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Chapter 1V. Symplectic Geometry

§1. The Darboux-Weinstein theorem.

In this chapter we shall collect various facts about the geometry of symplectic
manifolds and of their Lagrangian submanifolds which will be of use to us later.
Recall that a symplectic manifold is a manifold X together with a non-degenerate
closed two form, w. The first basic fact about symplectic manifolds is that,
locally, all symplectic manifolds of the same finite dimension, n, look the same.
A beautiful proof of this theorem, together with a strong generalization of it, has
been recently given by Weinstein [8]. The method of proof is quite similar to the
proof we gave for Morse’s lemma and is one that we shall have occasion to use
again several times.

Let X be a manifold and Y an embedded submanifold. If o is a differential
form on X, we shall let o)y, denote the restriction of ¢ to (ANTX )|Y. (Thus oy can
be evaluated on vectors which are not necessarily tangent to Y.)

TuEOREM 1.1 (Darboux-Weinstein). Let Y be a submanifold of X and let wy and w,
be two non-singular closed two forms on X such that @oy = @y Then there exists
a neighborhood, U, of Y and a diffeomorphism f: U — X such that

(D) f(y) =y foraly €Y,

(i) f* o = wy.

If we take Y to be a point, the theorem asserts that if the two forms agree on
the tangent space at a point, then, up to a diffeomorphism, f, they agree in a
neighborhood of the point. For finite dimensional vector spaces, all non-
degenerate anti-symmetric forms are equivalent up to linear transformation (see,
for example, [2, Chapter 1]). Extend this linear transformation to some neighbor-
hood, (by some exponential map, say, i.e., by using the linear coordinates in some
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neighborhood). Thus, the theorem implies that given any pair wy and w, defining
a symplectic structure on X then near any point p there is a diffeomorphism g
with g(p) = p and g*w;, = w,. This is the content of the Darboux theorem.

For the proof of Theorem 1.1 we need a basic formula of differential calculus
which we now recall. Let W and Z be differentiable manifolds and let
@,: W — Z be a smooth one parameter family of maps of Winto Z. In other
words the map ¢: W x I — Z given by ¢, (w) = ¢(w, ) is smooth. Then we let £,
denote the tangent field along y,, i, £,: W —> TZ is defined by letting £,(w) be the
tangent vector to the curve ¢(w, *) at ¢. If o is a differential ¥ + 1 form on Z, then
¢; (¢,_10) is a well defined differential k& form on W given by

(pf (§,J0)(111, L] nk) = (g,(W)JU)(d%m, ce sd(p(nk)-

(Notice that since &, is not a vector field on Z the expression £, Jo does not define
a differential form on Z.)

Let o, be smooth one parameter family of forms on Z. Then ¢ o, is a smooth
family of forms on W and the basic formula of the differential calculus of forms
asserts that

do,

d
Ei(p‘* o =g P o) (£ 1da) + dp)* (&, o). (1L.1)
For the sake of completeness we shall present a proof of this formula at the end
of this section,
Let ¥ C X be an embedded submanifold and suppose that there exists a

smooth retraction, ¢,, of X onto Y. Thus we assume that ¢, is a smooth family of
maps of X — X such that

@ X > 7%, ¢ =id
and
@y =y forall y € Y and all #.

(Notice that if X were a vector bundle and Y were the zero section then
multiplication by ¢ would provide such a retraction. Also if X were a convex open
neighborhood of the zero section. By choosing a Riemann metric and using the
exponential map on the normal bundle of ¥, we can thus arrange that some
neighborhood of Y has a differentiable retraction onto Y.) Then, for any form ¢
on X we have (in some neighborhood of Y)

1 1 1
o—gto =fo 4 tor oya =f0 (¢ (&, 1do)) di +dfo (@ (& Jo)) di

= Ido + dIo
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where we have set

1
8= [ laf g plar
for any form 8 on X. In other words I: N(X) - AN!(X) and
0 — @50 = dlo + Ido. (1.2)
PROOF OF THE DARBOUX-WEINSTEIN THEOREM. Set
w, = (1 = Dy + tw; = wy +to where o = w — w,.
Notice that
oy = 0
so that, in particular,
<p6" o = and do = 0.
Hence, by (1.2),
o =df where 8 = Io.
Notice that
By = 0.
Now
Wy T @y T iy

and so Wy is non-degenerate for all 0 < ¢ < 1. We can therefore find some
neighborhood of Y on which w, is non-degenerate for all 0 < 7 < 1. We can
therefore find a vector field 5, such that

n, Jo, = —B. (1.3)

We can integrate the vector field 9, to obtain a one parameter family of maps, f,
whose tangent vector is m,. Notice that f, = id. By restricting to a smaller
neighborhood of Y we may assume that f, is also defined for all 0 < ¢ < 1.
(Strictly speaking, in proving this fact, we may want 7,, etc. to be defined for
some range of > 1.) Then f; = id and, by (1.1) and the fact that

4
di

w; = o,

we see that
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1 1
fl*""l — Wy =j(; d%(f,*wl)dt =j(; f¥(o +d(n,Jw,))dt =0

since dw, = 0. Thus f, provides the desired diffeomorphism, proving the theorem.

Let A be an embedded Lagrangian submanifold of a symplectic manifold X.
As an example, let X = T*M and let A be the zero section of T*M. It is an
observation due to Kostant, that, locally, this is the only example.

PrOPOSITION 1.1 (Kostant). Let A be an embedded Lagrangian submanifold of a
symplectic manifold X, whose sympectic form is w. Let A also be regarded as the zero
section of T* A and let ' be the symplectic form on T* A. Then there exists a
neighborhood, U, of A in X and a diffeomorphism h of U into T* A such that
hIA =id and h* o' = w.

The proof of the proposition will use Theorem 1.1 and an algebraic fact
concerning Lagrangian subspaces of a symplectic vector space which we shall
prove in the next section. The algebraic fact is as follows: Let V be a symplectic
vector space, and let Z be a Lagrangian subspace of V. Then the set of all
Lagrangian subspaces, W, such that W N Z = {0} is an affine space. For the
precise statement, see Proposition 2.3 below. For us this fact has the following
consequence.

We can find a smooth bundle, E, of Lagrangian subspaces of TX. A Such that
E, N TA, = {0} for all\ € A.

In fact the bundle of all Lagrangian subspaces of TX)z which have zero
intersection with TA is an affine bundle by the above algebraic fact, and hence
has a smooth section. (Just choose sections locally and patch together by
averaging, using a partition of unity, i.e., give 5; locally and let s = 3 ¢,5; where
(¢,) is a suitable partition of unity. Averaging makes sense in an affine space.)
Now once we have fixed E, this determines an isomorphism, for each A € A, of
TX, with TA, & T* A,, since E, is naturally dual to TA,. Now if we regard A as
the zero section of T* A then the tangent space to 7% A at X splits into a direct
sum of the tangent to the fiber and the tangent to the zero section. Now the fiber
is a vector space, so we may identify the tangent to the fiber with 7* A,. In this
way we have an identification

We have thus an isomorphism of TX, with T(T* A), which clearly preserves the
symplectic structure and varies smoothly with A. In other words we have a map
of vector bundles TX| A T(T* A)! A Which is an isomorphism of symplectic
structures. We now choose some diffeomorphism, g, of some neighborhood of A
in X into 7% A such that ga = 1d and dg is the isomorphism constructed above
on TX,. (This is always possible by using some exponential map. Notice that we
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do not yet require g to have any properties relative to the symplectic structure.)
Then let w; = g*'. By construction

@A T Wi

and therefore by Theorem 1.1 there exists an f mapping some neighborhood of
A in X into X with f*wl = w. Thus f*g*w = w and h = g o f is the desired
diffeomorphism.

Let us now give a proof of (1.1). We first prove the formula in the special case
where W = Z = M X [ and ¢, is the map ,: M X I — M X I given by

¥ (x,5) = (x5 + 1)
The most general differential form on M X I can be written as

ds Na+b

where a and b are forms on M which may depend on ¢ and s. (In terms of local
coordinates, s, x', ..., x", these forms are sums of terms which look like

cdx™ A oo A dx'™

where ¢ is a function of ¢, s and x.) To show the dependence on x and s we shall
rewrite the above expression as

o, = ds N a(x,s, t)dx + b(x,s, t)dx.
With this notation it is clear that
Y o, =ds N a(x,s + t,0dx + b(x,s + t,1)dx
and therefore

d ¢t* 9,
dr

da ab
=ds N a—s(x,s + 1, )dx + ﬁ(x,s + 1,0)dx

+ds A gtl(x,s + ¢, )dx + %(x,s + t,0)dx,
at ot
so that

d‘l’t* 9 * ( do,

S Y \dt

da ob
i Y ) =ds A a()@s + t,0)dx + ﬁ(s,s + ¢, )dx. (a)

It is also clear that in this case the tangent to y,(x,s) is 3/3s evaluated at
(x,5 + 1)

In this case 9/9s is a vector field and

0
3510 = adx
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SO

t,bt*(%_ki,) = a(x, s + 1, )dx

and therefore
«f{ 0 da
dy, 3540 ) = a(x, s+t 0ds N dx +d a(x, s + t, )dx (b)

(where d, denotes the exterior derivative of the form a(x,s + ¢,£)dx on the
manifold M, holding s fixed). Similarly,

do, = —ds N d adx + %?ds A dx + d bdx

SO

] ab
B_s'ldo’ = —d adx + a—sdx

and
% 0 ab
Yy 55do, = —d, a(x, s + ¢, fydx + Eﬁ(x’ s+ t, Ddx. (c)

Adding (a), (b), (¢) proves (1.2) for ¢,.
Now let ¢: W X I — Z be given by

ow,s) = g, (w).

Then the image under ¢ of the lines parallel to I through w in W X I is just the
curves @ (w) in Z. In other words

(a3 ), =609

If we let ¢ W — W X I be given by
{w) = (w,0)
then we can write the map ¢, as
poy ot
Thus
(p,* o, = L*z,b,* q)*o,

and, since ¢ and ¢ do not vary with ¢,
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d d
E‘p;k 0, = L*E¢f(¢*ot)'

At the point w, ¢t of W X I, we have
2 1%e, = (@) {(do s 0,) } = @), 00
s s
and thus
i (508t a) = UG 6 do) = T (6
Substituting into the formula for

dy;
dr ¢

*
9,

yields (1.1).

§2. Symplectic vector spaces.

In this section we list various facts concerning the geometry of symplectic
vector spaces. Let V be a vector space and (,) an antisymmetric bilinear form on
V. If the form (, ) is non-singular, then V, together with (,), is called a symplectic
vector space. If (,) is singular, then we set

Vi= wlo,w)=0 allwey)}
= {wi(w,v)=0 allweV}

and it is clear that we get an induced bilinear form on V/ V1 and that V/V* is a
symplectic vector space.

Let ¥ be a symplectic vector space. The symplectic group Sp(V') consists of all
non-singular linear transformations, B, such that

(Bu, Bv) = (u,v)

for all u, v € V. The conformal symplectic group CSp(W ) consists of those non-
singular linear transformations satisfying

(Bu, Bv) = pg(u,v) Vu,v € V,

where pg is some scalar depending on B. The corresponding Lie algebras are the
symplectic algebra, sp(V'), consisting of those 4 € Hom (V, V) satisfying

(Au,v) + (u,4v) = 0 Vu,v € V
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and the conformal symplectic algebra, csp(V), consisting of those A4 which
satisfy

(Au,v) + (u, Av) = p,(w,v) Vu,v € V. (2.1

If 4 € csp(V) then 4 — jp, I € sp(V), and so csp(V) = sp(V) + Z, where
the center, Z, consists of all multiples of the identity transformation.

If V is a real symplectic vector space then its complexification, vr¢=vrec
is easily seen to be a complex symplectic vector space with the obvious bilinear
form:

(x + iy,u + iv) = (x,u) — (y,v) + i{(x,v) + (y,u)}.

Let A € sp(V'), where V is a finite dimensional symplectic vector space. Then
for any scalar A we have

4 — Alu,v) = —(u,]4 + AJp) Vu,v € V

and therefore

(4 - \fuv) = (D@4 +Ay) Vv e V.

Let ¥, denote the generalized eigenspace of 4 corresponding to the eigenvalue
A. Thus ¥ consists of those u € V such that

A4 -Afu=0

for sufficiently large k. Thus u € . if and only if u € (4 + AFV)YL. In
particular dim ¥ = dim([4 + AFv)t = dim V., Also, if 0 # u is an eigen-
vector:

A4-MNu=0

then u € ((4 + A)V)l, and the set of eigenvectors with eigenvalue A is paired,
under (,), with the eigenvectors corresponding to the eigenvalues —A. If A is
complex and V is real, we can apply the same results to 4 acting on ve. it
A € csp(V') we can apply the above to 4 — $p, I € sp(V). We thus obtain:

PROPOSITION 2.1. Let A € csp(V'). Then the eigenvalues of A are symmetric about
%,uA. That is, if A is an eigenvalue of A then so is p, — A and

dim(1K€) = dim(¥S_,).

In fact ¥, and V. _, are non-singularly paired under (,). Also the eigenspaces
corresponding to X and p, — X are non-singularly paired under ().

A subspace X C V is called Lagrangian if it is maximally isotropic. Thus
(4,u;) = 0if u; € X and X is maximal with respect to this property.
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Let X be a fixed Lagrangian subspace and let Y be a second Lagrangian
subspace such that X N ¥ = {0}. Then X and Y are non-singularly paired by
(,). Let P denote the projection of ¥ onto Y with kernel X so that

0->X—>V-5Y->0
Then P € csp(V') and gtp = 1. Indeed, we must show that
(Pu,v) + (u, Pv) = (u,v).

As X and Y span V' we need only consider three cases: u,v € X;u € X,v € Y,
and u,v € Y. If u, v € X then Pu = Pv = 0 and the right hand side vanishes
since X is isotropic. If ¥ € X and v € Y the equation becomes (u,v) = (u,v)
while if ¥ and v both lie in Y both sides are zero. Conversely, let P € csp(V')
satisfy pp = 1 and P|y = 0. Then according to Proposition 2.1, P must have an
eigenspace Y corresponding to the eigenvalue A = 1 whose dimension is equal to
dim X. Obviously X N Y = {0} and, if u,v € Y we have (u,v) = (Pu,v)
+ (u, Pv) = 2(u,v) so (u,v) = 0; thus Y is Lagrangian. Thus, the set of Lagran-
gian subspaces Y with ¥ N X = {0} is in one to one correspondence with the set
of P € csp(V') such that p, = 1 and Py =0.

Given any element, P, of csp(V') we obtain a symmetric bilinear form Q, on
V by setting

Qp(x,y) = (Px,y) = 3pp(x, ). (22)
Indeed

Qp( 1. x) = (Py,x) — 3up( 1, x) = —(x, Py) + pp(x, )
= (Px,y) — pp(x,y) = Qp(x,y).

Conversely, given Q and p, the equation defines P € csp(V).

If Px = Ofor x € X then Qp(x,x) = 0 for x € X, while Qp(x,y) = —3(x,»)
is a non-singular pairing between X and Yif X N Y = {0} and pp = 1. Thus Qp
has rank n. Conversely, let Q, be any symmetric quadratic form such that

Qplx,v) = —j(x,v) VxE X, vEV

Then we get a P € csp(V) with pp, = 1 and (Px,y) =0 for x € X and y
arbitrary so that Px = 0 for x € X. We have thus established

PROPOSITION 2.2. Let X be a fixed Lagrangian subspace. Then the following sets are
in one to one correspondence:

(i) The set of all Lagrangian subspaces Y such that Y N X = {0}.

(ii) The set of all P € csp(V') such that pp = 1 and Py = 0.

(iii) The set of all symmetric quadratic forms, Q, on V, such that
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o(x,v) = —i(x,v) VxeX,veV. (2.3)

Here Y = ker(P — I) while P and Q are related by (2.2). We shall denote the
space (i) by £,.

The third description shows that the space in question has the structure of an
affine space whose associated vector space is S2(V/X ). Indeed, let Q, and Q, be
two symmetric forms on ¥ which satisfy (2.3). Then Q; — Q, = H is a symmetric
form on V such that H(x,v) = 0 for x € X and all v. Thus H defines a
symmetric bilinear form on V/X. Conversely, S2(V/X ) can be considered as the
space of symmetric bilinear forms H on V such that H(x,v) = 0 for x € X.
Then Q + H satisfies (2.3) if Q does. Thus we have proved:

ProposITION 2.3. Let X be a fixed Lagrangian subspace. Then the space of all
Lagrangian subspaces transversal to X is an affine space whose associated linear
space is § 2(V/X ). In particular, if we fix a transversal Lagrangian subspace Y then
£y becomes identified with S 2(Y), since we may identify V/X with Y. If W is some
other element of £ then the quadratic form associated with W on Y is given by

H()’p)’z) = (PWpr’z) (2.4)
where By, is the projection of V onto W along X.

The element B, described in Proposition 2.3 is the projection described by the
exact sequence

0> XV wso.

The quadratic form, Qy, associated to Y by Proposition 2.2 vanishes on Y so
that the H defined by (2.4) does indeed satisfy

H = (QW - Qy)(y-
Notice that
H is non-singular if and only if Y N W = (0}. (2.5)

Indeedify € W N Ythen Byy = Ky = yand thus Qu(y,v) = Qy(y,v) for
all v € V and hence H(y,v) = 0. On the other hand, since X N Y = {0} we
know that P: Y — W is a isomorphism. If W N Y = {0} then W and Y are non-
singularly paired under (,). Thus (2.4) defines a non-singular pairing.

Since SZ(Y) has plenty of non-singular elements we conclude that there
always is a Lagrangian subspace W transversal to two given Lagrangian
subspaces X and 7, at least if X and Y are transversal to each other. Of course,
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if X and Y are not transversal to each other it should be even “easier” to pick a
W transversal to both. Indeed consider the subspace X + Y and the restriction
of (,) to it. The only elements of ¥ which are orthogonal to X and to Y must be
inX N Ysothat(X + Y)/X N Yisasymplectic vector space. We can therefore
find a subspace W, C X + Y whose dimension equals that of X/(X N Y) such
that W, is totally isotropic and Wy N X = W, N Y = {0)}. If we choose a basis,

qys....4,0f X N Y and abasis p,.|,...,p, of Wy then the g, ..., q,, p, 11,
.., P, span a Lagrangian subspace. We can choose a dual basis p;, ..., p,,
4y41s -+ 4, Then the space W spanned by p,, ..., p, clearly has the desired

properties. We have thus proved:

PROPOSITION 2.4. Given any pair X and Y of Lagrangian subspaces it is always
possible to find a third Lagrangian subspace transversal to both.

Let us return to the situation described by the pair of transversal Lagrangian
subspaces X and W. If Y is a second Lagrangian subspace transversal to X then

B — B, €sp(V)

since both B and B, € csp(V') and pp, = pp, = 1. Furthermore, we claim that
(B-B) =0 (2.6)
Indeed, for x € X we have B x = B, x = 0; while forw € W we have
(B—RBy)w=PEKw—we€EX.
Since X and W span V this proves (2.6). Thus
exp(B — By) =1+ (B - B,) € Sp(V) 2.7)

is the transformation which is the identity on X and maps W into Y. In (2.7) we
have used the exponential map in the symplectic group. For reasons that will
become clear later on, we will want to consider covering groups of the symplectic
group (in particular the double covering). The exponential map again is well
defined (but not given by the right hand side of (2.7)). We record these results as

PROPOSITION 2.5. Let X be a Lagrangian subspace. If W and Y are two Lagrangian
subspaces transversal to X then B — B, € sp(V') and (B, — PW)2 = 0 where B,
denotes projection onto Z along X (with Z = Y or W). The map 1 + B, — By, is the
identity on X, it carries W into Y, and lies in Sp(V'). If G is any covering group of
Sp(V') then Exp (B — By) lies in G and covers | + B, — B, where Exp is the
exponential map: sp(V') — G for the group G. In this way we have associated an
element of G to each pair of Lagrangian subspaces transversal to X.
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Let us now examine the structure of the space of all Lagrangian subspaces of
a real symplectic space, V. We will denote the set of all Lagrangian subspaces by
L(V). If ¥ = 2, then any one dimensional subspace is Lagrangian. Thus L(V') is
just the one dimensional projective space, which is, topologically, a circle. In
particular, H'(L(V)) = Z.

Notice that if we pick one Lagrangian subspace, X, then L(V) — {X} = £,
consists of the projective line with a point omitted: If we consider X as the “point
at infinity” £, becomes the affine line.

Fixing another Y determines the origin of the affine line, and hence a linear
structure. To actually visualize L(V') as a circle, we put a Riemann metric and
an orientation on V. This makes ¥ into a one dimensional complex vector space.
Then each line will determine two points on the unit circle. If we let U(1), the
one dimensional unitary group, decribing the unit circle, and O(1) = {+1,—1} be
the subgroup of U(1) consisting of the orthogonal group of the line (i.e., the real
unitary group) then

L(R?) ~ U(1)/0(1).

The identification, of course, depends on the choice of Riemann metric.
We can perform the same construction in general: Suppose that V' is a complex
vector space with a Hermitian scalar product {, ). Let

{v,w)r = Re {v,w)

and

{v,wy; = Im {v,w).

Then V is a 2n dimensional real space and {v,w), is clearly an anti-symmetric
form which 1s non-singular, hence a symplectic form. If Z is a Lagrangian
subspace of V' then we claim that Z is orthogonal to iZ with respect to {, ).
Indeed, for v and w € Z we have
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Re{v,iwy = —Re(iv,w) = —(v,w); = 0.

If U is any unitary transformation, then, by definition, it preserves {,) and
hence (, ); and so defines a symplectic transformation. Thus U acts on L(V'). We
claim that it acts transitively on L(}'). Indeed, let X and X’ be Lagrangian
subspaces and let {¢, ... ,e,} and {¢], ..., €,} be orthonormal bases of X and X"
with respect to <, )g. Since {e;,¢;); = 0 we conclude that {¢,,...,e,} is an
orthonormal basis for the Hermitian structure as well, and the same for
{e],...,€,}. Hence there is a unitary transformation with U(e;) = e}, for all i,
and therefore UX = X'. The set of unitary transformations keeping X fixed will
be those unitaries with Ue; = X a;; e; where the a;; are real; thus U € O(n). Thus

L(V) = Un)/O(n). (2.8)

We have derived this result starting from a Hermitian structure on V. Let us now
show how to put a Hermitian structure on any symplectic vector space ¥ (whose
imaginary part gives the symplectic form) and, indeed, parametrize all such
Hermitian structures.

Fix a Lagrangian subspace X. Suppose we are given a transversal Lagrangian
subspace Y and a positive definite scalar product ¢, > on X. Then {,)g
determines an isomorphism of X — X™ and Y can be identified with X* via the
symplectic form. Thus we are given a map

X—-Y.

Call this map multiplication by i. Then i(ix) = —x determines multiplication by
i on all of ¥, making V into a complex vector space. Also set

<u,u> = <u’U>R’ u, v € Xa
Cu,yy = i(u,y), ue X yey,
nzy =L{yiryg, »,2€Y,

and extending by linearity defines a Hermitian form, {, >, with

<’>I = (’)

Conversely, starting with a Hermitian form {,> on V then we have already
observed that ;X is a Lagrangian subspace transversal to X and {, ), restricted
to X is positive definite. We have thus proved:

PROPOSITION 2.6. Let V be a finite dimensional real symplectic space with form ().
Let H be the space of Hermitian forms {,) (and complex structures) with

o= (). Then

H=E, x5
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where X is a Lagrangian subspace of X and E, denotes the space of positive definite
quadratic forms on X. In particular, since £ and B, are both diffeomorphic to cells,
we conclude that H is a cell.

Let det be the determinant function mapping U(n) — S'. It maps O(n) — {*1}
which we shall denote by s° We then get a well defined function det”:
U(n)/O(n) > S'. Let S[U(n)/0(n)] = (det*) ' (1). Now if det U = =1 we can
find an O € O(n) such that det UO = 1. Thus SU(n) acts transitively on
S[U(n)/O(n)] and the isotropy group is SO(n). Thus we have a fibration of

U(n) /0(n) 25 s!

where the fiber over each point is diffeomorphic to SU(n)/SO(rn). Now SU(n) is
simply connected and SO(n) is connected. Therefore SU(n) /SO(n) is also simply
connected. (Indeed, any curve starting and ending at SO(n) in SU(n)/SO(n) is
homotopic to the image of a curve starting and ending at 1 in SU(n), since SO(n)
is connected. But any closed curve in SU(r) is homotopic to the trivial curve, and
thus so is its image.) Thus,

n(L(V)) = Z (2.9)
and, in particular,

HY(L(V),Z) = Z. (2.10)

We shall present an independent proof of these facts in the next section. Now
dz/2miz is a form on S' which generates H'(S'). Hence

2% dz

(det ) iz

defines a form on L(V), generating H' (L(V)). Now det’ is defined on U(n)/O(n)
and hence becomes a map on L(V) only after we have identified L{V') with
U(n)/O(n) by a choice of Hermitian metric (and Lagrangian subspace). Howev-
er, by Proposition 2.6, all such choices can be smoothly deformed into one
another and hence the cohomology class is independent of the choice. This class
is called the Maslov class.

