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Abstract We introduce a geometric invariant, called finite decomposition
complexity (FDC), to study topological rigidity of manifolds. We prove for
instance that if the fundamental group of a compact aspherical manifold M

has FDC, and if N is homotopy equivalent to M , then M × R
n is homeomor-

phic to N × R
n, for n large enough. This statement is known as the stable

Borel conjecture. On the other hand, we show that the class of FDC groups
includes all countable subgroups of GL(n,K), for any field K .

1 Introduction

We introduce the geometric concept of finite decomposition complexity to
study questions concerning the topological rigidity of manifolds. Roughly
speaking, a metric space has finite decomposition complexity when there is an
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algorithm to decompose the space into simpler, more manageable pieces in an
asymptotic way. The precise definition, presented in Sect. 2, is inspired by the
property of finite asymptotic dimension of Gromov [18], of which it is a far
reaching generalization [20]. The concept of finite asymptotic dimension has
played an important role in the computation of K-theory in both topological
and analytic contexts [2, 5, 6, 28].

While the property of finite decomposition complexity is flexible—the
class of countable groups having finite decomposition complexity includes all
linear groups (over a field with arbitrary characteristic), all hyperbolic groups
and all elementary amenable groups and is closed under various operations
[20]—it is a powerful tool for studying topological rigidity—we shall see, for
example, that if the fundamental group of a closed aspherical manifold has
finite decomposition complexity then its universal cover is boundedly rigid,
and the manifold itself is stably rigid.

Topological rigidity

A closed manifold M is rigid if every homotopy equivalence between M

and another closed manifold is homotopic to a homeomorphism. The Borel
conjecture asserts the rigidity of closed aspherical manifolds. Many important
results on the Borel conjecture have been obtained by Farrell and Jones [13–
16], and more recently Bartels and Lück [3]. These results are proved by
studying dynamical properties of actions of the fundamental group of M .

Our approach to rigidity questions is different—we shall focus not on the
dynamical properties but rather on the large scale geometry of the fundamen-
tal group. As a natural byproduct, we prove the bounded Borel conjecture,
a ‘large-scale geometric’ version of the Borel conjecture. Our principal result
in this direction is the following theorem.

Theorem The bounded Borel isomorphism conjecture and the bounded
Farrell-Jones L-theory isomorphism conjecture hold for a metric space with
bounded geometry and finite decomposition complexity.

Our first application concerns bounded rigidity of universal covers of
closed aspherical manifolds.

Bounded Rigidity Theorem Let M be a closed aspherical manifold of di-
mension at least five whose fundamental group has finite decomposition com-
plexity (as a metric space with a word metric). For every closed manifold
N and homotopy equivalence M → N the corresponding bounded homotopy
equivalence of universal covers is boundedly homotopic to a bounded home-
omorphism.

The universal covers of M an N as in the statement are, in particular,
homeomorphic. The conclusion is actually much stronger—being bound-
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edly homeomorphic means that the homeomorphism is at the same time a
coarse equivalence. We defer discussion of the relevant notions concerning
the bounded category to Sect. 4. See, in particular Theorem 4.6, of which the
previous result is a special case.

Davis has given examples of aspherical manifolds whose universal covers
are not homeomorphic to the Euclidean space [9]. These examples satisfy the
hypothesis of the previous theorem.

A closed manifold M is stably rigid if there exists an n such that for every
closed manifold N and every homotopy equivalence M → N , the product
with the identity M × R

n → N × R
n is homotopic to a homeomorphism.

The stable Borel conjecture asserts that closed aspherical manifolds are sta-
bly rigid. The first result on the stable Borel conjecture is due to Farrell and
Hsiang [12] who proved that non positively curved Riemannian manifolds
are stably rigid. Our second application is the following theorem (see Corol-
lary 4.7).

Stable Rigidity Theorem A closed aspherical manifold whose fundamental
group has finite decomposition complexity is stably rigid.

Groups with finite decomposition complexity

We consider countable groups equipped with a proper left-invariant metric.
Recall that every countable group admits such a metric, and that any two
such metrics are coarsely equivalent. As finite decomposition complexity is a
coarse invariant, the statement that a countable group has finite decomposition
complexity is independent of the choice of metric. Our next result summarizes
the main examples of groups having finite decomposition complexity, and
thus to which our rigidity results apply. We shall focus exclusively on the
case of linear groups in this article—proofs of FDC for the remaining classes
of groups in the theorem are found in [20]. For the statement, recall that a Lie
group is almost connected if it has finitely many connected components.

Theorem The collection of countable groups having finite decomposition
complexity contains all countable linear groups (over a field of arbitrary
characteristic), all countable subgroups of an almost connected Lie group,
all hyperbolic groups and all elementary amenable groups.

The geometry of a discrete subgroup of, for example, a connected semisim-
ple Lie group such as SL(n,R) reflects the geometry of the ambient Lie
group. In this case, the theorem follows from the well-known result that such
groups have finite asymptotic dimension. The difficulty in the theorem con-
cerns the case of non-discrete or even dense subgroups whose geometry ex-
hibits little apparent relationship to the geometry of the ambient group. An
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interesting example to which our theorem applies is SL(n,Z[π]), which has
infinite asymptotic dimension (here, π = 3.14 . . . ). Nevertheless, in the case
of positive characteristic we have the following result.

Theorem A finitely generated linear group over a field of positive character-
istic has finite asymptotic dimension.

Combined, we obtain rigidity results for all countable linear groups, greatly
extending an earlier theorem of Ji [22] proving the stable Borel conjecture for
a special class of linear groups with finite asymptotic dimension—namely,
subgroups of GL(n,K) for a global field K , for example when K = Q.

We refer to [20] for further results about the class of groups having FDC.
Let us only mention here that it includes all hyperbolic groups and all ele-
mentary amenable groups and is closed under taking subgroups, extensions,
free amalgamated products, HNN extensions, and direct unions.

2 Decomposition complexity

Our proofs of the isomorphism conjectures will be based on Mayer-Vietoris
arguments—we shall apply a large-scale version of an appropriate Mayer-
Vietoris sequence to prove that an assembly map is an isomorphism. To carry
out this idea, we shall decompose a given metric space as a union of two sub-
spaces, which are simpler than the original. Roughly, simpler is interpreted to
mean that each subspace is itself a union of spaces at a pairwise distance large
enough that proving the isomorphism for the subspace amounts to proving the
isomorphism for these constituent pieces ‘uniformly’. Further, this basic de-
composition step shall be iterated a finite number of times, until we reach a
bounded family. This is the idea behind finite decomposition complexity.

2.1 Definition of FDC

We shall need to formulate our notion of finite decomposition complexity not
for a single metric space, but rather for a metric family, a (countable) family
of metric spaces which we shall denote by X = {X}; throughout we view a
single metric space as a family containing a single element.

In order to streamline our definitions we introduce some terminology and
notation for manipulating decompositions of metric spaces and metric fam-
ilies. A collection of subspaces {Zi} of a metric space Z is r-disjoint if for
all i �= j we have d(Zi,Zj ) ≥ r . To express the idea that Z is the union of
subspaces Zi , and that the collection of these subspaces is r-disjoint we write

Z =
⊔

r-disjoint

Zi.
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A family of metric spaces {Zi} is bounded if there is a uniform bound on the
diameter of the individual Zi :

sup diam(Zi) < ∞.

Definition 2.1 A metric family X is r-decomposable over a metric family Y
if every X ∈ X admits an r-decomposition

X = X0 ∪ X1, Xi =
⊔

r-disjoint

Xij ,

where each Xij ∈ Y . We introduce the notation X r−→ Y to indicate that X
is r-decomposable over Y .

Definition 2.2 Let A be a collection1 of metric families. A metric family
X is decomposable over A if, for every r > 0, there exists a metric family
Y ∈ A and an r-decomposition of X over Y . The collection A is stable un-
der decomposition if every metric family which decomposes over A actually
belongs to A.

Definition 2.3 The collection D of metric families with finite decompo-
sition complexity is the minimal collection of metric families containing
the bounded metric families and stable under decomposition. We abbreviate
membership in D by saying that a metric family in D has FDC.

2.2 Equivalent formulations of FDC

We shall present two equivalent descriptions of the collection of families hav-
ing finite decomposition complexity. We shall be deliberately terse, referring
the reader to the companion paper [20] for a fuller discussion. The first de-
scription, organized around the metric decomposition game, provides valu-
able intuition into FDC. The game has two players, a challenger and a de-
fender, and begins with a metric family. The objective of the defender is to
successfully decompose the spaces comprising the family, whereas the chal-
lenger attempts to obstruct the decomposition.

Suppose X = Y0 is the starting family. The game begins with the chal-
lenger requesting, for some natural number r1, an r1-decomposition of Y0.
The defender responds by exhibiting a r1-decomposition of Y0 over a new
metric family Y1. Subsequent turns are analogous: the challenger asserts an

1While we generally prefer the term ‘collection’ to ‘class’, we do not mean to imply that a
collection of metric families is a set of metric families. We shall not belabor the associated
set-theoretic complications.
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ri+1 and the defender responds by exhibiting an ri+1-decomposition of Yi

over a metric family Yi+1.
The defender has a winning strategy if, roughly speaking, they can pro-

duce decompositions ending in a bounded family no matter what choices the
attacker makes. In this case, we say that the metric family X admits a decom-
position strategy.

The second description, which serves mainly to establish notation we re-
quire later, is based on converting the notion of decomposability into a hier-
archy. We define, for each ordinal α, a collection of metric families according
to the following prescriptions:

(1) Let D0 be the collection of bounded families:

D0 = {X : X is bounded}.
(2) If α is an ordinal greater than 0, let Dα be the collection of metric families

decomposable over
⋃

β<α Dβ :

Dα = {X : ∀r ∃β < α ∃Y ∈ Dβ such that X r−→ Y}.
For future use, we introduce the notation Dfin (respectively Dα+fin) for the
union of the Dn (respectively Dα+n), over n ∈ N. For the proof of the follow-
ing theorem characterizing those metric families having FDC we refer to [20,
Theorems 2.2.2 and 2.2.3].

Theorem 2.4 The following statements concerning a metric family X are
equivalent:

(1) X has finite decomposition complexity;
(2) X admits a decomposition strategy;
(3) there exists a countable ordinal α such that X ∈ Dα .

Example 2.5 One checks (by induction) that Z
n ∈ Dn, so that

⊕
Z ∈ Dω.

Since Z 
 Z is an extension of ⊕Z by Z, one checks (by fibering) that Z 

Z ∈ Dω+1 (compare [20, Remark 3.1.6]). Let now G = ⊕

Gn, where Gn =
(. . . ((Z 
 Z) 
 Z) . . . ) 
 Z, the wreath product of n copies of Z. Then G ∈ Dω2 .
It remains open whether G ∈ Dα for some α < ω2.

3 Linear groups have FDC

The wreath product Z 
 Z can be realized as a subgroup of G = SL(2,Z[X,

X−1]); concretely as the subgroup comprised of all matrices of the form
(

Xn p(X2)

0 X−n

)
,
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where n ∈ Z and p is a Laurent polynomial in the variable X2 with Z coef-
ficients. The set of matrices of this form but with n = 0, is an infinite rank
free abelian subgroup. Thus, neither Z 
 Z nor G has finite asymptotic dimen-
sion, so that neither belongs to Dfin [20, Theorem 4.1]. On the other hand, a
straightforward application of fibering shows that Z/pZ 
 Z has finite asymp-
totic dimension [4, 11]—it remains possible that SL(2,Z/pZ[X,X−1]) does
as well. These considerations show that the following theorem is optimal.

Theorem 3.1 If a countable group admits a faithful, finite dimensional rep-
resentation (as matrices over a field of arbitrary characteristic), then it has
finite decomposition complexity. Precisely, let G be a finitely generated sub-
group of GL(n,K), where K is a field. If K has characteristic zero then
G ∈ Dω+fin; if K has positive characteristic then G has finite asymptotic di-
mension.

