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Topological gauge theories in four dimensions which admit surface operators provide a natural framework
for realizing homological knot invariants. Every such theory leads to an action of the braid group on branes
on the corresponding moduli space. This action plays a key role in the construction of homological knot
invariants. We illustrate the general construction with a simple example based on surface operators in N = 4
twisted gauge theory which lead to a categorification of a variant of the Casson invariant.
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1 Introduction

Topological field theory is a natural framework for “categorification”, an informal procedure that turns
integers into vector spaces (abelian groups), vector spaces into abelian or triangulated categories, operators
into functors between these categories [1]. The number becomes the dimension of the vector space, while
the vector space becomes the Grothendieck group of the category (tensored with a field). This procedure
can be illustrated by the following diagram [2]:

(1.1)

Recently, this idea led to a number of remarkable developments in various branches of mathematics, notably
in low-dimensional topology, where many polynomial knot invariants were lifted to homological invariants.

Although the list of homological knot invariants is constantly growing, most of the existing knot homolo-
gies fit into the “theA-series” of homological knot invariants associated with the fundamental representation
of sl(N) (or gl(N)). Each such theory is a doubly graded knot homology whose graded Euler characteristic
with respect to one of the gradings gives the corresponding knot invariant,

P (q) =
∑

i,j

(−1)iqj dim Hi,j (1.2)

For example, the Jones polynmial can be obtained in this way as the graded Euler characteristic of the
Khovanov homology [3]. Similarly, the so-called knot Floer homology [4,5] provides a categorification of
the Alexander polynomial ∆(q). At first, these as well as other homological knot invariants listed in the
table below appear to have very different character. Thus, as the name suggests, knot Floer homology is
defined as a symplectic Floer homology of two Lagrangian submanifolds in a certain configuration space,
while the other theories are defined combinatorially. In addition, the definition of the knot Floer homology
admits a generalization to knots in arbitrary 3-manifolds, whereas at present the definition of the other knot
homologies (with N > 0) is known only for knots in R3.
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Table 1 A general picture of knot polynomials and knot homologies.

g Knot polynomial Categorification

gl(1|1) ∆(q) knot Floer homology HFK(K)
“sl(1)” – Lee’s deformed theory H ′(K)
sl(2) Jones Khovanov homology HKh(K)
sl(N) PN (q) sl(N) homology HKRN (K)
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Fig. 1 (online colour at: www.fp-journal.org) A
membrane ending on a Lagrangian five-brane.

The sl(N) knot homology [3,6,7] – whose Euler characteristic is the quantum sl(N) invariant PN (q)
– has a physical interpretation as the space of BPS states, HBPS , in string theory [8]. In order to remind
the physical setup of [8], let us recall that polynomial knot invariants, such as PN (q), can be related to
open topological srting amplitudes (“open Gromov-Witten invariants”) by first embedding Chern-Simons
gauge theory in topological string theory [9], and then using the so-called large N duality [10–12], a close
cousin of the celebrated AdS/CFT duality [13]. Moreover, open topological string amplitudes and, hence,
the corresponding knot invariants can be reformulated in terms of new integer invariants which capture the
spectrum of BPS states in the string Hilbert space, HBPS . The BPS states in question are membranes ending
on Lagrangian five-branes in M-theory on a non-compact Calabi-Yau space X = OP1(−1) ⊕ OP1(−1).
Specifically, the five-branes have world-volume R2,1 × LK where LK ⊂ X is a Lagrangian submanifold
(which depends on knot K) and R2,1 ⊂ R4,1.

Surprisingly, the physical interpretation of the sl(N) knot homology naturally leads to a triply-graded
(rather than doubly-graded) knot homology [8]. Indeed, the Hilbert space of BPS states, HBPS , is graded by
three quantum numbers, which are easy to see in the physical setup described in the previous paragraph. The
world-volume of the five-brane breaks the SO(4) ∼= SU(2)×SU(2) rotation symmetry in five dimensions
down to a subgroup U(1)L ×U(1)R, where U(1)L (resp. U(1)R) is a rotation symmetry in the dimensions
parallel (resp. transverse) to the five-brane. Therefore, BPS states in the effective N = 2 theory on the five-
brane are labelled by three quantum numbers jL, jR, and Q, where Q ∈ H2(X , LK) ∼= Z is the relative
homology class represented by the membrane world-volume. In other words, apart from the Z2-grading by
the fermion number, the Hilbert space of BPS states HBPS is triply-graded. The properties of this triply-
graded theory were studied in [14]; it turns out that this theory unifies all the doubly-graded knot homologies
listed in Table 1, including the knot Floer homology. A mathematical definition of the triply-graded knot
homology which appears to have many of the expected properties was constructed in [15].

Apart from realization in (topological) string theory, the homological knot invariants are expected to
have a physical realization also in topological gauge theory, roughly as polynomial knot invariants have a
physical realization in three-dimensional gauge theory (namely, in the Chern-Simons theory [16]) as well as
in the topological string theory [9–11].Although these two realizations are not unrelated, different properties
of knot polynomials are easier to see in one description or the other. For example, the dependence on the
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rank N is manifest in the string theory description, while the skein operations and transformations under
surgeries is easier to see in the Chern-Simons gauge theory.