We now give an explicit description of the universal covering space, L(V), of
the space of all Lagrangian subspaces, L(¥), of a symplectic vector space, V. We
shall show, following Leray, that there exists an invariant, m(u,u’), for any two
transversal elements, v and ' of L(V'). (Here u and u’ are called transversal if
7u and 7y’ are transversal Lagrangian subspaces, where 7 denotes the projection
of £(V) onto L(V').) We shall relate the invariants of three transversal elements,
u, v and u” to the signature of the quadratic form associated to the three
Lagrangian subspaces, mu, mu’ and wu”, and use the invariant, m, to give an
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alternative description of the Maslov class. For the purposes of obtaining these
results, we continue in our choice of some Hermitian metric on ¥ (and a choice
of an orthonormal basis) which allows us to identify ¥ with C". Any Lagrangian
subspace, X, is of the form X = AR”" for some 4 € U(n) and

1 i

AR" = BR" ifandonlyif A4~ = BB

where 4 denotes the matrix whose entries are the complex conjugates of the
entries of 4. We can thus define a map v: L(V) = U(n) by

uX)=AA " if X = AR". (2.11)
Notice that if B € U(n) then
wWBX) = Bu(X)B " (2.12)
If 2 € C"then z = Ar forr € R”if and only if z = 44 'z Thus
z €X ifand only if z = v(X)zZ. (2.13)

If X N'Y # {0} the pair of equations z = v(X)z and z = v(Y)z has a nontrivial solu-
tion, so v(X) — v(Y) is not invertible. Conversely: by applying a suitable element of
U(n) we may assume that X = R” and ¥ = AR". Ifu =AA" "u theni = A4~ 'u so
we can find a v € R? with v = A4" 9 sov € X N Y. Thus,

X and Y are transversal if and only if WX ) — w(Y) is invertible. ~ (2.14)

Let U(n) denote the space of all pairs
(4,9), 4 € Un), p € R satisfying detd = €. (2.15)

The multiplication (4, ¢) - (4’,¢’) = (44',¢ + ¢') makes U(n) into a group and
the map U(n) — U(n) sending (4, ¢) into 4 makes U(n) into a covering group of
U(n). The map

SU(n) X R = U(n) sending (B, ) into (Be'Y, ny)

is easily seen to be an isomorphism. Since SU(n) is simply connected, it follows
that U(n) is the universal covering group of U(n). This shows that the fundamen-
tal group of U(n) is Z. This also implies that the fundamental group of Sp(V) is
Z: we shall sketch a proof of this fact here, referring the reader ahead to Chapter
V, §5, for the proof of some of the group theoretical facts that we will use. We
first observe the following fact about the algebra sp(¥): Let J denote multiplica-
tion by i (in the complex structure we have introduced on V).

We have the vector space direct sum decomposition sp(V) = u(n) ® @ where,
un) = {4 € sp(V)|JAJ ™' = A} and $ = (B € sp(V)|JBJ ™' = —B). Every
element of @ is of the form B = SC, where C denotes complex conjugation and S is
a symmetric complex n X n matrix, i.e. Bz = Sz forallz € V ~ C".
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PROOF. Since J2 = —1, the operator, ® on sp(V) consisting of conjugation by J,
i.e. the operator ©(4) = JAJ ! satisfies ®* = 1. Thus the direct sum in question
is the decomposition of sp(¥) into +1 and —1 eigenspaces for ©. The fact that
u(n) consists of the +1 eigenspace is just the characterization of U(n) as the
subgroup of the symplectic group preserving the complex (and hence the
Hermitian) structure. The complex conjugation, C, clearly satisfies JCJ 1—-_c
Since S is complex linear, JSJ ~! = S and hence JBJ ! = ~Bif B = SC. Let
us show that all such B belong to sp(V'). We must show that

Im ({Bu,v) + {u, Bv)) = 0.

Now {(Bu,v) = (S@,v) and {u, Bv) = {(u, ST> = (S*u,5) = (Su,v) since S is
symmetric. But (Su,v) is the complex conjugate of {S&v) so that the above
equality holds. Now the dimension, over the real numbers, of the space of
complex symmetric matrices is n(n + 1), while dimu(n) = n> and dimsp(V')
= n(2n + 1). Thus, by dimension count, we see that all elements of ® have the
desired form.

It now follows (cf. §5 of Chapter V) that we have the polar decomposition:
every element of Sp(V') can be uniquely written as the product

=u-expB u € Un), B €9,

where exp: sp(V') — Sp(V') is the exponential map. Since % is contractible, this
shows that Sp(V') and U(n) have the same fundamental group. In fact, if Sp(V)
denotes the universal covering group of Sp(V') the polar decomposition theorem
for Sp(V') implies that every element of Sp(¥) can be written in the form

da=u-ExpB € Un),BeEP

where Exp: sp(V) = Sp(V) is the exponential map for Sp(¥'). We shall identify
the element

g = (I,2n) € U(n)

with the generator of the fundamental group of Sp(V).
Let £(V') denote the set of all pairs (X,8), X € L(V), 8 € R satisfying

detu(X) = €. (2.16)
The group Z acts on L(V) by
k(X,8) = (X,0 + 27k) k € Z,
and

Lv)/z = L),
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making £(V) into a covering space of L(V'). The group U(n) acts transitively on
L(v') by

4,9) - (X,0) = (4X,0 + 2¢). (2.17)

In view of (2.12) this is well defined. The subgroup which leaves the element
(R",0) € L(V) fixed consists of all (4,0) where

A=A and detd =1
i.e. A € SO(n). Thus,
LV) = U(n)/SO(n).

Since U(n) is simply connected and SO(n) is connected, this implies that £(V) is
simply connected. Thus

L(V) is the universal covering space of L(V).

Let ¥ be a path in £(V) such that 7(0) = (X,8) and (1) = (X,8 + 27). Let y be
the corresponding curve on L(¥), so that vy is a closed path starting and ending
at X. It follows from (2.13) and (2.15) that

* dZ
2miz

fy(detz) = 1. (2.18)

Let u = (X,0) and &' = (X’,8) be two elements of L(V'). We say that u and v’
are transverse if X and X’ are transverse Lagrangian subspaces. We now wish to
define the Maslov index, m(u,u’), associated to a pair, # and u of transverse
elements of £(V). For this purpose, we define the logarithm of an element A of
Gl (n, C) by the formula

LogAd = f_ow (=)' = (G- 1)""1)ds

where [ is the unit matrix. This definition is valid for any: 4 € GL (n, C) which
does not have any eigenvalue on the negative real axis. It is easy to check that

exp(LogAd) = A wherever Log4 is defined,
etr(LogA) = detd,
and
LogA_] = — LogA.

Ifu=(X,0)and v = (X’,6) are transversal, then following Souriau [24], we
define
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mu, ') = 5={8 — 0 + itr Log (~v(X )u(x") ™)}, 2.19)

By (2.14), v(X) — v(X") is invertible, thus —v(X Ju(X ’)_1 does not have —1 as an
eigenvalue, and hence does not have any negative real eigenvalues since it is
unitary. Thus (2.19) is defined if  and «' are transverse. Since e84 = det 4,
it follows that

2mim) — (1Y = ™ where dim V = 2n.
Thus
m(u, ') € Z ifnisevenand m(u,w’) € Z+13% ifnisodd.  (2.20)
Notice that
mk-u k' -uw)=k—k' +muv) fork k' €Z (2.21)

so that all values permitted by (2.20) are in fact taken on.

The group Sp(V) is connected and acts on L(V'), and hence this action is
covered by a unique action of Sp(V) on L(V). If « and «' are transverse, then so
are du and gu', for any @ € Sp(V). The map d — m(du,du’) is well defined,
continuous, and takes values in a discrete set, and hence is constant. Thus

m(au,aw’) = m(u,u’) for alla € Sp(V). (2.22)

In other words, m(u,u’) does not depend on the choice of complex structure, but
is an invariant of Sp(V). It is clear from the definition that

m(u,v') + m(/,u) = 0. (2.23)

Let X, X’ and X" be three transversal Lagrangian subspaces. By Proposition
2.3, the spaces X, X” determine a quadratic form on X’ given by

H(y,») = Boyyyy) vy €X
where B, denotes projection onto X” along X. We define
i(X,X',X") = }sigH. (2.24)

This is a symplectic invariant assigned to any triple of transverse Lagrangian
subspaces, that is

i(aX,aX’,aX") = i(X, X', X") (2.25)

for any @ € Sp(V'). (Recall that there is no invariant for pairs of transverse
Lagrangian subspaces; the group Sp(V') acts transitively on the set of all pairs of
transverse Lagrangian subpsaces.)
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Letu = (X,0), w = (X’,0') and u” = (X”,8") be points of L(V) sitting over
X, X', and X”. We claim that the following formula
m(u, ') + m(u',u") + m@' u) = i(X, X', X"), (2.26)

due to Leray[23], holds.

To prove this formula we may apply any a € Sp(V') to the u, «', and u” on left
hand sides with the corresponding a € Sp(V) to the X, X', X” on the right. We
may thus assume that X = R” and that X’ = iR", and that X” = bR" where

b S ;gp(l )has the fOIm
O I

relative to the basis determined by ¥ ~ R" @ iR”", where S is a symmetric
matrix. It follows from (2.4) and (2.24) that

i(X, X", X") = Lsigs$.
Finally, by applying an element ¢ € Sp(n) of the form
A 0
c= (O A'_1> A € Gl(n

we may assume that S is a diagonal matrix with +1’s and ~1’s on the diagonal,
ie.
S = diag (+1,...,+1,—-1,...,-1)

where there are k +’s and (n — k) —’s. Thus sig§ = 2k — n and
iX, X, X") =12k — n).

If 8, ..., 8, denotes the standard basis of R”, then i, .. ., i8, is a basis of X',
and the vectors 1= 1)6 form a basis of X", where the ch01ce of sign is + for the
first k£ vectors and — for the last n — k. Since /2 - et = | i, we may, as
well, take =/ 48j as the basis vectors. Thus X” = AR” where A4 is the diagonal
unitary matrix

= diag (™4, . .. e T T,

Therefore, by (2.11),

mi/2 —771/2, . ’e—m/Z)’

v(X”) = diag (e”i/z,...,e , e

where, as always, there are & +’s and (n — k) —’s. It is obvious that

WX)=1 and v(X’')=-L
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Then if 47 = (X”,0”) we must have, by (2.16)
9" = 2nlqg” + }(2k — n)]
for some integer ¢”. Similarly,
6 =2nqg and @ = 27{q’ + n/2]
where g and ¢ are integers. Thus, by (2.19),
m(u,u’) = q—q’ — n/2.
Also
Log (—u(X"Ju(X")™") = Logdiag (e™™2,...,e /2, e™/2 . ¢™/%)
= diag (—mi/2,...,—mwi/2,@i/2,...,7i/2)

since our choice of the Log function is the one which is given by analytic
continuation from the positive real axis in both the upper and lower half planes,
ie. Loge™? = 7i/2 and Loge ™2 = —zi/2. Thus

itr Log (—u(X" W(X")"") = La(2k — n)

and
mu' ,u”)=q' + n/2.
Similarly,
itr Log (—v(X" Yu(X )_1) = 1u(2k - n)
so that

m@", u) = q” — q + 32k — n).

Adding up the three expressions for m proves Leray’s formula, (2.26). Notice that
it follows from (2.26) that i(X, X', X") is an antisymmetric function of its three
variables. It also follows that if we define the Hormander cross index of four
transverse Lagrangian subspaces X, Y, Z, and W by

X, Y. Z,W)=iX,Y,Z)—i(X,Y,W)
that
(X’ Y7Z’ W) = —(Z’ W’X’Y)'

Neither of these facts is immediately obvious from the definition (2.24). We shall
discuss them further in the next section.
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We are now in a position to discuss the relation between the Maslov class as
defined earlier in this section, and the Maslov cycle as introduced in §7 of
Chapter II. Let Y be a fixed Lagrangian subspace. (Eventually, Y will play the
role of the “tangent to the vertical” in 7% M in a local coordinate system.) Let
X(f) be a curve of Lagrangian subspaces defined for 0 < ¢ < 1, and suppose that
X(0) and X (1) are both transversal to Y. Let ¥ be a point of (V) covering Y
and let u(¢) be a curve in L(V') covering X (¢). It follows from (2.21) that the
Integer

[ = m(¥,u(1)) — m(¥,u(0))

is independent of our choices of liftings. The function m(¥,u(:)) fails to be
defined at precisely those values of ¢ for which X(¢) is not transversal to Y.
Suppose that s is an isolated point where this happens. That is, suppose X (¢') is
transversal to Y for all ¢ < s and sufficiently close to s and also that X(¢”) is
transversal to Y for all ” > s and sufficiently close to s. We can use (2.26) to
evaluate the jump in m(Y,u(¢)) as we cross the value s in terms of the difference
of signatures of quadratic forms defined downstairs on L(V): In fact, let us
choose some other Lagrangian subspace, Z, which is transverse to Y and to X(¢)
forallt" < ¢ < ¢”. This is clearly possible if # and ¢” are sufficiently close. Then,
by (2.26)

(Z, Y, X(t") = i(Z, Y, X(t')) = m(Y,u(t")) — m(¥,u(t'))
= (m(Z,u(1")) = m(Z,u(t")))

for some choice of Z sitting over Z. But m(Z, u(?)) is a continuous function on the
interval t' <t < ¢" with discrete values and hence m(Z, u(t")) = m(Z, u(t')). Hence

m( P u(t”)) — m(T,u(t")) = (Z, ¥, X(t") — i(Z, ¥, X(t").  (2.27)

Now suppose that X(1) = X(0), i.e. that the curve is closed. It follows from
(2.21) that / - «(0) = (1) and hence from (2.18) that

1=/ (detz)*%. (2.28)

Suppose that A is a Lagrangian submanifold of V. We may identify the tangent
space, TA,, with a Lagrangian subspace of ¥, when we identify TV with V,
under the usual identification of the tangent space of a vector space with the
vector space itself. Any curve, y, on A then gives rise to a curve of Lagrangian
subspaces defined by X (1) = TA (). If yisa closed curve then (2.128) defines an
integer associated to v; in fact, we have defined an element of H (A, Z) which
can be computed as an integral, (2.28) once a complex structure has been chosen,
or as sum of “crossing numbers” (2.27) in terms of a fixed Lagrangian subspace,
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Y. The actual class is independent of the choice of Y or of the complex structure.
We shall call this the Leray class of A.

Similarly, suppose that M is a differentiable manifold. For each z € T* M, the
tangent space T(T* M), is a symplectic vector space and is equipped with a
preferred Lagrangian subspace, Y, where Y, is tangent to the vertical, i.e. Y is the
subspace consisting of those vectors, {, which satisfy dm, { = 0, where 7 denotes
the standard projection of T* M onto M. A choice of a Riemann metric on M
puts a positive definite scalar product on Y, giving an identification of
L(T(T* M)) with U(n)/O(n) so that (det?)* (dz/2miz) is a well-defined differen-
tial form on the bundle L(T* M), where L(T* M) denotes the bundle over 7* M
whose fiber over z consists of the set of all Lagrangian subspaces of 7(T* M ),.
If A is a Lagrangian submanifold of 7% M, then, once again, any curve, y, on A
determines a curve on L(T* M) and we can use (2.28) to define an integer, i.e.
we have defined an element of H'(A,Z) which is the Maslov class of A. This
class does not depend on the choice of Riemann metric, since we can continuous-
ly deform any two Riemann metrics into one another. In terms of local
coordinates on M, we get a local identification of a neighborhood of T* M with
an open subset of a symplectic vector space, V, in which all the Y, are identified
with a fixed Lagrangian subspace, Y. We can then use (2.27) for the computation
of this class in terms of local crossing numbers. In the next section we shall
describe the definition of the Maslov class due to Hormander using Cech theory.

§3. The cross index and the Maslov class.”

Let us begin this section by giving a somewhat different presentation of the
computation of = (L(V')) and of the class introduced in the preceding section.
We will use induction on dim V rather than the introduction of a complex
structure, and we will find some applications for this alternative approach in what

follows.
Let R be an isotropic subspace of . Then R* O R and since R = (R* )t we
see that W = R /R is again a symplectic vector space with

dim R*/R = dim R* — dim R
= dim V — 2 dim R
since

dim R + dim Rt = dim V.

Let X be any Lagrangian subspace of V. Then X N RY/X N R is clearly an
isotropic subspace of W. We claim that it is Lagrangian, i.e., that

dim(X N RY/X N R) = }dim W = } dim ¥ — dim R.
To prove this, notice that

" This section should be omitted on first reading.
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dim X N RY = dim ¥ — dim(X N RY)*
= dim V — dim(X + R)
and
dim(X + R) + dim(X N R) = dim X + dim R
so that
dmX NRYXNR=dmXnR-dimXxnR
= dim V — [dim(X + R) + dim(X N R)]
= dim V - [dim X + dim R]
= } dim ¥V — dim R

as dim X = § dim V. We have thus proved:

PROPOSITION 3.1. Let R be an isotropic subspace of V. Then W = R*/R is a
symplectic vector space and the map p defined by

o(X)=XnNnRY/X N R
sends L(V) — L(W).

Unfortunately, the map p is not continuous. For example, let us examine the
map p for the case V' = R* with basis {e,, e, f,f,) where

(e,6) = (f,£,) =0 and (ei,Jj-) =95,
and where we take
R = {¢}, sothat R = {¢,e,,f,).
We will describe the map p locally, in the coordinate chart consisting of those
X € Eppy

For such X the projection onto {e,e,} is non-singular and X determines a
symmetric map of {e,e,} into { f;,£,). In particular, X is spanned by vectors

e+ anh +aph and e, tayhy + anfy

where a;; = a,, and the matrix 4 = (a;;) determines, and is determined by X.
We shall therefore denote X by X,. Now X N R+ consists of combinations of
the above vectors having 0 as the coefficient of f. Thus, there are two cases to
consider:
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(i) @, = ay, = 0. This amounts to the assumption that X, C R™. In this
case a;, = 0 and

p(Xy) = (e] + anlhD

where [e,] = e,/R. We write this for short as

P(XA) = (laa22)
(i) (ay;,a5;) # (0,0). Then dim X, N R* = 1 and

p(X,) = (a;;,det 4).
If, in the above formulae we let

()
- s 0
we see that

(X)—{(l’o) fors = 0,
P4 (0,5) = (0, 1) projectively  for s # 0,

so that p is not continuous.

From this example we see that we can expect trouble from p at those X
satisfying X N R # 0. In fact, this is indeed the case, and indeed the only
troublesome locus for p for general ¥ and R. By choosing a basis of R, we may
proceed inductively on the dimension of R. Let us therefore analyse, in some
detail, the map p in the case where R = {e} is one dimensional. Thus dim V' = 2n
and letting W = R*/R, we get dim W = 2n — 2. Recall that dim L(})
= dim(S*(R")) = n(n + 1)/2. We will let

Sp=XeLW)|XDR}={X € LV)|XCRY

since X = X+.

PROPOSITION 3.2. The set Sy is a submanifold of codimension n in L(V'). The map
p restricted to Sy is a diffeomorphism of Sg onto L(W'). The map p, when restricted
1o (V') — Sz, is a smooth map making L(V') — Sy into a fiber bundle over L(W')
with fiber R".

Notice that if n > 2 then the proposition implies that the inclusion of
L(V') — Sg into L(¥') induces an isomorphism on 7. Indeed any smooth curve
can be deformed so as to avoid S, and so can any smooth homotopy. Since
L(V') — Sk is asserted to be a fiber bundle over L(#) with homotopically trivial
fiber, we conclude that p induces an isomorphism of 7 (L(V')) with m (L(W)). We
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shall see by direct calculation that the same is true for the case that dim V¥ = 4.
This will provide an alternative proof of the fact that m (L(V')) = Z. Also, the
generator in the plane will then determine the generator of m (L(V')). We will see
in the course of a subsequent calculation, that this generator coincides with the
one previously obtained from the Hermitian structure.

PROOF OF THE PROPOSITION. The fact that S has codimension » is pretty obvious.
It suffices to check that S N £y is a submanifold of codimension » for each
X € L(V). Now choose a complementary ¥ € £y, giving a direct sum decom-
position ¥ = X @ Y with corresponding projections 7, and m,. Now if S N €,
# & we conclude that mye # 0, where R = {e}. Any Z € £, corresponds to a
symmetric map, 4, from Y to X, and Z € Sy if and only if Am,e = 7 e. This
clearly represents » linear conditions on 4.

To see that pg_is a bijection notice that if R C X C Rt then p(X) = X/R.
If X’ is a Lagrangian subspace of R*/R then its inverse image in R is a
Lagrangian subspace, the unique X with p(X) = X".

Let us now examine L(V) — Sz For X & R* it is clear that the map
X—=Xn R+ is smooth, and X N R* does not contain R. The map X N R+
— XN RL/X N R is thus also smooth, proving that p is smooth on L(¥) — Sy Let
us examine the inverse image. Let Z] and Z) be two (n — 1) dimensional
isotropic spaces of R* with Z|/R = Z,/R = Z . Then given z € Z" if we get
zy € Zjand z, € Z) and so z; — z; € R. In this way it is clear that the inverse
image of Z” is an affine space whose associated linear space is Hom (Z”, R).
Now for a given n — 1 dimensional isotropic Z’ lying in R* we must determine
all possible Z’s in L(V) with Z N RY = Z’. Such a Z must lie in (Z’)* which
is n + 1 dimensional. We are thus looking for all lines in (Z’)/Z’, with the
exclusion of the line {e + Z’}. Since dim(Z’)*/Z’ = 2 we are essentially adding
the affine line. Thus the entire inverse image of Z” in L(V) — Sy will be
diffeomorphic to R”.

We now wish to show how to associate an integer {4, B, C, D) to a quadruplet
of Lagrangian subspaces where

CNA={0}=CnaA8
and

DN A={0)=Dn B

It is defined as follows: Let

R=A4nNB

Then p(4) and p(B) are transversal Lagrangian subspaces of R*/R. By Proposi-
tion 3.4, any third Lagrangian subspace of R*/R which is transversal to p(A4) and
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p(B) corresponds to a quadratic form on p(B). Since C and D are both
transversal to 4 and B we conclude that p(C) and p(D) each determine non-
singular quadratic forms, Q. and @, on p(8). The quadratic form, Q on p(B)
is given by Q(b) = (&C b, k) where I;,C is the projection of p(B) onto p(4) along
p(C). Let

(4,B,C,D) = }[sig Q. — sig Qp] = ind @), — ind Q.
We shall write i(4, B, C) = § sig Q so that

(4,B,C,D) = i(4,B,C) — i(4, B, D).

It is clear that

(4,B,C,D) = —(4, B,D,C) (3.1)

and
(4,B,C,D) + (4,B,D,E) + (A,B,E,C) = 0. (3.2)

If AN B = {0} then for all nearby 4, B, C and D it is clear that the
transversality conditions will still be satisfied and, since the signatures of Q- and
Qp, will not change, we conclude that (4, B, C, D) is locally constant. We wish to
prove that this remains true even if A N B s {0}, provided that C and D each
remain transversal to A and B. For this purpose, we will give an alternative
definition of (4, B, C, D). Recall that £ is a cell. Since C and D both belong to
£, there is a curve, y.p, joining C to D in £ ;, and two such curves are homotopic.
Similarly there is a unique curve (up to homotopy), yp, joining D to C in £p.
This then defines a closed curve yp in L(V) up to homotopy, i.e., an element
of m(L(V)). It is some multiple of the basic generator. Our claim is that this
multiple is exactly (4, B, C, D). In other words that

(4.8,C,D) = [ (del)* 2

Yene 2miz

(3.3)

in terms of some choice of identification of L(V') with U(n)/O(n). Since the curve
Yepe €an be made to vary smoothly with 4, B, C and D so long as C and D
remain transversal to 4 and to B we see that the left hand side is indeed a
continuous (and hence constant) function of its arguments. The proof of (3.3)
that we present below is essentially due to Kostant.

Before presenting the proof let us look at the various possibilities for the curve
Yepc When dim ¥ = 2. We begin with the geometric picture of i(4, B, C). For
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A = Bwehavei(4,B,C) = 0by definition. For 4 # B we have, for» € Band

I;Cb € A, that the signature of Q. will be = 1 according as to whether the
vectors I;Cb, b form a positive or negative orientation of the plane.

4 NN

Pch A Ppb

Now the various cases for (4, B, C, D):

B c D A
answer O
(a) 4 = B. (b) 4 # B.
f (detz)*;’% =0 D, C lie in the same component of £, N £,
Ycoe ’
B lc B D

D 7CD A A

C Ypc
Toc answer = — ]

answer = +1]

(¢) A # B.

D, C lie in different components of £, N £,.
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The formula is thus clear from the diagrams when dim ¥ = 2. (We shall give an
analytical proof soon.) To prove the formula in general let us observe that it
suffices to prove the formula for the case that A N B = {0}. Indeed, suppose
that

AN B=R

Since v, lies in £, and y., lies in £, we see that yqp lies in L(V) — Sz Now
p: L(V) — Sgp = L(R*/R) determines an isomorphism between = (L(V)) and
m (L(R*/R)). Thus if the class of Yepc 18 k times the generator of 7 (L(V')) then
o(ycpc) Will determine the same multiple, k, of the generator of 7 (L(R*/R)).
But p(4) and p(B) are transversal in RY/R. Hence we are reduced to the
transversal case.

Now both sides of (3.3) don’t change under deformations so long as transver-
sality is maintained. OQur object will be to deform the spaces until the formula
becomes obvious.