3.1 Preliminaries on fields

The proof of Theorem 3.1 relies on a strengthening of the notion of discrete
embeddability introduced earlier by Guentner, Higson and Weinberger [19].
A norm2 on a field K is a map γ : K → [0,∞) satisfying, for all x, y ∈ K

(1) γ (x) = 0 ⇔ x = 0
(2) γ (xy) = γ (x)γ (y)

(3) γ (x + y) ≤ γ (x) + γ (y)

A norm obtained as the restriction of the usual absolute value on C via a field
embedding K → C is archimedean. A norm satisfying the stronger ultra-
metric inequality

(4) γ (x + y) ≤ max{γ (x), γ (y)}
in place of the triangle inequality (3) is non-archimedean. If in addition the
range of γ on K× is a discrete subgroup of the multiplicative group (0,∞)

the norm is discrete.

Definition 3.2 A field K is strongly discretely embeddable (for short SDE)
if for every finitely generated subring A of K there exists a finite set NA of
discrete norms on K , and countable set MA of archimedean norms on K with
the following property: for every real number k there exists a finite subset
FA(k) of MA such that for every s > 0 the set

BA(k, s) = {a ∈ A : ∀γ ∈ NA γ (a) ≤ ek and ∀γ ∈ FA(k) γ (a) ≤ s}
is finite.

2Guentner-Higson-Weinberger use the term valuation.
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Remark 3.3 A field of positive characteristic admits no archimedean norms.
In particular, a field of nonzero characteristic is strongly discretely embed-
dable if and only if for every finitely generated subring A there exists a finite
set NA of (discrete) norms such that for every k ∈ N the set

BA(k) = {a ∈ A : ∀γ ∈ NA γ (a) ≤ ek}
is finite.

Proposition 3.4 A finitely generated field is strongly discretely embeddable.

Strong discrete embeddability is stronger than, and formally similar to dis-
crete embeddability introduced in [19]. Exploiting the similarity, we shall
prove the proposition by adapting the proof of [19, Theorem 2.2]. (It is also
possible to give an alternate proof based on [1, Proposition 1.2], and relying
on Noether’s normalization theorem). The proof comprises three lemmas.

Lemma 3.5 Finite fields and the field of rational numbers are strongly dis-
cretely embeddable.

Proof The assertion is obvious for finite fields. A finitely generated subring of
A ⊂ Q has the form A = Z[1/n], for some positive integer n. Let NA contain
the (discrete) p-adic norms associated to the (finitely many) prime divisors
of n, and let MA consist solely of the archimedean norm coming from the
inclusion Q ⊂ C. We leave to the reader to verify that these choices satisfy
Definition 3.2. �

Lemma 3.6 Strong discrete embeddability is stable under the formation of
simple transcendental extensions.

Proof Refining the proof of the corresponding result [19, Lemma 2.2], we
shall show that the field of rational functions over a (countable) SDE field is
itself SDE. Let K be an SDE field and let B be a finitely generated subring
of K(X). There exist monic prime polynomials Q1, . . . ,Qm ∈ K[X] and a
finitely generated subring A of K such that B ⊂ A[X][Q−1

1 , . . . ,Q−1
m ]. Ac-

cording to Definition 3.2, applied to the subring A of K , we obtain (finitely
many) discrete norms NA, and (countably many) archimedean norms MA.

Let NB be the following (finite) set of discrete norms on K(X):

(1) the elements of NA extended to K(X);
(2) the norm γ∞(P/Q) = edeg(P )−deg(Q);
(3) the norms γQi

(PQl
i) = e−l where gcd(Qi,P ) = 1 and l ∈ Z (there are m

norms of this type, one for each i = 1, . . . ,m).
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Each of the archimedean norms γ ∈ MA arises from an embedding of fields
φγ : K → C. Let t0, t1, . . . be a countable family of distinct transcendentals
in C that are not in the (countable!) subfield of C generated by the images of
these embeddings. Each embedding φγ extends to an embedding K(X) → C

by sending X to ti ; we denote the corresponding norm on K(X) by γi . Let

MB = {γi : γ ∈ MA and i = 0,1, . . .},

a countable set of archimedean norms on K(X).
We shall show that NB and MB satisfy the condition in Definition 3.2. For

this, let k > 0 be given. An element of BB(k) necessarily has the form

P

Q
= P

Q
n1
1 · · ·Qnm

m

, (3.1)

where n1, . . . , nm are ≤ k, so that also degP ≤ k′ = k(1 + ∑
degQi)—here

we are using the norms in NB of types (2) ad (3) above. In particular, the set
of possible denominators Q is finite; denote it by Qk . Set

k′′ = k + log max{γ (Q) : Q ∈ Qk, γ ∈ NB}

(actually, taking the maximum over γ ∈ NB of type (1) would suffice). Sum-
marizing, an element of BB(k) has the form (3.1) in which Q belongs to the
finite set Qk , the degree of P is at most k′ and all coefficients of P belong
to BA(k′′)—the last assertion follows from the formula for the extension of
an element of NA to an element of NB of type (1), see the proof of [19,
Lemma 2.2].

Define a finite set of archimedean norms on K(X) by

FB(k) = {γi ∈ MB : γ ∈ FA(k′′) and i = 0, . . . , k′}.

Let now s > 0; it remains to show that BB(k, s) is finite. We claim that an
element of BB(k, s) satisfies, in addition to the conditions outlined above for
membership in BB(k), the following condition: there exists an s′′ such that
for every norm γ ∈ FA(k′′) the value of γ on each coefficient of P is at most
s′′; in other words, form some s′′ the coefficients of P belong to BA(k′′, s′′).
If indeed this is the case, the proof is complete—BA(k′′, s′′) is a finite set, so
only finitely many polynomials P can appear in (3.1) which, combined with
our remarks above concludes the proof.

It remains to prove the existence of s′′. Let

s′ = s · max{γ (Q) : Q ∈ Qk, γ ∈ FB(k)}
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so that for an element of BB(k, s) written in the form (3.1) we have γi(P ) ≤ s′
for every γ ∈ FA(k′′) and i = 0, . . . , k′. Now, the linear transformation

P �−→ (P (t0), . . . ,P (tk′)), C[X]k′ →
⊕k′

0
C

is invertible; here C[X]k′ denotes the vector space of polynomials of degree at
most k′. The condition that γi(P ) ≤ s′ for every i = 0, . . . , k′ and γ ∈ FA(k′′)
means that the polynomials φγ (P ) belong to the subset of the domain map-
ping into the compact subset of the range defined by the requirement that
the absolute value of each entry is at most s′. This is a compact set so that
there is an s′′ such that the absolute value of the coefficients of the polyno-
mials φγ (P ) are bounded by s′′; in other words, they belong to BA(k′′, s′′) as
required. �

Lemma 3.7 Strong discrete embeddability is stable under the formation of
finite extensions.

Proof We shall show that a finite extension of an SDE field is SDE. The proof
is essentially the proof of [19, Lemma 2.3], but with careful bookkeeping.

Let L be a finite extension of an SDE field K . As a subfield of an SDE
field is itself SDE we may, enlarging L as necessary, assume that L is a finite
normal extension of K . Let B be a finitely generated subring of L. Fix a
basis of the K-vector space L and let A be a finitely generated subring of
K containing the matrix entries of each element of B , viewed as a K-linear
transformation of L.

According to Definition 3.2 applied to the subring A of K , we obtain
(finitely many) discrete norms NA and (countably many) archimedean norms
MA. Now, every discrete norm on K admits at least one extension to a dis-
crete norm on L; a similar statement applies to archimedean norms. See [24,
Chap. 12]. Moreover, the finite group AutK(L) of K-automorphisms of L

acts on the set of extensions of each individual norm on K .
Let NB be a (finite) set of discrete norms on L comprising exactly one

AutK(L)-orbit of extensions of each norm in NA; let MB be a (countable) set
of archimedean norms on L defined similarly with respect to MA. Finally, for
each k let

FB(k) = {γ ∈ MB : γ extends a norm in FA(k′)};
here k′ = max{|f (x0, . . . , xn)|}, where n is the degree of the extension and the
maximum is over all elementary symmetric functions f and all tuples of real
numbers x0, . . . , xn each of which has absolute value at most k. Each FB(k)

is a finite set of archimedean norms invariant under the action of AutK(L).
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Let k and s > 0 be given. We must show that BB(k, s) is finite. But indeed,
the argument in [19] shows that the coefficients of the characteristic polyno-
mial of each element of BB(k, s), again viewed as a K-linear transformation
of L, belong to the finite set BA(k′, s′) where s′ is defined in terms of s as
k′ was in terms of k. Thus, every element of BB(k, s) is the root of one of
finitely many polynomials and BB(k, s) is itself finite. �

3.2 The general linear group

Let γ be a norm on a field K . Following Guentner, Higson and Weinberger
define a (pseudo)-length function �γ on GL(n,K) as follows: if γ is non-
archimedean

�γ (g) = log max
ij

{γ (gij ), γ (gij )}, (3.2)

where gij and gij are the matrix coefficients of g and g−1, respectively; if γ

is archimedian, arising from an embedding K ↪→ C then

�γ (g) = log max{‖g‖,‖g−1‖}, (3.3)

where ‖g‖ is the norm of g viewed as an element of GL(n,C), and simi-
larly for g−1. The following proposition is central to our discussion of linear
groups.

Proposition 3.8 Let γ be an archimedean or a discrete norm on a field K .
The group GL(n,K), equipped with the (left-invariant pseudo-)metric in-
duced by �γ , is in Dfin.

Sketch of Proof In the archimedean case GL(n,K) ⊂ GL(n,C) as a met-
ric subspace so that the result follows from the corresponding result for
GL(n,C). For GL(n,C) standard arguments apply, once we see that the
length function (3.3) is continuous and proper—GL(n,C) is coarsely equiv-
alent to the subgroup of all upper triangular matrices and a fibering argument
based on [20, Theorem 3.1.4] show thats this solvable group has FDC.

The discrete case is more subtle, primarily because we do not assume that
K is locally compact. In this case the result is due to Matsnev [25]. We shall
present a simplified version of his proof elsewhere [20]. �

3.3 Finite decomposition complexity

The proof of Theorem 3.1 is easily reduced to the special case G = GL(n,A),
where A a finitely generated domain with fraction field K . Indeed, suppose
K is a field and G is a finitely generated subgroup of GL(n,K). The subring
of K generated by the matrix entries of a finite generating set for G is a



[Review Copy Only]

326 E. Guentner et al.

finitely generated domain A, we have G ⊂ GL(n,A), and may replace K by
the (finitely generated) fraction field of A. The strategy behind our proof is
to embed GL(n,A) into the product of several copies of GL(n,K) equipped
with metrics associated to various norms. The proof rests on a permanence
property summarized in the following lemma.

Lemma 3.9 Let G be a countable discrete group. Suppose there exists a
(pseudo-)length function �′ on G with the following properties:

(1) G is in Dfin with respect to the associated (pseudo-)metric d ′
(2) ∀r > 0 ∃�r , a (pseudo-)length function on G, for which

(i) G is in Dfin with respect to the associated (pseudo-)metric dr ,
(ii) �r is proper when restricted to B�′(r).

Then G has finite decomposition complexity, and indeed G ∈ Dω+fin.

Condition (ii) in the lemma means precisely that B�r (s) ∩ B�′(r) is finite
for every s > 0.

Proof Fix a proper length function � on G, with associated metric d . By [20,
Proposition 3.2.3], applied to the action of G on the metric space (G,d ′), it
suffices to show that for every r > 0 the ball B�′(r) is in Dfin when equipped
with the metric d .

