2:GDZ

Gottinger Digitalisierungszentrum

The Relationship between Homology and
Topological Manifolds via Homology Transversaltiy

Galewski, D.E.; Stern, R.J.
in: Inventiones mathematicae | Inventiones Mathematicae | Article
277 - 292

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de



Inventiones math. 39, 277 —-292 (1977) Inventlone{
mathematicae

©) by Springer-Verlag 1977

The Relationship between Homology
and Topological Manifolds via Homology Transversality

David E. Galewski* ** and Ronald J. Stern ***

Department of Mathematics, University of Georgia, Athens, Georgia, 30602, USA
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

1. Introduction

In this paper we show that every polyhedral homology n-manifold, n>6 (n=5 if
¢M=¢ or if M is a topological manifold), is canonically simple homotopy
equivalent to a topological n-manifold. This is accomplished by first observing
in Section 3 that any two homology manifolds PL embedded in a PL manifold
can be ambient isotoped to be in transverse position. Then, using the work of
N. Levitt and J. Morgan [6], as refined by G. Brumfiel and J. Morgan [1], we
show in Section 4 that the Spivak normal fiber space of any homology manifold
has a canonical topological reduction. Finally, in Section 5 we show that the
resulting topological surgery problem has zero surgery obstruction, thus showing
that any homology n-manifold M with n=>6 (n>5 if M =) is simple homotopy
equivalent to a topological manifold. We further show that if M is already a
topological manifold, then the homotopy equivalence is homotopic to a homeo-
morphism.

In Section 6 we define natural maps G,: BH(q) — BG(q) for ¢=3, and in
Section 7 we define maps 0,: BH(q) — BTOP(q) for =3, such that

BPL(q)——> BTOP(q)
| £l

|

K ,,

BH(q)—5,— BG(9)

commutes up to homotopy. Here, BG(q), B'fall’(q), and B}i(q) classify spherical,
topological, and PL block S?~!-bundles respectively, and BH(q) classifies homol-
ogy cobordism S$?~!-bundles. In Section 8 we show that the (homotopic) fiber
of 0,: BH(q)—>B7’:5ﬁ(q) is a K(ker(x: 04— Z,), 4), where 0% is the group of
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oriented PL homology 3-spheres modulo those which bound PL acyclic 4-mani-
folds under the operation of connected sum, and «: 0% — Z, is the Kervaire-
Milnor-Rochlin map onto Z,. Finally, in Section 9, we give some applications
of the above results.

We remark that by using different methods, T. Matumoto [10] has inde-
pendently demonstrated the existence of maps 6 : BH(q)—»BTW’(q) with the
same fiber and has demonstrated the existence of topological realizations of
homology manifolds.

We thank John Hollingsworth for several helpful conversations during the
preparation of this paper.

We begin with Section 2 by giving the required background material on
homology manifolds and homology cobordism bundles.

2. Background

In this section we recall some selected facts about homology manifolds and
homology cobordism bundles. For further definitions and results we refer the
reader to [7] and [9].

A polyhedron M is called a homology n-manifold if there exists a triangulation
K of M such that for all ye|K|, H*(lk(x, K)) is isomorphic to H*(S"~!) or to
H* (point). Here, lk(y, K) is the boundary of the simplicial neighborhood of y
in K. The boundary of M, denoted dM, is the set of all ye|K| such that H*([k(y, K))
= H* (point) and is a homology (n— 1)-manifold without boundary. Throughout
this paper we assume that dM is collared in M.

In [9], N. Martin and C. Maunder introduce the notion of homology co-
bordism S?~!-bundles over homology cell complexes. They also construct a
classifying space BH(q) for such bundles and construct as the fiber of the as-
sociated universal principal bundle the Kan 4-set H(q) of which a typical k-
simplex is a homology cobordism $?~!-bundle over 4* x I, which restricts over
A¥ x {0, 1} to the product bundle 4* x {0, 1} x $9~*. Here, 4* denotes the standard
k-simplex in R*.

Finally, we recall that the total space E(¢) of a homology cobordism §9!
[respectively D7] bundle £&/M over a homology m-manifold M, is a homology
(m+q—1) [respectively (m+ g)]-manifold.

3. Transversality for Homology Manifolds

Our goal in this section is to use the theory of transversality for polyhedra in PL
manifolds, as developed by C. McCrory [13], to show that given two homology
manifolds M and N embedded as proper subpolyhedra of a PL manifold Q,
then there exists an arbitrarily small PL ambient isotopy of Q putting M in
transverse position to N, so that their transversal intersection is a homology
manifold. We then prove a transverse regularity theorem for maps.

We say that a subpolyhedron P of a PL manifold Q is proper if (0Q, Pn3Q)
is collared in (Q, P). A proper homology submanifold M of Q is a proper sub-
polyhedron M of Q which is a homology manifold and with M ndQ =0M.
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Let M be a proper homology submanifold of a PL manifold Q and let P be
a proper subpolyhedron of Q. Then P is said to be H-transverse to M, denoted
P L M, if there is a normal homology cobordism bundle v/M of M in Q with
blocks that are PL balls, such that P intersects E(v) in blocks. We now reformulate
this definition in terms of cone complexes.