Similarly, as we explained above, string theory realization is very useful for understanding relation
between knot homologies of different rank. On the other hand, the formal properties of knot homologies
which are hard to see in string theory (which, however, would be very natural in topological field theory)
have to do with the fact that, in most cases, knot homologies can be extended to a functor F from the category
of 3-manifolds with links and cobordisms to the category of graded vector spaces and homomorphisms

F(Y ; K) = HY ;K (1.3)

F(X; Σ) : HY ;K → HY ′;K′ (1.4)

Moreover, on manifolds with corners, it is expected that F extends to a 2-functor from the 2-category of
oriented and decorated 4-manifolds with corners to the 2-category of triangulated categories [17–19]. In
particular, it should associate:

• a triangulated category F(Σ) to a closed oriented 2-manifold Σ;

• an exact functor F(Y ) to a 3-dimensional oriented cobordism Y ;

• a natural transformation F(X) to a 4-dimensional oriented cobordism X .

As we explain below, these are precisely the formal properties of a four-dimensional topological field theory
with boundaries and corners. Moreover, links and link cobordisms can be incorporated by introducing
“surface operators” in the topological gauge theory.

In Sect. 2, we discuss the general aspects of topological gauge theories which admit surface operators.
Of particular importance is the fact that every topological gauge theory which admits surface operators
gives rise to an action of the braid group on D-branes. Then, in Sect. 3, we illustrate how these general
structures are realized in a simple example of N = 4 twisted gauge theory – studied recently in connection
with the geometric Langlands program [20,21] – with a simple type of surface operators, which provides a
physical framework for categorification of the GC Casson invariant. Gauge theory realization of other knot
homologies (in particular, the Khovanov homology) categorifying Chern-Simons invariants will appear
elsewhere [22].

2 Gauge theory and categorification

Let us start by describing the general properties of the topological quantum field theory (TQFT) with
boundaries, corners, and surface operators. To a closed 4-manifold X , a four-dimensional TQFT associates
a number, Z(X), the partition function of the topological theory on X . Similarly, to a closed 3-manifold Y ,
it associates a vector space, HY , the Hilbert space obtained by quantization of the theory on X = R × Y .
Finally, to a closed surface Σ it associates a triangulated category, F(Σ), which can be understood as
the category of D-branes in the topological sigma-model obtained via the dimensional reduction of gauge
theory on Σ. The objects of the category F(Σ) describe BRST-invariant boundary conditions in the four-
dimensional TQFT on 4-manifolds with corners (locally, such manifolds look like X = R × R+ × Σ).
Summarizing,

gauge theory on X � number Z(X)

gauge theory on R × Y � vector space HY

gauge theory on R2 × Σ � category F(Σ)
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Fig. 2 (online colour at: www.fp-journal.org) a A 3-manifold Y can be obtained as a connected sum of
3-manifolds Y1 and Y2, joined along their common boundary Σ. b In four-dimensional gauge theory, the
space R × Y is obtained by gluing two 4-manifolds with corners.

where we assume that X , Y , and Σ are closed. Depending on whether the topological reduction of the four-
dimensional gauge theory onR2×Σ gives a topologicalA-model or B-model, the category F(Σ) is either the
derived Fukaya category1, Fuk(M), or the derived category of coherent sheaves, Db(M) := DbCoh(M),

topological A-model: F(Σ) = Fuk(M)

topological B-model: F(Σ) = Db(M)

where M is the moduli space of classical solutions in gauge theory on R2 ×Σ, invariant under translations
along R2. Different topological gauge theories lead to different functors F . For example, in the context
of Donaldson-Witten theory [25], Fukaya suggested [26] that the category associated to a closed surface
Σ should be A∞-category of Lagrangian submanifolds in the moduli space of flat G-connections on Σ.
This is precisely what one finds from the topological reduction [27] of the twisted N = 2 gauge theory on
R2 × Σ, in agreement with the general principle discussed here.

The Atiyah-Floer conjecture and its variants

It is easy to see that F defined by the topological gauge theory has all the expected properties of a 2-functor.
In particular, to a 3-manifold Y with boundary ∂Y = Σ it associates a “D-brane”, that is an object in the
category F(Σ).

The interpretation of 3-manifolds with boundary as D-branes can be used to reproduce the Atiyah-Floer
conjecture, which states [28]:

HF inst
∗ (Y ) ∼= HF symp

∗ (M; L1, L2) (2.1)

Here M = MG
flat is the moduli space of flat connections on Σ, while L1 and L2 are Lagrangian submani-

folds in M associated with the Heegard splitting of Y ,

Y = Y1 ∪Σ Y2

such that the points of Li ⊂ M, i = 1, 2, correspond to flat connections on Σ which can be extended to Yi.
Similarly, in the B-model, Y1 and Y2 define the corresponding B-branes, which are objects in the derived

category of coherent sheaves on M. In both cases, the vector space HY associated with the compact

1 Notice, according to the Homological Mirror Symmetry conjecture, this category is equivalent to the derived category of the
mirror B-model [23]. In particular, the category Fuk(M), suitably defined, must be a triangulated category [24].
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3-manifold Y is the space of “1 − 2 strings”:

HY =






HF symp
∗ (M; L1, L2) A-model

Ext∗(FY1 , FY2) B-model
(2.2)

In the Donaldson-Witten theory, this leads to the Atiyah-Floer conjecture (2.1).

