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The JORDAN Curve Theorem is the basis of a correct development of the 
CAUCHY-RIEMANN approach to the theory of functions of a complex argument. 
CAUCHV himself discovered his integral formula [1] by formally adding real 
integrals; in his coherent development of function theory [2] he simply speaks 
of "points renferm6s dans une certaine aire qu'enveloppe un certain contour". 
RIEMANN'S thesis [3], contemporary with [1], contains a correct definition of 
simply and multiply connected domains but neither there nor in the theory 
of ABELIAN functions [4], published one year after the appearance of [2], is 
there any attempt to prove that certain curves (e.g., the circle) in fact form 
the boundary of simply connected domains. The geometric deficiencies seem 
to be one of the main reasons that moved WEIERSTRASS to develop function 
theory on an arithmetic basis; the canonical exposition of WEIERSTRASS'S theory 
[5] manages to avoid the use of any integrals with the exception of integrals 
on real intervals and for the computation of the periods of elliptic functions 
on pp. 369-402. Of the textbooks of function theory written before JORDAN'S 
Cours d'analyse, only C. NEUMANN [6] and J. THOMAE [7] seem to have noted 
the topological problem. NEUMANN'S book is important for the development 
of geometric function theory since for the first time it introduces the representa- 
tion of complex numbers on the RIEMANN sphere. The author notes that this is 
"ein Gedanke, der mir aus Riemann's Vorlesungen durch mfindliche Ueberliefe- 
rung zu Ohren kam.. ."  ([6], Vorwort zur ersten Auflage, p. v of the second 
edition). For the treatment of curves, the book is on the level of CAUCHY. 
As the author notes ([6], Vorwort zur zweiten Auflage, p. viii), "Absichtlich 
habe ich indessen in dieser Beziehung die Theorie in derjenigen Form, in welcher 
sie l )on  CAUCHY und RIEMANN gegeben ist, zu conserviren gesucht . . . .  Ueberhaupt 
dtirfte es ja bei der Darlegung einer mathematischen Theorie weniger auf eine 
durchweg strenge Darstellung, als vielmehr darauf ankommen, dab die angege- 
benen Methoden die zur strengen Darstellung erforderlichen Mittel gewiihren." 
THOMAE'S book [7] (his third text of function theory) gives RIEMANN'S definition 
and (p. 5) declares it intuitively clear that the circle and its topological equivalents 
are boundaries of simply connected domains. (THOMAE is a co-discoverer of 
the DARBOUX integral and author of some early papers on set theory applied 
to analysis.) 
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The recognition of the central role of the curve theorem and the problem 
of its proof is the lasting contribution of C. JORDAN [8]. JORDAN does not 
prove the theorem. He accepts as obvious (Sec. 99, p. 94, all quotations from 
the second edition) that a simple closed polygon separates the plane into two 
regions in which two points can be joined by a polygonal arc without crossing 
the polygon but that any polygonal arc joining two points in distinct regions 
must cross the polygon (Sec. 103, p. 99). He proves that for sufficiently small 
e >0 one can find polygons S~, S~ inscribed and circumscribed to the curve 
C so that the distance of points of S, and S~ from a point of C i s  <e. A 
point in the interior of C if it is in the interior of some S~ and in the exterior 
of C if it is in the exterior of some S~. Therefore, C divides the plane into 
interior, exterior, and C itself. In addition, JORDAN shows that the bounded 
domain defined by C is simply connected in the sense of RIEMANN (Sec. 104, 
p. 99). In the absence of a clear formulation of the notions of compactness 
and the HEINE-BOREL theorem, the first step (lines 10-12 on p. 93, Sec. 98) 
of the proof of the existence of S~ and S', is not convincing; what is missing 
is a proof that for a JORDAN curve x(t), 0__<t< 1, and f i>0 there is an eo 
such that segments x(ti)x(ti+ 1), x(Q)x(Q+ 1) of a polygon of vertices X(to) ..... x(tN) 
cannot intersect if t k+ 1 - tk < e < eo and [ x(ts+ 1) - x(ti) [ < 6. This gap is filled 
in [22]. The proof is not helped by JORDAN'S use of ti for both ti and x(ti). 