Let X be a polyhedron. A cone complex C on X is a locally finite covering of
X by compact subpolyhedra, together with a subpolyhedra do of each element
o of C, such that

(1) for each a in C, da is a union of elements of C, denoted da 1/6,

(i) if « and B are distinct elements of C, (6 —dx) N (B—3B)=¢,

(iii) for each a in C, there is a PL homeomorphism a=c(da) rel da.

A structured cone complex is a cone complex C such that for each cone a of
C there is a prescribed homeomorphism f,: a=c(da).

A PL (homology) cell complex is a complex in which each cone « is a PL
(homology) ball, and ¢« is its PL (homology) sphere boundary.

A structured cone complex C on a polyhedron X has a canonical derived
subdivision C’, which is a triangulation of X with vertices the cone points a of
the cones « in C (cf. Proposition 2.1 of [13]). Also C has a canonical dual struc-
tured cone complex C* on X with (C*)*=C, (C*)=(’, and with |star (a, C’)|
canonically PL homeomorphic to a x o* (cf. Theorem 2.2 of [13]).

(3.1) Lemma. Let C be a cone complex on a PL (homology) manifold, such that
oM ﬁ Then C is a PL (homology) cell complex.

Proof. Let D be the restriction of C to dM. By an easy induction argument it
suffices to show that if « is a cone of C (resp. D) such that « is not a proper subset
of another cone of C (resp. D), then da is a homology manifold which has the
homology of a sphere. But the subdivision C’ (resp. D’) is a triangulation of M
(resp. dM), and lk(x, C’) (resp. lk(o, D)) is just do. As M (resp. dM) is a PL or
homology manifold, da has required properties. [

(3.2) Remark. Observe that if C is a PL (homology) cell complex on a PL
(homology) manifold, then the elements of C are always PL (homology) balls.

If P and Q are proper subpolyhedra of a PL manifold M, then P is transverse
to Q, denoted PrhQ,if there is a structured cone complex C on M such that
Q1/C and P 1/C*. Observe that if P is a proper subpolyhedron of a PL manifold
M and P 1/ C*, then there exists a subdivision f of C such that §is a cell complex
and P 1/p* (Corollary 4.3 of [13]). Thus PchQ if only if there exists a structured

PL cell complex C on M with Q ﬁ and P/ C*
We have the following transversality theorem of C. McCrory [13].

(3.3) Theorem. Let P and Q be proper subpolyhedra of a PL manifold M. Then
there exists an arbitrarily small PL ambient isotopy h, of M such that h,(P)hQ.
If (PAOM)YD(QNOM) in M, then h, can be chosen so that h,|0M is the identity
for all t. Furthermore, if Y is a subpolyhedron of P which is collared in P and Y Q,
then h, can be chosen so that h,|Y is the identity for all t.

(3.4) Lemma. Let N be a proper subhomology manifold of a PL manifold M and
Pis a proper subpolyhedron of M. Then P L M if and only if M d P.
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Proof. Suppose PL M. Let v/M be a normal homology cobordism bundle of M
in Q given by the fact that PL M. Let K be a triangulation of Q — E(v) such that
0(Q—E(v)) and all the sets fnJE(v), § a block of v,and Pn(Q — E(v) are sub-
complexes of K. Let C be the cone complex on Q consisting of all the blocks 8
of v plus the simplices of K. Choose a cone structure for each cell § of C which
is a block of v so that the cone o over which f is defined is a subcone. Then N }/C*
and clearly P1/C. B

Now suppose NhP. Then there is a PL cell complex C on M with N]/C
and P}/ C*. Let B be a PL cell complex on M with B a full subdivision of C and
B* a full subdivision of C* (Lemma 2.6 of [13]). Then B restricts to a cone complex
D on N. By (3.2) the cones of D* are homology balls. Assign to each f*eD* the
dual of # in B*. This determines a normal homology cobordism bundle v of N
in Q with PL balls as blocks and with P intersecting E(v) in blocks, so that
MLP. [J

(3.5) Lemma. Let N" be a proper homology submanifold of a PL manifold Q"*4.
If M™ is a homology manifold embedded in Q as a proper subpolyhedron with N 1L M,
then M AN is a proper homology (m — q)-submanifold of M.

Proof. By (3.4) there is a structured PL cell complex C on Q, with M ]/6 and
N 1/C*. Let D be the restriction of C to M and let F be the restriction of C* to
N. Let aeD be such that the dual of « in C* is contained in N. Then the dual of «
in D* is contained in M N N. Thus, the cone complex E={feD*| f is the dual
of an element o of D and the dual of  in C* is contained in N} is a cone complex
on MnN. Symmetrically, E={feF*|p is the dual of an element of F and the
dual of f in (C*)*=C is contained in M} is a cone complex on M~ N. By (3.1)
and (3.2) the elements of both E and E are cones on homology spheres or balls.
But E=E* so that given yeE, y xy* is PL homeomorphic to Ist(y, E')|, where
y is the cone point of y. Thus, M N is a homology manifold. Note that M~ N
has dimension (m—g¢) as it is gotten by the transversal intersection of cones.
Also, MNN is a proper submanifold of M as dN }/D and Mr\N]/ﬁ so that
OINWMAN. O
Combining (3.3), (3.4), and (3.5), we have

(3.6) Theorem. Let N" be a proper homology submanifold of a PL manifold Q"*4
and let M™ be a homology manifold embedded in Q as a proper subpolyhedra. Then
there exists an arbitrarily small PL ambient isotopy h, of Q with h,(N)LM with
transversal intersection a proper (m— q) homology submanifold of N. Furthermore,
if ON L M, then the isotopy can be chosen so that h,|ON is the identity for all t.