“Decategorification”

The operation represented by the arrow going to the left in (1.1) – “decategorification” – also has a natural
interpretation in gauge theory. It corresponds to the dimensional reduction, or compactification on a circle.
Indeed, the partition function in gauge theory on X = S1 ×Y is the trace (the index) over the Hilbert space
HY :

ZS1×Y = χ(HY ) (2.3)

Similarly, the vector space associated with Y = S1 × Σ is the Grothendieck group of the category F(Σ)

HS1×Σ = K(F(Σ)) (2.4)

In the case of A-model and B-model, respectively, we find

K(F(Σ)) =






Hd(M) for F(Σ) = Fuk(M)

H∗(M) for F(Σ) = Db(M)
(2.5)

where d = 1
2 dim(M).

2.1 Incorporating surface operators

In a three-dimensional TQFT, knots and links can be incorporated by inrtoducing topological loop observ-
ables. The familiar example is the Wilson loop observable in Chern-Simons theory,

WR(K) = TrR

(
P exp

∮

K

A
)

(2.6)

Recall, that canonical quantization of the Chern-Simons theory on Σ × R associates a vector space HΣ
– the “physical Hilbert space” – to a Riemann surface Σ [16]. In presence of Wilson lines, quantization
gives a Hilbert space HΣ;pi,Ri canonically associated to a Riemann surface Σ together with marked points
pi (points where Wilson lines meet Σ) decorated by representations Ri. For example, to n marked points
on the plane colored by the fundamental representation it associates V⊗n, where V is a N -dimensional
irreducible representation of the quantum group Uq(sl(N)).

We wish to lift this to a four-dimensional gauge theory by including the “time” direction, so that the
space-time becomes X = Y × R, where the knot K is represented by a topological defect (which was
called a “surface operator” in [21]) localized on the surface D = K × R. In the part integral, a surface
operator is defined by requiring the gauge field A (and perhaps other fields as well) to have a prescribed
singularity. For example, the simplest type of singularity studied in [21] creates a holonomy of the gauge
field on a small loop around D,

V = Hol(A) (2.7)
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Fig. 3 (online colour at: www.fp-journal.org) a Line operators in a three-dimensional TQFT on Σ × I and
b topological “surface operators” in four-dimensional gauge theory on Σ × I × R.

Quantization of the four-dimensional topological theory on a 4-manifold X = Y ×R with a surface operator
on D = K × R gives rise to a functor that associates to this data (namely, a 3-manifold Y , a knot K, and
parameters of the surface operator) a vector space, the space of quantum ground states,

F(Y ; K) = HY ;K (2.8)

Moreover, we will be interested in surface operators which preserve topological invariance for more general
4-manifolds X and embedded surfaces D ⊂ X . For example, if the four-dimensional topological gauge
theory is obtained by a topological twist of a supersymmetric gauge theory, it is natural to consider a
special class of surface operators which preserve supersymmetry, in particular, supercharges which become
BRST charges in the twisted theory. Such surface operators can be defined on a more general embedded
surface D, which might be either closed or end on the boundary of X . An example of this situation is a
four-dimensional TQFT with corners, which arisies when we consider a lift of a 3-manifold with boundary
Σ and line operators with end-points on Σ.

To summarize, including topological surface operators in the four-dimensional gauge theory, we obtain
a functor from the category of 3-manifolds with links and their cobordisms to the category of graded vector
spaces and homomorphisms:

F(X; Σ) : HY ;K → HY ′;K′ (2.9)

Here, the knot homology HY ;K is the space of quantum ground states in the four-dimensional gauge theory
with surface operators and boundaries. Similarly, the functor F associates a number (the partition function)
to a closed 4-manifold with embedded surfaces, and a category F(Σ; pi) to a surface Σ with marked points,
pi, which correspond to the end-points of the topological surface operators.

As in the theory without surface operators, the category F(Σ; pi) is either the category of A-branes or the
category of B-branes on M, depending on whether the topological reduction of the four-dimensional gauge
theory is A-model or B-model. Here, M is the moduli space of R2-invariant solutions in gauge theory on
X = R2 × Σ with surface operators supported at R2 × pi.

2.2 Braid group actions

As we just explained, surface operators are the key ingredients for realizing knot homologies in four-
dimensional gauge theory. Our next goal is to explain that every topological gauge theory which admits
surface operators is, in a sense, a factory that produces examples of braid group actions on branes, including
some of the known examples as well as the new ones2.