First choose a Hermitian structure with B = i4, and choose an orthonormal
basis, e, ..., e, in A. This determines a dual basis f;, ..., f, in B. With respect
to the basis e, ..., e, the subspace C determines a non-singular symmetric
matrix C = (Cij). Now we can find an orthogonal matrix, O € SO(n), such that
0(C)0™ ! is diagonal. Since SO(n) is connected we can find a curve O(7) with
0(0) = id and O(1) = 0. Then O(I)CO(t)_l deforms C into a diagonal matrix.
By further deformation we may assume that the entries of C are = I, and
similarly for D. It is clear from (3.2) and from the fact that we can choose

YceE = Yep © Ypgs etc. (see the figure)

that it suffices to prove the formula when C and D differ in at most one position.
If C = D there is nothing to prove. Suppose that

C = ’ and D =
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so that
ind D—ind C = 1.

Thus C is spanned by the vectors

e1+f1,g2,...,gn wheregi=eit];
or, if we like, by
a .
Cos Ze' + smzfl,gz, cees By-

Similarly D is spanned by

—e1+fl,g2,...,g,,

or by

37

. 3
cos € +s1n7fl,g2,...,gn.

Now we define the curve Ycp by

) 3
Yep () = (cos e, + sin 0f.85, - -.8,) g <8< TW

Throughout this range of 6 the coefficient of 1, does not vanish so that Ycp lies in
£ 4. Similarly define

Ypc(#) = (cos e, + sin 0f1:85, .., 8,) — <0< =

!
~e, +f, Yep

Tpc

—¢ —f
V2

It is now clear that the projection of this curve onto the e;, f, plane describes the
projective line once in the proper orientation. In terms of U(n)/O(n) it is clear
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that the curve y.p. is given by the equivalence class of the curve of unitary
matrices

0 C
and hence the function det? goes around the circle once in the counter clockwise
direction. This proves (3.3) and, incidentally, the consistency of the inductive

definition of the generator of H' with the definition coming from det®.

PROPOSITION 3.3. The symbol (A, B, C, D) satisfies
(4,B,C,D) = =(C, D, 4, B). (3.4)

For the case dim ¥ = 2 we can get the result by examining the cases described
in the figures given above: If 4 = B then we can deform C into D remaining
transversal to both 4 and B so that both sides of (3.4) vanish. If C and D lie in
the same component of £, N £, then we can deform C into D and then 4 into
B so we are back in the preceding case. If C and D lie in different components
of £, N €p then it is clear from the figure that y.,- is oriented in the opposite
direction from v,z ,.

Tpc

YaB

YA

For the general case we shall use the following observation: Let ¥ and ¥ be two
symplectic vector spaces. Then ¥ + K is again a symplectic vector space and if
X, € L(¥) and X, € L(¥) then X, + X, € L(¥ + V). Thus we have a map of

LK) X L) — LK + K).
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We can clearly choose the Hermitian structure on K + ¥ to be consistent with
this direct sum decomposition and thus the map corresponds to the block
diagonal embedding of U(n) X U(m) — U(m + n). Thus we obtain

U(n) X U(m) g, Un+ m) ge2,,

1
Oy X O(m)  Oln + m) S
where
det?,, o f = det? det?
with the obvious notation. Thus
dl
f*(det),,)" 525 = df*log det?,,,/2mi = (det?, )*ﬁ + (det))* 5 dz

Therefore in computing (4, B, C, D), if we could arrange that 4 = 4, + A4,, etc,,
we would conclude that

(AaB,C)D) = (A]aB]yclyDl) + (AZaBz,Cz’DZ)'

Now by the deformation argument presented in the proof of the preceding
proposition we know that we can arrange that 4 = {e,,...,¢,}, B = {f}, ..., f,}
C={g, -8 D=1{h,....h,} where g, = ¢; = fand h; = ¢; % f, for suita-
ble choices of *. Thus we are reduced to the two dimensional case, which has
already been established.

Now let E — N be a symplectic vector bundle. (Thus £ is a vector bundle such
that each fiber, E,, has a symplectic structure varying smoothly with n.) The main
application we have in mind will be the situation where N = A is a Lagrangian
submanifold of some cotangent bundle T*M and where E, = T,(T*M). Of
course, we then get a fiber bundie L(E) — N where L(E), consists of all
Lagrangian subspaces of E,. Suppose that we are given two sections, 4 and B,
of L(E). (For example, if N = A C T* M then we could take A, = T;(A) and
take B,.to be the tangent to the fiber of the projection T*M — M.) With this
data, {E; 4 and B}, Hormander has introduced an element of H'(N ), which is
defined, in the Cech theory, as follows: We can always locally find sections, C,
D, etc. defined on open sets U, Up, etc. such that C, is transversal to both 4,
and B, for each x € U.. The U’s form an open cover of N and we define a Cech
I-cocycle

B(UC7 UD) = (A’B’ C’ D)r

where the right hand side is taken to mean the function x — (4,,B,,C,,D,)
defined on U N Up. Since (A4, B,C, D) is continuous and integer valued, it
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defines a Cech cochain z(4, B) on N. Since for each x € Up N Uy, we have
(4,,B,,C,,D,) = i(4,,B,,C,) ~ i(4,,B,,D,)

we see that 8z(4, B) = 0. (This is just (3.2).) Notice that i(4, B, C) need not be
continuous so that z(4, B) is not a coboundary, in general. We will denote the
corresponding cohomology class by a or a(E; 4, B).

Let us compute the cohomology class a for the following situation. Let ¥ be a
symplectic vector space, and let N = L(V). We define the symplectic vector
bundie £ — N by assigning a copy of V to each point of N. (In other words, E
is the pull back to N of the vector bundle ¥ — pt. under the constant map.) Then
L(E) has a canonical (tautologous) section, B, namely B(n) = n where n is
considered,as a subspace of E, = V. Let 4 be a constant section of E (i.e., the
pull back of a “section”™ of L(V) — pt.) We then obtain an element a(4, B)
€ H'(L(V)). We claim that

PrOPOSITION 3.4 (HORMANDER). The class a(A, B) coincides with the fundamental
generating class of H' (L(V')) introduced above.

As before, it suffices to verify the proposition for the case dim ¥ = 2. (Indeed,
we need only check that the two classes coincide when evaluated over some non-
trivial cycle, since we know that H (L(V)) = Z. We can then choose this cycle
as a curve n(t) such that n(f) N A = Fis a fixed space of dimension n — 1 where
dim ¥V = 2n. Then all formulas are obtained by projecting onto a two dimen-
sional space.) Let us choose a fixed vector space 4. Then if we pick two lines, C
and D, transversal to 4, then C is transversal to 4 and B on U, = L(V) — {C}
and D is transversal to 4 and B on Up = L(V) — {D}. (See the figure.)

0, 0,

ST

C D

A

Now Uz N Up has two components, one, O,, containing A4, and the other, O,,
not containing 4. We clearly have

0 on Oy,

2C,D) = (4,B,C,D) = {_1 o O
).
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It is easy to check directly, that this defines the generating cohomology class. It
is instructive to compute this class via the passage from the Cech to the de Rham
theory. Recall that this is done as follows: We choose (smcoth) functions f-
defined on U, (and fp, defined on Up) such that f. — f, = z(C,D) on Uz N Up,.
Then df, = dfy on U. N Uy, and so defines a one form, B, on the whole space.
The integral of this one form over the cycle is the value of « on the cycle. In our
case, let us take

fcB)=1isig(4,B,C) and fp(B) = 1isig(4,B,D).

Notice that f. isn’t quite smooth—it has a jump, from —% to +% as B goes

through the point A. We could replace f- by any smooth function which agrees
with it in some neighborhood of A. It is simpler to allow differential forms with
distribution coefficients, in which case df. = 8, ds where §, is the §-function at
A and ds is the fundamental form on S'. Since 8,ds = +1 we see that a(4, B)
is indeed the fundamental class.

If N = A C T* M is a Lagrangian manifold and if we take A(A) = T;(A) and
B(\) = tangent space to the fiber, then the corresponding class is called the
Maslov class of A. For example, the same computation as we just gave shows that
if A is a simple closed curve in R? = T*(R') then the Maslov class is exactly
twice the fundamental generator: If A has only isolated (non-degenerate)

tangencies with the vertical, then a é-function contribution occurs (with the
appropriate orientation) at each point of tangency, i.e., at each point where dr is
not injective, or, what amounts to the same thing, at each point where
A 0 B = {0},

We can give such a geometric interpretation of the Hormander class a(4, B) in
general. For this purpose we need the following fact, which we shall occasion to
use quite a bit later on.

ProposITION 3.5. Let Y be a Lagrangian subspace of V. Then the set
L(V,Y)={W|dm(Wn Y) = k}

is a submanifold of L(V') of codimension k(k + 1)/2.
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Proor. It suffices to verify the proposition locally, so that we may assume that ¥
and W are in £,. Then, by Proposition 2.3, all W € L(V') are parametrized by
S2(Y), and, it is clear from the proof of Proposition 4.3, that L,(V,Y) N £y
corresponds to symmetric matrices of corank k. Thus, we are reduced to proving

PROPOSITION 3.6. The set of symmetric matrices of corank k is a submanifold of
codimension k(k + 1)/2 in the space of all symmetric matrices.

Let
(16 Qo )
Ry S
be a symmetric matrix, where, with no loss of generality, we may assume that the

upper left hand (n — k) X (n — k) block is non-singular. Then all nearby
matrices have the form

with P non-singular. Now

() (R8)-(0 505 )

and this matrix has rank k if and only if the symmetric & X k matrix § — RP™! Q
vanishes. This imposes k(k + 1)/2 conditions, proving Proposition 3.6 and hence
also Proposition 3.5.

Let E be a symplectic vector bundle over N, with two sections, 4 and B, of
L(E). Then we obtain a subbundle, L,(E,A) for each integer, k, whose
codimension in L(E) is k(k + 1}/2. We will say that (E; 4, B) is in general
position, if B intersects each of these subbundles transversally. (Notice that by the
Thom transversality theorem, we can modify B by an arbitrarily small amount,
and hence not change a{4, B), so that (E; 4, B) is in general position.) We let
S, (E,A,B) = B“l(Lk(E,A)), so that, if (E;4,B) is in general position then
S,(E, A, B) is a submanifold of N of codimension k(k + 1)/2. Notice that

Sk=SkU Sk+l U U S’l'

In particular, if (E; 4, B) is in general position, then
S = {x | 4(x) n B(x) # {0}}
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where §2 is a union of submanifolds of codim > 3. In particular, every (smooth)
curve can be deformed into a curve intersecting S, transversally, and also every
homotopy of curves. We now claim that S| is alsc oriented in N, i.e. has a + and
—side in V. In fact, let x be any point of §,. In some neighborhood, Ue, of x, we
can find a C transversal to both 4 and B. Then at all points of U, not on S; the
spaces A and B intersect transversally, and hence C defines a quadratic form, Q .,

on B. We may assume that U, is connected and that Uz — Uz N §; has two
components.

Then sig Q. is clearly constant on each component and the difference in sig Q-
between the two components is independent of the choice of C. Indeed, if D were
another section transverse to 4 and B, then

%[Slg QC - Slg QD] = (A,B, C’D)

off §), but (4, B, C, D) is well defined and continuous even across S;. Now we can
clearly choose a trivialization of E near x such that 4 = {e,...,e,} and
C = {f;,--..f,} where the ¢; and f form dual bases. We may also arrange that
the basis is chosen so that B N A4 = {e;} on S, near x. Then

B={eg+ofie+ 905, .00, + @, f,)

where ¢,, ..., ¢, are all non-zero near x and S is given locally by ¢, = 0.
Transversality requires that dp, # 0, so that ¢, changes sign across S| and sig Q-
clearly changes by exactly 2 as we cross S;. Now if y is any smooth oriented
closed curve which intersects S, transversally we can apply the argument used in
the proof of Proposition 3.4 to conclude

ProrosiTiON 3.7. If (E; A, B) is in general position and v is a smooth closed curve
intersecting S, transversally, then the class a(A, B), when evaluated on v, is given by
the number of intersections of y with S, each counted with sign = 1 according to
whether the crossing is in the positive or negative direction.

In the case of A C T*M the set S; consists of exactly the Maslov cycle
introduced in Chapter II, and the Maslov class is the cohomology class discussed
there. (We must still establish that by a slight perturbation we can bring every
Lagrangian manifold into general position, i.e. that the vertical section and the
tangential section be in general position.)
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We close this section with an alternative description, also due to Hormander,
of the class a(A4, B) on a symplectic bundle, E. Consider the pullback, £, of E to
L(E) — N. We also obtain a bundle L(£) — L(E) and a natural section, S,
where S(x) = x where x € L(E), and we have identified £, with E,. A section
A of L(E) pulls back to a section 4 of L(E). Notice that if s: N » L(E) is a
section of L(E) then

s*A =4 and s*S = s,
Finally, we have
(4, B) = o(4,S) - a(B,S) € H'(L(E)).
Now if g: Nj = N, is a continuous map and E, is the pullback of a symplectic
bundle E, over N, then a(g*4,g* B) = g*a(4, B); in other words the assign-

ment of a to (E; A, B) is functorial. Therefore, taking B = s we get
s¥a(4,B) = B*a(A,S)

since a(B, B) = 0. Now each section, A, of L(E) determines the class

a(/f,S)d=eraA

on L(E). This class has the property

(i) that its restriction to each fiber is exactly the generating class of the fiber.
This is the content of Proposition 3.4.

It further has the property that

(i) A*a, = 0.
Now it is a consequence of a standard theorem in the topology of fiber bundles
(the Leray-Hirsch theorem, cf. for example Spanier [19, p. 258]) that any one
form, B, on L(E) must be of the form 8 = 7* ¢ + ka,. Now if f satisfies (ii) then
A*B = (moA)*c = c =0 and if it satisfies (i) clearly k = 1. Thus (i) and (ii)
characterize o.

Thus if B, is any form satisfying (i) and (ii) then

a{4,B) = B*B,.

For example, given A, we can always choose a section everywhere transversal to
A and a Riemann metric on 4. This determines a Hermitian structure on E,
which together with 4 allows us to identity L(E) with U(n)/O(n) for each N.

Thus
_ 2% dz
o = (det’) (2771'2)

is a well defined form on E which clearly satisfies (i) and (ii). Thus the form
B*s
will define the class (A4, B) on N.
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As above let £ — N be a symplectic vector bundle and 4 and B sections of
L(E). Let {} be a contractible open cover of N. We recall again how a(4, B) is
defined. We choose sections

Cq: U— I(E) (3.5)
transversal to 4 and B. The Cech cocycle defining a(A, B) has the value
LW, V) = (4,B,Cq,C,)

on the pair of open sets (AU, V). Let us set
(@, V) = lmDE), (3.6)

We can regard (3.6) as defining transition functions for a line bundle on N; i.e.,
we can define a line bundle on N by requiring that it have local trivializations,
Sq., on U and that these be related by S, = (U, v)S, on A N v. The line bundle
defined this way is called the Maslov bundle associated with (E, A, B) and denoted
M = M p- It is a locally constant bundle: i.e., we define a section of I over a
subset Z of N to be constant if for each 9 intersecting Z it is a constant multiple
of §g, on A N Z. Since the transition functions (3.6) are constant this definition
is independent of the choice of Q. Moreover, locally constant sections exist (e.g.
the Sy’s).

In [3] Hérmander gives an alternative definition of 9 which avoids the use of
transition functions. This definition goes as follows. First given a fixed symplectic
vector space V and fixed Lagrangian subspaces 4 and B, we attach to this data
a one dimensional vector space M, x(¥); Let O be the open subset of L(V)
consisting of all C such that C N 4 = C N B = {0}). Then M, z(V) is the
space of all functions

£85C f(C) = dTUECD)5(D) (3.7)

for C, D € 0. Such a function is determined by its value at one point, so the
space I 4 p(¥') is one dimensional.

Now let £ = N be a symplectic vector bundle and 4 and B sections of
L(E) = N. We define a line bundle 91 — N by defining its fiber at p € N to be
the vector space M, B(E ). Let us show that 9R is identical with the bundle
defined by the transition functions (3.6). Over the open set U a section Sg is
defined by choosing S(p) to be the function (3.7) taking the value 1 at the point
C%( p) of L(E,), Cq being the section (3.5). It is clear from (3.6) and (3.7) that

= 7(q, v)S 50 M 4 p is the bundle defined by (3.6) as claimed.

We will conclude this section with a brief description of the Lagrangian
Grassmannian L(V) when dimV = 4. We will determine, inter alia, its
diffeotype and prove directly that 7, (L(V')) = Z, thus justifying the inductive
derivation of this fact given at the beginning of this section.
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The space /\2(V) is equipped with a canonical bilinear map into /\4(V)
given by exterior multiplication:

NNV = AV), nev~-unrwv.

If ¥ Is four dimensional, then dim A*(V') = 1, so we may identify A7)
with R by fixing a volume form, Q € A*(V)*, on V. We then get a symmetric
bilinear form

NV N V) =R, quv)=9QuAv]

Let {e;, 5, €3, €4} be a basis of V' satisfying Q[e; Aey AesAey] = 1, and let
us define

Uy =e Ney, Uy = ey Nes, Uy =€ Aey,

and
v =e3 ey, vy =eq4Ney, V3 = e Nes.

Then {u, uy, u3, vy, v, v3} form a basis of the six dimensional space /\2(V)
and satisfy

q(ui,uj) = q(v;,v;) =0 and q(u;,v;) = 9d;;.
This shows that the form ¢ is nondegenerate and has signature (3, 3).

A two vector u € /\2(V) is a null vector for g if and only if u A =0, i.e.
if and only if u is decomposable, i.e. if and only if

U=uy AN,

where ©; and u; are vectors in V. Let U denote the two dimensional subspace
of V spanned by u, and u;. It is clear that U depends only on u, and not on
the choice of u; and u,. It is also clear that if A is any nonzero real number,
then u and Au determine the same subspace, U. Conversely, given U, we
can choose a basis u, 42, and hence a 4 = u; A U determine up to scalar
multiple.

In other words, we have a bijective map of the Grassmannian, G,(V),
of all two dimensional subspaces of ¥, onto the set of null lines in A*(V)
relative to the quadratic form g. If we use the basis {u, v, Uz, vy, u3, v3} of
A2(V), where the ’s and v’s were chosen above, to identify A*(V) with R,
then g becomes the quadratic form x;x; + x3x4 + x5xs. We can then view the
correspondence between U and {iu} as establishing a bijective map between
G> (V') and the projective quadric

X1Xy + X3x4 + x5x6 = 0

in RP°.
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Suppose that V' has a symplectic structure. The symplectic form can be

viewed as a linear map
¢ NX(V) >R
Conversely, any such linear map ¢ € /\Z(V)* defines a symplectic form on
V if and only if g*(¢,¢) # 0, where g* is the quadratic on A2(V)* dual to
the quadratic form ¢ on /\2(V). In fact, if we start with a symplectic form
¢ then we can choose the Q that we used to define ¢ as Q = ¢AZ, in which
case we would have
g (£,0) = 1.
Let us make this choice of Q. Let W be the five dimensional subspace of
A?(V) annihilated by ¢. Since g*(¢,¢) = 1, the restriction of g to W is
nondegenerate, and has signature (2,3). Let us denote this restriction by
gw. If u is a decomposable element of A(V) corresponding to the two
dimensional subspace U of V, then U is Lagrangian if and only if £( £ ) =0,
i.e. if and only if u € W. Thus the projective embedding of G,(V) into
RP’ described above restricts to a projective imbedding of L(V'), the space
of Lagrangian planes in V, into RP* whose image is a projective quadric of
type (2, 3). In fact, by choice of an appropriate basis we can arrange that g
be given as
qw = —y? — y3 + v+ i+ yi.
We have thus proved:

THEOREM 3.8. If V is a real four dimensional symplectic vector space, then
the space L(V') of Lagrangian two planes of V can be imbedded in RP* as the
projective quadraic

i —yi+yi+yi+yi=0. (3.8)

To see what this quadric looks like as a topological space, let us identify
RP* as the four sphere with antipodal points identified. That is, let S* denote
the four sphere in R® given by

i+ v+ +yi+ri=2. (3.9)
Let us identify RP* as S*/Z,. Then (3.8) and (3.9) reduce to
vi+yi=1 and y§+y§+y§= L.
This proves

THEOREM 3.9. L(V) is diffeomorphic to S' x S* with antipodal points, (x,y)
and (—x, —y), identified.
CoROLLARY. 7 {L(V)) =Z.

The action of Sp(¥) on V induces a representation of Sp(V') on /\2(V)

which preserves ¢ and hence ¢. Thus W is an invariant subspace, and hence
we get a representation of Sp(¥) on W which preserves gi. If we identify
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W with RS as above, so that gy becomes identified with —y? —y3 +y3+yZ +y2,
then this representation can be viewed has a Lie group homomorphism of
Sp(V) onto O(2,3). Ttis clear that +7 is in the kernel of this homomorphism
as —J induces the identity transformation on /\2(V), and it is easy to check
that this is the entire kernel. Since dim Sp(V) = 10 =dim O(2, 3), and Sp(V)
is connected it follows that the above described homomorphism is a double
covering,
Sp(v) —S0(2,3),

where SO(2, 3); denotes the identity component of SO(2, 3). In other words
Sp(V) is the spin double cover of the identity component of O(2, 3).

Now for any signature (p, ¢) the Lie algebra o(p + 1, ¢+ 1) can be identified
as the Lie algebra of infinitesimal conformal transformations of R?:9, so the
Lie algebra 0(2, 3) can be identified as the infinitesimal conformal transfor-
mations of three dimensional Minkowski space R!:2. Furthermore, the space
R”4 has a natural “conformal compactification” which can be viewed as the
projective quadric in RP?*9*! coming from a quadratic form of signature
(p+1,g+1) on RP*9+2 and O(p + 1,q + 1) acts as conformal transforma-
tions of this conformal compactification. We shall verify these facts presently
in the special case at hand. So we will prove

THEOREM 3.10. L(V) carries an intrinsically defined conformal structure of
type (2,3) and Sp(V') acts as the double cover of the connected component
of the group of all conformal transformations of L(V). Indeed, for any La-
grangian subspace X let % denote the set of Lagrangian subspaces transverse
to X so F is an affine space according to Proposition 2.3. Then Zx is
equipped with a flat Lorentz metric which is intrinsically determined up to a
conformality factor.

PROOF. According to Proposition 2.3, .% is, in an intrinsic way, an affine
space whose associated linear space is S2(V/X ). If we choose a basis of
V/X, we may identify S?(V/X) with the space of all symmetric two by two

matrices b
_ (4 3
{A—<b c>’ (a,b,c)eR} (3.10)
and this space has an intrinsically defined quadratic form
A~ detA =ac — b? (3.11)

which has signature (2, 1). (Or, to conform with the notation preceding the
theorem, we could use — det 4 which has signature (1, 2).) The identification
of elements of S2(}//X) with matrices depends on the choice of basis. But
changing the basis has the effect of replacing A by BAB’, and hence of re-
placing det 4 by (det B)? det 4, in other words of changing the metric (3.11)
by a conformal factor. Q.E.D.
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§4. Functorial properties of Lagrangian submanifolds.

Let X and Y be symplectic manifolds with forms w, and wy. Then X X Y
becomes a symplectic manifold with two form

. * *
Wyxy = Pxwy t pywy

where py: X X Y — X is the projection onto X and py the projection onto Y. Let
Ay C X be a Lagrangian submanifold, and let us set

H=Ax7.

Let ¢y: H = X X Y be the immersion of H into X X Y. Notice that since Ay is
Lagrangian we have

}
L Wxxy = b Py Wy 4.1)

Now suppose that Ay is a Lagrangian submanifold of X X Y, and suppose that
Ay .y intersects H transversally. Notice that since the codimension of H is
1dim X and dim Ay, = §(dim X + dim Y) we see that dim(H N Ay,y)
= ldim Y. We claim that the projection py makes this intersection into an
immersed Lagrangian submanifold of Y. Let us first show that the map is an
immersion. Suppose that § is a tangent vector to H N Ay and that dpy & = 0.
Then ¢ Ip} @, = 0. By (4.1) this implies that

gJL;}wXXy = 0,
i.e., that
<£ AN 1, ‘-’-’X)(Y> = O

for all n tangent to H. On the other hand, since § is tangent to Ay, which is
Lagrangian, the above equation must hold for all % tangent to Ay, . Since
T(Ayyy) and T(H) span all of 7(X X Y), then the above equation holds for
all n, which implies that £ = 0. By (4.1) we see that pyw, = 0 on Ay, N H
since wyy vanishes on Ay.,. We shall now give several examples of this
construction.

(i) Composition of canonical relations. Let U, W and Z be symplectic manifolds
with corresponding forms wy;, wy, and w,. Let us consider W X U as a symplectic
manifold with the two form wy, — w;; (where, for example, wy, is considered as a
form on W X U via projection). A Lagrangian submanifold, A;, of WX U is
called a canonical relation. For example, if f: U — W were a canonical transfor-
mation, then f*wy, — w; = 0, so that wy, — w;; would vanish on graph f. Since
dim graph f = dim U = }(dim W X U) we see that graph f is a Lagrangian
submanifold. The concept of a canonical relation is thus a generalization of the
notion of a canonical map. Let Z X W have the symplectic form w, — wy, and
let A, C Z X W be a canonical relation. We would like, in favorable circum-
stances, to know that A, o A is a canonical relation in Z X U. As a set the
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composition A, o A; consists of all pairs (z,u) such that there is some w with
(z,w) € A, and (w,u) € A,;. This can be described as follows, let A denote the
diagonal in W X W and let 7 denote the projection

mZXWXWXU—ZXU.
Then Z X A X U and A, X A; are submanifolds of Z X WX W X U and

Ayo Ay =m(A, XA N ZXAXU).

