin into V. Furthermore, if ¢, is small then the map exp,:B(g) -V
is almost isometric, that is its differential D has everywhere a norm close to one. In
fact, even without the condition InjRad(V)>c¢, one has |||D|| — 1| <€ provided
that ¢, < 1 and |K(V)| <1 (see[10]). Now if all e4-balls in a manifold V are roughly
Euclidean, there is a triangulation with simplices of size about ¢, and such that the total
number of the simplices equals const, 5" Vol(V). In particular we obtain the following

Trivial Inequality. — If |K(V)| <1 and if InjRad,(V)> ¢, forall veV, then
I V]] < const, g5 Vol(V). (%)
This inequality gives no interesting estimates from below for Vol(V) and for

Min Vol(V) since the condition InjRad(V)> ¢, already implies Vol(V) > C,=j.
However, for manifolds of non-positive curvature one derives the following

Non-trivial Corollary. — If 0> K(V) > — 1 and if the fundamental group =,(V) is
residually finite, then

[V} < const, Vol(V). (%)

Proof. — Recall, that a group II is called residually finite if the intersection of all

subgroups in II of finite index is the unit element ¢ in II. One can also express this

condition in our context by saying that for every ¢> o there is a finite covering Vv
such that every loop in ¥V of length <¢ is contractible. The last condition implies,

now for K(V) < o, that Inj Radv({’/') > %t‘ for all » e V. Thenfor £> 2, the Trivial
Inequality yields || V1] < const, Vol(V), and as

IFNVIE = Vol Vol(V) = 4,
for d equal to the number of sheets of the covering ¥V —V, wealsoget ||V]| < const, Vol(V).
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Example. — First take a manifold V with a metric g, of constant curvature — 1. Then
Jor an arbitrary metric g on V with 0 > K(g) > — 1 one has
Vol(V, g,) < const, Vol(V, g). (%%%)

Indeed, manifolds of constant curvature have residually finite fundamental groups.
In fact the same holds for all finitely generated subgroups of connected Lie groups, see [41].
Then (*##) follows from Thurston’s theorem of (0.3) and (#*).

The arguments above can be extended to cover the general case of manifolds V
with |K(V)| <1. The idea is to represent the fundamental class of such a V by a
cycle ¢ =2r;6; with the following two properties:

(a) all simplices o;: A" -V are e-small for e~ (20)~". That is each ¢; admits a
lift 5; to an exponential e-ball,

G;: A" - B(e) € T, (V),
for some point 7, €V, and exp,o G, = o;.

(8) |lell =2 |r] < const, Vol(V).

One can construct such a cycle ¢ by first taking all ¢ e-cycles ”” ¢ which satisfy ()
only, and then by minimizing the norm ||¢|| among  e-cycles ”. In fact, there is the
following minimizing procedure which actually diminishes the norm of ¢, as long as this
norm is too large compared to Vol(V). Namely, if ||¢|| is large then also a lift T of ¢ to
the unit ball B(1) CT,(V) at some point » € V has a large norm ||?|| compared to
Vol(B(1)). Therefore, one can replace T by a smaller standard “ e-chain ” 7 in B(1)
which represents the relative fundamental class of the pair (B(1), dB(1)). Next, one
can construct another chain 7; which ¢ interpolates > between 7 and 7, in the sense that
¢y equals ¢ in a small neighbourhood of éB(1) and such that 7; =7, far from the
boundary 9B(1). This?; has smaller norm than?, and by projecting the difference ¢; — 7
back to V and by adding this projection to the cycle ¢, we do diminish the norm of c.

A technical difficulty of this argument is the necessity to keep all singular simplices
e-small while constructing the interpolating chain 7;. This is the reason for the ridi-
culously small ¢ = (20)~™. In fact, one gets even worse estimates for “ const,” in
the inequality || V|| < const, Vol(V), namely something like const, ~ (100)™".

We shall not pursue anymore this line of reasoning and turn to more efficient
estimates for || V||.

2.2, Exact estimates for hyperbolic manifolds

Let V be a closed oriented manifold of constant curvature — 1. Then there is
the following very efficient way to * cover ” the fundamental class of V by immersed
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3

straight singular simplices op, with all edges of length D. Such a * covering ” would
yield, for D — oo, the inequality || V|| < R, ! Vol(V), and therefore (see (B) of (1.2))
the exact formula ||V]|| = R, ! Vol(V) of section (0.3).

We first generalize finite singular chains in V by admitting as a generalized chain
any family F of singular simplices ¢, parametrized by a manifold F with a finite measure,
given by a form u(¢)do and total measure the norm (see [47]) ||F]|| = fF |u(o)| do (instead
of Xr,0; with norm X |r;]). Specifically we take the family Fy, of all regular simplices oy,
with the orientations induced from V, that is each o} is covered by an embedded regular
simplex &}, in the universal covering hyperbolic space H”. The isometry group Is(H")
acts transitively on the simplices 6, and the Haar measure of Is(H") induces a
measure u(c)ds on F = F;. The generalized chain so defined is a cycle: under the
boundary operator the contributions of two sides of any (rn — 1)-face ¢’ cancel each other
because these sides are symmetric under the orientation reversing (!) reflection of H"
in the hyperplane spanned by 6’. This chain F}, represents the fundamental class in case

[ (o) Vol(s)ds = Vol(V),
and then | Fp|| = [(e)ds = (Vol op)~* Vol V.,
By definition || V]| < ||Fpll,

and since Vol(sp) - R, for D -, we get ||V|| <R;*VolV.

Now, we only must show that these generalized cycles Fy, give the same value for || V||
as usual chains. First we take N points in V, each assigned with the weight Vol(V)/N.
The resulting atomic measure in V is denoted by py and, for N — oo, we require the
sequence py to converge, in the weak topology, to the Riemannian measure in V. Then
we consider all straight simplices, whose edges now may have any length between D
and D + § for some 3> o0, and whose vertices must be chosen among our N points.
Next we consider the (formal) sum X of all these simplices and take the normalized chain

¢ = (N, 3, D) = Z/|| 3|
Notice, that this || Z|| equals the number of the simplices. Now, for fixed D and 3, one has

[|éc]] >0 for N — oo,

and then one can construct chains ¢’ = ¢'(N, 8, D) such that o’ = oc and ||¢'|| -0
for N — oo, Finally we take cycles

¢ =¢(N,8D)=c—¢
and observe that

lim lim ¢ = Fy|| Fy|l,
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and so the limit of the cycles ||Fp||~'¢" for N -, 8 -0 and D — oo, is the funda-
mental class of V, while the norms of these cycles converge to R * Vol(V). (See [47]
for more information.)

Nico Kuiper suggested the following direct elegant construction of finite singular
cycles Fj, in V, for which [|Fy|| = R;*Vol(V) as D - . We fix a fundamental
domain U in the hyperbolic space H" = V for the Galois action of the group II = my(V)
in the universal covering V of V and we also fix a point z € U. Then we consider straight
simplices ¥ in V with vertices in the H-orbit of 4 and we assign to each & with
vertices y,(%), ..., Y,(#) a coefficient (%) equal to the (Haar) measure of those regular

simplices 5, in ¥V = H" whose n + 1 vertices lie in the translates vo(U), ..., v,(U);
precisely one vertex in each set v;(U), ¢ =o0, ...,n As the family F, of all regular

simplices &, in V is a (generalized) cycle, the Il-invariant chain F, = 2 u(5)s also is
[+

a cycle. Furthermore, this cycle INT'I’, projects to a finite straight singular cycle in V,
called Fj), which is homologous to ¥y, (i.e. ] is a fundamental cycle of V for a proper
normalization of the Haar measure in the group Is(H")), and also [|Fp|| = ||Fp]l.
Hence, ||Fp|| - R;!Vol(V) as D — co.

Remark. — Generalized chains Fy can be defined, for D <1, in all manifolds V
with K(V) <1 by taking equilateral geodesic simplices in balls B(2) CT,(V) with
the metrics induced from V by the maps exp,:B(2) - V. However, no canonical
measure parametrizes these Fy into cycles, though

16K, ||/||Fpl] =0 for D —o.

It would be interesting to find a small perturbation of F, to a cycle and thus obtain yet
another proof of the inequality || V|| < const, Vol V.

2.3. Straight invariant cochains

Consider a covering Y of manifold V with Galois group II and first observe that
singular cochains in V lift to those cochains in Y which are invariant under the action
of II. Next, we define a subcomplex, called C*(Y : II) CC*(Y) of real valued singular
cochains ¢ by imposing the following four conditions.

(1) Cochains ¢ € C*(Y : II) are straight: the values ¢(c) for all 6:A™ —-Y only
depend on the vertices g, ..., %, --->In € Y of 6. The “straight ” cochains are, in
fact, functions in m + 1 variables 3y, ..., 7, €Y.

(2) The functions ¢ = ¢( 9y, ...,V are antisymmetric, that is

(Jos +-osVseveesDisvoosIm) = —C(Jos o+ esTjs oo sVis o+ 23 Im)
for all pairs of variables y; and y;.
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(3) The functions ¢ are Borel in the variables y;, that is pullbacks of Borel subsets

m

in R are Borel in the Cartesian products D Y.
0

(4) The functions ¢ are Il-invariant.

Remarks. — The condition (3) is purely technical. We could equally well require
continuity (or even smoothness) of ¢, without changing the homology of C*(Y : II).

The condition (2) will be quite important in the further calculations but again
it does not affect the homology of our complex. Indeed, there is the natural (anti)-
symmetrization operator which projects all functions to the antisymmetric ones, namely

I
«(y) > m+ 0! % [81e(3( ),
where & runs over all permutations of the variables y = (,, ..., %,) and where [3] =1
for even permutations dand [3] = — 1 forodd 8. This operator induces an isomorphism
on the (real!) homology. In fact, it is a chain homotopy equivalence.
Without the condition (4) our complex would be acyclic (in fact, chain-contractible).
Only the action of II makes the story interesting. In fact, as we shall see in (3.3),

def

H,(C(Y : II)) ~ HY(IT; R) = H*(K(IL, 1); R),

where K(II, 1) denotes the Eilenberg MacLane space.

Example. — In the proof of the homotopy theorem of section (1.2), we constructed
a cocycle ¢ = f S which lifts to the universal covering Y = V —V with the pro-

perties (1), (3) and (4). In fact, this ¢ is a continuous function in y, ..., , and it even
extends to the ideal boundary of V. With the (anti)symmetrization operator, one can
also make this cocycle ¢ antisymmetric, without changing its cohomology class and keeping
it bounded with the norm < const,, comass o.

New simplicial volume. — The {®-norm on functions ¢ = ¢(y,, ..., %, induces

a norm in cohomology H*(Y: II) = H,(C(Y: IT)). Furthermore, the inclusion

CY(Y: II) - C*(V) induces a homomorphism H*(Y:II) - H*(V). Now let us take
for Y the universal covering V>V with T = 7;(V) and let us denote by F the
homomorphism H*(V: II) - H*(V). For all g e H(V) we put ||8|]" = igf”oc”w,
where « runs over the pullback F~'(8) CH*(V: II). In particular, [|Bllo = o0 if B
does not come from H*(?’: IT). Then, by duality, we define the following new norm

for all vy eH,(V):
Il = sup (IBIEM 1B

237



30 MICHAEL GROMOV

over all BeH™V). It is clear that ||y|™¥ <||y||™ and in particular, for closed
manifolds V, we have [|V|P*™ <||V||*%. In fact, with the remark above, the new
norm ||y|[™" equals the old norm of the image of v under the natural homomorphism
H,(V) - H(K(II, 1)), for II = =,;(V). In particular, the new norm (and thus the
new simplicial volume) vanishes for simply connected manifolds. We shall prove in
section (3.3) an equivalence theorem claiming the equality || |[|*¥ = || ||™%, but
even without this theorem (which requires a bit of abstract machinery) one can use the
new norm as efficiently as the old one. Indeed, the principal estimate from below for
[] ]|, namely Thurston’s theorem (C) of (1.2), provides, in fact, the same estimate

for the new norm, because the (anti-symmetrized) cocycle ¢ = f ® is contained in
o

the complex C*(Y : II). Moreover, the functorial property for maps f:V — V',
AN < 1l

also holds for the new norm and so our main geometric applications in section (0.4) will
not suffer if the old norm there is understood in the new sense. In any case, since the
new and the old norms are equal (see (3.3)) we do not bother to distinguish them anymore.