2 It is worth pointing out that, compared to [21], where the braid group action is associated with local singularities in the moduli
space M, in the present context the origin of the braid group action is associated with global singularities.
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In general, the mapping class group of the surface Σ acts on branes on M. In particular, when Σ is a plane
with n punctures, the moduli space M is fibered over the configuration space Confn(C) of n unordered
points on C,

M

↓

Confn(C)

(2.10)

and the braid group Brn = π1(Confn(C)) (= the mapping class group of the n-punctured disk) acts on the
category F(Σ). Recall, that the braid group on n strands, Brn, has n − 1 generators, σi, i = 1, . . . , n − 1
which satisfy the following relations

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi , |i − j| > 1
(2.11)

where σi can be reprsented by a braid with only one crossing between the strands i and i + 1, as shown on
the figure below.

Fig. 4 (online colour at: www.fp-journal.org) A braid on four
strands.

In gauge theory, the action of the braid group on branes is induced by braiding of the surface operators.
Namely, a braid, such as the one on Fig. 4, corresponds to a non-contactible loop in the configuration space,
Confn(C). As we go around the loop, the fibration (2.10) has a monodromy, which acts on the category of
branes F(Σ) as an autoequivalence,

Brn → Auteq(F(Σ))

β �→ φβ

(2.12)

The simplest situation where one finds the action of the braid group Brn on A-branes (resp. B-branes) on
M is when M contans An−1 chain of Lagrangian spheres (resp. spherical objects).

We remind that an An−1 chain of Lagrangian spheres is a collection of Lagrangian spheres L1, . . . ,Ln−1
⊂ M, such that

|Li ∩ Lj | =






1 |i − j| = 1

0 |i − j| > 1
(2.13)

These configurations occur when M can be degenerated into a manifold with singularity of type An−1.
Indeed, to any Lagrangian sphere L ⊂ M, one can associate a symplectic automorphism of M, the so-
called generalized Dehn twist TL along L, which acts on H∗(M) as the Picard-Lefschetz monodromy
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transformation

(TL)∗(x) =






x − ([L] · x)[L] if dim(x) = dim(L)

x otherwise
(2.14)

As shown in [29], Dehn twists TLi along An−1 chains of Lagrangian spheres satisfy the braid relations
(2.11), and this induces an action of the braid group with n strands on the category of A-branes, Fuk(M).

The mirror of this construction gives an example of the braid group action on B-branes [30]. In this case,
the braid group is generated by the twist functors along spherical objects (“spherical B-branes”) which are
mirror to the Lagrangian spheres. As the name suggests, an object E ∈ Db(M) is called d-spherical if
Ext∗(E , E) is isomorphic to H∗(Sd, C) for some d > 0,

Exti(E , E) =






C if i = 0 or d

0 otherwise
(2.15)

A spherical B-brane defines a twist functor TE ∈ Auteq(Db(M)) which, for any F ∈ Db(M), fits into
exact triangle

Hom∗(E , F) ⊗ E −→ F −→ TE(F) (2.16)

where the first map is evaluation. At the level of D-brane charges, the twist functor TE acts as, cf. (2.14),

x �→ x + (v(E) · x) v(E)

where v(E) = ch(E)
√

Td(M) ∈ H∗(M) is the D-brane charge (the Mukai vector) of E .
The mirror of an An−1 chain of Lagrangian spheres is an An−1 chain of spherical objects, that is a

collection of spherical objects E1, . . . , En−1 which satisfy the condition analogous to (2.13),

∑

k

dim Extk(Ei, Ej) =






1 |i − j| = 1

0 |i − j| > 1
(2.17)

With some minor technical assumptions [30], the corresponding twist functors TEi generate an action of
the braid group Brn on Db(M). As we illustrate below, many examples of braid group actions on branes
can be found by studying gauge theory with surface operators.

In A-model as well as in B-model, the braid group action on branes can be used to write a convenient
expression for knot homology, HK , of a knot K represented as a braid closure. Let K be a knot obtained
by closing a braid β on both ends as shown on Fig. 5. Then, the space of quantum ground states, HK , in the
four-dimensional gauge theory with a surface operator on D = R × K can be represented as the space of
open string states between branes B̃ and B̃′ = φβ(B̃). Here, B̃ is the basic brane which corresponds to the
configuration on Fig. 5, while B̃′ is the brane obtained from it by applying the functor φβ ; it corresponds to
the braid β closed on one side. These are A-branes (resp. B-branes) in the case of A-model (resp. B-model),
and the space open strings is, cf. (2.2),

HK =






HF symp
∗ (M; B̃, φβ(B̃)) A-model

Ext∗(B̃, φβ(B̃)) B-model
(2.18)

In particular, when topological reduction of the gauge theory gives A-model, the branes B̃ and B̃′ are rep-
resented by Lagrangian submanifolds in M. This leads to a construction of link homologies via symplectic
geometry, as in [31–33].
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Fig. 5 (online colour at: www.fp-journal.org) A particular brane B̃ which
corresponds to closing a braid on four strands.

3 Categorification of the GC Casson invariant

Now, let us illustrate the general structures discussed in the previous section in the context of N = 4
topological super-Yang-Mills theory in four dimensions. Specifically, we shall consider the GL twist of
the theory [20], with surface operators labeled by regular semi-simple conjugacy classes [21]. As we shall
explain below, this theory provides a natural framework for categorification of the GC Casson invariant,
which counts flat connections of the complexified group GC.

