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SPHERICAL ALTERATIONS OF HANDLES: EMBEDDING THE
MANIFOLD PLUS CONSTRUCTION

C. R. GUILBAULT AND F. C. TINSLEY

Abstract. Quillen’s famous plus construction plays an important role in many
aspects of manifold topology. In our own work on ends of open manifolds, an ability
to embed cobordisms provided by the plus construction into the manifolds being
studied was a key to completing the main structure theorem [GT2]. In this paper
we develop a ‘spherical modification’ trick which allows for a constructive approach
to obtaining those embeddings. More importantly, this approach can be used to
obtain more general embedding results. In this paper we develop generalizations of
the plus construction (together with the corresponding group-theoretic notions) and
show how those cobordisms can be embedded in manifolds satisfying appropriate
fundamental group properties. Results obtained here are motivated by, and play an
important role in, our ongoing study of noncompact manifolds [GT3].

1. Introduction

In this paper we develop a procedure, called “spherical alteration”, for modifying
handle decompositions of manifolds in ways that permit useful applications. The
strategy is geometrically quite simple, but at the same time more drastic than the
traditional techniques of handle slides, introductions and cancellations of comple-
mentary handle pairs, and the carving out and inserting of existing handles. In order
to obtain the intended applications, each alteration of a handle is accompanied by
associated alterations of related submanifolds. Taken together, these moves consti-
tute the process of spherical alteration. Since there are several variables involved, a
full description of the procedure is a bit technical—we save that for Section 3. In
some sense, our main result is more a technique than a specific theorem; nevertheless,
several concrete applications of that technique are provided. The prototypical appli-
cation is a constructive proof of the following theorem, which was a key ingredient in
the main result [GT2].

Theorem 1.1 (Embedded Manifold Plus Construction). Let R be a connected man-
ifold of dimension ≥ 6, B be a closed component of ∂R, and

K ⊆ ker (π1 (B) → π1 (R))
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a perfect group that is the normal closure in π1 (B) of a finite set of elements. Then
there exists an embedding of a plus cobordism (W,A,B) into R which is the identity
on B and for which ker (π1 (B) → π1 (W )) = K.

Remark 1. (a) Recall that compact cobordism (W,A,B) is a plus cobordism if
A →֒ W is a simple homotopy equivalence. A detailed discussion of plus cobordisms
and the Manifold Plus Construction can be found in Section 4.
(b) As an added bonus, our proof of Theorem 1.1 provides a new twist on the existence
proof for plus cobordisms—an argument that requires very little discussion of bundles
and framings.

We will further exhibit the usefulness of the spherical alteration technique by prov-
ing a generalization of Theorem 1.1. That generalization is motivated by ongoing
work on ends of noncompact manifolds. It and a similar application of spherical al-
teration, also presented here, play key roles in [GT3]. To the best of our knowledge,
these latter two applications are not obtainable by the nonconstructive approach to
Theorem 1.1 used in [GT2].

2. Preliminaries

In this section we provide brief reviews of several topics and introduce a good deal
of notation to be used later in this paper. Those topics are:

• intersection numbers between submanifolds,
• surgering surfaces to disks and 2-spheres,
• perfect groups and ‘near perfect’ subgroups,
• basics of handle theory, and
• unbased spheres as elements of homotopy groups.

Throughout this paper we work in the category of piecewise-linear manifolds; analo-
gous results in the smooth and topological categories may be obtained in the usual
ways.

2.1. Intersection numbers. One of the simplest types of intersection number is
defined when P p and Qq are closed, connected, oriented submanifolds of the interior
of an oriented (p+ q)-manifoldN . First arrange that P p and Qq intersect transversely
at a finite set of points p1, p2, · · · , pk. At each pi, the local orientation of P p together
with the local orientation of Qq (in that order) determine a local orientation for N .
If that orientation agrees with the global orientation of N , we write sgn (pi) = 1;
otherwise sgn (pi) = −1. The Z-intersection number is defined by εZ (P

p, Qq) =∑k
i=1 sgn (pi). This definition depends upon order; by linear algebra εZ (Q

q, P p) =
(−1)pq εZ (P

p, Qq).
A more delicate intersection “number” lies in Z [π1 (N, ∗)]. Instead of assuming N

is oriented (or even orientable), choose a local orientation of N at ∗. Assume that P p

and Qq are both oriented and simply connected, and fix base paths λP and µQ in N
from ∗ to base points ∗P ∈ P p and ∗Q ∈ Qq. For each pi, choose paths ρi in P p and σi

in Qq from the respective base points to pi. Let sgn (pi) = ±1, depending on whether
the local orientation at ∗ translated along the path λP · ρi agrees with orientation at
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pi induced by the orientations of P p then Qq; then let gi ∈ π1 (N, ∗) correspond to
λP · ρi ·σ

−1
i ·µ−1

Q . At pi define εZπ1(N,∗) (pi) = sgn (pi) gi. Finally, the Zπ1-intersection
number is defined by

εZπ1(N,∗) (P
p, Qq) =

k∑

i=1

εZπ1(N,∗) (pi) ∈ Z [π1 (N, ∗)] .

Note that simple connectivity of P p and Qq ensures that εZπ1(N,∗) (P
p, Qq) does not

depend on the choice of ρi and σi, however there is some dependence on λP and
µQ. The ordering of P p and Qq now plays a larger role than it did for Z-intersection
numbers—a change in order first alters sgn (pi) by a factor of (−1)pq ω1 (gi), where
ω1 (gi) = 1 if gi is an orientation preserving loop and ω1 (gi) = −1 otherwise; secondly,
the loop λP · ρi · σ

−1
i · µ−1

Q is now traversed in the opposite direction, so gi becomes

g−1
i . For us, the key facts related to order are:

• εZπ1(N,∗) (P
p, Qq) = 0 if and only if εZπ1(N,∗) (Q

q, P p) = 0, and
• if εZπ1(N,∗) (P

p, Qq) = 1 then εZπ1(N,∗) (Q
q, P p) = ±1.

Sometimes the simple connectivity conditions on P p and Qq can be relaxed. An
important such case occurs when one of the submanifolds, say Qq, is a 1-sphere; there
we salvage ‘well-definedness’ by requiring that σi be the unique arc of Q

q running from
q to pi in the orientation preserving direction. Another useful variation occurs when
the fundamental group of P p or Qq includes trivially into the that of N , in which case
that submanifold need not be simply connected. Similarly, if the images of π1 (P

p)
and π1 (Q

q) (translated appropriately along λP and µQ) lie in an L E π1 (N, ∗) then
the above procedure produces a well-defined intersection number in Z [π1 (N, ∗) /L].

We will call collections {P p
i }

r
i=1 and {Qq

i}
r
i=1 of closed submanifolds of a (p+ q)-

manifold Nn geometrically dual if P p
i intersects Qq

i transversely in a single point
for all i and P p

i ∩ Qq
j = ∅ for all i 6= j. If Nn and all of these submanifolds are

oriented, then the collections are algebraically dual over Z if εZ
(
P p
i , Q

q
j

)
= ±δij for

all 1 ≤ i, j ≤ r. So (given the necessary orientability requirements), collections which
are geometrically dual are necessarily algebraically dual over Z, but not conversely.

More generally, given the necessary hypotheses and all required choices to make
Z[π1 (N, ∗)]-intersection numbers well-defined, collections {P p

i }
r
i=1 and {Qq

i }
r
i=1 are

algebraically dual over Z[π1 (N, ∗)] if εZ[π1(N,∗)]

(
P p
i , Q

q
j

)
= ±δij for all 1 ≤ i, j ≤ r. In

reality, we are usually satisfied if each εZ[π1(N,∗)]

(
P p
i , Q

q
j

)
= ±gi for some gi ∈ π1 (N, ∗)

and εZ[π1(N,∗)]

(
P p
i , Q

q
j

)
= 0 when i 6= j. In those cases, we can always arrange the

more rigid requirement by rechoosing some of the base paths. Under appropriate
conditions, the notion of collections being algebraically dual over Z[π1 (N, ∗) /L] may
be defined in a similar manner.