Let r > 0. Obtain �2r as in the statement. The ball B�′(r) is in Dfin with
respect to the metric d2r . Thus, it remains to show that the metrics d and d2r

on B�′(r) are coarsely equivalent.
Since �-balls in G are finite, we easily see that for every s there exists s′

such that if d(g,h) ≤ s then d2r (g,h) ≤ s′; this holds for every g and h ∈ G.
Conversely, for every s the set B�′(2r) ∩ B�2r

(s) is finite by assumption, and
we obtain s′ such that for every g in this set �(g) ≤ s′. If now g and h ∈ B�′(r)
are such that d2r (g,h) ≤ s then g−1h ∈ B�′(2r) and

d(g,h) = �(g−1h) ≤ s′. �

Proof of Theorem 3.1 Let A be a finitely generated domain, K the fraction
field of A and G = GL(n,A). (We have previously reduced the theorem to
this case.) Obtain a finite family NA = {γ1, . . . , γq} of discrete norms on K

as in the definition of strong discrete embeddability. For each norm γi we
have the corresponding length function �γi

and metric on GL(n,K) defined
as in (3.2). Define a length function on G by

�′ = �γ1 + · · · + �γq .

Thus, G is metrized so that the diagonal embedding

G ↪→ GL(n,K) × · · · × GL(n,K)
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is an isometry when the ith factor in the product is equipped with the metric
associated to the norm γi and the product is given the sum metric. Equipped
with this metric G is in Dfin by Proposition 3.8, and [20, Remark 3.1.5]. To
apply the lemma, we shall study the balls B�′(r) of the identity in G.

Let r = ek . Obtain a family of archimedean norms FA(k) as in the defi-
nition of strong discrete embeddability. For each we have the corresponding
length function and metric on GL(n,K) defined as in (3.3). Define a length
function on G by

�r =
∑

γ∈FA(k)

�γ .

Thus, G is metrized so that the diagonal embedding

G ↪→ GL(n,K) × · · · × GL(n,K)

is an isometry when each factor in the product is equipped with the metric
associated to the corresponding norm γ , and the product is given the sum
metric. Equipped with this metric G is in Dfin by Proposition 3.8, and [20,
Remark 3.1.5]. To apply the lemma, we shall study the balls B�′(r) of the
identity in G.

It remains only to show that for every s > 0 the set B�r (s)∩B�′(r) is finite.
Suppose g is in this set. From the definitions of the length functions it follows
that the entries of g and g−1 satisfy inequalities

γ (gij ) ≤ r, γ (gij ) ≤ r,

for γ ∈ NA, and also the inequalities

γ (gij ) ≤ s, γ (gij ) ≤ s,

for γ ∈ FA(k). But, these norms were chosen according to the definition of
strong discrete embeddability, so that the subset of those elements of A satis-
fying these inequalities is finite. In particular, the number of matrices contain-
ing only these elements as their entries is finite and the proof of the general
case is complete. Further, in the case of positive characteristic, there are no
archimedean norms and the above inequalities show that B�′(r) is already fi-
nite for every r . In this case, we conclude that G belongs to Dfin so that by
[20, Theorem 4.1] it has finite asymptotic dimension. �

4 Decomposition complexity and topological rigidity

This section is organized into two parts. In the first part we shall state two
essential results, Theorems 4.2 and 4.3, the proofs of which are deferred to
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later sections. In the second part we shall discuss applications to topological
rigidity. We shall begin by describing the bounded category, a natural frame-
work in which to discuss bounded rigidity. We shall then state and prove our
results concerning the bounded Borel and bounded Farrell-Jones L-theory
isomorphism conjectures for spaces with finite decomposition complexity,
Theorems 4.5 and 4.11, respectively. Finally, from these we deduce concrete
applications to topological rigidity.

4.1 Two main results

Throughout, we shall work with a metric space 
 having bounded geometry:
for every r > 0 there exists N = N(r) such that every ball of radius r contains
at most N elements. In several places the weaker hypothesis of local finiteness
would suffice: every ball contains finitely many elements.

Definition 4.1 For d ≥ 0 we define the Rips complex Pd(
) to be the
simplicial polyhedron with vertex set 
, and in which a finite subset
{γ0, . . . , γn} ⊆ 
 spans a simplex precisely when d(γi, γj ) ≤ d for all 0 ≤ i,

j ≤ n.

If 
 has bounded geometry the Rips complex is finite dimensional, with di-
mension bounded by N(d)− 1; if 
 is merely locally finite the Rips complex
Pd(
) is a locally finite simplicial complex.

There are in general several ways to equip the Rips complex with a metric.
The simplicial metric is the metric induced by the (pseudo) Riemannian met-
ric whose restriction to each n-simplex is the Riemannian metric obtained by
identifying the n-simplex with the standard simplex in the Euclidean space
R

n. By convention, the distance between points in different connected com-
ponents of Pd(
) is infinite. Equipped with the simplicial metric the Rips
complex is a geodesic space in the sense that every two points (at finite dis-
tance) are joined by a geodesic path.

Our first essential result is a vanishing result for the Whitehead and al-
gebraic K-theory groups. To state the result we introduce the following
notation: for a locally compact metric space X and for each δ ≥ 0 and
i ≥ 0 the δ-controlled locally finite Whitehead group is denoted Whδ

1−i (X);
the δ-controlled reduced locally finite algebraic K-theory group is denoted
K̃δ−i (X). Both groups are defined in [26].3

3The group we denote K̃δ
0(X) is the group K̃0(X,pX,0, δ) defined on page 14 of [26], taking

pX to be the identity map X → X; our K̃δ−i
(X) is then defined to be K̃δ

0(X × R
i ). The group

we denote Whδ(X) is the group Wh(X,pX,1, δ) defined on page 22 of [26], where again pX

is the identity map X → X; Whδ
1−i

(X) is then defined to be Whδ(X × R
i ).
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We then define, for each i ≥ 0, the bounded locally finite Whitehead group,
and bounded reduced locally finite algebraic K-theory group as follows:

Whbdd
1−i (Pd(
)) = lim

δ→∞Whδ
1−i (Pd(
))

K̃bdd
−i (Pd(
)) = lim

δ→∞ K̃δ−i (Pd(
)).

Theorem 4.2 Let 
 be a bounded geometry metric space. If 
 has finite
decomposition complexity then, for each i ≥ 0,

lim
d→∞ K̃bdd

−i (Pd(
)) = 0

lim
d→∞Whbdd

1−i (Pd(
)) = 0.

Our second essential result asserts that an appropriate assembly map is an
isomorphism. To state the result we introduce the following notation: L(e)

denotes the simply connected surgery spectrum with πn(L(e)) = Ln(Z{e});
Lbdd

n (X) denotes the bounded, locally finite and free L-theory of the locally
compact metric space X. Recall that Lbdd

n (X) is defined using locally finite,
free geometric modules and that a geometric module is locally finite if its
support is locally finite. More precisely, for a locally compact metric space X

and for each δ ≥ 0 and n ≥ 0 the δ-controlled locally finite and free L-group
in degree n is denoted Lδ

n(X). This group is defined in [27].4 We then define
the bounded locally finite L-group as follows:

Lbdd
n (Pd(
)) = lim

δ→∞Lδ
n(Pd(
)).

Theorem 4.3 Let 
 be a metric space with bounded geometry and finite de-
composition complexity. The assembly map

A : lim
d→∞Hn(Pd(
),L(e)) → lim

d→∞Lbdd
n (Pd(
))

is an isomorphism.

In the statement, the domain of assembly is the locally finite homology of
the Rips complex with spectrum L(e), and the range is the bounded, locally
finite and free L-theory of the same Rips complex.

4The group we denote Lδ
n(X) corresponds to the δ-controlled locally finite and free L-theory

group L
δ,δ
n (X;pX,Z) in [27], where again pX is the identity map X → X.
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4.2 The bounded category

Being invariant under coarse equivalence, finite decomposition complexity
is well-adapted to a topological setting where the geometry appears only
‘at large scale’ and the topological properties are ‘uniformly’ locally trivial.
These ideas are formalized in the bounded category.

A coarse metric manifold is a topological manifold M equipped with a
continuous (pseudo-) metric in which balls are precompact. Although Rie-
mannian manifolds, equipped with the path length metric, are motivating ex-
amples of coarse metric manifolds, we want to make clear that our defini-
tion entails no assumption on the metric at ‘small scale’ and that the man-
ifold M is not assumed to be smooth. A continuous map f : M → N , be-
tween two coarse metric manifolds is bounded if there exists a coarse equiva-
lence φ : N → M and a constant K > 0 such that d(x,φ ◦ f (x)) ≤ K for all
x ∈ M . Coarse metric manifolds and bounded continuous maps comprise the
bounded category.5

Before discussing rigidity in the bounded category, we must introduce ap-
propriate notions of homeomorphism and homotopy. A bounded homeomor-
phism between coarse metric manifolds is a map M → N which is simulta-
neously a homeomorphism and a coarse equivalence. These are the isomor-
phisms in the bounded category.

Two bounded continuous maps f , g : M → N are boundedly homotopic if
there exists a bounded homotopy between them; in other words, if there ex-
ists a continuous map F : M ×[0,1] → N , for which F(0, ·) = f , F(1, ·) = g

and for which the family (F (t, ·))t∈[0,1] is bounded (uniformly in t , in the ob-
vious sense). A bounded continuous map f : M → N is a bounded homotopy
equivalence if there exists a bounded continuous map g : N → M such that
the compositions f ◦ g and g ◦ f are boundedly homotopic to the identity.

Definition 4.4 A coarse metric manifold M is boundedly rigid if the follow-
ing condition holds: every bounded homotopy equivalence M → N to an-
other coarse metric manifold is boundedly homotopic to a (bounded) homeo-
morphism.

A coarse metric manifold M is uniformly contractible if for every r > 0,
there exists R ≥ r such that every ball in M with radius r is contractible
to a point within the larger ball of radius R and the same center. Uniform
contractibility is invariant under bounded homotopy equivalence.

5In [8], the authors give an essentially equivalent definition of the bounded category in which
an auxiliary metric space X is introduced. An object is a pair (M,p) where p : M → X has
precompact preimages. To obtain a coarse metric manifold, one must merely pull back the
metric from X to M .
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A coarse metric manifold has bounded geometry if there exists r > 0 with
the following property: for every R > 0 there exists N > 0 such that every
ball of radius R is covered by N or fewer balls of radius r .6

Perhaps the most important, and motivating, example of a coarse metric
manifold is the universal cover M̃ of a closed (topological) manifold M . To
realize the structure of a coarse metric manifold on M̃ we can equip it with a
continuous 
-invariant pseudo-metric in which balls are precompact, where

 is the fundamental group of M . Equipped with such a pseudo-metric, M̃ is
coarsely equivalent to 
.

4.3 Application to bounded rigidity

The bounded Borel isomorphism conjecture asserts that an appropriate as-
sembly map is an isomorphism. Precisely this conjecture asserts that for a
locally finite metric space 
 the assembly map

A : lim
d→∞Hn(Pd(
),L(e)) → lim

d→∞Lbdd,s
n (Pd(
)) (4.1)

is an isomorphism: as in the previous section, the domain of assembly is the
locally finite homology of the Rips complex of 
 with spectrum L(e), the
simply connected surgery spectrum with πn(L(e)) = Ls

n(Z{e}) = Ln(Z{e});
the range of assembly is the bounded simple L-theory of the Rips complex of

 defined using locally finite free geometric modules.

Theorem 4.5 The bounded Borel isomorphism conjecture is true for metric
spaces with bounded geometry and finite decomposition complexity.

Proof By Theorem 4.2 and the Ranicki-Rothenberg sequence in the con-
trolled setting [17], we have

lim
d→∞Lbdd,s(Pd(
)) ∼= lim

d→∞Lbdd(Pd(
)).

The result now follows from Theorem 4.3. �

The bounded Borel isomorphism conjecture has strong topological impli-
cations. Our principal result in this direction is the following theorem.

Theorem 4.6 (Bounded Rigidity Theorem) A uniformly contractible coarse
metric manifold with bounded geometry, finite decomposition complexity, and
dimension at least five is boundedly rigid.