The topological reduction of this theory leads to a N = 4 sigma-model [20,27], whose target space is a
hyper-Kahler manifold MH(Σ, G), the moduli space of solutions to the Hitchin equations on Σ [34]:

F − φ ∧ φ = 0

dAφ = 0 , dA � φ = 0
(3.1)

This twist of theN = 4 super-Yang-Mills theory has a rich spectrum of supersymmetric surface operators.
In particular, here we will be interested in the most basic type of surface operators, which correspond to the
singular behavior of the gauge field A and the Higgs field φ of the form [21]:

A = αdθ + . . . ,

φ = β dr
r − γdθ + . . .

(3.2)

where α, β, γ ∈ t, and the dots stand for terms regular at r = 0. For generic values of the parameters α, β, γ,
(3.2) defines a surface operator associated with the regular semi-simple conjugacy class C ∈ GC.

According to the general rules explained in Sect. 2, this topological field theory associates a homological
invariant HY to a closed 3-manifold Y and, more generally, a knot homology HY ;K to a 3-manifold with a
knot (link) K. These homologies can be computed as in (2.2) and (2.18) using the Heegard decomposition
of Y as well as the braid group action on branes. The branes in questions3 are branes of type (A, B, A) with
respect to the three complex structures (I, J, K) of the hyper-Kahler space MH . We can use this fact and
analyze the branes in different complex structures in order to gain a better understanding of the homological
invariant HY,K as well as the GC Casson invariant itself.

Complex structure J : counting flat connections

The B-model in complex structure J is obtained, e.g. by setting the theta angle to zero, Re(τ) = 0, and
choosing t = i (where t is a complex parameter that labels a family of GL twists of the N = 4 super-Yang-
Mills [20]). In complex structure J , the moduli space MH is the space of complexified flat connections

3 e.g. branes B1 and B2 associated with the Heegard decomposition Y = Y1 ∪Σ Y2
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A = A + iφ, and the surface operator (3.2) creates a holonomy,

V = Hol(A) ,

which is conjugate to exp(−2π(α − iγ)). Furthermore, at t = i the supersymmetry equations of the four-
dimensional gauge theory are equivalent to the flatness equations, dA + A ∧ A = 0, which explains why
(from the viewpoint of complex structure J) the partition function of this theory on X = S1 × Y with a
surface operator on D = S1 × K computes the GC Casson invariant,

Z = λGC(Y, K)

The space of ground states, HY ;K , is a categorification of λGC(Y ; K). In general, both λGC(Y ; K) and
HY ;K depend on the holonomy V , which characterizes surface operators. However, if V is regular semi-
simple, as we consider here, then λGC(Y ; K) and HY ;K do not depend on a particular choice of V .

Complex structure K

Since the four-dimensional topological gauge theory (even with surface operators) does not depend on
the parameter t that labels different twists, we can take t = 1, which leads to the A-model on MH(Σ)
with symplectic structure ωK . This theory computes the same GC Casson invariant and its categorification,
HY ;K , but via counting solutions to the following equations on Y [20]:

F − φ ∧ φ = �
(
Dφ0 − [A0, φ]

)

�Dφ = [φ0, φ] + DA0

D∗φ + [A0, φ0] = 0

(3.3)

rather than flat GC connections. In particular, given a Heegard decomposition Y = Y1 ∪Σ Y2, the space of
solutions to Eqs. (3.3) on Y1 (resp. Y2) defines a Lagrangian A-brane in MH(Σ) with respect to ωK . This
allows to express HY ;K as the space of open string states between the corresponding A-branes B1 and B2,
cf. (2.2),

HY ;K = HF symp
∗ (MH ; B1, B2)

This alternative definition of the GC Casson invariant and its categorification that follows from the twisted
N = 4 gauge theory can be especially useful in situations when the (A, B, A) branes B1 and B2 intersect
at singular points in MH or over higher-dimensional subvarieties.

Categorification of the SL(2, C) Casson invariant

Now, let us return to the complex structure J and, for simplicity, take the gauge group to be G = SU(2).
Furthermore, we shall consider an important example of the sphere with four punctures:

Σ = CP1 \ {p1, p2, p3, p4}
which in gauge theory corresponds to inserting four surface operators. In complex structure J , MH is the
moduli space of flat GC = SL(2, C) connections with fixed conjugacy class of the monodromy around
each puncture. It can be identified with the space of conjugacy classes of monodromy representations

MH
∼= {ρ : π1(Σ) → GC | ρ(γi) ∈ Ci}/ ∼

where the representations are restricted to take the simple loop γi around the i-th puncture into the conjugacy
class Ci ⊂ GC.
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1

2 3

4

Fig. 6 (online colour at: www.fp-journal.org) Sphere with four punctures.