Finally, a word of caution: the new simplicial volume has not yet been defined
for open manifolds V and so || V|| must be still understood for such V in the old sense. We
return to open manifolds in section 4.

Now, let us observe that the new norm on cohomology H*(Y : II) also makes sense
for an arbitrary locally compact group of homeomorphisms (instead of II) of any space Y.

Examples. — Let II be a discrete group of isometries of a Riemannian manifold Y.
By taking a subgroup of index two we always can make II orientation preserving. Then
the space Y/II is a pseudo-manifold (in fact it is a rational homology manifold) and if Y/II
is compact of dimension n we have the n-dimensional fundamental class 8 € H*(Y/II; R).
We represent this B by a singular cocycle & € G*(Y/II) and take its pull-back 7 in
the complex Ct(Y) of Il-invariant cochains in Y. Finally we consider all cocycles
a e C*(Y : IT) CC(Y) which are cohomologous to 5 (in C3,(Y)) and put 1Bl = 11;1f[| al| -
In particular, we may define in this way the simplicial volume of an orbifold V (see [47]) by
taking the * universal covering” Y = V — V = VT and by putting || V]| = (||8||.)"~
For instance, if V has constant curvature — 1 then || V|| = R; *Vol(V), asinsection (0.3).

Now, let G be the full group of isometries of the manifold Y and let Z5(Y) denote
the de Rham complex of G-invariant forms on Y. By integrating forms over singular
simplices in Y we get a homomorphism of 2§ = 2;(Y) into the complex Cy(Y). Let
& e Cy(Y) denote the image of a form @ e 2§, and let us define ||©||,, as the infimum
of /*-norms of cocycles o € C*(Y : G) which are cohomologous (in Ca(Y)) to w. Next
we take a discrete subgroup II CG and for simplicity we assume that II acts freely on Y.
Then o also defines a cohomology class in H*(Y/II), called [w];, and one has

I [elnlle < el (%)
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Assume furthermore that the subgroup II is cocompact in G. Then every I-invariant
cocycle a € C*(Y : II) can be averaged over G/II to a G-invariant cocycle « € C*(Y : G)
with ||z]|, < ||«|lo, and thus the inequality (*) becomes an equality:

Il[m]H“w = ”(’)”w (**)

In particular, ||[©];]||, does not depend on II as long as II is cocompact in G.
If Y/II is a compact manifold, then the equality (**), when applied to the volume

form o on Y, yields Thurston’s proportionality theorem of section (0.3). Indeed, with
this @ we have, by definition,

IV = Y/ = Vol (V) (|| []nll) "

(See [47] for a ¢ dual” proof in the language of * smeared homology *.)

2.4. Smoothing of Borel cochains

Our main estimates from above for the simplicial volume are based on the following
averaging (smoothing) construction, which is first explained in the geometric language
of straight chains. Let, for example, V be an z-dimensional manifold of non-positive
curvature which is triangulated into small straight simplices A. Then we continuously
move the vertices of this triangulation, called v, €V, ¢ =o0, ..., %, into new positions,
v; €V, and we observe that any such move v; - v; uniquely extends to a map f of V
into itself such that f sends every simplex A with some vertices v; onto the straight simplex A’
with vertices »;. The result of any move »; - v, = f(v;) can be obtained by going
along a geodesic between y; and v/ and so the space F of maps f: V — V is parametrized
by the Cartesian product of 2 4 1 copies of the universal covering ¥ of V.

Next we take the fundamental class ¢ = ZA € G,(V) of our triangulation and then
we have a family of cycles f,(c) € C,(V) for all feV. Now, with some positive nor-
malized (probability) measure w on F we average this family to the generalized cycle

¢, = f . f.(c)dp. (Compare (2.2).) Asallmaps feF are homotopic to the identity, the
cycle ¢, is homologous to ¢, while its simplicial norm clearly satisfies ||c, || < |l¢|| fF dp. = ||¢||.

In fact, the norm ||¢,|| may even become strictly less than ||¢c||. Indeed, a simplex A
may be sent by two different maps fin F onto the same geometric simplex A’ but with
opposite orientations and these simplices algebraically cancel.

Example. — Let A be the oriented (!) unit interval in R}, A = [o, 1]. Then the
moving pairs of ends v, and v; are points in R? and with the normalized Lebesgue measure p
in the square {y;€[—p,p] and v;e[1 —p, 1+ p]}

-2 4 s (1te " ’
co=o72[" o[, doil;, o).
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This chain ¢, is understood as a measure on ordered (!) pairs of points [z, 2;], and this
measure vanishes at the pairs of points v, and »; in the interval [1 — p, p], since there are
exactly two opposite moves of the interval A = [0, 1] onto A’ = [y;, v;] with equal

p-probabilities. It follows, that indeed ||¢,||<||¢ =A|| =1 for p> %, and further-

more, ||¢,|| >0 as p —o0.

|
w

We shall return to the averaging (or diffusion) of chains in section (4.3), but now,
we develop the more flexible language of smoothing of cochains in manifolds V. To
do that we consider a covering Y — V with Galois group II and we construct the
following averaging (smoothing) in the subcomplex of bounded cochains in C*(Y : II),
called C*(Y: TI). We denote by # = .#(Y) the Banach space of finite measures p

on Y with the norm ||u|| = inp.l, and we denote by #*C .# the cone of positive

measures. We observe that every bounded Borel m-cochain ¢ = ¢(y,, ...,J,) uniquely
extends to an (m 4 1)-linear function on .4,

(o -+ o5 ) = [+ [e(T05 -+ s Im)bta(00) - - n( I

e’
m+
This extended cochain is again denoted by ¢. We observe that

SUP | ¢(hgs -+ o5 Mis « - o5 )| = |l€l]e = sUp [e( D05 -+ 5055 - s I
il L1 yEY

Let us call a smooth Il-invariant map & :Y —.#" a smoothing operator. We
consider the induced cochains #*(¢) on Y for ¢ = ¢(pg, - - -, ) 2and we normalize
them to & * ¢ defined by

(#0030 = SO0 )TN F O

= (s s S [T S

Remark. — If we assign to each » € Y the Dirac 3-measure at », then for this map
3:Y >M, 3:y3,, we take 8'(¢c) =8*¢=c¢ for all ¢ eC*(Y:II). However the
map & is not smooth and not even continuous relative to our norm in .#.

As the map & :Y - 4" is Il-invariant, the smoothing operator ¢ - & *¢
sends the complex C*(Y : IT) into itself. Furthermore this operator C*(Y: II) — G*(Y: II)
is a chain homomorphism commuting with boundary operators, and due to our norma-
lization this operator induces the identity homomorphism on the cohomology H*(Y : II).

Now let V be a Riemannian manifold. Then for each y € Y we define the norm
of the differential of &,

ID,Z1| = sup ||(D, ) (=),
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where 7 runs over the unit tangent sphere S,CT,(Y). Then we put
[£), = 127D, Z]]
and [#] = sup [#].
vEY

Proposition. — Let & be a smoothing with [#] < co. Then any bounded cocycle
¢ € G™(Y : II) s De Rham cohomologous to a closed Il-invariant form w on Y jfor which

comass o < m!||¢||, ([LN™

Proof. — First we take ¢ = & * ¢ and then we define informally o = w(¢t, ..., ¢,)
for tangent vectors t, € T,(Y), y €Y, as the limit for ¢ -0 of

M0 + iy oo + )L

We put the normalizing factor m! to make the integral of » over the infinitesimal simplex
with vertices », y + ¢, ..., » + ¢, equal to ¢(p, 9 + ¢, ..., + £,).

Now, to be precise, we first identify, by parallel translations in 4, the tangent
spaces T,(#) for all pe# with Ty(#) =.4. Then we introduce the differential
m-form T on #, whose value at the frame of tangent vectors y,, ..., p,in T, (#) =.#
equals m!c(w, @y, ..., ) by definition. This form 7' is uniquely characterized by the
property that its integral over every linear simplex in .# with vertices ., g, ..., W, in .4
equals c(p, w1, - oy tp)-

Observe, that comass?, that is the upper bound of the values of 7 on the frames
of unit vectors, does not exceed m! ||¢||.

Now, with the map & :Y — .# we take the induced form 7* = #*(7") and we
define the required form o by

Ot + o os b)) =Tty -5 2 [ O™
for £ eT,(Y), yeY.
Remark. — Since the form ¢ vanishes on the radial tangent field in .# one could
take first
FO) = 112U ()
and then the form o is induced by 57,
w = F(7).
Let us slightly sharpen the Proposition for the important case of m = n = dim 'V,

by introducing a new quantity, [#]* < [#]. Namely, we take the average of ||D, & (7)||
over €S, CT/(Y), called ||D,&[|", and then we put

(<1, = l#WII~HID,& |
and [#]" = sup [£];-
yEY
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Example. — Let the smoothing & () be given by a function &(, '), such that

L xe(y) = [, S (3,

for all functions ¢( '), »" € Y. Then
IO = [, #(22)d,

and 1D, &1l < [, llgrad, #(5,)|| &',

Furthermore, for symmetric functions, &(,5") = £(¥',7),
ID, &1 < [, llgrad, & ()| &',

and DIl = [, [ <5 grad, (5,53 &,

where the interior integral of the scalar product is taken with the normalized measure
in the sphere S, and so

ID,#|I" = G, llgrad, (5, )| 4,

for C, — P(n/g)/(ﬁr (” +r

2

))< I, n=dimY.

The Integral Inequality. — If m = n = dim Y, then the form  above satisfies
|[yo|<atllell [, (0B & <t llell., (1) Vol(Y/m)
Sor all fundamental domains U = U(II) CY.

Proof. — Indeed, by the geometric arithmetic mean inequality,
comass, &*(7) < comass, 7 (||D,<|[*)",
for all n-forms 7 on .# and for all p = £(y).

Corollary.— Every smoothing & in the universal covering Y of a closed Riemannian n-dimensional
manifold V satisfies

[,@&Brdy > ([ Vi|/a! (%)
Remark. — If we introduce the quantity
[V = inf [ ([ST)" &,

for & running over all smoothing operators & in the universal covering Y — V, then
(*) reads: ||V]|| < n![V]. Notice that the “norm > [V]*is a conformal invariant of
the Riemannian manifold V.

Let us sketch a geometric explanation of (#). First observe that the cone
Mt C M projects to a convex body Pt, call it a “simplex », in the projective space

242



VOLUME AND BOUNDED COHOMOLOGY 35

P(#) = [#\{o}]/R*. Our comass in .# induces a comass in P* and then we also have
the induced comass in the quotient space P*/II as well as the dual mass on chains ¢ in P*/II:

mass ¢ = supf w,
o Y°

where o runs over all forms of comass < 1. Next, by assigning Dirac 3,-measures to
the points y € Y we get a canonical map 3:V = Y/II - P*/II. Now, one can show
that mass(3,[V]) = ||V||/n!, where §,[V] e H,(P*/II) denotes the image of the funda-
mental class of V whose mass is defined as the lower bound of masses of the cycles in
C,(P*/II) which are homologous to §,[V]. On the other hand, the * norm ” [V]* is the
lower bound

[V]* = inf [ |(D&) (5)|[" d=.

Here S = S(V) denotes the unit tangent bundle of V and % runs over the smooth
maps V — P*/II homotopic to 3.

Observe that one could equally well use the space of measures on the group II,
rather than the space .# of measures on Y. Another interesting space of measures lives
on the Fiirstenberg boundary of II (see [14]) and it would be nice to find cycles of least
mass in the corresponding space P*/II.

2.5. Growth functions and Ricci curvature

Let V be a complete Riemannian manifold and let Y — V be the universal covering

of V. For each point v € V we take a point y € Y over v and then we consider balls
B(R)CY. Put

¢,(R) = log Vol B,(R), for R €[o, ),

_ #,(R)
~ 4R

and £(R) — Vol 4B,(R) / Vol B,(R).

[ 4
Warning. — Insome exceptionally “irregular ” cases the topological boundary éB,(R)
does not coincide with the sphere S (R) and then the derivative ¢’ is not well defined.
To avoid any ambiguity we can use the all-purpose definition

£(R) = lim sup e~ (4, (R) — £,(R — <))

e—>0

Finally, let ¢ =¢'(V) = inf sup/,(R).

R>0 vgV
Theorem. — Every cohomology class B € H™(V) satisfies
comass p < m! ()18, (#)
Therefore llvl| <m!(¢)"massy, for any v € H,(V) (%%)
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In particular, for closed n-dimensional manifolds V,

VI < nl ()" Vol(V).