We now discuss transversality for maps of homology manifolds. We first
make precise the notions of bundle maps between homology cobordism bundles
and transverse regularity.

Let K and L be homology cell complexes. A map f: K — L is called cellular
if for each cone o of K there is a unique minimal cone o, of L such that f(x) <o,
and such that if a = f5, then o, S

Let ¢,/K and ¢, /L be homology cobordism S?~*-bundles. A bundle map from
&, to &, is a pair (f, f) of maps such that
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(1) f: K— Liscellular.

(2) f covers f, ie. for each ae K, f(E(&,|a) < E(¢, |a,).

(3) f*(&,) is stably isomorphic to £, as homology cobordism bundles over K,
and

(4) for each acK,f induces an isomorphism between H (E(,|a)) and
H*(E(él | O‘f))~

There is a similar definition for bundle maps of homology disc bundles where
there is the additional condition that a bundle map of disc bundles restricts to a
bundle map of the associated sphere bundles.

A map f: M — Q between manifolds is called admissable if f ' (¢Q)<= 0M and
f71dQ) is collared in M. An admissable map f: M™— Q4 between homology
manifolds is said to be t-regular to a proper submanifold N" of Q, if f "*(N) is an
(m+n—g)-submanifold of M and if f induces a bundle map between a normal
bundle of f ~'(N) in M and a normal bundle of N in Q.

(3.7) Theorem. (a) Let fo: M™ — Q™% be an admissable map between a homology
manifold M and a PL manifold Q with N" a proper homology submanifold of Q.
Then there is an arbitrarily small homotopy (through admissable maps) f, of f,
such that f, is t-regular to N. (b) Suppose fo|¢M: M — Q is t-regular to N. Then
we can choose the homotopy f, so that f,| M =f, | M for all tel.

Proof. We consider case (a) when dM =JN =¢7Q =0, as case (b) and the bounded
cases follow similarly. Choose an embedding e¢: M — int I", for some large r.
Homotope f, to a PL map f,. Then g=f,xe: M —Q xI" is a PL embedding.
Let p: Q x I"— Q be projection. By (3.4) and (3.6) there exists a PL cell complex
C on O xI" and a small PL ambient isotopy h, of Q x I" such that N x 1'1/C
and h, q(M) W Let D be a PL cell complex on Q such that N]/B and let C’
be a subdivision of C such that p: C'— D is cellular. Then there exists a small
ambient isotopy g, of Q xI" such that g(x)=o for all aeC, NxI’]/F and
q, hy (M) 1/(C')* (cf. Lemma 5.2 of [13]). Define f,: M — Q by f,=pg, h, q. Then
P=f"'(N)is a homology (n— q)-submanifold of M.

Let a normal bundle vy of N in Q be constructed as follows. Let D, be the
restriction of D to N. By (3.1) each element of D¥ is the cone on a homology
sphere, so assign to each f*eD} the dual of f (an element of Dy< D) in D*.

We similarly construct a normal bundle vy, - of NxI"in Q xI". Let C, be
the restriction of C' to N x I". Assign to each f*e C§, the dual of § (an element
of Co= ') in (C')*. Now g, h, q(M) intersects vy, ;- in blocks. Note that if « is
an element of C, such that the dual of o in (C')* is contained in g; h;(M), then
a*e C¥ lies in g, h; q(M)nN xI", and that all such o* yield a homology cell
complex on g, h; g(M)nN xI". Thus vy, |g h gq(M)nN xI" is a normal
bundle v of g, h; g(M)nN x I" in g, h; g(M). If we let v=(q~" | q(M)) h{' g7 ' (¥),
then v is a normal bundle of P in M and f; induces a bundle map of ¥ to vy. [J

(3.8) Remark. There are more general versions of (3.6) and (3.7). Namely, if we
consider a class of polyhedra whose links are closed under suspension and join,
then any two such polyhedra in a PL manifold can be ambient isotoped to be
transverse and so that their transversal intersection belongs to the given class.
This will be developed in [2].
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(3.9) Remark. Note that (3.7)(a) is not true when Q is just a homology manifold,
for consider a non simply connected PL homology 3-sphere H* and let K be a
regular neighborhood of the suspension circle C in the double suspension X2 H?
of H3. If (3.7)(b) were true with Q =K, M =D?, and N = C, then £? H>— C would
be 1-connected, a contradiction. This example shows that Theorem A of [&] is
false.

(3.10) Remark. Note that homology transversality and PL block transversality
are compatible in the sense that if in (3.6) and (3.7) M and N were PL manifolds,
then the resulting isotopy of (3.6) would put M PL block transverse to N, or
would in the case of (3.7), homotope f, to a map f; which is block transverse
regular to N.

(3.11) Remark. Note that if in (3.7) M were a PL manifold, then the normal
bundle v of P in M in the proof of (3.7) can be chosen so that the blocks of v are
PL balls.

