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HOMOTOPY GROUPS OF JOINS AND UNIONS

BY
GEORGE W. WHITEHEAD

1. Introduction. The homology groups of the join X + ¥ of two spaces
have long been known to satisfy a “Kiinneth formula.” On the other hand,
little is known about the homotopy groups of X * Y. There is a bilinear pair-
ing (a, B)—a*B of m,(X) with w,(V) to 7pye41(X * ¥Y); a* B is called the join
of @ and B. If ¥'=35"is an n-sphere and « generates 7,(Y), then it follows from
the Freudenthal suspension theorem that the map a—a *t is, for small p, an
isomorphism of 7,(X) with 7,4n41(X # ¥). Thus, in low dimensions, the homo-
topy groups of X * S* are generated by the joins of the homotopy groups of
the factors.

In this paper we consider the homotopy groups of the join of X with an
arbitrary 1-connected CW-complex Y. There is a spectral sequence whose
initial term is, in low dimensions, the homology group(!) of ¥ with coefficients
in the homotopy group(!) of X and whose final term is the graded group of
the homotopy group of X * ¥V with respect to.a suitable filtration. As a con-
sequence, the homotopy groups of X + ¥, even in low dimensions, are not,
in general, generated by the joins of the homotopy groups of the factors. A
further consequence is a new proof of the symmetry of the stable Eilenberg-
MacLane groups, which was first proved by H. Cartan [4].

These results can be used to study the homotopy groups of the union
XVY of two spaces X and Y with a single point in common. The space
XV Y can be naturally imbedded in XX ¥ and we have a natural iso-
morphism

(X VY) = 7u(X) © 7a(Y) @ mun(X XV, XV Y)-

Now there is a homomorphism of 7,1 (X XV, X\V/Y) into m.2(X + Y), which
is an isomorphism in low dimensions. Thus we can apply the above results
on the homotopy groups of X * Y. In particular, the group m, 1 (X X Y, XV Y)
is not in general generated by “generalized Whitehead products” of elements
of the homotopy groups of X and Y, even in low dimensions.

In a recent paper [0] M. G. Barratt and J. H. C. Whitehead have intro-
duced an exact couple for an arbitrary CW-triad. This exact couple, in the
special case of the triad (X\V Y; X, V), seems to be closely related to the
one we have introduced here. However, our results do not seem to follow

Presented to the Society, June 19, 1954; received by the editors August 4, 1955.
(%) By the homotopy (homology) group of a space X, we mean the direct sum of the homotopy
(homology) groups in all dimensions.
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56 G. W. WHITEHEAD [September

immediately from their work; furthermore we do not assume that X is a
CW-complex.

2. Joins. Let X and Y be spaces, which we assume to be disjoint from
each other and from X X ¥ XI, where I is the unit interval {¢|0<t=<1}. Let
W=X\U(XXYXI)UY; we topologize W by defining a subset to be open if
and only if its intersection with each of the spaces X, X XY X7, and Y is
open. The join of X and Y is the identification space X » ¥ obtained from
W by identifying each x €X with all of the points (x, v, 0) and each y&e Y
with all of the points (x, y, 1). The identification map sends X and ¥ homeo-
morphically into X « Y; hence we may consider X and Y as subspaces of
X+ Y. Let (1 —t)x®ty be the image of (x, ¥, ¢) in X = V.

The join operation is easily seen to be commutative (up to a natural
homeomorphism). The join of X with the empty set & is X.

Let f: X—X', g: Y—>Y’ be maps. The join of f and g is the map

frg: X+ VYoX'+ V'
defined by
(f+)((1 — D2 @ ty) = (1 — Of(x) @ 15(y),
(f«0)(®) = f(x),  (f+&)(¥») = g(»);

continuity of f+g follows from the fact that the join has the identification
topology. Since X * Y is an identification space of W and since I is compact,
it follows [18, Lemma 4] that (X » ¥) XI is an identification space of W X1I.
Hence, if f, f': X—X' are homotopic and if g, g’': Y— Y’ are homotopic, then
f+g and f' + g’ are homotopic maps of X + ¥ into X'+ Y. It follows that, if
X and X’ have the same homotopy type, and if ¥ and ¥’ have the same
homotopy type, then X + ¥ and X’ + Y’ have the same homotopy type.

If f:XCX’' and g: YCY’, then fxgisa 1:1 map of X+ ¥V into X' ¥’;
if furthermore X is closed in X’ and Y is closed in Y, then f* g is a homeo-
morphism and its image is closed in X'+ ¥’; in that case we may consider
X + Y as a closed subset of X’ V.