2.2. Surgery on surfaces. For a compact oriented surface Λ with zero or one bound-
ary components, a complete set of meridian-longitude pairs is a collection of pairs of
oriented simple closed curves {(mj , lj)}

k
j=1 such that collections {mj}

k
j=1and {lj}

k
j=1

are geometrically dual and together generate H1 (Λ;Z).
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Given such a collection, let pj denote the point of intersection between mj and lj
and choose a set of arcs {τj}

k
j=1 in Λ intersecting only at a common initial point ∗Λ

so that each τj intersects the collection of simple closed curves only at its terminal
point pj; if ∂Λ 6= ∅ choose ∗Λ ∈ ∂Λ. Using Υ = ∪k

j=1τj as a ‘base tree’, the curves

of {(mj , lj)}
k
j=1 may be viewed as elements of π1 (Λ, ∗Λ). In the case where ∂Λ 6= ∅

we may—after relabeling, reordering, and choosing appropriate orientations on the
simple closed curves and on ∂Λ—assume that ∂Λ =

∏k
j=1m

−1
j l−1

j mjlj in π1 (Λ, ∗Λ).

Remark 2. Since Λ is not presumed to bound or be embedded in a 3-manifold,
common distinctions between longitude and meridian (or neither) are nonexistent
here; a given curve could play either role, depending upon the setup. Nevertheless,
the informal use of this terminology will be convenient for discussing certain curves
and collections of curves.

Suppose now that Λ, with zero or one boundary components and a complete set
{(mj , lj)}

k
j=1 of meridian-longitude pairs, is embedded in an n-manifold Nn (n ≥ 5)

and that each mj is homotopically trivial in Nn. Then we may surger Λ to a 2-sphere
or 2-disk in the following manner:

• for convenience, choose a collection {mj}
k
j=1 of simple closed curves in Λ where

each mj is parallel to mj and disjoint from Υ. Do this so that {mj}
k
j=1 is

geometrically dual to {lj}
k
j=1

• let {Dj}
k
j=1 be a collection of pairwise disjoint 2-disks embedded in Nn with

Λ ∩Dj = ∂Dj = mj,
• for each j, let Aj be a small annular neighborhood of mj in Λ with boundary
curves m −

j and m +
j ,

• for each j, let D−

j and D+
j be disks parallel to Dj having m −

j and m +
j as

boundaries,
• let Λ∗ be the 2-sphere or 2-disk obtained by removing the interiors of the Aj

from Λ and sewing in D−

j and D+
j .

If Λ has a preferred orientation, there is a corresponding orientation of Λ∗ where
the two agree on Λ − ∪Aj . Under that orientation of Λ∗ disk pairs D±

j inherit op-

posite orientations when compared by projecting onto Dj . Suppose Qn−2 is a closed
oriented submanifold of Nn intersecting Λ transversely in finitely many points. By
applying a small isotopy if necessary, we may assume none of those intersection points
is contained in ∪Aj . Adjust the Dj (rel boundary) so they also intersect Qn−2 trans-
versely. Corresponding to each p ∈ Dj ∩Qn−2 there are points p− ∈ D−

j ∩Qn−2 and

p+ ∈ D+
j ∩ Qn−2. Thus Λ∗ ∩ Qn−2 consists of the points of Λ ∩ Qn−2 together with

one pair of points {p−, p+} for each point p of a Dj ∩ Qn−2. If Nn is oriented, it is
clear that εZ (p

−) = −εZ (p
+) for each of those pairs, so when Λ is closed, we have

εZ (Λ
∗, Qn−2) = εZ (Λ, Q

n−2).
For εZπ1(Nn,∗) (Λ

∗, Qn−2) the situation is more complicated. In order to compare
contributions of points p− and p+, assume the necessary setup discussed in the pre-
vious subsection: base points ∗, ∗Q, ∗Λ∗ = ∗Λ and corresponding base paths µQ and
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Figure 1. Surgering a surface

λΛ∗ , and a local orientation at ∗; assume also that Qn−2 is simply connected. Deter-
mination of εZπ1(Nn,∗) (p

−) and εZπ1(Nn,∗) (p
+) require paths ρ− and ρ+ in Λ∗ from ∗Λ∗

to p− and p+. Let ρ− be the path in Λ∗ that follows τj ⊆ Υ to the longitude lj, travels
along the unique arc l−j ⊆ lj that arrives at D

−

j without leaving Λ∗, and then travels

through D−

j to p−. Choose ρ+ similarly, noting that l+j goes the opposite way around

lj . Lastly, choose paths σ
− and σ+ in Qn−2 from ∗Q to p− and p+; these can be chosen

identical except in a small neighborhood of p. If we write εZπ1(N,∗) (p
−) = sgn (p−) g

and εZπ1(N,∗) (p
+) = sgn (p+)h then g is represented by λΛ∗ · ρ− · (σ−)

−1
· µ−1

Q and

h by λΛ∗ · ρ+ · (σ+)
−1

· µ−1
Q . It is easy to check that h = ljg in π1 (N, ∗) and that

sgn (p−) = −ω1 (lj) sgn (p+). See Figure 1. So, together this pair of points con-
tributes ± (1− ω1 (lj) lj) g to εZπ1(Nn,∗) (Λ

∗, Qn−2). For later reference, we record the
following lemma which follows immediately from the above observations.

Lemma 2.1. Let {(mj , lj)}
k
j=1 a complete set of meridian-longitude pairs for a closed

oriented surface Λ in the interior of an n-manifold Nn and let Qn−2 be a closed
simply connected oriented (n− 2)-manifold also lying in intNn and intersecting Λ
transversely. Assume that each of the meridianal curves mj contracts in Nn and
let Λ∗ be a 2-sphere obtained by surgering Λ along a collection of parallel curves; do
this in such a way that Λ∗ and Qn−2 intersect transversely. Choose base points ∗,
∗Λ = ∗Λ∗, and ∗Q, base paths λΛ and µQ from ∗ to ∗Λ and ∗Q, respectively and a local
orientation of Nn at ∗. Then

(1) If each longitudinal curve li also contracts in Nn, then εZπ1(Nn,∗) (Λ, Q
n−2) is

well-defined and equal to εZπ1(Nn,∗) (Λ
∗, Qn−2).

(2) If L is a normal subgroup of π1 (N
n, ∗) with ω1 (L) ≡ 1 and each li repre-

sents an element of L, then εZ[π1(N
n,∗)/L] (Λ, Q

n−2) is well-defined and equal to
εZ[π1(N

n,∗)/L] (Λ
∗, Qn−2).
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2.3. Perfect groups and nearly perfect subgroups. The commutator subgroup
of a group G, denoted [G,G], is the subgroup generated by all commutator elements
[m, l] = m−1l−1ml for l, m ∈ G. It is standard knowledge that [G,G] is a normal and
that G/ [G,G] is abelian; in fact, [G,G] is the smallest subgroup of G with abelian
quotient. If G = [G,G], or equivalently G/ [G,G] is trivial, we say G is perfect. In this
paper, we are interested in topological implications of these concepts. If G = π1 (X, x)

and α =
∏k

j=1 [mj , lj] ∈ [G,G] then there exists a (mapped in) compact orientable
surface Λα with boundary corresponding to α and a base tree for which a complete
set of meridian-longitude pairs has the form {(mj , lj)}

k
j=1. If α ∈ K, where K is a

perfect subgroup of G, we may arrange that all of the mj and lj are elements of K;
this is a key property of perfect subgroups of π1 (X, x).

Next we generalize the notion of “perfectness” for subgroups of G. Suppose K ≤
L ≤ G where K and L are normal in G. Then [K,L] is the subgroup of G generated
by all elements of the form [m, l] where m ∈ K and l ∈ L. It is easy to see that
[K,L] = [L,K] and [K,L] ≤ K. We say that K is strongly L-perfect if K ≤ [K,L].
Clearly, K is perfect if and only if it is strongly K-perfect; more generally, the smaller
the subgroup L containing K, the closer a strongly L-perfect group is to being perfect.
When G = π1 (X, x), for each element α of a strongly L-perfect group K, there exists
a (mapped in) compact orientable surface Λα with boundary corresponding to α
and a base tree for which a complete set of meridian-longitude pairs has the form
{(mj , lj)}

k
j=1 where each mj ∈ K and lj ∈ L.

Remark 3. We have reserved the term ‘L-perfect’ (as compared to ‘strongly L-
perfect’) for the case K ≤ [L, L], a weaker condition that is developed in [GT2] but
is not used here.