4. A Canonical Reduction of the Spivak Normal Fiber Space
of a Homology Manifold

In this section we will give a canonical reduction of the Spivak normal fiber
space of a homology to a topological bundle. The main tools used in exhibiting
this reduction are Theorem (3.7) and the work of N. Levitt and J. Morgan [6],
as refined by G. Brumfiel and J. Morgan [1], which relates transversality and
topological reductions. We first summarize the relevant results of [1].

Let £9/X be a spherical fibration over a space X and let T(£% denote the
Thom space of £%. Note that E(&%)< T(E9). A map f: M?*" — T(&9), M a closed
PL manifold, is said to be fiber homotopy transverse (f.h.t) to X, if and only if

1) fis PL transverse to E(¢%) < T(£9), and
2) fHE@E) —L— EE)

|

[ty —Lo M,

is a map of spherical fiber spaces, where M, denotes the mapping cylinder of the
projection of £4/X.
If M?2+" is a manifold with boundary, we require

3) fUEE)nOM < f “HE@E) —LL 5 E(9)

o
!
f‘1(M§)r\6Mcf“1(M¢)—f'——>M§

to be maps of fiber spaces.

Now let M?*" be a PL manifold with a given triangulation and let £ be as
above. A map f: M1*" — T(&9) is strongly fiber homotopy transverse (s.fh.t.) if
and only if

1) f14:4— T(&9 is fh.t. for each simplex 4 in the triangulation of M, and

2) (f '(M)na9*2, f 71 (M) n347* %) is homotopy equivalent to a PL 2-mani-
fold with boundary.
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A good cover {V,} of T(£9 is a cover of T(£%) induced by a cover {U,} of the
base X of &% such that every element of {U,} contains the base point of X, all
finite intersections are 1-connected, and &?| U, admits a PL reduction. If X is
1-connected good covers always exist (Lemma 1.5 of [1]).

Let W(&9) be the subcomplex of the singular complex T(£%) of T(&9) con-
sisting of singular simplices f: 47" — T(£9) which are fh.t. on 49*% and all the
faces of 47*%, with f(49*)< V, for some element V, of a good cover of T(&9). If
i=2, we further require that f ~'(M,)<4"" be homotopy equivalent to a PL
2-manifold with boundary. There is a natural inclusion W(&9) — T(&9) and the
obstruction to deforming a map f: M — T(£9), M a PL manifold with a given
triangulation, to be s.fh.t. can be interpreted as the obstruction to lifting f to a
map f in the diagram

)
P
M T,

Let MSIST,(q), MSﬁ(q), and MSG(q) denote the singu/la\r_/complexes of the
Thom spaces of the universal bundles over BSPL(q), BSTOP(g), and BSG(q),
respectively. Also, let WSG(q) denote W(y%), where 97 is the universal block
g-fibration over BSG(q).

Define T(£9)°" to be the semi-simplicial complex whose k-simplices are maps
A* x CP? — T(&%) which are contained in one of the sets in a good cover of X.
Let the k-simplices of W(E%)CP* be all the above maps which are globally fh.t.
on A% x CP? and on all the faces of 4* x CP2. Also, whenever the preimage has
dimension 2, we require that this Poincaré duality space with boundary be the
homotopy type of a 2-manifold with boundary. We now quote some results of
[1] which we will use.

(40) Theorem. [1] Given j: X — MSG(q), then there is a commutative diagram
WSG(q) =2 WSG(q)"

|

X — MSG(g) > MSG(g)”

and there is a natural 1—1 correspondence between homotopy classes of liftings of
(x CP?)-jto WSG(q)°".

(4.1) Theorem. [1] There is a lifting lyp of the natural map MSTOP(q) — MSG(q)
and a lifting lp; of the natural map MSPL(q) — MSG(q) such that the diagram

WSG(q)

MSPL(q)— MSTOP(q) > MSG(q)

commutes up to homotopy.
The map [,, is produced via PL transversality, and the map I;p is produced
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via topological transversality [4] after crossing with CP? to obviate the unknown
validity of codimension 4 TOP transversality and then using (4.0).

(4.2) Theorem. [1] Let & be a spherical fibration over a 1-connected complex X,
q2 3, which is classified by f: X — BSG(q). Let Y be a subcomplex of X such that
g=f1Y has a lifting § to BSTOP(q). Then |=lpop- T(8): T(E?| Y)— WSG(q) is a
lifting of T(g) to WSG(q) and there is natural bijection between homotopy classes
of liftings | of T(f) extending I in the diagram

/ | lrop
i - l \V
T Y)c T(éﬂwomq)

\

T®) - ~
and vertical homotopy classes of liftings of f: X — BSG(q) to BSTOP(q) extending
2. The correspondence is given by

{f: X >BSTOP(q), f alifting of f, f|Y =8} — {lrop T([): T(£%) — WSG(q)}.

Remark. In [1] (4.2) is only proven when Y =@. But the proof of (4.2) is by a one
simplex at a time relative to its boundary approach, so that the relative version
clearly holds.

Let M™ be a homology manifold properly embedded in

Rzi+m: {(xl LR xN+M)€RN +m|x1 ;O}

Triangulate RY*™ so that M and M are full subcomplexes of RY*™ and dRY*™,
respectively. For each simplex o of M, assign the dual cells D(x, M) and D(o, dM)
the PL cells D(x, RY*™) and D(a, IRY*™), respectively. This determines a normal
homology cobordism disk bundle v,, of M on RY*™ over a homology cell complex
C,, with blocks that are PL cells (cf. §5 of [9]). Let ¥,, denote the associated
homology cobordism sphere bundle and observe that ¥,, is a spherical block
fibration and is a Spivak normal fiber space for M.

