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Abstract. In [GTY] we introduced a geometric invariant, called finite decomposition com-
plexity (FDC), to study topological rigidity of manifolds. In that article we proved the sta-
ble Borel conjecture for a closed aspherical manifold whose universal cover, or equivalently
whose fundamental group, has FDC. In this note we continue our study of FDC, focusing on
permanence and the relation to other coarse geometric properties. In particular, we prove
that the class of FDC groups is closed under taking subgroups, extensions, free amalgamated
products, HNN extensions, and direct unions. As consequences we obtain further examples
of FDC groups – all elementary amenable groups and all countable subgroups of almost
connected Lie groups have FDC.

1. Introduction

The geometric concept of finite decomposition complexity (FDC) was introduced to study
questions concerning the topological rigidity of manifolds [GTY]. Being a coarse geometric
property, FDC naturally arises in the following context at the border of large-scale geometry
and topology. The Bouded Borel Conjecture asks the following: Is a quasi-isometry between
uniformly contractible Riemannian manifolds necessarily a bounded distance from a homeo-
morphism? In dimensions higher than four, the powerful tools of surgery theory reduce this
problem to proving the bounded Farrell-Jones Isomorphism Conjecture – a coarse geometric
analogue of the usual Farrell-Jones Conjecture – which asserts that a certain assembly map
in bounded L-theory is an isomorphism. We defined FDC for the purpose of developing
a large scale cutting and pasting method to attack these conjectures with the help of the
controlled Mayer-Vietoris sequence of Ranicki-Yamasaki [RY1, RY2]. Using these techniques
we prove in [GTY] that if the fundamental group of a closed aspherical1 manifold has finite
decomposition complexity, then its universal cover is boundedly rigid, that is, satisfies the
Bounded Borel Conjecture, and the manifold itself is stably rigid.

Here, we shall focus on the FDC property itself, rather than on applications. We shall work
primarily in the setting of countable groups, equipped with proper left-invariant metrics.
Recall that every countable group admits such a metric, and that any two such metrics are
coarsely equivalent. As finite decomposition complexity is a coarse invariant, the statement
that a countable group has finite decomposition complexity is independent of the choice of
metric. Our permanence results are summarized in the following theorem.
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1Recall that the universal cover of a closed aspherical manifold is uniformly contractible.
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Theorem. The collection of countable groups having finite decomposition complexity is
closed under the formation of subgroups, extensions, free amalgamated products, HNN ex-
tensions and direct unions.

The precise definition of FDC is inspired by the property of finite asymptotic dimension
introduced by Gromov [G1] and it is interesting to note that the class of groups having
finite asymptotic dimension satisfies the same stability results as above [BD2, DS] except for
direct unions. Indeed, an infinite sum of copies of Z has FDC whereas it does not have finite
asymptotic dimension.

For the next statement, recall that a Lie group is almost connected if it has finitely many
connected components.

Theorem. The collection of countable groups having finite decomposition complexity con-
tains all countable subgroups of GL(n,R), where R is any commutative ring, all count-
able subgroups of an almost connected Lie group, all hyperbolic groups and all elementary
amenable groups.

At the moment, we know of no group not having finite decomposition complexity other
than Gromov’s examples of (random) groups which do not coarsely embed into a Hilbert
space [G2, G3, AD]. Since these groups do not coarsely embed into Hilbert space they do
not have Property A and hence, according to the following result, do not have FDC:

Theorem. Countable FDC groups have Property A.

On the other hand:

Theorem. Countable groups with finite asymptotic dimension have FDC.

Hence, finite decomposition complexity appears as a generalization of finite asymptotic
dimension. Let us emphasize that in general, solvable groups, or linear groups may have
infinite asymptotic dimension.

Organization and remarks. We introduce finite decomposition complexity in Section 2
and outline its basic properties. This section overlaps with Section 2 of [GTY]. In the
subsequent section we develop the permanence characteristics of finite decomposition com-
plexity. In Section 4 we show that a metric space having finite asymptotic dimension has
finite decomposition complexity. In particular hyperbolic groups have FDC. We then show
that finite decomposition complexity implies Property A. As a consequence, a sequence of
expanding graphs (viewed as a metric space) does not have finite decomposition complexity.

Section 5 is devoted to examples. We first prove that all (countable) elementary amenable
groups have finite decomposition complexity. In the balance of the section we provide comple-
ments to [GTY, Theorem 3.0.1], in which we proved that (countable) subgroups of GL(n,R)
have finite decomposition complexity, when R is a domain. Here, we extend this result to
the case of an arbitrary commutative ring R with unit. We also provide, for convenience
of the reader, a short and self-contained proof in the special case R = Z[X1, . . . , Xm] and a
proof that GL(n,R) has finite asymtotic dimension when R = Fq[X1, . . . , Xm].
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2. Decomposition complexity

As described in the introduction, finite decomposition complexity arises as a generalization
of the notion of finite asyptotic dimension, introduced by Gromov [G1]. Recall that a metric
space X has asymptotic dimension at most d if the following condition holds: for every r > 0
the space X may be written as a union of d + 1 subspaces, each of which may be further
decomposed as an r-disjoint union:

(2.1) X =
d⋃
i=0

Xi, Xi =
⊔

r−disjoint

Xij,

in which the family {Xij } (as both i and j vary) is bounded.2 It is frequently useful to
think of the integers 0, 1, . . . , d as representing colors and as the space X as having been
covered by colored sets, any two sets of the same color being at a distance at most r. If there
exists a d ∈ N for which X has asymptotic dimension at most d then X has finite asymptotic
dimension.

Consider now the group G = ⊕Z (countably infinite direct sum). We equip G with the
left-invariant metric associated to the proper length function

`(a) =
∑

n|an|, where a = (an)∞n=1.

The group G contains Zn as a subgroup, for every n. Since the asymptotic dimension of Zn

is n, it is elementary to see that G does not have finite asymptotic dimension. Nevertheless,
we can still decompose G into bounded pieces in a manner similar to (2.1), but in a two step
process . First, we set d1 = 0; given r1 ∈ N we decompose as

(2.2) G = G0, G0 =
⊔

r1−disjoint

x · Zr1 ;

the disjoint union is as cosets of the subgroup Zr1 ⊂ G consisting of those elements supported
on the first r1 coordinates. Second, we set d2 = r1; given r2 ∈ N we decompose, using the
fact that the asymptotic dimension of Zr1 is (at most) r1, as

Zr1 =

d2⋃
i=0

Xi, Xi =
⊔

r2−disjoint

Xij.

Observe that since we use a left-invariant metric, decomposing the single space Zr1 gives a
decomposition as in (2.1) of every coset x · Zr1 appearing in (2.2) with a uniform bound on
the size of the pieces. What is important here is that our success in decomposing G is not
affected by the amount of disjointness r1 and r2 required at each step. Essentially, we have
described here a simple case of the metric decomposition game which motivates the definition
of (weak) finite decomposition complexity. We shall now proceed to the formal definitions,

2Here, and subsequently, when Z is a metric space the notation Z = tZj (r-disjoint) means that Z is the
union of the Zj , and that the distance in Z between distinct Zj ’s is at least r.
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focusing on finite decomposition complexity – we shall conclude with a brief discussion of
weak FDC.