Moreover, for C, = I'(n/2)]4/=T (n _: I) <1,

V]| < C,n! ()" Vol(V). (%%x)

Progf. — First we consider the smoothing & = % which assigns to yeY the
Riemannian measure &y’ in the ball B (R)CY:

1 for dist(y,)) <R

P9, =
()’,)’) {0 for diSt()’,)") > R.

Then, in the * regular ’ case we have

| %) = Vol B,(R),
ID, %" = G, Vol 3B,(R),

and [ID, 4|l < Vol éB,(R).
Therefore inf [A]* = G/,
R>0

inf [#] <2,

and the results of the previous section apply.

To handle possible “irregularities” we slightly refine the definition of the
smoothing %. Namely we take a small positive function ¢:V — (0, R)CR and
eventually we send this ¢ to zero in the fine Cl-topology. (Recall that fundamental
neighbourhoods of zero in this topology U = U,, are sets of functions ¢ for which
lo(v)] < e(v) and ||grad ¢(v)|| < £(v) for all positive functions € = £(v) onV.) Then
we define % , by the following averaging

Frol) = O[T Fls) dR,

for the points y e Y -V over all points v €V. As ¢ -0 we have
lim sup[#, .]" < G2,

and hrg_)s(t)lp[yl’%’ o Z{t, qeed.

Corollary (An estimate for Ricci > — k*). — If RicciV > — 1/(n — 1) then

comass(B) < m!||B||, (+)
Hyll < m!mass(y) (++)
V]| < C,n! Vol(V). (+++)
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Proof. — Bishop’s inequality [5] for Ricci > — 1/(n — 1) implies li{ln_’scyp {'(R)<1.

This corollary yields all estimates of section (0.5) for closed manifolds V with the
exception of the isolation theorem. Moreover, we have the following generalization of
the product inequality of (o.5).

If |K(V)| <1, then an arbitrary product p of Pontryagin classes of V satisfies
(p v B)[V] < const, |[B|], VoI(V),

where B is an arbitrary cohomology class.

Indeed, this follows from (p u B)[V] < const,(comass p)(comass B) Vol V with
the estimate by Chern-Weil for K| <1,

comass p < G;;

and for Ricci> 1 —n,
comass B < (n — 1)"n!||B]|.,
by (4) above.
Now, we can prove a result for open manifolds, namely the asymptotic estimate
of (0.5). To see this, observe that, for increasing R, the boundary of the ball B(R) CV
will eventually support the cycles homologous to 9,W, 9,W, and so on. Therefore (+ )

above yields
lim inf Vol(ZB(R)) > (|, W[ + [|W]| + ...)/(n — 1)1,

while asymptotically for R —> oo,

Vol(B(R)) = ff Vol(9B(R)) dR ~ R Vol(4B(R)).

Estimates with the entropy. — Let the manifold V be compact. Then the limit
F!Lrg R~%4,(R) exists. Itis called entropy (Ent V), and does not depend on v €e V. One
can modify the theorem by substituting this entropy for ¢’ in the inequalities (#)-(%%*).
To see this, fix a number A> Ent 'V and use the following smoothing & = %4 ,:
exp(— Adist( y,9")) — exp(— AR), for dist <R,

F(3,y) =
()’a)’) o, for dist()’,)") >R.

If R — o0, then [ ,]" = C,A and also the norm [£] is asymptotically bounded by A.
Hence, the inequalities (*)-(*%#%) hold with any A> EntV in place of #' and so with
A=EntV as well

Recall that Ent V bounds from below the topological entropy of the geodesic flow of V
(see [12], [24], [37]) and so the modified inequality (##*) implies

(Top Ent V)" > || V|]/C,n! Vol(V).

This inequality for n = 2 with the sharp constant 1/2n < G, = 2/r is due to Katok [36].
Finally, if V has negative curvature, then /,(R) - EntV = TopEntV as R - o
(see [38], [87]) and so the modified version of the theorem follows from the original one.
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3. BOUNDED COHOMOLOGY OF SIMPLICIAL MULTICOMPLEXES

3.0. We denote by C* = C*(X)CC*(X) the complex of bounded real-valued
singular cochains of the space X. A continuousmap f: X — Y induces a homomorphism
f: C*(Y) - C*(X) which is bounded relative to the #*-norms. Indeed fis even bounded
by one as || f(¢)]|o < ||¢||o for all ¢ e G (Y).

We denote by H*(X) the homology of the complex G*(X). Observe that the
space A*(X) carries a natural pseudo-norm which is also denoted by || ||,. (* Pseudo »
means that for a non-zero « € H*(X) one can have |[|«||, = 0. This might happen
when the image of the coboundary operator §:C*X) — C*(X) is not closed. I do
not know whether it actually occurs.)

A homotopy between two maps f, g : X —Y provides a chain-homotopy & between f
and g. The standard construction (see [40] for instance) gives an % which is
bounded in each dimension relative to the /*-norm, and hence the homomorphisms
frandg*: H*(Y) - H*(X) are equal. In particular, H*(X) depends only on the homo-
topy type of X. We shall see below that H*(X) depends only on the fundamental
group m,(X). ~

Observe, that HY(X) is always zero. This is clear, because each real-valued
1-cocycle z determines a homomorphism =,(X) — R (we assume X to be path-connected),
When z is bounded this homomorphism is also bounded, and hence trivial. It follows
that z is the coboundary of a o-cocycle.

The results of Milnor-Sullivan and Thurston provide many examples of non-
trivial groups H*. In fact, Thurston’s theorem says that the homomorphisms
A™(X) - H™(X, R) are surjective for m>2 if X is a closed manifold of negative
curvature. These homomorphisms are in general not injective. We shall see below for
example that the groups H2 and H? of the infinite wedge of circles do not vanish.

Bounded cohomology first appeared in the group theoretic context. I learned
this notion from Phillip Trauber who explained to me his (unpublished) version of the
Theorem of Hirsch-Thurston [33]:

If a group 11 is amenable then the bounded cohomology vanishes:
() = fAYK(I, 1)) =0 for i>o.
Recall (see [19]) that a group II is called amenable if its action on the space of bounded
functions IT — R has a left invariant mean (average), that is a II-invariant projection A

of norm one from the space L®(II) onto the (one-dimensional) subspace of constant
functions.
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Examples (see [19]). — Abelian groups are amenable. Finite groups are amenable.
If a normal subgroup I'CII as well as the quotient group II/T' is amenable, then II
is itself amenable.

Unions of increasing families of amenable groups are amenable. In particular,
if II is locally solvable (z.e. all finitely generated subgroups in II are solvable) then it is
amenable.

It is unknown whether all (discrete) amenable groups are built out of Abelian and
finite group by taking extensions and ‘‘ increasing unions .  Also notice, that subgroups
and factor groups of amenable groups are amenable.

The simplest examples of non-amenable groups are free non-abelian groups. All
known finitely presented non-amenable groups contain free non-abelian subgroups.

If IT is the fundamental group of a closed Riemannian manifold V, then non-
amenability can be expressed geometrically in terms of the universal covering Vv,
by requiring all bounded domains Q C ¥ to satisfy the inequality Vol(Q) < const Vol(o€2)
for some positive * const ”’ = const(V). According to Avez (see [2], [21]) this inequality
holds, for example, if V is a non-flat manifold of non-positive curvature, K(V) <o,
and then the fundamental group II = =;(V) is non amenable. It is unknown whether
every such group II contains a free non-abelian subgroup.

One can also express the amenability of =, (V) in terms of the smoothing operators &
of section (2.4): the group II = =;(V) is amenable if and only if for every > o there
exists a Il-invariant smoothing & : Vo (V) for which [&] <e. The existence
of such operators & implies Trauber’s vanishing theorem, but the original argument
of Trauber is shorter and also yields the following more general fact.

Let f: Y — X be a regular covering with an amenable Galois group 11.  Then the induced
map F*: A*(X) — A (Y) is injective and isometric relative to the norm || ||,-

Progf. — The Galois group I acts on Y and thuson G*(Y). Then the complex G*(X)
can be identified with the complex of IT-invariant cochains in C*(Y). Fix an averaging A
on II and consider the corresponding averaging in C*(Y), a Il-invariant projection
C*(Y) - G*(X). This projection, call it A, commutes with differentials and satisfies
Aof=1d, where f:C*(X) - C*(Y) is the cochain homomorphism induced by f.
Now, by the very definition of the averaging, we have [|A]] =1 and so [|A*[|<1
for A*:H*(Y) »H*(X). Then with the identity A'of*= (Aof)* =1Id, we get
[l F*(@)]lo > ||a|], for all «eH*(X) and since also || /*|| <||f|| =1, the map f*
is isometric as well as injective.

Examples of non-vanishing H'. — Let X be a closed surface of genus > 2 and let
f:Y - X be an infinite Abelian covering. Since X supports a metric of negative
curvature, the fundamental class « of X is bounded, « € H?(X), and since Abelian groups
are amenable, the pullback f*(x) € H*(Y) is non-zero. Notice that Y is homotopy
equivalent to an infinite wedge of circles.
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Also the wedge of two circles has a non-trivial group A% In fact, this group
H%(S' v 8Y) is infinitely generated (see [6]). Here is a geometric construction of a non-
trivial bounded 2-cocycle. Take a complete surface V of constant negative curvature
such that Vol(V) =2n< o and = (V) =Z % Z. Let » be the volume form and
let the cocycle z € C*(V) assign to each simplex o:A* -V the integral of @ over
straight(s), as we did in (C) of (1.2). Then we have V = Int V where the boundary 8V
has self mappings of all degrees and for the £!-cycle ¢’ constructed in section (0. 2) we observe
that 2z(7') + o. Therefore z is not the coboundary of a bounded cochain, and 7 is not the
boundary of an ¢!-chain.

Jorgensen [34] constructed a closed g-dimensional manifold V of constant negative
curvature which admits an infinite cyclic covering ¥ -V such that V is homotopy
equivalent to a surface. The pull-back of the fundamental class of V gives a non-trivial
element in A3(V) and thus a non-trivial element for the infinite wedge of circles.

3.1. Vanishing theorems for bounded cohomology

Trauber’s theorem implies the vanishing of the bounded cohomology of K(II, 1)
spaces with amenable groups II. In particular, the simplicial volume of solv-manifolds
is zero. By using another averaging procedure in simplicial models of arbitrary spaces X
we prove in section (3.3) the following generalization:

The Mapping theorem. — Let f: X, — X, be a continuous map such that the induced homo-
morphism f, : 7;(X,) — 7 (Xyp) is a surjection with an amenable kernel.  Then the homomorphism

FroB(X,) - HY(X,) is an isometric isomorphism.

Corollaries. — (A) If f, is an isomorphism then f* is also an isomorphism. In particular,
if f:X —>K(II, 1) is the classifying map for T = m,(X), then f* is an isometric isomorphism.

(B) Let X be a closed oriented manifold with fundamental class [X] and let f: X — K(II, 1),
I = 7, (X), denote the classifying map. Then ||X|| = || £[X]]]-

(C) If the fundamental group of the manifold X above is amenable, for example if =,(X) = o,
then ||X|| = o.

Observe that (A) = (B) = (Q).
. The assertion (C) will be generalized in section (3.3) as follows. First, a subset
Y C X is called “ amenable ” if for every path-connected component Y’ of Y the image
of the inclusion homomorphism i, : «,(Y’') — 7,(X) is an amenable subgroup of =,(X).

The Vanishing theorem. — If a manifold X can be covered by some open amenable subsets such
that every point x € X is contained in no more than m subsets, then the homomorphism HY(X) —H!(X)
vanishes for 12> m.
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Corollaries. — (1) If a closed manifold X can be covered by m < dim X “ amenable >
open sets then ||X|| = o.

(2) If the above manifold X can be mapped into a manifold Y with dimY < dim X such
that the pullback of every point in Y has an * amenable > neighbourhood in X, then ||X|| = o.

Indeed, one can cover Y by 1 + dim Y open subsets, such that each of them is
a union of small disjoint subsets. Then the previous corollary applies to the pullback
of this covering.

(3) (Koichi Yano [49]). If X admits a nontrivial circle action then ||X|| = o.

Indeed, (2) above applies to the quotient map X — X/St.