Let us take X = W X W with the two forms wy, — wy, (where wy, is the pullback
to X of the wy, of the first factor and similarly for sz) . Then A is a Lagrangian
submanifold of X. Let us take ¥ = Z X U with form w, — w;. We can now
apply our construction to conclude that

if Ay X Ay intersects Z X A X U transversally then A, o A is a canonical relation
inZXx U.

For example, if A, is the graph of a map then for any n € TW there is { such
that (§,71,0,0) is tangent to A, X A,. Thus it is easy to see that in this case the
intersection will be transversal.

(ii) Pullback of a Lagrangian submanifold of the cotangent bundle. Let M and N
be differentiable manifolds and f: M — N a differentiable map. Let A C T*N
be a Lagrangian submanifold. Then

df* A = {(m¢) € T*M|3(n,n) & A with f(m) = nand dffn = £}

is a subset of T*M and we would like to know whether it is a Lagrangian
submanifold. Here let us take X = 7*N and Y = 7M. Let us write
graph f C N X M as {(f(x),x)|x € M}, and let us take Ay,y = 9(graph f).
Thus a point of Ay, is of the form

(fG)xv—df*y) v € T"Nyy.
We take Ay = A so that H consists of all points of the form
(»nxmé) () € A
It is clear that
my(H N Rgraph f)) = —df* A,

Of course, —df * A is a Lagrangian submanifold if and only if df* A is. Rewriting
the graphs in the usual way we have proved

Let f: M = N be a smooth map and A C T*N a Lagrangian manifold. If
N(graph f) and T*M X A intersect transversally in T*(M X N') then df*A is a
Lagrangian submanifold of T* M.
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Examining the above form of H and Qgraph f) we see that all values of the
last three components can be achieved for any fand A, and that the intersection
will be transversal if and only if the maps fi M - N and 7y: A > N are
transversal. Thus

PROPOSITION 4.1. Let f: M — N be a smooth map and A C T*N a Lagrangian
manifold. Let m: A — N be the restriction to A of the projection of TN — N.If f
and 7 are transuersal then df* A is a Lagrangian submanifold of T* M

For example, if 7: A — N is locally a diffeomorphism then the hypothesis is
fulfilled. Here .\ = graph dg (locally) and df * A = graph df * .

As a second example, suppose that A = 9(S) where S is a submanifold of N.
Then 7A = S and the hypothesis becomes that f intersects S transversally. In this
case f 'S is a submanifold of M and

df* A = w(fLs).

(iii) Pushforward of Lagrangian manifolds. Let f: M — N be a smooth map and
let A be a Lagrangian submanifold of 7% M. Then

df, A ={(y,n) |y = f(x),(x.df*n) € A}.
Take X = T*Mand Y = T*N and

Agxy = Rlgraph f) = {(x.f(x),df *n,—n)[n € T" Ny}

Then, with A, = A,

H = {(xy.61)[(x.§) € A}

so that m(H N 9(graph f)) = —df, A. Thus. if A X T* N intersects 9graph f)
transversally, then df, A is a Lagrangian submanifold of T*N.

Notice that if df has constant rank then this condition takes on a somewhat
51mp1er form. In this case the dimension of df T* Nr () does not vary so that
df* T* N is a sub-bundle of T* M. The transversality condmon is then clearly the
condition that this subbundle intersect A transversally. Thus

PROPOSITION 4.2. Let f: M — N be a smooth map with df of constant rank and let
A be a Lagrangian submanifold of T* M. If A intersects df * T* N transversaily then
df, A is a Lagrangian submanifold of T* N

For example, if fis an immersion (so that df* is surjective everywhere and thus
df* T* N = T*M) the conditions are verified and df, A is a Lagrangian subman-
ifold of T*N for any A.

At the other extreme, suppose f: M — N is a fibration. Then df* T*N = H is
the bundle of those covectors which vanish on vectors tangent to the fiber. If A
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intersects H transversally then df, A is a Lagrangian submanifold. For example.
if A = graph dp then A N H consists of those points (m, dp(m)) on A where the
vertical derivative, dy, ¢, vanishes. At such points do clearly defines a covector at
n = f(m) and thus gives a map from A N H — T* N. According to the general
theory this map is a Lagrangian immersion. If we consider the Lagrangian
manifold. A, of T*R' = R' x R! where Ay = {(x.1)} then A = do* Ay and thus
we can think of the pushforward of A as described by the diagram

We shall soon see that the most general Lagrangian manifold on 7% N can locally
be described as df, dcp* A, where M, ¢, and f are suitably chosen.

Suppose that instead of A; on R we take 9({0}), the normal bundle to the
origin. Then, if in the above diagram ¢ is transversal to {0}, i.e., if 0 is a regular
value of g, then dp* (9{0}) = (e~ 1(0)). If (e~ (0)) intersects H transversal-
ly then df, 9p~1(0)) is a Lagrangian submanifold of N. This construction
generalizes the classical notion of an envelope: Suppose that M = N X § where
S is some auxiliary parameter space. We have assumed that the map

e NXS—>R

has zero as a regular value, so that ¢~ 1(0) = Z is a hypersurface (of codimension
one) in N X S. Let ¢,: N — R be defined by ¢,(x) = ¢(x,s). We can make the
stronger hypothesis that ¢, has zero as a regular value for each s. If we set
N, = q)s_l(O) then N, is a hypersurface in N for each s,and N, = Z N N X {s} so
that, as a set, Z = U,N,. Now the Lagrangian manifold 9UZ ) consists of all
points of the form {(x, s, tdy ¢, tdg®) | ¢(x,s) = 0,1 € R} and our transversality
condition asserts that the rank of d(dg¢) be equal to dim S on Z. The Lagrangian
manifold A = df, (9L(Z)) then consists of all covectors td, ¢ where

olx,s) =0 dgp(x,s) = 0.

These represent p + 1 equations in p + n variables where p = dim § and
n = dim N. Our transversality assumption asserts that these equations define a
submanifold of N X S, i.e., that 0 € R”*! is a regular value for (p,dg¢). If we
make the stronger assumption that the equations dy@(x,s) = 0 can be solved for
s as a function of x the first equation becomes

plx,s(x)) = 0

which defines a hypersurface, &, called the envelope of the hypersurfaces N,
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Furthermore

dy (-, 5()) + dgo(,s())
qu)(" S())

do(:, ()

since dgp = 0. Thus A = 9U&). From our point of view it is more natural to
consider the Lagrangian manifolds than the hypersurfaces. But even classically
one is obliged to consider the Lagrangian manifold rather than the hypersurfaces
if one wants to avoid singularities. For example, let S be a submanifold of
N = R" and let N, be the sphere of radius r centered at s € S. (We are thus in
the situation envisaged in our treatment of Huygens’ principle in Chapter 1.)
Then the (classical) envelope of the spheres N, will develop singularities, if r is
larger than the minimum radius of curvature of S. However, the Lagrangian
submanifold A C T*(R") will still be perfectly well defined. It just won’t project
onto a hypersurface in R”".

Later on we shall show how to associate to any distribution, u, on M, a subset
of T* M, describing the singularities of . A particular class of distributions will
have their singularities along (the normal bundle to) hypersurfaces. We will be
able to show that when we superimpose distributions concentrated along N, we
obtain a distribution concentrated along the envelope, &. In this way we shall be
able to give a purely geometric version of Huygens’ principle.

§5. Local parametrizations of Lagrangian submanifolds.

In this section we discuss local presentations of Lagrangian submanifolds of
T* M. The first basic observation is that, locally, we can represent any Lagran-
gian manifold as the push forward of graph dgp. More precisely

PROPOSITION 5.1. Given A C T* M we can find, near each point \ € A, a fibered
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manifold N => M and a function @: N — R such that
A = dn, graph dp

= dm,dg™{(x,1)}.

ProOF. Let X, ..., x", &, ..., £" be dual local coordinates. By a linear change
of variables, we can arrange that § 1, e, 5" , x**1 .., x" are independent on
A for some suitable k. (Indeed let X and Y be two complementary Lagrangian
subspaces of a symplectic vector space V. For any Lagrangian W we know that
W N X and PW C Y are orthogonal to each other under the symplectic form
where P is the projection on Y through X. We can choose e, ..., ¢* as a basis
of W N X and f¥™', ..., f" as a basis of PW and extend to get a dual basis.
Applying this result to 7; A gives the desired result.)

We can thus find functions f'. . ... fk.ka. ..., f"such that \ is described
by the equations

o= R X, e

k+1 k1 k+1 1
ghHl = gl Gkt g e

gn =fn(x/(+l L. xn,gl gk)
Now the fundamental two form, w, is given by

—d(x 't + o+ KR AT AR e+ ).
Thus on A

0 = d(f'dt’ + - + fRaek & fEr kT g e,

We can thus find a function F = F(x*T', ... x"; ¢!, ..., £%) such that
aF aF
1 = - e n _
e =

Consider ¢, defined on T* M, by the formula
1 n gl ny gl kK S () _ i\2
P’y xXNE L) = 4+ +F+k21(£ -
+

Now (x,&) are coordinates on T*M. Let (x.£z.¢{) be the corresponding
coordinates on 7* (7™ M) so that, for example, the subbundle H = dr* T* M is
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given by { = 0. Then graph dp consists of all points of the form (x, £, z,{ ) where

= gk

2 = P+ 2@ - )]

7= S @ - )

l_ aF 8 n _/2
§ +_ag+—a 2 E=7
koo OF 3 i piy?
C=xr g tm 2 @9

§k+1 — 2(£k+1 _fk+1)

"= 2" - f)

Now graph dop & H implies that J = 0 so that

k41 _ pk+l n_ 4n 1 OF k_ OF
¢ = frT L L =T x = a‘Sl,...,x ~ o,
and
=t i =1, ,h

This, of course, gives A.
Notice that it is a peculiarity of the particular representation that we have
chosen that N = T™ M and, setting A, = graph dyp, that in the diagram

T*M = N-T*N <~ Ay« Ay N H

™

M« T*M
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we have dmy« Ay = A. We shall discuss the significance of this particular type
of representation in a later section.

It is of interest to know when by a possibly non-linear change of coordinates,
we can arrange that k = n, and so eliminate the unpleasant quadratic terms that
appear in the expression for ¢. Thus, we wish to choose coordinates so that
£ ! , ..., £" are linearly independent on A. Now this is certainly not always going
to be possible. For example, if A is the zero section, then = . =¢"=0in
any coordinate system. Suppose, on the other hand, that A € A with A # 0. Let
us choose a Lagrangian subspace of YX(T*X ) which is transversal both to 7; A
and to the vertical. This is always possible by Proposition 2.4. Let us pass a
Lagrangian submanifold, K, tangent to this subspace. Since K is transversal to
the vertical, it is of the form graph dy. If x = #A then dy(x) = A\ # 0. We can

thus introduce a coordinate system < ..., X" with Y = x'. Then, in terms of
these coordinates K = {(x',...,x",1,0,...,0)}). At A the tangent space to K is
exactly the kernel of the projection onto the e, ¢". Since A is transversal to

K we conclude that the £ are independent on A near A. We thus have

PROPOSITION 5.2. If 0 # A € A then near \ we can parametrize A as follows: We

can introduce coordinates x\ s ---, X" near m\, with corresponding coordinates
1 1 * .

X, ., x" &, ., £"on T* M near \, and find a function (£, . . ., £") such that,

near A,

A = dx, graph do

where
p=x-£{—f (5.1

If A is homogeneous, i.e., invariant under multiplication by R™, then we can choose
@ to be homogeneous of degree one in &.

The only assertion that remains to be proved is the last one. If A is invariant
under R™ then £3/9£ is tangent to A and hence a = {dx = (£3/9¢) Jw must
vanish when restricted to A. Also the f’ are homogeneous of degree zero so that
on A

0=a=3¢d' =dS f'§) -3 fdE’

so for f we may take f = 3 f'¢£’ which is homogeneous of degree one.

Let us call p: N — R a local phase function for A C T* M if A is locally of
the form dm, (graph do) as above. Here N => M is a submersion. We shall set
A, = graph dp.

‘We shall set C, = my(A, N H) where my: T*N — N. Thus we have the
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commutative diagram

N(—C‘PJN—A(pﬂ H

*
M*;M—'T M.

Now my: A, > N is a diffeomorphism so its restriction to A, N H is an
immersion. Thus, for A € Aq) N H=Alet

ky = kerdmy: TA > M
and let n = my A and
l, = ker dm: T,(C,) > T, (M)
so that /[, = 7, C, N T, F where Fis the fiber through n. Then
doyky, = 1,
and in particular
dim ky = dim /,.

Let xl, ..., x" be coordinates on M and xl, e, Xt 01, e 6% be coordinates
on N. Then C,, = {(x,0) | 3¢/ 036" = 0,i = 1,...,k}. The tangent to the fiber is
spanned by 9/96". Notice that 5 = > «'9/38' is tangent to C, if and only if

) 32(p
2y

=0 allj

i.e., if B is in the null space of the Hessian

82
Hy(@) = djg = (ao";;f)

Thus
dim k, = nullity Hy(ep) at myA. (5.2)
Notice that this proves that

fiber dim N > dim k) (5.3)
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(where fiber dim N is the dimension of the fibers of =, i.e., fiber dim N
= dim N — dim M) .

Suppose H,(p) is non-singular. Then A, N H projects diffeomorphically on M
and is of the form graph &y. Notice that then

Cq><—>Arpﬂ H

M

are all diffeomorphisms. In particular there 1 1s amaps: M — C, 1.e., a section of
N and dp ° ds = di so we may take ¢ = s* .

We will say that the phase function @ is reduced (at A) if fiber dim N = dim k,.
Notice that if ¢ is reduced at A then Hy ¢ is identically zero at my A.

PrOPOSITION 5.3. We can always factor N and @ through a reduced parametrization
of A. In other words, we can locally find an intermediate fibration

and a function @' on N Usuch that dma, = Ay and dmyel\ A, with (p a reduced

Dphase function at .

? 1™

Proor. Choose a complement in the tangent space to the fiber at 7, A to the null
space of Hy(p). Extend this to an integrable foliation in the fibers. This makes N
fibered over some N 1, locally, where Hy¢ is non-degenerate when restricted to
the tangent space to the fibers of =,

Let H = dm* T*N'so that H C H, where H = dn*T*M = dn*(dny T*M).
Since A intersects H transversally, it certainly intersects H, transversally and we
have

N <A, N H,
M

Nl

Since Hy is non degenerate on fibers of N over V,, A M H, projects dlﬂ'eomor-
phically onto N', and hence is of the form graph d(p = A b with (p =s*p
where 5: N! — N is a section of 7. The rest follows easily.
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PropoSITION 5.4 (Hormander-Morse lemma). Let (N, @) and (N,,¢,) be two
parametrizations of A near A with dim Ny = dim N,. Let z; = T, Aand zy = 7TN2}\.
Suppose that

sig Ho(q’l)(z]) = sig Hg((Pz)(Zz)-

Then there exists a fiber preserving diffeomorphism f of N, — N, defined near z| with
f(z)) = z, and

@, ©f = ¢ + const .
In other words, A, dim N and sig H,¢ determine ¢ up to a diffeomorphism.

(If we take M to be a point, this reduces to the standard Morse lemma. Indeed
H is the 0 section of T* N in this case. and hence the transversality condition is
that @ have a non-degenerate critical point. Then we are clearly in the situation
described by Morse’s lemma.)

We first point out that it is sufficient to consider the case where N, and N, are
reduced. Indeed, suppose that the proposition has been established in the case of
reduced parametrizations. Then there are fibrations N, — Nl1 and N, — N2l with
non-degenerate phase functions. By applying a diffeomorphism, we may assume
that N]l = N21. Then we have sections s, and s; with ¢, °© 5; = ¢, o 5, + const.

_____ _)NZ

sl\ s

given by dyg; = 0,i = 1, 2. Now Hy(g,) is non-singular, so we may apply the
standard Morse’s lemma to each fiber. This then gives the desired diffeomor-
phism from N, to N,.

We thus may assume that (M, ¢,) and (V,, ¢,) are reduced. Our next step will
be to show that we can assume that Nj = Ny, C;, = C, , and the first derivatives
of ¢, and ¢, agree on Cwn G, and so that 4 maps do, IC onto dy, | G, For
this, we need only exhibit a fiber diffeomorphism A: N, — N2 with #(C, ) = C_ .
Then replace ¢, by ¢, © . For this purpose, let (x, #) be local coordmates on MV
and consider the fiber map g,: N, — T* M given by

8(x,0) = (x,%%(x,ﬂ)).

On C, this gives the diffeomorphism with A. Since Y;I(fiber) C E‘(Cwl) we
conclude that g, is an immersion at z preserving the fiber over M. The same is
true for a similar map g,. By the implicit function theorem, there is some map
o: T*M — N, commuting with the fibrations over M such that p o g, = id.
Then p o g;: N, > N, is a diffeomorphism, and since g, Co, = & C%*= A we
have (p o g,)C o = Co, Moreover, from the definition of p, d(p °g) ¢ = @
on Cwu :
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We are thus in the situation of Appendix I. For convenience we repeat the
relevant proofs:
@, and ¢, are reduced phase functions for A on N with Co = C%, with
9 _ 3%, i @ _y_%

dx 0x an 20 30

on C,. Thus ¢ = @, 0n C, (up to a constant which we shall ignore) and ¢, — ¢,
vanishes to second order. We set ¢, = (1 — f)g; + rg, and seek a fiber diffeo-
morphism f with f* ¢, = ¢, f, = L on C,- We look for the corresponding vector
field £,. It should satisfy

¢f + D&q)l = 0.

Now @, — ¢; vanishes to second order on C, and d(dg,/ 39') are independent by
the transversality of Aq) with H. Thus

dpy 0
@ =@ + Dbyt — b= by(x,0)

756" 09’
SO
. de| a‘Pl
= 2 by s
We seek
g[ = E ,ul(x 0)5@
with yi = 0on C,so
i a(pl
b= 2ty
and
¢, + Dglcp, =0
becomes

9, dgy dgy 0 [ 99, 3%]
0="Sb,
2 by 39 T 2 Pyl o F2 by

Equating the coefficients of (3¢,/0')(3p,/96”) this becomes
B+UI+S)=0 B=(,) U=(,)

where S = 0 at z; since ¢, is reduced. We can thus solve for U near z|, find §,
and integrate to get f, proving the proposition.

In many applications we will be dealing with homogeneous Lagrangian
manifolds. For these applications we will require a slight modification of
Proposition 5.4.



LOCAL PARAMETRIZATIONS OF LAGRANGIAN SUBMANIFOLDS 161

Let N = N x R" and consider parametrizations of the form

Nt 2SR
"]
M

which are equivariant with respect to the action of R* in the obvious way,
namely ¢*(z,5a) = ap*(z,s) and 7(z,sa) = 7(z,s). It is clear that the resulting
Lagrangian manifold A = , (graph dp) will be invariant under the action of R*
on T*M and hence homogeneous. By Proposition 5.2 every homogeneous
Lagrangian manifold admits an R* equivalent parametrization, at least locally.
Moreover, it is easy to modify the proof of Proposition 5.3 so as to show:

PROPOSITION 5.3 (homogeneous version). Let (A,N) be a homogeneous Lagrangian
manifold (germ) in T* M. Then every R equivariant parametrization of (A,)) can
be factored through a reduced R* equivariant parametrization.

PROOF. Let ¢(z) = ¢*(z,1). Then ¢* (z,a) = ag(z). Now if z* = (z,a) is in the
critical set of ¢, then

dpt/9z=0 = a(d¢/02);

so dp/dz = 0 since a # 0. Moreover,

25 (§w) = (%8 )m) = @om> =0

Here 3/0: is the unit vector tangent to R* at z* and 7 is any vector tangent to
N. This shows that 9/9¢ is in the null-space of the Hessian of ¢* at z* so in the
proof of Proposition 5.3 we can choose the fibration = so that its fibers lie in the
sets N x const.; that is, so that m commutes with the action of R*. Thus the
reduced parametrization is also an R* equivariant parametrization. Q.E.D.

We will use this result to prove:

PROPOSITION 5.4 (homogeneous version). Let (N*,@) and (N;%,¢7) be two

parametrizations of (AN) with dim N;* = dim N,". Let z{' = my.(\) and z;
= Ty (A). Suppose that

sig Hy(e) ) = sig Hy(o]) )

Then there exists an R™ equivariant fiber preserving diffeomorphism f: N]Jr - N2+
defined near z;" with f(z]") = 25 and @3 o f = @ -
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PROOF. As before it is sufficient to consider the reduced case. Define g;": M"
— T*M and g : N, > T* M exactly as we defined g; and g, above, i,

Oy
+ —
g (x,0,5) = (x, 3x )

It is clear that g and g, are R* equivariant , so we can choose h: Cp = Cop
as before, but so that it is equivariant, and replacing ¢; by @; © h reduce to the

case: " = N, Cq: = Cl;'z, and ¢ = @; on Cq: = C‘;;. Note that ¢, (z,1)

= tq(2); so at a critical point

8q)+
2t = (z,1), a_tl =0 = ¢2);

and hence ¢*(z*) = 0. Therefore, in the homogeneous case q)l+ = O on C‘;] ; SO
not only do the first derivatives of @, and ¢, agree on C, = C_ but the
functions themselves do as well. (Recall that in the inhomogeneous case we had
to adjust by an arbitrary constant at this point in the argument.) The rest of the
proof now goes as before. A little care must be exercised in choosing the matrix
B. Namely it has to be homogeneous of degree 1 in R*. To do this just define B
on a set where the R* variable is constant and extend by linearity.

We can reformulate some of the discussion surrounding equation (5.3) of
Chapter Il in our current framework, together with a generalization of the
exponential map and the computations of Chapter L.

PROPOSITION 5.5. Let A be a homogeneous Lagrangian submanifold of T* M and let
a be a function defined on T* M — {0} » Which is homogeneous of degree one. and
such that a is nowhere zero on A. Then we can find a homogeneous ¢ defined on
T* M such that
dm, (graph dg) = A
and
{a,9} = a.

Notice that if x is any homogeneous phase function for A, we have since

a = dx on A, and by Euler’s theorem,

Thus {a,x) = a will always hold on A for any homogeneous phase functions.
Our problem is to adjust x off A. Notice also that
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is nowhere tangent to A. Indeed if £, were tangent to A at z, then &0, =0
since a |, = 0 for homogeneous A. But then 0 = (da/d¢) - £ = a by Euler’s
theorem again, contradicting the assertion that ¢ does not vanish on A. Now
choose a homogeneous submanifold C, of codimension one transversal to £, and
containing A and choose ¢ to be the solution of the non-singular first order
partial differential equation with initial condition

oo =&e=a o@=x onC

This defines ¢ uniquely in a neighborhood of C. Since a, §, and A are all
homogeneous we conclude that ¢ is homogeneous. Finally, Lz do = LZ dx since
@ =xonC, and §,¢ = §{,x = a at points of A. Thus dp = dx at points of A
and hence ¢ 1s a phase function for A. Q.E.D.

Now consider the flow, f, generated by £, and consider the set of points

(f(2),t,—a) C T*(M X R).
This consists exactly of the set swept out by the isotropic submanifold
{A! 09 _a}

under the Hamiltonian flow generated by the vector field £, + 3/0r on
T*(M X R) and is thus a (homogeneous) Lagrangian submanifold, which we
shall denote by A”. Notice that for small values of 1 we have

d
(a_z + ga)((p - ta) =0
and, at A” with ¢z = 0, letting 7 denote the dual variable to ¢,

d(p — ta) = dp — adt

= &dx + 1dt |Aa"=0

= (aprxr) |A",t=0 .

Now D; ay = 0 and Da/a,(Tdt) = 0so

D(a/at+§a)("MxR) =0

(In fact if b is any homogeneous function on T*N then it follows from Euler’s
equation that Dy ay, = 0.) Thus

d(p — ta) = oy up

along A’ for sufficiently small ¢, i.e., ¢ — ta is a phase function for A”.
Associated with the same picture we can consider an inhomogeneous Lagran-

gian submanifold A; of T* M, defined as follows. Let S, (A) consist of those

points of A on which a = 1. (Notice that da does not vanish on A. Indeed
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(¢0/3¢,day = a # 0 and £(9/0¢) is tangent to A. Thus S;(A) defines a
submanifold of A of codimension one.) Then S;(A) is an isotropic submanifold
which is transversal to £, (since £, is in fact transversal to A). Let us map
S (A)XR — T*M by f(A.1) = f(\) where f is the flow generated by £, Then
A; = f(5;(A) X R) is a Lagrangian manifold of T* M. Notice that since §,a
= 0, we can conclude that a o f =1 on §,;(A) X R. We can now define the
exponential map, exp: S;(.\) X R = M by setting exp = 7 o f. For example. let
a denote length relative to a Riemann metric and let A be the cotangent space at
a point y. Then S;(A) is the unit sphere at the point in question. and exp is the
usual exponential map. Similarly, we can let A be the normal bundle to a
submanifold.

Let us set S, ={z € T*M | a(z) = 1} so that, in the preceding notation
S,(A) = A N S,. Let us assume that S; is a submanifold of T*M, let = : S,
— M be the restriction of 7 to S; and let ¢, be the restriction of ¢ to S, where
@ is the previously constructed phase function for A. We claim that

A, = dm (graph dp,).