2.1. Definition of FDC. As is clear from the previous discussion, it is advantageous to
formulate our definitions not for individual metric spaces but for (countable) families of
metric spaces – such families appear naturally in the process of decomposing a space. We
shall denote such a metric family by X = {X } and shall view a single metric space as a
metric family with a single element.

In defining finite decomposition complexity we shall consider decompositions very much
like those appearing in the definition of finite asymptotic dimension (2.1); however, for
technical reasons related to the applications in [GTY], we shall require d = 1 in (2.1).3 The
following basic definitions appear in [GTY] as Definitions 2.0.1, 2.0.2 and 2.0.3.

2.1.1. Definition. An r-decomposition of a metric space X over a metric family Y is a
decomposition

X = X0 ∪X1, Xi =
⊔

r−disjoint

Xij,

where each Xij ∈ Y . A metric family X is r-decomposable over Y if every member of X
admits an r-decomposition over Y . We introduce the notation X r−→ Y to indicate that X
is r-decomposable over Y .

2.1.2. Definition. Let A be a collection of metric families. A metric family X is decomposable
over A if, for every r > 0, there exists a metric family Y ∈ A and an r-decomposition of
X over Y . The collection A is stable under decomposition if every metric family which
decomposes over A actually belongs to A.

A metric family Z is bounded if there is a uniform bound on the diameter of its elements:

sup{ diam(Z) : Z ∈ Z } <∞.
2.1.3. Definition. The collection D of metric families with finite decomposition complexity
is the minimal collection of metric families containing the bounded metric families and stable
under decomposition. We abbreviate membership in D by saying that a metric family in D
has FDC.

Observe that the definitions immediately imply that a metric space with asymptotic di-
mension at most one has FDC – further, metric families with asymptotic dimension at most
one uniformly in the sense of Bell and Dranishnikov [BD1] have FDC. The question of
whether metric spaces of finite asymptotic dimension have FDC is more subtle and will be
taken up later.

3At this point the reader may wish to ‘replay’ the decomposition game for ⊕Z using only decompositions
in which d = 1.
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2.2. Equivalent formulations of FDC. We have chosen the most direct route to our
definition of FDC. We shall now present two equivalent descriptions of the collection of
families having FDC which we require. The first of our equivalent descriptions is based on
the following definition, repeated here from [GTY, Section 2].

2.2.1. Definition. We define, for each ordinal α, a collection of metric families according to
the following prescription:

(1) Let D0 be the collection of bounded families:

D0 = {X : X is bounded }.
(2) If α is an ordinal greater than 0, let Dα be the collection of metric families

decomposable over ∪β<αDβ:

Dα = {X : ∀ r ∃ β < α ∃Y ∈ Dβ such that X r−→ Y }.
We introduce the notation Dfin for the union of the Dn, over n ∈ N.

It is instructive to return to the example of ⊕Z in the context of these definitions. As is
the case for any metric space having asymptotic dimension at most one, Z ∈ D1. A simple
induction reveals that Zn ∈ Dn and looking at the definitions we see that ⊕Z ∈ Dω.

2.2.2. Theorem. A metric family has finite decomposition complexity precisely when it be-
longs to Dα for some countable ordinal α.

Our second equivalent description of the collection of families having FDC is based on the
idea of a winning strategy for the metric decomposition game. Understanding this description
is important for understanding the proofs of the permanence results we shall present below.
As a consequence we shall go carefully into the details.

The metric decomposition game has two players, a defender and a challenger. The defender
attempts to decompose metric families (as in Definition 2.1.1) in response to requests from
the challenger for (presumably large) amounts of disjointness. More formally, let X = Y0 be
the starting family. On the first turn the challenger asserts an integer r1, thereby requesting
an r1-decomposition of Y0; the defender responds by exhibiting an r1-decomposition of Y0

over a new metric family Y1. On the second turn, the challenger asserts an integer r2,
thereby requesting an r2-decomposition of Y1; the defender responds by exhibiting an r2-
decomposition of Y1 over a new metric family Y2. The game continues in this way, turn
after turn, and ends if and when the defender produces a bounded family. In this case the
defender has won.

A winning strategy is a set of instructions which, if followed by the defender, guarantee
victory no matter what requests are made by the challenger . A complete game in which the
defender follows the winning strategy produces a series of decompositions:

(2.3) X = Y0
r1 // Y1

r2 // Y2
// . . .Yn−1

rn // Yn, Yn bounded.

When the defender follows a winning strategy the eventual outcome of the game is certain.
Nevertheless, the number of turns required may not be known and may depend on the requests
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made by the challenger . Indeed, the required number of turns may be unbounded, as is
already the case for the winning strategy inherent in the discussion of our example ⊕Z.

A winning strategy may or may not exist; when it does, we say that the original metric
family X admits a decomposition strategy . We have arrived at our second description of
FDC.4

2.2.3. Theorem. A metric family has finite decomposition complexity precisely when it ad-
mits a decomposition strategy.

We shall work directly with decomposition strategies in the proof of this theorem, as well as
in the proofs of some of our permanece properties, and so provide their precise mathematical
formuation. The idea is to encode the turns of possible decomposition games as a labeled
tree – each turn of a possible game corresponds to a vertex; the metric family relevant to a
particular turn labels the corresponding vertex; from each vertex emanate edges labeled with
the possible requests of the challenger and the defender responds by following the appropriate
edge.

Formally, aa decomposition tree is a directed, rooted tree T satisfying the following:

(1) every non-root vertex of T is the terminal vertex of a unique edge;
(2) every non-leaf vertex of T is the initial vertex of countably many edges, which

are labeled by the natural numbers;
(3) T contains no infinite ray (geodesic edge-path).

A decomposition strategy for a metric family X comprises a decomposition tree T , the support
tree of the strategy, together with a labeling of the vertices of T by metric families Y subject
to the following requirements:

(4) the root vertex of T is labeled X ;
(5) every leaf of T is labeled by a bounded family;
(6) if Y labels the initial vertex and Z the terminal vertex of an edge labeled by

r ∈ N then Y is r-decomposable over Z.

Games in which the defender follows the winning strategy correspond to paths in T beginning
at its root and ending at a leaf. For example, if the edges along the path are labeled r1, . . . , rn
and the vertices are labeled X , Y1, . . . ,Yn we obtain the series of decompositions in (2.3).

Again, we illustrate these ideas in the context of our example ⊕Z. It will be convenient
to denote the interval { 0, 1, . . . , r } ⊂ Z by [r]. Further, we shall denote a metric family in
which all spaces are isometric to a single space by that space.

