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A GENERALIZATION OF THE HOPF INVARIANT!
By GeorGe W. WHITEHEAD
(Received August 28, 1948)

Little progress has been made in the study of homotopy groups of spheres
since the appearance of Freudenthal’s paper [9] on the subject in 1937. Perhaps
one reason for this lack of progress has been the fact that there were very few
methods for determining whether or not a mapping of one sphere on another
is essential or not; in other language, whether the nt* homotopy group m.(S")
is different from zero. One such method is furnished by the Brouwer degree of a
mapping of S” on itself [1]; another by the Hopf invariant of a mapping of
S on S [10, 11]. These methods are, however, limited in scope, applying as
they do only to mappings of 8" on §" with n = r or n = 2r — 1. In the inter-
mediate cases, 7 < n < 2r — 1, Freudenthal’s results reduce the problem of
the determination of 7,(S") for n < 2r — 1 to that of calculating ms_;(S*) with
k = n — r + 1. But almost nothing was known about =,(S") forn > 2r — 1.

The present paper attempts a step in this direction by defining a homomor-
phism H:7,(8") — m,(8" ) for each n < 8r — 3. This homomorphism is a
generalization of the Hopf invariant in the following sense. The Hopf invariant
can be described as a homomorphism of m5;(S") into the additive group of
integers; the group ms—1(S") is known to be isomorphic with the group of
integers, and under a suitably chosen such isomorphism H is identical with
this homomorphism in casen = 2r — 1.

The Hopf invariant is closely connected with the suspension homomorphism
E, : m(8") = maa(S™1) [9]. In fact, one of Freudenthal’s theorems states that
the image of Ey—s : m2ra(S™) — my,_1(S") is the subgroup of those elements
of msr—1(S") whose Hopf invariant is zero; i.e., the image of Ej._; is the kernel
of H. One criterion for the usefulness of a generalization of the Hopf invariant
would seem to be the truth of the theorem that the image of E, is always equal
to the kernel of H. This we have not been able to prove or disprove. It is im-
mediately evident from the definition of H that the image of E, is contained
in the kernel of H; but the opposite inclusion seems to be much more difficult.

Another of Freudenthal’s theorems deals with the kernel of E. . Again we are
able to obtain only a partial generalization of Freudenthal’s results in the general
case. However, in the special case of Epy : mo—1(S) — 7, (S") we are able to
prove a stronger result than that obtained by Freudenthal. In fact, we prove
that the kernel of E,._, is a cyclic group, and exhibit a generator of this group.
In case r is odd, the kernel of E—, is infinite cyclic; if r is even, it is either zero
or cyelic of order two, according as mz,+1(S"") contains an element with Hopf
invariant 1 or not.

The problem of the existence of elements of m2,—(S") with given Hopf in-
variant was proposed by Hopf [11], who proved that if » is odd, then every

1 Presented to the American Mathematical Society, April 26, 1946, and September 9,
1948. Some of the results of this paper were announced in [20].
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GENERALIZATION OF THE HOPF INVARIANT 193

element of m,—(S") has Hopf invariant zero; while if » is even, there exist ele-
ments with Hopf invariant 2 and therefore with any even integer as Hopf in-
variant; and that there exist elements with invariant 1 if » = 2, 4, or 8. We shall
prove here the first result in the negative direction for r even; if » = 2(mod 4)
and r > 2, no map with odd Hopf invariant exists. As a consequence S*** can-
not admit a continuous multiplication with two-sided identity if £ > 0.

Sections 1-3 of the paper are preliminary in nature. Section 1 contains a
list of notations used throughout the paper. Section 2 is devoted to a discussion
of homotopy groups, and Section 3 describes the properties of some of the many
operations involving homotopy groups which have appeared either explicitly
or implicitly in the literature.

The original definition of the Hopf invariant can be described roughly by
the statement that the Hopf invariant measures the extent to which the counter-
image of two points (say the north and south poles) are linked. In the case
n = 2r — 1, this linking can be described combinatorially by means of a linking
number; but if » > 2r — 1, the necessary combinatorial machinery is lacking
and we are forced to use a different approach. The counter-images of the north
and south poles are “‘separated” by collapsing an equator S~ C S to a point
to obtain a space which may be regarded as the union S" v S of two tangent
spheres. Thus each map of S” into S” determines a map of 8" into 8" v §". In
Section 4 we prove first a general theorem on the homotopy groups of the union
of two spaces A and B which have just one point in common, and then proceed
to obtain more precise results when 4 and B are specialized to be spheres. A
useful tool here is a theorem of J. H. C. Whitehead [22] on the homotopy groups
of a space obtained from another by adjoining an open cell. We obtain in passing
a theorem on 7,(S” v S%) which generalizes one due to J. H. C. Whitehead [21].
In Section 5 we apply the results of the preceding section to define and prove a
series of properties of the Hopf invariant.

In Sections 6 and 7 we investigate the kernel of the suspension homomor-
phism. The principal tool here is a generalization (similar to the previous gener-
alization of the Hopf invariant) of a pair of numerical invariants associated by
Freudenthal with each nullhomotopy of the suspension of a given map. A formula
is proved which relates these generalized Freudenthal invariants with the Hopf
invariant of the given map. In this section we also prove the strengthened form
of the Freudenthal theorem mentioned earlier.

Section 8 is devoted to the construction of some essential mappings of spheres
on spheres. The generalized Hopf invariant is used to prove that certain ele-
ments of m,(S") are different from zero; the generalized Freudenthal invariants
are also used to prove that the suspensions of some of these elements are non-
zero. We prove in fact that =,(S") = 0 for (n, k) = (14, 7), (14, 4), (8k, 4k),
8k + 1, 4k + 1), (16k + 2, 8k), (16k + 3, 8k + 1). Section 9 is devoted to
the proof of the afore-mentioned theorem on the non-existence of maps with
Hopf invariant 1. Section 10 contains some concluding remarks and a few con-
jectures. :
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1. Preliminaries

This section contains a list of notations to be used throughout the paper.
Many of the spaces we consider will be subspaces of Cartesian n-space C" for
some integer n; it will be convenient to consider all the spaces C" as subspaces
of Cartesian space of infinitely many dimensions. Thus we define C" to be the
set of all infinite sequences * = (x, -++, s, -+ ) of real numbers such that
z; = 0for ¢ > n, and set C = U5—,C". The space C is metrized by the distance
function

(1.1) |z =yl = il — y))} (z, y € 0).
It will facilitate the writing of formulas to ignore the distinction between a
finite and an infinite sequence; thus the symbols (21, ---, ,) and (z1, -+,
Tn, 0, --- ) will denote the same point z ¢ C".

The unit n-cube E™ is the subset of C" defined by
(1.2) E'={zeC"| -1 <z s lfori=1,---,n}.

We distinguish two subsets £” and J" " of E™:
E" = {zeE" | ][ @ — 2}) = 0},
"o (ze BN (1 4+ 2) [I[15(Q — 2D = 0};

E™ is the boundary of E", while J" " is an (n — 1)-cell contained in E".
The wunit n-sphere S” is defined by

(1.4) S" = {zeC™ | A2l = 1.