2.4. Basic handle theory. Let Nn be an n-manifold, B a component of ∂Nn and
J a subset of B homeomorphic to Sk−1 ×Dn−k. The act of attaching a k-handle (or
a handle of index k) to Nn along J is the creation of an adjunction space Nn ∪f D

n,
where Dn is viewed as Dk × Dn−k and f : Sk−1 × Dn−k → J is a homeomorphism.
We denote the adjunction space by Nn ∪ hk; here hk denotes the image of Dn under
the quotient map q : Nn ⊔ Dn → Nn ∪f Dn. We call J the attaching tube of hk

and αk−1 = q(Sk−1 × {0}) the attaching sphere. We call ek = q
(
Dk × {0}

)
the

core and q
(
{0} ×Dn−k

)
the cocore of hk; the boundary of the cocore, βn−k−1 =

q
(
{0} × Sn−k−1

)
, is the belt sphere and q

(
Dk × Sn−k−1

)
is the belt tube of hk. We

refer to the boundary component of Nn ∪ hk consisting of B − J and the belt tube
of hk informally as the right-hand boundary component. The homeomorphism f :
Sk−1 ×Dn−k → J is called the framing of hk; it affects the homeomorphism type of
Nn ∪ hk. More explicitly, if f1, f2 : S

k−1 ×Dn−k → J is a pair of framings, then the
resulting manifolds Nn ∪ hk

1 and Nn ∪ hk
2 need not be homeomorphic.

The pair (Nn ∪ hk, Nn) is homotopy equivalent to (Nn ∪ ek, Nn) in the obvious
manner. Thus, if W n = Nn ∪ h1 ∪ · · · ∪ hr is obtained from Nn by successive
attachment of handles of non-decreasing index, each to the right-hand boundary
of the preceding space, then (W n, Nn) is homotopy equivalent to a relative CW
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complex (K,Nn) with one j-cell for each j-handle. A useful relationship between
these spaces is the equivalence of the Z-incidence number εZ (e

j+1, ej) for a pair of
cells ej+1 and ej of K and the Z-intersection number εZ (α

j , βn−j−1) of the attaching
sphere and the belt sphere of corresponding (j + 1)- and j-handles, and similarly for
Zπ1-incidence and intersection numbers. (Both of these observations require a careful
setup involving base points, base paths, orientations, etc. and some special care in
dealing with those cases where the attaching or belt sphere is not simply connected.
The reader is referred to [RS] for details.) The upshot of all this is that intersection
numbers, employed appropriately, allow one to calculate algebraic data such as Z-
homology, Zπ1-homology, and Whitehead torsion for manifolds constructed through
the addition of handles.

2.5. Unbased k-spheres as elements of πk (N, ∗). Let Σ1 and Σ2 be embedded
oriented k-spheres (k ≥ 2) in a connected manifold N , ∗ ∈ N , ∗1 ∈ Σ1, and ∗2 ∈ Σ2.
Let Sk be the standard k-sphere with e1 = (1, 0, · · · , 0) the canonical base point. In
order to view Σ1 as an element of πk (N, ∗), choose a path λ from ∗ to ∗1. Now define
a map of (Sk, e1) into (N, ∗) as follows. Let Dk ⊆ Sk be a small k-disk centered at
e1. Send e1 to ∗ and the radial lines of Dk emanating from e1 each onto λ; then send
Sk −Dk homeomorphically onto Σ1 − {∗1} in an orientation preserving manner. We
denote the corresponding element of a πk (N, ∗) by [λΣ1]. Stated differently, [λΣ1] is
the image of [Σ1] ∈ πk (N, ∗1) under the change of base points isomorphism induced
by λ. (See, for example, [Ha, §4.1].)

Remark 4. If ∗1 = ∗, then λ is a loop and we represent [λΣ1] by λ [Σ1], the image of
[Σ1] when acted upon by λ under well-known action of π1 (N, ∗) on πk (N, ∗). Since
πk (N, ∗) is abelian, this action may be extended in the obvious way to an action of
Z [π1 (N, ∗)] on πk (N, ∗). Again see [Ha, §4.1].

Returning to the original setup, if λ′ is another path from ∗ to ∗1, then [λΣ1] and
[λ′Σ1] need not be equal; it is easy to see that [λ′Σ1] = (λ′ · λ−1) [λΣ1].

Now suppose ξ is a path from a point ∗′ ∈ Σ1 to ∗2. By a strategy similar to the
above, we may obtain a map of Sk intoN sending a slightly shrunken lower hemisphere
onto Σ1, a slightly shrunken upper hemisphere onto Σ2 (both in orientation preserving
manners), and taking a product neighborhood of Sk−1 onto ξ. When the codimension
is sufficiently high we may obtain an embedded version of the above, denoted Σ1#ξΣ2,
it consists of punctured copies of Σ1 and Σ2 joined by a ‘tube’ following ξ. In either
case, we express the corresponding element of πk (N, ∗1) by [Σ1#ξΣ2]. Returning to
our preferred base point we have [λ (Σ1#ξΣ2)] ∈ πk (N, ∗), an element that may be
expressed as an algebraic sum as follows: choose a path σ in Σ1 from ∗1 to ∗′, then
[λ (Σ1#ξΣ2)] = [λΣ1] + [(λ · σ · ξ)Σ2] .

3. Spherical alteration of a handle

In this section we give a precise formulation of spherical alteration and prove the
corresponding technical lemma. Although the technique can be applied to handles
of various indices (usually with some restrictions on codimension), all of our current
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Figure 2. Setup for a spherical alteration

applications involve alterations of 2-handles. For that reason, we restrict attention
to 2-handles and invite the reader to consider possible applications of higher index
alterations.

Let R be an n-manifold of dimension at least 6, B a codimension 0 submanifold
of ∂R, S ≈ B × [0, 1] a collar neighborhood of B in R, and h2 a 2-handle attached
to the interior boundary component B1 of S and lying in R− S. Let T = S ∪ h2,
B2 = ∂T − B, and e2 the core of h2. In addition, let Σ2 be an oriented 2-sphere
embedded in the interior of R − T and ξ an arc in R from a point p ∈ e2 to q ∈ Σ2,
intersecting e2 ∪ Σ2 at no other points. See Figure 2 .

The spherical alteration of h2 over Σ2 along ξ is another 2-handle in R with the
same attaching tube as h2, but with a core e2#ξΣ

2 (the connected sum of e2 with
Σ2 along a tube contained in a regular neighborhood of ξ). We will denote this new
2-handle by h2(ξ,Σ2). An orientation on e2 (induced by a preferred characteristic
map for h2) and on Σ2 are necessary to define e2#ξΣ

2; the connecting tube must be
chosen to respect these orientations. More precisely, let E ⊆ E ′ ⊆ e2 and F ⊆ Σ2 be
small 2-disks centered at p and q, and Zξ an embedded copy of S1 × [0, 1] contained
in a regular neighborhood of ξ such that Zξ ∩ e2 = ∂E and Zξ ∩Σ2 = ∂F (at opposite

ends of Zξ). Then e2#ξΣ
2 =

(
e2 −

◦

E

)
∪ Zξ ∪

(
Σ2 −

◦

F

)
. If the orientation on

e2 −
◦

E translated along Zξ does not match the orientation on Σ2 −
◦

F , use the extra
codimension to rechoose Zξ with a twist so that the orientations match.

Use a parameterization of h2 as D2 ×Dn−2 to identify P, P̊ ⊆ h2 corresponding to

E ′ × Dn−2 and
◦

E ′ × Dn−2, respectively; we will refer to P as the alteration region
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Figure 3. Schematic of a spherical alteration

in h2. Let ĥ = h2 − P̊ and choose a relative regular neighborhood N of the 2-

disk

(
E ′ −

◦

E

)
∪Zξ ∪

(
Σ2 −

◦

F

)
in R−

(
S ∪ ĥ

)
so that N intersects the boundary

precisely in P − P̊ ≈ S1 × Dn−2. Define h2(ξ,Σ2) to be ĥ ∪ N , which is a regular
neighborhood of e2#ξΣ

2 in R− S, and thus a 2-handle. Clearly h2(ξ,Σ2) has the same
attaching tube as h2 (possibly with different framing). We also identify a common
belt sphere for h2 and h2(ξ,Σ2) lying just outside the alteration region: let z ∈ D2

correspond to a point of e2 lying just outside E ′ and let βn−3 be the (n− 3)-sphere
corresponding to ∂ (z ×Dn−2). Finally, let B′

2 denote the right-hand boundary of
T ′ = S ∪ h2(ξ,Σ2). See Figure 3 .