Tiling Z with translates of the interval [r], and coloring the translates alternately red
and blue gives an r-decomposition of Z over a bounded family. The diagram on the left in
Figure 1 expresses this as a decomposition strategy. A strategy for Z2 is obtained by first
applying the strategy for Z in one factor, and then in the other. The decomposition game
ends after two turns, with Z2 being decomposed into translates of the product [r2]× [r1] of
intervals. This strategy is depicted in the middle diagram in Figure 1. Continuing in this

4Taken together, Theorems 2.2.2 and 2.2.3 form Theorem 2.2.1 of [GTY].
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way, we obtain a strategy for Zn in which the defender wins in n turns, no matter how the
challenger plays. Paths in this strategy beginning with Zn and ending in a bounded family
have the form

Zn
r1 // Zn−1 × [r1]

r2 // Zn−2 × [r2]× [r1] // . . . rn // [rn]× · · · × [r1].

Finally, we build a strategy for ⊕Z as follows. Begin with the diagram on the right in
Figure 1, which represents the decomposition of ⊕Z into cosets for the various Zr described
earlier. Then, to each leaf attach the strategy for the appropriate Zr. Observe that in this
strategy the number of turns required for the defender to win is unbounded, and depends
on the first request of the challenger.

Z

⊕Z

Z2

Z3

Z

[1]

[2][3]

Z2

Z× [1]

Z× [2]

Z× [3]
[1]× [1]

[1]× [2]
[2]× [2]

[2]× [1]

Figure 1. Strategies for Z, Z2 and ⊕Z

We turn to the proofs of Theorems 2.2.2 and 2.2.3. We require the following lemma.

2.2.4. Lemma. Let T be a decomposition tree. There exists a function v 7→ αv from the set
of vertices of T to a set of countable ordinal numbers with the properties that αv = 0 if v is
a leaf and

αv = sup
w<v
{αw + 1 }

otherwise.

Proof. Observe that, by virtue of the no-infinite-ray assumption, a decomposition tree has
leaves. Define, for each countable ordinal α, a subset Lα of the vertex set of T by transfinite
recursion: L0 is the set of leaves of T ; for α > 0,

Lα = the set of leave of T \ ∪β<αLβ,
if this set is nonempty, and Lα = ∅ otherwise. Note that, if it is non-empty, the set T \∪β<αLβ
is again a decomposition tree, and therefore has leaves.

Let α0 = {α : Lα 6= ∅ } and let L = {Lα, α < α0}. Clearly, L is a partition of the set of
vertices of T , and the map α 7→ Lα : α0 → L is a bijection. It follows that α0 is countable.
Finally, for every vertex v, let αv be the unique α such that v ∈ Lα. It is not difficult to see
that αv satisfies the desired properties. �
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Proof of Theorems 2.2.2 and 2.2.3. For purposes of the proof let D′ be collection of families
admitting a decomposition strategy; let D′′ be the collection of families belonging to Dα for
some countable ordinal α. We must show D′′ = D′ = D.

A simple transfinite induction shows that Dα ⊂ D for every ordinal α. Thus, D′′ ⊂ D.
Next, we show that D ⊂ D′. Since a bounded family trivially admits a decomposition

strategy, it suffices to show that the collection D′ is closed under decomposability. Let X
be a family decomposable over D′. For every r ∈ N, obtain a family Yr ∈ D′ such that X is
r-decomposable over Yr. A decomposition strategy for X is obtained by attaching strategies
for the Yr to the bottom of an ‘infinite caret’ whose root vertex is labeled X and whose edges
are labeled by N as shown in Figure 2.

X

Y1

Y2

Figure 2. Concatenating strategies

Finally, we show that D′ ⊂ D′′. Let X ∈ D′. Let T be the support tree of a decomposition
strategy for X ; denote the label of a vertex v by Yv and let v 7→ αv be a function with the
properties outlined in Lemma 2.2.4. It suffices to show that for every ordinal α we have: if
αv ≤ α then Yv ∈ Dα. This follows easily by transfinite induction. �

2.2.5. Remark. At the outset of this project, we defined a property weaker than FDC which
is more transparently related to finite asymptotic dimension, introduced by Gromov [G1].
The difference between this property – weak finite decomposition complexity – and the one
defined here lies in the type of decomposition – we replace r-decomposability by the notion
of (d, r)-decomposability.

A metric family X is (d, r)-decomposable over a metric family Y if every X ∈ X admits a
decomposition

X = X0 ∪ . . . ∪Xd, Xi =
⊔

r−disjoint

Xij,

where each Xij ∈ Y . The metric family X weakly decomposes over the collection A of metric
families, if there exists a d ∈ N such that for every r > 0, there exists Y ∈ A and a (d, r)-
decomposition of X over Y . The collection of metric families with weak finite decomposition



DISCRETE GROUPS WITH FINITE DECOMPOSITION COMPLEXITY 9

complexity is the smallest collection containing bounded metric families, and stable under
weak decomposition.

Clearly, both FDC and finite asymptotic dimension (uniformly in the sense of Bell and
Dranishnikov [BD1]) imply weak FDC. While true that finite asymptotic dimension implies
FDC itself, this is already difficult. (See Theorem 4.1 below.)

2.2.6. Question. Are finite and weak finite decomposition complexity equivalent?

3. Permanence of FDC

In this section we shall study the permanence characteristics of finite decomposition com-
plexity. While we shall focus on finite decomposition complexity, all permanence results hold
for weak finite decomposition complexity as well.

We begin by recalling some elementary concepts from coarse geometry. Let X and Y
be metric families. A subspace of the family Y is a family Z, every element of which is a
subspace of some element of Y . A map of families from X to Y is a collection of functions
F = { f }, each mapping some X ∈ X to some Y ∈ Y and such that every X ∈ X is the
domain of at least one f ∈ F . We use the notation F : X → Y and, when confusion could
occur, write f : Xf → Yf to refer to an individual function in F . The inverse image of the
subspace Z is the collection

F−1(Z) = { f−1(Z) : Z ∈ Z, f ∈ F }.
The inverse image is a subspace of X .

A map of families F : X → Y is uniformly expansive if there exists a non-decreasing
function ρ : [0,∞)→ [0,∞) such that for every f ∈ F and every x, y ∈ Xf

(3.1) d(f(x), f(y)) ≤ ρ(d(x, y));

it is effectively proper if there exists a proper non-decreasing function δ : [0,∞) → [0,∞)
such that for every f ∈ F and every x, y ∈ Xf

(3.2) δ(d(x, y)) ≤ d(f(x), f(y));

it is a coarse embedding if it is both uniformly expansive and effectively proper. (In this
case, if X is unbounded then ρ is also proper.) Summarizing, a map of families F is a coarse
embedding if the individual f are coarse embeddings admitting a common δ and ρ. Similar
remarks apply to uniformly expansive and effectively proper maps.