Remark. — If the action is free, then the mapping theorem also yields ||X|| = o.
Furthermore, ifthe actionis locally free, then not only ||X|| = o butalso Min Vol ||X|| =0
(see Appendix 2). Finally, if the action is not locally free, then the classifying map
X — K(II, 1) sends the fundamental class [X] to zero (see Appendix 2) and, again by
the mapping theorem, ||X]|| = o.

3.2 Simplicial multicomplexes and the isometry H* > A:

A simplicial multicomplex (for short a multicomplex) is defined as a set K divided
into the union of closed affine simplices A;C K, 7 eI, such that the intersection of any
two simplices A; N A; is a (simplicial) subcomplex in A; as well as in A;.  The set K
with the weakest topology which agrees with the decomposition K = l;JAi is denoted

by |K|. The union of all m-dimensional simplices in K is called the m-skeleton of K and
denoted by K"CK. A map between two multicomplexes, K =UA;, > L =UA,,
is called simplicial if it maps each A, linearly onto some A;. ' !

Examples. — (a) Every simplicial complex is also a multicomplex. The simplest
multicomplex which is not a simplicial complex consists of two one dimensional simplices,
K = A}V A}, which intersect over their common boundary, 29A! = 0A; = A} N A}.
(See fig. 1.)

Also observe that the first barycentric subdivision of any multicomplex is an ordinary
simplicial complex.
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(b) Every simplicial multicomplex K = U K™ can be built inductively starting

m=0
from the discrete set K% and then each K™ is obtained from K™~ ! by attaching
m-simplices A7 by some simplicial embeddings of the boundaries A" — K™ 1,
(¢) Our important example is the following. Take a topological space X and
consider the set X of all those singular simplices o:A™ - X, m=o0,1,..., which
are injective on the vertices of A”. Then take one copy of A" for each o, call it A7, and

put K(X) = UEA':. This union has in a natural way the structure of a multicomplex
cE
such that the canonical map S:|K(X)| — X defined by the condition
S|A"=06:A%"=A"—>X, forall ¢eX,

is continuous. Moreover, by a standard argument (see [40]), this map S is a weak
homotopy equivalence.

A multicomplex K is called complete if every continuous map f:A”™ —-K whose
restriction to the boundary f|dA™: 9A™ — K is a simplicial embedding, is homotopic,
relative to dA™ to a simplicial embedding f*: A™ — K.

Examples. — (a) The complex K(X) is complete.

(b) If K is complete and connected then for any finite set of vertices {%,, . ..,%,}CK?®
there is an /-dimensional simplex A’C K with vertices &y, ..., k.

(¢) If a connected 1-dimensional complex is complete then it consists of a single
1-simplex.

(d) If a connected simplicial complex K is complete as a multicomplex then it
equals the simplex spanned by the vertices of K.

The role of the completeness is explained by the following simple fact:

(e) Let K be a complete multicomplex with at least n ++ 1 vertices in every connected component.
Let f be a continuous map of an n-dimensional multicomplex L into K. Then there is a simplicial
map f' of the first barycentric subdivision of L into K, homotopic to f and injective on every simplex
of the subdiwvision of L. :

Call K large if every component has infinitely many vertices. Then we state the
following relative version of (e):

Homotopy Lemma. — Let K be large and complete.  Then for any two homotopic simplicial
maps fo, f1: L — K, both injective on each simplex in L, there exists a simplicial map f of a cano-
nically subdivided cylinder L X [o, 1] into K such that f,_,=f, and f,_, =/fi, and such
that f is injective on each simplex of the subdivision.

The completeness property is reminiscent of Kan’s property in the theory of semi-
simplicial sets. Since multicomplexes have no degenerate simplices, they are less conve-
nient than semi-simplicial sets from the algebraic point of view, but they are better adapted
to our geometric applications. In any case the standard techniques of semi-simplicial
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sets (see [40]) apply to multicomplexes with minor changes. Our exposition is essentially
independent of [40] as we only need simple facts which can be easily proved directly.
For example we consider simplicial m-cochains on K. They are, by definition, anti-
symmetric functions of oriented m-simplices of K. We take only bounded functions and
get the complex of bounded antisymmetric cochains, called Ci(K). We denote by F*(K) the
homology of C(K) with the £*-norm. If the complex K and the maps f;, f; : L - K
are as in the homotopy lemma, then the cylinder f:L X [0, 1] - K provides a chain
homotopy equivalence between the induced maps f; and f;": G:(K) - Cx(L). This
chain homotopy equivalence {C}(L) — C:~1(K)};_ 0,1,... isbounded in every dimension z.
Therefore the corresponding homomorphisms on homology, ° and f* from Hj(L)
to H;(K), are equal.

Next we identify H:(K) with the bounded singular cohomology H*(|K|). To do
that we start with a natural homomorphism #4: C*(|K|) - C%(K), defined as follows.
For each ¢ € C'(|K|) and for every oriented i-simplex ACK we consider all affine
isomorphisms 3 of the standard i-simplex A’ onto A. Then we define ¢’ = k(c) by the
formula

LB [81e(3),

‘B =Grois

where we sum over the affine maps 3:A* -~ ACK with [§] = 1 for the orientation

preserving maps and with [8] = — 1 for the others. The desired identification is
given in the

Isometry Lemma. — For a large complete complex K the induced homomorphism on the bounded
cohomology,

r:H(K|) - Hy(K),

is an tsometric isomorphism.

Proof. — Fix an integer N > o, take the standard simplex AY, and let o} : A* — AY

denote the isomorphisms of the standard simplex A’ onto the i-faces of AY, for i = o, ..., N
(N + 1)!

CONZ DL
which project to isomorphisms o). These singular simplices A* - |K| X A¥ form in
a natural way an N-dimensional multicomplex, called K. Notice that each i-dimensional
simplex A in KN is canonically isomorphic to A and thus all AC Ky come with canonical
orientations.

Now let us construct a chain homomorphism A : G<¥(Ky) - Gi<N(K|) by
first considering for every singular simplex ¢ : A* — |K| the (oriented!) simplices A, C Ky,

(N 4+ 1)!

W=, ...,M:m, which lie in |K| x AY over o.

and p =1, We consider all those singular simplices A' — |K| x AY
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Then for ¢ € C,‘,(KN) we define ¢’ = A(c) by the formula
M
¢(c) =M1 X ¢(A).
w=1

Next we take the natural map f:|KY| - |K|. With our assumptions on K we
can replace it by a simplicial map f: I~§N — K which is homotopic to f and injective
on all simplices A in Ky

We have now two maps:

k:C(K]) - Ci(K)
and g =Aof*: GisNK) — G<N(K]),

both chain homomorphisms of £*-norm < 1. The homotopy lemma implies that the
composed maps kog and gok are chain homotopic to the identity (in dimensions
below N), and so the homomorphism £* is an isomorphic isometry.

An application: the abstract version of the theorem of Milnor-Sullivan-Smillie

In order to estimate the norm of a characteristic class p € H*(X), we may pass
to the multicomplex K = K(X). Then we only need the geometric version of the
theorem, but now for the multicomplex K rather than for the simplicial complex P as
in (1.3). The arguments of (1.3) immediately apply to all countable multicomplexes
(we need ““ countable ” to have a good notion of generic piecewise linear sections). The
uncountable case however only requires the following simple lemma:

If, for every finite subcomplex K’ of K, a class B € H,(K) can be represented by a cocycle
¢ e H,(K) which is bounded on K’ by a given constant b, then ||B||, < b.

3.3. Minimal multicomplexes and their automorphisms

A simplicial multicomplex K is called minimal (compare [40]) if each continuous
map of a simplex A into K whose restriction to the boundary is a simplicial embedding
is homotopic relative to the boundary 0A to at most one simplicial embedding A — K.

(A) Lemma. — Let a multicomplex XK be large and complete.  Then there is a subcomplex K
in K which is complete, minimal and such that the inclusion KcK isa homotopy equivalence.
Furthermore, one can take K with countably many vertices in every connected component. With this
last property the complex K is uniquely determined, up to simplicial isomorphism, by the homotopy

type of K.

Proof. — Two i-dimensional simplices A, and Ay + A, in K are called homotopic
if they have a common geometric boundary, 9A; = 0A, = A; N A,, and if the sphere
St = A, U A,CK is homotopic to zero.
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Now, take countably many vertices in each component of K and denote this set
of vertices by K°CK°CK. Then define Rinductively, starting from the zero skeleton K°,
and then taking for K a maximal system of pairwise non-homotopic simplices in K with
boundaries in Ki~1,

To prove uniqueness, let K, and IN{z be two minimal complete complexes and let
f: Kl — K, be ahomotopy equivalence which is bijective on the zero skeletons, K'{ > I~{§ .
Since K, is complete there is a simplicial map f : K, > K, whichis homotopic to f and
equal to fon K. Now, the uniqueness of K follows from the following

Sublemma. — If a simplicial map f: K, >K, isa homotopy equivalence and if it is bijective

on the zero skeletons, then f 1s bijective.

Proof. — Let us assume, by induction, thatfis bijective on the (i — 1)-skeletons
and let us first shov~v tha~t f is injective on the ¢-skeleton of Kl. IEdeeg, if two i-simplices,
say A; and A, in KjCK,, are sent onto the same simplex in KjCK,, then they have
a common boundary, 9A; = 0A, = A; N Ay, Themap f of the sphere S' = A; UA,C I~{1
into K, is contractible. Since f is a homotopy equivalence, the sphere S*C K, is also
contractible and so thi simplices A; and A, are homotopic. Then A; and A, coincide
by the minimality of K,.

To prove the surjectivity of ﬁ we take an i-dimensional simplex ACK} with
boundary $~!'=oACKi-! _and we consider Si-1 = f ~1(S*-1) CRi-'. Since the
sphere S~ is contractible in K,, the sphere S*~*C K, is also contractible, and by the
completeness of K, we have a simplex ACK! with 9A = §~' Then we consider
the sphere §' = f(Z) uAcCK,. Since fis a homotopy equivalence and as K, is complete,
there is a simplex A’C K with boundary S~ such that the sphere f(’&' uA)ck,

is homotopic to S' relative to A. Finally, by the minimality of K, we conclude that

~

flA) = A, qed.
Corollary.— Any space X is weakly homotopy equivalent to a large complete minimal multicomplex.

Indeed, take K in the multicomplex K(X) defined in the previous section.

Now, denote by I'= I'(K) the group of those simplicial automorphisms of a
multicomplex K which are homotopic to the identity. Let I';CI' be the subgroup
which keeps the i-skeleton of K pointwise fixed. Observe that each I';is a normal subgroup
in I

Take an (i + 1)-dimensional simplex A,CK'*! and denote by m(A,) the set of
all (¢ + 1)-simplices ACK for which 0A = 0A,.

(B) Lemma. — If K is a complete minimal multicomplex then the group T'; is transitive on
every set m(A,).
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Proof. — Take any (i + 1)-simplex AC=(A,) and a linear isomorphism f;: A, - A
which keeps fixed the vertices of A,. Then, while keeping fixed the i-skeleton K%, we

extend f, to a map J”v :K* U A, - K which sends K'uU A, isomorphically onto K* U A.

This map f is homotopic to the inclusion K* U AjC K. In fact, for any multicomplex K
there is a homotopy of K* U A; to K* U A which keeps fixed K minus one i-face of A,,

and moves that ¢-face over A U A, back to its original position. Now, we extend f~to
a continuous map f:K — K which is homotopic to the identity by an extension of the
above homotopy. Since K is complete, this f can be chosen simplicial. Finally, as K
is minimal, we apply the sublemma and conclude that f is an automorphism.

(G) Lemma. — If K is minimal, then the quotient groups I, [T'; are amenable for all © = 2, 3...

Proof. — It suffices to show that the groups I';_,/I; are abelian groups for 7 > 2.
Take one ¢-simplex, say A = A, with « €], in every orbit of I',_,. The I);_;-orbit
of every A, is contained in the set =(A,) and so for every y eI;_;, we get a sphere
S{ = A U y(A) CK that represents an element of the homotopy group, [S] e n;(K, p,),
for some base point p, e A =A,. Asall yeI,_, are homotopic to the identity, the
maps H,:y —[S{] are, in fact, homomorphisms TI;_, - m,(K,p,). Denote by

HO: T, ;- % = P =(K, p) the direct product of the homomorphisms H, and
act

observe, as K is minimal, that the kernel of the homomorphism H® equals I';, Thus
the group I',_,/T; is embedded into the abelian group N for i > 2. Therefore, the
groups I';/T; are solvable and so amenable. (One can even show that they are nilpotent.)