Now assume that, in addition to the above, there is a 2-sphere Γ2 lying in B2

and transverse to βn−3. If Γ2 and βn−3 intersect in an essential way, then Γ2 will
not lie in B′

2. Instead, each “sheet” of Γ2 that cuts through βn−3 leaves B′

2 at the
alteration region. We wish to define an alteration of Γ2 to a 2-sphere that lies in
B′

2 and intersects βn−3 in the same way that Γ2 does. Let Γ2 ∩ βn−3 = {p1, · · · , pk}.
Using the product structure of the belt tube, we may arrange (via an ambient isotopy)
that Γ2 ∩ h2 = {D1, · · ·Dk} where the Di’s are 2-disks in the belt tube parallel to e2.
Remove from each Di the interior of the subdisk D′

i = Di ∩P , and replace it with an
oriented disk D′′

i which has the same boundary (and induces the same orientation on
that boundary), but lies in the boundary of the regular neighborhood N . Note that
D′′

i will be parallel in N to the core of N , with the two having matching orientations
if sgn (pi) = 1 and opposite orientations when sgn (pi) = −1. (Orientations are
compared by retracting N onto its core.) By general position, we may assume the D′′

i

are disjoint; thus we have a new 2-sphere Γ2(ξ,Σ2), called the corresponding spherical
alteration of Γ2 over Σ2 along ξ.
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Our main lemma equates εZ[π1(B2,∗)] (Γ
2, βn−3) with ε

Z[π1(B′

2,∗)]
(Γ2(ξ,Σ2), βn−3) and

compares Γ2 and Γ2(ξ,Σ2) when viewed as elements of π2 (R, ∗). Making our as-
sertions precise requires preliminary work. First, choose ∗ to lie in a portion of B1

away from h2; then ∗ lies in both B2 and B′

2. Although T need not be homeomor-
phic to T ′ (attaching tubes of the 2-handles are the same, but framings may differ),
the fundamental groups are canonically isomorphic—both are obtained by taking the
quotient of π1 (B1, ∗) by the normal closure of the common attaching circle for the
2-handles. Since B2 →֒ T and B′

2 →֒ T ′ induce π1-isomorphisms, there is a canonical
isomorphism φ : π1 (B2, ∗) → π1 (B

′

2, ∗) that associates each loop in B2 missing the
alteration region (a collection that generates the entire fundamental group) to the
identical loop in B′

2. In a casual sense, φ may be viewed as an identity map. Let

φ̂ : Z[π1 (B2, ∗)] → Z[π1 (B
′

2, ∗)] be the corresponding “identity-like” ring isomor-
phism.

In order to calculate εZ[π1(B2,∗)] (Γ
2, βn−3) we select some initial data. Assume that

{p1, · · · , pk} is non-empty and choose p1 as base point for both Γ2 and βn−3. Choose
a local orientation for B2 at ∗ and a path λ in B2 from ∗ to p1 to serve as base
path for both Γ2 and βn−3. The remaining data needed for εZ[π1(B2,∗)] (Γ

2, βn−3) is a
collection of paths ρi in Γ2 and σi in βn−3 and from p1 to pi for each i = 2, · · · , k. (ρ1
and σ1 can be constant paths.). When calculating ε

Z[π1(B′

2,∗)]
(Γ2(ξ,Σ2), βn−3) notice

that Γ2(ξ,Σ2) ∩ βn−3 = {p1, · · · , pk} and that the local orientation at ∗ and each of
the points and paths just selected can be chosen to lie simultaneously in B2 and B′

2;
one simply avoids the alteration region. By using the same initial data for both, it is
immediate that εZ[π1(B2,∗)](Γ

2, βn−3) is the same as ε
Z[π1(B′

2,∗)]
(Γ2(ξ,Σ2), βn−3) — or

more precisely, φ̂ takes the former to the latter.
Two more items are needed in preparation for the statement of our main lemma.

First, for each i = 1, · · · , k, choose a path ξi from pi to the point q ∈ Σ2 which
travels the short distance through the belt tube from pi to the alteration region,
then runs parallel to ξ and ends at q. It is then clear that each ξi is homotopic in
R (rel endpoints) to σ−1

i · ξ1. Finally, the inclusion j : B2 →֒ R induces a group
homomorphism j# : π1 (B2, ∗) → π1 (R, ∗) and corresponding ring homomorphism

ĵ# : Z[π1 (B2, ∗)] → Z[π1 (R, ∗)] which plays a role in the following.

Lemma 3.1 (Spherical Alteration Lemma). Given the spherical alteration of h2 over
Σ2 along ξ described above, the corresponding alteration of Γ2, and all of the base
point, path, and homomorphism data selected in the previous three paragraphs, the
following is true:

(1) εZ[π1(B2,∗)](Γ
2, βn−3) is taken to ε

Z[π1(B′

2,∗)]
(Γ2(ξ,Σ2), βn−3) by φ̂ : Z[π1 (B2, ∗)]

→ Z[π1 (B
′

2, ∗)], and
(2) as elements of π2 (R, ∗), [λΓ2(ξ,Σ2)] is equal to

[
λΓ2
]
+ ĵ#(εZ[π1(B2,∗)]

(
Γ2, βn−3

) [
(λ · ξ1)Σ

2
]
).

Proof. Item (1) was covered in the lead-up to this lemma.
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As for item (2), it is easy to see that the embedding which takes S2 onto Γ2(ξ,Σ2)
is homotopic in R to the map indicated by

Γ2#ξ1(sgn (p1) Σ
2)#ξ2(sgn (p2)Σ

2)#ξ3 · · ·#ξk (sgn (pk)) Σ
2,

where a minus sign indicates a reversed orientation. By repeatedly applying the
observations made in Section 2.5, we see that

[
λ(Γ2#ξ1(sgn (p1) Σ

2)#ξ2(sgn (p2)Σ
2)#ξ3 · · ·#ξk (sgn (pk)) Σ

2)
]

=
[
λΓ2
]
+
[
(λ · ξ1) sgn (p1) Σ

2
]
+

k∑

i=2

sgn (pi)
[
(λ · ρi · ξi) Σ

2
]

=
[
λΓ2
]
+ sgn (p1)

[
(λ · ξ1) Σ

2
]
+

k∑

i=2

sgn (pi) [(λ · ρi ·
(
σ−1
i · ξ1

)
)Σ2]

=
[
λΓ2
]
+ sgn (p1)

[
(λ · ξ1) Σ

2
]
+

k∑

i=2

sgn (pi) [(λ · ρi · σ
−1
i · (λ−1 · λ) · ξ1)Σ

2]

=
[
λΓ2
]
+ sgn (p1)

[
(λ · ξ1) Σ

2
]
+

k∑

i=2

sgn (pi)
(
λ · ρi · σ

−1
i · λ−1

) [
(λ · ξ1)Σ

2
]

=
[
λΓ2
]
+
[
(λ · ξ1) Σ

2
]
+

k∑

i=2

sgn (pi) gi
[
(λ · ξ1)Σ

2
]

=
[
λΓ2
]
+

(
sgn (p1) +

k∑

i=2

sgn (pi) gi

)
[
(λ · ξ1) Σ

2
]

where gi = λ · ρi · σ
−1
i · λ−1 is precisely the loop used in defining εZ[π1(B2,∗)] (pi)

for i = 2, · · · , k. By our choice of base paths, the loop corresponding to p1 is

null-homotopic, so εZ[π1(B2,∗)] (p1) = sgn (p1). Thus
(
sgn (p1) +

∑k
i=2 sgn (pi) gi

)
=

εZ[π1(B2,∗)] (Γ
2, βn−3). The inclusion of each gi into (R, ∗) yields j# (gi), thereby con-

verting sgn (p1) +
∑k

i=2 sgn (pi) gi to ĵ#

(
sgn (p1) +

∑k
i=2 sgn (pi) gi

)
. So the lemma

is proved. �

4. The Embedded Manifold Plus Construction

In this section we employ the method of spherical alteration described above to
obtain a constructive proof of Theorem 4.2. An indirect proof, relying on the s-
cobordism theorem, was given in [GT2]. An advantage to the current approach is
that it may be modified to obtain more general results; that is the content of the last
two sections of this paper. A side benefit of the constructive proof is that it yields a
proof of the classical Manifold Plus Construction which avoids many subtleties related
to framings and bundle theory.
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We begin by reviewing a proof of the classical Manifold Plus Construction. Suppose
(W,A,B) is a compact cobordism between closed manifolds and A →֒ W is a homo-
topy equivalence—in which case we call (W,A,B) is a one-sided h-cobordism. An
application of Poincaré duality in the universal cover (see [GT1, Th.2.5].) shows that
π1 (B) → π1 (W ) is surjective with perfect kernel. The manifold plus construction
provides a converse to that observation.

Theorem 4.1 (The Manifold Plus Construction). Let B be a closed (n− 1)-manifold
(n ≥ 6) and θ : π1 (B, ∗) → H a surjective homomorphism onto a finitely presented
group such that ker (θ) is perfect. Then there exists a compact one-sided h-cobordism
(W,A,B) such that ker (π1 (B, ∗) → π1 (W, ∗)) = ker θ. In fact, it may be arranged
that A →֒ W is a simple homotopy equivalence, in which case W unique up to home-
omorphism rel B.