6Traditionally, a Riemannian manifold is said to have bounded geometry if its curvature is
bounded and its radius of injectivity is bounded away from zero. Such local conditions are
known to imply our global condition.
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Corollary 4.7 Let M be a closed aspherical manifold of dimension at least
five whose fundamental group has finite decomposition complexity (as a met-
ric space with a word metric). For every closed manifold N and homotopy
equivalence M → N the corresponding bounded homotopy equivalence of
universal covers is boundedly homotopic to a homeomorphism.

Proof The universal cover of a closed manifold has bounded geometry as
a coarse metric manifold. Further, the universal cover of a closed aspheri-
cal manifold is uniformly contractible as a coarse metric manifold. Thus, the
previous theorem applies. �

Let M be a coarse metric manifold. A net in M is a metric subspace 
 ⊂ M

which is both uniformly discrete—the distance between distinct points of 


is bounded uniformly away from zero—and coarsely dense in M—for some
C > 0, every ball B(x,C) in M intersects 
. Clearly, the inclusion of a net
into M is a coarse equivalence, so that any two nets are coarsely equivalent.
If M has bounded geometry (as a coarse metric manifold) then any net in M

has bounded geometry (as a discrete metric space).

Proposition 4.8 Let M be a uniformly contractible coarse metric manifold
having bounded geometry and dimension at least five. Let 
 be a net in M .
The assembly map (4.1) of the bounded Borel isomorphism conjecture for 


identifies with the assembly map for M :

A : Hn(M,L(e)) → Lbdd,s
n (M). (4.2)

Precisely, there are isomorphisms

Hn(M,L(e)) ∼= lim
d→∞Hn(Pd(
),L(e)) and

Lbdd,s
n (M) ∼= lim

d→∞Lbdd,s(Pd(
))

commuting with the assembly maps.

Remark 4.9 The bounded geometry condition is essential here; Dranish-
nikov, Ferry and Weinberger have constructed an example of a uniformly
contractible manifold M for which the first asserted isomorphism fails [10].

The proof of the above proposition will follow the standard arguments,
based on the following lemma; see [21, Sect. 3]. For the statement define a
coarse metric CW-space to be a CW-complex equipped with a continuous
(pseudo-)metric in which balls are relatively compact, and in which the cells
have uniformly bounded diameter. The latter property can always be achieved
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by refining the CW-structure. The straightforward proof of the next lemma is
left to the reader.

Lemma 4.10 Let X be a uniformly contractible coarse metric finite dimen-
sional CW-space. Suppose that X admits a bounded geometry net 
. For
every sufficiently large d > 0 there exist continuous coarse equivalences

fd : X → Pd(
) and gd : Pd(
) → X

with the following properties:

(1) gd ◦ fd is boundedly homotopic to the identity map of X;
(2) idd ′ ◦ fd ◦ gd is boundedly homotopic to the inclusion idd ′ : Pd(
) →

Pd ′(
), for d ′ > d sufficiently large.

Proof of Proposition 4.8 A topological manifold of dimension at least five
admits the structure of a CW-complex [23].7 Thus a coarse metric manifold of
dimension at least five is a coarse metric CW-space and the lemma applies. �

Proof of Theorem 4.6 Let M be as in the statement. Let N be another coarse
metric manifold and suppose that N is boundedly homotopy equivalent to M .
According to the bounded surgery exact sequence [17], the bounded Borel
isomorphism conjecture for M implies that N is homeomorphic to M , as-
suming that dimM ≥ 5. �

4.4 Application to stable rigidity

The bounded Farrell-Jones L-theory isomorphism conjecture asserts that a
certain assembly map is an isomorphism. Precisely this conjecture asserts
that for a locally finite metric space 
 the assembly map

A : lim
d→∞Hn(Pd(
),L(e)) → lim

d→∞Lbdd,〈−∞〉
n (Pd(
))

is an isomorphism. Here, for a metric space X and natural number n, we
define L

bdd,〈−∞〉
n (X) to be the direct limit of the bounded locally finite and

free L-groups Lbdd
n (X × R

k) with the maps given by crossing with R. Re-
call that L(e), the (simply) connected surgery spectrum, satisfies πn(L(e)) =
L

〈−∞〉
n (Z{e}).

7This is the only point at which we require the dimension to be ≥ 5—the question of whether
a manifold admits the structure of a CW-complex remains open in low dimensions. One could
give an alternative proof of Proposition 4.8 using a Mayer-Vietoris argument, which would
allow us to remove the dimension restriction.
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Theorem 4.11 The bounded Farrell-Jones L-theory isomorphism conjecture
is true for metric spaces with bounded geometry and finite decomposition
complexity.

Proof Immediate from Theorem 4.3 and from the observation that if X has
finite decomposition complexity, then so does X × R

n for all n. �

The bounded Farrell-Jones L-theory isomorphism conjecture has implica-
tions to question of stable rigidity. Let M be a closed, aspherical manifold.
By the arguments presented in the previous section, the bounded Farrell-Jones
L-theory isomorphism conjectures for the universal cover of M and for the
fundamental group of M are equivalent. According to the descent principle
they imply the integral Novikov conjecture—a detailed argument is contained
in the proof of [7, Theorem 5.5].

Recall now from the introduction that a closed manifold M is stably
rigid if there exists a natural number n with the following property: for ev-
ery closed manifold N and every homotopy equivalence M → N the map
M × R

n → N × R
n is homotopic to a homeomorphism. The stable Borel

conjecture asserts that closed aspherical manifolds are stably rigid. The fact
that the integral Novikov conjecture implies the stable Borel conjecture was
stated without proof in [17]; for a detailed treatment see [22, Proposition 2.8].
From this discussion, and our previous results, we conclude:

Theorem 4.12 The stable Borel conjecture holds for closed aspherical man-
ifolds whose fundamental groups have finite decomposition complexity.

5 Vanishing theorem

We devote this section to the proof of Theorem 4.2, our vanishing result
for the bounded Whitehead and bounded reduced lower algebraic K-theory
groups. In view of the definitions, we obtain Theorem 4.2 as an immediate
consequence of the following result:

Theorem 5.1 Let 
 be a locally finite metric space with bounded geometry
and finite decomposition complexity. The controlled locally finite Whitehead
group and the controlled reduced locally finite algebraic K-theory group van-
ish asymptotically. Precisely, given i ≥ 0, δ > 1 and a > 1 there exists b > 1
such that, for any Z ⊂ 
 the natural homomorphisms:

Whδ
1−i (Pa(Z)) → Whδ

1−i (Pb(Z)) (5.1)

K̃δ−i (Pa(Z)) → K̃δ−i (Pb(Z)) (5.2)



[Review Copy Only]

Geometric complexity and topological rigidity 335

are zero. Here Pa(
) is equipped with the simplicial metric and Pa(Z) ⊂
Pa(
) with the subspace metric (and similarly for Pb(Z)). The constant b

depends only on i, δ, a and 
, and not on Z.

Remark 5.2 To emphasize the dependence among the various constants and
metric families we shall encounter we shall write, for example, f = f (g,h)

when f depends on g and h; if additionally g = g(p, q) and h = h(q, r) we
write f = f (g,h) = f (p, q, r).

In preparation for the proof of Theorem 5.1 we formalize the notion of
a vanishing family: a collection F of metric subspaces of 
 is a vanishing
family if for every i ≥ 0, δ > 1, a > 1, t > 1 and p ≥ 0 there exists b > 1
such that for every X ∈ F and every Z ⊂ Nt(X) the homomorphisms

Whδ
1−i (Pa(Z) × T p) → Whδ

1−i (Pb(Z) × T p) (5.3)

K̃δ−i (Pa(Z) × T p) → K̃δ−i (Pb(Z) × T p) (5.4)

are zero, where Nt(X) is the t-neighborhood of X in 
, i.e. Nt(X) = {y ∈

 : d(y,X) ≤ t} . Here, T p is the p-dimensional torus with the standard Rie-
mannian metric of diameter one. Note that b = b(i,p, t, a, δ, F ). We denote
the collection of vanishing families by V.

Observe that in the definition of vanishing family we have not specified
the metric to be used on Pa(Z) and Pb(Z). Indeed, this was intentional as we
shall need to employ two different metrics in the proof of Theorem 5.1. The
first is the simplicial metric on Pa(Z) and the second is the subspace met-
ric inherited from Pa(
). Similarly we consider the simplicial and subspace
metrics on Pb(
).

Proposition 5.3 The notion of vanishing family is independent of the choice
of metric on Pa(Z) and Pb(Z).

Proof The subspace metric is always smaller than the simplicial metric. Con-
sequently there is a hierarchy among the four (a priori different) definitions
of vanishing family. The weakest version of vanishing states:

For every a (5.3) and (5.4) are zero for sufficiently large b,
when Pa(Z) is equipped with the simplicial metric and Pb(Z)

with the subspace metric;

whereas the strongest version states:

For every a (5.3) and (5.4) are zero for sufficiently large b,
when Pa(Z) is equipped with the subspace metric and Pb(Z)

with the simplicial metric.

It suffices to show that the weak version of vanishing implies the strong ver-
sion. We shall focus on the Whitehead groups (the case of the K-groups be-
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ing similar). Suppose that Z is a vanishing family in the weak sense. We shall
show that, for sufficiently large a′ depending on a and δ, there exist maps

Whδ
1−i (P

sub
a (Z) × T p) → Whδ

1−i (P
sim
a′ (Z) × T p); (5.5)

here, and below, the superscript makes clear which metric is to be employed,
either the subspace or the simplicial. Assuming this for the moment, the proof
of the proposition is completed by considering the diagram

Whδ
1−i (P

sub
a (Z) × T p) Whδ

1−i (P
sim
b (Z) × T p)

Whδ
1−i (P

sim
a′ (Z) × T p) Whδ

1−i (P
sub
b′ (Z) × T p);

given a we choose a′ to ensure existence of the left hand vertical map as in
(5.5); according to the weak version of vanishing we choose b′ so that the
bottom horizontal map is zero; finally, we choose b to ensure existence of the
right hand vertical map as in (5.5).

It remains to verify the existence of the maps (5.5). This follows from the
following two observations. First, for a′ sufficiently large, the inclusion

P sub
a (Z) → P sim

a′ (Z)

is 1-Lipschitz at scale 100δ—meaning that whenever x, y ∈ P sub
a (Z) satisfy

d(x, y) ≤ 100δ then the distance between x and y in P sim
a′ (Z) is not greater

than their distance in P sub
a (Z). Indeed, choose a′ ≥ a to be large enough

such that any pair of points of P sub
a (Z) at distance less than 100δ lie in a

common simplex in Pa′(Z)—this is possible because the map Pa(
) → 


associating to a point some vertex of the smallest simplex containing it is
uniformly expansive. Now, the first map in the composition

P sub
a (Z) → P sub

a′ (Z) → P sim
a′ (Z)

is contractive. The second map is isometric for pairs of points in a simplex—
the subspace and simplicial metrics on Pa(Z) coincide for pairs of points
belonging to a common simplex, essentially because each simplex is a convex
subspace of Pa(
).

Second, the δ-controlled Whitehead groups are independent of the behav-
ior of the metric at scales much larger than δ. More precisely, an injection
X → Y which is 1-Lipschitz at scale 100δ induces a map Whδ

1−i (X) →
Whδ

1−i (Y ). This follows from the definitions of these groups [26]. �
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Proof of Theorem 5.1 Assuming that 
 has finite decomposition complexity
we shall prove that the collection of vanishing families contains the bounded
families and, using a controlled Mayer-Vietoris argument based on part (5) of
Theorem B.1 (proved in [26]), is closed under decomposability. We thereby
conclude that the family {
} is a vanishing family and the theorem follows.

A uniformly bounded family of subspaces of 
 is a vanishing family, as
we conclude from the following facts:

(1) If a subspace Y ⊂ 
 has diameter at most b for some b ≥ 0, then Pb(Z) is
Lipschitz homotopy equivalent to a point (with Lipschitz constant one);
indeed the same is true for any larger b.