We denote by yx the point (1,0, ---,0, ---) of C and observe that y« ¢ S™ for
every n = 0. We also define

(B} = {z eS8 len+1 = 0},
El={zxe 8" |21 = 0},
7 = {z e 8|z, = 0},
K = {reS" |z = 0},
KX = {ze 8" |1 <0},
2= (1,1, ---,1) ¢ E™.

(1.3)

(1.5)

We next define a mapping d,: 8" X E' — 8" asfollows’Ifze S",0 St < 1,
then d,(z, t) is the point of E1* whose ‘‘vertical”’ projection into the equatorial
plane z,,; = 0 is the point which separates the line segment from z to yx in

2 If X, Y are topological spaces, a mapping f: X — Y is a continuous function f on X to
Y. IfAcX,BCY,amappingf:(X,4) — (Y, B) is a mapping f:X— Y such that f (4) C
B. If f:(X, A) » (Y, B) and ¢:(Y, B) — (Z, C) are mappings, g ° f denotes the composite
mapping of (X, 4) into (Z, C).
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the ratio #: 1 — ¢; whileif z ¢ 8", —1 < t < 0, then d.(z, ¢) is the mirror image
with respect to the equatorial plane of the point d,(x, —t). Thus

¢ +Q0Q =8z, 1 =0z, -, 1 — )Tnsa,
@1 -~ DA - =)™ 0=t=s1),
(=t+ A+ 82, A+ D2z, -+, 1+ OTnsa,s
—(=21 + A - =) (-1=t20),

The following properties of the map d, are easily verified:

I\

(1.6)  da(x, t) =

IA

a7 d, maps (S* — yx) X [0, 1) topologically on EF™" — yx;
(1.8) d, maps (S" — y*) X (—1, 0] topologically on EX*' — yy;
(1.9) d, maps (8" X 1) u (8" X (—1)) u (yx X E') into yx;
(1.10) da(z, 0) = z for z ¢ S™.

Forn = 2, let p,: 8" — S" be the reflection of 8" about the (n — 1)-dimen-
sional plane x; = z3 = 0;

(1-11) Pn(xl y *° 21n+1) = (x1 y —X2y —T3, Xty °*°, $n+1), (a: € Sn)-

Let further 7,: S® — 8" be the rotation through 90° about the great (n — 2)-
sphere S77* n 8™, so that

(1.12) Tn(xl y ° % xn-k-l) = (xl ) —xﬂ+l ) T3 y " Zn ’ x2)'
Note that
(1.13) m(BY) = KZ, m.(EY) = Ki,

(K3) = E}, t.(KZ) = EZ,

and that 7, is homotopic to the identity map of S™ on itself.
Forn = 1,let 6,: (E", E") — (E", E™) be the reflection of E" about the (n — 1)-
dimensional plane z; = 0;

(1.14) Ou(y, * -y Xn) = (—Z1,Z2, *** , Tn).
We next define (for » = 1) a mapping ¢»: 8" — 8" by the formula
(22, — 1,2"%(a% — (1 — =)H)",
2"y, -, 2 20) 1 —z3 22,5 1),

2
(1-2p 2 -2 2 e — ™

(115) @n(@1, <+ ) Tugs) = 1 1—z i—a

Lo XTn
21/2 lxzx:; e ’21/2 12 ;1) (0 < <1-— 11),
— I — X1

IIA

\y* (—-1 ) é O)
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and note that ¢, maps K} — Si™" topologically on S™ — yx , while on(K™) = yx.
Moreover ¢, is homotopic to the identity map of S™ onto itself. It can be verified
by direct computation that

(1.16) eni1(da(®, 1)) = dalen(@), 1).
We also define a mapping ¢n: 8* — S” by the formula
(1.17) on(@) = on(pa()) (ze8").

Since p, and ¢, are homotopic to the identity, so is ¢ .

We denote by S” v S? the subspace (S X yx) U (yx X 8% of the product
space S” X 8% and define a mapping ¢, : S* — 8" v 8" by the formula
(1.18) 0n() = (pn(2), on(2)) (x e 87).

The map ¢, has the following properties:

(1.19) ¢ maps K1 — Si™" topologically on (8™ — y«) X ¥x;
(1.20) ¢ maps K- — 8¢ topologically on 7« X (S™ — ys);
(1.21) @a(S07) = yx X yx..

Let &,: (S" X 8™ X EY, (8" v 8" X EY) — (8™ X 8™, 8" v §"*) be
the mapping defined by

(1.22) Wy, ¥, 8) = oy, ), da, 1) (w, ¥ € S, t e EY),
and define 5,: (S* v 8" X E' — S"*' v §"* by
(1.23) o =8| (8" v 8" X E.

Since ¢n+1(dn(x, 1)) = dulpn(z), t) and

(1.24) n11(da(®, 1)) = @ni1(ont1(da(a, 1))
= @ni1(dn(pa(z), 1))
= du(pn(pa(®)), t)
= dalpn(2), )

we have

(1.25) ent1(@n(z, £)) = dnlen(z), 1)

Let 6, (8" X S™, 8" v 8™) — (S" X 8", 8" v.8") be the mapping such that
(1.26) oa(z, ') = (2, x) (z,2" ¢ S™),
and observe that
(1.27) @a(pn(¥)) = anlen(y)) (y e S™).

Define also os: S* v 8* — S™ v 8" by
(1.28) on =0, 8" vS"
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We next define a mapping ¥.: (E", E,) — (S, yx).
For n = 1, ¢ is defined by

IIA
v

1),

. {(m — 1,201 — &)h ©
0).

(1.29) ¥u(t) = do(—1,10) =

‘ 2 - 2+ 1)) (-1st
The definition of ¥, is completed inductively by setting
(1.30) Vni1(®1, -+, Ta1) = da@a(@1, <+, Zn), Tas) (z e E™™).

It is easy to see that ¥, is topological on E* — E", while ¢ (E™) = yx .
The maps ¥, are used to define mappings Voa: (BP X EY (P X E) v
(B X EY) — (8 X &%, S v 8%;

(1.31) U2.0(@, Y) = W(@), ¥a(y)) (x ¢ E?, y ¢ EY).

The cube E*** has a natural representation as the product space of E” and
E*; this representation is realized by the mapping 7,.,: E? X E* — E**? defined
by

I\

(132) "’qu(x:y)':(xly"'7zpyy17""yq) (xEEp’yEEq)'

The map #,,, is a homeomorphism which maps E” X E°u E? X E°* = (E* X E%"
onto E*™. We now set

(1.33) J’p,q = '7’;.«° ﬂ;.lq

so that ¥y..:(B** EP™) — (& X 8% §° v 89, and further define ¢,, =
Voo | BP™ and ¥, = ¥p.o | (B X E°), s0 that ¥p.q: EPY — SP v 8% and ¢),,:
(E" X E —» S v 8

2. Homotopy groups

We list here for reference the definitions and properties of homotopy groups
needed in the sequel.’> There are in current use two different (but equivalent)
definitions of homotopy groups. In the first of these definitions the cube E"
is used as antecedent space; in the second the sphere S" is used instead of E™.
Moreover it is frequently convenient to replace E” (or S™) by a homeomorphic
copy. In order to make consistent use of such homeomorphs of E" (or S"),
questions of orientation must be settled. We begin by selecting orientations of
E" and S".