(4.3) Theorem. Let M™ b~e an oriented homology manifold properly embedded in
RN*™ and let f: M — BSG(N) classify V). Then there exists a canonical lifting
f of f in the diagram

I~

BSTOP(N)
e

//

M —L 5 BSG(N)
Furthermore, if 0M is a PL manifold, then the lifting f can be chosen so as to extend
theliftingf': OM — BSPL(N)— BSTf(ﬁ’/(N) of f|0M given by the PL structure on OM.

Proof. We inductively construct the lift f over the skeleta of C,,. Let C*® denote
the k-skeleton of C,,, i.e. the complex of all dual cells of M of dimension =Zk.
Let {o¥} be the k-cells of C),. Let K be a triangulation of E(v,,) so that the blocks
E(vy|o¥), for all k and i, are subcomplexes. By inducting over the skeleta C*
of Cy, and the dimension of the simplices of K restricted to E(v,|C*) we can
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construct, using (3.7), a map I : T(v),) > WSG(N) making the following diagram
commute

WSG(N)

IH/

~

/

T(vy) ——— MSG(N).

Now, by inducting over the skeleta C* of C,,, (4.2) yields the first assertion.
The last statement of (4.3) follows from the compatibility of H-transversality
and PL transversality (Remark 3.10) [

(4.4) Remark. The lift of (4.3) is canonical in the sense that it is the unique lift
given by (4.2) using H-transversality (Theorem 3.7).
Our proof of (4.3) also proves the following relative version of (4.3).

(4.5)\]‘heorem. Let f: M — BSG(N) be as in (4.3). Suppose f|¢M has a lift g to
BSTOP(N) such that the following diagram commutes

WS G(N)
I" — j\lrop
Ty laM) LM ASG(N) e MSTOP(N).
Then there is a lift f of f to BSTOP(N) extending .

S. The Solution of the Surgery Problem

In this section we solve the surgery problem determined by the topological
reduction given by (4.3). We first quote a lemma (Lemma 1.4 of [1]) which will
be useful in our situation.

(5.1) Lemma. Let & be a fibration over an oriented Poincaré duality pair (X, 0X).
Let f: D"*%— T(&%) represent a homotopy class aell, (T (&%), T(EY0X)) with
h)nU=[X]eH,(X,3X), where h is the Hurewicz homomorphism, [X] the
orientation class of X, and Ue H4(T (&) is the Thom class of &. Suppose there exists
a topological bundle w*|X and a fiber homotopy equivalence g: E(£%)— E(n9).
Then gf is homotopic to a map k which is topologically transverse to X and the
following two surgery problems are equivalent

1) Vycpnta ——kL"E(’?q)
1 l
k=YX, 0X)=(Y, aY)—"l—>(X,(7X),

2) Vyepnra ———k*j*(n%)

|

(Y,0Y) ;—'_‘)(Mﬁqa Me;qwx)

where j is a deformation retraction of (Mga, Meajsx) to (X, 0X).
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Now let M be an oriented compact homology n~1-manifold properly embedded
in R¥*™ and let v, be as in (5.4). Let v: M — BSG(N) classify v,,.

(5.2). Theorem. (a) If m=6(m=5 if dM =), then there exists a topological
m-manifold P and a simple homotopy equivalence f: (P, 0P)— (M, 0M) such that
ifv: M——»BSW(N) is the lift of v given by (4.3), then the diagram

WSG(N)

/ \"\\\
~r 9 P

Iy

(#)  T(vy) ——> MSG(N) —— MSTOP(N)

~

. _
T() T

//

T(f *vy)
commutes up to homotopy.

(b) Suppose there is a topological (m—1)-manifold Q and a simple homotopy
equivalence g: Q — M such that if V|dM: M — BSTOP(N) is the lift of
v|0M: dM — BSG(N) given by (4.3), then the diagram

WSG(N)
3 J \ITOP\

T (v, loM) 1120, MSG(N) MSTOP(N)

\
N T(g*¥l0M)

T(g*vyloM)

commutes up to homotopy. Then, if m=5, there exists a topological m-manifold P,
with 0P=Q, and a simple homotopy equivalence f: P — M extending g such that
ifv: MHBS’I/:aﬁ(N) is the lift of v extending ¥|0M given by (4.5), then diagram (x)
commutes up to homotopy.

Proof. We first prove (5.2) (b). By (4.5), the lift ¥|0M of v|0M extends to a lift ¥ of v
to BSﬁ(N), so let &N be a topological block bundle over M given by this lift
and let q: E(vy)— E(") be the resulting fiber homotopy equivalence. Let C,,
be the homology cell complex on M over which v, is defined. Let K be a fine
triangulation of T(v,,) such that for each aeC,,, T(v)|a) is a subcomplex. By
inductive applications of (3.6), there exists an ambient isotopy h, of T(v,,) such
that h,(T (vp|o))=T (vp o) for all tel and o€ C,,, and such that for each simplex ¢
of K, h;(6) L M. Let n be the homology cobordism bundle over C,, with total
space h; E(vy). Then there is a fiber homotopy equivalence q,: E(1) — E(EM).
Using topological transversality [4] homotope g, to a map q,: T(n)— T(&")
such that g, is topologically transverse to M with g '(0M)=Q and ¢,|Q=g.
We thus get a relative surgery problem

(R, 0Ry)=(ar (M), g (@M)) —*>(M, M) with q,|0F=g: Q — M.
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Let o(q,) denote the surgery obstruction to normally cobording the normal map
q,, rel 0Fy, to a simple homotopy equivalence. We now show that a(g,)=0.