Indeed the set C_ is given (by the method of Lagrange multipliers) by the
equations

deo — pdea =0
a=1

for some y. Thus (x,§) € C,, if and only if (x,&u,~1) € A’. Now on A" we have
dlp — ta) = « + 7dt so

dy — tda = a.

On §; this becomes

S0, on C‘Pl
k]
ox'

which is exactly the required assertion.
Notice that the value of the Lagrange multiplier y has a very simple geometric
interpretation. Indeed, on the one hand, since ¢ is homogeneous, we have

8 3
¢=25§§i=u23—g£,—=w=#

on §;. If §,(x) denotes $; N T*M, and x € 7A, then x = 7(z) where z is a
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critical point of ¢, i.e. u is a critical value of ¢,. Notice that u is also the time
parameter such that f(A) = z, where A € §;(A). Thus p is a critical value of
5,(x) and represents the length of time for an extremal from S,(A) to reach
M,. In the Riemannian case the values of u are exactly the length of the
geodesics joining x to the point y.

1We close this section by examining the behavior of the Maslov cochain under
functorial operations on Lagrangian submanifolds of cotangent bundles. Let
f: M — N be a submersion. Then df* T* N is a subbundle of 7% M and we have
the diagram

P
T

M ™  T*M«*—df*TN =%

fl lg

N«—™  T*N

Let p € ¥ and x = my,p € M, while g is the image of p in T*N and y = f(x)
is the image of ¢ in N. Thus

p=dflq q=gp

X = m,p y = myq.

Let a,, and «a, denote the fundamental one forms on T*M and T*N. We claim
that

* _ %
Loy =g ay.

Indeed, let £ be tangent to I at p. Then

(&,8%ay) = {dgé,ay)
= (dmy o dg&,q)
= (df o dmy &, q)
= (dmy&,df* q)
= {dnyé,p) = (&, ap).

If w,, = da,, and then, a fortiori, we have (as in (4.1))
gFoy = Faoy,. (5.4)

If A, is a Lagrangian submanifold of T* M which intersects % transversally,
then df, A, is defined to be A, N IC (when mapped in 7*N by g). Let

IThe rest of this section should be omitted on first reading.
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Ji Ay N 30— Ay, and let My, be the Maslov class of Ay, We claim that

j*%AM = G‘mdf*/\u (5.5)

where M . 4 is the Maslov class of df, A,
Slmllarly, suppose that Ay is a Lagranglan submanifold of 7*N. Then
dr* Ay =g lA and we claim that

g*@TL‘\N = md)“AN (5.6)

where g: df* Ay — \y. (We have used the same letter, g, to denote the
restriction of g to g~ Ayv)
We first prove (5.5):
Let us set
h = X

vy, = tangent space to fiber (of 7,,) at p

vy = tangent space to fiber (of my) at g
_ 3

T, = (M)
— %

T, = T N)

and k the kernel of dg: h — T, so that
O—>k—>h—>7;—>0

is exact. We claim that k is an isotropic subspace and that, in fact & = &+ under
wyy S0 that 7, = k*/k. Indeed, if £ € k and y € h then

(&N nwpy = (dgg A dgm,wy) =0

so that A C k1 on the other hand dim k = dim M — dim ¥ while dim A
= dim M + dim N so that we must have » = k*t.

In particular, we have a map, p, from L(T) — L(T;) sending any u C 7, into
unkt/unkc T,. Let Abea Lagranglan submamfold of T*M 1ntersectmg
IC transversally. We have

T(ANK)=TANkA
while
(LAN k)" =TA+k*
=TA+h

= T(T*M),
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by transversality, so that
Y;A N k= 0.
Thus
Y;(A N 3X) = T A
Of course this holds at all of points of A N I so we can write
T(A N ) = pTA.
Since v, is transversal to h, the same argument shows that
vy = pluy)-

Now let C and Dy, be sections of L(A N IC). Then Cy(p) is a subspace of k* /k
and hence determines a unique Lagrangian subspace of k' which we denote by
Cy(p). We claim that if Cy(p) N Y;(A M ) = 0 then Cp(p) N Y;(A) =0.
Indeed

Cul(P) N T(A) C k
since Cyy(p) C k* and Cy(p) N Y;(A)/k = 0. But then
Cu(P N T(A) CCu(p NT(A)Nk=0

since Y;(A) N k = 0. The same argument works for vy,

Thus, if Cy is transversal to vy and T(A N ), then C,, is transversal to vy,
and T(A) along A N 9 and hence can be extended to a section of L(A) defined
near A N I which is still transversal to vy, and T(A). We claim that

(T(A)’ UMa CM’ DM) = (T(A ﬂ %)9 UNa CN’ DN)>
if Dy is a second such section. Indeed,
(T(A)’ UM! CMa DM) = _(CM5 DM5 T(A)9 UM)
and since Cy, N Dy, D k we have
(Cpps Dy T(A),vy) = (Cy, Dy, pT(A), pryy)
= (Cy, Dy, T(A N I0),uy).

This shows explicitly how to relate the Cech cochains on A and A N 9 so that
the Maslov class on A pulls back to the Maslov class on A N I, proving (5.5).

We leave (5.6) as an exercise for the reader. The crucial point is to observe that
at any point of g_lAM all of the intersection v, N T(g_lAN) arises from ¥, in
other words comes from v, N A,.
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The functoriality of the Maslov class implies a corresponding functoriality for
the Maslov line bundle. This follows from general nonsense (the isomorphism
between cohomology classes and equivalence classes of line bundles) but can also
be seen directly as follows. Let f: M — N be a submersion, let y = f(x) and
p= dfx* g, p € Ayyand g € Ay = df, A,,, the notations being as in the preced-
ing paragraph. We recall from Section 3 that the fiber of the Maslov bundle at p
is just the set of all functions

f: 9= € f(C) = PP p(p),

a(C. D) being the cross-ratio (7;(1\), vy (p), C. D), and € being the subset of L(T,)
consisting of those Lagrangian spaces which are transversal both to Y;(A) and
vy (p). Now the map p defined in the preceding paragraph maps O into the
corresponding subset of L(Y;) and preserves cross-ratios. Thus the fiber of the
Maslov bundle at g gets mapped bijectively onto the fiber of the Maslov bundle

at p by p*.
§6. Periodic Hamiltonian systems

In this section we depart briefly from the study of general properties of
symplectic manifolds and examine the special case of a Hamiltonian flow with
manifolds of periodic solutions. We have already encountered such a situation in
conjunction with the phenomenon of perfect focusing in Chapter III. We shall
elaborate on some of the properties of such systems in this section and describe
some important examples. The reader who prefers to continue with the general
theory can skip to the next section.

Let £ be a Hamiltonian vector field on a symplectic manifold X so that

§Jw = ~dH.
Suppose we are given a one parameter family of trajectories of £ That is, suppose
we have a map F of the region 0 < ¢ < T(s), 0 < s < a of the (1,5) plane into
X such that

a
#(2) =t
3 /(1,5) $res

T(s)
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Thus, for each fixed s, the curve y, = F(-,s) is a trajectory of £ Now

] d _ ] ]
<§ AN 5},F w> = <dF§ AN ng},w>
]
= ng},ng>
-l )
as
]
= —<5},d(H°F)>

0 9

23 F) A dt)>

] ]
= <$ A 5},d(H° F)y N dt>
or, in short, we obtain Cartan’s formula,

F*w—dH o F) A dt = 0. (6.1)

Now suppose there is a form a on X with da = w. Then the above equation
becomes

dF*(a + tdH) = 0.

Let b, denote the curve r = 0 and b, the curve s ~ (T'(s),s). We can now apply
Stokes’ theorem to conclude, since H is constant along v, and vy, that

faa—fyoa=blF*a—fboF*a'i'fb‘T(S)d(H°F)- (6.2)

We have already encountered versions (and applications) of this formula in
Chapter 11 and Chapter III. Let us now apply this formula to the case where each
trajectory v, is periodic, i.e., that

F(0,5) = F(T(s),s).
Then

fb]F*a='f;oF*a

and (6.2) becomes

f«, a= fyoa +foa T(s)dH (6.3)

where H(s) = H(F(T(s), 5)) . In particular, we obtain the following result, due to
W. B. Gordon [4],

a

If v, is a one parameter family of periodic orbits lying on fixed energy surface H
= const then [, « is independent of s.
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Now suppose that all the trajectories of £ are periodic and that the surfaces
H = const. are connected. Then the integral f « over any periodic trajectory
depends only on H so we can write it as J(H ). The equation (6.3) shows that

I'(H) = T(s) (6.4)

showing that all orbits on the same energy surface have the same period. (The
above argument is also due to Gordon, [4]. The actual result in various special
cases had been known for some time, cf. Wintner [5] and the references cited in
Moser [6] and Gordon {4].) We now present a generalization of this result due to
Weinstein [8]. Let f: X X R = X be the map giving the flow generated by £ (so
that f(x, -) is the trajectory through x). If the flow is not giobally defined then the
domain of definition of f is understood to be the appropriate subset of X X R. We
shall consider w and H to be defined on X X R via the projection of X X R onto
X. Let n be any tangent vector to X, considered as a tangent vector to X X R.
Then the computation we did in proving (6.1) shows that

9 « \_ /D
<&/\ n.f w> = <&/\ n,dH A dt>.

If » and { are two tangent vectors to X then

M AGfre) = A §w
since the map x — f(x, ) is a symplectic diffeomorphism for each fixed r. We can
combine these last two equations into the formula
f*o=w+dH A dt (6.5)

Now let g: X X R = X X X be the graph of fso that g(x,7) = (x,f(x,7)). (Again
g may not be defined on all of X X R, it has the same domain of definition as f.)
On X X X we put the symplectic structure wy .y = 7 w — 7 @ where 7 and
denote the projections of X X X onto the first and second factors, so that, for
example m, o g = f. Then, by (6.5)

groyxy =g mew—g'n o
=ffo—w
or
g wyny = dH A dl. (6.6)

In particular, if M C X XR is a submanifold such that g,, is an isotropic
submanifold of X X X, so that (g\M) wyyy = 0, we conclude that dH A dt
vanishes on M. For example, suppose that all the trajectories of £ are periodic,
and that the period of the trajectory through x is T(x). Then take M
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= {(x, T(x))} and we have g(x, T(x)) = (x, x). Since the diagonal is a Lagran-
gian submanifold of X X X we conclude that

dH N dT =0

showing once again that the period and the energy are “functionally dependent”.

Suppose that H = ¢ defines an energy surface, Z, and that the trajectories of
£ make this energy surface into a fiber bundle over Y. Thus Y is the “space of
orbits” of § Notice w, when restricted to Z, is of rank 2n — 2 (where
dim X = 2n) and on this surface £ jw = dH|{H=c} = 0. We can identify TY,
with the space 7Z,/{£,} where x is any point in the orbit given by y. Since w
induces a nondegenerate antisymmetric bilinear form on 7Z_/{£ }, we obtain an
induced form w,onTY,. As the flow generated by £ preserves w this induced form
does not depend on x. We thus get a form, @, on Y and it is easy to check that
this makes Y into a symplectic manifold. If 4 is any symplectic automorphism
preserving £ it clearly induces a symplectic automorphism of Y.

For example, let us consider the geodesic flow on the sphere S” (considered as
the unit sphere in R"“) . The energy surfaces correspond to tangent (or
cotangent) vectors of constant length and all trajectories are great circles,
traversed at different speeds, the period being inversely proportional to the speed,
and hence constant on each energy hypersurface. The group O(n + 1) acts as
automorphisms of the flow, and hence also as automorphisms of the associated
orbit spaces. A most important special case is where n = 3. In this case S 3is
itself a group, and the metric invariant under right and left translations. Since for
any group G we can identify T(G) with G X g, where g is the Lie algebra of G,
we can identify the unit tangent vectors with .§ 3 % S$2. As the metric is invariant,
the corresponding geodesic flow is just the exponential map and its translates.
See, Sternberg [2]. The trajectories are hence of the form y X v where v is a great
circle determined by the unit vector v and v is a constant unit vector in g. For
each fixed v this induces the Hopf fibration of .§ 3 and we thus see that the space
of orbits is S? X S What is remarkable about this example is the beautiful
result, due to Moser [6], (see also Souriau [9]) that, up to compactification and
“regularization”, the geodesic flow on a fixed energy surface is the same as the
flow on a fixed surface of constant negative energy for the Kepler problem, i.e.,
for a particle moving according to the inverse square law of attraction from a
fixed center. In particular the orbit spaces are the same, i.e., S 2 % 82 As we shall
see, this accounts for the role of the group O(4) in the quantization of the
hydrogen atom.

We first make a preliminary remark about “regularizing” a Hamiltonian vector
field. Suppose £ is a Hamiltonian vector field with § 1w = —dH, and fis a smooth
function. Then on any fixed energy hypersurface H = ¢ the vector field f¢
coincides with the restriction to H = ¢ of a Hamiltonian vector field. Indeed let
7 be the Hamiltonian vector field determined by
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nlw = —d({(H —o)f) = —(H — c)df — fdH.

On H = ¢ we get n 1w = —fdH so n = f§ and thus f£ coincides with the
Hamiltonian vector field 5 on H = ¢. (Of course f¢ will not be Hamiltonian
everywhere if f and H are not functionally dependent.)

Now multiplying a vector field, £ by a function f can be thought of as making
a “change of independent variable” 1 = f fds (i.e., dt/ds = f(z(f)) where z(7) is
a trajectory of £€). Now if f is nowhere zero, nothing much happens. If fis allowed
to become zero, then n might have nicer properties than £ For example, £ might
be defined on an open submanifold, U, of a manifold W, becoming “infinite” at
oU, while n = f£ is defined on all of W. This is precisely what happens in the
“collision orbits” of the Kepler problem, i.e., those orbits on which the particle
moves on a straight line course to the origin. The velocity becomes infinite as the
particle approaches the origin, and so £ blows up. On the other hand, after
multiplication by an appropriate f, these orbits will turn out to be well behaved,
indeed to correspond to the tangent vectors to great circles passing through the
north pole, while the energy surface will correspond to those tangent vectors
lying over the sphere with the north pole removed. Furthermore by suitable
normalization it turns out that the relation between ¢ and s will be given by the
celebrated Kepler equation 1 = s — e sin s where e is the eccentricity of the
ellipse. For e = 1 the ellipse degenerates into a straight line collision orbit with
collision at ¢ = 0. For ¢ near zero t = s — sins = s3/3! + .- vyielding the
result that /7 is a “regularizing parameter”.

Let us now give the details. We follow Moser’s elegant discussion almost
verbatum, with the exception of minor notational changes. Let x = (xo, ceenX,)
be Euclidean coordinates on R""! and ¢ = (%, - - ., £,) the dual coordinates so
that (x,¢) are coordinates on R"*! + (R"*1)* = T*R"*!. The Hamiltonian flow
generated by the function ¢ = %||$I|2 |[xH2 gives the differential equations

dx _ 9d 2 dé P 2
L R L )

It is clear that

2
d(x - d||x
- I

and
2 2
dl§ll°/ds = —2[|lI" Cx - £).
Thus, the (co)tangent bundle to the unit sphere, T*S”, given by
Il =1, x-g=0,

is preserved under the flow and on 7% S” the trajectories are given by
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dx df 2
Dot o s

or
d*x 2
— + i§['x =0
Rl

which is clearly the equation of a great circle. Identifying T*S” as a submanifold
of T*R""! as indicated above thus yields the fact that the restriction of @ to
T*S" generates the geodesic flow on 7*S”. We shall continue to denote the
restriction of ® by ®. The unit tangent vectors constitute the “energy” hypersur-
face ® = 1.

We now let y = (y,...,y) denote Euclidean coordinates on R", with dual
coordinates 7, and consider stereographic projection from the north pole

al k=1 n
y = > = »
KT = xg
so that
2 1 —x(z) I+ x,
”y” = 2 1= x
(1 - xp) 0
and hence
2
Y
(N 2 - 2
Il + 1 Il + 1

gives the inverse map. It is easy to check the well-known fact that this map is
conformal, more particularly that

dxz_" 2 4 2

—Sdl=— " 4
TN T

Let S; denote the sphere with the north pole removed. The stereographic
projection is a diffeomorphism of Sj onto R" and hence induces a diffeomor-
phism of T* S with T*R”" (which carries the canonical one form of T* S onto
the canonical one form of 7*R") . Thus we will get £ = £(y,n) and 5 = n(x,§)
with £ - dx = 7 - dy, and where, in fact, the £ = £(y,n) and the 5 = n(x, {) are
determined by this equation. Using the fact that £- x = 0 and X x,.2 =1litis
easy to check that n(x,§) is given by n, = (1 — xy)§, + & x, and since n -y
= 2 My = & we get

2
+ 1
§o="”l'y £k=”—y“2—77k_(77'J’)yk

so that
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2
g = P Ty,

We can now use the diffecomorphism of 7* Sy with T*R" to transfer the
Hamiltonian which becomes

2 2 2
+1 I
Y 1
If u is any function of a real variable with «/(}) = 1, then u(F) and F will define
the same trajectories on the energy surface F = 1. Let us take G = u(F)
= +/2F — 1. Then

_ U+ Dl
2

and the corresponding Hamiltonian vector field, 9, is defined by n lw = —dG.
Let us now introduce the vector field £ given by

G

n = IInll

so that ¢ is defined only for ||n|| % 0. Now F = 1 corresponds to G = 0 and so
the vector field £ is generated by the Hamiltonian

2
H=|q'6 -} = "' W2F-1)-1= ”yTH - ﬁ

Let us set p = —y and ¢ = n so thatdp N\ dg = dn N dy. Then

H =14l - V4l

which is the Hamiltonian for the Kepler problem. The energy surface ® = i
corresponds to H = —1. We may get a more general energy hypersurface as

follows: Let T, denote the transformation of (g, p) space given by

q\ _ ([ *q
b (p) B (i“p)'
Then T; is not symplectic, but T, dp Adq = Adp A dqg so that

{f,8}oTi=A{foT;,g0T;},
while
HoT, =172
This shows that if we change the time as well according to ¢ ~ A* so that we
consider the transformation
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then S; carries solutions of the equations of motion into themselves. This is
essentially the content of Kepler’s third law which he formulated as saying
that the period of an orbit varies as the 3/2 power of its major axis.

Now consider the set of all (x, &) with ||&|| = p, and its image under
stereographic projection, i.e. the hypersurface F = %pz. Set

2.1 2 1 2 2
G=Q2p"F)* = p"=zp(I" + Dllnll - p°,
so that the surface is given by G = 0. Then

R I . 1
P limll G pr  plll " 2p%
Make the symplectic change of coordinates p = —y/p, g = pn. The surface
G = 0 is carried into the energy surface H =1/ 2p2 for the Kepler problem.

We can summarize the discussion as follows: Each of the energy surfaces
€]|> = $p? is a manifold of dimension 2n — 1 which is fibered by circles
(the geodesics) over a symplectic manifold of dimension 2n — 2. Under
stereographic projection, the 2n — 2 dimensional manifold (less the points
sitting over the north pole) goes over into a manifold that can be identified
with the space of orbits of the Kepler problem with energy H = —1/2p2.
In particular, the induced map of the 2n — 2 dimensional manifold onto the
2n — 2 dimensional space of orbits of the Kepler problem is a symplectic
diffeomorphism. For n = 3, the “completed” space of orbits is topologically
S? x §2.

Let us analyze, in terms of more classical terminology, the parameters that
enter into the Kepler orbits in terms of the stereographic projection, (x,§)
— (y,m) = (—p,q). A given orbit corresponds to a great circle. Since the whole
picture is invariant under all rotations about the x; axis, we may assume that the

orbit lies in the subspace x; = --- = x, = 0 and is described by the equations
Xy = sin a cos s X = sins X, = —COS & COS §

$O
§) = —sinasins § =coss § =cosasins

and thus setting e = sin «

sin § \/l—ezcoss

A= TT " ecoss P2 = T " ecoss

g =coss—e q2=\/1—ezsins

so that the p’s describe a circle while the ¢’s describe an ellipse of eccentricity e
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parametrized by the eccentric anomaly, s; (see Sternberg [2]). Now ||q||2
= {1 — ecos s) so

k) S
t=f0 lqlds=f0 (l—ecoss)ds =s—esins

showing that our regularization procedure does indeed reduce to Kepler’s
equation.

We refer the reader to Moser {6] and Weinstein [8] for applications of these
results to the existence of periodic orbits for the three body problem under
conditions which can be regarded as small perturbation of Kepler motion. More
generally these papers discuss the problem of establishing periodic orbits for
systems which are perturbations of a system having manifolds of periodic orbits.
Our main use of these examples will be to the study of a “quantization
procedure” to be described in the next chapter and to the study of the asymptotic
distribution of eigenvalues of elliptic operators.

The preceding considerations show why the group O(4) enters as a symmetry
group of the Kepler problem, on the set of orbits of some fixed (negative) energy.
(This fact is strikingly confirmed in the study of atomic spectra. Each energy level
of the hydrogen atom occurs with a multiplicity corresponding to an irreducible
representation of O(4). In comparison, the alkali metals exhibit a spectrum
corresponding only to O(3) symmetry. However for the higher energy levels of
the outer electron, where the potential is approximately of the form &/r, an
approximate O(4) degeneracy appears.) If we consider the set of orbits of all
negative energies, it is known that a still larger group, the group SO(2,4), of all
orthogonal transformations in six dimensions preserving a quadratic form of
signature ++ -~ — —~ — acts as a group of symmetries. That is, let T+S3 denote the
subset of 7*S3 consisting of the non-zero covectors. We shall show that the
group SO(2,4) acts transitively as a group of symplectic diffeomorphisms on
T*S3. (In all that follows we could replace 3 by n and SO(2,4) by SO(2.n + 1)
etc.)

Let G be a Lie group and g its Lie algebra. If £ € g, then exp¢f is a one
parameter subgroup of G, where exp: g C G denotes the exponential map, and
the most general one parameter subgroup of G is of this form. If a is some
element of G, then a(exp 1§ )a"1 is again a one parameter subgroup, and so is of
the form exp:¢{ The map & ~» { is linear-we write { = Ad, §. This assigns to
each a € G a linear transformation; in this way we get a linear representation of
G on G known as the adjoint representation. Since G acts on g, it has a
contragredient action on the dual space, g*: for any / € g* we define the
element a - / by

<£7a ) l> = <Ada—| £,1>

This representation is known as the coadjoint representation. For any n € g and
any / € g* we can consider the curve (exp tn) - /. We denote the tangent to this
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curve at ¢ = 0 by n;. Since

d
E Ad(expt"l) £!1=0 = ["Li],

where [ , ] denotes Lie bracket, we have

empy = ECAd o imy £ Dm0 =~ ELD.

The vectors 7, span the tangent space to the orbit, G - /, at the point /. In the next
section we shall prove that for any Lie group, G, and any / € g*, the orbit G - /
1s always a symplectic manifold, and the symplectic form w is given by

<£[ N TI(:W> = —<[£’ "l],1>

(In fact, we shall prove that all symplectic manifolds on which G acts transitively
as a group of symplectic diffeomorphisms can be obtained by a slight modifica-
tion of the preceding construction.) We shall now show how 7%S3 can be
regarded as a particular orbit in the dual of the Lie algebra of SO(2,4). For this
purpose, it is convenient to have the following description of the Lie algebra: Let
V be a real vector space equipped with a non-degenerate scalar product, (, ). Let
o(V') denote the Lie algebra of the orthogonal group of this scalar product. We
can identify A2(V) with o(¥) by letting u A v act as the linear transformation

u A vw = (v,wu — (u,wh.

It is easy to check that this does indeed define a map which is equivariant with
respect to the action of O(¥') on both sides. Similarly, the metric on ¥ induces
an isomorphism of ¥ with ¥*, and hence of AX(V) with its dual space. Hence
we may identify o(V)* with A2(V) as well. In particular, we have the identifica-
tion of o(2,4) with A2(R>*).

Let us consider the set of all elements of 0(2,4) ~ N (R**) of the form

0% fAf where|fI* = [fIF =0and (ff) = o.

(As linear transformations, these elements can be characterized as those nilpotent
elements of rank two whose range (which is two dimensional) is totally isotropic.)
By Witt’s theorem, any two such elements are conjugate under O(2,4). We shall
now show that under the connected group SO(2,4) they split into two compo-
nents. Let us choose an orthonormal basis, e_;, e;, ¢, e,, €5, e, of R2’4, with
e_, and ¢, positive definite and the rest negative. We claim that for any such
element f A f’ we must have

(e_y Neg, f N Sf') #0. (6.7)

Indeed, suppose that (e_; A ey, f A f’) = 0. Then the space spanned by f and
fiie. the range of f A f’, would have to contain some non-zero vector orthogonal



178 SYMPLECTIC GEOMETRY

to both e_, and e;. But such a vector would lie in R* and could not be isotropic.
Thus, under the connected group, SO(2,4), the set of all f A f’ splits into two
components according to whether the scalar product in (6.7) is positive or
negative. Let °V denote the set of f A f’ for which the scalar product is positive.
Without changing the element f A f’, we can choose fand f’ so that (f,¢,) = 0
= (f’,e_;) = 0, while (f,e_;) and (f’,¢,) are both positive. This shows that
every element of V' has a unique representation as

sle_, +p) A (ey+q) wheres>0,p,g €R* (pg) =0 68)
6.8

2 2
and |lplI” = llqlI" = -

Now we can think of p as ranging over the unit sphere in R*, and then for fixed
p, the g ranges over the unit tangent vectors to the sphere. Thus (6.8) becomes
identified with a non-zero tangent vector to the three sphere. Using the Riemann
metric we may identify TS> and T* S3, and so we see that Vis diffeomorphic to

T + S3. We shall soon see that this is a symplectic diffeomorphism, when we put
the canonical symplectic form on T*Ss3.