We recall that an orientation of E™ is simply a generator of the (infinite cyclic)
integral relative homology group H,(E", E™); while an orientation of S” is a
generator of the (likewise infinite cyclic) integral homology group H,(S") (or
preferably here but equivalently, a generator of H,.(S", y«)). We first orient E'
by considering E' as the ordered 1-simplex whose first vertex is —1 and whose
last vertex is +1; the identity map of E' into itself is a singular 1-simplex (in
the sense of Eilenberg [6]), which is a 1-cycle modulo £'; the homology class of

3 For an exposition of the elements of homotopy theory see [8; 12].
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this 1-cycle is an orientation w, of E'. We now suppose that orientations wn_; of
S™ and w, of E™ have been selected and proceed to define inductively first w,,
and then w,y; . The map ¥.: (E", E™) — (S™, y«) induces a homomorphism 7 :
H,(E", E™) — H.(8", yx); we set w», = ¥ (w,). Next let r, be the radial projection
(from the origin) of 8™ on E™™ (i.e., if z ¢ 8", r,(x) is the point in which the
half-line beginning at the origin and containing z intersects £"*'). The map r,
induces an isomorphism 7x: H,(S", yx) — H.(E™", y«) and therefore r(w,) is
an orientation w, of E"". The boundary operator dx, maps H, ., (E™*, E™*™)
isomorphically onto H,(E™™, yx); e set was1 = 95r1(wn). The choice of orienta-
tions is indicated by the diagram
*
(2 1) HI(EI: El) A d H,.(E”, E”) _'I/L) n(S"’ 3/*)
. .1

*
Tn nks an n n
—_—> 'n(E +l, y*) +L> n+1(E +1) E +l) —> .-

Now let X be a topological space, A a subspace of X, and z« a point of A.
Let F*(X, A, z«) be the set of all mappings of (E®, E", J*™) into (X, 4, z).
If f, g e F"(X, A, z«) we say that f is homotopic to g if and only if there is a
mapping F: (E" X E', E® X E', J"™' X E") = (X, A, z«) such that F(z, —1) =
f(x) and F(z, 1) = g(z) for z ¢ E". Homotopy is an equivalence relation; the set
of all homotopy classes of elements of F"(X, A, z«) is denoted by m,(X, 4, z«). In
order to introduce a group operation in m,(X, A, z%) for n = 2 and for n = 1 if
A = z4 we first define an operation in F"(X, 4, z«): if f, g e F"(X, A, z«) we set

f(2x1+ 1:x27 "',xn) (—1 ézl éo)y
9(22?1—1,232,“‘,311;) (O§x1-§-1)'

Ifn > 1lorifn =1and A = z«, f + g is again an element of F"(X, 4, z«) and
its homotopy class depends only on the homotopy classes of f and g and in these
cases the operation + induces an operation (also denoted by +) in 7,(X, A, z«).
If zx is a point which belongs to the same path-component of A as zx , the groups
ma(X, A, z4) and m,(X, A, zx) are isomorphic; this isomorphism is in general
not uniquely defined but depends on a homotopy class of paths joining z« to
zin A. In most of the cases in which homotopy groups will be used in this paper
the pair (X, A) will be n-simple; i.e., X and A are pathwise connected and the
above isomorphism is independent of the path. In the notation for homotopy
groups we shall frequently suppress the base point x4, and also the subspace
Aif A = 4.

If (X, A, z4) and (X', A’, z+) are triples and f:(X, A, 24, — (X, A’, z4) is
mapping, then f induces a homomorphism f:7,(X, 4, z+) — ma(X’, A’, %) which
depends only on the homotopy class of f. If g: (E", E", J™™) — (X, A, z4) isan
element of the homotopy class a € m, (X, A, 7«), then the map fo g:(E", E",
J™ — (X', A’, zx) is an element of f(c).

If fe F*(X, A, z«) belongs to the homotopy class a € m,(X, A, z%), then the
homotopy class of the mapping df: (E", E™™) — (4, z«) defined by

(23) af(xly :xﬂ—l) = f(xlx crty Tpel, 1)

(22) (f+ g)(xly T xn) = {
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depends only on « and is denoted by d(a). The function 9:7.(X, 4, zx) —
mn1(A, T« , Z«) is a homomorphism, called the boundary operator.

The homotopy groups of a space X, a subspace 4, and the relative homotopy
groups of (X, A) are connected by a sequence of homomorphisms:

@4) e o) D@ D malz, A) S maa(4) > - > m(a).

Herei: (A, zx, zx) = (X, T+, T+) and j: (X, T+ , z+) — (X, A, z«) are the appropriate
identity maps. This sequence (which is referred to as the homotopy sequence
of the triple (X, A, 24) is exvact in the sense that the kernel of each homomorphism
is the sequence is the image of the preceding homomorphism.

The group (X, 4) is abelian if n = 3, and m(X, A) is abelian if m,(4) = 0;
thus my(X) is abelian.

An oriented n-cell is a quadruple (E, E, z, »), where E is a topological space
homeomorphic with E™ under a homeomorphism which maps (E", E™ onto
(B, E),  is a point of E, and  is a generator of H.(E, E). Let (E, E, z, ») be
an oriented n-cell and let f:(E, E, ) — (X, A, z«) be a mapping. Choose a
mapping k:(E", E") — (E, E) (not necessarily a homeomorphism) such that
z e h(J™ ) Cf(z«) and h*(ws) = . Then fo h e F*(X, A, 2+) and the homotopy
class a of fo h depends only on the homotopy class of f and not on the particular
representative chosen, nor on the choice of & subject to the above conditions.
We shall say that f is a representative of a. It is easy to see that if (E, E, z,w)
is an oriented n-cell and a e m.(X, A, z«) there is one and only one homotopy
class of mappings: (E, E, ) — (X, 4, z«) each of whose elements represents a.
Thus (X, A) could have been described as the set of homotopy classes of
mappings of (E, E, z) into (X, A4, z«); the only role played by the orientation
w is to allow us to compare mappings of different spaces E into X.

An oriented n-sphere is a triple (S, z, w), where S is a topological space homeo-
morphic with 8%, z ¢ S, and  is a generator of H.(S", z). Let (8, 2, w) be an
oriented n-sphere and let f:(S, ) — (X, z) be a mapping. Choose a mapping
h:(E", E™) — (8, z) such that k*(w.) = w. Then fo h is a mapping: (E", E™ —
(X, =) whose homotopy class a does not depend on the choice of f in its homo-
topy class nor on the choice of & subject to the above condition. As above, we
shall say that f represents a. Again, if (S, z, ) is an oriented n-sphere, the ele-
ments of m,(X) are in 1:1 correspondence with the homotopy classes of map-
pings: (8, z) — (X, 2x).

We list some standard oriented cells and spheres for future reference. Here-
after, whenever reference is made to the element of a homotopy group repre-
sented by a map of one of the cells listed here, it will be understood that the
cell or sphere is oriented by the orientation given here.