(2) If two metric spaces P and Q are Lipschitz homotopy equivalent (with
Lipschitz constant one) then Whδ

1−i (P ) is isomorphic to Whδ
1−i (Q), and

similarly K̃δ−i (P ) is isomorphic to K̃δ−i (Q).
(3) By the choice of the Riemannian metric on T p and the assumption δ > 1,

Whδ(T p) and K̃δ−i (T
p) vanish for each p ≥ 0.

Now, let F be a family of subspaces of 
 and assume that F is decom-
posable over the collection of vanishing families. We must show that F is a
vanishing family; precisely, there exists b = b(i,p, t, a, δ, F ) such that for
every X ∈ F and every Z ⊂ Nt(X) the maps (5.3) and (5.4) are zero.

Set r = r(t, a, δ, λ) sufficiently large, to be specified later. Obtain an r-
decomposition of F over a vanishing family G = G(r, F ). Let X ∈ F . We
obtain a decomposition:

X = A ∪ B, A =
⊔

r

Ai, B =
⊔

r

Bj ,

for which all Ai and Bj ∈ G . Let Z be a subset of the neighborhood of radius
t of X inside 
. From now on, all the neighborhoods will be taken inside Z.
Setting Ci = Nt+a(Ai) and Dj = Nt+a(Bj ) we obtain an analogous decom-
position:

Z = C ∪ D, C =
⊔

r−2(t+a)

Ci, D =
⊔

r−2(t+a)

Dj .

Denote C = {Ci} and D = {Dj }. By the separation hypothesis we have
r − 2(t + a) > a so that Pa(C) = Pa(C) and Pa(D) = Pa(D). Further,
Pa(Z) = Pa(C) ∪ Pa(D) = Pa(C ∪ D). We intend to compare the Mayer-
Vietoris sequence of this pair of subspaces of Pa(Z) to a Mayer-Vietoris se-
quence for certain subspaces of an appropriate relative Rips complex. We
enlarge the intersection C ∩ D = {Ci ∩ Dj } by setting

W = Naβλδ(C) ∩ Naβλδ(D)
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= (Naβλδ(C) ∩ D) ∪ (C ∩ Naβλδ(D))

=
⊔

r−2(t+aβλδ)

Wij ,

and

Wij = Naβλδ(Ci) ∩ Naβλδ(Dj ),

and where β is the constant appearing in Lemma A.7. Observe that Ci ∩Dj ⊂
Wij , so that denoting W = {Wij } we have C ∩ D ⊂ W . Provided a ≤ b we
have a commuting diagram

Whδ(Pa(C ∪ D)) K̃λδ
0 (Nλδ(Pa(C ∩ D)))

Whδ(Pab(C ∪ D, W)) K̃λδ
0 (Nλδ(Pb(W))).

(5.6)

The horizontal maps are boundary maps in controlled Mayer-Vietoris se-
quences in Appendix B: in the top row the neighborhood is taken in
Pa(C ∪ D), and all spaces are given the subspace metric from Pa(Z); in the
bottom row the neighborhood is taken in Pab(C ∪ D, W), and all spaces are
given the subspace metric from Pab(Z,W). The vertical maps are induced
from the proper contraction Pa(Z) → Pab(Z,W). In fact, the right hand ver-
tical map factors as the composite

Nλδ(Pa(C ∩ D)) ⊂ Pa(W) → Pb(W) ⊂ Nλδ(Pb(W)); (5.7)

in which the first two spaces are subspaces of Pa(C ∪ D) ⊂ Pa(Z) and the
last two are subspaces of Pab(C ∪ D, W) ⊂ Pab(Z,W). The first inclusion in
(5.7) follows from

Nλδ(Pa(C ∩ D)) =
⋃

i,j

Nλδ(Pa(Ci ∩ Dj))

⊂
⋃

i,j

Pa(Naβλδ(Ci) ∩ Naβλδ(Dj ))

⊂
⋃

i,j

Pa(Wij ) = Pa(W),

where we have applied Lemma A.7 of the appendix for the first inclusion—
keep in mind that the neighborhoods on the first line are taken in Pa(C ∪ D).

Applying the induction hypothesis we claim that for sufficiently large b

the right hand vertical map in (5.6) is zero. Indeed, the components Wij ∈ W
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are contained in the neighborhoods Nt+aβλδ(Ai) (and also of Nt+aβλδ(Bj ))
and we can apply the hypothesis with appropriate choices of the parameters:
t ′ = t + aβλδ, δ′ = λδ, a′ = a, etc. In detail,

K̃λδ
0 (Pa(W))

∼= ∏
K̃λδ

0 (Pa(Wij ))
0 ∏

K̃λδ
0 (Pb(Wij ))

K̃λδ
0 (Pb(W));

as the spaces Pa(Wij ) and Pa(W) are given the subspace metric from Pa(Z)

and the individual Wij are well-separated, the first map is an isomorphism by
Lemma A.8 (which guarantees that the various Pa(Wij ) are separated by at
least λδ); the spaces Pb(Wij ) are given the simplicial metric and the middle
map is 0 for sufficiently large b by hypothesis; the space Pb(W) is given
the subspace metric from Pab(Z, W) and the last map is induced by proper
contractions Pb(Wij ) ⊂ Pb(W) onto disjoint subspaces.

Having chosen b = b(i,p, t ′, a′, δ′, G) we extend the diagram (5.6) to in-
corporate the relax-control map for the bottom sequence:

Whδ(Pa(C ∪ D))

Whδ(Pab(C ∪ D, W))

relax

K̃λδ
0 (Nλδ(Pb(W)))

Whλ2δ(Pab(C, W)

∪Nλδ(Pb(W)))

⊕
Whλ2δ(Pab(D, W)

∪Nλδ(Pb(W)))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
Whλ2δ(Pab(C ∪ D, W))

(5.8)

We conclude from the above discussion and the controlled Mayer-Vietoris
sequence that the image of Whδ(Pa(C ∪ D)) under the composite of the two
vertical maps is contained in the image of the bottom horizontal map. It re-
mains to apply the induction hypothesis to C and D. The case of D being anal-
ogous, we concentrate on C and shall show that for sufficiently large c ≥ b the
composite

Pab(C, W) ∪ Nλδ(Pb(W)) ⊂ Pab(C ∪ D, W) → Pb(Z) → Pc(Z),
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in which the arrows are induced by proper contractions Pab(Z,W) →
Pb(Z) → Pc(Z) is zero on the λ2δ-controlled Whitehead group. We have,
as subspaces of Pab(C ∪ D, W) ⊂ Pab(Z,W),

Pab(C, W) ∪ Nλδ(Pb(W)) =
⋃

i

(
Pa(Ci) ∪

⋃

j

Nλδ(Pb(Wij ))

)
, (5.9)

in which the spaces comprising the union over i are well-separated by
Lemma A.8 (which guarantees λ2δ-separation). Further, for fixed i and j we
have

Nλδ(Pb(Wij )) ⊂ Pab(Naβλδ(Wij ),Wij ) → Pb(Naβλδ(Wij ))

⊂ Pb(N2aβλδ(Ci)),

where we have applied Lemma A.7 for the first containment (we point out
that this is one of the places where the notion of relative Rips complex is
important), and the arrow represents the assertion that the space on its left
maps to the space on its right under the proper contraction Pab(Z,W) →
Pb(Z). Accordingly, for each fixed i we have

Pa(Ci) ∪
⋃

j

Pb(Naβλδ(Wij )) → Pb(N2aβλδ(Ci)),

where the arrow is interpreted as above. Now, we apply our induction hy-
pothesis a second time, with appropriate choices of the parameters: t ′′ =
t + 2aβλδ, δ′′ = λ2δ, a′′ = b, etc., noting that N2aβλδ(Ci) ⊂ Nt+2aβλδ(Ai).
We get c = c(i,p, t ′′, a′′, δ′′, G), and analyze

Whλ2δ(Pab(C, W) ∪ Nλδ(Pb(W)))

∼=
∏

Whλ2δ

(
Pa(Ci) ∪

⋃

j

Pb(Naβλδ(Wij ))

)

→
∏

Whλ2δ(Pb(N2aβλδ(Ci)))

→
∏

Whλ2δ(Pc(N2aβλδ(Ci)))

→ Whλ2δ(Pc(Z))

→ Whδ(Pλ2c(Z))

the ∼= follows from the well-separatedness in (5.9); the spaces Pc(N2aλδ(Ci))

are given the simplicial metrics, and the second arrow is 0; the fourth arrow
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is induced from inclusion of disjoint subspaces of Pc(Z). The last arrow fol-
lows from the definition of the controlled Whitehead groups. Checking the
dependence of the constant c we find c = c(i,p, t, a, λ, δ, F ) as required. �

6 Assembly isomorphism

We devote this section to the proof of Theorem 4.3, which asserts that assem-
bly is an isomorphism for spaces having finite decomposition complexity. In
view of the definitions, we obtain Theorem 4.3 as an immediate consequence
of the following result:

Theorem 6.1 Let 
 be a locally finite metric space with bounded geometry
and finite decomposition complexity. Assembly for 
 is an asymptotic isomor-
phism. Precisely, given n ≥ 0, δ > 1 and a > 1 there exists b = b(a, δ, n) ≥ a

such that, for any Z ⊂ 
,

(1) the kernel of Hn(Pa(Z)) → Lδ
n(Pa(Z)) is mapped to zero in Hn(Pb(Z));

(2) the image of Lδ
n(Pa(Z)) → Lδ

n(Pb(Z)) is contained in the image of
Hn(Pb(Z)) → Lδ

n(Pb(Z)).

We shall refer to condition (2) in the statement as asymptotic surjectivity
and to condition (1) as asymptotic injectivity.

Before turning to the proof we pause to outline the strategy. The proof
consists essentially of a quantitative version of the five lemma, which we shall
prove using the controlled Mayer-Vietoris sequence in L-theory, precisely
parts (4) and (5) of Theorem B.2. Borrowing the notation from the previous
section, consider the following diagram, which again does not make sense in
the controlled setting and must be loosely interpreted:

Hn(Pa(C)) ⊕ Hn(Pa(D)) Ln(Pa(C)) ⊕ Ln(Pa(D))

Hn(Pa(C ∪ D)) Ln(Pa(C ∪ D))

Hn−1(Pa(C ∩ D)) Ln−1(Pa(C ∩ D))

Hn−1(Pa(C)) ⊕ Hn−1(Pa(D)) Ln−1(Pa(C)) ⊕ Ln−1(Pa(D)).

(6.1)

In the diagram, the vertical exact sequences are portions of appropriate
Mayer-Vietoris sequences; the horizontal maps are the assembly maps. The
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induction hypothesis applies to the first, third and fourth rows; we are to prove
that the second horizontal map is an (asymptotic) isomorphism. In the proof
below, we shall concentrate on (asymptotic) surjectivity—a simple diagram
chase reveals that this follows (asymptotic) surjectivity of rows one and three
and (asymptotic) injectivity of row four.

In the proof below, to help the reader follow our trajectory we shall adopt
the following conventions: x, y and z will be used for elements in the bounded
L-theory for unions, intersections and direct sums, respectively; x′, y′, z′ will
be used for elements in the corresponding homology groups.

As preparation for the proof we introduce the notion of an L-isomorphism
family: a collection F of metric subspaces of 
 is an L-isomorphism family if
for every n ≥ 0, δ > 1, a > 1, and t > 1 there exists b = b(a, δ, t, n) > 1 such
that for every X ∈ F and every Z ⊂ Nt(X) the assertions (1) and (2) of the
theorem are satisfied. As was the case for vanishing families the notion of an
L-isomorphism family is not sensitive to the choice of metric on Pa(Z) and
Pb(Z). Compare Proposition 5.3—the proof in the present situation is based
on the same argument.

Finally, the proof employs both the relative Rips complex, Pab(C, W)

and the scaled Rips complex, Pabm(C, W)—see Definition A.1 and Defini-
tion A.2, respectively, and also Sect. A.2.