Recall that a coarse embedding f : X → Y of metric spaces is a coarse equivalence if it
admits an ‘inverse’ – a coarse embedding g : Y → X for which the compositions f ◦ g and
g ◦ f are close to the identity maps on X and Y , respectively:

(3.3) there exists C > 0 such that d(x, gf(x)) ≤ C and d(y, gf(y)) ≤ C,

for all x ∈ X and y ∈ Y . So motivated, a coarse embedding F : X → Y of metric families is
a coarse equivalence if each f ∈ F is a coarse equivalence admitting an inverse g satisfying
the following two conditions: first, the collection G = { g } is a coarse embedding Y → X of
metric families; second, the composites f ◦ g and g ◦ f are uniformly close to the identity
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maps on the spaces comprising X and Y , in the sense that the constant C in (3.3) may be
chosen independently of the spaces X ∈ X and Y ∈ Y . Two metric families X and Y are
coarsely equivalent if there exists a coarse equivalence X → Y . Coarse equivalence is an
equivalence relation.

3.1. Permanence for spaces. The primitive permanence properties for metric families are
Coarse Invariance, the Fibering and Union Theorems. We shall prove these in this section.

3.1.1. Lemma. Let X and Y be metric families and let F : X → Y be a uniformly expansive
map. For every r > 0 there exists an s > 0 such that if Z and Z ′ are subspaces of Y and
Z ′ s−→ Z then F−1(Z ′) r−→ F−1(Z). Further, s depends only on r and on the non-decreasing
function ρ satisfying (3.1).

Proof. Assuming F is uniformly expansive let ρ be such that (3.1) holds. Set s = ρ(r) and

assume Z ′ s−→ Z. An element of F−1(Z ′) has the form f−1(Z) for some Z ∈ Z ′ and f ∈ F .
Given such an element obtain a decomposition

Z = Z0 ∪ Z1, Zi =
⊔

s−disjoint

Zij,

in which the Zij ∈ Z. We then have a decomposition

f−1(Z) = f−1(Z0) ∪ f−1(Z1), f−1(Zi) =
⋃

f−1(Zij),

in which the f−1(Zij) ∈ F−1(Z). From the definition of s we see immediately that the union
on the right is r-disjoint. �

3.1.2. Lemma. Let X and Y be metric families and let F : X → Y be an effectively proper
map. If Z is a bounded subspace of Y then F−1(Z) is a bounded subspace of X .

Proof. Assuming F is effectively proper let δ be such that (3.2) holds. Let B bound the
diameter of the metric spaces in the family Z. Using the hypothesis that δ is proper, let A
be such that δ(A) ≥ B. Then F−1(Z) is bounded by A. �

3.1.3. Coarse Invariance. Let X and Y be metric families. If there is a coarse embedding
from X to Y and Y has finite decomposition complexity, then so does X . In particular:

(1) a subspace of a metric family with FDC itself has FDC;
(2) if X and Y are coarsely equivalent, then X has FDC if and only if Y does.

Proof. By pruning and relabeling we can pull back a decomposition strategy for Y to X .
Precisely, select an increasing sequence of natural numbers s1, s2, . . . such that si ≥ i. Prune
T by removing a vertex v, together with the entire ‘downward’ subtree based at v and the
unique upward edge incident at v, when this upward edge is labeled by an element of N\{ si }.
The resulting graph T ′ is a subtree of T and a vertex of T ′ is a leaf of T ′ exactly when it is
a leaf of T . Relabel a typical edge as shown in Figure 3. It follows from Lemmas 3.1.1 and
3.1.2 that the labeling requirements for a decomposition strategy are fulfilled. �
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Z

Z ′

F−1(Z)

F−1(Z ′)

Figure 3. Relabeling

3.1.4. Fibering Theorem. Let X and Y be metric families and let F : X → Y be a
uniformly expansive map. Assume Y has finite decomposition complexity, and that for every
bounded subspace Z of Y the inverse image F−1(Z) has finite decomposition complexity.
Then X has finite decomposition complexity.

Proof. A decomposition strategy for Y pulls back, as in the previous proof, to a partial
decomposition strategy for X . It is partial in that the leaves of its support tree are labeled
by families which are not (necessarily) bounded but rather are the inverse images of bounded
subspaces of Y . We complete the partial strategy by attaching to a leaf labeled by F−1(Z)
a strategy for this family. �

3.1.5. Remark. Directly from the definitions we see that X ∈ Dn precisely when X admits
a decomposition strategy in which the strategy tree has depth not greater than n, meaning
that the length of a geodesic emanating from the root vertex is at most n. In the notation
of the Fibering Theorem, the previous proof shows the following: suppose that Y ∈ Dn and
that there exists a natural number m such that F−1(Z) ∈ Dm for every bounded subspace
Z of Y ; then X ∈ Dn+m.

3.1.6. Remark. Continuing in the spirit of the previous remark, suppose that Y ∈ Dfin and
that F−1(Z) ∈ Dfin for every bounded subspace Z of Y . Then X ∈ Dω+fin, meaning that for
some natural number n we have X ∈ Dω+n. The distinction between this remark and the
previous is that here we assume merely that each F−1(Z) ∈ Dm for some natural number
m, which may depend on Z.

3.1.7. Finite Union Theorem. Let X be a metric space, expressed as a union of finitely
many metric subspaces X = ∪ni=0Xi. If the metric family {Xi } has finite decomposition
complexity so does X.

Proof. Consider first the case n = 2, illustrated in Figure 4. For every r > 0, the metric
space X = X1 ∪ X2 is r-decomposable over the family {X1, X2 } ∈ D. Thus X ∈ D. The
general case follows by induction. �

3.1.8. Union Theorem. Let X be a metric space, expressed as a union of metric subspaces
X = ∪i∈IXi. Suppose that the metric family {Xi } has finite decomposition complexity and
that for every r > 0 there exists a metric subspace Y (r) ⊂ X having finite decomposition
complexity and such that the subspaces Zi(r) = Xi \ Y (r) are pairwise r-disjoint. Then X
has finite decomposition complexity.
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Proof. To conclude that X has finite decomposition complexity, it suffices to show that X is
decomposable over D. The proof of this is illustrated in Figure 5. Formally, for every r > 0
let Y (r) and Zi(r) be as in the statement. The decomposition

X = Y (r)
⋃

Z(r), Z(r) =
⊔

r−disjoint

Zi(r)

is a r-decomposition of X over the family Yr = {Y (r) } ∪ {Zi(r) : i ∈ I }. Since the Zi(r)
are subspaces of the Xi and the family {Xi } has finite decomposition complexity, the family
{Zi(r) : i ∈ I } does as well; since Y (r) has finite decomposition complexity, the family Yr
does as well. �

X

{X1, X2 }

{X1, X2 }

Figure 4. A finite union

Y1

Y2

X

Figure 5. A union

3.1.9. Remark. While we could state union theorems in the context of metric families
(instead of single metric spaces) we shall not require this level of generality.

3.2. Permanence for groups. Most (though not all) permanence properties for discrete
groups are deduced by allowing the group to act on an appropriate metric space, and applying
the permanence results for spaces detailed in the previous section.