Note that the join of the inclusion map of & into X’ with any map
g:Y— Y’ is the composition of g with the inclusion map of ¥’ into X'+ Y".

Let P be a fixed space consisting of a single point p. The cone over X is
the join X =X » P. Let A be a closed subspace of X; then the guotient space
of X by A is the subspace X+4 =X\U4 of X. The following properties are
easily verified:

(2.1) X is contractible;

(2.2) The triad (X+A4; X, 4) is proper.

Let P’ be a fixed space consisting of two points p, p—. The suspension
S(X) of X is the join X » P’. Note that S(X)=X,UX_, where Xs=X »p4,
while )?.J\? _=X. Thus S(X) is the union of two contractible spaces whose
intersection is X. It is easy to see that the triad (S(X); X, X_) is proper.
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Let o, 7 be ordered Euclidean simplexes with vertices o< - - - <ap,
bo< - - - <b, respectively. Then ¢ +7 has.a natural affine structure, and we
may regard o * 7 as an ordered Euclidean simplex with vertices ¢, < - - + <a,
<bo< +++ <b, We consider the empty set as an ordered Euclidean (—1)-
simplex. With the usual definition of equivalence of singular simplexes, we
define 5,(X) to be the free abelian group generated by the singular (p—1)-
simplexes in X (p=0, 1, 2, - - - ) and define S(X)= D >, Sp(X), with the
usual boundary operator (the boundary of each singular 0-simplex is the
unique singular (—1)-simplex), to be the augmental total singular complex of
X. If ACX, then 5(4) is a subcomplex of S(X) and we define H,(X, 4) to be
the (p+1)st homology group of the complex S(X)/5(4). Of course, H,(X, A)
=H,(X, A) (p=0), except that H¢(X, &) is the reduced 0-dimensional
homology group of X.

Let ¢:0—X, ¢:7—Y be singular simplexes; then ¢ *+yiocx7—>X+ Y is a
singular simplex. The map ¢ ®y—¢ +¥ induces a homomorphism a:5(X)
®S(YV)—S(X + Y), which is easily seen to be a chain mapping. It is known
that e is, in fact, a chain-equivalence(?). Furthermore, « is natural in the sense
that, if f:X—X’ and g: Y—Y’ are maps, and if f/, g/, (f+g)’ are the chain
maps induced by f, g, and f * g, then the diagram

/ ’
30 8 31 28 5:x0) @ 3(v)
a a
2
S(X+Y) ————3(X'+Y")

is commutative. Hence, if 4 is a closed subset of ¥, a induces a chain-equiva-
lence between the complexes $(X)® [S(Y)/5(4)] and S(X + V)/S(X «A4).
Hence

(2.3) The singular homology groups of (X +» Y, X « A) are given by
Hop(X+V, X+4) = Y, H(X) @ H(Y,4) @ Y, Tor {H(X), A Y, 4)}.

i+i=q +i=q—1

It is also known [13, Lemma 2.2] that

(2.4) If X is O-connected and Y #=J, then X + Y is 1-connected.

Consequently we can conclude from the relative Hurewicz theorem
[1, (23.3)]:

(2.5) If X is (m—1)-connected (m=1), (Y, A) is (n—1)-connected (n=2),
and A is 1-connected, then (X + Y, X « A) is (m+n)-connected, and

Tmini (X YV, X+ A4) = mu(X) ® ma(Y, 4).
The group H,(X)® H,(Y, A) has a natural imbedding in Hy¢42(S(X)

(?) This fact does not seem to be stated explicitly in the literature, but is not difficult to
deduce from Milnor’s proof [13] of the “Kiinneth theorem” for the homology groups of the
join. The author is indebted to Milnor for the opportunity of reading his manuscript.
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® [S( Y)/S(A)]) hence a induces a monomorphism of H,(X)®H, (Y, A4)
into Hppo1(X Y, X+A4). If uEH,(X), vEH (Y, A), we define u+v to be
the image of # ®v under the monomorphism.

Let (S, a, a-) be an oriented p-sphere (i.e., S is a p-sphere, a &S, and o is a
generator of H,(S)) and let (E, b, €) be an orlented g-cell (i.e. E is a g-cell,
b is a point of the boundary Eof E,and eis a generator of H,(E, B). Itis
well known that S+ E is a (p+g-+1)-cell with boundary S« E; it follows from
(2.1) that o+ € is a generator of Hptq1(S+E, S E). Let c=a/2®b/2, then
cES+Eand (S+E, ¢, o ¢€) is an oriented (p+g—+1)-cell. Let X, ¥ be spaces,
A a closed subspace of ¥, xo€X, yoEA4, and let 20=x0/2@y/2EX x Y.
Then if f:(S, a)—(X, xo), g:(E, E, b)—(Y, A4, ¥o), the homotopy class of
f+g:(S+E, Sx E,c)—(X+ Y, X « A, 2,) depends only on the homotopy classes
of the maps f, g; thus the correspondence (f, g)—f*g induces a pairing of
7p(X) with m(Y, A) to mpy1(X + ¥V, X + 4). If @, B are the homotopy classes
of f, g we define a * B to be the homotopy class of f  g.