Cells: (E", E", %, w,), where z is any point of J**;

(E* X E* (E* X EY, z, nhq (wpsq)), Where z is any point of (B X E°).

Spheres: (8", yx , wn);

(B, z, w,) where z is any point of E**;
((E* X E z, w) where z is any point of (E* X E%
and @ = gre(Mpg (@pta))-
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It will also be convenient to allow a certain latitude in the choice of the
image space similar to that we have already allowed in the antecedent. How-
ever, we shall do this only in the case of cells and spheres.

Let (E, E, z, ) and (E', E', 2, ') be oriented n-cells. A map h: (E, E) —
(E', E') is called admissible in case hi(w) = . Similarly, if (S, z, ») and
(8', 2, o) are oriented n-spheres, an admissible map h:S — S’ is any one such
that hx(w) = o'.

Let (S, z, ») be an oriented r-sphere, and h: S — 8™ an admissible map. Then
h is an isomorphism of m,(8) onto 7,(S"); since any two admissible maps are
homotopic, they induce the same homomorphism. Thus each element a € 7,(S)
determines a unique element A(a) € 7,(S") and we shall say that any representa-
tive of « is also a representative of h(a). Moreover, if (S, z, ») and (S, =/, «')
are oriented spheres of dimensions r, 7 respectively, if A:S — 8" and h: 8’ — 8"
are admissible maps, and if fim,(S) — 7. (8"), g:ma(S) — m.(S”) are
homomorphisms such that &’c f = go h, we shall say that f and g are equivalent.
The term equivalent will be used in an analogous sense to refer to other opera-
tions involving homotopy groups of spheres.

Let (E, E, z, ») be an oriented (n-1)-cell. Just as above, all admissible maps
of (E, E) into (E™*, E**") induce the same isomorphism A of mm41(E, E) onto
wmi1(E™, E™), and any representative of an element aermii(E, E) will be
said to be a representative of h(a). The notion of equivalence can then be ex-
tended to compare operations involving relative homotopy groups of oriented
cells modulo their boundaries.

If (E, E, z, ») is an oriented (n + 1)-cell, then (¥, z, 95 +1(w)) is an oriented
n-sphere, which we shall refer to as the boundary of the oriented cell (E, E, z, w).
The homotopy groups of E all vanish; hence by the exactness of the homotopy
sequence of (E, E), the homomorphism 8:7n1(E, E) — 7»(E) is an isomorphism
onto. Then if A:E — S is an admissible mapping, the homomorphism & o 3:
7m+1(E, E) — 7,(S") is an isomorphism onto which is independent of the choice
of the admissible mapping h. This being the case, we may use the term equzvalent
in a still wider sense to compare operations involving the homotopy groups of
(E, E) with analogous operations involving homotopy groups of spheres.

We now consider the effect on the homotopy group 7.(S") of a reversal of
orientation in S" or S". The group =,(S”) is an infinite cyclic group generated
by the homotopy class ¢, of the identity map. Let h,:S* — S be a mapping
representing —, . If f:8™ — S is a mapping representing an element aer,(S"),
then fo h, is a representative of f(—t,) = —f(1,) = —a, since f is a homomor-
phism. Thus reversal of orientation in S™ induces a change of sign in 7,(S") for
each r. On the other hand, the correspondence f — h, o f induces the endo-
morphism U, ., = h, of 7,(8"); since we may choose A, to be the reflection about
an (r — 1)-dimensional great sphere in S, so that k.o k. is the identity, it follows
that U, o U, is the identity. Hence U,, is an automorphism of period 2. In
general U, . is not merely a change in sign; for example U; . is the identity auto-
morphism of m5(S?).
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We now list without proof some lemmas which will be useful in handling
homotopy groups.

LemMa 2.6. Let f, g:(S", yx) — (X, 2+), and let f v g:(S" v 8, yx X yx) —
(X, zx) be the mapping defined by

{ v o)y, ye) = fy) (yeS),
Fva)ysx,y) = g() (y e S).

Suppose that f, g represent a, B € m,(X) respectively. Then (f v g) o ¢ : (S, yx) —
(X, z4) represents B + a.

Lemma 2.8. Let f, g: (8", yx) — (X, z«) be mappings representing a, B € wa(X)
respectively. Suppose that ‘

2.7

(29) f(xl y "0 xn+1) = 9(331 y 3y Tn,y —.’Cn+1) forz € E_: .
Let h be the mapping: (S", yx) — (X, z+) such that
() (z ¢ EZ),
(2.10) h(z) = {f e ..)
g(x) (:c € E+).

Then h represents a + B.
LeEmMa 2.11. Let f, g be maps: (E", E™) — (X, A) such that

(212) f(]-) T2,y *°° ’xn) = g(—l;%; e ;xn) ((xz, ,xn) GEn—l),

and suppose that (X, A) is n-smple, and that f, g represent a, B, € wn(X, A) re-
spectively. Let h:(E", E™) — (X, A) be the map defined by

f(2x1+1,:cz,---,z.) (—léxléo),
gz — 1,22, +++ , ZTn) 0=z =51).

Then h:(E", E™) — (X, A) represents a + 8.

Lemuma 2.14. Let (E, E, z, ) by an oriented n-cell, and let f: (E, E, z) — (X, A,
z4) represent a € w.(X, A, zx). Then if (E, z, ") is the boundary of (E, E, z, v),
the map f| (E, z):(E, x) — (A, z«) represents d(a).

3. Some operations in homotopy groups

(2.13) h(z, .. , Tn) = {

We consider here some of the operations involving homotopy groups which
will be needed later.
1. The product [21]. This operation associates with each pair

(o, B) (e € mp(X), B € m (X))

an element [e, B] € Tp4.g-1(X). To define [a, 8], let £ (S7, yx) — (X, z+) and g: (S y«)
— (X, 7+) be representatives of a, B respectively. Define a map fv g:(S* v S,
yx X yx) — (X, z4) by the formula

v o)y, ye) = ) (y e S7),

3.1)
Fvays,y) = 9@ ' (y e S
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and let [f, g] = (f v g)o ¥p.,. Then [f, g] is a mapping of (E**%, 2°*9) into (X, z«)
which represents an element [, 8] € mp+,-1(X) depending only on « and 8.
The following properties of the product operation are known [21, 18]:

(3.2) ler + @2, B] = [a1, Bl + o2, B] (p > 1);
(33) [a, Bl + Bz] = [a; 61] + [C{, 62] (q > 1)7
(3'4) [ﬁ’ a] = (_l)pq[a; B]

(3.5) Letf, g be mappings: (E* X E*) — X representing elements a, B € Tp44-1(X),
respectively, and such that

(3.6) f(B® X E%) = g(B® X E*) = z« .
Let f' be the mapping: (E?, E*) — (X, z+) defined by
3.7 f'(@) = flz, 2%,

and let g' be the mapping: (E*, E%) — (X, ) defined by
3-8) g'(x) = ¢(z%, z),

and let o € m,(X), B' € 7,(X) be the elements represented by f’, g’ respectively.
Define a mapping h:(E® X E) — X by

fz, y) ((z,y) e B X EY),
g9(z, y) ((z,y) e B” X EY;

then the element of Tp1q—1(X) represented by h is a + B8 + [',8].