Using the fact that π1(Σ) is free on three generators, we can explicitly describe the moduli space MH

by introducing holonomies of the flat SL(2, C) connection around each puncture,

Vi = Holpi
(A) , i = 1, . . . , 4 (3.4)

where V1V2V3V4 = 1 and each Vi is in a fixed conjugacy class. Following [35–39], we introduce the local
monodromy data

ai =






trVi i = 1, 2, 3

tr(V3V2V1) i = 4
(3.5)

and

θ1 = a1a4 + a2a3

θ2 = a2a4 + a1a3

θ3 = a3a4 + a2a1

θ4 = a1a2a3a4 +
4∑

i=1

a2
i − 4

(3.6)

which determines the conjugacy classes of Vi. We also introduce the variables

x1 = tr(V3V2)

x2 = tr(V1V3)

x3 = tr(V2V1)

(3.7)

which will be the coordinates on the moduli space MH . Namely, the moduli space we are interested in is

MH = {(V1, . . . , V4) | Vi ∈ Ci, V1V2V3V4 = 1}/GC

In terms of the variables (3.7), it can be explicitly described as the affine cubic

MH = {(x1, x2, x3) ∈ C
3 | f(xi, θm) = 0} (3.8)

where

f(xi, θm) = x1x2x3 +
3∑

i=1

(x2
i − θixi) + θ4 (3.9)
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Singularities in MH

For certain values of the monodromy data, the moduli space MH becomes singular. It is important to
understand the nature of the singularities and when they develop. In fact, as we shall see below, inetersting
examples of branes pass through such singularities.

The descriminant ∆(f) of the cubic (3.9) is a polynomial in ai of total degree 16 [40]:

∆(a) =




∏

ε1ε2ε3=1

(
a4 +

∑
εiai

) −
3∏

i=1

(aia4 − ajak)




2

4∏

i=1

(a2
i − 4) (3.10)

where εi = ±1. A special subfamily of cubics (3.9), which will play an important role in applications to
knot invariants discussed below, corresponds to the case where all monodromy parameters ai are equal,
ai = a, i = 1, 2, 3, 4. In this case,

θi = 2a2 , i = 1, 2, 3

θ4 = a4 + 4a2 − 4
(3.11)

and it is easy to verify that ∆(a) = 0. Specifically, for generic values of the parameter a, the moduli space
MH has three simple singularities of type A1 (double points) at

(xi, xj , xk) = (a2 − 2, 2, 2) (3.12)

These singularities correspond to reducible flat connections. For special values of a, the singularities can
become worse and/or additional singularities can appear. For example, for a2 = 0 a new singularity of type
A1 develops at the point (x1, x2, x3) = (−2, −2, −2). On the other hand, for a2 = 4 the moduli space has
a simple singularity of type D4 at (x1, x2, x3) = (2, 2, 2).

Braid group action

The mapping class group of Σ, which in the present case is the braid group Br3, acts on the family of cubic
surfaces (3.8) by polynomial automorphisms. In particular, one can verify that the generators σi, i = 1, 2, 3,
represented as [35]:

σi : (xi, xj , xk, θi, θj , θk, θ4) → (θj − xj − xkxi, xi, xk, θj , θi, θk, θ4) (3.13)

satisfy the relations σiσjσi = σjσiσj and σk = σiσjσ
−1
i . Here and below we denote by (i, j, k) any cyclic

permutation of (1, 2, 3).

Examples

Let us consider examples of (A, B, A) branes that arise from knotted surface operators in R × B3, where
B3 denotes a 3-dimensional ball. We consider surface operators which are extended along the R direction
and which meet the boundary S2 = ∂B3 at four points. The simplest example of such brane is

brane B̃ =

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

2S

3

2

4

1

(3.14)
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We shall denote this brane B̃ (or B̃(14)(23) if we wish to specify which pairs of points on S2 it connects).
Since the brane (3.14) identifies the monodromies around the points 1 and 4 (resp. 2 and 3),

V1 = V −1
4 , V2 = V −1

3 (3.15)

it can be explicitly described as a subvariety of MH defined by

x1 = tr(V3V2) = 2 (3.16)

Of course, we also need to set a1 = a4 and a2 = a3, so that

θ1 = a2
1 + a2

2

θ2 = θ3 = 2a1a2

θ4 = a2
1a

2
2 + 2a2

1 + 2a2
2 − 4

(3.17)

Substituting (3.16) and (3.17) into the cubic equation f(xi, θm) = 0, we find that the brane (3.14) can be
described as a degenerate quadric,

(x2 + x3 − a1a2)2 = 0 (3.18)

One can also think of it as a set of two coincident branes on x2 + x3 = a1a2. By acting on this brane
with the elements of the braid group (3.13), we can construct other examples of (A, B, A) branes in MH .
Furthermore, by closing the braid one can obtain homological invariants of knots (links) in S3 as spaces of
open strings between two such branes. In the rest of this section, we consider a few explicit examples.