Let us first examine the action of SO(2) and SO(4). Any A € SO(4) preserves
e_, and e, and sends p into Ap and q into Aq. This is clearly the induced action
of SO(4) on TS>. The element R,y in SO(2) sends e_; to cosfe_, + sinfley and e,
to —sinfe_, + cosfe,. Thus

Rg[(e-l +p) A (eo + q)]
= (cosfe_| + sinfey + p) A (—sinfle_| + cosfe, + q)
= (e_, + cosfp — sinfg) N (e, + sin g, + cosbyq).

In other words, from the point of view of TS, the map R, moves (p. q) through
angle # along the circle determined by p and ¢. But this is precisely the image of
(p, q) under the geodesic flow. Thus for unit vectors, the group SO(2) acts as
geodesic flow. Let F, denote the geodesic flow. The above computation shows that
for vectors of length s, we have R,,(p,q) F_14(p,q). To express this slightly
differently, let H = 2||q|| . The geodesic flow has, as its infinitesimal
generator, the vector field £y corresponding to —dH under the identification of
differential forms and vector fields on 7*$? given by the symplectic form.
Suppose we consrder the function \/=2H . It gives rise to the vector field
—(- 2H) = ~5 I.EH We thus see that the action of Ry is the same as that
generated by a vector field corresponding to the function (— 2H)

Let O(1,4) be the subgroup of O(2,4) which fixes the vectore_, . It is clear that
SO(1,4) acts transitively on V. Indeed, let R'* be the subspace of R** spanned
by ey, e, e, €3, and e,. By Witt’s theorem o(1, 2 acts transitively on the set of
all pairs of the form ( p, f’) where Hp|| =~ |If'I" = 0and {p,f> = 0, with p
and f* # 0 in R4, Now f’ cannot be orthogonal to ey, since it would then lie in
R* and could not be isotropic. Thus any such f’ can be written as ' = s(e; + ¢)
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where ||q||2 = —1land {p,g> = 0, s # 0. The group SO(1, 4) acts transitively on
those pairs for which s > 0, and these can clearly be identified with points of V.
The map of V — o(1,4) ~ o(1,4)* sending ste_; +p) N (eg+q)top Nsleg + q)
is manifestly equivariant with respect to SO(1,4) and sends V onto one of
the two components of the set of (non-zero) nilpotent elements in o(1, 4).

For the group SO(1,4) we can give a rather direct interpretation of its action
on T* $3. Indeed, SO(1,4) can be identified as the (connected component of the)
group of all conformal transformations of S3, and hence has an induced action
on T*S*, and we claim that this induced action is exactly the orbit action
described above. To make the identification, we regard S 3 as the set of “forward
light-like directions” in R, That is, we consider the “forward light cone” in R™*
consisting of all null vectors f’ with {e,.f’> > 0. The group SO(1,4) acts
transitively on all such vectors, and hence on the set of all rays, i.e. on
equivalence classes of such vectors where two vectors are identified if they differ

by a positive scalar multiple. The set of such rays is topologically S~, 3 and we can
parametrize them explicitly by S 3 once we choose the unit vector e;, namely each
such ray has a unique representative of the form e, + ¢ with ||q|| —1. We thus
obtain an action of SO(1,4) on S° which is easily checked to be conformal. The
cotangent space at f’ to $3 can be identified as the quotient space of the space
of all vectors orthogonal to the light cone, modulo the line spanned by f'. If
f' = ey + g, this space can be 1dent1ﬁed with the set of all vectors of the form sp
where p € R*, {p,q¢> = 0, and ||p|| —1. It now follows readily that the
action of SO(1,4) on % can be identified with the induced action of SO(1,4) on
Tts? coming from the conformal action on S3. Furthermore, if we think of p as
a covector, and if £ is any element of o(1,4), whose corresponding tangent vector
at[(e, + ¢)] is denoted by §{(c,+q))> then the value of the covector p on the tangent
vector 5[( e0+a)] is given by

_(P’g' (eo +4q)) = —(p A (eo + 51),£>

(where the scalar product on the left is between two vectors in R and the scalar
product on the right is between two vectors in o(1,4)).

We can now use the above remarks to show that the three different identifica-
tions that we have made of “as nilpotent elements in o(2,4), as nilpotent
elements of o(1,4) and as T*S> are symplectic diffeomorphisms. Since the
passage from o(2,4)* to o(1,4)* is the restriction map, it follows from general
considerations, or directly from the formula

& A mpos = L&D

for the value of the symplectic form, we, of V evaluated at the image vectors,
£ and q, of £ and € 0(2,4) at | € V that the identification of V either as a
subvariety in o(2,4)* or in o(1,4)" is a symplectic diffeomorphism. We now show



180 SYMPLECTIC GEOMETRY

that the identification of ' as an orbit in 0(1,4)* oras TTS3is symplectic. For
this purpose it is convenient to make use of the following lemma:

Let & and m be vector fields on the differentiable manifold, M, and let ?5“ and 1§ be
the induced vector fields on T* M. Let a be the fundamental one form on T* M, let
w = da be the fundamental two form, let z be some point of T*M, and let x = nz be
its base point in M. Then

& A0y = —(Eal, 0 = —{&al,. 2

Proor oF LEMMA. Since 2 is an infinitesimal automorphism of the cotangent
bundle structure, we have D;a = 0, where D denotes Lie derivative. Thus

0 = D = &lda + d(£1a) or

%.lw = —d{§, a).
Thus

EN @y = —fldlo = —ild(Ele) = — D, (Eie) = [§7]la

since D, « = 0. Evaluating at z and using the definition (&, ) = {dn§,,z) for
any tangent vector §, at z proves the lemma. Taking z = pand x = [¢; + g, and
using the formulas derived above and the lemma. proves that the identifications
of Vwith T*S%is a symplectic diffeomorphism.

Notice that the group SO(1,4) not only preserves the symplectic structure on
T*S3, it also preserves the cotangent fibration. On the other hand geodesic flow
certainly does not preserve the cotangent fibration, and hence SO(2) does not.
Since SO(1,4) is a maximal connected subgroup of SO(2.4) we conclude that
SO(1,4) is the largest connected subgroup preserving the cotangent fibration.

§7. Homogeneous symplectic spaces.

Let the Lie group G act on the manifold X. Thus we are given a smooth map
G X X — X, (a,x) = ax which is a group action. The differential of this map
induces a map of 7,G X T.X — T, X. In particular, taking a = e, the identity of
G, then for any £ € g = T, G, the Lie algebra of G, we obtain a vector field £on
X where &, is the image of (¢,0) under the map T, G X T, X — T,X. Thus £is the
infinitesimal generator of the flow x — (exp ¢£)x.

As

o e @na]s} - @ow
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1t follows that

a*& = (Ada™")¢.

If we set @ = exp sn and differentiate with respect to s we get

(7€) = —[n,£].

(The reason for the confusing change of sign is that we are identifying the Lie
algebra of G with the set of left invariant vector fields G, and hence they generate
right translations. The opposite convention is sometimes used, for example by
Souriau [9].)

If we set

- ¢
then the map £ — é gives a homomorphism of g into the Lie algebra of vector
fields of X.

Now suppose that X is a symplectic manifold, and that G acts as a group of
symplectic automorphisms. Then £ satisfies

Djw=0 or d(¢lw) = 0.

We say that the action is strongly symplectic if ?;“Jw = dfg for some function f.
Notice that

[£4] 10 = Dy(@ 1)
= E1d(R Jw) + d(E (7 w))

= d(¢ 19 Jw)

so that [£,]" Jw is always of the form —df. Thus if [g, g] = g, then all symplectic
actions are strongly symplectic. (This happens, for example, if g is semi-simple or
if g is the semi-direct product of a semi-simple algebra k acting on a finite
dimensional vector space V' with no trivial component in the representation of k&
on V.) Suppose that the action is strongly symplectic. By choosing a basis of the
Lie algebra and an f£’ for each ¢; in the basis, we can wnte

!,-‘Jw:—dZa,-f& if &= 2 q¢,.
Put another way, we can define a function f: X — g* where
&Sy =Sal

and then

Elo = —d((&,1).



182 SYMPLECTIC GEOMETRY

Notice that fis determined only up to an additive constant (in g*). Now for any
a € G we have

a*(£lw) = d(¢&, a*f)

since £ is a constant in this equation. But ¢*© = w and a*& = (4da™'¢)" so
setting n = Ada—1§ we see that

flw = d{Adan, a*f>

= d(n, (4da)* (@*f)).

Here (4da)*: g* — g* is just the adjoint of Ada. In particular
(Ada)* (a*f) - f

is a constant on X. Replacing a by a! gives us the fact that

pf—f=z,
is a constant where p, is the representation

puf(x) = (4d” @) f(a™'x)

and Ad™ is the representation of G on g* given by the contragredient to the
adjoint representation. It is clear that a — z, is a cocycle of G with values in g*,
i.e., satisfies the identity

Zy = (Ad#a)zb + z,.

Replacing f by f + ¢ where ¢ € g* is a constant has the effect of changing z, by
adding the coboundary (4d*a)c — ¢, and thus the cohomology class is well
defined. It represents the obstruction to choosing f: X — g* to be a G map. If
this obstruction vanishes then

(n,a*fy = {Ada"n,f)

and setting a = expt £ and differentiating with respect to ¢ gives

Dl f = <[&ml.f>

or
Dpfy = fig.m)-

But Défn = é_l dj;’ is just the definition of the Poisson bracket, {fg,j;,}. Thus in this
case

{fohd = figm
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, the map £ — f is a homomorphism of Lie algebras. An action of g on X
together with such a lifting of the homomorphism § —>§ to £ - % (if it is
possible) is called a Hamiltonian action of G on X. The symplectic actions are of
basic importance in classical mechanics. (See for example Souriau [9] for an
elegant discussion of many of the classical laws of physics from this point of
view.) In particular, a symplectic action is called elementary if the action of G on
X is transitive. (This is the classical analogue of the quantum notion of an
elementary particle as an irreducible representation of G.) If G acts transitively
on X and this action is Hamiltonian, then the equation

(4d¥a)f =foa

shows that f maps X onto an orbit. Notice also that fis an immersion. Indeed
since G acts transitively, the vector fields £ span the tangent space at each point.
If df,(£) = {&,df), = O then (E, df, >, = 0 for all 9, implying that %x = () since
the dj;' = 7 Jw span the cotangent space. Thus X is a covering space of an orbit
in g*. This suggests that the orbits in g* are symplectic manifolds which is indeed
true, a fact due to Kirillov, Kostant and Souriau. We shall develop these facts
from a more general point of view as developed by Chu [10}.

Let G be a Lie group and X = G/H a homogeneous space for G where H is a
closed subgroup, and let m: G — G/H = X be the projection. If Q is an invariant
form on X then it is clear that ¢ = #*Q is a left invariant form on G which
satisfies

(i) £1o = 0 for all £ € h where k is the Lie algebra of H;

(ii) o is invariant under right multiplication by elements of H, and hence under

Ad for elements of H.
Conversely, it is clear that any left invariant form on G satisfying (i) and (ii) arises
from G/H. If Q is a symplectic form then it is clear that a left invariant vector
field will satisfy £ Jo = 0 if and only if £ € h. Furthermore, since do = 0, the
set of all vector fields satisfying £ 16 = O forms an integrable subbundle of TG,
and in particular, the left invariant ones form a subalgebra of the Lie algebra of
G. Let us call it .. We have thus recovered h. Let H_ be the group generated by
h,. Notice that for any § € h, we have Dyo = £ 1do + d(§10) = 0 so that g is
invariant under H,. The only problem is that H, need not be closed. Let us say
that ¢ is regular if H_ is closed. Notice that if G/H is a symplectic homogeneous
space, so that H is a closed subgroup, and if we construct o as above then H_ is
just the connected component of the identity in H (and hence a closed subgroup
of G). We have thus established:

ProrosiTiON 7.1 (Chu [10]). Each 2p-dimensional homogeneous symplectic space
determines a left invariant regular closed two form of rank 2p on G. Conversely, a
regular closed two form determines a homogeneous symplectic space. Up to covering,
the space of all homogeneous symplectic manifolds for G is the same as the space of
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orbits of G acting on Z2,(g), where Z2 (g) denotes the set of regular two cocycles

of g.

reg reg

Notice that if ¢ = dB where B is a left invariant one form then o is
automatically regular. Indeed D8 = £1dB + d(¢£1B) = £ o for any left inva-
riant vector field £ since £ 18 is constant Thus § € h, if and only if D, B =0.
Now H = {a | (4d¥ a) ,B B}is clearly a closed subgroup, and H, is the identity
component Thus, if H2(g) = {0), every cocycle is regular. We can also show
that if H'(g) = {0} then every cocycle i1s regular. Indeed, to say that H'(g)
= {0} is the same as saying that d: g* — N (g*) is injective. But then £l6 = 0
is equivalent to Dgo = d(£1e) = 0so his the Lie algebra of the isotropy group
of a. This argument was pointed out to us by Ofer Gabber. In any event, it 1s
clear from the foregoing discussion that:

ProposITION 7.2 (Kirillov-Kostant-Souriau). Each orbit, Ad™ (G)B for B € g* isa
symplectic manifold whose symplectic structure is induced from dp.

We now assert:

ProposiTION 7.3 (Chu [4)). If G is a simply connected Lie group then every left
invariant closed two form is regular.

We sketch the proof. Let o be a closed two form. We can think of ¢ as a one
cocycle, f, from g to g*, where f(£) = £1o. Here fis a cocycle relative to the
action, ad®, of g on g*. Hence f defines an action of g as affine transformations
on g* via

£-0=(ad®£)0 + f(§)
= (ad¥*E)8 + £ Jo.

Since G is simply connected this defines an affine action of G on g*. It is clear
that § € A, if and only if £- 0 = 0. Thus H, is the identity component of the
1sotropy group of the origin and hence closed.

As the orbits in g* represent (up to coverings) the “universal” elementary
symplectic homogeneous spaces, it becomes important to analyze them. In this
regard, for complex semi-simple groups see Kostant [11], for real semi-simple
groups, see Rothschild [12], while for nilpotent groups see [20].

Let o be a left invariant closed two form on G and suppose that the subalgebra
h has minimum dimension among all subalgebras of the form h,. This implies
that if o, is a curve of closed two forms with 6, = ¢, then any £ € A, can be
extended to a curve § with §; = §yand §, € A, (Indeed, choose a subspace m
complementary to 4, in the Lie algebra 7G,. Since dim 4_ is minimal, this implies
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that dim 4, = dim 4 for all ¢’ close to 6. Then projection along m defines an
isomorphism of h, with h, for all ¢’ close to ¢.).In particular, let § be any left
invariant one form and consider

6, = o + td8.

Wecanwrite §, = £ + £ + O(r*). Examining the coefficient of ¢ in the equation
£ 1o, = 0 gives

£1d0 + ¢’ 1o = 0.

Let n be some other element of A, and take the interior product of this last
equation with 5. The term 91¢'lo = —§'Inlo = 0 and we get

n1£1d8 = 0.

Now, since  and # are both left invariant, ni# is a constant and therefore
0 = Dy(n18) = D0l +ni1D8 = [£,9]00 + n1£1d8, since £10 is also con-
stant. Thus

[.m]16 = 0.
Since this holds for arbitrary # we conclude that [£,7] = 0. We have thus proved

PROPOSITION 7.4. Let 6 be a left invariant closed two form such that h, has minimal
dimension. Then h, is commutative. In particular, let X be a homogeneous symplectic
manifold of G with maximal dimension. Then the connected component of the
isotropy group of any point of X is commutative.

For the case that ¢ = d#f is an exact two form this result was obtained by
Duflo and Vergne [14]. (It is just a trivial observation to remark that their proof
works just as well for the case of closed two forms.) For the case where G is a
semi-simple group, the dual of the Lie algebra can be identified with the Lie
algebra via the Killing form. In this case, to say that h,, has minimal dimension
becomes the assertion that the centralizer of the corresponding element, 4, has
minimal dimension, and Proposition 7.4 reduces to the classical assertion that for
such regular elements the centralizer is abelian. For regular semi-simple elements
the subalgebra h,, is a Cartan subalgebra.

For semi-simple subalgebras one has a conjugacy theorem for Cartan subalge-
bras, which, in the real case, can be formulated as asserting that if § is generic,
then h,y is conjugate to h,y under the adjoint group if # is sufficiently close to 8.
One can ask to what extent this remains true in the general case. It is not true for
all Lie algebras as is shown by the following example: let g = R + V where V' is
the trivial Lie algebra (a vector space with trivial bracket) and [r,v] = rv for
r e Rand v € V. It is easy to see that for any # € g* which does not vanish
on V the subalgebra h,, consists of the hyperplane in V" defined by the equation
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8(v) = 0, corresponding to two dimensional orbits in g*. It is clear that no two
such subalgebras are conjugate to one another if they are distinct. Let us call a 8
in g* stable if h,y is conjugate to h,, for all ' close to 6.

PROPOSITION 7.5. Suppose that hq has minimal dimension and that [g,hzy] N hy,
= {0}. Then 8 is stable and conversely.

PrOOF. It is clear that for any 8 on the orbit of 4 the algebras hyy and h,, are
conjugate. Thus we will be done if we can find a submanifold, W, transversal to
the orbit through 8 with the property that h;y = h,, for all & € W (near §). By
the implicit function theorem we can reduce the problem to the corresponding
infinitesimal problem: to show that every #' can be written as 8, + 8, where
0, € gldf (the tangent space to the orbit) and A,y 1df#, = 0 (which, on account
of the minimality of dim &, is the same as saying that hyp. o\ = hyy if 0, is
sufficiently small). It therefore suffices to show that no vector in g can be
annihilated by all such 6, and 8,. Now to say that {£,g1df) = 0 is the same as
saying that £1df = 0, i.e. that ¢ € hy,. To say that (§,6,) = 0 for all §, means
that (£,6,)> = 0 for all §, with the property that {{g, hul.60,> = 0, ie. that
¢ € g, h ) By hypothesis this implies that £ = 0.

If 4 is stable, then h,, must have the generic dimension, which is the minimal
dimension. Suppose that there are some 7 in hyy with 0 # 3, [9,{] in hy, for
some { in g. Choose y with (3 [9,{],v> # 0. If we apply the condition for the
existence of a conjugacy of & A(0+17) with &4, and compare coefficients of ¢, it is
easy to see that we must be able to solve the equations

A& 0).81.6> = .5l v

forallm in s and ¢ in g. Choosing X [9,§] € h,, and using Jacobi’s identity on
the left gives zero while the right side does not vanish, giving a contradiction.

Observe that Proposition 7.5 is not true if we replace the coboundary df by a
cocycle, o. Indeed, consider the trivial three dimensional algebra. Here every two
form is a cocycle and, for non-zero o, the subalgebra A, consists of the line
£1o = 0, and no distinct lines are conjugate since the adjoint group acts trivially.
On the other hand, [g,g] = 0, so the condition [g,h,] N h, = 0 is certainly
satisfied.

In order to understand this example it is useful to observe that for any Lie
algebra g, we can form the central extension of g by H 2(g) as follows: choose a
basis ¢;, ..., ¢ for H?(g) and cycles zy, ..., z; representing the ¢’s. Then define
(v, x), (W, »)] = (6, p)e + -+ z,(x,¥)c, [x,¥]) where v and w are in H{(g)
and x and y are in g. This gives a Lie algebra structure to H 2(g) + g

If9 € (HXg) + g)* is given by #(v, x) = a; where v = X g;c; then it is clear
that 48 = z,. In this way every cocycle of g can be regarded as a coboundary in
the extended algebra. If ¢ is a cocycle of g corresponding to the coboundary 44
of the extended algebra, it is clear that h;y = H 2(g) + h,. If ¢ is stable then so
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is @ and conversely. We must therefore require the stability criterion in the
extended algebra.

We can extend the assertion and proof of Proposition 7.5 as follows: Suppose
that / is a Lie algebra, and g is an ideal in /. Then any element of / acts on g by
Lie bracket and hence on g* by the contragredient action. For £ € / and
6 € g*, we let £1d8 denote the action of £ on 8 so that (£1d8)(n) = —[£, 1].6.
Let L be a Lie group with Lie algebra /, and suppose that L acts on g so that its
infinitesimal action is the given action of bracketing by /. We say that 8 is L
stable if h g is conjugate to A4, by an element of L, for all #’ close to 8. Then the
condition for L stability is that

(g hyel N ([Jdg)l = 0.

The proof is as before.

In particular, we can let L be the group of all automorphisms of g, in which
case / is the algebra of all derivations of g, and we get a condition for stability
under all automorphisms. One can construct algebras for which no form 8 is
stable under the group of all automorphisms, cf. [15].

We would now like to classify the homogeneous symplectic manifolds for
various interesting Lie groups. We will do this by reducing the problem to
studying the behavior of closed two forms with respect to certain subgroups. In
particular, we will make the following assumption about the Lie algebra, g, of G.
We will assume that there are two subspaces, & and p, of g such that

g=k+p kn p={0}
[k,k]c k and [k,p] C p.

Thus we are assuming that k is a subalgebra of g and that p is a supplementary
subspace to k& which is stable under the action of k. We do not make any further
assumptions at the moment about p. Thus [p,p] will have both a k£ and a p
component which we denote by r and s respectively: for n and %’ in p we have
[, ] = r(n,m") + s(n,n’) where r(n,m') € k and s(y,n’) € p. Jacobi’s identity
implies some identities on r and s. It is easy to check that these are

er(s(n,n'),m") =0
&{ss(m, '), m") + rm,m), "]} =0

where & denotes cyclic sum. Also

(& r(nn)] = r(E-n9) +r(n,€-7)

where £ € k and 5, ' € p and we have written £ - g for [£,n), thinking of &
acting on p. We also have the equation

£-smm') =s(&E-nm) +sm& 7).
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In addition we have the identity asserting that & acts as a Lie algebra of linear
transformations on p and Jacobi’s identity for k. Conversely, starting from any
action of a Lie algebra k on a vector space p together with r and s satisfying the
above identities it is clear that g = k£ + p becomes a Lie algebra. Let us give
some illustration of this situation:

A) r = 5 = 0. In this case p is a supplementary abelian ideal, and & acts as
linear transformations on p. In other words, g is the semidirect product of & and
p where & is a Lie algebra with a given linear representation of k£ on p. Any such
linear representation of k gives rise to a Lie algebra, g, which is called the
associated affine algebra.

B) r = 0. Here all that is assumed is that p is a supplementary ideal to k. An
important illustration of this situation is the case of the Galilean group. Recall
that the Galilean group can be regarded as the group of all five by five matrices
of the form

S O n

v
I
0

_— e ¢

where 4 € 0(3), v € R’ x € R? and 1 € R. Such a matrix carries the space
time point (x,,#,) into the space time point (Axy + x + fyv, ¢ + £;). The corre-
sponding Lie algebra consists of all matrices of the form

S O N
S O o«
S~ X

where a € 0(3) and v, x, ¢ as before. Here we can take k ~ o(3) to consist of the
subalgebra with x = v = ¢ = 0 and p to be the seven dimensional subalgebra
with ¢ = 0. Denoting an element of p by (v, x, () we see that [(v, x, ), (v", x',")]
= s((v,x,), (v, x",t’)) = (0,t'v — 1/,0) and &- (v,x,1) = (£-v,&- x,0) where
£ - v denotes the usual action of £ € o(3) on v € R? and similarly for £ - x.

C) The case where g is semi-simple and k, p corresponds to a Cartan
decomposition. Here s = 0.

D) The case where k is an ideal. Here the action of k on p is trivial. For
example, in the case of the Heisenberg algebra we can take k to be the center.
For this case p is a symplectic vector space, k = R acts trivially on p and r is the
symplectic two form, while s = 0.

Let f € /\zg"= be a two form. Identifying /\zg* with N2k* @ k* ® p*
® /\2p* allows us to write f = a + b + ¢ so that

fE+E +0') = a(£, &) + b(&,n') — b(E,m) + c(n,7').

Now df € Ng* is given by df (x, X, x”) = &f([x. x'], x”) where & denotes cyclic
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sum. Writing x = £ + 7 etc. the equation df = 0 becomes

&{a((&, €] + r(n,m'),£") + b(£,&] + r(n,m'),1")
- b(¢"t-0 —¢& - q+s(n,7))
+e(§-q— & -q+s(n7n)n")} =0

We now derive various identities for a, b, and ¢ by considering special cases of
this identity:
)£ =¢ = ¢” = 0. In this case the identity becomes

&{b(r(m,m'), ") + c(s(n,1'),m")} = 0. (*)

For the case of the affine algebra this identity is vacuous. If p is a subalgebra so
that r = 0, only the identity involving ¢ remains. For example, a direct
computation in the case of the Galilean group shows that (x) reduces to the
condition ¢((0, x,0),(0,x’,0)) = 0. For the case of the Cartan decomposition
only the identity involving & remains. Similarly for the case of the Heisenberg
algebra.

ii)§ = ¢ = 0,9” = 0. In this case the identity becomes

a(r(n,n'),€") — b(£",s(n,n')) + c(£” - ') + c(n,€" - 1') = 0. (%)

For the case of the affine algebra both r and s vanish and this identity becomes

£-m0)+cné-n)=0 (**)5

which asserts that the antisymmetric form ¢ is invariant under the action of &.
For example, in the case of the Poincaré algebra where k = 0(3,1) and p = R*
there is no invariant antisymmetric form so we conclude that ¢ = 0.