(D) Corollary. — If K 1s large then the homomorphism I*: H*(K/I';) — H*(K) induced
by the quotient map K — K/T'; is an isometric isomorphism.

Proof. — The chain complex G:(K/T',) is canonically isomorphic to the subcomplex
of T'-invariant cochains in C:(K) and hence by averaging over the group I',/T}, we get
a chain homomorphism A : G'<™(K) — Gi<™(K/T;,) such that AoI =id for
I:Cy(K/T) —Ci(K). Now, since K is large as well as complete and minimal, the
transformation of C:(K) induced by any y e I' is chain homotopic to the identity by
the homotopy lemma. Therefore, we also have I o A ~ id, and so the homomorphism A
1s a chain homotopy equivalence for all m, q.e.d.

(E) Remark. — The quotient complex K|T'y is a K(II, 1)-complex for 11 = m,(K) and
the map K — K|T'; induces an isomorphism of fundamental groups.

Proof of the mapping theorem of (3.1). — Since every space X is weakly homotopy
equivalent to a large complete and minimal multicomplex, (D) and (E) above imply
the corollary (A) of the mapping theorem, first for maps of the kind f: X — K(II, 1),
and then for all maps f: X, - X, for which f,: 7 (X,) - n;(X,) is an isomorphism.
The mapping theorem itself follows from the following considerations.
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Take a large complete and minimal multicomplex K, of the K(H, 1) type,
Il = =;(K;, 1), choose a vertex x e K{CK, and let the fundamental group =;(K,, x)
act on K, as follows. For every edge ¢ which joins » with another vertex ', and for each
vy € m(Ky, x), we compose the path ¢ with a loop which represents y and then we take
the (unique) edge in K,, called vy(¢), which is homotopic to this composition. Thus
the direct sum of the groups =, (K,, x), over all x € K], acts on the one-skeleton of K;. As
K, is a K(II, 1)-complex this action uniquely extends to all of K.

Recall, that the direct product of groups G;, over j € J, consists by definition of all
sequences {g;}, g € G;, while in the direct sum the sequences only have finitely many
non-identity entries. The important point is that direct sums of amenable groups are
amenable, while direct products may be not amenable (see [19]).

Now, with a normal amenable subgroup II'CII, we have isomorphic normal
subgroups II; e m;(K;, x) for all x eKj, and the direct sum of these subgroups,

called 11, acts on K,. The quotient complex K,/ II' has K(II/II", 1) type and the quotient
map K; - K,/ I’ induces the quotient homomorphism of the fundamental groups

I - II/II'. Since the group i is amenable, we conclude as before that this quotient
map induces isometric isomorphisms of the bounded cohomology groups,

A(K, /1) 3 A (K,) q.e.d.

Proof of the vanishing theorem of (3.1). — Take a subset Xoé X and consider all
paths continuous in ¢ of (possibly discontinuous) maps X, - X, called I,:X; - X,
t € [0, I], with the following three properties:

(1) Lo =T15: X, CX.

(2) Foralmostall points x € X (i.e. only with finitely many exceptions) I,(x) = I4()
for all ¢ € [o, 1].

(3) The map I,_, sends X, bijectively onto itself.

Denote by n(X, X,) the group of homotopy classes of the paths I,. Observe that,
for a single point %, € X, II(X, x,) = m;(X, %,); in general, there is a natural homo-
morphism of the group II(X, X,) to the group of permutations of X, with finite supports,
and the kernel of this homomorphism is the direct sum of the fundamental groups,

D 7y (X, %).

zEX,
Next, we take a complete minimal multicomplex K and a homotopy equivalence

h:K - X which maps the zero-skeleton K,CK onto X bijectively. Then the
group II(X, X) acts, by compositions of paths I, with edges of K sent by % to X, on the
one-skeleton K of K, and the actions of all y € II(X, X) extend (not uniquely) to auto-
morphisms of K. Therefore, the group I1(X, X) acts on the complex Ci(K/T) C C:(K)
of bounded T';-invariant cochains.

Then, for all subsets UCX and VCU, the group II(U, V) also acts on K! via
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the natural homomorphism II(U, V) — II(X, V) CII(X, X) and if the subset UCX
is “ amenable ’ (see (g.1)) then the image of this homomorphism is an amenable subgroup
in II(X, V) and so the resulting action of II(U, V) on the complex C*(K/I';) is amenable.

Now, let U;CX, je]J, be some amenable open subsets and let V;CU; be
arbitrary mutually disjoint subsets. Then the direct sum of the groups II(U;, V;) over
J €J also acts on the complex C;(K/I';) and with the averaging process we conclude
to the following

Proposition. — Every bounded cohomology class B e H*(X) can be represented by a
cocycle b e C,(KTy) C C:(K) which is also invariant under the action of the direct sum of the
groups 11(U;, V).

Now, we prove the vanishing theorem for the covering {U;} of X as follows. We
take a sufficiently fine triangulation L of the manifold X and we divide the vertices of L
into disjoint subsets called V;, such that the stars of the vertices » € V; are contained
n the sets U;. Then, we choose the multicomplex K and the map % such that L. becomes
the homeomorphic image of a subcomplex L’ in K, A(L’) = L. As no m+1 sets U;
intersect, every simplex in L of dimension > m has an edge, say ¢ CA, which is contained
in some set U; and whose two vertices are in V;. Now, there is a transformation by
the group II(U;, V) which permutes the corresponding two vertices of the simplex
A'CL’, R(A’) = A, while keeping fixed the other vertices of A’. Moreover, there is
such a transformation which also sends the one-skeleton of A’ onto itself. Therefore,
every (anti-symmetric!) cocycle 4 in K, which is invariant under the groups I'; and
II(U;, V;), vanishes at the simplex A’. According to the Proposition, the bounded
cocycles can be made invariant under all groups II(U;, V,), and then they vanish at
all simplices of the complex L’ ~ L. Therefore, these cocycles are cohomologous to
zero, (.e.d.

Proof of the identity || || = || || of section (2.3). — Let first X be a K(II, 1) space
and let Y - X be the universal covering. Then the complex C*(X) is canonically
isomorphic to the complex of bounded Il-invariant singular cochains in Y. Next, we
take the complex C*(Y : II) whose i-cochains are bounded functions ¢ = ¢( g, - - ., %)
and consider the natural embedding I:G*(Y: M) — G*(X)CG*(Y). As the space Y
is contractible, we can II-equivariantly assign to each (i + 1)-tuple of points, ( yg, . - -, %),
a singular simplex o : A’ — Y with vertices y,, . . ., J;, such that the subsets of { y,, . . ., 7}
go under this assignment to the corresponding faces of 6. Thus we get a chain homo-
morphism S : C*(X) - C(Y: IT). Both homomorphisms, I and S have norms < 1.
Furthermore, Sol =1Id and also IoS ~1Id. Indeed, the standard construction
usually applied to unbounded cochains (see [40] for instance) gives a chain homotopy
equivalence ToS ~1Id which is bounded in every dimension. Therefore, the homo-
morphism I induces isometric isomorphisms on bounded cohomology

I': HY(Y : IT) = H'(X).
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Next, we extend the definitions of C*(Y : TI) and H*(Y : IT) to any action of Il on an
arbitrary set Y. In particular, if Y = II, we get for C*(IT : TI) the subcomplex of the
baunded cochains in the usual complex of (homogeneous) real cochains on II. More
generally, for any set X we may consider the natural action of IT on the product II x X, and,
for coverings Y — X, we have the canonical isomorphism G*(Y : IT) = C*((IT x X) : II).
Maps between sets, X; — X,, induce chain homomorphisms,

(11 x Xy) : ) — (I x X,) : 1),

of norm < 1, and again, by the standard argument, we conclude that these maps induce
isometric isomorphisms on cohomology. As a result, we obtain an isometric isomorphism

A(X) ~ #(10),

where X is a K(II, 1)-space and H*(II) denotes the cohomology of the complex
G(I1; R) = C*(I1 : 1) of bounded real cochains ¢(y,, ..., ), ¥; € IL.

Finally, we denote by Cx(IT) C G*(IT; R) the subcomplex of antisymmetric cochains,
and then with the (anti)symmetrization over the permutations of {v,, ..., v;} we again
obtain an isometry of cohomology groups,

Az (1) = Ae(1).

Now, let X be any path-connected space with m;(X) = II and let Y - X be
the universal covering. We represent II by an orbit of a point in Y and then we take
an arbitrary Il-equivariant map r:Y — IICY. With the discussion above, the mapping
theorem for maps X — K(II, 1) now provides an isometric isomorphism

7 HA () 3 J5(X).

With this isomorphism the proof of the inequality || |[X" = || ||, is immediate.
Indeed, we take first the complex (~3*(Y: IT) of bounded Borel cochains, that is the
intersection of the complex C*(Y : II) of section (2.3) with G*(Y : II). Then we have
a natural homomorphism F: ﬁ*(Y : ) - A*(X) (compare with F of (2.3)), and with
a Borel map r we also have

& H(I) — B (Y : 1),

such that r* = Fo® As |7lo <1 and r is an isometry, the homomorphism F is
surjective and such that for any 8 e A*(X) we have ||8||, = inf||&||,, where & runs
over the pullback F~'(8) C H*(Y: ). Now, by the definition of [|B|[%™ of (2.3),
we get || |[%¥ < || ||, and since the opposite inequality is obvious, we get the

required identity || |[*" = || ||™
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3.4. Proof of the isolation theorem of section 0.4

For a metric ball B of radius R in a Riemannian manifold V, we denote by AB,
3> o, the concentric ball of radius AR.  We denote by B a ball of radius R in the universal
covering V — V which projects onto B.

(A) Lemma. — For any given positive numbers C and d there is a constant p = p(C, d)
such that the inequalities

Vol(AB)/Vol(B) < CA%,  for all » e[1, ]
imply the © amenability ” (see (3.1)) of the ball BCV.

Proof.—Let BC ¥ beaballover BCV and consider all those deck transformations
vy eIl = x,(V) for which the intersection B ny(B) is not empty. Denote these
transformations by vy, ..., ¥;, ..., Ym € I and observe that the subgroup II'CII
generated by y;, ¢ = 1, ..., m, equals the image of =,(B) in =,;(V) = II. We associate
for every A’ > 1 the set II'(A") CII’ of all those y € II which can be represented by
words in y;, ..., v, of length <2A’, namely

Y=y oyl for o] 4+ ..o 4 el SV
For every y e II’()'), the ball v(B) is contained in the ball AB for A = 2)’ + 1; therefore,
the number of elements in II’()") satisfies

# II'(\) < Vol(aB)/Vol(B).
Finally, if # «'(N) < G = G(2A" + 1)* for all X' € [I, éu — I], then, for a suffi-

ciently large w = @(C, d), the group II’, being of initial polynomial growth, contains
a nilpotent subgroup of finite index (see the end of [23]) and so II’ is amenable, g.e.d.

Let us call an open ball in V extremal if it is * amenable * and if all larger concentric
balls are not ¢ amenable .

(B) Lemma. — For any given number o> o there exists a system of open balls By, ..., B;, .. .,
in an arbitrary complete manifold NV such that the following four properties hold:

(1) Each ball B; has radius at most o and each concentric ball 4B; is « amenable .  Further-
more, if some ball B; has a radius strictly less than p, then the concentric ball 4B; is extremal.

(2) The balls iBjCV are mutually disjoint.

(3) The balls % B,CV cover the manifold V.

(4) If two balls B; and B; intersect, then their radii o, and p, satisfy
I
201 > g 2> 2P
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Proof. — Observe that around each point in V there is exactly one ball which
satisfies (1). Furthermore, if two such balls, B of radius p and B’ of radius p’ < p, intersect,

then the ball B = —i—?B’ of radius 2p is contained in the ball 4B. As the ball 4B is

‘“ amenable 7, so is the ball B"', and since the ball 4B’ is extremal it contains B"’. Therefore

' > —;—p and so the property (4) holds for our balls.

Now, let us take a maximal system of balls which satisfies the properties (1) and (2)
and prove the property (3) for this system of balls B;. Indeed, take an arbitrary point
v €V and the ball B around » which satisfies (1). As the system (B)), with j =1, ...,

is maximal, the ball 1 B intersects some ball ‘I—LBJ- and then by (4) the concentric ball 3 B,
contains v, q.e.d. 4

(C) Lemma. — Let V be a complete n-dimensional manifold with Ricci(V) > — 1 and
let B and B’ be some balls in V of radit p and o' respectively.  If the balls B and B' intersect and if
their radii o and o' are less than one, then

Vol(B)/Vol(B’) < const, p"(p") ™"
In particular, Vol(B) < const, p".
Proof. — This is a special case of Bishop’s inequality (see [5], (11.10), and [22]).