Unknot: One way to construct the unknot is to take surface operators which correspond to two branes of
type (3.14), as shown on the figure below:

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����4

3

2

1 Fig. 7 (online colour at: www.fp-journal.org) Unknot in S3 can be repre-
sented as a union of two branes B̃.

The two branes on this figure are branes B̃(14)(23) and B̃(12)(34). We already discussed the first brane: it

is described by the conditions (3.16)–(3.18). Similarly, the brane B̃(12)(34) is given by V1 = V −1
2 , which

implies V3 = V −1
4 ,

x3 = tr(V2V1) = 2 (3.19)

and the corresponding conditions for θi, cf. (3.17). Altogether, the conditions describing these two branes
imply that the local monodromy data should be identified,

a1 = a2 = a3 = a4 = a (3.20)

This condition is very natural, of course, and will be relevant in all the examples where the resulting link
has only one connected component, i.e. is actually a knot. Furthermore, for the unknot in Fig. 7 we have:

V1 = V −1
2 = V3 = V −1

4 (3.21)
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These equations describe the intersection points of branes B̃(14)(23) and B̃(12)(34). Using (3.16) and (3.19),
it is easy to see that there is only one such point (of multiplicity 2):

(x1, x2, x3) = (2, a2 − 2, 2) (3.22)

This is precisely one of the singular points (3.12) where the moduli space MH has A1 singularity (for
generic values of a) due to reducible representations. Therefore, we conclude that the cohomology of the
unknot, Hsl(2)

unknot, is given by the space of open string states for two different branes intersecting at the A1
singularity in MH . We point out that the values of xi in (3.22) can be read off directly from Fig. 7. Indeed,
x1 = 2 simply follows from the fact that the combined monodromy around the points 2 and 3 is equal to the
identity (similarly for x3 = 2). In order to explain x2 = a2 −2, it is convenient to introduce the eigenvalues
m±1 of the monodromy matrix V1. Of course, m is related to the local monodromy parameter a, namely
a = m + m−1. Moreover, since V1 = V3, we have

x2 = tr(V1V3) = m2 + m−2 = a2 − 2 (3.23)

One can also construct the unknot using identical branes B̃ and the braid group action on one of them:

Fig. 8 (online colour at: www.fp-journal.org) Unknot as a union of
two branes B̃ with a half-twist. Each vertical line represents a surface
(topologically a 2-sphere) which divides S3 into two balls and meets the
surface operator at four points.

Here, the two parts of the unknot correspond to the branes B̃ and φσ1(B̃), where B̃ is the brane described
in (3.14)–(3.18), and σ1 denotes the generator of the braid group Br3. Using the explicit form (3.13) of σ1,
we find that the brane φσ1(B̃) is supported on the line:

φσ1(B̃) : x2 = 2 (3.24)

Together with (3.16), this condition implies that the branes B̃ and φσ1(B̃) meet only at one point (of
multiplicity 2):

(x1, x2, x3) = (2, 2, a2 − 2) (3.25)

which is precisely one of the A1 singularities (3.12) in the moduli space MH . This is in complete agreement
with our previous analysis, where the same configuration of D-branes in M was found starting from the
presentation of the unknot shown on Fig. 7. This agreement was expected, of course, since both presentations
of the unknot on Figs. 7 and 8 are homotopy equivalent in S3. The second presentation (on Fig. 8) can be
easily generalized to the trefoil knot and more general torus knots (links) of type (2, k).

Trefoil knot: The trefoil can be constructed by joining together the brane (3.14) and the brane obtained by
action of three half-twists on B̃ (see Fig. 9).

Starting with Eq. (3.16) descrining the brane B̃ and applying σ1 three times, we find that the brane
φ(σ1)3(B̃) is supported on the set of points

(x1, x2, x3) = (4z − 2a2z + 2a2z2 − 2z3 + y(1 − z2), −2 + 2a2 − 2a2z + yz + 2z2, z) (3.26)

where we assumed (3.20). Together with the equation f(xi) = 0, this condition describes a subvariety in
MH of complex dimension 1. Using (3.16) and (3.26), it is easy to see that the branes B̃ and φ(σ1)3(B̃)
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Fig. 9 (online colour at: www.fp-journal.org) The trefoil knot in S3

can be represented as a union of two branes B̃ with three half-twists.

. . . .

crossingsk

Fig. 10 (online colour at: www.fp-journal.org) The (2, k) torus knot
(link) in S3 can be represented as a union of two branes B̃ with k half-
twists.

intersect at two points. The first intersection point (of multiplicity 2) is precisely the singular point (3.25),
as in the case of the unknot. The second intersection point (of multiplicity 4) is located at the regular point
in MH ,

(x1, x2, x3) = (2, a2 − 1, 1) (3.27)

Combining the contributions from the two intersection points, we find that the cohomology for the trefoil
knot has the following structure

Hsl(2)
trefoil = Hsl(2)

unknot ⊕ Hsl(2)
× (3.28)

where Hsl(2)
unknot is the contribution from the first intersection point, and Hsl(2)

× denotes the contribution from
the new intersection point (3.27). Discarding the contribution of reducible connections, we find the reduced
cohomology of the trefoil knot, which consists only of the term Hsl(2)

× ,

Hsl(2)
× = C

4 (3.29)

Indeed, since MH is smooth near the intersection point, the configuration of branes B̃ and φ(σ1)3(B̃) can be
locally described (in complex structure J) as an intersection of two sets of B-branes in C2, such that each
set supported on a line in C2. Let us consider a slightly more general problem where two sets of B-branes
in C2 contain n1 and n2 branes, respectively. We denote by E1 and E2 the corresponding sheaves, where E1
(and similarly E2) is defined by a module of the form C[x1, x2]/(xn1). The space of open string between
two such B-branes is given by

Ext∗
C2(E1, E2) = C

n1n2 (3.30)

which, of course, is the expected result since in the present case open strings form a hypermultiplet trans-
forming in (n1, n2) under U(n1) × U(n2). Setting n1 = n2 = 2 gives (3.29).