II. Composition [9]). This operation associates with each pair (a, 8) with
a emn(S), B € m(X) an element Bo a € m,(X). If f: (8", yx) — (S, ys) and
g:(S", y+) — (X, z«) are representatives of a, B respectively, then the map
go fi(8", yx) — (X, z+) is a representative of B oa. The composition operation
has the following properties:

(3.10) Bo a = g(a),

(3.9) h(z, y) ={

(8.11) Bo (a1 + ) = Boar+ Bo oy (cr, oz € T (S"), B € (X)),
(312) yo (Boa) = (Yo B)o (o € wa(8"), B € m(S*), v € ms(X)),
(3.13) 7o [, 8] = [yve @, 7o B8] (a € mp(87), B € me(87), ¥ € m(X)).

On the other hand, the right distributive law analogous to (3.11) is not in general
true.

II1. The join. If A and B are topological spaces, their join A * B is the space
obtained from A X B X E' by identifying each set of the form a X B X 1 with
a ¢ A and each set of the form 4 X b X (—1) with b ¢ B. Under the above
identification the set @ X b X E' is mapped homeomorphically onto a subset
ab of A * B, called the line segment from a to b. Thus A and B may be regarded



GENERALIZATION OF THE HOPF INVARIANT 203

as subsets of A * B, and each point of (4 * B) — (4 u B) lies on a unique line
segment joining a point of 4 to a point of B.

If A, B, A’, B’ are topological spaces and f:A — A’, g:B — B’ are mappings,
there is a mapping f * g:A x B — A’ * B’, called the join of f and g, such that
(3.14) F*p A=,

(3.15) (f*9)|B=g;
(3.16) f * g maps each line segment ab linearly onto the line segment f(a)g(d).

The map f * ¢ is induced by the map f ® g:A X B X E' > A’ X B’ X E"such
that

(3.17) F® 9,y t) = (flx), g(w), 0).

If A, B are spheres of dimensions p, g respectively, then A * B is a sphere of
dimension p + ¢ + 1. For if (z, y, ¢) ¢ S X 8* X E', and

3.18) A= (@1 -1+ &) = 1+020 + &)
(3-19) X(x) y; t) = "7p+1.q+1(mr I‘y);

then the mapping x:8” X §* X E' — §”*** induces a homeomorphism % of
S? * S? onto S***'. We orient, S” * S? by the requirement that ¥ preserves orien-
tation.

If A, B are topological spaces, ao € A, by € B, and if f:(S”, yx) — (4, a), ¢:
(8% ys) — (B, bo) are mappings, then f* g maps (S” * S, yx) into (A * B, Qo),
and the homotopy class of f * g depends only on those of f and g. The correspond-
ence (f, g) — f * g therefore induces an operation associating with a e r,(4),
B € mo(B) an element a x 8 € Tp4011(A4 * B).

(3.20) The join operation is bilinear; i.e.,
(3.21) a*x B+ B:) = (x*B1) + (a*p) (@ > 0);
(3.22) (1 + @) *B = (a1 *B) + (2 * ) (» > 0).

To prove (3.21), let f:(S”, yx) — (4, @), and g1, g2 : (S% y+) — (B, bo) be
mappings such that f represents and g, represents 8; for ¢ = 1, 2, and such that
92(E$) = g1(EL) = y«. Then the map g defined by

() (y e ES)
(3.23) gy) = 0
9:(y) (y € EZ)
is by (2.8) a representative of 8; + B.. From (3.17) it follows that if
Yy = (ylx 7yq+1) éEi, theny, = (yls Yo _y¢+1) eE?i')a'nd
(324) (f ® gl)(x’ v, t) = (f(x)} Yx t) = (f ® g2)(x; y,’ t)°

Letting h = (fxg) o Y b = (f%g:) o X, we see that h represents « * 8, h;
represents a * 8;, and that the hypotheses of (2.8) are satisfied by the triple
(A1, 2 , h). Hence (3.21) follows from (2.8). The proof of (3.22) is similar.
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We also need the following properties of the join operation:
(3.25) If a € mp(S7), B € m(8S°), &’ € m(A), B € ws(B), then

(3.26) (@ *B)e (@*xB) = (o a)* (80 B).
(3.27) If @ € m,(8"), B € m,(S"), then
(328) Up+q+1,r+,+1(a * B) = p,r(a) * 6 = a* qul(B);

! (=1 (4 + 8) if 7 or s is odd;
L(=1)"WDT, (a) * B3 r and s are even.

To prove (3.25),let f:8* — 8", /18" — 4, g:8*— §*, ¢’: S — B be mappings
representing a, o’, 8, 8’ respectively. It follows from (3.17) that

(3.30) Feof)®(gog)=(F ®g)o (f®g).

and therefore the corresponding relation with ® replaced by * holds.

To prove (3.28), note that ;111 = tr0 1, , and therefore — (11 = — (4 * 1) =
(—u)*uw = u*(—u) by (3.20). These facts, together with (3.25) and the
definition of U, (§2), imply (3.28).

To prove (3.29), define a map {5,,: 871" — §PHH by

(3.29) B*a =

(3.31) ¢ ;,q(ﬂp-{-l,q-{-l(x, Y)) = fNgt1.p11(y, T)

for (z, y) € 1pt1.001(ST). The map {5, is the restriction to 8?7 of a linear
map of C***** into itself of determinant (—1)®*’“* and therefore ¢}, repre-
gents (—1)®P@ 1. Let {5,008 X 87 X E' — §” X §° X E' be the map
such that

(3.32) $oa(@ Y, 1) = (U, 2, —1).

From (3.18) and (3.19) it follows that

(3.33) X© £ = $pig© X

and therefore ¢}, is the map of S?***! into itself induced by {,.,. Next note that
(3.34) (9 ®f)o g = $ruo (f ® g);

for if (z,y, t) e * X 8* X E', we have

(3.35) @ ® Nz, 4, 1) = (g @ N, z, =) = (g@), f(z), —1)
= tra(f(2), 9(v), —1)
= tra((f ® 9)(z, 9, 1))

by (3.32) and (3.17). It follows easily that

(3.36) @*f) o §pa = Srac Frg).

(3.29) now follows from (3.36), (3.28), and (3.11).
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Next let f:(E*™, E°*) — (B, E'™") and ¢:(B*", E*") — (E'*, B'*") be
mappings representing a e 7y (E', E'*), 8 € mga(E*, E'), respectively.
Define a map f % g:(E**"' X E*", (B*" X E*)) — ET %X B (CEM X
E:,-H).) by

(3.37) % 9=z, y) = (f(=), 9¥)).

The element & ¢ 8 of mprq42(E™ X E*™, (E™' X E**')’) represented by f % ¢
depends only on « and B. It is easy to see that
(3.38) The operation Y is equivalent to the join operation * .