Corollary. — Balls B of radius ¢ < 1 contain no more than const, o"(p') ™" disjoint balls
of radius o' and, therefore, B can be covered by a number not greater than const, o"™" of balls of
radius e, for any given positive €< p.

Now, let B;,CV ofradii p;, j =1, ..., be balls which satisfy the properties (2),
(3) and (4) oflemma (B) and let us take the following functions ¢;: V — R with supports.

inB;, j=1,2,... The function ¢; is zero outside B;, it is equal to one on §Bj and

4
for v ij\%Bj we define it by ¢,(s) = 49‘1(1 — dist(v, ?ZB)) Observe that the

J

functions ; are Lipschitz with ||grad ¢;|] < 4p~'. Then, we assume the covering {B;}
to be locally finite and we take the functions f; = (X¢;)~'¢; which send V into the
2

unit simplex A = {x;,...): ijj =1, x>0 Vj} in the Euclidean space with
coordinates %y, ..., %, ... The map f= (f;,...,f;, ...) sends Vinto the nerve of
the covering { B;}, which is realized as a subcomplex P in A. The dimension of P at any
point » € V is equal to the multiplicity of the covering B;. Ifa point » € V is covered
by at most m balls B;, then the norm of the differential of fsatisfies ||D,f|| < const,, p™*
where p denotes the minimum of the radii of the m balls B;.

Now, let Ricci(V) > — 1 and let all balls B; have radii < 1. Then by lemma (C),

259



52 MICHAEL GROMOV

there are at most N = N(n) balls B; which intersect any given fixed ball B;, and in
particular dim(P) <N. Furthermore, ifa point » € V is contained in some ball B; then

|ID,f] < 2 consty ¢* < const) ¢y

where p; denotes the radius of B;.

(D) Lemma. — There exists a map g of V into the n-skeleton P*CP with the following
two properties:

(a) The norm of the differential Dg is bounded on every ball B; by const p;* for some
const = const,, .

(b) The pullback under g of the star of every vertex in P is contained in the union of some balls B;
which intersect a certain fixed ball B; .

Proof. — The map f:V —P satisfies (a) and (b). Let us first construct
£1:V —>PY¥"1 then f,: V - P¥% andso on, until we eventually get g = f;_,. We
obtain the map f; by choosing a point x inside each N-dimensional simplex A = ANCP,
x = x(A) eInt A, but not in the image f(V)CP, and then by projecting the inter-
sections f(V) N A radially from x to the boundary of A. In order to guarantee the
property (a), we choose the points x € Int A with dist (x,f(V)) > e =¢,> 0. This
is possible since the numbers

e =¢(A) = sup dist(x, /(V))

are bounded from below in terms of N. Indeed, as dim A = N there are at least
k> constPe~N disjoint e-balls in A with centersin _f(V) N A, forsome const'*) = const'”(N).
By the property (b) of the map f the pullbacks of these balls to V, called
ﬁl, . E, cy ]N?,kC V, are contained in the union of some balls B, , ..., B; with non-
empty intersection, and by the property (a) all sets B; contain balls of radii > const®ep;?,
where p, is the radius of B; and again const® = const®(N). Now, by lemma (C) we

have k> const®ec™" and thus &> (const®/const®)¥—" > ¢(N), q.e.d.
Corollary. — If all balls B; satisfy
Vol(B,) < 3(n)e}

for some sufficiently small 3(n) > o, then, there is a map g :V — P~ 1 CP" which satisfies
property (b) of lemma (D).

Proof. — Indeed, with the small Vol(B;)) we conclude according to (a), that no
n-simplex in P* is covered by the image g(V) and so this image can be pushed further
to the (n — 1)-skeleton P~

Now, we can prove the Isolation theorem. First, choose a sufficiently large
constant G = C(n) in lemma (A) and take d = n. Next, take p of lemma (B) equal
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to ip._l. Thus, Vol(B;) < 3(n)p; with 3(n) small if C is large. For p; = p = p(n)

this follows from the assumption Vol(B(1)) < e(n). Then, if the ball 4B, is extremal,
so that larger concentric balls are not ‘ amenable , we get, according to lemma (A),

Vol(B;) < Vol(4B) < G~ 'a " Vol(47\§j) for some A < p.
Now, by lemma (C), we have

Vol(42B;) < const,(4rp)"
and so Vol(B) < 4"C'const,.

Finally, using property (b) of lemma (D), we obtain that the pullback under g’
of every point x € K"~' is contained in some ball 3B; that is an “ amenable > subset
of V, and so the corollary (2) of the vanishing theorem applies, provided V is a closed
manifold. The open case will be treated later, in section (4.2).

Final Remarks. — Some complications we met above would disappear if we could
prove that balls of radius <e=¢(n) in V with RicciV > — 1 are *amenable >.
As the matter stands now, we only have lemma (A) and so we must be careful in choosing
the covering {B;}. However, if |K(V)| <1, then, by Margulis’ lemma, small balls
are amenable and the proof of this section can be simplified for manifolds V with

|K(V)| <1. In fact, in (G) of section (4.3), we shall prove the sharper Injectivity
Radius estimate of {0.4).

3.5. Proof of the identity |V,# V,| =V, + [|V.|| and some generalizations

As the manifolds V; and V, are assumed of dimension > g (see (0.2)), the (pinching)
map V; #V, -V, vV, yields an isomorphism of the fundamental groups. Suppose
the manifolds closed (the open case will be studied in section (4.2)). Then, by the
mapping theorem (see (3.1)), we can replace the connected sum V; # V, by the wedge
V, vV,. The homology of this wedge is

H*(VI v V2) = H*(Vl) ® H*(Vz),
and we must show that ||[V,] + [V,]|| = || V1]| + || V.|| for the fundamental classes [V,]
and [V,]. Observe that the inequality

IEVa] 4 [Vl < [[Val 4 [[ Vel|

is immediate from the definition of the norm. To prove the opposite inequa-
lity we first pass to cohomology and then we shall construct a homomorphism
Q:C (V) @G (V,) - C*(V, vV,) suchthat PoQ = Id for the obvious homomorphism

P:C'(V, v V) > C(Vy) @ Cr(Vy),

and such that ||Q ||, <1, with the convention ||¢; @ ¢,|,, = max(||¢1]|ws [|€2]|o). Given
such a homomorphism Q , we have, for every cohomology class & = (&, k) e H*(V, vV,),
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the inequality |{A]|, < max(||#;}|w, |]#]|o), and by duality we get the required relation
in homology.

We start the construction of Q with the following combinatorial considerations.
Call a simplicial complex K #ree-like if it is simply connected and if it can be decomposed
into the union of closed simplices, called A;, j €], such that any two of them have at
most one common vertex. A piecewise linear path in K made out of some edges in K
is called straight if it has at most one edge in every simplex A;. Such a path is topologically
a closed interval divided into edges, and any two vertices in the (tree-like!) complex K
can be joined by a unique straight path.

Now, take n 4+ 1 vertices in K, say x,, ..., x,, and join any two of them by the
straight path called [x,, x,], for 2, = o0, ...,n and k2% ¢. Let usintersect each [x,, x,]
with a fixed simplex A;. Observe, that if two paths [x,, x,] and [x,, x,] intersect A;
along the edges [,,7,] and [y, 7], for some vertices y,, ¥, Ji,, Ve, Of A;, then the
path [, , x,] intersects A; in [, ,5,]. Therefore the union of all [, x/] intersects A,
along the one-skeleton of some m-dimensional face of A; for m < n. Furthermore, if
m = n, then the union of all paths [x,, x,] consists exactly of this one-skeleton, spanned
by some vertices 3, ..., ¥, in 4;, plus the paths [x, 5], £=o0,...,n. Moreover,
there is at most one n-simplex A; for which m = n. If there is none, we say that the
““ simplex ” (%, ..., %,) is degenerate, and our construction assigns to each non-degenerate
“ simplex >, an actual n-dimensional simplex in K, namely

(x(b ...,x") i (.yOs . ~-a}’n)'

Now, we return to V; and V, with the fundamental groups II; and II,. We may
replace the complexes C*(V,) and G*(V,) by Ci(II,) and C:(II,), as shown in the
proof of the identity || ||*¥ = || ||™® in section (3.3).

We consider the (infinite dimensional) simplices A(II;) and A(IL,) spanned by
the groups II;, and II, as sets of vertices, and then we interpret our complexes as
the complexes of II,- and Ilyinvariant simplicial cochains in A(II,) and A(IL,). The
group II = 1II, * II, = =, (V; vV,) acts on a tree-like complex K built of infinitely
many copies of A(Il;) and A(II,), as seen by looking at the universal covering of the
wedge V; vV,, a tree-like union of copies of the universal coverings of V, and V,. The
zero-skeleton of K is identified with the zero-skeleton of the simplex A(II), and so every

n-face of A(Il) becomes an n-dimensional *simplex” A = (%, ..., %,). Now, every
pair of cochains, (¢, ¢) € G,(I;) ®C,(I1;), uniquely defines a simplicial Il-invariant
cochain ¢ on K. Then, with our correspondence A —> A" = (9, ...,%,), we define

¢ = Q(c) by putting ¢'(A) = ¢(A’) in case A is a non-degenerate ¢ simplex ’, and
¢'(A) = o otherwise, q.e.d.
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A generalization: amalgamated products

Let aspace V be divided into a union of two closed oriented manifolds, V = V, U'V,,
where it is assumed for simplicity that V,, V, and the intersection V, =V, NV, are
connected, and that V, is a subpolyhedron in V; as well as in V,. Weset II, = m,(V,)
and we assume the inclusion homomorphisms II; — II; = =, (V,) and IIj — II, = =,(V,)
injective. Then the group II = =;(V) is called the amalgamated product of II, and II,.
The fundamental homology classes of V, and V, define a class in V called

LV + [Ve] e H(V).
Theorem. — If the group Iy is amenable then ||[Vi] + [Volll = || Val| + || Vell-

Corollary. — Let dim V, = dim V, and take away from V, and V, open regular neigh-
bourhoods of V, assumed of codimension > 3.  Glue the resulting manifolds by some diffeomorphism
of the boundaries (assuming such a diffeomorphism exisis). Then the resulting manifold V' satisfies

VIl = 1IVall + [ Vell.

Indeed, as in the case of the connected sum when V| is only one point, we can apply the
mapping theorem since

(V') = IT = my(V).

Proof of the theorem. — Look at the universal covering \71 —>V,; and observe that
Vo CV, lifts to infinitely many disjoint copies of the universal covering of V,. These
copies correspond to the cosets in II,/II,. In terms of the simplex A(II;) we have some
faces A;(II,) CA(II;), for some set of indices, :e I = II,/II,. The same applies
to A(Il,), where we have simplices A;(ITy) for j € J = II,/Il,. We then form in a natural
way a ‘“ tree-like ” union of infinitely many copies of A(Il;) and A(Il,), such that any
two copies may intersect along at most one copy of the simplex A(Il,). The group II
acts on the resulting “ tree-like ” complex K’, whose zero-skeleton is identified with the
zero-skeleton of the simplex A(II).

Now, as the group II, is amenable, we can average the bounded cocycles over the
group II(V,, V,) (see the proof of the vanishing theorem in section (3.3)) and interpret
the averaged cochains in C*(II,) as II,-invariant cochains on the quotient IT,/II,.

In other words, we may work with the cochain complex of bounded II;-invariant
cochains on the simplex A(II;/II,), which may also be obtained by pinching to points
the copies A;(Il,) CA(II,). Finally, by pinching to points all copies of A(Il) in K’
we get a tree-like complex K, which is built of some copies of A(II,/II;) and A(IL,/II,)
by glueing these simplices at some vertices. Furthermore, the zero-skeleton of this K
is identical to the zero-skeleton of A(II/II,), and the argument we used above for free
products applies.
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4. SIMPLICIAL VOLUMES OF COMPLETE MANIFOLDS

If V is an open manifold, then, as was shown in section 1, there are several non-
equivalent notions of simplicial volume. For complete Riemannian manifolds one can
take into account the geometry of V at infinity as well as the topology of V, and then more
simplicial volumes emerge.