. 

The importance of the JORDAN Curve Theorem was recognized quickly after 
the publication of the second edition of the Cours d'Analyse in which the theorem 
and its proof were given prominent display in the first chapter. The difficulty 
of the proof generated an interesting literature. The literature up to 1910/11 
is surveyed in the following paragraphs. 

The first attempt to prove the  complete JORDAN theorem is contained in 
the paper of 1896 of SCrIOENFLmS [9], his first paper on the subject. The work 
is based on PASCn's analysis [10] of the separation of the plane by straight 
segments and triangles and is as correct as it can be in the absence of an 
axiomatic basis of topology. The proof is sketchy in places but the gaps are 
not serious. SCHOENFLIES'S proof is valid for piecewise C'-curves of finite order, 
i.e., curves intersected by any straight line in a finite number of points only. 
The main idea is that an interior point is characterized by the property that 
any ray through the point meets the curve (by convenient computation of 
multiplicities) at an odd number of points. The finite order is used again in 
the proof that any two interior points can be joined by a polygonal arc. 
SCHOENFLIES achieves the equivalent of a triangulation by dividing the interior 
into a finite number of simple domains. He fixes a direction and draws the 
parallels through the cusps of the curve and all tangents in the given direction. 
Since a JORDAN arc of finite order must be of finite class, one obtains a finite 
number of domains bounded by arcs of the curve and parallel straight segments; 
these domains are, in modem language, arcwise connected and simply connected. 

The proof in DE LA VALLI~E POUSSlN'S Cours d'Analyse [I 1] follows JORDAN 
in accepting the polygon theorem; the proof is sketchy in the first two editions. 
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The first attempt at an axiomatic proof of  the JORDAN Theorem for polygons 
is in VEBLEN'S thesis [12]. The main object of the thesis is a revision of the 
axiom system of PASCH rl0] by the addition of existence axioms in the style 
of HILBERT and the removal of redundant axioms. The second part of the 
thesis is devoted to proofs based on the axiom system; the JORDAN Theorem 
appears among the consequences of PASCH'S axioms of order. VEBLEN'S proof 
depends on two lemmata: 

1. If a side of a polygon q intersects a side of a polygon Pn in a single 
point 0 not a multiple point Pn or q then pn and q, whether simple or not, 
have at least one other point in common. 

2. Every point P of the boundary of a simple polygon pn is accessible 
from every point 0 not on the boundary of p~, by a broken polygonal line 
joining 0 to P and not meeting the boundary of the polygon in any point 
than P. 

Lemma 1 implies that the polygon divides the plane into at least two 
regions and lemma 2 shows that there can be no more than two regions. As 
pointed out by LENNES [24] and H. HAHN [23], the proof of the lemmata presup- 
poses a proof that a polygon can be triangulated, which is missing. In the 
absence of a triangulation, VEBLEN'S proof is valid only for convex polygons. 
A later section of [12] deals with the separation of space by a simple polyhedron. 

Another proof of the JORDAN Theorem for curves is in the Harvard thesis 
of L. D. AMES [12, 14] and is reproduced in OSCaX)D'S Funktionentheorie [15]. 
The proof is based on the KRONECKER characteristic (Umlaufzahl). AMES'S re- 
striction to piecewise C' curves is unnecessary. The existence of at least two 
domains (of Umlaufzahl 0 and + l) is immediate. The proof that not more 
than two domains exist is given only for curves that are finite unions of arcs 
schlicht over a coordinate axis. 

The proof of BLISS as sketched in [16] is valid for curves of finite order. 
The domains obtained by SCHOENFLIES [9] are characterized by the sign of 
conveniently chosen functions if the fixed direction is parallel to one of the 
coordinate axes. 

VEBLEN'S proof [17] of the JORDAN Curve Theorem on the basis of E.H. 
MOORE'S topological axioms for General Analysis is based on the ideas of [12] 
and open to the same objections. In addition, VEBLEN'S proof as well as SCHOEN- 
FUES'S later investigations [18, 19] on the topology of JORDAN curves are open 
to BROUWER'S objection [20] that an arc in the plane can be the common 
boundary of more than two domains. 