By (5.1), the relative surgery problem (P, 0F)) —2> (M, M) is equivalent to
the relative surgery problem (R, dB,) < (E(n), E(n|0M)). We now cross the
latter problem with CP? and show that it has zero surgery obstruction, thus
implying that ¢(gq,)=0 [18].

Consider E(n) x CP? "> E(n) —*>E(). We now homotope the map
q3=(q,|E(n)) 7, to a map g: E(y) x CP* — E(&) so that §|4 x CP? is topologically
transverse to M for every simplex A of h,(K), rel (E(y)|6 M) x CP?. To do this we
use topological transversality [4] inductively over the simplices of h;(K) of
dimension <N +3 and then cross with CP? to isotope g3 *(M)= Py x CP? trans-
verse to these simplices crossed with CP2. On the k= N +4 skeleton of h, (K) we
have that P, x CP? is topologically transverse to 04* x CP? and the transversal
intersection is of dimension 7. Now apply relative topological transversality to
isotope Py x CP?topologically transverse to A* x CP? rel d4* x C P2. Then continue
in this manner, using topological transversality, to obtain the desired map g:
E(n) x CP?— T(&). By Corollary 2.3 of [5] g is fh.t, so let v be the bundle over
g~ !'(M) given by this fiber homotopy transversality. Then clearly the relative
surgery problem (B, dB)=(q (M), g~ (IM)=0M x CP?)<(E(v), E(v|0M)) has
zero surgery obstruction. Note that g was constructed blockwise, so that B n E(|a)
is a topological m-manifold for each aeC,,. Since each aeC, is 1-connected,
we see that by (4.0), (4.1) and (4.2) that the theory of transversality which isotoped
the simplices of K|E(vy()) crossed with CP? H-transverse to M x CP?, rel
M x CP?, is equivalent to the theory of transversality which isotoped P, x CP?
topologically transverse to the simplices of K|E(v,|a) crossed with CP2. That
is to say, the following diagram commutes up to homotopy.

WSG(N)CF

A B
" TN

T (vpg ) T(EN )"
T(v|a) x id| CP? // T(#®) x id | CP?
MSG(N)P?

Thus, by inducting up the skeleta of C,, using (4.0) and (4.2) we have that the
following diagram commutes up to homotopy.

WSG(N)°P?
/ \
T(vy)" T (NP

MSG(N)°P*
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Let t be the fibration over M x CP? xI given by the equivalence of these
two transversality theories. Then E(t)c E(n) x CP? x1 and extends E(y)x CP?
and E(v). Using relative topological transversality, we find a topological manifold
WcE(t) with 0W=P, U(@B xI)uP,x CP2 The relative surgery problem
(W, 0W)=—(E(z), E(t|0M) x CP? x I) exhibits a normal cobordism rel M x CP?
between our original problem crossed with CP? and a solved problem. Thus
our original problem is normally cobordant to a simple homotopy equivalence
f: P—M, extending g: 0P—0M. The lift determined by f is the lift ¥:
M—»BSTOP( ) of v: M — BSG(N) given by (4.5), so that (+) commutes up to
homotopy.

Note that if )M =, the above proof yields a proof of (5.2(a)). If dM %, then
the dM =@ version of (5.2(a)) and (5.2(b)) yield (5.2.(a)). O

We now discuss the “canonicality” of the simple homotopy equivalence
provided by (5.2).

(5.3) Corollary. Let M be a compact homology m-manifold, m=6 (m=5 if M =),
and let g: Q — M be a simple homotopy equivalence as in (5.2(b)). Let fy: B, > M
and f,: B — M be two simple homotopy equivalence extending g provided by (5.2(b)).
Then there is a homeomorphism h: (R, 0R)— (B, 0F) with h|0B=1id|Q and with
f1 h homotopic, rel OR), to f,.

Proof. We have a topological manifold Q,=R U (0R xI)UF and a simple ho-
motopy equlvalence 20: Qo = 0(M xI) where go=fyu(g, xid | I)uf,. Also, if
VoM xI): 0(M ><I)—>BSfL/ P(N) is the lift of v x id |0(M x I): (M x I)— BSG (N)
given by (4. 3) then the diagram

WSG(N)
Y
lﬂ/ \\IIZP
—
(5.4) Ty, ;| 0(M x I)) -LexidloM D), ArgG(N) MSTOP(N)

P
\\ /,///
T(go) \ /T(gmo(Mxm

T(g% Va1 0(M X 1))

commutes up to homotopy. Then (5.2(b)) yields a topological (m+ 1)-manifold
N with 0N =Q, and a simple homotopy equivalence f: N — M x I extending g,.
The topological s-cobordism theorem then yields the result. []

(5.5) Corollary. Let M be a closed homology m-manifold, m=5, which is also a
topological manifold. Then the simple homotopy equivalence provided by (5.2) is
homotopic to a homeomorphism.