Let G be a countable discrete group. Recall that a countable discrete group admits a
proper length function ` and that any two metrics defined from proper length functions by
the formula

d(s, t) = `(s−1t)

are coarsely equivalent (in fact, the identity map is a coarse equivalence). As a consequence,
a coarsely invariant property of metric spaces is a property of countable discrete groups –
whether or not a group has the property is not an artifact of the particular metric chosen.
Consequently, we say that a discrete group has finite decomposition complexity if its under-
lying metric space has finite decomposition complexity for some (equivalently every) metric
defined as above.
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3.2.1. Proposition. A countable direct union of groups with finite decomposition complex-
ity has finite decomposition complexity. Equivalently, a countable discrete group has finite
decomposition complexity if and only if every finitely generated subgroup does.

Proof. Let G be a countable discrete group, expressed as the union of a collection of sub-
groups each of which has finite decomposition complexity: G = ∪Gi. Equip G with a proper
length function and associated metric. We shall show that for every r > 0 (the metric space)
G is r-decomposable over a metric family with finite decomposition complexity.

Let r > 0. Since the ball of radius r centered at the identity in G is finite there exists
i = i(r) such that this ball is contained in Gi. It follows that the decomposition of G
into the cosets of Gi is r-disjoint. Further, the family comprised of these cosets has finite
decomposition complexity since each coset is isometric to Gi, which has finite decomposition
complexity (in any proper metric so in the subspace metric) by assumption. �

Let now X be a metric space, and suppose that G acts (by isometries) on X. For R > 0
the R-coarse stabilizer of x is

Stab(x,R) = { g ∈ G : d(x, g · x) < R }.
In general an R-coarse stabilizer is a subset of G. The 0-coarse stabilizer of x is its stabilizer,
a subgroup of G. The space X is locally finite if every ball is finite.

3.2.2. Lemma. For every x ∈ X the orbit map g 7→ g ·x : G→ X is uniformly expansive. �

3.2.3. Proposition. Let G be a countable discrete group acting on a metric space X with
finite decomposition complexity. If there exists x0 ∈ X such that for every R > 0 the R-
coarse stabilizer of x0 has finite decomposition complexity then G has finite decomposition
complexity.

Proof. By restricting to the orbit of x0 we may assume the action is transitive. Together
with the coarse stabilizer condition, the fact that the orbit map g → g · x0 is a surjective
and equivariant map G→ X implies that the hypothesis of the Fibering Theorem 3.1.4 are
fulfilled. The proposition follows. �

3.2.4. Corollary. Let G and X be as in the previous proposition. If X is locally finite, and
if there exists x0 ∈ X such that the stabilizer of x0 has finite decomposition complexity, then
G has finite decomposition complexity.

Proof. Under the stated hypotheses the Finite Union Theorem implies that the coarse stabi-
lizers of x0 have finite decomposition complexity. Thus, the previous proposition applies. �

3.2.5. Corollary. The collection of countable discrete groups with finite decomposition com-
plexity is closed under extensions. �

3.2.6. Proposition. If a countable discrete group acts (without inversion) on a tree, and the
vertex stabilizers of the action have finite decomposition complexity, then the group itself has
finite decomposition complexity.
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Proof. According to the Bass-Serre theory, a group as in the statement is built from vertex
stabilizers of the action by iterated free products (with amalgam), HNN extensions and
direct unions. An HNN extension, in turn, is built from free products (with amalgam), a
direct union and a group extension. As we have seen that the class of (countable discrete)
groups with finite decomposition complexity is closed under direct unions, subgroups and
extensions the proposition follows once we show that a free product with amalgam has finite
decomposition complexity if the factors do. But, this follows axiomatically from the above
proven permanence results – essentially, apply fibering to the action on the Bass-Serre tree
using the union theorem to conclude that the coarse stabilizers have finite decomposition
complexity. For a more detailed discussion see [G] and the references therein. �

4. FDC, Property A and finite asymptotic dimension

In this section we shall discuss how the property of finite decomposition complexity re-
lates to other familiar properties from coarse geometry, notably to Property A and to finite
asymptotic dimension.

We have seen that the definition of finite decomposition complexity is motivated by finite
asymptotic dimension. We begin by pursuing this discussion further, our goal being to prove
that a metric space having finite asymptotic dimension has finite decomposition complexity
as well.

Recall that a metric space is proper if closed and bounded sets are compact. A discrete
metric space is proper precisely when it is locally finite in the sense that every ball is finite.
It is not difficult to see that a proper metric space having finite asymptotic dimension has
finite decomposition complexity. Indeed, according to a theorem of Dranishnikov-Zarichnyi
a proper metric space having finite asymptotic dimension admits a coarse emebdding into
the product of finitely many locally finite trees [DZ]. As trees have finite decomposition
complexity, we may apply our permanence results to conclude. More generally, for metric
spaces which are not necessarily proper we have the following theorem.

4.1. Theorem. A metric space has finite asymptotic dimension if and only if it belongs to
Dfin. In particular, a metric space having finite asymptotic dimension has finite decomposi-
tion complexity as well.

We are primarily interested in the forward implication, and shall reduce the general case
to the case of proper metric spaces using an ultralimit construction. Before turning to the
proof, we recall the relevant background notions. Let X be a (pseudo-)metric space. The
Gromov triple product (with respect to a base point x0) is

(x|y) = 1
2

(d(x, x0) + d(y, x0)− d(x, y)) .

The (pseudo)-metric space X is Gromov 0-hyperbolic if

(x|z) ≥ min{ (x|y), (y|z) },
for all x, y and z ∈ X. The notion of 0-hyperbolicity is independent of the choice of base point
[A, Prop. 2.2]. A Gromov 0-hyperbolic (pseudo)-metric space has asymptotic dimension at
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most 1. (See [R2] for a direct argument.) Hence, a Gromov 0-hyperbolic (pseudo-)metric
space has finite decomposition complexity.

Proof of Theorem 4.1. A simple induction shows that a (pseudo)-metric space belonging to
Dn has asymptotic dimension is at most 2n − 1.

For the converse, let X be a (pseudo)-metric space having finite asymptotic dimension at
most n. We shall show that X has finite decomposition complexity, indeed that X ∈ Dfin.
Apply the result of Drashnikov-Zarichnyi [DZ] to the finite subsets of X – these are locally
finite metric spaces and the essential observation here is that the result of Drashnikov-
Zarichnyi applies uniformly . Precisely, there exists ρ and δ and for each finite subset F ⊂ X
a ρ-uniformly expansive and δ-effectively proper map into a product of trees:

F → T F0 × · · · × T Fn .
Projecting to the individual factors we lift the tree metrics back to F to obtain a family
of (pseudo-)metrics dF0 , . . . , d

F
n on F with the following two properties. First, each dFi is

Gromov 0-hyperbolic – recall here that an R-tree is Gromov 0-hyperbolic. Second, the
identity F → F is ρ-uniformly expansive and δ-effectively proper, when the domain is
equipped with the subspace metric from X and the range the sum metric dF0 + · · · + dFn –
explicitly, for all x, y ∈ F we have

(4.1) δ(dX(x, y)) ≤ dF0 (x, y) + · · ·+ dFn (x, y) ≤ ρ(dX(x, y)).