4.1. Relative bounded cohomology

For a pair of topological spaces X and X’C X, one has a natural /*-norm in the
relative chain complex C,(X, X') = C,(X)/C,(X’). One also has the dual ¢*-norm
on relative cochains in C*(X, X') induced from the /*-norm in C*(X) by the inclusion
C(X, X')CC*(X). The bounded cohomology groups H*(X, X’) with the pseudo-

norm || ||, dual to the #%-norm || || on the relative homology H, (X, X'), then follow
as in section (3.0). Furthermore, for every 6 > o, one defines a norm || ||(6) on C,(X)
by putting

[lel[(®) = llel| 4 81l 2e]|.

Then, using the quotient homomorphism g¢: G (X) — G, (X, X'), one defines the
norm ||¢’]|(8) of ¢ € C,(X, X’) by taking all ¢ e ¢ '(¢') CC,(X) and setting

1€]1(8) = infe[|(9).

The dual norms on relative cochains are denoted by || ||, (0). Observe that all
norms || |[(6) are equivalent, but not equal, to the usual ¢-norm || || = || {[(0),
and the dual norms || ||, (0) are all equivalent to || ||,. Now with these norms on
relative chains and cochains we have the corresponding norms || [|(6) on H, (X, X')
and the dual norms || ||,, (6) on the bounded cohomology H*(X, X’). Finally we define
these norms for all 9 in the closed interval [0, ] by passing to the limits. Observe that
the limit “ norm ” || ||(c0) may be nonequivalent to || ||(8) for 6§ < 0. For example,
[|£]|(0) = o for those % eH,(X, X') for which the boundary ok € H,(X’) has non-
zero ¢{*-norm, ||dk|| > o.

Remark. — Our norm || ||(o) is equal to Thurston’s norm || ||, defined in [47].
Warning: Thurston’s approximations || ||, in [47] are different from our || [|(677).
In [47], Thurston proves the equality || || = || ||(c0) for the fundamental

classes of compact g-manifolds whose boundaries are tori. This result generalizes to the
following
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Equivalence theorem. — If the fundamental groups of all path-connected components of the
space X' are amenable, then the norms || ||, (0) on the groups H{(X, X'), for i> o, are equal
Jorall 6 €Jo, ], and so are the dual norms || ||(0) on the homology groups H;(X, X') for i> 2.

Proof. — With the averaging technique of section g one first gets the

Relative mapping theorem. — Let f be a map of pairs of spaces, f: (X, X') - (Y,Y')
which 1s bijective on the sets of path-connected components, wy(X) = (YY) and mo(X') = mo(Y').
Furthermore, let g be surjective on the fundamental groups of all these components and let the kernels
of these surjective homomorphisms be amenable groups for all components of X and of X'. Then
the induced homomorphism

fHNY, YY) - (X, X))

is an isometric isomorphism for the norms || ||, (0) for all © €[o, o). In particular, if the
Sfundamental groups of all components of X and X' are amenable, then, for i > 2, H{(X, X') = o
and the norms || ||(0) on H;(X, X') vanish for all 0 € [o, «].

Remark. — The group HY(X, X') vanishes if and only if the inclusion map
mo(X') — m(X) 1is injective.

Now, by averaging over the amenable group II(X, X’), as in section (3.3), one makes
all bounded cochains vanish at all those singular simplices A — X which have an edge
contained in X’'. In particular, the values of such cocycles on relative cycles ¢ of dimen-
sion > 2 do not depend any more on their boundaries, d¢c CX’, and thus the equivalence
theorem is established.

4.2. Diffusion of chains in open manifolds

For a sequence of subsets of an open manifold, U;CV, we write U; — oo if only
finitely many of these sets U; intersect any given compact subset of V. A subset UCV
is called large if the complement V\U is relatively compact. Then we have a canonical
homomorphism of the homology defined with locally finite singular chains (see (0.2)),
H,(V), into the relative homology H,(V, U). For a sequence of large sets U;CV we
denote by & e H,(V, U;) the values of these homomorphisms on elements 4 e H,(V).
Then, for U; - and 6 € [o, o], the limit jlirg | #;]1(6) depends only on % e H,(V);
we denote it by ||£]|(8). Furthermore, we also have the *-norm called || || on H, which
satisfies

[|£]] > ||£]|(0) for all 6 € [o, w].
Notice that

I l|(01)_>_ [| 1[(8y) for 6, > 8.
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Observe that for interiors of compact manifolds, V = Int V, the canonical isomorphism
H,(V) R H,(V, V) is isometric in all norms || ||(6) and in particular, the simplicial
volume ||V, 9V || of section (1.1) equals || [V]]|(o) for the fundamental homology class [V]
of V.
The proofs of the following three theorems are given at the end of this section.
First, let us call the manifold V  amenable > at infinity if every large set UCV
contains another large set, U’ CU, such that U’is an ‘ amenable ** subset of U (see (3.1)).

(1) Equivalence theorem. — If V is < amenable > at infinity then the norms on H,(V), for
i> 2, satisfy || |1(6) = || || Jor all 8 e [o, oo].

Next we consider closed subsets V' in V and, for % e H,(V), we denote by
k' e H,(V\V’') the value at % of the canonical homomorphism H,(V) — H,(V\V’).
Then we say that a sequence of subsets V;CV is “ amenable > at infinity if there is a
sequence of large open sets U;CV which goes to infinity, U; — oo, such that V;CU;
and such that for all sufficiently large j each V] is an ‘ amenable ” subset of Uj.

(2) Cutting-of theorem. — Let V' CV be a union of disjoint compact submanifolds (with
boundaries), V' = UV, j=1,... Iftheset V' is “ amenable” in 'V and if the sequence V
J

is * amenable > at infinity, then for all h € H;(V), i> 2, one has the inequalities
WA = ||&]]  and  |[R]1(8) = [|A]](8),

Jor all 6 e[o, o]. Furthermore, if also all V; are closed connected orientable manifolds of
codimension one in V and if the inclusion homomorphisms w,(V;) — m,(V) are injective for all
J=1,..., then

&1 = 2] and |[A]|(8) = ||A]](6),

JSor all 0 €[o, ©]. For example, for dim 'V > 2, the simplicial volume does not change if V'
is deleted from V.

Corollary (Thurston [47], Soma [43]). — Simplicial volumes of 3-manifolds do not change
if the manifolds are cut along spheres and incompressible tori.

Finally, we consider a cover of V by relatively compact open subsets, U;CV,
such that U; — oo (i.e. the cover is locally finite).

(3) Vanishing-Finiteness theorem. — If the sequence U; is  amenable > at infinity and if
there is a large set every point of which is contained in at most m subsets Uy, for some m =1, ...,
then the norm || || is finite on the group H;(V) for i> m. Furthermore, if also the subsets U;
in'V are  amenable ” forall j = 1, ..., andif every point of V is contained in at most m subsets U;,

then ||k|| = o for all h e H;(V) and for 1> m.

Corollaries. — (A) If m = dim V, then under the first set of assumptions one has || V|| < oo,
and in the second case ||V|| = o.
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(B) Proof of the Isolation and Geometric finiteness theorems of section (0.4). — With the
covering technique of section (3.4), one satisfies the requirements of (A) above.

(C) Let P be a piecewise smooth subpolyhedron in V and let us consider small round
spheres S77'CV, n=dimV, around all points » e P. We say that P is locally
¢ coamenable » if the fundamental groups of the differences,

SiN\P = S;~\(PnSi~ ) CSnty
are amenable for all v € P.

Examples. — If codim P > g then P is ““ coamenable ”.

A one-dimensional polyhedron P in R3 is locally ¢ coamenable ” if and only if
P is a manifold.

If P is the image of a properly immersed manifold V, -V with normal crossings,
then P is locally ¢ coamenable ”.

Let P be a locally * coamenable ” polyhedron in V of dimension dimP < m — 2 for
m<n=dim V. Then the homology of a small regular neighbourhood U of P has zero £'*-norm
in the dimensions > m, that is ||k|| = o for all h e H;>,(P). Furthermore, if the manifold V
is compact, then the £'-norms are finite on the homology groups ﬁ,-z ~(VA\DP).

Indeed, for small round balls B,CV with center v € P the complements B)\P
have amenable fundamental groups. Thus we have an ‘ amenable * covering of U\P
by small subsets with multiplicity m — 1, and then, there are finer coverings of U and
of V\P which satisfy the assumptions of the vanishing and of the finiteness theorems
respectively.

Examples. — (a) Let V be the Cartesian product of three open manifolds. Then
V can be realized by a regular neighbourhood of some PCV with codimP < g, and
so ||V]|| =o. In particular the proportionality theorem (see (0.3)) fails to hold for
products of open hyperbolic manifolds of finite volume. (We shall rescue this theorem
in section (4.5) by introducing yet another simplicial volume.)

(b) Algebro-geometric finiteness theorem. — Let V be a non-singular complex quasi-projective
algebraic variety.  Then the simplicial volume of V is finite. In particular, the interior of a compact
manifold, V = Int'V, admits no quasi-projective structure if ||oV|| # o.

Proof. — By Hironaka’s theorem [30], V can be realized as the complement of a
subvariety with normal crossings in a non-singular variety.

Remarks. — For singular varieties V one also has the fundamental class,
[V] e H,(V), and non-singular resolutions ¥V -V are maps of degree one. Therefore
VI < (V] < eo.
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Birational maps between non-singular projective varieties have degree one and
they induce isomorphisms of the fundamental groups. It follows that the simplicial
volume of such varieties is a birational invariant.

Proof of the theorems (1), (2) and (3). — The norms || ||() on the group H,(V) are
limits of the corresponding norms on relative homology groups, and with the dual norms
on the bounded cohomology one can use the averaging techniques of section 3. However,
for the most interesting ¢*-norm || ||, there is no apparent bounded cohomology theory
and so we must apply the averaging operators to /-chains rather than to bounded cochains.
Unfortunately, there are no such operators for infinite amenable groups. Indeed, the
only invariant fi-function on an infinite group is zero.

This problem can be solved by adding to the #!-functions on an infinite group I'
all linear functionals on the space of bounded functions I' - R. These functionals are,
in fact, measures on the Cech-Stone compactification of I'. In particular, positive
I-invariant measures of total mass one are exactly our old averaging operators on I'.

There is an elementary alternative to the Cech-Stone compactification. Namely
one can replace averaging operators by locally finite diffusion operators as defined below.

First, we consider a probability measure p on a group I', that is, a non-negative
real-valued function w on I' such that ||p|ln =2 |u(y)] =1. For ¢ eI' we define
T

the “ derivative ” p’ = D,u by setting p'(y) = w(ye) — u(y), and for subsets ® in I’
we put || Dop|| = sup |[Dyp|-
PED

Next we let T act on a set X, we then have the (diffusion) operators, fio p *f,
on /I-functions f(x):

(k*f)x) = Erlu(v)f(y‘lx)-

Lemma., — Let T be transitive on X and let a subset ® CT' be transitive on the support of
a function f(x), that is, for some point x4y € X, the ®-orbit Dx, = ycpxo contains the support

of f. Then
I+ £lle <1 Z S + 1 Dol 1.1l

Proof. — Let ¢:I' - X be the quotient map, ¢(y) = yx,, and let ¢, denote the
push-forward operator on functions g = g(y):

(9.8)(x) = z)g(Y), for x e X.

2
Yer
Observe that ¢, commutes with the diffusions p. * ,

g.(p * g) = p* (4.8),
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where (. * g)(y) = )‘Erp.(l)g(y“ A). Now, for the function f = f(x), there is a function

g =g(y) with support in ®, suchthat q,g =/, andso ||u*fl|ln = || g * glln < |[u % g]|s-
Next,

Hu* glln = Ygr |A§ru(k)g(v"k)l
= Er Ilgru(vl)g(l)l < Er { Eq} (r(y)) — w()e)| + l%}ru(v)g(%)l

< Z e {IDaplle + 1 2 e < [[Dopellllglla +1 = g,
E® AeT reT
q.e.d.

(A) Corollary. — Let the group T' be amenable. Then for an arbitrary finite set SCX
and for any given > o there exists a probability measure p. on T' with finite support such that all
Sunctions f(x) with support in S satisfy

o xflla <| 2 flx)] + e
z€ S

Proof. — As T is amenable, one can, for every finite set ® CI' and for any given
e > o, find a finite measure p. on I' for which ||Dgu|| < e (see [19]) and so the lemma
applies.