SCHOENFLIES'S investigations are based on the JORDAN Theorem for polygons 
which follows easily from [9]. The important paper is [19]; the first part of 
the paper is devoted to the proof that the points of a JORDAN curve are accessible 
from the interior and the exterior, in the sense of VEBLEN'S lemma 2, by JORDAN 
arcs. This follows from the corresponding result for JORDAN polygons. The 
second part contains formulation and proof of the statement known as the 
SCHOENFLIES Theorem: Every homeomorphism of a JORDAN curve and a circle 
can be extended to an homeomorphism between the interior of the curve and 
a circular disc. SCHOENFLIES actually proves the theorem for a JORDAN polygon 
and a square. The idea is simple: One chooses an interior point O and connects 
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0 to all points of the polygon by non-intersecting polygonal lines. The polygonal 
lines are then mapped onto the rays leading from the center of the square 
to the square. The technical difficulties of the construction are considerable. 
The proof is adapted in [21] with very minor changes to yield directly the 
SCHOENFLIES Theorem for JORDAN curves: SCHOENFLIES'S arguments in the plane 
case are correct even though the examples of ANTOINE and ALEXANDER show 
that in space the inference from polyhedra to general surfaces is false. 

The proof of W. H. & G. CH. YOUNG ([22], pp. 224-228) proceeds in two 
steps. First it is shown that a JORDAN curve which is a union of finitely 
many circular arcs divides the plane into at least two domains. Then the HEINE- 
BOREL Theorem is used to cover a given JORDAN curve with a finite number 
of circular discs of radius < e to get a domain bounded by two JORDAN curves 
composed of circular arcs. For  e~0 ,  it follows from CANTOR'S theorem on 
the intersection of compact sets that the points of the given curve are accessible 
from interior and exterior. Therefore, the number of domains cannot be > 2. 

The paper of 1908 of H. HAHN [23] is a complete axiomatic proof of the 
JORDAN Curve Theorem for polygons, based on the PASCH-VEBLEN system. The 
paper is important because it develops systematically the properties of the order 
relation which today are reproduced in all books of axiomatic elementary geome- 
try. The enumeration of these properties is incomplete in the book of PASCH 
and rudimentary in the "Grundlagen"  of HILBERT. HAHN proves the JORDAN 
Theorem first for unbounded angles, then for polygons formed by segments 
on the legs of an angle and connecting polygonal lines, and finally for general 
polygons by reduction to the case of polygons in angles. 

The papers by N. J. LENNES [24, 25] are similarly important. The starting 
point of LENNES is the observation that HILBERT'S axiomatic theory of area 
and volume depends on the existence of triangulations of polygons, or simplicial 
decompositions of polyhedra. No proof of the existence of such a decomposition 
is given in the "Grundlagen der Geometrie" or subsequent publications of 
the HILBERT school. w 1 of [24] contains a study of the separation of the plane 
by angles and triangles. w 2 contains a proof of the JORDAN Curve Theorem 
in the form: A simple polygon separates the remaining points of the plane 
into two open connected and arcwise connected sets such that every broken 
line connecting points not in the same set meets the polygon. The proof starts 
with the definition of interior points following [9]: the definition is shown 
to be independent of the ray chosen by an argument found also in [23]. Finally 
it is shown by an original construction that two points in the same set (interior 
or exterior) can be connected by a sequence of triangles separated from the 
polygon. This proves openness and connectedness at the same time. w 3 contains 
the proof that a polygon can be decomposed into triangles using only the 
vertices of the polygon as vertices of triangles. The main lemma states that 
each polygon has at least one projecting vertex, i.e., a vertex for which there 
exists a line intersecting the polygon at a point of each of the two edges meeting 
at the vertex and at no other point. The proof of the lemma does not use 
the JORDAN Curve Theorem. The triangulation is obtained by reduction: the 
projecting vertex either is a vertex of a triangle which does not contain a 
vertex of the polygon in its interior or it is the endpoint of a diagonal splitting 
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the polygon into two JORDAN polygons with fewer vertices. w 4 gives a new 
proof of the JORDAN Curve Theorem based on the triangulation: the interior 
of the curve is the union of the interiors of the triangles of the triangulation 
and the open diagonals. w 5 takes up the definition of polyhedra and related 
sets of solid geometry. w 6 proves the space analog of the JORDAN Theorem 
for simple polyhedra based on the counting definition of [9]. w 7 contains the 
example of a polyhedron with 7 vertices which does not admit a simplicial 
decomposition using only the vertices of the polyhedron as vertices of the 
tetrahedra. The same section contains a proof that every JORDAN polyhedron 
can be decomposed into convex polyhedra and that every convex polyhedron 
admits a simplicial decomposition. The problems touched upon in this section 
reappear in higher dimensional algebraic topology as the problems of the rela- 
tions of cell complexes, simplicial complexes, and the Hauptvermutung. The 
final w 8 contains an axiomatic study of the definition of polyhedron. 