A one-sided h-cobordism (W,A,B) for which the homotopy equivalence A →֒ W is
simple will be called a plus cobordism. To avoid repetition, we adopt the convention
that whenever a one-sided [or plus] cobordism is discussed, it will be the first of the
two boundary components listed, i.e., the middle term in the triple, which includes
into W as a [simple] homotopy equivalence.

A classical proof of Theorem 4.1.
Step I. [Attaching 2-handles to kill ker (θ)] Associate B with B × {0} ⊆ S =
B × [0, 1] and let B1 = B × {1}. By a standard group theoretic argument, ker θ is
the normal closure of a finite set of elements of π1 (B, ∗); identify a corresponding
collection of nicely embedded oriented loops {αi}

r
i=1 in B1. Since we are dealing with

a normal closure, we need not be concerned with base points, so we may assume the
loops are pairwise disjoint. Since all elements of ker θ are homologically trivial, each
αi has a regular neighborhood in B1 homeomorphic to S1×Dn−2. Identify a pairwise
disjoint collection {Ji}

r
i=1 of such neighborhoods and use them as attaching tubes

for a set {h2
i }

r
i=1 of 2-handles. For the moment, we do not concern ourselves with

the framings of those 2-handles. The resulting n-manifold T has fundamental group
isomorphic to H . By inverting these handles, T may be obtained by attaching a
collection of (n− 2)-handles to a collar neighborhood of B2 = ∂T −B, a process that
does not change fundamental group; so B2 →֒ T induces a π1-isomorphism. Note,
however, that Hn−2 (T,B2;Z) ∼= Z

r, so we do not have a one-sided h-cobordism.

Step II. [Attaching complementary 3-handles] Here we will attach a collection
of 3-handles that are complementary to the above 2-handles (in an appropriately
strong sense) so that the end result is the desired cobordism (W,A,B). Along the
way, we may need to rechoose the framings of the 2-handles attached in Step I. Let{
βn−3
i

}r
i=1

be the collection of belt spheres of {h2
i }

r
i=1. Our initial goal is to identify

a pairwise disjoint collection {Γ2
i }

r
i=1 of 2-spheres in B2 that is algebraically dual

over Z[π1 (B2, ∗)] to
{
βn−3
i

}r
i=1

. In order to utilize the {Γ2
i }

r
i=1 as attaching spheres

for a collection of 3-handles {h3
i }

r
i=1, we must also ensure that each has a regular

neighborhood homeomorphic to S2×Dn−3 in B2. Once that is accomplished, our task
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is essentially complete—we will letW = B×[0, 1]∪{h2
i }

r
i=1∪{h

3
i }

r
i=1 and A = ∂W−B.

Inverting that handle decomposition, we may view W as a collar on A together with a
collection of (n− 3)-handles

{
hn−3
i

}r
i=1

(the duals of the 3-handles) with belt spheres

{Γ2
i }

r
i=1 and a collection of (n− 2)-handles

{
hn−2
i

}r
i=1

(the duals of the 2-handles)

with attaching spheres
{
βn−3
i

}r
i=1

. Then A →֒ W induces a π1-isomorphism with each
fundamental group isomorphic to H ; moreover, the intersection data (as discussed in
Section 2.4) tells us that the corresponding cellular Z[π1 (A)]-complex for the pair
(W,A) is of the form

0 → C̃n−2
∂n−2
−→ C̃n−3 → 0 → · · · → 0

where each of C̃n−2 and C̃n−3 is isomorphic to a free Z[π1 (A)]-module on r generators
and, with respect to the obvious preferred bases, the boundary operator ∂n−2 can be
represented by a diagonal matrix with diagonal entries all being ±1. It follows that
A →֒ W is a simple homotopy equivalence.

We now turn to the construction of {Γ2
i }

r
i=1. This is the heart of the matter; it is

where the beauty of the plus construction lies. Since each αi represents an element of

the perfect group ker θ it may be expressed as
∏ki

j=1

[
mi

j , l
i
j

]
, where

{(
mi

j , l
i
j

)}ki
j=1

is

a complete set of meridian-longitude pairs for a compact orientable surface Λi ⊆ B1

and each mi
j and lij also lies in ker θ. Using general position and the radial structure

of the attaching tubes Ji, we can adjust these surfaces so that each has boundary
α′

i which lies in ∂Ji and is parallel to αi. In addition we may assume that the Λi

are properly embedded in B1 −
⋃r

i=1 int Ji and pairwise disjoint. Complete each Λi

to a closed surface Λ̂i ⊆ B2 by adding a 2-disk D̂i lying in the belt tube of h2
i

and parallel to its core. It is here that we must pay attention to framings. Since
Λi is orientable and deformation retracts onto a bouquet of circles, where each of
those circles corresponds to an mi

j or an lij—all of which have trivial normal bundles,
standard bundle theory can be used to verify that Λi has a product relative regular
neighborhood in B1 −

⋃r
i=1 int Ji. If necessary, we now rechoose the framing used to

attach h2
i so that the corresponding trivial normal bundle for D̂i matches up with that

of Λi to give Λ̂i a product regular neighborhood in B2; indeed, this is precisely the
matter which determines the framings that must be used for attaching the 2-handles.
(One may argue that this should have been discussed before attaching the 2-handles;
however, it seems instructive to discover the issue in context.)

Notice that each surface Λ̂i intersects the belt sphere βn−3
i transversely in exactly

one point and that it intersects no other belt spheres. Thus,
{
Λ̂i

}
is a collection

of geometric duals for
{
βn−3
i

}
, and since the fundamental group of each Λ̂i includes

trivially into B2, this may be expressed in terms of Z[π1 (B2)]-intersection numbers.
After choosing all necessary base points, base paths, and orientations the geometric

intersection properties imply that εZ[π1(B2)]

(
Λ̂i, β

n−3
j

)
= 0 whenever i 6= j and each
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εZ[π1(B2)]

(
Λ̂i, β

n−3
i

)
= ±gi for some gi ∈ Z[π1 (B2)]. We may arrange that each of the

latter intersection numbers is ±1 by rechoosing some of the base paths.

Unfortunately, the Λ̂i will usually have genus > 0, and thus be unusable for at-
taching 3-handles. We remedy that problem by surgering the surfaces to 2-spheres in
the manner outlined in Section 2.2. Since each mi

j contracts in B2 we may surger Λ̂i

to a 2-sphere Γi in B2 using disks bounded by the various meridianal curves. (In the

notation of Section 2.2, Γi = Λ̂∗

i .) By part 1) of Lemma 2.1 this operation preserves
Z[π1 (B2)]-intersection numbers, so εZ[π1(B2)]

(
βn−3
i ,Γj

)
= ±δij for all 1 ≤ i, j ≤ r.

Another application of standard bundle theory ensures that the Γi inherit trivial nor-

mal bundles from the Λ̂i, so they may be used as attaching spheres for the 3-handles
{h3

i }
r
i=1, thereby supplying the final ingredient of the manifold plus construction.

The uniqueness part of this theorem follows from a clever application of the s-
cobordism theorem. Since it is not of primary importance to this paper, we refer the
reader to [FQ, p.197] for a proof. �

We are now ready for the embedded version of the Manifold Plus Construction.
Much of the strategy and notation employed above is recycled into the proof—the
main ideas are the same. Some issues become more complex due to our desire to
embed the construction in an ambient manifold; as a pleasant surprise, other issues
become easier for the same reason.

Theorem 4.2 (The Embedded Manifold Plus Construction). Let R be an n-manifold
(n ≥ 6) containing a closed (n− 1)-manifold B in its boundary and suppose

ker
(
π1 (B, ∗)

i∗−→ π1 (R, ∗)
)
contains a perfect group G which is the normal closure in

π1 (R, ∗) of a finite set of elements. Then there exists an embedding of a plus cobordism
(W,A,B) into R which is the identity on B and for which ker (π1 (B) → π1 (W )) = G.