Proof. Note that if f: P— M is a simple homotopy equivalence provided by (5.2)
and if Q=P uUM (disjoint union) and g,: Q, — (M x I) is given by go=fuid | M,
then diagram (5.4) commutes up to homotopy. The proof of (5.3) then yields the
desired result. [

(5.6) Corollary. Let M be a homology m-manifold, m=6 (m=5 if OM =0). Then
M is simple homotopy equivalent to a topological m-manifold.
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Proof. If M is compact, then (5.2) yields the result. If M is not compact, filter M
by codimension zero compact homology manifolds Mqc MM, c M} <--
such that each S;=cl(M;}* —M,) is a compact codimension zero homology sub-
manifold of M;*, (S;,0_S;) is PL homeomorphic to @_S,;x([0,1],0) where
0_8;=8S;nM;, and each B,=cl(M;— M |) is a compact codimension zero
homology submanifold of M;. Such a filtration exists by considering a (homology)
handelbody decomposition of M. Now apply (5.2) inductively to the B; thus
getting a topological manifold P which is filtered by compact codimension zero
topological manifolds Ry Bt « B <B* <--- such that each R;,=cl(P* —P) is a
compact codimension zero topological submanifold of P*, (R;, d_ R;) is homeo-
morphic to d_ R, x([0, 1],0) where 0 _R;=R;n P, and each C;=(cl(P—P1*)))
is a compact codimension zero topological submanifold of P. Furthermore
there is a map f: P— M which restricts to simple homotopy equivalences of
triads f;: (B; Py, C)—(M;; M ,, B;). Thus by Essay III of [4], f is a (infinite)
simple homotopy equivalence. [J

6. The Maps G, : BH(q) - BG(q), 4=3

Let PL(q) be the Kan A-set of which a typical k-simplex is a PL S?~!-block
bundle over A4* x I which restricts to the product bundle over A4* x {0, 1}. Ac-
cording to N. Martin [7], PL(g) is homotopy equivalent to the structure A-group
ﬁ(q) of PL $9~'-block bundles. Also 7;(H(q), PL(q))=0 for i<2,q =3 (cf.[7, 11]).

Let G(q) be the Kan 4-set of which a typical k-simplex is a PL S9~!-block
fibration over 4* x I which restricts to the product bundle over 4* x {0, 1}. Note
that G(q) is homotopy equivalent to the A-structure set G(g) (cf. [16]) of S471-
block fibrations.

Asm,(H(q), PL(¢))=0fori<2,q=3, we can define a 4-map G,: H(q)® — G(q)*,
for k<1, of the k-skeleton of H(q) to the k-skeleton of G(gq) by assigning an ele-
ment & of H(q)® the underlying S~ !-block fibration of an element of PL(q)®
which is connected to &9 by a (k + 1)-simplex of H(q).

Now let £9 be an element of H(g)®, i.e. a homology cobordism S?~!-bundle
over 4% x I which restricts to the product bundle over 43 x {0, 1}. By applying
G, to £11043% x I we have an element & of H(q)® which is connected to &9 by a
4-simplex of H(g), and such that &]04%x 1 is a S~ !-block fibration. As E(9)
is a homology cobordism between 4% x $?~! and itself and as this cobordism
restricts to an h-cobordism between 942 x S7-! and itself, we can do surgery on
E(&9), rel boundary, to get a new block E’ so that E’ is an h-cobordism between
4% x 8771 and itself (cf. Proposition 3.1 of [12]). Let G,(&%) be the homology
cobordism bundle over 43 x I, which is also a S?~!-block fibration over 43 x I,
with total space E'. Doing this for all ¢%e H(q)® we obtain a 4-map G,: H(q)®
- G(q)®. Now by proceeding inductively up the skeleta of H(q) in a similar
fashion, we obtain a well-defined 4-map G, H(g)— G(q). Note that by our con-
struction G, is uniquely defined up to homotopy. Thus G,: H(q) — G(q) induces
a map G,: BH(q) — BG(q) which is uniquely defined up to homotopy. We note
some elementary properties of this map.
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1. The following diagram commutes up to homotopy,

BH(q) —**— BG(q)
BH(g+1)-2"5BG(q+1)

where the vertical maps are induced by stabilization.
2. The following diagram commutes up to homotopy,

BPL(q) —— BG(9)

N Gy
N\
N

BH(q)

where the unlabeled maps are induced by the natural forgetful maps.

7. The Maps 0, : BH(q) —» Bﬁ(q), q=3

Let TOP(q) be the Kan A-set of which a typical k-simplex is a topological $¢~!-
block bundle over 4* x I which restricts to the product bundle over 4* x {0, 1}.
Note that TOP(q) is homotopy equivalent to the structure A-group faf’(q)
(cf. [15]) of topological S~ Lblock bundles. We now define a 4-map 0,: H(q)
— TOP(q), g =3, which induces a map 0,: BH(q)—»BTOP( ), q=3, umquely
defined up to homotopy, such that the dlagram

BPL(q)— BH(q)
(1.1) J/e/"/ G,
BTOP(q)—— BG(q)

commutes up to homotopy.