(2.6) The operation (a, B)—a B is bilinear.

The proof is similar to that of (3.20) in [17].

(2.7) Let f:(X, xo)—>(X', %J) and g:(Y, 4, yo)—(Y’, A, yJ) be maps.
Then for any aEw,(X), BET(Y, A), we have

(f*@)x(axB) = fu(a)+ gx(B).

The proof is trivial.

(2.8) Let X be a space, (Y, A, B) a triple, and let xoEX, yoEB. Let
aEmy(X), BET(Y, A). Let 9:7,(Y, A)>me1(4, B) and 9" :wpyrea(X + Y,
X x A)>7p (X + A, X » B) be the homotopy boundary operators of the appropri-
ate triples. Then

d'(axf) = (—1)7+axdp.

The proof of this fact is routine, and is left to the reader.

3. The spaces L(II, n). Let II be an abelian group, # an integer =2. Then
there is a CW-complex L such that

(1) L is 1-connected;

(2) H,(L)=0 for g5~n;

3) m(L) =11
Any two such complexes have the same homotopy type. By L(II, n) we shall
mean a CW-complex L satisfying the above conditions, together with a fixed
isomorphism between 7,(L) and II. We may therefore identify the (iso-
morphic) groups 7,(L) and H,(L) with II. If ¢:II—G is a homomorphism,
then there isa map f: L(II, n) —>L(G, n) such that the induced homomorphism
fe:Ho(L(ID, n))—H,(L(G, nc) is equal to ¢. However, the homotopy class
of f may not be uniquely determined by ¢; it is unique if IT and G are free. If
II is free, we may take L(II, #) to be a cluster of spheres; in particular, we
may take L(Z, n) =S"
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The above facts follow from the work of Eilenberg [5; 6]; the spaces
L(II, ) have been studied by Moore [15] and more recently by Peterson
[16].

THEOREM 3.1. Let X be an (m —1)-connected space (m =2), Il a free abelian
group, n=2. Then the homomorphism

¢:7l'q(X) ® - TQ+”+1(X *L(Hy n))y

induced by the join operation is an isomorphism for ¢=2m—2, and an epi-
morphism for ¢=2m —1.

Proof. We may assume the L=L(II, #) is a cluster of n-spheres; i.e.,
L=U, S., where each S, is an n-sphere and a#f implies S.MNSg=N,S,isa
single point y,. If I has rank 1, then X # L is the (n+1)-fold suspension of X
and the theorem follows by iteration from a known generalization of the
Freudenthal suspension theorem(®). Suppose that II has finite rank; then
(X *Sa)N(X * Sp) is the contractible set X *y,; since X xS, is (m-+n)-con-
nected, our result follows immediately by induction from the statement:

(3.2) Let C=A\UB, where A and B are closed in C, ANB is contractible,
and ANB is a strong neighborhood deformation retract of one of the sets A, B.
Suppose that A is r-connected, B is s-connected. Then, for gSr-+s—1, the in-
jections induce an isomorphism: wo(A) @ (B) =m,(C).

Proof of (3.2). By exactness of the homotopy sequence

«+—m(4 N B)— 7o(4) @ wy(B) — 7l"41(A/B) -7 a(ANB)—---
of the covering (4/B) [11], we have
(1) m(4) @ wy(B) =~ m4(A/B)

for all g. Furthermore, the triad (C; 4, B) is (r+s)-connected, since (4, AMNB)
is r-connected and (B, ANB) is s-connected [3]. From exactness of the se-
quence [11]

= 7441(C; A, B) > my(A/B) = m(C) = m(C; 4, B) — - - -
we conclude
(2) '"'q(A/B) o Wq(c)

for g<r+s—1. The truth of (3.2) now follows from the fact that the com-
position of the homomorphisms in (1) and (2) is induced by the injections.
The truth of Theorem 3.1 in the general case now follows by standard
arguments once we have proved
(3.3) Let X be a space, L a CW-complex, K a compact subset of X « L. Then
there is a finite subcomplex L, of L such that KCX * L,.