(B) Example. — Let K be a simplicial multicomplex and let I be a group of simplicial
automorphisms of K. Then T also acts on finite simplicial chains ¢ = X70; in K,

Yo = Z."—;-Yo'sa

and we write  p*c= X p(y)ye.
YeT

Suppose that for each simplex o; in some chain ¢ = Xr;6; there is a transformation
i

v; €' which sends o; onto itself with the reversal orientation, y;o6; =oc;. Then, if
the group T is amenable one can ¢ diffuse ”’ ¢ by some measure p on I', that is, one can
make ||u #¢|| < e for some p = p(c, ). Indeed, one can write ¢ as a cochain ¢’ on K
c N - ) I
which is supported by the set of the simplices {6;, 5;} and such that ¢'(¢;) = — ¢'(;) = 2 he
Then the sums of values of ¢’ over the I'-orbits of the oriented(!) simplices o; are zero.
According to (A), there is a finite measure w on I' such that ||¢' = p*¢'||n <, and

since u * ¢ = 27"(c)o, where o runs over all oriented simplices cCK, we also have

|ln * ¢]ln < e. In particular, if ¢ is an n-dimensional cycle whose homology class [¢]
is invariant under T', then ||[¢]|| = 0. Thus we get an alternative proof of the vanishing
theorem of section (3.1) (compare with (3.3)).

Let us generalize (B) to locally finite chains. We start with an arbitrary action
of I' on X with countably many orbits, called X;CX, j=1,... We say that the
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action of I on X is “ locally finite ” if there exists subgroups I;CT, j =1, ..., with the
following two properties:

(1) The group I is transitive on the set X; for j =1, .

(2) Theactions of the groups I'; are ¢ asymptotically disjoint ”: for every j, =1, ...,
there is an index % = k(j,) such that the supports of T, and I; do not intersect for j > &,
thatis, every point x € X is either kept fixed by all y € I'; orx is kept fixed by all y e T}.

Now, we define locally finite diffusion operators on X that are given by sequences
of finite probability measures w; on I'; for all j =1, ... Namely, for a function f(x)
we inductively define f; =y, *f, ..., f; = u;*f;_y. According to (2) above, the
value f(x) for every fixed point x does not depend on j for large j and so we put

prf=lm f;
j>©
for pw=(w) with j=1,... Observe that this diffusion acts separately on each

orbit X;. Namely
X (uxf)x)= X flx), forallj=1,...,
zEXj

xer
and e * £ Xjlle < 1F1 Xl
det
where 1A Xlle = Z [ f®)].
zer

Suppose that fis a “ locally finite ” function, that is, its supports on all orbits X; are
finite sets. Then, clearly, the diffused function p * f is also ¢ locally finite . Further-

more, if 2 f(x) =o for j>j, and if the groups I; are amenable for j> j,, then
:CEX]'
for an arbitrary positive sequence g , € 1, - - -, there is a locally finite diffusion p. such that

fu*f| Xlla<g forj=>j,.

Indeed, this follows from (A) above.

Now, we are ready to extend the techniques of section g to open manifolds V. The
modifications needed for the proofs of the theorems (1), (2) and (3) are quite similar and
so we discuss below only the last case.

Proof of the Vanishing-finiteness theorem. — To each set U,CV, we assign a large
set W;CV which contains U; in such a way that, for j> j,, U; is an amenable subset
of W;, and that W, —»oc. In section (3.2), we constructed a canonical multi-
complex K (V) consisting of all singular simplices ¢: A — V which are injective on the
sets of vertices of A. This set of vertices is sent by o into the union of some sets Uj, call
them U, ..., U, , and we say that ¢ is an admissible simplex if the image o(A)CV

Im?
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is contained in the union W; U... UW, . Then, we consider a subcomplex K CK(V)
with the following four properties: '

(1) All simplices in K are admissible.

(2) K is complete: for every admissible simplex o6,:A —V with boundary in K
there is 2 homotopy by admissible simplices with fixed boundary, ¢,: A -V for ¢ € [o, 1],
such that o, is contained in K.

(3) The vertices of K lie in the union of some fixed disjoint sets V;CU;, j =1, ...

(4) K is minimal: it contains no proper subcomplexe which satisfies (1) and (2)
and has the same vertices as K.

As every such K consists of some singular simplices ¢: A — V, it is equipped with
a canonical map S: K — V. Furthermore, the direct product of the groups II(V;, W;)
(see (3.3)) acts on the 1-skeleton of K and every such action extends (not uniquely!)
to an automorphism y:K — K, such that the maps S: K -V and Soy:K >V
can be joined by an admissible homotopy, that is a homotopy of maps which are admissible
on all simplices in K. We denote by I'(K) the group generated by all these auto-
morphisms vy.

Now, let L be a triangulation of V such that each star of L is contained in one of
thesets U;, and let K be a multicomplex which contains L and satisfies the properties (1)-(4).
Denote by K'CK the I'(K)-orbit of L,

K' = U y(@).
YET
The action of I" = I'(K) islocally finite on the set of all oriented simplicesin K’. Indeed,
with every set U; one first considers the union of all U; which intersect U, call this
union Uj, and then, one takes as I';CT, for j =1, ..., the group of ill transformations
which fix the simplices ACK’ whose images in V do not intersect U;.

Now, under the assumptions of the vanishing theorem, every m-simplex in L has
an edge in one of the sets U; and so some automorphism reverses the orientation of o,
that is yo = 5. Therefore, for every m-chain

¢ = 2r;0; € G,(L) CC,(K")
the corresponding cochain ¢, given by ¢'(q;) =§r,. and ¢'(g;) = —ér,-, has zero sums

over the orbits of I Next, for the proof of the vanishing theorem, one may assume all U;
to be ““ amenable ” subsets of W; and then the groups I'; are amenable for all j =1, ...
Finally, locally finite diffusions make the ¢-norm of ¢, or rather of w * ¢, assmall as one
wishes, and now one must only show that the diffused ¢ycles w* ¢ with ||p*xc||p<c¢
are, in fact, homologous to ¢, in the sense that ¢ — w * ¢ = 97 for some locally finite
(m + 1)-chain 7. Recall that the diffusion p#¢ for p = {y} is the limit of chains
¢; = ; * ¢;_; where the operator p; * is obtained by combining some cycles y¢;_; with
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vyel}. Ths transformations in T; are homotopies which have supports in some sets Wj
such that W; »o for j — co. Therefcge, one has ¢_; — ¢ = 97; for some locally
finite chains ¢; with supports in the sets W;, and then one takes
o
T=XT.
j=1
Thus the vanishing theorem is proved.
To prove the finiteness part of the theorem, one also applies diffusion operators
but now only with the groups T; for j > j,. This makes the chains ¢ as small as one
wishes outside a fixed compact subset of V.

4.3. Diffusion of chains in Riemannian manifolds

We prove here the geometric inequalities announced in section (0.5) by combining
the diffusion of chains with the smoothing operators of section 2.

For a singular simplex in a Riemannian manifold, ¢: A -V, and an open
set UCV, we denote by mass(c n U) the mass of the ¢ intersection” map
6|67 (U):67'(U) > UCV. For a singular chain ¢ =2r70;, we put

1

mass(¢c N U) = 2 || mass(s; N U).

We denote by B;(R) the R-neighbourhood of U for any R > o, and we abbreviate
mass(¢c N U + R) “ mass(¢c N By(R)).

Next, we restrict chains ¢ =X r,6; to subsets UCV by taking the sum 27,0; only over
i

those indices ¢ for which the images o,(A) CV intersect the set U, and we denote these
restricted chains by ¢ | U.
Finally, for the derivative of the growth function £,(R) of section (2.5), we put
['(R) | U] = sup /,(R).
v EBy(R)
(A) Theorem. — Let V be a complete Riemannian manifold of non-positive sectional curvature
and let ¢ = Xir;0; be a locally finite m-cycle in V. Then, for arbitrary positive numbers R > o

and €> o0, there exists another locally finite m-cycle ¢ = ¢’(R, €) = Xrj o] in'V with the following
Sour properties: !

(1) ¢ s homologous to c.
(2) ¢ is a straight cycle: the lifts G of simplices o to the universal covering V of V are straight
geodesic simplices (see (1.2)) and each S} is contained in a ball of radius R +- e.
(8) For all subsets U of V, the cycle ¢’ satisfies
[l | Ulla < (1 + ) m! [¢'(R) | U]" mass(¢c n U + R + ¢).
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(4) Furthermore, if ¢ represents the fundamental class of V, then the last inequality can be
sharpened as follows

e 1 Ulls < Culx + <) [ ((R))" do,

SJor B=By(R +¢) and for C, = I"(n/z)/\/EI‘(n _: I) <1, n=dimV.

Proof. — Let first &:Y —.#" be a Il-invariant smoothing operator (see (2.4))
on the universal covering Y = ¥V -V for IT = n,(V). Suppose furthermore, that the
smoothing % islocally finite: there is a discrete subset in Y which supports the measure % ( »)
for all y e Y. Let also each measure () be supported in the ball B,(R)CY. With
such an &, we have the following diffusion operator of straight II-invariant chains7in Y
that is the dual to the smoothing operator on cochains (see (2.4)). Recall (see (1.2))
that every straight simplex Ain Y is uniquely determined by the ordered set of its vertices,

Jos - - -3 Im € Y, and so finite chains of ordered simplices are interpreted as finite measures
in the Cartesian product

YXxYx...xY.
m -+ 1 )

Now, we assign to the simplices A = Z( Yos - - -»Vm) the normalized Cartesian products
of the measures &( ¥g), - - +s L(In)s

#xd = I | ZO* F00).

This diffusion extends by linearity to the chains of straight ordered simplices,

?=2er,. —>9’*?=Z_rj.?*zj.
J J

Finally, for oriented simplices Z, we take the (m + 1)!/2 ordered simplices which have

the same vertices as A with orders compatible with the orientation of A, call them A,

(m + 1)!

with v=1,...,——, and we put
2

Pih=(2/m+1))-SFLxA,.

From now on, we only deal with locally finite chains ¢ of oriented simplices and the
diffusion is denoted by ¢ — & 7.

A smallstraight m-dimensional simplex AinYis called Sfatif massA> const(diamZ) "
where for ¢ const ” one may use an arbitrarily chosen small positive number which only

must be kept fixed as the diameter, diam A, goes to zero.
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Now, the proposition of section (2.4) implies the following dual

Proposition. — For any given 8> o all sufficiently small fat m-dimensional simplices A
satisfy
|| & * Z”[: < (1 + 3)[F]™ m! mass A.

Furthermore, with the integral inequality of (2.4), one has for m =n = dim V,
1 % Allp < (1 + 8)([£]")" n! mass A.

Remarks. — (a) For non-fat small simplices of diameter < e, we can only claim
the inequality

|2 % Alla < (1 + H[L]mem

(b) The inequalities of the Proposition and of the remark (@) are purely local: if

the simplices A are supported in a subset Y'CY, then one may replace the above
“norms ” [&] and [&]* by the supremums sup [ ()] and sup [Z(y)]"
yEY' yeY'

Now, the theorem is reduced to a locally finite approximation of the smoothings %
in the theorem of (2.5). We construct such an approximation with a discrete, sufficiently
dense subset Zin V, for example with aset Z = Z_, which intersects the balls B,(¢(2)) CV
for all » e V. We take the pullback of ZCV under the covering map Y — V, called
ZCY and we assign to every point Z e Z the measure of the set of those points y € Y
for which dist( y, %) < dist(y, Z") for every %'+ % in Z. We call this measure p(%)
and, finally, we send the points y € Y to the measures .S;i;’q,( ) which are supported
in ZCY for all y €Y and whose weight at Z e Z is u(7)% (5, Z). When ¢ —o,
this smoothing y — 5;{1,:.9( ) satisfies in the limit the same relation as our old %
and so the corresponding diffusion of chains of small fat simplices satisfies the require-
ments (2)-(4).

Next, we modify the original cycle ¢ =2Xro; as follows. First, we make all

simplices ¢;: A -V smooth by a small perturbation of ¢c. Then, we subdivide the
smoothed o; into very small simplices o such that after straightening up these o almost
all of them become fat: “ non-fatness ” is allowed only for those ¢, which are adjacent
to the boundary dc; of 6;. The mass of the straightened chain X7 o; is close to mass ¢
and the lifts of non-fat simplices to Y — V, called G, satisfy y

Zk] (diam o;)" < g; mass o,
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