In the case that we only assume that p is a subalgebra so that r vanishes the
identity becomes

£ mn) +c(n,€- ') = b(§,5(n,7')) (*+)p

For example, in the case of the Galilean algebra, if we apply this identity to
17 = (v,x,0) and 9" = (v',x’,0) the right hand side vanishes and we conclude
that ¢, when restricted to (R*> + R*) A (R® + R®) is invariant under the action
of o(3), which acts diagonally on R® + R>. There is obviously only one such
invariant (up to scalar multiples) and it is given by

(v, x,0), (v, x',0)) = m({v, x> — V', x))

where {, > denotes the Euclidean scalar product. If we take n = (0,x,0) and
n’ = (0,0,7) the right side of (*)g still vanishes. On the left the term £- %’
vanishes and £ - x 1s arbitrary. We conclude that

c((0,x,0),(0,0,7)) = 0.
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Thus

(v, x, 1), W', ', 1)) = m({v,x) — v/, x)) + Lty — w')
for some / € R> where (++)y implies that

& v) = b(£,(0,,0)).

In the case of a Cartan decomposition, or, more generally when s = 0 the
identity (+*) becomes

(& m) +cmé n) = alér(nn)) (**)c
For the case where k is an ideal (xx) becomes
a(,r(n,m")) + b(&,s(n,m')) = 0. (**)p
iii) ¢ = 0, ' = n” = 0. In this case neither a nor ¢ contributes and we obtain
the identity
b([fl,g'],'"l) + b(gﬂygl ’ T’) - b(gl’gu : T’) = 0. (***)

This identity says that the map from k to p* sending & ~» b(&, -) is a cocycle. If
k is semisimple, then Whitehead’s lemma asserts that b must be a coboundary,
i.e. that there exists a # € p* such that

b(&,m) = (- »). (+2x)g

Suppose that instead of assuming that k is semi-simple we assume that k contains
an element in its center which acts as the identity transformation on p. Taking ¢
to be this element and £” to be an arbitrary £ in (x+x) we see that (+++)g holds
with 8(y) = b(£¢',9). Thus
if either k is semi-simple or k contains an element in its center acting as the
identity transformation on p then (**)g holds.
For example, in the case of the Galilean algebra, we see that the bilinear form b
is given by

b(& (vx,0) = - v +{LE X

where # and / are elements of R>.

iv)y =%’ = " = 0. In this case we simply obtain the identity which asserts
that a is a cocycle in Nk*. Again, if k 1s semi-simple we can conclude that a
must be a coboundary. In the case of the Galilean algebra we have thus
established that the most general cocycle can be written as

f(&v,x,0,(8,0,x,t")) = 1([§,&]) + (/&' — &0
+ Ex —Ex+tv—w) + m(lv,xy — &', x)),
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where 7 € 0(3)*. Now the sum of the first three terms can be written as
0((&,v,x,1),(&,v',x',t')]) where 8 = (r,/,4,0) € g¥, i.e., as a coboundary. On
the other hand it is clear that the last term is definitely not a coboundary. We
have thus recovered a result first proved by Bargmann.
If G is the Galilean group then H*(g) is one dimensional and, up to
coboundaries, a cocycle can be written as

f(& 0, x,0,(8,v",x, 1)) = m({, x7) = (v’ x)).

We now turn to the problem of describing the action of G on the space of two-
cycles in order to determine when two such cycles define equivalent symplectic
structures. We begin with the case of the. semi-direct product, i.e. the affine
algebra. Every element of the simply connected group corresponding to g can be
written as m exp n where m € K = exp k, and g € p. Now K leaves both k and
p invariant so that the action of K on f = a + b + ¢ does not mix the summands
and the action on each summand is the appropriate exterior or tensor product of
the contragredient representation. In case f = df for § € g* = k* + p*, mf
= dmf where K acts on g* via the contragredient representation. We must
therefore examine the action of exp . Now

[.9]=0 and [9,&]=—¢-9.
Thus

Ad (exp —m)(&' +n') = exp(ad —q)(§ + ') = (£ + & -9 + 7).
Therefore
(exp ) f(& + 0,&" + ") = f(exp ad —n(&' + %'),exp ad — 9(§" + "))

= a(£,&") + b(&,&" ) — b(£"E ) + (& 08" )
=f(¢+¢& -9+, ¢ +§  -n+9")

+b(& ") = b(E", ) + (& ") + (€ - q) + (', ")
Now by (+#x), b(§,£” - m) — b(£",£ - q) = b([£',£"],1) and, by (*%),

o(& g -m)=—cn& & q) =& & nn) =3c(€,€] n.m)
We can thus write
(exp )@+ b+c) = (a+db, +jc,,))+ (b+dc,) +c
where b, and ¢, € k* are defined by

bn(é) = b(§91’) and C',-m(g) = C(f ' ﬂaﬂ)
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while c, € p* is defined by
¢, (') = —c(n, ).

In the important special case where (a + b) = d(r + 8) is exact, where 7 € k*
and § € p* we can write

(exp n)(d(r + 8) + ¢) = d((r + b, + jc,.) + (8 + ¢,)) +c.

We can therefore describe the situation as follows. The ¢ component is invariant
under the action of G. It is invariant under exp p by the above computation and
it is invariant 'under the action of K by (**),. For a given choice of ¢ we can.
move @ into (k*—1)8 + ¢, where h € Kand q € p. This determines an action of
K X p on p*. Suppose that we have parametrized the orbits of this action and
have, in fact, chosen a cross-section for these orbits. For a given orbit we have
thus picked a fixed 6. This determines a subgroup of G, the isotropy group of 4.
The corresponding algebra consists of those (£,7n) for which £6 + = 0. The
set of & which occur form a subalgebra of k& which we denote by k,. Thus § € &,
if and only if there exists an n; € p such that 6(¢ - 4) = c(ng,n) forall g € p.
It is easy to check that the identity (xx), implies that the assignment § ~ 9, is a
cocycle of k, with values in p. If this cocycle is a coboundary (for instance if &,
is semi-simple or contains the identity operator) then we can find an 7 such that
§0 — g = £(6 — ¢;) = 0. Thus by changing our choice of # within the orbit we
can arrange that k, consist exactly of those £ for which £§ = 0. Notice that this
equation is equivalent to the equation 6, (£§) = 0 for all 5. If we consider the
action of exp 5 on the k* component, it adds exactly 0 + 2c If Con = =0, we
see that the orbit of 7 is just the complete inverse image of the orblt of pp(7) under
K, where py: k* - k; is the projection dual to the injection of ky — k. In this
case the cocycles are thus parametrized by ¢, 8 ranging over a cross-section of the
action of G on k* determined by ¢, and x ranging over a cross-section for the
action of K, on k.

For example, for the case of the Lie algebra of the Poincaré group we have
already seen that ¢ = 0. The orbits of G on p* are thus the same as the orbits of
K = 50(3,1) on p* and consist of single sheeted hyperboloids 0* = m* > 0,
8, > 0 and §* = m? > 0, 8y < 0; the forward light cone 9> =0, 6, > 0, the
backward light cone 9* = = 0, §, < 0, the single sheeted hyperboloids ¢’ m?
< 0; and the origin. We thus choose cross-sections for these orbits as follows:

(m,0,0,0) (=m,0,0,0) (1,1,0,0)
(-1,1,0,0) (0,m,0,0) and  (0,0,0,0).
It is easy to see that the group K(m000) is exactly SO(3). Its orbits acting on the

dual of its Lie algebra are spheres. If we call s the radius of these spheres, we see
that a family of orbits is parametrized by the two real parameters m > 0 and
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s > 0. Here m is the “mass™ and s is the “spin”. For “mass zero” i.e. for (1, 1, 0,
0) or (—1, 1, 0, 0) it is easy to see that the corresponding isotropy group is the
Euclidean group, E(2). The orbits of E(2) in the dual of its Lie algebra are easily
seen to be cylinders (of radius r, say) and points on the axis r = 0. If we let the
real parameter s describe the points on this axis we see that the symplectic
structures corresponding to (1, 1, 0, 0) are parametrized by r > 0 and, if r = 0
by an arbitrary real parameter, s. The case r > 0 does not arise in known
physical systems; for r = 0 the parameter s is also called the “spin”. The isotropy
group of (0,m,0,0) is SL(2). Its orbits are again hyperboloids, forward and
backward “light cone” and the origin. No particles with negative mass’ (“tach-
yons”) seem to occur.

Let us now do a slightly more complicated computation—determining the
symplectic homogeneous spaces for the Galilean group. Here p is not abelian.
However, it is easy to check that

Ad (exp —(0,v, x, )} (&, w,p,5) = (&, w + &v,y + &(x + ) + tw — sv,9).

We have already written the form of the most general cocycle, f, of the Galilean
algebra. Under the action of exp(n) it is easy to check that /' is moved into
¥V + mx and / is changed into / — mw. Thus by suitable choice of x and v we can
arrange that both / and /' vanish, provided that m # 0. Now ; = —/, being
dual to the translation vector, x, has the character of linear momentum. By
applying a pure “velocity transformation” exp(0,v,0,0), p is moved into ; + mw.
Thus m is just the ratio between momentum and velocity, and hence corresponds
to the usual notion of mass. Our choice of v amounts to making a change to a
new frame of reference in which the center of gravity is at rest. The physical
interpretation of —/"/m is that it is the position of the center of mass in the frame
in which it is at rest. By shifting the origin of the coordinate system we can
arrange that this is the origin.) Once we have arranged that / = /' = 0, the only
possibility left for n (in the case of non-zero m) is n = (0,0, ¢) and it is clear that
exp(0,0,—¢) acts trivially. Thus we are left with the action of SO(3) on
k* = o3 )* Again, the orbits are spheres, parametrized by, their radius, a non-
negative parameter, s. Thus for m # 0 the homogeneous symplectic manifolds
for the Galilean group are parametrized by m and s > 0, the “mass” and the
spin. For m = 0, we cannot change / while /' is moved into # + ¢/. On the other
hand 7 is moved into

T+ vy + U (x4 fw)).
If we identify 7 as a vector in three space this last expression can be written as

T+ Xv+IX(x+iw)

where X denotes vector product. In this case it is more convenient to let G act by
letting SO(3) act first and then exp p. By applying a suitable element of SO(3)
we can arrange that / = (£,0,0) and then, if f # 0 that #/ = (0,b,¢). If / and /'
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are independent by suitable choice of v and x we can arrange thatt = 0. If f = 0
and b = ¢ = 0, then we can arrange that 7 = (£sf,0,0) where s > Oand f > 0.
(This corresponds to the case of a particle of zero mass, travelling with infinite
velocity. Here the condition that b = ¢ = 0 amounts to the condition that the
“disturbance is transverse” and the parameter f is the “inverse of the wave
length”, i.e. the “color”. The parameter s is called the spin and the + or — is
called the helicity. For details, see Souriau [9, p. 195].)

Let us give a procedure for interpreting, in terms of “particles” moving in
space time, the meaning of the symplectic manifolds that we have descibed above
for the Poincaré and Galilean groups. (We are indebted to Thomas Ungar for
help in the ensuing discussion.) Let G be any Lie group and M = G/L a
homogeneous space for G, where L is some closed subgroup. (In the case at hand,
G is either the Poincaré or Galilean group and M consists of space time.) Let S
be some homogeneous symplectic space for G. We would like to find a
homogeneous space, N, for G which is fibered over § (and so carries a
presymplectic structure coming from S) and is also fibered over M (so that it
makes sense to talk of the “position in M of a point of N). Thus we wish to have
the following double fibration:

S/N\M

If S = G/Hand M = G/L, then the “smallest” N that will do will be of the form
G/H N ala™' for some a € G, where a is chosen so that H N ala™! has
maximal dimension. The image in M of a typical fiber of N over S will look like
the orbit through the point aL of N under the action of the group A. In particular
the dimension of the image in M of a typical fiber will be equal to the dimension
of H/H N aLa™'.

For example, let us consider the case where G is the Poincaré group and
L = 0(1,3) 1s the Lorentz group so that M = G/L is just space time. Suppose
we first consider a positive mass orbit of the Poincaré group as described above.
A typical point on this orbit is (p,7) where p = (m,0,0,0) and 7 € o(1, 3)*. The
isotropy algebra of p is a subalgebra o(3) and we can consider 7 as an element of
o(3 )*. The isotropy group of (p,7) then consists of all translations through
vectors tp and all elements of O(3) which preserve 7. Thus H ~ R X O(2}) if
7 # 0and H ~ R X O(3)if 7 = 0. If g, is translation through the vector v then
a, Lau_l consists of all transformations of Minkowski space which send the vector
winto Aw + v — Av where A € O(1,3) = L. Thus dim(H/H N ala™') = 1for
any element of the Poincaré group, so we might as well take aLa™' = L. Thus
the image in space time of a typical fiber will look like the set x + 1p. In the case
of s = 0. we see that N is seven dimensional and the six dimensional manifold S
consists of the space of “world lines” of particles of a given rest mass moving in
space time. If s # 0, we can think of the particle as “spinning” (in the space like
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three space orthogonal to its world line) with total angular momentum ms. The
“spin axis” can vary over a two sphere. Thus N is nine dimensional in this case
and S is eight dimensional. The analysis for the non-zero mass symplectic
homogeneous manifolds for the Galilean group is entirely analogous.

Let us examine the situation for the six dimensional mass zero orbits of the
Poincaré group with non-zero spin. Here a typical point is of the form (u, «),
where u is the null vector (1,1.0,0) and « € o(1,3)* induces a non-zero point
orbit in e(2)* where e(2) is the Lie algebra of the subgroup E(2) fixing the point
u (and this subgroup is isomorphic to the two dimensional Euclidean group). The
isotropy algebra A, in this case is four dimensional, and can be described as
follows: Let us write (B, b) for the element of the Poincaré algebra whose linear
component is B and whose translation component is b. Let e, = (0,0,1,0) and
e; = (0,0,0,1); let 4, € 0(1,3) be defined by 4,e, = u, 4,(1,—1,0,0) = —2e,
and similarly 4ye; = u and 4,(1,—1,0,0) = 2e;. Finally let B denote infinites-
imal rotation in the e,, e; plane, so that Bu = B(1,—1,0,0) = 0 and Be, = ¢;,
Be; = —e,. Then h is spanned by

(0,u), (45,se,), (—A,,se3), (B,0)

where s is the “spin” of the mass zero particle and A N o(1,3) is one dimensional.
It is easy to check that this is the maximal dimension of intersection. So again,
we take L = O(1, 3). This time the fibers are three dimensional. The image of a
typical fiber is now a set of the form x + u* where u* is the three dimensional
space of all vectors orthogonal to u. We can think of this as a plane in space
moving with the speed of light in the direction determined by u. We leave the
corresponding computation for the Galilean group to the reader.

Let us now compare the symplectic homogeneous spaces of the Galilean group
with those of the Poincaré group. To do so, we wish to regard the Poincaré group
as a “deformation” of the Galilean group, or as is more commonly stated in the
physical literature, we wish to regard the Galilean group as a “contraction” of
the Poincaré group as the speed of light goes to infinity. We first describe what
this means. Suppose that we choose a definite splitting of space time into space
and time and write a point in space time as a column vector with entries
(1, x,, X5, x5) which we shall write as (). We can write the most general element
of the Poincaré algebra as the five by five matrix of the form

K Y vy v 1 W
u 0 A 93 XN
v, —a; 0 apn x
vy —a3 —ay 0 x
0 0 0 0 0
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which we shall denote more simply by

oy

<

, A € o(3).

[T B -]
S

x
0,
This is the form of the Poincaré algebra relative to a space time splitting and a
coordinate system in which the speed of light is one. To find the form of the
Poincaré algebra relative to coordinates in which the speed of light is ¢, we must

expand the space coordinates by a factor of ¢. This has the effect of conjugating
the above matrices by the matrix

1 0 0 00
0 ¢c 0 0O
0 0 ¢c 00
000 ¢ O

_0 0 0 0 1

so as to obtain matrices of the form

—0 W
cv A cx

| 0 0 0

For each positive value of ¢ we obtain a different subalgebra of five by five
matrices. They are all isomorphic (and indeed conjugate) to the Poincaré algebra.
Within the framework of our distended coordinates, the vector cv gives a
“velocity” (or “boost”) transformation and the vector cx gives a spatial transla-
tion. If we are accustomed to dealing with velocities and displacements which are
“small relative to the velocity of light”, it makes sense to introduce 7 = cv and
X = ¢x and so parametrize the elements of one such algebra (corresponding to a
fixed ¢) as

) t

¢ v
A
0

[= =
S Xl o~

Let us now set € = ¢ % and drop the bars over the ¢'s and x’s. We thus obtain,
for each € > 0 a map of the ten dimensional space spanned by the A’s, v’s, x’s
and r’s into the space of five by five matrices. Explicitly, this map is

' 1

(A.v,x, 1) ~ A
0

(=~ - -

X
0
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Notice that for € = 0 the image is exactly the Galilean algebra. The limit
€ — 0 is, of course, the same as ¢ — oo. Let us denote the underlying ten
dimensional vector space spanned by the 4’s, v’s, x’s and 's by g. Then for any
€ > 0 we have defined a linear map of g into a subalgebra of the Lie algebra of
five by five matrices. This induces a Lie bracket, depending on € on the space g,
which we shall denote by [ , ].. Explicitly, if

§ = (Ay,v,%,1) and § = (Ay,09, x5, 1)
then
(6. 6]) = ([4;,4,] + ev;, ® vy — v, ® v)), 4,0, — Ay,
Ayxy + Ly — Ay x — 4 Uz,<(<v17xz> - <Uz,x1 )

Similarly, for each € we get a map, d,: N(g*) — A¥+1(g*). In particular we get
a varying space of 2-cocycles, Z, 3 c A*(g*). Notice that in the case at hand, the
dimension does not vary for all € > 0. Indeed, for € > 0 the algebras are all
isomorphicto the Poincaré algebra, so we know that dim Ze2 = dim g = 10. For
e = 0, we have already seen that dim H2(g) = 1 since the algebra is the
Galilean algebra. On the other hand [g,g], consists of all elements with ¢
component equal to zero. Thus d;, has a one dimensional kernel and hence a nine
dlmensmnal image. Let us introduce “coordinates” (r, L, p E) dual to (4,v, x, 1).
(Here p is dual to x, and hence as we have already remarked is to be interpreted
as linear momentum and E is dual to time translation and hence should be
regarded as “energy”.) Let » € /A2(g*) be the bilinear form given by

V(glagz) = <U1,x2> - <U2’X1>-

We have already seen that for ¢ = 0 the bilinear form » is a cocycle, and in fact,
the cohomology class of » generates Hoz(g), i.e., that the most general cohomol-
ogy class is of the form m[»] where m is the mass parameter for the Galilean
group. We claim that » is a cocycle for € > 0 as well (and hence of course a
coboundary for positive values of €). Indeed, let # € g™ be the element

0 = (0’090’ 1)

in terms of the coordinates that we are using. Thus 6(¢) = ¢ is just the ¢
component of £ Then, using the above formula for [ , ], we see that

d€0(§1,§2) = 0([51,€2L) = €(<U1,x2> - <Uz,x| )

or
d = ev.

Notice that for € > 0, 8 is uniquely determined by this equation. Thus, fore > 0
the “mass cocycle” mwv is a coboundary, and indeed the coboundary of the unique
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element (0,0,0, E) where E = € 'm. If we substitute our definition of € = ¢~ 2
we obtain Einstein’s famous formula E = mc? relating mass and energy. The
orbit through the point (7,0,0, E), 7 € o(3)* of the Poincaré group (correspond-
ing to speed of light ¢) then goes over, as ¢ — oo to the symplectic homogenous
space of the Galilean group (with no trivial cohomology class) with mass m (and
spin Hﬂl). The mass? of the orbit (in the Poincaré group) is m?c*. If
(m,Ly,p,,E,) is some other point on this orbit, then
E12 - cz;;f = m?ct

gives the relation between mass, energy and momentum.

We can compute the space of cocycles, and the corresponding symplectic
manifolds for the Galilean group from a slightly different point of view. Let
SO(3) x R3act on R*by (4,v) - (x,1) = (Ax + tv,1). Here (x, ) is a vector in RY,
with x a vector in R? and 7 in R. We can regard the Galilean group as the semi-
direct product of SO(3) X R? with R*. Again we have a (k, p) decomposition but
this time with kK = o(3) ® R® (semi-direct) and p = R* It is easy to check that
there are no invariant antisymmetric two forms on R* so that ¢ = 0. We can
write b as

b = b(&x) + by(£,1) + by(v,x) + bylv, 1)
where ¢ is in 0(3) and v in R®. Condition (***) implies that

by(¢ - v,x) + by(€ - v,1) = b(§, ) — by, € - x) + by(§,1)

and
b([§¢),x) + b,([&,¢')0) = by(§,€" - x) — b (£,£ - x).

The second equation implies that b, is a cocycle of o(3) with values in R**, and
hence a coboundary, and that b, = 0. The first of these equations, with 1 = 0,
implies that b;(v,x) = m{v,x) while for ¢ % 0 it implies that b (¢ v,1)
= b(§,w). Thus

b=Ut x+ w + mlv,x).

The fact that a is a cocycle in Nk* implies that it is a coboundary, «
= d(r + /') where 7 € 0(3)* and # € R**. We thus recover the expression that
we derived above for the most general cocycle for the Galilean aigebra. The
analysis of the operation of the Galilean group on the space of cocycles proceeds
as before.

Let us now do a computationi at the opposite extreme-—the Heisenberg algebra.
In this case k is the one dimensional center that we may identify with R, and p
is a symplectic vector space with r identified as its symplectic two form. The
action of k on g is trivial and s = 0. Since k is one dimensional, ¢ = 0 and
conditions (**) and (##+) are vacuous. Condition (*) can be interpreted as
follows: let w denote the symplectic form on p and let k € p* be defined by
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k = b(l,-). Then (*) becomes w A k = 0. If dimp = 2, this imposes no
condition. If dim p > 2, then this implies ¥ = 0. Indeed, for dim p > 2 we can
write w = # A k +  for some suitable § € p* and where &' A k # 0. Any
c e /\2p"‘ gives a cocycle. The element w € /\2p" is a coboundary, w = d/
where / is any element of g* satisfying /(1) = 1, with 1 denoting the basis
element of the center which we have identified with R. It is clear that the only
coboundaries are the multiples of w. Now

[(s,v), (1, w)] = (w(v,w),0) wheres,t € k =R and v, w € p.

Therefore

Ad (exp(s,v)) (6, w) = (t + (v, w),w).
Thus the group acts trivially on /\2[)*. For dim p = 2 it maps a non-zero
b € k* ® p* onto b + ¢ where c ranges all over A?p*. For dim p > 2 the action
of the group on the space of cocycles is completely trivial. Thus H 2(g)
~ k* @ p* for dim p = 2 while H%(g) ~ Ap*/{w) for dim p > 2. The orbits
of G acting on g* via the contragredient representation are the hyperplanes
#(1,0) = const for #(1,0) # 0, and the points in the subspace /(1,0) = 0. Thus
these orbits either have dimension equal to dim p or are zero dimensional. The
symplectic manifolds corresponding to the non-vanishing cohomology classes for
dim p = 2 are all two dimensional while for dim p > 2 the dimension corre-
sponding to an element of N p* is equal to its rank. We now list the
homogeneous symplectic manifolds for the low dimensional Lie algebras.
n=1.

There is only one Lie algebra of dimension one, the trivial Lie algebra, the
corresponding simply connected group is just the additive group of real numbers,
which obviously does not act transitively on any symplectic manifold of positive
dimension. Hence the only homogeneous symplectic manifold is a point.
Nevertheless, even in this most trivial example there are a number of interesting
lessons to be learned. The action of the adjoint group is trivial, and hence so is
the co-adjoint action. Thus the orbits of G in g* consist entirely of points. This
is obviously the case for any commutative Lie algebra. Although the orbits are
all distinct, they all correspond to the same symplectic manifold, because the
operator d is trivial, and hence all orbits give the zero cocycle. From the point of
view of “classical mechanics” these orbits are all the same. But from the
“quantum” viewpoint, i.e. from the point of view of representation theory, they
all correspond to different infinitesimal characters, to different representations.
This is already true at the level of “prequantization”, cf. Chapter V, where one is
interested in classifying homogeneous Hermitian line bundles with connection.
Another comment is in order, even at the level of “classical mechanics”. While it
is obvious that the real line cannot act transitively on any manifold whose
dimension is greater than one, the action can be “ergodic” in any of the various
senses, e.g. topologically transitive, or metrically transitive, or mixing, etc. Each
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of these concepts corresponds to a different mathematical formulation of the
intuitive notion of “irreducibility” for a mechanical system. The notion of
transitivity, the one we are dealing with, is just the most simple of these concepts.
n=2.

There are two Lie algebras of dimension two, the trivial Lie algebra and the
Lie algebra with basis {£,7} and bracket relations [£,n] = n. We shall call this
second algebra the scale algebra. It corresponds to the group of symmetries in
which one can change the origin of measurement (time translation) and the
choice of units (scaling). For both algebras all two forms are cocycles since the
algebra is two dimensional. However the operator d: g* — Alg* behaves
differently in each of the two cases.

The trivial algebra.