(%) This is an immediate consequence of a theorem of Blakers and Massey on the homotopy
groups of a triad [3, Theorem I].
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Proof of (3.3). Define a map f: X + L->XXZT by
(%, (1 — 20)p @ 2ty) (0=t=1/2),
C-2)x® (1 —20p,y (1/2 =t £ 1);

f is well-defined, and therefore continuous, since X = ¥ has the identification
topology; furthermore, f is 1:1. Let m:X XL —L be the projection on the
second factor. Then 7(f(K)) is a compact subset of Z,and L isa CW-complex
[19, (F)]. Hence there is a finite subcomplex L; of L such that w(f(K))CL:.
Hence f(K)C)? XL1, and it follows easily that KCX * L,.

4. Homotopy resolutions of a pair. Let (X, 4) be a pair, x,E 4 ; xo will be
the base point for all homotopy groups mentioned in this section. For sim-
plicity, we assume that (X, 4) is 1-connected. A homotopy resolution of (X, A)
is a sequence {X,|n=0, £1, +2, - - - } of subspaces of X such that

(1) ACX.CXn for all n;

(2) (Xnt1, X4) is 1-connected;

(3) for each g, m(Xa, 4) =0 for n sufficiently small;

(4) for each g, 7,(X, X,)=0 for n sufficiently large.

Let {X ,.} be a homotopy resolution of (X, 4). We define an exact couple
[12] (D, E; i, j, 9) as follows:

D= ZDp.qv Dy, = mp1o(Xp, 4)

A = )z @ ty) = {

P (direct sums);
E= E E,., Epq = Tpto(Xp Xp-1)
p,q
9 (-1,0
i} are bihomogeneous of degrees { (1, —1)
J (0, 0);

a: Ep,q — Dy,

. are the homomorphisms of the homotopy
1. Dp_l,q - Dp.q—l

. sequence of the triple (X,, X,—1, 4).
Ji Dpg1—= Ep g

Let (D*¥, E*; {®, j® 9®) be the (k—1)st derived couple.
Let 7,,, be the image of the injection: mpy (X, 4)—>mp1 (X, 4), and de-
fine #(X, 4) to be the direct sum Y., Tp.o/Tp_1,¢41.

THEOREM 4.1. For each p, q, we have Ey,=ES%' for k sufficiently large.
Thus the direct limit E;,=lim ., E;, exists, and

E:,q = Tp,o/Tp-1,0+1.
Hence E*= ), E;, ~#(X, A).
Proof. An easy computation shows that

E* = 9~'(Image i*~1)/j(Kernel ¢¥1),
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where ¢! is the (k—1)st iterate of 7 (and not the homomorphism %=1 of
the (2—2)nd derived couple). Thus

Eyq= U/V,
where

U is the set of all x€E,,, such that dx belongs to the image of the injec-
tion: Tpy ¢ 1(Xpty A) oTp1g1(Xp1, 4);

V is the set of all elements of E,,, of the form jy, where y belongs to the
kernel of the injection: mpy(Xp, A)ompte(Xpir—1, 4).

Now for & sufficiently large, mp4q—1(Xp—r, 4) =0 and 7p4 g41(X, X pir—1) =0.
Then the injection: mpy o(Xpsr—1, A)—>mp (X, 4) is a monomorphism, and
therefore

U is the set of all x€E,, , such that dx=0;

V is the set of all elements of E,,, of the form jy, where ¥ be'ongs to the
kernel of the injection: mpyo(Xp, A)—mpi (X, 4).

Thus U and V are independent of k if k is sufficiently large. Hence
El,=U/V is also.

To prove the second statement, consider the diagram

Tpra( X o1 A)
li
7 a
Dy = mpio(Xp, A) > 7p1o(X py X p1) = Tpig-1(X po1, 4)
1
1rp+q(Xr A)

Now, for sufficiently large k2, U= Kernel d =Image j~D,,,/Kernel j, and
V=j(Kernel 7’) =~ (Kernel '+ Kernel j)/Kernel j; thus

. Ek D,../Kernel j
P.q LA (Kernel i’ 4 Kernel j)/Kernel j
Dy,

"~ Kernel # + Kernel j
D,,,/Kernel 7
N (Kernel ¢ + Kernel j)/Kernel 7’

Image ¢’ Image ¢’
Y (Kernel 7) s (Image 17)
g
Image ¢’

B Image (i’ 0 1)

Tp.a

Tp—1.g+1



62 G. W. WHITEHEAD [September

REMARK 1. For each n, 7, .—p,=0 for p sufficiently small and mp,ap
=m.(X, A) for p sufficiently large; thus the chain of subgroups {rp,q|p+q
=n} of m.(X, 4) is finite.