As m(H(q), PL(9))=0 for i<2, q=3, we can define a A-map 6,: H(g)*
— TOP(q)® by assigning an element & of H(q)® the underlying topological
S?-1-block bundle of an element of PL(¢)* which is connected to & by a (k+ 1)-
simplex of H(q).

Now let & be an element of H(q)®. Then G,(£ is a homology cobordism
S9-1-bundle over 43 x I which restricts to the product bundle over A* x {0, 1}
and which restrict to a PL block bundle over d4% x I. Then E(G,(£%)is a homology
6-manifold with PL boundary. Then by (5.2), E(£%) is homotopy equivalent,
rel 0E(G,(¢7) to a topological 6-manifold E'. By the generalized Poincaré con-
jecture, there is a topological block bundle 6,(%) over A3 x I with total space E'.
Note that by (5.3) any two such bundles are connected in TOP(q) by a 4-simplex.
Doing this for all ¢&eH(g)'® we obtain a well-defined 4-map 6,: H(g)® —
TOP(q)®. Now by proceeding inductively up the skeleta of H(q) in a similar
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fashion using (5.2), we obtain a 4-map 0,: H(q) — TOP(q) uniquely defined d up to
homotopy by (5.3). Thus 6,: H(q) — TOP(q) induces a map 0,: BH(q) — BTOP(q)
¢=3, which is uniquely defmed up to homotopy. By the constructlon of 0, and
(5.5), diagram (7.1) commutes up to homotopy.

8. The Fiber of 0, : BH(q) » BTOP(g), 423

We make the map 0,: BH(q)—»BTOP(q) constructed in n_ 6,7 into a Hurewicz
fibration and compute the homotopy groups of its fiber TOP(q)/H(q)

For q=3, the fiber of the natural map Bfal's(q)ﬁBPL( ) is a K(Z,,3)
([4,15]) and the fiber of the natural map BI"I( )—>BH(g) is a K(OQ’, 3) ([7,
11]). Thus by considering the homotopy exact ct_sequence of the triple (BTOP(q)
BH (q), BPL( )) we immediately have that ; (TOP(q)/H(q)) 0 for i+3, 4 and the
following exact sequence

0 n5(BTOP(q). BH(q) > n4(BH(q), BPL(g)) =~ n4(BTOP(q). BPL(q))
—n,(BTOP(q), BH(g)) 0.

_Now there are isomorphisms n,(BH (q), BPL(q))~ 04 ([7,11])and m(Bf(TI;(q),
BPL(q))=Z, ([3, 15]). Let H? represent an element of 6%. Then c(H?)x $4-!
represents an element of n,(BH(q), BPL(q)) (cf. [7]) and 0, assigns this a topo-
logical manifold M. If «: 0§ — Z, is the Kervaire-Milnor-Rochlin map, then

a(H3)=01if and only if M possesses a PL manifold structure (cf. Lemma 1 of [17]).
Thus 6, is onto, so that 7(3('f\13 q)/H(q))=0 and

ns(BH(q), BPL(g))=kernel (0,: m,(BH(q), BPL(q)) — n,(BTOP(q), BPL(q)))
~kernel (a: 0§ — Z,).

We have thus shown

(8.1) Theorem Let TO}j(\qy (q) denote the (homotopic) fiber of 0,: BH(q)
»BTOP( ), q=3. Then TOP(q)/H(q) is a K (kernel (a: 0§ — Z,), 4).

9. Applications

In this section we give two elementary applications of the results of the preceeding
sections.

(9.1) Theorem. Let W"*! be a compact homology (n+ 1)-manifold, n=5, and V,
V' disjoint compact homology submanifolds of 0W which are topological manifolds
such that OW—(int Vuint V') is homeomorphic (=) to oV x [0, 1]~0V' x [0, 1].
If the inclusion V=W is a simple homotopy equivalence, then V and V' are homeo-
morphic.

Proof. Apply [5.2] and the topological s-cobordism theorem. [

(9.2) Theorem. Suppose there exists an oriented PL homology 3-sphere H? with
«H3*=1 and with H># H> H® bounding an acyclic PL 4-manifold. Then BH(q) is
homotopy equivalent to BTOP( )x K (Kernel (x: 05 — Z,), 4).
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Proof. We show that the fibration 0,: BH(q)—»B'fFf’(q) has a cross-section.
Then, since by (8.1) 6, has fiber an Eilenberg-MacLane space, it is a trivial fibra-
tion.

Let H? be the given PL homology 3-sphere. One can consider homology
manifolds M whose 3-dimensional sphere links in M and 6M are PL homeo-
morphic to connected sums of H3 — H* (H3 with the opposite orientation), and
S3. Call such manifolds H?3-manifolds. Following the construction of BH(q)
given by Martin and Maunder [9], one can develop a theory of homology
cobordism bundles whose blocks are H3-manifolds. (In fact there is a general
theory for polyhedra whose links satisfy certain axioms and for cone bundles
based on these polyhedra. This is developed in [2].) Then let BH3(g) denote the
resulting classifying space. There are natural maps h: BH*(q) — BH(q) and
j: BPL(q) — BH?(q). By employing the techniques of [7] or [11] one has that
the fiber of j is a K(Z,, 3). Then by the techniques of § 8, the composition

BH?3(q) — BH(q) %> BTOP(q)

is a homotopy equivalence. The result now follows. []
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