Proof. Step I. [Finding embedded 2-handles that kill ker (i#)] Let S ≈
B× [0, 1] be a collar neighborhood of B in R and let B1 denote the interior boundary
component of S. Choose a pairwise disjoint collection of properly embedded 2-disks
{D1, · · · , Dr} in R − S whose boundaries in B1 represent a finite normal generating
set for G. By taking regular neighborhoods, thicken the Di to a pairwise disjoint
collection of 2-handles {h2

i }
r
i=1. Let T = S∪ h2

1 ∪ · · · ∪ h2
r and B2 = ∂T − B; for

later use, let Ji denote the attaching tube for h2
i . Then π1 (B2) ∼= π1 (T ) ∼= π1 (B) /G

and ker (π1 (B) → π1 (T )) = G. For the remainder of the proof, all work will be done
within a regular neighborhood R′ of T in R. Since R′ is just T with a collar added
along B2, B2 →֒ R′ − T induces a π1-isomorphism—a fact that will be utilized only
in the special argument needed for the n = 6 case.

Step II. [Altering the embedded 2-handles so that complementary em-
bedded 3-handles exist] We would like to find a pairwise disjoint collection of
3-handles {h3

i }
r
i=1 embedded R′ − T with attaching 2-spheres algebraically dual over

Z[π1 (B2)] to the collection
{
βn−3
i

}r
i=1

of belt spheres of {h2
i }

r
i=1. Adding those handles

to T (and following the argument used in the previous theorem) would give us the
desired W ⊆ R′.
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Toward that end goal, we construct a collection {Γi}
r
i=1 of 2-spheres in B2 which are

algebraic duals for the collection
{
βn−3
i

}r
i=1

in precisely the same manner employed
in Step II of the previous theorem. (But unlike that proof, we need not concern
ourselves with framings of the 2-handles or regular neighborhoods of the 2-spheres.)

Under ideal circumstances, the {Γi}
r
i=1 would contract in R′ − T allowing us to ob-

tain a pairwise disjoint collection of properly embedded 3-disks in R′ − T with the Γi

as boundaries. Thickening those disks to 3-handles would complete the construction
of W .

The main strategy of this proof can now be described: by utilizing a carefully
selected sequence of spherical modifications of the {h2

i }
r
i=1 we arrive at a new collection

of embedded 2-handles so that the correspondingly altered versions of the {Γi}
r
i=1

satisfy the desired contractibility condition.

Step (II 1). (Spherical alteration of h2
1.) Locate a parallel copy of Γ1 lying in the

interior of R′ − T . (Push Γ1 along collar lines.) Reverse the orientation on that copy
and denote it by ∆1. Choose a base point p1 for Γ1 lying in the belt tube of h2

1 but
missing the belt sphere βn−3

1 , and let ξ1 be the track of p1 in R′ − T under the push.
Extend ξ1 slightly to an arc ξ′1 which connects the core of h2

1 to ∆1, and perform a
spherical alteration of h2

1 over ∆1 along ξ′1 to obtain h2
1 (ξ

′

1,∆1). Then perform the
corresponding spherical alterations on each 2-sphere in the collection {Γi}

r
i=1 (Note.

Although the algebraic intersection number of Γi with βn−3
1 is 0 when i ≥ 2, the two

need not be disjoint; so the alterations must be done in order to obtain a collection

that lies in the right-hand boundary B
(1)
2 of T (1) = S ∪ h2

1 (ξ
′

1,∆1)∪ h2
2 ∪ · · ·h2

r .) Now
make the following observations:

a1) The collection {Γ2
i (ξ

′

1,∆1)}
r
i=1 of altered 2-spheres is algebraically dual to the

set {βn−3
i }ri=1 of belt spheres of the new collection of 2-handles {h2

1 (ξ
′

1,∆1) , h
2
2,

· · · , h2
r} in B

(1)
2 . (Recall that the belt sphere βn−3

1 of h2
1 is also the belt sphere

for h2
1 (ξ

′

1,∆1).) We need only check that ε
Z[π1

(

B
(1)
2 ,∗

)

]

(
βn−3
i ,Γ2

j (ξ
′

1,∆1)
)
=

εZ[π1(B2,∗)]

(
βn−3
i ,Γj

)
for all 1 ≤ i, j ≤ r. But this is clear, since Γ2

i (ξ
′

1,∆1)
and Γi are identical over path connected subsets which contain all points of
intersection with elements of {βn−3

i }ri=1. This means that all paths and loops
utilized in determining the two intersection numbers can be chosen to be

identical; such loops represent the ‘same’ elements of π1

(
B

(1)
2

)
as they do in

π1 (B2).
b1) Γ2

1 (ξ
′

1,∆1) contracts in R′. To see this, let λ1 be a path from the base point
p0 of R′ to p1, then by Lemma 3.1, as elements of π2 (R

′, p0),
[
λ1Γ

2
1 (ξ

′

1,∆1)
]
=
[
λ1Γ

2
1

]
+ [(λ1 · ξ1) (∆1)]

=
[
λ1Γ

2
1

]
+
[
λ1

(
−Γ2

1

)]

=
[
λ1Γ

2
1

]
−
[
λ1

(
Γ2
1

)]
= 0.

So Γ2
1 (ξ

′

1,∆1) contracts in R′.
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Step (II 2). (Spherical alteration of h2
2.) Now begin with the collection of 2-handles

{h2
1 (ξ

′

1,∆1) , h
2
2, · · · , h

2
r} attached to S in R′ and the collection {Γ2

i (ξ
′

1,∆1)}
r
i=1 of

algebraic duals to their belt spheres {βn−3
i }ri=1 in B

(1)
2 . Obtain a 2-sphere ∆2 by

pushing Γ2 (ξ
′

1,∆1) into the interior of R′ − T (1) and then reversing its orientation.
Let p2 be an appropriately chosen base point for Γ2 (ξ

′

1,∆1) and ξ2 be the track of p2
in R′ − T (1) under the push. Extend ξ2 slightly to an arc ξ′2 which connects the core
of h2

2 to ∆2, and perform the spherical alteration of h2
2 over ∆2 along ξ′2 to obtain

h2
2 (ξ

′

2,∆2). Then perform the corresponding spherical alterations on each 2-sphere
in the collection {Γ2

i (ξ
′

1,∆1)}
r
i=1. To save on notation, we denote the twice altered

version of Γ2
i by Γ2

i

(
⊔2
j=1ξ

′

j,∆j

)
. Let T (2) = S ∪ h2

1 (ξ
′

1,∆1) ∪ h2
2 (ξ

′

2,∆2) ∪ h2
3 · · ·h

2
r .

Using the same arguments as above, we now have:

a2) The collection
{
Γ2
i

(
⊔2
j=1ξ

′

j,∆j

)}r
i=1

of twice altered 2-spheres is algebraically

dual to the set {βn−3
i }ri=1 of belt spheres of the new collection of 2-handles

{h2
1 (ξ

′

1,∆1) , h
2
2 (ξ

′

2,∆2) , h
2
3, · · · , h

2
r} in B

(2)
2 .

b2) Γ2
1

(
⊔2
j=1ξ

′

j,∆j

)
and Γ2

2

(
⊔2
j=1ξ

′

j,∆j

)
both contract in R′. (Contractibility of

Γ2
1

(
⊔2
j=1ξ

′

j,∆j

)
follows from Lemma 3.1 together with the fact that

ε
Zπ1

(

B
(1)
2

)

(
βn−3
2 ,Γ2

1 (ξ
′

1,∆1)
)
= 0.)

Continue the above process until each of h2
1, · · · , h

2
r has been altered by a similar

process, and let T (r) denote the union of S and these altered 2-handles. At this point
we have:

ar) The collection
{
Γ2
i

(
⊔r
j=1ξ

′

j,∆j

)}r
i=1

of r-times altered 2-spheres is algebraically

dual to the set {βn−3
i }ri=1of belt spheres of the handles {h

2
i (ξ

′

i,∆i)}
r
i=1 in B

(r)
2 .

br) Γ2
1

(
⊔r
j=1ξ

′

j,∆j

)
, · · · ,Γ2

r

(
⊔r
j=1ξ

′

j,∆j

)
contract in R′.

Before proceeding to the final stage of our proof, let us simplify the above notation.
From now on each of the altered 2-handles h2

i (ξ
′

i,∆i) will be denoted by ḣ2
i and

each of the r-times altered 2-spheres Γ2
i

(
⊔r
j=1ξ

′

j,∆j

)
by Γ̇2

i . Thus, we have T (r) =

S ∪ ḣ2
1 ∪ · · · ∪ ḣ2

r ⊆ R′ and a collection
{
Γ̇2
i

}r

i=1
of 2-spheres algebraically dual over

Z[π1

(
B

(r)
2 , ∗

)
] to the collection

{
βn−3
i

}r
i=1

of belt spheres of those 2-handles in B
(r)
2 .