REMARK 2. We may define homology and cohomology resolutions in a
similar way, and results analogous to the above hold. The above results
constitute a trivial extension of Massey’s exact couples [12], which are con-
cerned with the resolution given by the skeleta of a triangulation of (X, 4).

5. The spectral sequence of a join. Let X be an (m —1)-connected space,
Y an (n—1)-connected CW-complex (m, n>1). Let ¥Y” be the p-skeleton of
Y; without loss of generality, as far as the homotopy type of Y is concerned,
we may assume that Y"~! is a single point y,.

LEMMA 5.1. The sequence {X* Y"+1’lp=0, +1, +2,- .- }forms a homo-
topy resolution of (X + V, X xy,).

Proof. If <0, X « Y»*?=X +y, is contractible. On the other hand, if
»20, (¥, Y**?) is (n+p)-connected and hence, by (2.6), (X + ¥V, X » V*+?) is
(m+n+p—1)-connected, so that (X + ¥V, X » Y"*?) =0for p=g—m—n—1.

For convenience, we re-index the terms of the spectral sequence of the
above homotopy resolution of (X * ¥, X *y9) by setting
E;r-q = E;,m+q+ly
®p.a = Tp,mtgtl;

thus

1
Epg = Tminiprort( X« VHe, Xy Yrte-t),

T

E,,=0ifp <0Oorgq <O0;
7rm+n+a+l(X* Y) Rs,0 D Ts—1,1 D cte D 0,z D T—-1,8+1 = 0:

C
“p.q/“p-—l,ﬁl = Epq

We identify m4,(V"t?, Y*#-1) with C.y,(Y). Then the join operation de-
fines a homomorphism

nt
¢: Tnia(X) ® Catp(¥) = Tmpniprert(X* V" X5V

n+p—1 1
) = E,,.

LEMMA 5.2. The homomorphism
$: Tnta(X) ® Catp(V) > Epg
is an isomorphism for gSm —2 and an epimorphism for g=m —1.
Proof. Note that Yn»t?+ Vnt2-1=1(C,y,(Y), n+p), the isomorphism
Coip(Y) = H, (Yt Yritr—1) being f~'oa, where
B (T4, V2498 5 (Yot 2 Yo, (porr) ) D (70 £ ot

a and B are injections.



1956) HOMOTOPY GROUPS OF JOINS AND UNIONS 63

Consider the diagram

Tmig(X) @ wnyp(¥rte, Yrtrl) _‘_*; Tminipsgst(X * Vo2, X & Prte-t)
1@« , 1
Tmig(X) @ Hnyp(Vrte + Yrtp—l (Y1)~ i; Tminipigrt(X * (V742 + Yrto1) X & (Vrto—1)~)
11®8 Y 14
Tmig(X) @ wnyp(¥HP + Vrte-l) 4 Tminiprgnt(X ¥ (Y72 5 Yrtel))
where 1, 4’ are injections, and ¢’, @'’ are also induced by the join operation.
Because of (2.7), the diagram is commutative.
Now 7 is an excision, and the triad (X » (Y**t?+ Yrtr-1); X & Yntp,
X » (Y»*+»+1)7) is proper. Furthermore (X » Y2, X « Y77 1) is (m+n+p)-
connected, by (2.5), since X is (m—1)-connected and (Y»+?, Yn»+r-1) jg
(n+p—1)-connected. Also (X » (Vtr—1)™, X & Ynt+7-1) is (m+n+1)-con-
nected, again by (2.5), since X is (m —1)-connected and ((Y»+?~1)™, Y»+r-1) s
n-connected. Hence the above triad is (2m+2n+p-+1)-connected [3], and
therefore 7 is an isomorphism provided that m+n+p+g+2=2m+2n+p+1,
ie. ¢gSm+n—1.
On the other hand, by Theorem 3.1, ¢’’ is an isomorphism for g=m —2
and an epimorphism for g=m —1. Since 1®a, 1®, and 4’ are always iso-
morphisms, our conclusion follows from the commutativity of the diagram.

LeEMMA 5.3. Under the isomorphism of Lemma 5.2, the boundary operator d,
of the spectral sequence {E'] is transformed into the operator 9, given by

01 @ B) = (—™+a @ 9B
for a€mpio(X), BECrsp(Y), g=m—2.