IV. The Hopf homomorphism [10, 11]. This is a homomorphism H, of m2n—1(S™)
into the additive group of integers. Let a € m2,.,(S") and let f: (87 ys) >
(S, yx) be a representative of a which is a simplicial map of a subdivision K of
S*" into a subdivision L of 8" such that ¥ 1s.an interior point of some n-simplex
of L. Let P = f~'(ya). Let K’ be the first barycentric subdivision of K, the new
vertices being chosen whenever possible to be points of P; and let K be the dual
subdivision associated with K’. Then P is a subcomplex of K. Let D be the duality
operator [13] associated with the orientation ws._; of S*"'; 9 associates with
each oriented r-simplex o, of K an oriented (2n — 1 — r)-cell Do, of K. Now let
s be the oriented n-simplex of L which contains y« and is oriented concordantly

with w,, ; and let 2" be the integral n-cocycle of L such that
2" (1) = 1,

(3.39) . L,

(1) =0if 7, # £ 7.

The image f'z" of 2" under the cochain mapping f’ defined by f is an n-cocycle
of K, and D(f’2") is an (n — 1)-cycle of P. Let ¢, be an n-dimensional chain of
K whose boundary is 9D(f’z"). Then c, is a relative n-cycle of 8"~ modulo P; the
image under the homomorphism f*:H,(S**, P) — H,(S" yx) induced by f
of the homology class of ¢, is a certain multiple Ho(a) of w, . The integer Ho(c)
is by definition the Hopf invariant of a. Hopf has proved that Ho(a) does not
depend on the choice of f in its homotopy class and that the mapping a« — Ho(a)
is a homomorphism (which we shall refer to as the Hopf homomorphism) of
m2.-1(S") into the group of integers having the following additional properties:

(340) if @ € maa(S™) and B = kizn—1 € T2 (S*"), then Ho(ao B) = k-Ho(a);
(341) if @ € ma1(S™) and B = kin € wa(S™), then Ho(Bo a) = k' Ho(a);
(3.42) if n is odd, then Ho(a) = O for every a € wan_y(S™);
(3.43) if n 1s even, there exists o € mn—1(S™) such that Ho(a) = 2;
(344) ifn = 2, 4, or 8, there exists a € m2a—1(S™) such that Ho(a) = 1.
It is likewise easy to see that
(3.45) #f n s even, Hy([tn , ta]) = 2.
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V. The suspension [9]. This operation is a special case of the join. Specifically,
if @ emp(S), let E(a) = a * . Thus E(a) € 7,4:1(S™"), and E is a homomor-
phism of 7,(8") into m,41(S™*"), called the suspension homomorphism. Freuden-
thal [9] has proved the following properties of E':

(346) Eisontorfp < 2r — 1;
(3.47) E 1is an isomorphism if p < 2r — 1;

(3.48) if p = 2r, the image of E is the subgroup of w2, 1(S™) consisting of those
elements of Hopf invariant zero.

The following is a slightly strengthened form of one of Freudenthal’s theorems:

(3.49) if p = 2r — 1, the kernel of E is the cyclic subgroup of wz,_1(S") generated
by [ir, w]; if 7 s even, [u, u] has Hopf invariant +2 and therefore has
infinite order; if r is odd, 2[ir , ] = 0, and [i., «] = 0 if and only f
there is an element of my,11(S™") with Hopf invariant 1.

The proof of (3.49) will be given in §7.

If £:(S?, yx) — (S, yx), we denoted by Eof the mapping f * 4, where 1 is
the identity map of S° on itself, so that if f represents a € m,(S"), then E,f repre-
sents E(a). The mapping Eof has the following properties:

(3.50) (Eof) (B2 < EFY
(3.51) (Eof)(EZ™) < BT
(3.52) Ef| S = f.

It is clear that any map of S”*' into S™*' having properties (3.50)—(3.52) is a
representative of E(a). )
Suppose that f: (E?, E*) — (S, yx) represents a e m,(S). Then the map

Ef:(B°*, EP*Y) — (8™, y4) defined by

(3.53) Ef(@y, -+, Tpy) = d(fl@y; -+, %), Tpt1) (x e EPH)
is a representative of E(a). Since ¥, is topological on E* — EP, while y,(E?) =
f(E”) = yx, there is a unique map f':(S”, yx) — (S, yx) such that f = f o ¥,.
Similarly, there is a unique map g (S8, yx) — (S, yx) such that E.f =
g o ¥p+1. Now Eif maps the half-cube {z,41 = 0} into E7*! and the half-cube
{Zps1 < 0} into E~"; since y¥pi1 maps {Zp41 = 0} into EZ™ and {2,411 < 0}
into E?*, it follows that ¢’ maps E2™ into E7' and E2™ into E}. Since

Ef| B =

and ¥p11 | E? = 5, it follows that g’ | 87 = f’. Therefore, since f’ represents a,
¢ is a representative of E(e) and hence E\f likewise represents E(a).

Let f: (E*™, E*™) — (E**', E**") be a representative of a ¢ T (BT, B,
Let Eof: (E***, EP**) — (E***, E***) be the mapping such that

(3.54) E'(;f(xl ooy Tpr) = Mera(f@1, oo, Tp1), Tpsa).
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Clearly f homotopic to g implies Eqf is homotopic to Eqg and therefore the corre-
spondence f — Eqf induces a mapping B’ imp (BT, B — m, (BT, EXT).
Moreover, it is easy to see that E’ is a homomorphism equivalent to E.

Let f:(E**, E**) — (E™*', E"*") be a mapping representing

o e mp(E +1, E"H)y
and let ' be the element of ,(S") represented by f| E**". Let
108", ya) — (8™, yx)

be the unique mapping such that f' o Y41 = Yri10 f. Then [2, §10(c)]:
(3.55) f’ is a representative of E(a') € mpsa(S™).

If further g: (E™*', E™*") — (X, x+) represents g ¢ r,41(X), then
(3.56) the map go f:(E™, E**) — (X, xx) represents 8o E(a’) € mppr(X).

For if g':(S™", y») — (X, 2) is such that ¢’ o ¢,4; = g, then
(3.57) gofovdp=goYof=gof;

since ¢’ o f’ represents 8o E(a’), so does go f.
We shall also need the following result:

(3.58) if a e m(X), B e m(X), o’ € mpr(SY), B € mg1(S*Y), then
(3.59) [a, Blo (& *8") = [ao E(), Bo E(B)].
For let
f (&, ET) — (X, z4),
(3.60) g9:(E', E') — (X, z4),
f'(E, E") — (E, E),
g :(E° B — (B, E)

be mappings such that f represents a, g represents g, f’ | E* represents o/, and
g’ | E® represents 8'. Let h’ be the mapping (f' % ¢') | (B X E°, and let h:
(E" X E’) — X be the mapping such that

f(z) ((z,y) e E X E),
3.61 Mz, y) =
(361 i {a(y) ((x,9) e E" X E).

Then h' represents o’ « 8/, while A represents [, 8]. Now A’ maps E* X E? into
E" X E*' and B X Evinto E" X E'. Hence, if (z, y) ¢ E® X K,

(3.62) k(' (z, y)) = h(f'(2), ') = f('(=));
and if (z, y) € E* X E°
(3.63) k(W' (z, y)) = h(f'(x), ') = 9(g’ ¥)).
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Thus h o k' represents the product [a”, 8”] of the elements of 7,(X), by(X)
represented by fo f/ and go ¢, respectively. According to (3.56), a” = ao E(a')
and 8” = Bo E(B’); since h o h' represents [a, 8] o (a’ x8'), (3.58) holds.