Let now F be the collection of finite subsets of X containing a fixed base point x0, viewed
as a directed set under inclusion. Let ω be an ultrafilter on the set F with the following
property: for every convergent net (tF )F∈F of real numbers we have

lim tF = ω-lim tF ,

where the limit of the left is the ordinary limit of the convergent net, and the limit of the
right is the limit with respect to the ultrafilter ω.

For each fixed i = 0, . . . , n form the ultraproduct Xi = ω-limFi, where we write Fi for F
equipped with the metric dFi . Precisely, Xi is the space of of F-indexed nets x = (xF ), with
xF ∈ F , for which dFi (xF , x0) is bounded independent of F .5 Define a pseudo-metric on Xi

by

di(x, y) = ω-lim dFi (xF , yF ),

where x = (xF ) and y = (yF ) are elements of Xi. Define a map αi : X → Xi by associating
to x the ‘constant sequence’; it follows immediately from (4.1) that

αi(x)F =

{
x, x ∈ F
x0, else

satisfies the boundedness condition required of elements of Xi.

5As we work with pseudo-metric spaces it is not necessary to consider equivalence classes as would be
typical.
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Now, the individual Xi are Gromov 0-hyperbolic, essentially because the condition for
0-hyperbolicity, satisfied by the individual dFi , involves only finitely many points and passes
to the limit intact. Thus, each Xi has finite decomposition complexity and indeed belongs to
D1. An elementary application of permenance shows that the product X0×· · ·×Xn belongs
to Dn+1. See Remark 3.1.5.

The proof concludes with the observation that the product of the αi is a coarse embedding
X → X0 × · · · ×Xn. To verify this observe that for x ∈ X we have αi(x) = x for ω-almost
every F . So, if y ∈ X as well we have

n∑
i=0

di(αi(x), αi(y)) = ω-lim
n∑
i=0

dFi (x, y)

which by (4.1) is bounded above by ρ(dX(x, y)) and below by δ(dX(x, y)). �

4.2. Remark. We are unable to find a reference for the existence of an ultrafilter as required
in the previous proof; we provide instead the following simple argument. In the notation of
the proof, the collection of all subsets of F containing a set of the form

{F ∈ F : F0 ⊂ F }
is a filter, the filter of tails in F. An ultrafilter containing the filter of tails is as required
– the existence of an ultrafilter containing a given filter is a classic application of Zorn’s
lemma.

We turn now to a discussion of Property A, a geometric property guaranteeing coarse
embeddability into Hilbert space [Y2]. We shall show that a metric space with (weak) finite
decomposition complexity has Property A. As a consequence, any sequence of expanding
graphs (as a metric space) does not have (weak) finite decomposition complexity since it
does not admit a coarse embedding into Hilbert space.

To prove the main result of this section, it is convenient to work with a characterization
of Property A introduced by Dadarlat and Guentner [DG]. A metric family U = {U } is a
cover of a metric space X if every U ∈ U is a metric subspace of X and

X =
⋃
u∈U

U.

A partition of unity on X subordinate to a cover U is a family of maps φU : X → [0, 1], one
for each U ∈ U , such that each φU is supported in U and such that for every x ∈ X∑

U∈U

φU(x) = 1.

We do not require that the sum is finite for any particular x ∈ X.

4.3. Definition. A metric family X is exact if for every R > 0 and ε > 0 and for every
X ∈ X there is a partition of unity {ψXU } on X subordinate to a cover UX of X such that
the collection

U = {U : U ∈ UX , some X }
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is a bounded metric family and such that for every X ∈ X and every x, y ∈ X

d(x, y) ≤ R =⇒
∑
U∈UX

|ψXU (x)− ψXU (y)| ≤ ε.

4.4. Remark. Our definition of exactness is equivalent to the notion of an equi-exact family
of metric spaces introduced by Dadarlat and Guentner (compare [DG] Defs. 2.7 and 2.8).
However, we have indexed our partition of unity and cover differently so our definition is not
identical to the one in [DG].

For the statements of the next two results, recall that a metric space has bounded geometry
if for every r > 0 there exists an N = N(r) such that every ball of radius r contains at most
N points.

4.5. Theorem ([DG] Prop. 2.10). A metric space having Property A is exact. A bounded
geometry exact metric space has Property A. �

4.6. Theorem. A metric family having (weak) finite decomposition complexity is exact. A
bounded geometry metric space having finite decomposition complexity has Property A.

Proof. We shall present the proof only for FDC, leaving the case of weak FDC to the reader.
Let E be the collection of exact metric families. It suffices to show that E contains the
bounded families and is closed under decomposability.

Clearly, E contains the bounded families – for X selected from a bounded family the
partition of unity comprised of the constant function at 1, subordinate to the cover {X },
fulfills the definition.

It remains to to check that E is closed under decomposability. Let X be a family and
assume X is decomposable over E – for every r there exists Y ∈ E such that X is r-
decomposable over Y . We shall apply [DG, Theorem 4.4] to show that X ∈ E. Let δ > 0.
Select r large enough so that rδ ≥ 2 and obtain Y as above. Translating the notion of
decomposability into the language of [DG] we see that Y is an equi-exact family with the
property that that every X ∈ X admits a r-separated cover, the pieces of which belong to
Y . Thus, the hypotheses of [DG, Theorem 4.4] are satisfied and we conclude that X is an
equi-exact family. In other words, X ∈ E. �

4.7. Remark. [DG, Theorem 4.4] is stated for a single metric space. The same argument
can be used to verify that it applies to a metric family.

5. Further examples

Additional examples of groups having finite decomposition complexity are readily exhib-
ited based on our results. In this section, we prove that all countable elementary amenable
groups, all countable subgroups of almost connected Lie groups, and all countable subgroups
of GL(n,R) for any commutative ring R with unit have finite decomposition complexity.
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5.1. Amenable groups. The class of elementary amenable groups is the smallest class of
countable discrete groups containing all finite groups and all (countable) abelian groups, and
closed under the formation of subgroups, quotients, extensions and direct unions.

5.1.1. Proposition ([C]). The class of elementary amenable groups is the smallest class of
countable discrete groups containing all finite groups and all (countable) abelian groups and
closed under the formation of extensions and direct unions.

Sketch of proof. Define a class of groups A by transfinite recursion as follows: A0 is the class
of all finite and countable abelian groups; for a successor ordinal α define Aα to be the class
of all groups obtained as a (countable) direct union or extension of groups in Aα−1; for a
limit ordinal α define Aα = ∪β<αAβ; finally, A is the collection of groups belonging to some
Aα.