Proof The proof will be much more condensed than the proof of Theorem 5.1
which we presented in some detail; while the present proof is not technically
more difficult, it is somewhat longer.

We proceed as in the proof of Theorem 5.1. Assuming 
 has finite de-
composition complexity we shall show that the collection of families that are
both vanishing families and L-isomorphism families contains the bounded
families, and is closed under decomposability. We thereby conclude that the
family {
} is an isomorphism family, and the theorem follows.

The case of bounded families is handled by the following facts:

(1) If a subspace Y ⊂ 
 has diameter at most b for some b ≥ 0, then Pb(Z) is
Lipschitz homotopy equivalent to a point (with Lipschitz constant one);
indeed the same is true for any larger b.

(2) If two metric spaces P and Q are Lipschitz homotopy equivalent (with
Lipschitz constant one) then Lδ

n(P ) is isomorphic to Lδ
n(Q).

Now, let F be a family of subspaces of 
, and assume F is decomposable
over the collection of families that are both vanishing and L-isomorphism
families. It follows from the proof of Theorem 5.1 that F itself is a vanishing
family and we are to prove that F is an L-isomorphism family. We shall
concentrate on proving asymptotic surjectivity; asymptotic injectivity can be
proved in essentially the same manner.
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Set r = r(t, a, δ, λ) sufficiently large, to be specified later—precisely,
when a union below is called well-separated, this will mean for a sufficiently
good choice of r , and the reader will verify that this choice depends only
on the parameters t , a, δ and λ. Obtain an r-decomposition of F over an
L-isomorphism (and vanishing) family G = G(r, F ).

Let X ∈ F . Let Z, C , D and W be as in the proof of Theorem 5.1. Let x ∈
Lδ

n(Pa(C) ∪ Pa(D)). We need to prove that x is in the image of the assembly
map up to increasing a.
Step 1. Using the well-separatedness of W , and the vanishing assumption for
the family W , we can find b = b(a, δ, t, n) such that the map

K̃
λnδ
0 (Pa(W)) → K̃

λnδ
0 (Pb(W)) (6.2)

is zero. This allows us to consider the boundary map

∂ : Lδ
n(Pa(C ∪ D)) → L

λnδ
n−1(Pb(W)),

where ∂ is the boundary map in Theorem B.2 of Appendix B and Pb(W) is
seen as a subspace of Pab(Z, W).
Step 2. Lemma A.8 implies that Pb(W) is well separated, as a subspace of
Pab(Z, W). Hence

L
λnδ
n−1(Pb(W)) ∼=

∏

i,j

L
λnδ
n−1(Pb(Wij )).

Hence, by the surjectivity assumption for W , there exists c = c(a, δ, n, t) ≥ b

and y′ ∈ Hn−1(Pc(W)) mapping to (the image of) x in L
λnδ
n−1(Pc(W)), which

we will simply write A(y′) = ∂(x).
Step 3. By Theorem B.2 in Appendix B, part (5), and (6.2) (using that c ≥ b),
we have i∗ ◦ ∂ = 0 in

Lδ
n(Pa(C ∪ D))

∂−→ L
λnδ
n−1(Pc(W))

i∗−→ L
λnδ
n−1(Pac(C, W)) ⊕ L

λnδ
n−1(Pac(D, W)).

In particular, i∗ ◦ ∂(x) = i∗ ◦A(y′) = 0. Considering the following commuta-
tive diagram

Hn−1(Pc(W))
i∗

A

Hn−1(Pac(C, W)) ⊕ Hn−1(Pac(D, W))

A

L
λnδ
n−1(Pc(W))

i∗
L

λnδ
n−1(Pac(C, W)) ⊕ L

λnδ
n−1(Pac(D, W)),

we deduce A ◦ i∗(y′) = 0.
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Step 4. By the injectivity assumption for W , there exists d = d(a, δ, n, t) ≥ c

such that the map

Hn−1(Pac(C, W)) ⊕ Hn−1(Pac(D, W)) → Hn−1(Pd(C, W))

⊕ Hn−1(Pd(D, W))

sends i∗(y′) to 0.
Step 5. By exactness of the sequence

Hn(Pd(C ∪ D, W))
∂−→ Hn−1(Pd(W))

i∗−→ Hn−1(Pd(C, W)) ⊕ Hn−1(Pd(D, W)),

there exists x′ ∈ Hn(Pd(C ∪ D, W)) such that y′ = ∂(x′).
Step 6. If m is large enough, the metric subfamily Pd(W) of Padm(C ∪ D, W)

is well-separated by Lemma A.8. Hence,

K̃
λ2

nδ

0 (Nλ2
nδ(Pd(W))) ∼=

∏

i,j

K̃
λ2

nδ

0 (Nλ2
nδ(Pd(W ′

ij ))).

On the other hand, by Lemma A.9, when m is large enough, Nλ2
nδ(Pd(W))

is 2-Lipschitz homotopy equivalent to a subset of Pd(W ′) (just take the ho-
motopy equivalence F of Lemma A.9, restricted to V , which in our case is
Nλ2

nδ(Pd(W))) where W ′ = Naβλ2
nδ(W) (β is as in Lemma A.9) and Pd(W ′)

is viewed as subspace of Padm(C ∪ D, W ′). Hence there exists e = e(a, δ, n, t)

such that8

K̃
λnδ
0 (Nλ2

nδ(Pd(W))) −→ K̃
2λnδ
0 (Pd(W ′)) 0−→ K̃

λnδ
0 (Pe(W ′)). (6.3)

We can thus define the boundary map

Lλnδ
n (Padm(C ∪ D, W))

∂−→ L
λ2

nδ

n−1(Pe(W ′)).

Step 7. Remember that Pd(C ∪ D, W) and Padm(C ∪ D, W) are the same topo-
logical space equipped with two different metrics. Considering the following

8As up to increasing e, one can change 2λnδ to λnδ in the right-hand term.
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commutative diagram,

Hn(Pd(C ∪ D, W))
∂

A

Hn−1(Pd(W))

A

L
λnδ
n (Padm(C ∪ D, W))

∂

L
λ2

nδ

n−1(Pe(W ′)),

we obtain ∂ ◦ A(x′) = A ◦ ∂(x′) = A(y′) = ∂(x). In other words, ∂(x −
A(x′)) = 0 in L

λ2
nδ

n−1(Pe(W ′)). Up to replacing x by x − A(x′), we can there-
fore suppose that ∂(x) = 0.
Step 8. Applying part (4) of Theorem B.2 with

L
λnδ
n (Padm(C ∪ D, W))

∂

L
λ2

nδ

n−1(V)

L
λ3

nδ
n (Paem(C, W ′) ∪ V)

⊕ L
λ3

nδ
n (Paem(D, W ′) ∪ V)

j∗
L

λ3
nδ

n (Paem(C ∪ D, W ′))

L
2λ3

nδ
n (Paem(C, W ′))

⊕ L
2λ3

nδ
n (Paem(D, W ′))

j∗
L

2λ3
nδ

n (Paem(C ∪ D, W ′)),

where V is the βλ2
nδ-neighborhood of Pd(W ′) in Padm(C ∪ D, W). The

lower part of the diagram follows from the Lipschitz-homotopy lemma (see
Lemma A.9). Together with (6.3), we deduce the existence of z such that
x = j∗(z), where j∗ is the map defined above.
Step 9. We have Paem(C, W ′) = ⋃

i Paem(Ci,
⋃

j W ′
ij ), where the union over

i is well-separated provided m was chosen large enough. Moreover, since
W ′ ⊂ N2aβλ2

nδ(C ∩ D), we have the following contractive inclusion

Paem

(
Ci,

⋃

j

W ′
ij

)
⊂ Pe(N2aβλ2

n
(Ci)).
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We therefore get a map

L
2λ3

nδ
n (Paem(C, W ′)) →

∏

i

L
2λ3

nδ
n (Pe(N2aβλ2

n
(Ci))).

The similar statement is true for D.
Step 10. By the surjectivity assumption applied to the families C and D, there
exists f = f (a, δ, n, t) such that the range of

L
2λ3

nδ
n (Pe(N2aβλ3

n
(Ci))) → L

2λ3
nδ

n (Pf (N2aβλ3
n
(Ci)))

is contained in the range of

Hn(Pf (N2aβλ3
n
(Ci))) → L

2λ3
nδ

n (Pf (N2aβλ3
n
(Ci))),

and similarly for Di , for all i. Hence there exists z′ in

∏

i

(Hn(Pf (N2aβλ2
n
(Ci))) ⊕ Hn(Pf (N2aβλ2

n
(Di))))

∼= Hn(Pf (N2aβλ2
n
(C))) ⊕ Hn(Pf (N2aβλ2

n
(D)))

such that A(z′) = z where z is identified with its image through the map

∏

i

(L
2λ3

nδ
n (Pf (N2aβλ2

n
(Ci))) ⊕ L

2λ3
nδ

n (Pf (N2aβλ2
n
(Di))))

→ L
2λ3

nδ
n (Pf (N2aβλ2

n
(C))) ⊕ L

2λ3
nδ

n (Pf (N2aβλ3
n
(D))).

Step 11. Finally we use the commutative diagram

Hn(Pf (N2aβλ2
n
(C))) ⊕ Hn(Pf (N2aβλ2

n
(D)))

j∗

A

Hn(Pf (Z))

A

L
2λ3

nδ
n (Pf (N2aβλ2

n
(C))) ⊕ L

2λ3
nδ

n (Pf (N2aβλ2
n
(D)))

j∗
L

2λ3
nδ

n (Pf (Z)),

to get x = j∗(z) = j∗(A(z′)) = A(j∗(z′)), viewed in L
2λ3

nδ
n (Pf (Z)). The first

two equalities following from steps 8 and 10. We have therefore proved that
x is in the range of

Hn(Pf (Z)) → L
2λ3

nδ
n (Pf (Z)),



[Review Copy Only]

Geometric complexity and topological rigidity 347

which is enough to conclude, as up to increasing f , we can replace 2λ3
nδ by

δ in the right-hand term. �
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Appendix A: Variations on the Rips complex

In this appendix, we introduce the relative Rips complex and the scaled (rel-
ative) Rips complex and prove several useful results about their geometry.
These complexes, and the assorted technical results presented here, play a
crucial role in the proofs of Theorems 4.2 and 4.3. The appendix is designed
to be read independently and, in spite of their technical nature, we believe that
the results presented may be useful in other contexts.

The appendix is organized as follows. In the first subsection, we shall intro-
duce the relative Rips complex and the scaled Rips complex. In the second, we
extend the definitions to the setting of metric families, relevant for the proofs
Theorems 4.2 and 4.3. The final subsection contains a collection of lemmas,
also necessary for the proofs of Theorems 4.2 and 4.3. While we shall state
and prove the lemmas in the context of metric spaces they generalize imme-
diately to the context of metric families.

Throughout, 
 is a locally finite metric space with the property that
d(x, y) ≥ 1 for each pair of distinct points x and y ∈ 
. The Rips complex
was defined previously (see Definition 4.1 and the surrounding discussion).

A.1 The relative Rips complex and the scaled Rips complex

In this subsection, we shall introduce the relative Rips complex and the scaled
Rips complex. These play important roles in the proofs of Theorems 4.2 and
4.3, respectively. The purpose of these complexes is to selectively rescale
parts of the ambient space while maintaining the separation between them.

Definition A.1 Let � be a subset of 
. For 1 ≤ a ≤ b we define the relative
Rips complex Pab(
,�) to be the simplicial polyhedron with vertex set 
 and
in which a finite subset {γ0, . . . , γn} spans a simplex if one of the following
conditions hold:

(1) d(γi, γj ) ≤ a for all i and j ;
(2) d(γi, γj ) ≤ b for all i, j , and γi ∈ � for all i.

The relative Rips complex is equipped with the simplicial metric.