Here the operator d is trivial. Thus each element of Ng* represents a different
cohomology class and the action of G on /\zg* is trivial. Each element of /\zg*
gives a distinct symplectic space. It is easy to see that the explicit realization of
these spaces are given by w = cdx A dy, ¢ # 0, with ¢ > 9/9x and n — 3/9y.
In addition, of course, there is the zero dimensional symplectic manifold
corresponding to the orbits of g* to which the remarks made above in the one
dimensional case apply.

The scale algebra.

We have a k 4+ p decomposition with both £ and p one dimensional. Hence
a = ¢ = 0, and, since d is non-trivial (or, by applying the general argument
using the fact that k& contains the identity), we know that every cocycle is a
coboundary. Thus every b has the form b(£, ) = #([£, -]) for some # € p*. The
group K acts on p and hence on p* by multiplication by positive numbers, while
exp p does not change d/. Hence there are three symplectic homogeneous spaces
corresponding to the alternatives /(n) > 0, /(n) = 0, and #(n) < 0. Let (a, b) be
the coordinates on g* given by £ and 4, so that 8(¢) = aand 8(n) = bif € g*
has coordinates (a, b). Then a direct computation shows that

Adyy . (a,b) = (a,e”'b)  and A4, (a,b) = (a + th,b).

exp
For b > 0, say, we get a symplectic manifold, and

.9 N
E=bgp, 0= -bg.

It is clear that the invariant two form w must be given by
w=«kb""db A da

for k # 0. On the other hand, replacing (a.b) by (sa, sb), where s is an arbitrary
constant, does not change £ or 7, but replaces x by sk. This shows that the
symplectic manifolds corresponding to /(i) > 0 and #(n) < 0 are equivalent, so
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that there is exactly one two dimensional homogeneous symplectic manifold for
the scale algebra. There is, of course, also the zero dimensional manifold as well.

If we introduce the variables x = a/b, y = b, we can rewrite the two
dimensional action as

(exp t£)(x,) = (e'x,e”'y) (exp 19)(x,y) = (x + £,).
In terms of these coordinates we have w = dx A dy.
If we set u = @ and v = —log b we can describe the action as w = du N dv,
exp t&(u,v) = (u,v + £) and exp tn(u,v) = (u + te *,v).
n=3.

The three dimensional Lie algebras over R are classified as follows (cf.
Jacobson, Lie algebras, pp. 11-13):

(i) the trivial algebra,

(i1) the Heisenberg algebra,

(i) the direct sum R + & where 4 is the two dimensional scale algebra.

(iv), the affine algebra k + p where k is one dimensional and p is two
dimensional. Here, a basis element of k acts on p via the linear transformation
A, which is non-singular. Here 4 is determined only up to conjugacy on p and
multiplication by any non-zero real number (since the basis of & was chosen
arbitrarily). We will distinguish several possibilities, according to whether the
trace of 4 is or is not zero. If tr 4 = 0, and if 4 has real eigenvalues then we
may arrange that A4 is diagonal with eigenvalues *1. Thus A4 is the matrix which
infinitesimally preserves the indefinite metric xy on the (x, y) plane, and g is the
algebra of (infinitesimal) motions for this metric. We list this algebra as:

(iv) e(1,1). If tr4 = 0 and 4 has comlex eigenvalues, then the eigenvalues must
be purely imaginary, and we can arrange that they are *+i. Thus 4 is an
infinitesimal rotation for the Euclidean metric in the plane and we are in the case,

(v) e(2), the Lie algebra of the group of Euclidean motions in the plane,

(vi) the case of the affine algebra iv), where trd # 0,

(vii) the orthogonal algebra o(3), and

(viii) 5/(2, R).

For the case of the trivial algebra, every element of N g”* is a cocycle and no
element is a coboundary; each non-zero element has a one dimensional kernel
which will act trivially on the corresponding symplectic manifold, which is a
homogeneous symplectic manifold for the quotient two dimensional trivial
algebra. We have already discussed the Heisenberg algebra. For the case (iii) we
can apply the k, p decomposition with & = R and with p = h, both ideals. Then
a=0 and ¢ is a cocycle for the scale algebra, while condition
(**), implies that b(k, [h, h]) = 0. The space of possible b’s is thus one dimensional
and none of them is a coboundary, and thus H2(g) is one dimensional. Let x, y, and
z be a basis of g with the bracket relations

[xyl =y, [xzZl=1[y2]=0,



202 SYMPLECTIC GEOMETRY

and let
A, = exp Ix, B, = exp by, and C,=expiz

be the corresponding one parameter subgroups. Then it follows from the above
computation that the space of all two dimensional symplectic manifolds is
parametrized by the constant m = b(z, x). The actual manifolds are all R? with
coordinates (#,v) and w = dudy and actions given by

A(wv) = (uv+1) tB(uv) = (u+te’,v) and C,(u,v) = (u+ muv).

We now turn to the remaining cases:
(iv) the algebra e(1, 1). Here we can choose a basis with

[z.x] = x, [zl = -y and [x,y] = 0.

Here k is spanned by z and p is spanned by x and y. Any ¢ in /\zp" is a cocycle
and is not a coboundary if ¢ # 0. The operator d: g* — /\2g* has a one
dimensional kernel and hence the space of coboundaries is two dimensional.
Thus dg* = k* ® p*, ie. all b’s are coboundaries. If ¢ # 0, the map of
p — k™ ® p* sending v ~» ¢(- v, ) is non-singular and hence surjective. Thus if
¢ # 0, we can eliminate b by the action of G. There are thus two families of two
dimensional symplectic manifolds, one parametrized by non-zero ¢ € /\2p"‘ and
the other parametrized by a cross-section for the orbits of C, acting on p*. The
first family all consist of R? with coordinates (u,v) and with varying forms
w = mdudv (where m = c(x,y)) and action

A uv) = (u+ 1) B,(u,v) = (u,v + 1) and C,(u,v) = (e'u,e”'v).

To describe the orbits in p* observe that x and y cdn be thought of as functions
on g* and hence on p*, and the orbits of C, are the various components of the
hyperbolas xy = « for different values of the constant, k. The actual orbits of G
in g* are given by the same equations, and are, in fact, just cylinders over these
curves, with generators in the k* direction. Again the orbits can all be identified
with R?, with coordinates (x, v)and @ = dudy. For the orbits on which x # 0 we
can use the vectors (1, k) as cross-sections to the orbits; the corresponding actions
are given by

A (u,v) = (u + te”",v), B (u,v) = (u—~ re*’,v), C,(u,v) = (u,v +1).

The case k = oo is obtained in the limit as 4, acting as the identity and
B(u,v) = (u = te',v) and C,(u,v) = (u,v + ). It is interesting to give some
interpretation to the parameters m and «. Notice that the algebra (1, 1) contains
two copies of the scale algebra, namely z, x and z, y, with the grbup C,
multiplying x by ¢’ and multiplying y by ¢™'. Now there are two situations where
making a change in scale of one variable induces the inverse change of scale of
a second variable, if the variables are dual to one another (i.e. represent
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coordinates in dual one dimensional vector spaces) or if the variables are inverse
to one another. The first family of orbits corresponds to the duality situation,
with the parameter m giving the duality between u and b. The second family of
orbits corresponds to the situation where the scale algebra is acting on variables
r and s related by rs = «.

(v) The situation for the Euclidean algebra ¢(2) is quite similar to that for
e(1,1). The cohomology is one dimensional, each non-zero element of A2p*
corresponding to a non-zero cohomology class and giving rise to a symplectic
manifold with x and y acting as constant vector fields. The remaining symplectic
manifolds are given by orbits in g* which are the cylinders X+ y2 = r? forr
positive, together with the zero dimensional orbits on the z-axis.

(vi) For the affine algebra with tr 4 # 0, there is no non-zero invariant ¢ in
/\2[)*, and thus the space of cocycles is two dimensional, the cohomology
vanishes. The orbits in g* are seen to be cylinders over the orbits of exp 7z acting
on p*, and these provide all the two dimensional symplectic manifolds. The z-
axis again splits into zero dimensional orbits.

(vil) The orthogonal algebra is semi-simple, so its cohomology vanishes. The
orbits in g* are given by the spheres x> + y> + z2 = r?, where x, y, and z are the
usual basis of o(3), with the bracket relations

(x. ] =z lzxl=yp, [zy]=—x

(viii) The algebra s/(2) is also semi-simple, so its cohomology also vanishes. We
may choose a basis of, and z with the bracket relations

[x,y] = ¢, [z,x] = x, and [z,y] = —y.

Then xy + z2/ 2 is invariant under the action of g, and thus, when considered as
a function on g* defines two dimensional surfaces which are invariant under G.
The connected components of these level surfaces are clearly the orbits of G; they
are the single sheeted hyperboloids, the double sheeted hyperboloids, and the two
components of the light cone.

We now study the behavior of homogeneous symplectic manifolds under
deformation of the Lie algebra structure. As an illustration of what can happen
let us consider the deformation of s/(2) into e(I,1). We consider a three
dimensional vector space with basis x, y, and z, and with bracket relations

[z,x] = x, [z,y] = =y, [x,y] = ez.

For € # 0, this algebra is isomorphic to s/(2), while for e = O the algebra is
e(1,1). For all values of e the function xy + ez%/2 is invariant. The double
sheeted hyperboloids, corresponding to positive values of this function for e < 0
{(and to negative values for € > 0) clearly deform into the cylinders xy = ¢ for
e = (. It is interesting to examine the behavior of the single sheeted hyperbo-
loids. They provide both the other cylinders and also the symplectic manifolds of



204 SYMPLECTIC GEOMETRY

e(1, 1) corresponding to non-vanishing cohomology classes of e(1, 1): (Recall that
H?*(e(1,1)) = R while H%(s/(2)) = 0). Indeed, for a fixed value of xy + ez2/2
the points near x = 0 of the hyperboloid (or near y = 0) clearly move off to
infinity at the rate ¢ V2 and the hyperboloid splits into two cylinders. As to the
orbits with non-vanishing cohomology, observe that the cocycles are of the form
hx* A y*, and, for all ¢, we have

dz* = ex® N y*.

For € = 0 we know that Ax* A y* is not a coboundary (for non-vanishing )
while for € % 0 the above equation shows that hx* A y* = d(he™'z*). This
suggests looking at the orbit through the point with x = 0,y = 0and z = he ™,
ie. the orbit xy + ez%/2 = m, where m,_ = (Ze)ﬂhz. A direct computation
shows that if we consider a bounded region of x and y, the action on this portion
of the orbit tends to the desired limiting action for e(1, 1).

§8. Multisymplectic structures and the calculus of variations.

The principal motivation that we have discussed for the study of symplectic
manifolds has been via asymptotics. There is another route which historically led
to symplectic manifolds, and that is classical mechanics, and in particular, its
relation to variational principles, cf. Sternberg [2, Chapter III, §7 and Chapter
1V], Loomis-Sternberg [13, Chapter XIII] and Souriau {9]. For systems with
“finitely many degrees of freedom”, i.e. for variational problems with one
independent parameter-—curves on a finite dimensional manifold-—the “space of
extremals” forms a finite dimensional symplectic manifold, cf., in this connec-
tion, Hermann [20] and [21], Garcia [22] and Dedecker [23].

In this section we sketch the geometry involved for variational problems in one
or several independent variables. For the case of several independent variables
our results will be rather formal. They would acquire more content in special
instances if appropriate existence theorems in the theory of elliptic or of
hyperbolic partial differential equations are introduced. However, we shall not go
into these kinds of questions. The treatment here follows[17], and the “symplec-
tic structure” is based also on [18]. We will restrict attention to the case of
Lagrangians involving at most the first order derivatives. Let Y — X be a fibered
manifold, i.e. we are given a differentiable map, #, from Y to X, such that near
every point of Y we can introduce coordinates in which the map = is just
projection onto a factor. Thus we can introduce local coordinates on Y of the
form (x,y) = (x',...,x",»',....»’) where n is-the dimension of X and n + f s
the dimension of Y. A section of Y over X is a map s: X — Y satisfying
7o s = id. Thus s assigns, to each x € X, a point, s(x) € 7~ '(x). (The set
7' (x) is called the fiber over x. It is automatically a differentiable submanifold
of Y.)) Locally, a section is given by f functions y/ = y/(x',...,x") where
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! =1, ..., f Two sections, s; and s, are said to agree to first order at some point
xo if s;(xg) = s5,(xg) and the functions yll (x) and yﬁ(x) have the same first
derivatives at x,. (It is easy to check that this condition does not depend on the
choice of coordinates of the form (x,y).) To agree to first order at a point x; is
an equivalence relation. The equivalence class of a section s at x is called the
one jet of s at x; and is denoted by j, (s)(x,). Since we will not be concerned in
the main, with jets of higher order, we shall drop the subscript 1, and simply write
J5(xg). The jet, js(xy) is determined, locally, by the coordinates (x,y,(y))

(x , y , y,) i =1, St =1...,1 where the x' are the coordinates of x,
the y are the coordmates of s(x;) and the y, the coordinates of the first partial
derivatives of s evaluated at x;. Thus the set of all jets at all possible points of X
forms a manifold, which we denote by JY. We have the projections:

i JY =Y my(xy,(y) = (x»)
and
e JY = X ay (X, 3, () = x
so that
7TX = To 7TY

Thus JY is a fibered manifold over Y and is also a fibered manifold over X. If s
is a section of Y, then s determines a section, js, of JY over X, where js assigns,
to each point of X, the jet of s at that point. In terms of local coordinates, if s is
given by the functions y’(x) = s'(x), then js is given by y/ = s'(x), yii
= (3s'/8x")(x). Not every section of JY will be of the form js. Indeed, if u is a
section of JY then u, in local coordinates gives »! and y,.’ as functions of x, and
they must be related by the equations

dy’ (x) — y,-/ (x)dx' = 0 (summation convention).

Put another way, let w be the linear differential form which assigns tangent
vectors to Y to tangent vectors to JY according to the formula

w=@/%") @& -y dx'] 8.1)
Then a section u, of JY over X is of the form u = js if and only if
o =0. (8.2)

Notice that we have given a definition of w in terms of local coordinates.
Actually, » has an invariant definition: let £ be a tangent vector to JY at a point
z, where z = js(x,), with x; € X. Then dm £ is a tangent vector to Y at
yo = s(xp) and dmy { is a tangent vector to X at x,. If  is any tangent to X at x;
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then ds, 7 is a tangent vector to Y at y, which depends only on z = js(x,). Then
we claim that

¢ wy = dmy & — ds(dmy §). (8.3)
Indeed, in terms of the local coordinates, we can write
£ =d'(d/3x') + b’ (3/3y") + L(3/)),

so that

dryt = d'(3/9x"),

dmy & = a'(3/3x") + b'(3/ "),
and

ds(dny,t) = a'(3/3x") + y!d'(3/8y"),

which establishes the formula.
Notice that if £ is a vertical tangent vector, i.e.

if dmy € = 0 then (§,w) = dm &, (8.4)

Let L be a real valued function on JY, and let (vol) be an a-form on X. The
basic problem of the calculus of variations is to find the extremals for integrals
of the form

Llsl = [, LUs)(vol), (8.5)

where A4 is some bounded region of X. Here s is allowed to vary over some class
of sections of X. The usual problem (the fixed boundary problem) is the situation
where 4 is a region with smooth boundary, d4, and s 1s restricted to take on
assigned values on the boundary.

The main point of the Hamilton-Cartan formalism is to replace the integral (8.5)
by an integral of the form f u* © where O is a suitable n-form defined on JY and
u is a section of JY over X. This integral satisfies

]A u* e = ]A L(js)(vol)

if u = js. The n-form O has the property that an extremal for f, u* @, where u is
allowed to vary over a// sections of JY, is automatically of the form u = Js, if L
is “regular”.

We now describe the construction of the form ®. We begin by defining a form,
8, which maps TJY — TX, i.e. which assigns, to each tangent vector, £, to JY at
z a tangent vector, {{,6), to X at 7z. We first give the formula in terms of local
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coordinates: Define the functions p,’; on JY by

= AL/3y/

and set

9 =(3/3x') ® [%de" + pi(dy’ -yl dx?)]. (8.6)

To give an invariant definition of § we observe that L defines a bundle map, o,
from JY — Y to the vector bundle Hom (VY,TX) — Y, where V'Y denotes the
bundie of vertical tangent vectors to Y. The map o (which is the Legendre
transformation) is defined as o(z) = d, L where d, means computing the differen-
tial of L with respect to the fiber of JY over Y. (This makes invariant.sense
because JY is an “affine bundle” over Y whose associated vector bundle is
Hom (TX,VY): Given two sections with s,(x,) = s,(x,) = y, the map ds,
— ds,, € Hom (TXxO, V);o) depends only on js,(x,) and js,(x;).) Then, for
e TIY,

&0 = (5 )Ledme & + ol2) 6 ) (8.7)

where (£, w) € VY s0 0(2)<& w) € TX. It follows from the definitions that if s
1s any section of Y then

Us)*6 = (%)L(js) id

(8.8)
_ (%)L(js)a/axi ® dx'
in local coordinates.
The form © is defined, in local coordinates as
0= (L—p‘f;y-/’)dxl A A dx"
L ~ (8.9)
+ 3 (=) pidy Adxt A A A A A dX”
1
where we have chosen our coordinates so that (vol) = dx' A --- A dx".
Invariantly, the definition of O is
@ = 6 A 7*(vol) (8.10)

where, the operation, A, pairs a TX valued p-form on JY with a g-form on X to
getap + g — | form on JY according to the rule

@®@n) AN1=a A (nln)
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if 5 is a vector field on X and a a p-form on JY. (For the details we refer the
reader to [14].)
It follows from (8.10) that for any section, u, of JY over X we have

u*® = u*9 A vol
and therefore
u* 0 = L{u)(vol) + o(u) - u* w. (8.11)

In particular, if u = js, so that u*w = 0, we get

(s)* @ = L(js)(vol). (8.12)

Suppose that u, is some one parameter family of sections of JY, u, = u. Let §
denote the vector field along u giving the tangent to the deformation, so that
¢(x) € TIY, W(x) is the tangent vector to the curve /> u ,(x). Then the basic
formula of the differential calculus asserts that

d x
drt

If u is to be an extremal for the integral [, u;" ©® among all », which satisfy the
condition 7, u, = 7y u on dA4 then we obtain the “Euler equations”

W (EIQ) =0 (8.13)

where 2 = d0O and £ is allowed to be any vector field on JY. A computation
(which can either be done in local coordinates or invariantly, as in [17, pp.
219-220]) shows that if n is any vector field on JY satisfying dm,m = O then

O |,_g = u*(£1d0O) + du* (£10).

W (nIQ) = tr [(u*D o(L)) o u* ] vol (8.14)

where v*w € Hom (TX, VY) and u D ¢ € Hom (VY,TX), so that the trace
makes sense. If u = js then u*w = 0 so that u*(nJQ) = 0 for all 7 satisfying
dmyn = 0. If 5, is a one parameter family of sections of Y with 55 = s and
S84 = S/a4> then js, is a one parameter family of sections of JY where the
tangent vector, 7, satisfies dm,n = { where { is the tangent field along s. Then if

d
H—IIA(SI) =0

we conclude that
fu* mi12) =0
for all such n which implies that

W (mIR) =0
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for all such . This implies that u* (5JQ) = 0 for all 5, satisfying dnyn = 0. But
since u*Q = 0 (as is an »n + 1 form and X is only »n dimensional) we conclude
that u* (n1Q) = 0 for all . We thus see that if s is an extremal for I [ then u = js
satisfies (8.13).

The same argument shows that if u = js and u satisfies (8.13) then u is an
extremal. But we can say a lot more. Suppose we merely assume that u satisfies
(8.13). By (8.14) this implies that u* w, a section of Hom (TX, V'Y) is perpendic-
ular to the sub-bundle of Hom (V'Y, TX ) spanned by all D, ¢. If the D, o span all
of Hom (VY, TX ), then condition (8.13) automatically implies that u*w = 0, i.e.
that u = Js. The condition that D, 6 span all of Hom (V'Y, TX), is known as the
“regularity condition” on the Lagrangian L. In terms of local coordinates it says
that the Hessian

8L/ dy! ayf

be a non-degenerate fn by frn matrix. Thus, for regular Lagrangians, the equation
uW*(M1Q) =0

on all m is equivalent to the pair of conditions

= Js s is an extremal of I.

Let £ be a vector field on JY. The condition that ¢ (infinitesimally) preserve Q is
0 = D@ = d(I2)
Locally, this is equivalent to the stronger condition

£1Q = —dr. (8.15)

Let us call a vector field satisfying (8.15) Hamiltonian. Notice that if u satisfies
(8.13) then

du*(t) = 0,

i.e. the form u*(7) is closed. We will want to think of  as if it defines a functional
on extremals by the “formula”

T(u) = fC u*r,

where C is a suitable n — 1 dimensional submanifold of X. If, for instance,
X = M X R and 7 had “compact support” in the M-variables, then we would
choose C to be a “space like surface™ {(m,1(m))} and the value of the integral
would not depend on the particular choice of the space like surface, C, i.e. on the
choice of the function, ¢. Moreover, modifying 7 by adding an exact form, dv, (of
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compact support in M) would not change the value of the integral. With this in
mind, we define the “algebra of currents” to consist of all n — 1 forms 7 for which
there exists a £ such that (8.15) holds. We define the “algebra of charges” to
consist of equivalence classes {r] where T satisfies (8.15) and where

[1] = [7] ifT =71+ dy, for some n — 2-form ».
We define the Poisson bracket
{ ,72} = ¢, ldr,

where §; {2 = —dr. Observe that this does not depend on the particular choice
of £. Indeed

which shows that if § 12 = 0 then £ Idr, = 0 and so {r,7,} is independent of
which §; we choose to satisfy § Q2 = —d7. Also we see that {r,r,} is antisym-
metric in § and 7,. Also observe that

¢ ld(dv) = 0
so the Poisson bracket induces an operation:
{[n1n]) = lq.7}]
which we also call the Poisson bracket. Notice that
D)(ngQ) = [gp §2]JQ
and
Dgl(gz 1) = D, dry, = d(D€| )
= d(¢, Jdr,) + d(d(§, Ir))) = d(§, ldr,)
which shows that
[fl,gz]JQ = —d{Tl, 1'2}.
Also, we see that
{T[,{Tz,"}}} = [52’53]Jd7l
= —D§2(§3 Jd’Tl) + $3JD£2dT[
= —D£2($l ddry) + {{n,m}, 13}
= & 1d(§ ddry) + d(&, 1§, 1my) + ({5, 1), 73}
= {{Tl’TZ}’ T}} + {TZs{T]aT:;}} + d(gl ng J£3 JQ)
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Thus the algebra of currents need not satisfy Jacobi’s identity but the algebra of
charges does. Of course, if dim X = 1, the last term vanishes.
Let ¢, be a one parameter family of automorphisms of JY which satisfies

(pt*®=®+da,.

(For example ¢, might arise from a one parameter family of automorphisms of
Y which preserves L.) If n is the corresponding vector field, then

DT,® = da, nJQ = d(ay — n10)

so that n is Hamiltonian with 7 = &, — 7.0. Thus ¢, gives rise to the “conserved
current” u* 7 for any extremal, u. This is the content of “Noether’s theorem”.

For the case where n = dim X = I, the condition on 7 (which is now a form
of degree zero, i.e. a function) that is imposed by equation (8.15) is that 7 be
constant along extremals. Indeed, in this case, the extremals are the integral
curves to the line element field spanned by n satisfying nJ2 = 0, and the
condition {n,dr) = 01is equivalent to (8.15) since the two form  has rank 2f and
JY has dimension 2f + 1. Thus, for the case n = 1, the “algebra of currents” is
an honest Lie algebra, can be identified with the “algebra of charges”, and
consists of all smooth functions on extremals.

For n > 1, the condition (8.15) is much more restrictive. The “functions on
extremals” corresponding to [r] where 7 satisfies (8.15) will, in general, constitute
only a small subspace of the space of functions on extremals. In fact, for many
interesting Lagrangians, the space of such [r] will be finite dimensional. If the
Lagrangian is “quadratic”, that is can be expressed as a quadratic function of the
coordinates of JY when suitable coordinates are chosen on X and Y, then there
is an infinite dimensional space of [r] which are “sufficient” in a sense that we
will not specify here.

The problem then arises as to how to introduce a reasonable class of functions
on extremals. One possible method, suggested by [18], is to consider an “infinites-
imal version” of the construction of [7]. This involves considering the so called
“second variation” and Jacobi fields. Roughly speaking, the situation is as
follows: let u, be a one parameter family of extremals, and let £ be the vector field
along u tangent to u, at t = 0. Then § satisfies the Jacobi equation

u* (n1d(£1Q)) = 0, for all vector fields n along u.

The set of £ satisfying the above equation can be described as the extremals of a
quadratic Lagrangian defined on the vector bundle of all vector fields along u,
and this quadratic Lagrangian is the second variation. We refer to [17] for details,
especially pp. 255-262. We can think of the set of £ satisfying the above equation
as the “tangent space” to the set of extremals at u. We can then define a bilinear
antisymmetric form Z from this “tangent space” to N1 X, sending ¢, & into
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u* (£ J&,1Q). One checks that this form actually is closed for any §, £, in the
“tangent space” to u, and hence if £ or £, had suitable “compact support in the
space like direction” would define an antisymmetric two form on the “tangent
space” by integration over some space like surface. This two form would then be
the candidate for the symplectic form on the “manifold of all extremals”. With
this symplectic form one then considers those “functions on extremals” f, which
satisfy df, = f £1Z, the integral being taken over the space like surface. We refer
the reader to [18] for details.
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