The paper [25] continues [24] for JORDAN curves, using only topological 
properties that can be formulated without recourse to metrical notions. The 
topology is generated by the open half-planes of a geometry satisfying the 
axioms of incidence and order of PASCH-VEBLEN. (Such a topology is always 
completely regular and is metrizable by an ordered ABELIAN group [26].) LENNES 
first studies JORDAN curves which are unions of a countable set of straight 
segments. Then follows studies of the meaning of "curve" and "boundary". 
LENNES avoids becoming vulnerable to BROUWER'S objections to the work of 
SCHOENFLIES by admitting only domains whose boundary points are arcwise 
accessible from the interior; the discussion ends with the characterization of 
the JORDAN curve as the boundary of a bounded domain accessible both from 
the interior and the exterior. That the hypothesis of accessibility is needed 
is illustrated by domains bounded by several spirals (note on bottom of p. 313) 
similar to BROUWER'S examples of continua forming the simultaneous boundary 
of many domains. LENNES lost the priority in these developments to BROUWER 
by publishing only in 1911 the paper read to the American Mathematical Society 
in December of 1905. After these preliminaries, the proof of the JORDAN Curve 
Theorem reduces to an application of the HEINE-BOREL Theorem. The remainder 
of the paper is devoted to a study of the ASCOLI Theorem in questions of 
approximation of curves by simple arcs. 

BROUWER'S proof [27] of the JORDAN Curve Theorem is probably the direct 
topological proof that is most clear and unobjectionable. Starting from some 
basic theorems on continua, BROUWER proves that (a) an arc between two 
disjoint continua defines only one domain, (b) two disjoint arcs between two 
disjoint continua together with the continua determine two domains and, (c) 
each subarc of a JORDAN curve is accessible from every domain it bounds. 
This implies that a JORDAN curve is the boundary of every domain it bounds 
and determines neither less nor more than two domains. 

. 

The DEHN Archives, administered by Professor WILHELM MAGNUS, contain 
a manuscript by MAX DEHN entitled: "Beweis des Satzes, dass jedes geradlinige 
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geschlossene Polygon ohne Doppelpunkte 'die Ebene in zwei Teile teilt '". On 
the basis of DErVN'S indications, MAGNUS in [28] p. 28 dates the manuscript 
to 1899 when DEHN was working on his thesis (1900) under HILBERT. The 
date of the manuscript given by MAGNUS is consistent with the spelling, which 
antedates the unification edict of 1903. It is a mystery why DEHN never published 
the paper, which was ahead of its time for many years. In addition to a proof 
of the JORDAN Curve Theorem, the manuscript contains a proof of the 
SCHOENFLIES Theorem (7 years before SCHOENFLIES'S discovery) which is elemen- 
tary and very simple; the idea of the proof is very close to one given by 
R. H. BING in 1960 [30]. The proof  is based on an useful lemma quoted in 
[28] which was rediscovered only in 1975 [29]. The manuscript also contains 
a proof of LENNES'S theorem that a polygon can be triangulated by diagonals. 
Since, as LENNES noted, this is a necessary step in HILBERT'S theory of area, 
it is the more remarkable that the proof, found in the year the "Grundlagen 
der Geometrie" were first published, never was published. 