From its construction A is closed under extensions and (countable) direct unions, and is
clearly contained in the collection of elementary amenable groups. It remains to show that A
is closed under subgroups and quotients. Indeed, it is readily verified by transfinite induction
that each Aα is closed under these operations. �

5.1.2. Theorem. Elementary amenable groups have finite decomposition complexity.

Proof. We have observed that the class of countable discrete groups having finite decomposi-
tion complexity is closed under the formation of extensions and direct unions. Finite groups
have finite decomposition complexity, as do (countable) abelian groups. Indeed, a (count-
able) abelian group is the direct union of its finitely generated subgroups which, according
to their general structure theory, have finite decomposition complexity . �

5.1.3. Question. Does every countable amenable group have FDC? In particular, does a
Grigorchuk group of intermediate growth have FDC?

5.2. Nearly linear groups. A linear group is a group isomorphic to a subgroup of GL(n,K)
for some field K. In the companion paper to this note, we proved that a countable linear
group has FDC [GTY, Theorem 3.0.1]. In this section our first goal is to give two natural
generalizations of this result to groups which are ‘nearly’ linear.

5.2.1. Theorem. A countable subgroup of an almost connected Lie group has finite decom-
position complexity.

Proof. We have seen that linear groups have FDC, that FDC is stable under extensions
and that (countable) abelian groups have FDC. Thus, the proof is the same as the proof
of [GHW, Theorem 6.5]: a group as in the statement is realized as an extension with finite
quotient and with kernel a subgroup of a connected Lie group; a subgroup of a connected
Lie group is realized as an extension with linear quotient and abelian kernel. �

5.2.2. Theorem. Let R be a commutative ring with unit. A countable subgroup of GL(n,R)
has finite decomposition complexity.

The proof is based on the following piece of commutative algebra.
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5.2.3. Lemma. Let R be a finitely generated commutative ring with unit and let n be the
nilpotent radical of R,

n = { r ∈ R : ∃n such that rn = 0 }.
The quotient ring S = R/n contains a finite number of prime ideals p1, . . . , pn such that the
diagonal map

S → S/p1 ⊕ · · · ⊕ S/pn
embeds S into a finite direct sum of domains.

Proof. This classical fact is a consequence of the Associated Prime Theorem which states
that the set of associated primes of a finitely generated module over a Noetherian ring is
finite [Ei, Thm. 3.1]. Here, the module is the ring itself which is Noetherian since it is finitely
generated. The mentioned theorem then says that R has finitely many minimal prime ideals
p1, . . . , pn. The conclusion follows from the fact that their intersection is n. �

Proof of Theorem 5.2.2. In views of Proposition 3.2.1, it is enough to treat the case of
GLn(R), where R is finitely generated. With n and S as in the previous lemma, we have an
exact sequence

1→ I +Mn(n)→ GL(n,R)→ GL(n, S)→ 1,

in which I+Mn(n) is nilpotent, and therefore has finite decomposition complexity by Corol-
lary 3.2.5. In the notation of the previous lemma, we have

GL(n, S)→ GL(n, S/p1)× · · · ×GL(n, S/pn).

So, the quotient has finite decomposition complexity by [GTY, Theorem 3.0.1]. �

Our next goal in this section is to provide a simplified proof, based on essentially the same
ideas, of the following result due to Matsnev [Ma]; it was an important piece of the proof of
FDC for linear groups presented in [GTY]. Before turning to the statement, we recall the
basic setup. A discrete norm on a field K is a map γ : K → [0,∞) satisfying, for all x,
y ∈ K

(1) γ(x) = 0 ⇔ x = 0
(2) γ(xy) = γ(x)γ(y)
(3) γ(x+ y) ≤ max{ γ(x), γ(y) },

and for which the range of γ on K× is a discrete subgroup of the multiplicative group
(0,∞). Given a discrete norm we define, following [GHW], a (pseudo)-length function `γ on
GL(n,K) as follows:

(5.1) `γ(g) = log max
ij
{ γ(gij), γ(gij) },

where gij and gij are the matrix coefficients of g and g−1, respectively.

5.2.4. Proposition (Matsnev). Let γ be a discrete norm on a field K. The group GL(n,K),
equipped with the (left-invariant pseudo-)metric induced by `γ, is in Dfin.



20 ERIK GUENTNER, ROMAIN TESSERA, AND GUOLIANG YU

Let γ be a discrete norm on a field K. For the proof of the proposition we shall introduce
some subgroups of GL(n,K). The subset

O = {x ∈ K : γ(x) ≤ 1 }
is a subring of K, the ring of integers ; the subset

m = {x ∈ K : γ(x) < 1 }
is a principal ideal in O; a generator π of m is a uniformizer . Fix a uniformizer π. Let D
denote the subgroup of diagonal matrices with powers of the uniformizer on the diagonal
and let U denote the unipotent upper triangular matrices. Observe that D normalizes U
so that T = DU is also a subgroup (namely the group upper triangular matrices). Restrict
the length function `γ to each subgroup and equip each with the associated (left-invariant
pseudo-)metric (which is in fact the subspace pseudo-metric from G).

5.2.5. Lemma. The group U has asymptotic dimension zero. In particular, U ∈ D1.

Proof. The dilation by (a nonzero) θ ∈ K is the function Θ : U → U defined by

Θ(u)ij = θj−iuij;

the entries on the kth-superdiagonal of n are multiplied by θk. (For k = 0, . . . , n − 1 the
kth-superdiagonal of an n×n matrix consists of the positions (i, j) for which j− i = k.) The
formula for matrix multiplication shows that Θ is an endomorphism of U . Further, it is an
automorphism with inverse the dilation by θ−1.

Fix θ ∈ K of norm greater than one – the inverse of a uniformizer will do. Let U0 be the
subgroup of U comprised of elements of length zero, and define a sequence of subgroups of
U by Uk = Θ(Uk−1). We shall show that

(5.2) B(1, k log γ(θ)) ⊂ Uk ⊂ B(1, k(n− 1) log γ(θ)).

The lemma follows immediately. Indeed, U is the union of the cosets of Uk and the family
of these cosets is both bounded and r-disjoint, provided k log γ(θ) > r.

In order to verify (5.2) observe that the length function on U is given by

(5.3) `γ(u) = log max
i<j
{ 1, γ(uij), γ(uij) }.

For the first inclusion in (5.2) suppose `γ(u) ≤ k log γ(θ) so that in particular γ(uij) ≤ γ(θ)k

for all i < j. The non-diagonal (i, j) entry of Θ−k(u) is uijθ
k(i−j) so that each has norm at

most one. Elementary properties of the norm and (5.3) show that this implies Θ−k(u) ∈ U0,
or u ∈ Uk.

The second inclusion in (5.2) follows by induction from

`γ(Θ(u)) ≤ `γ(u) + (n− 1) log γ(θ).

To verify this inequality, note that the non-diagonal (i, j) entry of Θ(u) is uijθ
j−i which has

norm bounded by γ(uij)γ(θ)n−1. Since Θ is an automorphism a similar statement applies to
the entries of Θ(u)−1 = Θ(u−1). The inequality now follows from (5.3). �
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5.2.6. Lemma. The group T is in Dn+1.