In addition, each Γ̇2
i contracts in R′. By general position, these 2-spheres also contract

in R′ − T (r). This is because any contraction of Γ̇2
i in R′ can be pushed off the 2-

dimensional cores of all of the 2-handles and, thus, entirely out of the interior of
T (r). Assume for the moment that the dimension of R′ is at least 7, Then we may

choose a pairwise disjoint collection {D3
i }

r
i=1 of properly embedded 3-disks in R′ − T (r)

such that ∂D3
i = Γ̇2

i for each i = 1, · · · , r. Take pairwise disjoint relative regular

neighborhoods of these 3-disks in R′ − T (r) to obtain 3-handles
{
ḣ3
i

}r

i=1
in R′ − T (r)

attached to B
(r)
2 . Let

W = T (r) ∪
(
∪r
i=1ḣ

3
i

)
= S ∪

(
∪r
i=1ḣ

2
i

)
∪
(
∪r
i=1ḣ

3
i

)



SPHERICAL ALTERATIONS OF HANDLES 17

Figure 4. Eliminating a point of intersection using the π-π procedure

and let A = ∂W − B. By the same reasoning used in Theorem 4.1, (W,A,B) is a
plus cobordism.

Step III. [π-π argument for the n = 6 case.] The only place the above proof
runs into trouble is in the use of general position to obtain a pairwise disjoint collection

{D3
i }

r
i=1 of properly embedded 3-disks in R′ − T (r) with ∂D3

i = Γ̇2
i for each i. If n = 6,

we may use general position to obtain a collection
{
D̃3

i

}r

i=1
of immersed 3-disks, each

containing a finite collection of interior transverse self-intersection points, and a finite
number of interior points where it transversely intersects another member of the
collection. We will employ a well known strategy (see, for example, the proof of the
π-π Theorem in [Wa, Ch.4]) to eliminate all intersection and self-intersection points.
Once that is accomplished, the proof may be completed in the previous manner.

Let p ∈ D̃3
i ∩ D̃3

j for some i 6= j. Choose arcs α and α′ in D̃3
i and D̃3

j respectively

missing all other intersection points and connecting p to points in B
(r)
2 . Since B

(r)
2 →֒

R′ − T (r) induces a π1-isomorphism (a surjection is sufficient), we may connect the

endpoints of α and a′ by an arc α′′ in B
(r)
2 such that the loop α ∪ a′ ∪ α′′ contracts

in R′ − T (r). By general position we may choose an embedded 2-disk δ bounded by

α∪a′ ∪α′′ which intersects the collection
{
D̃3

k

}r

k=1
only at α∪α′; and intersects B

(r)
2

only at α′′. Use δ to define a proper isotopy of D̃3
i in R′ − T (r) which moves points in

a small neighborhood of α across δ to the other side of α′, thus eliminating the point

of intersection p. See Figure 4. Alternatively, perform a “finger move” on D̃3
i along

the arc α′′ to create a new point p′ of transverse intersection between D̃3
i and D̃3

j . The
disk δ contains a Whitney disk which allows us to simultaneously remove p and p′

via an isotopy of D̃3
i (after finger move) which takes place entirely in a neighborhood
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of δ. Similar procedures may be used to eliminate a point of self-intersection from a
given D̃3

i .
Apply the above procedure to each point of intersection between distinct elements

of
{
D̃3

k

}r

k=1
and each point of self-intersection of each D̃3

i to arrive at a pairwise

disjoint collection of properly embedded 3-disks {D3
k}

r
k=1. Note that the boundary of

each D3
k is isotopic to the original Γ̇2

k in B
(r)
2 . Hence, the {∂D3

k}
r
k=1 is still a collection

of algebraic duals for the
{
βn−3
k

}r
k=1

in B
(r)
2 . �

Remark 5. The reader will note that a key issue in the proof of Theorem 4.1—the
existence of product neighborhoods for the 2-spheres along which the 3-handles will
be attached—does not appear in the proof of Theorem 4.2. In the latter setting, the
3-handles are realized as regular neighborhoods of embedded 3-disks; as such, product
neighborhoods of their boundaries are guaranteed by regular neighborhood theory.

This is the essence of our alternate proof of Theorem 4.1. One first carries out Step
I of the classical proof; in particular, construct a manifold T by attaching finitely
many 2-handles to B× [0, 1] to kill ker θ (and with no attention given to the framings

used). Theorem 4.2 applied to the inclusion B
i
→֒ T with G = ker i∗ = ker θ then

assures the existence of the desired plus cobordism lying inside T . It strikes us as
surprising that the full plus cobordism can be found embedded in the first stage of
that construction—even when the first stage is done with the wrong framings.

5. Generalized manifold plus constructions and their embeddings

The techniques employed in the proofs of Theorems 4.1 and 4.2 can be carried out
without the full hypothesis of ‘perfectness’ on the subgroups ker θ and G, provided
one is satisfied with weaker (but still useful) conclusions. In this section we develop
results of that type. Primary motivation for the definitions and results found here is
provided by our ongoing study of noncompact manifolds [GT3].

Our first goal is to formulate appropriate generalizations of ‘one-sided h-cobordism’
and ‘plus cobordism’. Let (X,A) be a connected CW pair and L E π1 (A). The
inclusion A →֒ X is a (modL)-homotopy equivalence if it induces an isomorphism
on fundamental groups and is a Z [π1 (A) /L]-homology equivalence; if that homology
equivalence is simple we call A →֒ X is a (modL)-simple homotopy equivalence.

A compact cobordism (W,A,B) is a (modL)-one-sided h-cobordism if B →֒ W
induces a surjection of fundamental groups and A →֒ W is a (modL)-homotopy
equivalence. A one-sided (modL)-h-cobordism for which A →֒ W is a (modL)-simple
homotopy equivalence is called a (modL)-plus cobordism.

Remark 6. Standard arguments show that the notions of (modL)-homotopy equiv-
alence, (modL)-one-sided h-cobordism, and (modL)-plus cobordism reduce to the
classical definitions when L = {1}. In that case the surjectivity of π1 (B) → π1 (W )
is automatic and need not be included in the definitions (see the second paragraph
of Section 4). When L is nontrivial that condition must be included in the definition
to obtain a theory that parallels the classical situation. For example, it provides a
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natural correspondence between π1 (A) /L and π1 (B) /L′ where L′ is the preimage of
L; from there it follows (by Poincaré duality) that B →֒ W is also a Z [π1 (A) /L]-
homology equivalence.

The following provides an important connection between (modL)-one-sided h-
cobordisms and the material presented in Section 2.3.

Lemma 5.1. Let (W,A,B) is a (modL)-one-sided h-cobordism and i# : π1 (B) →
π1 (W ) the inclusion induced surjection. Then ker i# is strongly L′-perfect, where
L′ = i−1

# (L).

Proof. This follows from Poincaré duality and the 5-Term Exact Sequence from the
theory of group homology [Stal], [Stam]. See [GT3] for a detailed proof. �

We are now ready to state and prove generalizations of the two main theorems
from the previous section.

Theorem 5.2 (A Generalized Manifold Plus Construction). Let B be a closed
(n− 1)-manifold (n ≥ 6) and θ : π1 (B, ∗) → H a surjective homomorphism onto a
finitely presented group such that ker (θ) is strongly L′-perfect for some group L′ where
ker (θ) E L′ E π1 (B, ∗) and ω1 (L

′) = 1. Then, for L = L′/ ker θ, there exists a com-
pact (modL)-plus cobordism (W,A,B) such that ker (π1 (B, ∗) → π1 (W, ∗)) = ker θ.

Theorem 5.3 (A Generalized Embedded Manifold Plus Construction). Let R be
an n-manifold (n ≥ 6) containing a closed (n− 1)-manifold B in its boundary and

suppose ker
(
π1 (B, ∗)

i∗−→ π1 (R, ∗)
)
contains a group G which is the normal closure

in π1 (R, ∗) of a finite set and which is strongly L′-perfect for some L′ with G E

L′ E π1 (B, ∗) and ω1 (L
′) = 1. Then, for L = L′/G, there exists an embedding of

a (modL)-plus cobordism (W,A,B) into R which is the identity on B and for which
ker (π1 (B) → π1 (W )) = G.

Proofs of each of these theorems can be obtained by reworking those from the
previous section with the new weaker hypotheses—obtaining correspondingly weaker
conclusions. We sketch out the details of those changes needed to obtain Theorem
5.2 and leave it to the reader to carry our the analogous changes required to obtain
Theorem 5.3.