The following result has been proved by J. H. C. Whitehead [22, Theorem 9]:

(3.64) if a € ay(STY), and By, B: € m,(x), then

(3.65) (Br + B2) o E(e) = 1o E(a) + B2o E(a).
The author has proved [18, Theorem 3.11]:

(3.66) if a € mp(S"), B € m(S"), then E([e, B]) = 0.
Freudenthal [9] has pointed out that

(3.67) If aemy(S), B e (S’), then E(Bo a) = E(B) o E(a).

(3.68) If € m5(S"), then E((—u)o @) = —E(a).

V1. The Hopf construction [11]. This construction associates with each homo-
topy class of mappings of E°*" X E*™ into S an element of mp4e+1(S™). If
fiEP™ % E*' — § is a mapping, let Gf: (E*** X E**')' — §*' be the mapping
defined by

d, (f(lxil> y> 1— |z |) ((,y) e B**' X B, 2 5 0),

(369) Gf(z,y) = | a(f(s L) 1wl =1) @ eBPx BNy =0,

s (x =00ry = 0).

(Here, for z ¢ E**', |z | = max (|1, ..., | Zps |); thus |z | = O if and only if
# = 0and |z| = 1if and only if z ¢ E*™.) It is easily verified that Gf is a
mapping and that the homotopy class of Gf depends only on that of f. Observe
that Gf(z, y) = f(z, y) for (z, y) ¢ E*** X E**" and that .

Gf(EP-H X E’q+l) C Ei{-l’ Gf(Ep+1 X Eq+l) cC E:H.

Clearly any map F:(E**' X E*"")’ — §"*! having these properties is homotopic
to Gf.

The map f:(E*" X E**) — § is said to have type (a, 8) with a e m,(S"),
B e my(S) if and only if f|E”** X y represents a and f|z X E**' represents 8 for
some (and therefore for all) z ¢ E”*', y ¢ E**'. (The spheres E**' X y and = X
E** are oriented by the requirement that the mappings 2/ — (2/, ) and 3y’ —
(z, y') shall preserve orientation.) Hopf has proved [11]:

(8.70) if f:(E™ X E™") — 8 has type (pir, qu.), then the Hopf invariant of Gf
18 pq (the sign depending only on r).
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We shall also need the following results due to Eilenberg [5]:

(8.71) if @ € w311 (S, and Ho(a) = Kkl where k and 1 are integers, then there is a
mapping t: (B X B — 8 of type (ki , li,) such that Gf is a representative of
+a.

It is also known [18] that

(3.72) if a € w,(87), B € w(S"), then [, B8] = 0 if and only if there is a map f: 87 X
8 — 8 of type (a, B).

4. Homotopy groups of the union of two spaces with one point in common.

Let A, B be topological spaces, ag ¢ A, by ¢ B. Denote by A v B the subset
A X bouas X B of the product space A X B. The space A v B may be re-
garded as the space obtained from the disjoint union of 4 and B by identifying
the points a, and b, . We investigate the higher homotopy groups of A v B, the
fundamental group of A v B being known [15, §52].

Let py, ps be the projections of A X B on A and B respectively:

(4.1) p(a,b) =a, pia,b) =b ((@,b) ¢4 X B).
Let p1, p2 be the injections of 4, B into A v B:

#1(0) = (a7 bo) (a € A)r
(4.2)

pa(b) = (a0, b) _ (b eB).

Let j be the injection of A v B into A X B, k the injection of (A X B, ay X by)
into (A X B, A v B).

Consider the homomorphism p of m,(A X B) into the direct sum =,(4) ®
ma(B);
(4-3) P(a) = (pl(a)) h(a)) (a € Tn(A X B)).

It is known that p is an isomorphism onto.
Define a homomorphism \:7,(4A X B) — m,(4A v B) by the formula:

(4.4) Ma) = wm@di(@)) + w(pe(a) (x e ma(4 X B)).

Then jo Aiw,(4A X B) — m,(4 X B) is the identity.
It is sufficient to prove that pyo jo N = P, and pao jo A = p, because p is an
jsomorphism. But

(4.5) {ijo mo 1@, b) = pro jo m(a) = pro j(a, bo) = pi(a, b)) = a,

P10 jo wao Pa(a, ) = pro jo ps(b) = pro j(ao, b) = pi(aw, b) = as,
and hence
(4.6) P1°J'.° t1o pi(a) = pi(a)

10 jo w20 Pa(a) =0 (x exa(4 X B)).
Hence p10 jo A = p1. The proof that peo jo N = ps is similar.
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Since jo A is the identity, it is clear that X is an isomorphism into and that j
is onto, and that m,(4 v B) is the direct sum of the image of A and the kernel
of j. If @ € a(A v B), then « = 8 + v, where 8 = A(j(a)), v = a — A(j(a)),
where 8 ¢ Image X and j(y) = j(a) — jQA(j(a))) = jla) — j(a) = Osince jo A =
identity. The image of A is mapped isomorphically by j onto 7.(4 X B).

an rosi(A v B) 2 ms(4 X B) =% w0is(4 X B, A v B)

A VvB) s r (A X B) >

Since j is onto, the exactness of the homotopy sequence of (A X B, Av B)
implies that k& maps m.41(4 X B) into zero and therefore @ is an isomorphism
into. Since the kernel of j is the image of 3, we have shown that =.(4 v B)
is the direct sum of the two groups Image 8 & mn41(4 X B, A v B) and Image
A & m.(A X B). We have proved:
THEOREM 4.8. Ifn > 1, 7,(A V B) X m(A) @ ma(B) @ mpa(4 X B), Av B).
In the direct sum decomposition just established there are projections

Py = pro jima(4 v B) — w.(4),
4.9) Py = projima(A v B) — mi(B),

Q:m.(A Vv B) > m.u(A X B, Av B)
where Q(a) = 3 (e — A(j(a))). For later purposes it will be convenient to con-
struct here an operation which associates with each mapping f :(E", E™) —
(A v B, ay X by a mapping Qf:(E™", E"") — (4 X B, A v B) having the

property that if f represents « € m,(4 v B), then Qf is a representative of Q(a).
First define two maps n’, n” of E**' into E" by

(=31 + Dm — 30 + 30), 2, , Ta)
(—‘léxlé"%),
4.10) 7@, %, 0) =3 3@ + Oz + 31 — 1), 22, 0+, Tn)
("‘i}i.§x1§%):
(1,22, , Zn) G=msl);
(=1, 22, "+, Tn) (-1 =z = —9),
G+ oy — 31 — 1), 22, -+, Tn)
(4.11) 7" @1, -, Tny t) = 1 (-1 g2 =),

("‘ %(1 + t)xl + %(1 + 3t)’ X2, * " xn)

G=m =)




GENERALIZATION OF THE HOPF INVARIANT 211

Now if f:(E", E™) — (A v B, ao X bo) is a mapping representing « ¢ 7,(4 v B),
define a mapping Qf by

(4.12) Qf(z) = (mUf(n'(2))), p2(f(n" (2)))) (z e E™)

Note that Qf is a mapping of (E"*!, E™™, J") into (A X B, A v B, a; X by),.
and that the map 3(Qf) = Q.f is given by

’(pl(f(_&vl - 2, Loy ooy xﬂ)); b0) )

("'1 SEn = _'%)’

(4.13) Qlf(xl y ottty xn) = ﬁ (pl(f(*?'xl y X2,y c 00, 1‘,,,)), p2(f(3x1 ) x(Z ’ .'% ) xﬂ))) %)
—f{=u =9,

(aﬂ ’ pz(f(-‘3.’171 + 2: T2, , xﬂ)))

L G=a

The map Q,f is clearly a representative of the element

n((—a)) + @ + w(p:l(—a))) = a — (),

and therefore Qf is a representative of 3 '(a — A(j(@))) = Q(a), as desired.