Proof. Observe that D ∼= Zn, and that the restriction of `γ to D is a proper length function
– indeed it corresponds (up to a multiplicative factor) with the supremum norm on Zn:

`γ(a) = max |ki| · log γ(π−1),

where a is the diagonal matrix with entries πki . Hence D is in Dn. It remains to check, as
an application of fibering, that T is indeed in Dn+1.6

We require two observations. First, the map T → D associating to each matrix in T the
matrix of its diagonal entries is a contraction. Indeed, it is a homomorphism and from the
definition of `γ we see that it decreases length. Second, if B ⊂ D is a bounded subset and
b1 ∈ B then the subset b1U ⊂ BU is diam(B)-coarsely dense. Indeed, if bu ∈ BU then
d(bu, bub−1b1) ≤ diam(B) and, since D normalizes U ,

bub−1b1 = b1(b−1
1 b)u(b−1b1) ∈ b1U.

We conclude by applying Theorem 3.1.4 or, more accurately, the subsequent Remark 3.1.5
to the map T → D. �

Proof of Proposition 5.2.4. The inclusion of T in G is isometric. Further, it is metrically
onto in the sense that every element of G is at distance zero from an element of T . Indeed,
let H be the subgroup of those g ∈ GL(n,K) for which the entries of g and g−1 are in O.
Then G = TH [GHW, Lemma 4.5] and elementary calculations show that every h ∈ H has
length zero. Hence, if g = th then d(t, g) = `(h) = 0. Observe that we do not assume K is
locally compact. �

Finally, for the convenience of the reader we shall deduce the following consequence of
Proposition 5.2.4; while a special case of [GTY, Theorem 3.0.1] the proof involves similar
ideas and serves to illustrate the more general result.

5.2.7. Proposition. The group GL(n,Z[X1, . . . , Xm]) belongs to Dω+fin. For a prime power
q and Fq the field with q elements, the group GL(n,Fq[X1, . . . , Xm]) has finite asymptotic
dimension. (Both assertions are true for every n ≥ 1 and m ≥ 0.)

We prepare for the proof by describing the relevant norms on rational function fields. Let
us agree that henceforth K stands for either Fq or Q. In the case of a single indeterminant
we define, for a nonzero P ∈ K[X],

(5.4) γ(P ) = edeg(P );

together with the convention γ(0) = 0 this determines uniquely a discrete norm on K(X).
We view K[X] ⊂ K(X), so that also GL(n,K[X]) ⊂ GL(n,K(X)); we equip the latter
group with the length function associated by (5.1) to the norm (5.4).

6Since D ⊂ T isometrically, if T is in Dα then necessarily α ≥ n. An argument more refined than the one
we present here achieves this bound: indeed T ∈ Dn.
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We generalize to the case of several indeterminants by defining, in analogy with (5.4),
norms on K(X1, . . . , Xm) reflecting the degree in each of the various indeterminants.7 We
then view

(5.5) GL(n,K[X1, . . . , Xm]) ↪→ GL(n,K(X1, . . . , Xm))× · · · ×GL(n,K(X1, . . . , Xm));

here the factors are equipped with the length functions associated to the various norms
according to (5.1), and the length function on the product is the sum.

In the following proof we shall denote by `′ the length function GL(n,K[X]) inherits from
GL(n,K(X)); similarly, in the multi-variable case, we shall denote by `′ the length function
GL(n,K[X1, . . . , Xm]) inherits from the inclusion (5.5). This is done for compatibility of
notation with the relevant results from [GTY].

Proof. We begin with the case of a finite field. In the case of a single indeterminant it suffices,
by the previous discussion and Proposition 5.2.4, to show that the length function (5.1) on
GL(n,Fq(X)) restricts to a proper length function on GL(n,Fq[X]). But, this is clear: in
view of (5.1) and (5.4) bounding `′(g) bounds the degree of the polynomial entries of g and,
since the field Fq is finite, there are only finitely many polynomials of a given degree. In the
case of several indeterminants the length function on the product appearing in (5.5) restricts
to a proper length function on GL(n,Fq[X1, . . . , Xm]) for the same reason.

The case of Z is more involved – because there are infinitely many polynomials in Z[X] of
a given degree the length function `′ will not be proper. We shall consider only the case of
a single indeterminant and shall rely on the permanence result [GTY, Lemma 3.3.1]. In the
notation of that lemma, let r = ek. Evaluation at a transcendental provides a field embedding
Q(X) ↪→ C and an embedding GL(n,Q(X)) ↪→ GL(n,C). Fixing distinct transcendental
elements t0, . . . , tk ∈ C we obtain a diagonal embedding

GL(n,Z[X]) ↪→ GL(n,Q(X)) ↪→ GL(n,C)× · · · ×GL(n,C).

Equip each factor on the right with the length function coming from the operator norm as
in [GHW, GTY]; the length function on the product is the sum; denote by `r the length
function GL(n,Z[X]) inherits from the inclusion. Now, with its length function GL(n,C)
belongs to Dfin, so that GL(n,Z[X]) with the length function `r does as well. By [GTY,
Lemma 3.3.1] we are reduced to showing that the collection of g ∈ GL(n,Z[X]) satisfying
the inequalities

`′(g) ≤ r = ek, `r(g) ≤ s

is finite, for every s. Arguing exactly as in the first part of this proof, we conclude from
the first inequality that the polynomial entries of such g have degree bounded by k. It
follows from the second inequality that if P ∈ Z[X] is a polynomial entry of such g then for

7These are in fact the norms of type (1) appearing in the proof of [GTY, Lemma 3.1.5]. Precisely, in
the case of two indeterminants, if we identify K(X,Y ) and K(X)(Y ) then the extension to K(X,Y ) of
the norm on K(X) determined by (5.4) is itself determined by the formula γ(P ) = max{ γ(Pj) } where
P (X,Y ) = P0(X) + P1(X)Y + · · · + Pn(X)Y n and the Pj ∈ K(X). In particular, if P ∈ K[X,Y ] so that
the Pj ∈ K[X] then γ(P ) is exactly the degree of P ‘with respect to X’. See also [GHW, Lemma 2.2].



DISCRETE GROUPS WITH FINITE DECOMPOSITION COMPLEXITY 23

every transcendental ti the absolute value of P (ti) is bounded by s. In other words, we have
reduced to showing that the set

{P ∈ Z[X]k : |P (ti)| ≤ s for i = 0, . . . , k }
is finite, where Z[X]k is the set of polynomials of degree at most k. This is, however,
straightforward: the assignment

P 7→ (P (t0), . . . P (tk))

defines an isomorphism of complex vector spaces C[X]k → Ck+1 – identifying a polynomial
P ∈ C[X]k with the column vector formed by its coefficients it is given by the Vandermonde
matrix corresponding to the distinct transcendentals t0, . . . , tk – and Z[X]k ⊂ C[X]k is
discrete. �
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