Proof. By definition, d; is the homotopy boundary operator of the triple
(X » Yrte, X & Yrte—1 X o Yntp—2) while @ is the homotopy boundary oper-
ator of the triple (Y»t?, Yntr—1 Yn+r-2) We then have

dig(a @ B) = di(asp)
= (—1)™*ei(a=9B) by (2.8),
= (= D)mH+ia @ o).
COROLLARY 5.4. For gSm—2, E2 ;= H,\,(V; Tmio(X)).
We summarize the results implied by the above discussion in

THEOREM 5.5. Let X be an (m —1)-connected space, Y an (n—1)-connected
CW-complex (m, n=2). Then there is a spectral sequence {E’ } such that
El =B, ) (Y; Tmio(X)) for qSm—2 and E® is the graded group (X + Y) of
Z, m(X » V) with respect to a suitable filtration.

6. The groups A,(II; G). Eilenberg and MacLane [7] have introduced the
groups H,(II, n; G); they are the homology groups, with coefficients in G, of
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any space K(II, ) such that

To(K(II, m)) = 0 (g # n),

W"(K(H» ”)) = .
They have also shown [8] that the groups H,(II, #; G) satisfy a suspension
theorem; there is a natural homomorphism ¢: H, (I, #; G)—H ;. (II, n+1; G)
which is an isomorphism for ¢=<2n—1. Thus, for each %, the groups
H, (I, n; G) are constant for » sufficiently large; we denote this “stable”
group by 4,(II; G).

In his investigation of the Eilenberg-MacLane groups, H. Cartan [4]
has shown that the groups 4:(I; G) satisfy a “symmetry relation”
A(IT; G) = Ax(G; 10).

We now show that this symmetry relation is a consequence of the results of

§5.

THEOREM 6.1. Let X =K(G, m) and let Y be an (n—1)-connected CW-
complex (m, n=2). Then, for sSm—1,

Totntstr(X + V) = ﬁn+:(Y;G)-

Proof. We have seen that, in the spectral sequence of §5,

1
Epq = Tmio(X) ® Cuyp(Y) (qém-—-Z),
while E,,,_; is a factor group of msm—1(X)® Cayp(¥)=0. Thus, for gs=m—1,
2 0 (g # 0),
Eyp, = Huyp(Y; 7"m+q(X)) = {

H,.,(V;G) (g=0).

It follows that
(*) E;-q=0 (0¢q§m"'1;’=273,"',°°)-

Now d,:E,¢—E,_,,, and d,:E;,,, ,—E,, If r22, then E},,,_,=0 since
1—-7<0;if r>p, then E,_,,_ ;=0 since p —7<0; finally, if 2<r<p <m, then
0<r—1=p—1=m—1 and hence E,_,,_;=0. Thus
) 2
**) Epo = Epo = Hup(V;G) (p = m).
Now 7l'm+"+,+1(X * Y) =ﬂ3,ODﬂs-l,lD cte D‘NO,;D“-—I,0+1=0, and

00
ﬂp.q/“p—l.'ﬁl ~ Ey,q

Thus, if s<m—1, it follows from (*) that

Ts—1,1 = *°° = ﬂo,s=0

and therefore
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Tminia1(X* V) = me0 =~ Eqo.
Our result now follows from (**).

COROLLARY 6.2. For any abelian groups II, G and any integer s,
A,(I1;G) =~ A,(G; 1I).
For we may take m=n>s, ¥=K(II, n) above and conclude
A(;G) = Hup (T, 1;G) = Huyo(V;G)
~ Topntsr1(X * V) = Topnisr1(V+ X) = A,(G; )
since X = ¥ is homeomorphic with ¥« X.

7. Homotopy groups of the union of two spaces with a point in common.
Each space X considered in this section will be 1-connected and will have a
distinguished base point x,. In order to justify our use below of the Kiinneth
theorem for homology groups of pairs, we assume that {xo} is a strong neigh-
borhood deformation retract of X.

Let X\/ Y be the subset X Xy, Jxy X ¥ of X X V; X\/Y is the union of
the two spaces X and YV with the points xo and y, identified. Let ¢;:m,.(X)
-1 (XVY), t2:m,(Y)—>m (X Y) be injections, and let 3:m, 1 (X X ¥V, XV Y)
—m.(XV Y) be the homotopy boundary operator of the pair (X XY, X\ Y).
It is known [17, Theorem 18] that 4, 4;, and 9 define an injective representa-
tion

XV Y) ~m(X) ® (V) @ mn(X XV, XV T) (r = 2)-

Moreover, the injection ,(X)—.(X\V Y, ¥) is a monomorphism.
Define a map ¢: X + Y-S(X X Y) by

21 = O(x, ) & (2t — Dpy (1/2=t=1),
2(x, ) & (1 — 2)p- (0=t = 1/2);
¢ is continuous since it is well-defined. Furthermore, ¢(xo* ¥) CS(xoX ¥) and
&(X *y0) CS(X Xy0); hence ¢(X xyo\Jxo» V)CS(XVY).