The manuscript is based on HILBERT'S axioms of incidence and order and 
avoids all notions and methods that cannot be derived by these axioms. The 
first part deals with the plane and contains a proof of the JORDAN Theorem 
for polygons based on SCHOENFLIES'S definition [9] of interior points. The treat- 
ment parallels that of [23] and [24]; it is superior to the treatment of [24] 
because of the truly exhaustive consideration of cases of special position. The 
codification of properties of incidence and order given in [23] could be used 
today to simplify DEHN'S proof. The proof that interior and exterior are arcwise 
connected precedes the triangulation theorem and is therefore exceedingly 
lengthy and difficult. 

A vertex Pi of a JORDAN polygon Po... PNPo is a convex corner if there 
are an A on P/_IPi and a B on PiPi+l such that the open segment AB is 
in the interior of the polygon. The second topic of the paper is a proof that 
a polygon has at least three convex corners. Since the axioms do not imply 
the theorems of DESARGUES and PAPPUS, one has to study the properties of 
the convex hull without using linearity. A convex comer Pi is called an ear 
in [29] if no point of the polygon is in the open triangle Pi_IPiP~+I or on 
the open segment Pi-~P~+~. The proof of the existence of at least two ears 
for every JORDAN polygon given in [29] uses metric notions. DEHN first notes 
that a convex corner Pi either is an ear or there exists a vertex Pj in Pi-lPiPi+ 1 
so that one halfplane of P~+ 1P i contains only the vertex Pi while all other 
vertices are in the closed complementary halfplane. (A similar argument is used 
in [24], w 3.) In the second case, P~Pj is a diagonal contained in the interior 
of the polygon which divides the polygon into two JORDAN polygons with 
fewer vertices. After a finite number of steps, one obtains a triangulation of 
the polygon and in the final step in each partial polygon one obtains an ear: 
every JORDAN polygon has at least two ears (the " th ree"  in [28] is a misprint 
from the three convex comers). BrNG [30, p. 32] proves only that every JORDAN 
polygon has vertices P~-IPiP~+~ so that no other vertex of the polygon is 
in the interior of the triangle Pi-1PiPi+ 1 or on the open segment Pi-1P~+ 1"; 
the proof can be adapted to DEHN'S axiomatic framework. 

Next comes a construction of an order preserving map o f  a segment AC 
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onto a subsegment BC: Choose 02 in an halfplane of AC and points E,D 
such that the order relations (,4020) and (BO2E) hold. Then, by PASCI~'S axiom, 
CO 2 intersects BD at O1 and (BOLD) holds. Put Y= XO2r3 ED, F(X)= AC r3 YO 1 
for X on AC. The map X~F(X)  is order preserving by repeated application 
of PASCH'S axiom. This is now used for a proof of the SCHOENFLIES Theorem: 
For an ear Pi we may choose Q so that PI-,QPi+ 1 is in the interior of the 
polygon and R so that Pi_,RP~+: is in the exterior of the polygon. Let a 
ray through Q intersect Pi- 1Pi+ 1 at X, P~_ 1PiPi+ t at Y and Pi- ~RP~+ ~ at 
Z. By the previous construction we can obtain an order preserving one-to-one 
map of the ray onto itself that is the identity outside QZ, maps Q Y onto 
QX and YZ onto XZ. Hence we obtain a one-to-one map of the plane onto 
itself which maps the interior of the polygon onto the interior of polygon 
with one vertex less. After a finite number of steps, the polygon is mapped 
onto a triangle. (The paper is not concerned with continuity but a little care 
in choosing the maps on the single rays will make the map of the plane contin- 
uous in the topology generated by the open half-planes.) The same basic idea 
of the proof of the SCrIOENFLmS theorem is given in [30], p. 31-33. There the 
rays are mapped onto themselves by piecewise linear maps which cannot be 
defined using only axioms of order and incidence. The construction yields the 
following result, which I cannot find in the published literature: The SCHOENFLIES 
Theorem is valid in a plane geometry based on HILBERT'S axioms of order and 
incidence only. 

The last part of the paper contains a proof of the JORDAN Theorem for 
polyhedra roughly parallel to [24] w 6 with all details filled in. 
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