If C is a subspace of 
, then Pd(C) is, in a natural way, a subset of Pd(
).
When Pd(C) and Pd(
) are equipped with the simplicial metric, the inclu-
sion Pd(C) ⊂ Pd(
) is contractive. Observe that Pd(C) carries, in addition to
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the simplicial metric, a subspace metric inherited from Pd(
). If C ⊂ 
 and
W ⊂ � we have inclusions of sets

Pa(C) ⊂ Pab(
,�), Pb(W) ⊂ Pab(
,�).

If Pb(W) is equipped with the intrinsic metric the second inclusion is con-
tractive; the analogous statement is generally false if Pb(W) is equipped with
the subspace metric inherited from Pb(
). Similar remarks apply for Pa(C).

Definition A.2 Let W be a subset of the metric space 
. For 1 ≤ a ≤ b and a
sequence of positive integers m = m1, . . . ,mn, . . . , we define the metric space
Pabm(
;W) to be the polyhedron Pb(
) with the metric defined as follows:

(1) each simplex K spanned by a finite subset {γ0, γ1, . . . , γn} of 
 is given
by the (pseudo) Riemannian metric defined inductively on n:
(i) if K is a simplex in Pab(
;W), then the simplex is endowed the

standard simplicial Riemannian metric;
(ii) if K is not a simplex in Pab(
;W) and we have inductively defined

the (pseudo) Riemannian metric gn−1 on its (n−1)-skeleton K(n−1),
then we identify K with the cone

([0,1] × K(n−1))/(0 × K(n−1))

and define a (pseudo) Riemannian metric gn on K by:

gn = m2
ndt2 + t2gn−1

for t ∈ [0,1];
(2) the (pseudo) Riemannian metrics on simplices of Pab(
;W) can be used

to define the length of any piecewise smooth path in the polyhedron. For
any pair of points x and y in Pabm(
;W), d(x, y) is defined to be the
infimum of the lengths of all piecewise smooth paths in Pabm(
;W) con-
necting x and y.

Remark A.3 We shall actually only use the case m = (m,m, . . .) in the proofs
of Theorems 4.2 and 4.3, where we will denote Pabm(
;W) by Pabm(
;W).
We however chose to introduce the more general notion since it will stream-
line the proofs of several results in this appendix.

A.2 Extension of the definitions for metric families

In this subsection, we introduce some further notations in order to deal with
families of subsets of 
 instead of just one subspace at a time. In particular,
we will introduce the Rips complex and the relative Rips complex for metric
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families. We will not treat the case of the scaled Rips complex since it is a
straightforward adaptation of the case of the relative Rips complex.

For a family C = {C} of subspaces of 
 we define

Pd(C) =
⋃

C∈C
Pd(C) ⊂ Pd(
),

which we shall always equip with the subspace metric. Typically, we shall
employ this notation when the family C is disjoint. Note that if the family C
is d-disjoint and C̃ is the union of the C ∈ C then

Pd(C) = Pd(C̃).

If the union of families is defined naively, and the intersection of families is
defined to be the family of intersections C ∩ D = {C ∩ D : C ∈ C,D ∈ D} we
have

Pd(C ∪ D) = Pd(C) ∪ Pd(D), Pd(C ∩ D) = Pd(C) ∩ Pd(D).

Just as for the standard Rips complex, we can extend the definition of the
relative Rips complex to families. For families C = {C} and W = {W } with
each C ⊂ 
 and each W ⊂ � we define

Pab(C, W) =
⋃

C∈C
Pa(C) ∪

⋃

W∈W
Pb(W),

as subspaces of Pab(
,�). If � is not explicitly specified, then � is un-
derstood to be the union of all W in W . In the special case a = b we have
Paa(
,�) = Pa(
) and, more generally Paa(C, W) = Pa(C ∪ W). As for the
standard Rips complex, we have the elementary equalities

Pab(C ∪ D, W) = Pab(C, W) ∪ Pab(D, W),

Pab(C ∩ D, W) = Pab(C, W) ∩ Pab(D, W)

as subspaces of Pab(
,�).

A.3 A few technical results

In this subsection, we prove a several useful results about the geometry of the
(relative) Rips and scaled Rips complex. These results are important tools in
the proofs of Theorems 4.2 and 4.3.

Henceforth, we assume 
 has bounded geometry.
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Lemma A.4 (Comparison lemma) Let a ≥ 1, and let Pa(
) be equipped as
usual with the simplicial metric. For x and y ∈ 
 we have

d
(x, y) ≤ aαdPa(
)(x, y),

for some constant α depending only on the dimension of Pa(
).

The proof of the above lemma is straightforward and is left to the reader.

Lemma A.5 (Comparison lemma for the scaled complex) Let a ≥ 1, and let
C be a subspace of 
. There exists β ≥ 1 depending only on the dimension of
Pa(
) such that for all b ≥ a, there exists M > 0 for which

d
(x,C) ≤ aβd(x,Pb(C)),

for all x ∈ 
, provided mk ≥ M for all k, where the distance for the right-
hand term is taken in Pabm(
,C).

Proof It is enough to show that if γ is a path of length l in Pabm(
,C),
parametrized by its arc length with respect to the (pseudo) riemannian metric,
between x ∈ 
 and Pb(C), then

d
(x,C) ≤ aβl. (A.1)

We proceed by induction on n, the minimal integer such that γ is contained
in the union of Pa(
) and the n-skeleton of Pabm(
,C). Precisely, our in-
duction hypothesis will be the following: for all β > α, where α appears in
the comparison lemma for Pa(
), and every path of length l contained in the
union of Pa(
) and the n-skeleton, there exists M such that (A.1) holds for
all m such that mk ≥ M for all 1 ≤ k ≤ n.

Let us start with the case n = 1. Note that up to replacing γ by a sub-path,
we can always suppose that it does not intersect C at any t < l. We can also
suppose that if γ meets the interior of an edge not belonging to Pa(
), then
this edge is completely contained in γ . Hence traveling along γ means that,
either we stay in Pa(
), or we jump between two points in 
, at distance ≤ b,
through an edge of length m1. Hence choosing M = b, we conclude thanks
to the comparison lemma in Pa(
).

Now let us suppose that n ≥ 2. Fix some β1 > β2 > α and choose an M

such that the induction hypothesis applies for β = β2. We assume moreover
that M ≤ mk ≤ K for all 1 ≤ k ≤ n − 1, where K is some integer. Let us
assume that γ meets at least a simplex � of dimension n which does not
belong to Pa(
). Let u < v be such that γ (t) ∈ � for u ≤ t ≤ v, and γ

meets the boundary of � at u and v. We start with two observations. Let
� = ([0,1] × ∂�)/(0 × ∂�) and let η ∈ (0,1).
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First, note that if γ meets [0,1 − η] × ∂�, then v − u ≥ ηmn. But the
diameter of ∂� is less than ρK , for some ρ depending only on n. Hence we
can replace the portion of γ between u and v by a path contained in ∂�, of
length ≤ ρK ≤ ρK(v − u)/(ηmn).

Second, if γ is contained in [1 − η,1] × ∂�, then observe that the retrac-
tion of [1 − η,1] × ∂� onto ∂� is a (1 − η)−1-Lipschitz map, and hence,
projecting γ to the boundary increases its length by at most (1 −η)−1. Hence
there exists a path γ ′ completely contained in the union of Pa(
) and the
(n − 1)-skeleton whose length l′ satisfies

l′ ≤ (ρK/(ηmn))l + (1 − η)−1l.

Applying the induction hypothesis to γ ′ yields

d
(x,C) ≤ aβ2l
′ ≤ aβ2(ρK/(ηmn) + (1 − η)−1)l.

First fix η such that

β2(1 − η)−1 < β1.

We then take M ′ ≥ M big enough so that

β2(ρK/(ηmn) + (1 − η)−1) ≤ β1

for all mn ≥ M ′. This gives the desired inequality

d
(x,C) ≤ aβ1l,

under the assumption that M ≤ mk ≤ K for 1 ≤ k ≤ n− 1, and mn ≥ M ′. But
since increasing mk can only increase l, this inequality remains true under the
condition that mk ≥ M ′ for all 1 ≤ k ≤ n. �

Next we make the following observation, from which we will immediately
deduce the neighborhood and the separation lemmas below.

Lemma A.6 Let C be a subspace of 
 and let ε ≥ 1 and a ≥ 1. There exists
β ≥ 1 depending only on the dimension of Pa(
) such that the following
statements are true. Viewing Pa(C) as a subspace of Pa(
) we have

Nε(Pa(C)) ∩ 
 ⊂ Naεβ(C),

Similarly for the relative Rips complex, viewing Pb(C) as a subspace of
Pab(
,C) (b ≥ a) we have

Nε(Pb(C)) ∩ 
 ⊂ Naεβ(C).
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Finally, for the scaled complex, viewing Pb(C) as a subspace of Pabm(
,C)

we have

Nε(Pb(C)) ∩ 
 ⊂ Naεβ(C).

provided that m is large enough in sense that mk ≥ M for all k, where M

depends only on b.

The proof of the above lemma is straightforward and is left to the reader.
The following lemma is an easy consequence of the previous and is left to the
reader.

Lemma A.7 (Neighborhood lemma) Let C ⊂ 
, ε ≥ 1 and a ≥ 1. Viewing
Pa(C) ⊂ Pa(
) we have

Nε(Pa(C)) ⊂ Pa(Naεβ(C)),

for some constant β depending only on the dimension of Pa(
). Similarly for
the relative Rips complex, viewing Pb(C) ⊂ Pab(
,C) (b ≥ a) we have

Nε(Pb(C)) ⊂ Pab(Naεβ(C),C).

Lemma A.8 (Separation lemma) Let ε ≥ 1 and a ≥ 1. If the family C of
subsets of 
 is ε-separated, then the family Pa(C) (resp. Pb(C)) is ε(aβ)−1-
separated in Pa(
) (resp. in Pab(
, C) for b ≥ a, and in Pabm(
, C) for b ≥ a

if m is large enough), where β only depends on the dimension of Pa(
).

Proof The first two cases are direct consequences of the neighborhood lemma
above. For the scaled complex, it follows from Lemma A.5. �

Note that the neighborhood lemma does not apply to the scaled Rips com-
plex. Instead, we have the following slightly weaker statement whose proof
is left to the reader.

Lemma A.9 (Lipschitz homotopy lemma) Let C and W be subspaces of the
metric space 
. Let ε ≥ 1 and b ≥ a ≥ 1. Let V be the ε-neighborhood of
Pb(W) in Pabm(
,W), let W ′ be the aβε-neighborhood of W in 
, where
β is the constant appearing in Lemma A.6. Then, for all c ≥ b, there exist
M > 0 and a proper continuous map

F : (Pacm(C,W ′) ∪ V ) × [0,1] → Pacm(C,W ′) ∪ V

such that

(1) F(·, t) is 2-Lipschitz for all t ∈ [0,1], provided that mk ≥ M for all k,
(2) for each t ∈ [0,1], F (·, t) restricts to the identity map on Pacm(C,W ′),
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(3) F(·,0) is the identity map on Pacm(C,W ′) ∪ V , and the image of F(·,1)

lies in Pacm(C,W ′).

Moreover, the constant M depends only on ε and the dimension of Pc(
).

Appendix B: Mayer-Vietoris sequences in bounded K and L-theory

In this section, we recall from [26, 27] the controlled Mayer-Vietoris se-
quences in K and L-theory. These are important tools in our proof of the
bounded Borel conjecture for spaces with finite decomposition complexity.