LEMMA 7.1. The homotopy groups of X »yo\Jxo* Y vanish in all dimensions.

o((1 — Dz ® 1) = {

Proof. The sets X xyo and xo+ ¥, as well as their intersection xq *y,, are
contractible. Since x, is a strong neighborhood deformation retract of X, it
follows that xo o is a strong neighborhood deformation retract of X «y,.
Our result now follows from (3.2).

The map ¢, together with the inclusion map S(XV Y)CS(XXY), de-
fines a map ®:S(XV YY)V (X =« V)=>S(X X7Y).

LEMMA 7.2. The homomorphism
P m(S(X V T) V (X+Y)) - m(S(X X T))

is an isomorphism for all r.
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Proof. Since both spaces are 1-connected, it suffices, by an argument of
J. H. C. Whitehead [19, §6], to show that ® induces isomorphisms of the
homology groups. Now ® maps the homology sequence of the pair (S(XV Y)
VX =+Y), S(XVY)) into the homology sequence of the pair (S(X XY,
S(XVY)), and induces the identity map on the homology groups of S(XV Y).
By the five-lemma, it suffices to show that ® maps the relative homology
groups isomorphically. However, the triad (S(XVY)VX+Y); S(XVY),
X + Y)) is proper; hence the reduced homology groups of X * ¥ are mapped
isomorphically by the injection onto the homology groups of (S(XVY)
V(X +Y), S(XVY)); the former groups are isomorphic, under the injection,
with the homology groups of (X * ¥; X « yo\Ux, * Y). Hence it suffices to show
that ¢ maps the homology groups of (X * ¥, X +yo\Uxq* Y) isomorphically
onto those of (S(XXY), S(XVY)).

LeEMMA 7.3. Let f: (X, Xo)—(Y, Yy) be a relative homeomorphism [9, Chap.
X ). Suppose that Y is an identification space of X under f and that X, is a strong
deformation retract of a neighborhood U of Xo. Then fx: H (X, Xo) =H, (Y, Y,)
for all q.

Proof. Let V=f(U). Then V is a neighborhood of Y, and Y, is a strong
deformation retract of V. Consider the commutative diagram
Hy(X, Xo) -L*Hq(lﬂ Vo)
Liy N2
fe
Hy(X, U) ——— H(Y, V)
Lis ; Lis
Hy(X — X0, U — Xo) > Hy(Y — Yo, V — Vo)

in which 4y, « - -, 24 are injections and fi, f3, f3 are induced by f. Since X, and
Y, are strong deformation retracts of U, V, it follows that 4, and 3, are iso-
morphisms. Since Xo=X,C U and Y,=Y,CV, it follows from the excision
theorem for singular homology [9, Theorem VII, 9.1] that 43 and 44 are iso-
morphisms. Since f maps (X —X,, U—X,) homeomorphically onto (¥ — Y,
V—Y,) it follows that f; is an isomorphism. Hence f; is an isomorphism.
The maps
:(X+Y; X+ ZUF+xV) > (S(X XT), P)
and
@IX*yoU 2ox Vi Xxy U2+ YV, Xs FU F+V) > (S(X VYY), P)

satisfy the hypotheses of Lemma 7.3. Hence ® maps the homology groups of
X+ Y, X+« BUZ*Y)and of (X +y\Ixo* Y, X + UK + V) isomorphically
onto those of (S(X X Y), P’) and (S(XVY), P’). The desired conclusion now
follows from the five-lemma.
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COROLLARY 7.4. The homomorphismpx:m, (X + V) >m (S(X X Y), S(XVY))
is @ monomorphism for all r. If X is (m—1)-connected and Y is (n—1)-con-
nected, then ¢« is an isomorphism for r <m-+n-+min (m, n).

Proof. Consider the commutative diagram

o,

kl/'vrr(S(X VY)V (X+Y)) > m(S(X X Y))

WT(X* y)/ 1 ks ! k4

b (S(XV TV (X5 7)), S(X V ¥) —2m(S(X X V), S(X V/ 7)),

the homomorphisms k; are injections, while the ®; are induced by ®. From
the properties of the homotopy groups of the union of two spaces with a
point in common which were noted above, ki, k2, and k3 are monomorphisms;
hence k, is also a monomorphism. This proves the first statement. As to the
second, note that X * Y is (m-+n)-connected and S(X\VY) is (min (m, n))-
connected; hence [3, Theorem I] the triad (S(XVY)V(X*Y); X+7,
S(XVY)) is (m+n+min (m, n))-connected. From the exactness of the
homotopy sequence of this triad, we conclude that k; is onto, and therefore
an isomorphism for r <m-+n-+min (m, xn).