(2, k) Torus knots: A more general torus knot (link) T2,k can be represented as a union of two branes B̃ with
k half-twists.

In order to describe the action of (σ1)k on the brane (3.14), again we use (3.13). If the original brane B̃
is represented by a set of two coincident branes on the line (cf. (3.18)),

(x1, x2, x3) = (2, y, a2 − y) (3.31)
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the result of (σ1)k action is a set of branes supported on a higher-degree curve

φ(σ1)k(B̃) : (x1, x2, x3) = (Pk(y), Pk−1(y), a2 − y) (3.32)

where {Pi(y)}i≥−1 is a sequence of polynomials in y, such that P0(y) = 2, P−1(y) = y, and Pi(y), i > 1
are determined by the recursion relation

Pi(y) = 2a2 − (a2 − y)Pi−1(y) − Pi−2(y)

For example, the first few polynomials Pi(y) look like

P1(y) = y

P2(y) = −2 + 2a2 − a2y + y2

P3(y) = 4a2 − 2a4 − 3y + 2a2y + a4y − 2a2y2 + y3

P4(y) = 2 − 4a4 + 2a6 + 8a2y − 4a4y − a6y − 4y2 + 2a2y2 + 3a4y2 − 3a2y3 + y4

...

For simplicity, let us focus on torus knots, which correspond to odd values of k (the case of k even, which
corresponds to torus links, can be treated similarly). Then, it is easy to see that the brane φ(σ1)k(B̃) meets
the brane (3.16) at (k + 1)/2 points in MH . As in the case of the trefoil knot, one intersection point (of
multiplicity 2) is the point (3.25) where MH has A1 singularity due to reducible connections. The other
(k − 1)/2 points (each of multiplicity 4) are generically located at regular points in MH ; their precise
location is determined by the explicit form of Pi(y). Therefore, extending the earlier result (3.28), we find
that cohomology Hsl(2)

T2,k
of the torus knot T 2,k is isomorphic to a direct sum of Hsl(2)

unknot and (k−1)/2 copies

of Hsl(2)
× = C

4. As usual, it is convenient to remove the contribution of reducible solutions. If we denote

by H̃sl(2)
K the “reduced” cohomology of K for the theory considered here, we can state our conclusion as

dim H̃sl(2)
T2,k

= 2(k − 1) (3.33)

In general, the cohomology H̃sl(2)
K categorifies a variant of the Casson invariant obtained by counting flat

SL(2, C) connections on the knot complement S3 \ K with fixed conjugacy class of the holonomy around
the meridian,

χ(H̃sl(2)
K ) = 2σ(K) (3.34)

We expect that, at least for a certain class of knots, σ(K) is equal to the knot signature. Notice, that for
(2, k) torus knots, we have σ(T2,k) = (k − 1).

Notice, one could obtain a different knot invariant (and, presumably, a different knot homologies) by
considering the image of the representation variety of the knot complement in the representation variety of
the boundary torus, see e.g. [41]. Indeed, the boundary of the knot complement Y \ K can be identified
with T 2 in the usual way, and the inclusion T 2 ↪→ Y \ K induces the restriction map

r : M(Y \ K) → M(T 2) (3.35)

which maps a representation ρ : π1(Y \ K) → GC to its restriction ρ|T 2 : π1(T 2) → GC. In general,
M(Y \ K) is a branched cover of its image in M(T 2) under the restriction map (3.35). For example, if
GC = SL(2, C) and Y = S3 then the image of the representation variety M(S3 \ K) under the restriction
map can be described as the zero locus of the A-polynomial [42],

A(l, m) = 0 (3.36)

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. 55, No. 5 – 7 (2007) 489

where the complex variables l and m parameterize, respectively, the conjugacy classes of the holonomy of
the flat SL(2, C) connection along the longitude and the meridian of the knot. The A-polynomial of every
knot has a factor (l − 1) due to reducible representations. For example, the A-polynomial of a (2, k) torus
knot looks like

A(T2,k) = (l − 1)(lm2k + 1) (3.37)

Notice, in this example, the part containing irreducible representations consists of a single curve, lm2k+1 =
0, of degree one in l. On the other hand, the SL(2, C) representation variety of T2,k is a cover this curve
by k−1

2 distinct irreducible components which correspond to irreducible representations counted by N = 4
topological gauge theory. Restricting the complex variables l and m to be on a unit circle, we obtain the
image of the SU(2) representation variety. For (2, k) torus knots, the SU(2) representation variety (again,
ignoring reducible representations) is a disjoint union of k−1

2 nested open acrs [43,44].
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