Theorem B.1 Let X be a metric space, written as the union of closed sub-
spaces X = A ∪ B . There exists a universal constant λ > 1 (independent of
X, A and B) such that for each δ > 0,

(1) in Whδ(A ∩ B)
i∗→ Whδ(A) ⊕ Whδ(B)

j∗→ Whδ(X), we have j∗i∗ = 0;
(2) if Nλδ(A ∩ B) ⊂ W , then the relax-control image of the kernel of j∗ in

Whλ2δ(A ∪ W) ⊕ Whλ2δ(B ∪ W) is contained in the image of i∗ below

Whδ(A) ⊕ Whδ(B)
j∗

Whδ(X),

Whλ2δ(W)
i∗

Whλ2δ(A ∪ W) ⊕ Whλ2δ(B ∪ W)

where Nλδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λδ};
(3) if Nλδ(A ∩ B) ⊂ W , then in

Whδ(A) ⊕ Whδ(B)
j∗→ Whδ(X)

∂→ K̃λδ
0 (W),

we have ∂j∗ = 0;
(4) if Nλδ(A ∩ B) ⊂ W , then the relax-control image of the kernel of ∂ in

Whλ2δ(X) is contained in the image of j∗ below

Whδ(X)
∂

K̃λδ
0 (W)

Whλ2δ(A ∪ W) ⊕ Whλ2δ(B ∪ W)

j∗
Whλ2δ(X);
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(5) if Nλδ(A ∩ B) ⊂ W , then in

Whδ(X)
∂→ K̃λδ

0 (W)
i∗→ K̃λδ

0 (A ∪ W) ⊕ K̃λδ
0 (B ∪ W),

we have i∗∂ = 0;
(6) if Nλδ(A ∩ B) ⊂ W , then the relax-control image of the kernel of i∗ in

K̃λ2δ
0 (W) is contained in the image of ∂

K̃δ
0(A ∩ B)

i∗
K̃δ

0(A) ⊕ K̃δ
0(B).

Whλδ(X)
∂

K̃λ2δ
0 (W)

The precise L-theory version we require is the following result where, for
each metric space Y , each integer n ≥ 0 and δ > 0, Lδ

n(Y ) is the δ-controlled
locally finite and free L-theory of Y [27]. This result is a consequence of
Theorem 7.3 and Proposition 4.6 in [27], Proposition 3.2 and Proposition 3.4
in [26].

Theorem B.2 Let P be a locally compact polyhedron and P ′ a subpolyhe-
dron of P . Assume that P and P ′ are respectively given with metrics d and d ′
satisfying d(x, y) ≤ d ′(x, y) for all x and y in P ′. Let X be a metric subspace
of P ′. Assume that X is written as the union of closed subspaces X = A ∪ B .
For every integer n ≥ 2 there exists λn > 1, which depends only on n, such
that for each δ > 0,

(1) in Lδ
n(A∩B)

i∗→ Lδ
n(A)⊕Lδ

n(B)
j∗→ Lδ

n(X), we have j∗i∗ = 0, where the
metrics on A ∩ B , A, B and X are inherited from the metric of P ′;

(2) if Nλnδ(A ∩ B) ⊆ W ⊆ P and the natural homomorphism from
K̃

λnδ
0 (Nλnδ(A ∩ B)) to K̃

λnδ
0 (W) is zero, then the relax-control image

of the kernel of j∗ in

L
λ2

nδ
n (A ∪ W) ⊕ L

λ2
nδ

n (B ∪ W)

is contained in the image of i∗ below

Lδ
n(A) ⊕ Lδ

n(B)
j∗

Lδ
n(X),

L
λnδ
n (W)

i∗
L

λ2
nδ

n (A ∪ W) ⊕ L
λ2

nδ
n (B ∪ W)
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where Nλnδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λnδ} is given the metric of
P ′, the metrics on A, B and X are inherited from the metric of P ′, and
the metrics on W , A ∪ W and B ∪ W are inherited from the metric of P ;

(3) if Nλnδ(A ∩ B) ⊆ W ⊆ P and the natural homomorphism from
K̃

λnδ
0 (Nλnδ(A ∩ B)) to K̃

λnδ
0 (W) is zero, then in

Lδ
n(A) ⊕ Lδ

n(B)
j∗→ Lδ

n(X)
∂→ L

λnδ
n−1(W),

we have ∂j∗ = 0, where Nλnδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λnδ} is
given the metric of P ′, the metrics on A, B and X are inherited from the
metric of P ′, and the metric on W is inherited from the metric of P ;

(4) if Nλnδ(A ∩ B) ⊆ W ⊆ P and the natural homomorphism from
K̃

λnδ
0 (Nλnδ(A ∩ B)) to K̃

λnδ
0 (W) is zero, then the relax-control image

of the kernel of ∂ in L
λ2

nδ
n (X) is contained in the image of j∗ below

Lδ
n(X)

∂

L
λnδ
n−1(W),

L
λ2

nδ
n (A ∪ W) ⊕ L

λ2
nδ

n (B ∪ W)

j∗
L

λ2
nδ

n (X ∪ W)

where Nλnδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λnδ} is given the metric of
P ′, the metric on X is inherited from the metric of P ′, and the metrics on
W , A ∪ W , B ∪ W and X ∪ W are inherited from the metric of P ;

(5) if Nλnδ(A ∩ B) ⊆ W ⊆ P and the natural homomorphism from
K̃

λnδ
0 (Nλnδ(A ∩ B)) to K̃

λnδ
0 (W) is zero, then in

Lδ
n(X)

∂→ L
λnδ
n−1(W)

i∗→ L
λnδ
n−1(A ∪ W) ⊕ L

λnδ
n−1(B ∪ W),

we have i∗∂ = 0, where Nλnδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λnδ} is
given the metric of P ′, the metric on X is inherited from the metric of P ′,
and the metrics on W , A ∪ W and B ∪ W are inherited from the metric
of P ;

(6) if Nλnδ(A ∩ B) ⊆ W ⊆ P and the natural homomorphism from
K̃

λnδ
0 (Nλnδ(A ∩ B)) to K̃

λnδ
0 (W) is zero, then the relax-control image
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of the kernel of i∗ in L
λ2

nδ

n−1(W) is contained in the image of ∂

Lδ
n−1(A ∩ B)

i∗
Lδ

n−1(A) ⊕ Lδ
n−1(B)

L
λnδ
n (X)

∂

L
λ2

nδ

n−1(W)

where Nλnδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λnδ} is given the metric of
P ′, the metrics on X, A ∩ B , A and B are inherited from the metric of
P ′, and the metric on W is inherited from the metric of P .

References

1. Alperin, R., Shalen, P.: Linear groups of finite cohomological dimension. Invent. Math.
66(1), 89–98 (1982)

2. Bartels, A.: Squeezing and higher algebraic K-theory. K-Theory 28(1), 19–37 (2003)
3. Bartels, A., Lück, W.: The Borel conjecture for hyperbolic and CAT(0)-groups.

arXiv:0901.0442v1 (2009)
4. Bell, G., Dranishnikov, A.: A Hurewicz-type theorem for asymptotic dimension and ap-

plications to geometric group theory. arXiv:math.GR/0407431 (2004)
5. Bartels, A., Rosenthal, D.: On the K-theory of groups with finite asymptotic dimension.

J. Reine Angew. Math. 612, 35–57 (2007)
6. Carlsson, G., Goldfarb, B.: The integral K-theoretic Novikov conjecture for groups with

finite asymptotic dimension. Invent. Math. 157(2), 405–418 (2004)
7. Carlsson, G., Pedersen, E.: Controlled algebra and the Novikov conjectures for K- and

L-theory. Topology 34(3), 731–758 (1995)
8. Chang, S., Ferry, S., Yu, G.: Bounded rigidity of manifolds and asymptotic dimension

growth. K-Theory 1(1), 129–144 (2008)
9. Davis, M.: Groups generated by reflections and aspherical manifolds not covered by Eu-

clidean space. Ann. Math. (2) 117(2), 293–324 (1983)
10. Dranishnikov, A., Ferry, S., Weinberger, S.: Large Riemannian manifolds which are flex-

ible. Ann. Math. (2) 157(3), 919–938 (2003)
11. Dranishnikov, A., Smith, J.: Asymptotic dimension of discrete groups. Fundam. Math.

189(1), 27–34 (2006)
12. Farrell, F.T., Hsiang, W.C.: On Novikov’s conjecture for nonpositively curved manifolds.

Ann. Math. (2) 113(1), 199–209 (1981)
13. Farrell, T., Jones, L.: A topological analogue of Mostow’s rigidity theorem. J. Am. Math.

Soc. 2(2), 257–370 (1989)
14. Farrell, T., Jones, L.: Classical Aspherical Manifolds. CBMS Regional Conference Series

in Mathematics, vol. 75, Am. Math. Soc., Providence (1990). Published for the Conference
Board of the Mathematical Sciences, Washington, DC

15. Farrell, T., Jones, L.: Topological rigidity for compact non-positively curved manifolds.
In: Differential Geometry: Riemannian Geometry, Los Angeles, CA, 1990. Proc. Sympos.
Pure Math., Part 3, vol. 54, pp. 229–274. Am. Math. Soc., Providence (1993)

16. Farrell, T., Jones, L.: Rigidity for aspherical manifolds with π1 ⊂ GLm(R). Asian J. Math.
2(2), 215–262 (1998)

http://arxiv.org/abs/arXiv:0901.0442v1
http://arxiv.org/abs/arXiv:math.GR/0407431


[Review Copy Only]

Geometric complexity and topological rigidity 357

17. Ferry, S., Pedersen, E.: Epsilon surgery theory. In: Novikov Conjectures, Index Theorems
and Rigidity, vol. 2, Oberwolfach, 1993. London Math. Soc. Lecture Note Ser., vol. 227,
pp. 167–226. Cambridge Univ. Press, Cambridge (1995)

18. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2,
Sussex, 1991. London Math. Soc. Lecture Note Ser., vol. 182, pp. 1–295. Cambridge Univ.
Press, Cambridge (1993)

19. Guentner, E., Higson, N., Weinberger, S.: The Novikov conjecture for linear groups. Publ.
Math. Inst. Hautes Études Sci. 101, 243–268 (2005)

20. Guentner, E., Tessera, R., Yu, G.: Discrete groups with finite decomposition complexity.
Groups Geom. Dyn., in press

21. Higson, N., Roe, J.: On the coarse Baum-Connes conjecture. In: Novikov Conjectures,
Index Theorems and Rigidity, vol. 2, Oberwolfach, 1993. London Math. Soc. Lect. Note
Ser., vol. 227, pp. 227–254. Cambridge Univ. Press, Cambridge (1995)

22. Ji, L.: The integral Novikov conjectures for linear groups containing torsion elements.
J. Topol. 1(2), 306–316 (2008)

23. Kirby, R., Siebenmann, L.: Foundational Essays on Topological Manifolds, Smooth-
ings, and Triangulations. Annals of Mathematics Studies, vol. 88, Princeton University
Press/University of Tokyo Press, Princeton/Tokyo (1977). With notes by John Milnor and
Michael Atiyah

24. Lang, S.: Algebra. Addison-Wesley, Reading (1965)
25. Matsnev, D.: The Baum-Connes conjecture and proper group actions on affine buildings.

math.GT/0703923
26. Ranicki, A., Yamasaki, M.: Controlled K-theory. Topol. Appl. 61(1), 1–59 (1995)
27. Ranicki, A., Yamasaki, M.: Controlled L-theory. In: Exotic Homology Manifolds, Ober-

wolfach, 2003. Geom. Topol. Monogr., vol. 9, pp. 105–153 (2006)
28. Yu, G.: The Novikov conjecture for groups with finite asymptotic dimension. Ann. Math.

(2) 147(2), 325–355 (1998)

http://arxiv.org/abs/math.GT/0703923

	A notion of geometric complexity and its application to topological rigidity
	Introduction
	Topological rigidity
	Groups with finite decomposition complexity

	Decomposition complexity
	Definition of FDC
	Equivalent formulations of FDC

	Linear groups have FDC
	Preliminaries on fields
	The general linear group
	Finite decomposition complexity

	Decomposition complexity and topological rigidity
	Two main results
	The bounded category
	Application to bounded rigidity
	Application to stable rigidity

	Vanishing theorem
	Assembly isomorphism
	Acknowledgements
	Appendix A: Variations on the Rips complex
	The relative Rips complex and the scaled Rips complex
	Extension of the definitions for metric families
	A few technical results

	Appendix B: Mayer-Vietoris sequences in bounded K and L-theory
	References