Sketch of the Generalized Manifold Plus Construction. Begin by repeating Step I of
the proof of Theorem 4.1—in particular, attach a collection {h2

i }
r
i=1of 2-handles to

B1 = B×{1} ⊆ S = B× [0, 1] to kill a finite set {αi}
r
i=1 of oriented loops which nor-

mally generate ker (θ). Let T = S∪(∪r
i=1h

2
i ). Moving to Step II, strong L′-perfectness

ensures that each αi bounds a compact oriented surface Λi ⊆ B1 which contains a

complete set
{(

mi
j , l

i
j

)}ki
j=1

of meridian-longitude pairs for which each mi
j corresponds

to an element of ker θ and each lij to an element of L′. Using the same general position
and bundle-theoretic arguments employed earlier, add a disk to each Λi to obtain

a pairwise disjoint collection
{
Λ̂i

}r

i=1
of closed oriented surfaces in B2 = ∂T − B
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geometrically dual to the collection
{
βn−3
i

}r
i=1

of belt spheres of the {h2
i }

r
i=1. By re-

choosing the framings of the 2-handles if necessary, we may arrange that each Λ̂i has
a product neighborhood in B2—here we utilize the hypothesis that ω (L′) = 1. Since

each Λ̂i has a fundamental group that includes into L E π1 (B2), the Z[π1 (B2) /L]-

intersection numbers between elements of
{
Λ̂i

}r

i=1
and

{
βn−3
i

}r
i=1

are well-defined.

By making appropriate choices of local orientation and base paths, we may arrange

that εZ[π1(B2)/L]

(
Λ̂i, β

n−3
j

)
= ±δij for all 1 ≤ i, j ≤ r. By applying part 2) of Lemma

2.1, these surfaces may be surgered into a collection of 2-spheres {Γi}
r
i=1 which is al-

gebraically dual over Z[π1 (B2) /L] to the collection {βn−3
i }. Standard bundle theory

again ensures that the Γi inherit trivial normal bundles from the Λ̂i. Attach 3-handles
along regular neighborhoods of these 2-spheres to obtain a cobordism (W,A,B). Then
A →֒ W induces a π1-isomorphism, with π1 (A) ∼= π1 (W ) ∼= π1 (B2) and the above
intersection data assures that A →֒ W is a simple Z[π1 (A) /L]-equivalence. The sur-
jectivity of π1 (B) → π1 (W ) is clear from the construction. �

Sketch of the Generalized Embedded Manifold Plus Construction. For the most part,
this proof follows the same outline as the proof of Theorem 4.2 with modifications
analogous to those found in the above sketch. A few items become more delicate; we
focus our attention on those issues.

1) In the proof of Theorem 4.2 we carried our the entire construction inside a
regular neighborhood R′ of T , chosen early in the proof. That was done solely for

use in Step III. There it was crucial that B
(r)
2 →֒ R′ − T (r) induce a π1-surjection—

thereby allowing us to choose an arc α′′ in B
(r)
2 so that the loop α∪a′∪α′′ contracted

in R′ − T (r). In the more general case at hand, it will be impossible to carry our
the entire construction in a regular neighborhood of T . Instead, we will expand the
region where we work to an open set R′′ ⊇ T in which all loops corresponding to
elements of L′ contract and for which B2 →֒ R′′ − int T induces a π1-surjection. If
L′ is the normal closure in π1 (B, ∗) of a finite set of its elements, this is easy—let
S ≈ B × [0, 1] be a collar neighborhood of B in R with B1 the interior bound-
ary component. Choose a pairwise disjoint collection of properly embedded 2-disks
{D1, · · · , Dr} in R− S whose boundaries in B1 represent a finite normal generat-
ing set for G, then supplement that collection with a disjoint collection of pairwise
disjoint 2-disks {Dr+1, · · · , Ds} in R− S whose boundaries, together with those of
{D1, · · · , Dr}, form a normal generating set for L′. Then T may be viewed as a regu-
lar neighborhood of S ∪ (∪r

i=1Di) in R and we may let R′′ be a regular neighborhood
of S ∪ (∪s

i=1Di) chosen to contain T in its interior.
When L′ is not normally finitely generated we use a similar, but more delicate con-

struction. Choose an infinite collection of 2-disks {Dr+1, Dr+2, · · · } whose boundaries,
together with those of {D1, · · · , Dr} generate L′. These may be chosen inductively
so that each Di has a neighborhood Ui for which the collection {Ui}

∞

i=1 is pairwise
disjoint. We may then thicken each Di (i > r) to a 2-handle h2

i ⊆ Ui and add to a
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slightly enlarged copy of T the interiors of each of these 2-handles. This creates an
open subset R′′ of R containing T and having the desired properties.

2) Following the same strategy sketched out in the proof of Theorem 5.2, but
utilizing the more delicate item 2) of Lemma 2.1, we obtain a collection of 2-spheres
{Γi}

r
i=1 inB2 which is algebraically dual over Z[π1 (B2) /L] to the collection {βn−3

i }ri=1.
Next we proceed inductively through the spherical alteration process in the same
manner as Step II of the proof of Theorem 4.2 so that, at the conclusion, we have a

new set of 2-handles
{
ḣi

}r

i=1
in R′′ attached to S and a collection

{
Γ̇2
i

}r

i=1
of 2-spheres

algebraically dual over Z[π1

(
B

(r)
2 , ∗

)
/L] to the collection

{
βn−3
i

}r
i=1

of belt spheres

of those 2-handles in B
(r)
2 . In addition, each Γ̇2

i contracts in R′′. Contractibility of
the 2-spheres is more delicate in this generalized situation. We use the full strength
of Assertion 2) of Lemma 3.1, the key point being that j# : π1 (B2, ∗) → π1 (R

′′, ∗)
is precisely the homomorphism that kills L E π1 (B2, ∗). By general position these

2-spheres also contract in R′′ − T (r), so for n ≥ 7 we may thicken a corresponding
collection of pairwise disjoint 3-disks to 3-handles to complete the construction of W .

3) For n = 6, Step III of the proof Theorem 4.2 goes through without any changes.
It is here, however, where we use the carefully chosen set R′′ in which to carry out
the construction. �

6. A more general lemma

The following technical lemma was specifically designed for use in [GT3]. It is more
general than Theorem 5.3, but no new ideas or techniques are needed. For the reader
who has made it this far, the proof is almost immediate.

Lemma 6.1. Let R′ ⊆ R be a pair of n-manifolds (n ≥ 6) with a common boundary
component B, and suppose there is a subgroup L′ of ker (π1 (B) → π1 (R)) for which
K = ker (π1 (B) → π1 (R

′)) is strongly L′-perfect. Suppose further that there is a
clean submanifold T ⊆ R′ consisting of a finite collection H2 of 2-handles in R′

attached to a collar neighborhood S of B with T →֒ R′ inducing a π1-isomorphism
(the 2-handles precisely kill the group K) and a finite collection {Θ2

t} of pairwise
disjoint embedded 2-spheres in ∂T − B, each of which contracts in R′. Then on

any subcollection
{
h2
j

}k
j=1

⊆ H2, one may perform spherical alterations to obtain to

obtain 2-handles
{
ḣ2
j

}k

j=1
in R′ so that in ∂Ṫ − B (where Ṫ is the correspondingly

altered version of T ) there is a collection of 2-spheres
{
Γ̇2
j

}k

j=1
algebraically dual over

Z[π1 (B) /L′] to the belt spheres
{
βn−3
j

}k
j=1

common to
{
h2
j

}k
j=1

and
{
ḣ2
j

}k

j=1
with the

property that each Γ̇2
j contracts in R. Furthermore, each correspondingly altered 2-

sphere Θ̇2
t (now lying in ∂Ṫ −B) has the same Z[π1 (B) /L′]-intersection number with

those belt spheres and with any other oriented (n− 3)-manifold lying in both ∂T −B
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and ∂Ṫ −B as did Θ2
t . Whereas the 2-spheres {Θ2

t} each contracted in R′, the
{
Θ̇2

t

}

each contract in R.

Remark 7. In the usual way, when n ≥ 7, the above result together with general
position assures the existence of a pairwise disjoint collection of embedded 3-disks

in R− Ṫ with boundaries corresponding to the 2-spheres
{
Γ̇2
j

}k

j=1
∪
{
Θ̇2

t

}
. Those

3-disks may be thickened to 3-handles by taking regular neighborhoods. When n = 6,
the same is true, but the π-π argument used in the proofs of Theorems 4.2 and 5.3
must again be employed to obtain embedded and pairwise disjoint 3-disks. In that
case we should also use the strategy used in the proof of Theorem 5.3 to ensure that
we are working within a submanifold R′′ of R which contains T and in which the
group L′ dies and π1 (B) → π1 (R

′′) is surjective.
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