We now define a homomorphism ¢:7 (X XY, XVY)>m (X +Y). Let
E be an oriented 7-cell. Then E X is an oriented (r+1)-cell (the orientation
being the cross-product of the given orientation of E with the natural orienta-
tion of I). Let g:(E, E)=>(X XY, X\VVY) be a map; we have g(x) = (g:(x),
g2(u)) for u€ E, where g1: E—>X and g.: E—Y are maps. Define a map og of
EXI into X « Y by

og(u, 1) = (1 — 0)g1(w) & tga(u) (€ E te);

then gg: (EXI, (EXI))—>(X+ YV, X xyUxo* ¥), and it is easy to see that
the map g—og induces a homomorphism op:m (X XYV, XV V)>m, (X + Y,
X +yo\Jxo+ V). We define o to be the composition with oy of the inverse of
the injection of 7,.(X + V) into (X » V, X » yo\Uxo+ ¥); this injection is an
isomorphism because of Lemma 7.1.

LeMMA 7.5. The composition ¢xoo:m(XXY, XVYV)>mru(S(XXY),
S(XVY)) is the (relative) Freudenthal suspension E.

Proof. We have
¢(og(u, t)

o((1 — t)g1(u) &® tgs(u))
_ {%g(u) & (1 —2)p 0 <t=1/2),
— 201 — fg(w) @ (2t — 1)ps 1/2 <1< 1).

This is clearly the suspension of the map g.
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LemMA 7.6. Let (Z, C) be a pair, and suppose that (Z, C) is s-connected
(s22), C is t-connected (1=t<s); the suspension E:w,(Z, C)—w,1(SZ, SC)
is an isomorphism for r <s-+t and an epimorphism for r="s+t-+1.

Proof. Consider the commutative diagram

. o
m(Z, C) —— 1(Z + C, C) ———m(Z + C)
l E l E1 l E2

741(SZ, SC) = m41(S(Z + C), §C) = m41(SZ + SC)
13 14

where 4y, 45, 43, 44 are injections (note that 4, and 44 are isomorphisms), and
E, E,, E, are Freudenthal suspensions. By [14, Corollary 3.3], 4, is an iso-
morphism for r <s-+t and is onto for r=s+4t+1. Since (SZ, SC) is (s+1)-
connected and SC is (£41)-connected, we see in the same way that 45 is an
isomorphism for r <s+4:{+42. On the other hand, Z+C is s-connected and
hence E, is an isomorphism for r <2s.

CoroLLARY 7.7. If X is (m —1)-connected and Y is (n—1)-connected, then
o:m (X XY, XNV Y)>741(X « Y) is an isomor phism for r <m-+n-+min (m, n)
—2 and an epimorphism for r =m~+n-+min (m, n) —1.

Proof. In view of Corollary 7.4 and Lemma 7.5, it suffices to observe that
E:n(XXY, XVY)>ru(S(XXY), S(XVY)) has the desired properties.
Now (XX Y, X\/Y) is (m+n—1)-connected [10, Theorem 2.1] and X\/ ¥
is ¢-connected (t=min (m, n) —1); by Lemma 7.6, E is an isomorphism for
r<m-+n-+¢t—2 and an epimorphism for r=m-+n-+t—1.

We can now translate the results of §5 to give some information about the
homotopy groups of (XX ¥, X\/ V).

THEOREM 7.8. Let X be an (m—1)-connected space, Y an (n—1)-connected
CW-complex (m, n>1). Then there is a spectral sequence {E'} with the follow-
ing properties:

(1) Ei,q=Hﬂ+p( YV: iy o(X)) (g=m—2);

(2) Let mwp,, be the image of the injection

Totntpta(X X V2, X \/ VHr) — Tutntord(X XV, X V T);
then, for p+q=min (m, n) —2, we have
E:,q A Tpo/ Tp1,041-
CoRrOLLARY 7.9. If furthermore X = K(G, m), then
7rm+n+s(X x Y, X \/ Y) = H,H.s(Y;G)

for s=min (m, n) —2.
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Suppose that X =K(G, m) Y=K(II, n), m =n. Then mpyni s (X XYV, XV Y)

»tre(IL, m; G) for s =m —2. Thus this group is in general not zero. On the
other hand, the “generalized Whitehead products” akxBEmTmintptra(X XY,
XVY), (@€ETm (X)), BETw(V)) [2, §5], are all zero for p+¢>0. This
shows that the groups mnint:(X XY, XV Y), even in low dimensions, are not
generated by generalized Whitehead products. A different example to illus-
trate this phenomenon has been given by Hilton [10].
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