If A and B are spheres, the structure of the group ma.41(4 X B, A v B) can
be investigated further. We suppose A = 8%, B = 8%, a0 = bo = y« . The mapping
Dot (BPT EPY) — (8 X 8% 87 v §°) is a topological mapping of EP** — EP*¢
on (87 X 8% — (S” v 8%. We now apply a theorem which differs from one of
J. H. C. Whitehead [22, Theorem 8] only in the fact that it is stated in the lan-
guage of relative homotopy groups. The theorem deals with the following situa-
tion. Suppose that X is a pathwise connected topological space such that =(X) =
0 for ¢- < r; and suppose that X* is a topological space containing X and that
y is a mapping of (E™, E™) into (X*, X) such that ¢y maps E™ — E™ topologically
on X* — X. Then

THEOREM 4.14. The homomorphism &:ma(E™, E™) — ,(X*, X) is onto if n <
min(m 4+ r — 1, 2m — 1); 1 ¢s an tsomorphism if n < min(m 4+ r — 2,2m — 2).

The proof is contained in [22].

We proceed to apply Theorem 4.14 to the case X* = §* X 8%, X = §°v §
¥ =vVpq, T = min(p, ¢), m = p + q, to conclude that

THEOREM 4.15. ., maps w,41(E**%, E*™) isomorphically onto

7rn+1(Sp S“,S”vS“)zfn<p+q+mm(p,)—3
Now consider the diagram

7l'n+1(Ep L E” +q) Tn (Epﬂ)
3 | |
(416) ‘X!P:Gl l 'k?-c

I\

1).

an(S° X S & v S —s ma(SP v S9).
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Since the commutativity relation 0 8 = @ o 4 holds, and since @ and ¥y,
are isomorphisms onto, it follows that Image ¥, , = Image 8 and that i, is
an isomorphism into. Hence Image 3’ = m,(E”™%) ~ m,(S*™* ") and therefore

THEOREM 4.17. m,(S” v 8%) & 7a(S%) ® (S @ ma( " Nif n <p+ ¢+
min(p, ¢) — 3.

Theorem 4.17 was proved by J. H. C. Whitehead in the casen = p + ¢ — 1
[21, Theorem 2].

If n < p + q + min(p, ¢) — 3, we define Q to be the projection of m,(S” v 87
on its direct summand 7,(S°™™); @ = ho 80 ;0 @, where h is an admissible
map of E**% on SPH7

It is clear from the definition of product that the map ¥, o:E*™ — S* v 8 is
a representative of the element [w1(tp), w2(t)] € Tpio-1(S” Vv S%. Now suppose
that a e 7, (S7), B e 7a (8%, &’ €7, (S7), B’ € Tnrs1(S) and thatr 2 p,n —7+1 2 g,
andn < p + ¢ + min(p, ¢) — 3; and suppose further without loss of generality
that p < ¢. Then an easy calculation shows that r <2p — 2andn —r + 1 <
2¢ — 2 and therefore there are unique elements a” € 11 (8P, B” € Tar(S¥7)
such that E(«”) = o and E(8”) = B'.

TreOREM 4.18. Q(wi(a) + w(8) + [w(e), w(8)]) = «” x 8"

For

(4.19) [w(), v2(8)] = (W E(”)), va(tgo E(B"))]

= [w(ep) o E(a”), v2(ed) o E(8")]

= [m(y), va(tg)]o (@” xB8”) = ¥p.o(a” xB").
Since wi(e) belongs to the direct summand wy(wa(S)), u2(8) belongs to the

direct summand wa(m.(S%)), and [w(a’), v2(8)] belongs to the direct summand

Image . , the truth of the theorem follows.

We now consider the effect on =,(S" v S") of the mapping o+ defined in (1.28)-
First note that if &,.:(E" X E', (E" X E')) — (E" X E’, (E" X E")’) is the map
defined by

(4.20) oz, y) = (y, 2),

then &, is the restriction to E” X E of a linear map of C" X C” into itself of
determinant (—1)". Hence &, represents the element (—1)"t—1 of 21 (ST 7).
Moreover, from (1.26), (1.31), and (4.20), we see that

(4.21) '7/:',70 0r = 00 J’:,r .

Now if f:(E"", E*™) — (E' X E, (E X E’)) is a representative of
v emni(E" X E', (E" X E')) and if n < 3r — 3, then or0 Virof = Yrpo o f
represents ¥, .(((—1)w)oy) = (=14 .(v). Hence (@) = (—Da if
aemna(ST X S, 8 v 8. Since pio jo or = pzo jand pro jo or = pro j, We see
that o, interchanges the first two direct summands of 7.(S" v S7). Hence
THEOREM 4.22. If a € m,(S"), and if n < 3r — 3, then

Pl(d; (@) = P2(a)
(4.23) Py(8, (a)) = P1(a)
Q(6- (@) = (—1)Q(a).



GENERALIZATION OF THE HOPF INVARIANT 213

b. The generalized Hopf invariant

The map ¢,:8" — 8" v §" induces a homomorphism @, :7,(S") — 7,(S" v 8);
we denote by H’ the composite homomorphism Qo ¢@,:7,(S") — m1(S™ X S,
S vS8). Forn < 3r — 3 we set H= Qogp,:m(S) — 7.(S™ ). The homo-
morphism H is referred to as the generalized Hopf homomorphism, and if
a € m,(S7), the element H(a) is referred to as the generalized Hopf invariant
of a. This section is devoted to the proofs of some properties of H.

THEOREM 5.1. Let f1E* X E"*' — S be a mapping of type (a, B) with
a € mp1(S™), B e mp(STY), and let v be the element of ma(8") represented by
Gf. Then H(y) = (—1)"(a x B).

Let F = 7.0 Gf:(E” X E"®*') — §; since r, is homotopic to the identity,
F is a representative of v. Now ¢, 0 F = ¢,0 7,0 Gf maps E* X E"”* into
er(m(E})) = o(KL) = yx X S, and similarly ¢, o F maps £ X E"?* on
8" X yx, while g0 F(E* X E"™"") = ys X yx. Let F1, F, be the maps of
(E* X E™**'Y into 8" v §" such that

o, (F(z, y)) ((z, y) e B X E*™*)

Fl(x, y) = D n—p-+1

(52) \y* X Yx ((Z‘, y) ek x E i )

. Fz, 3) fy* X yx ((x, ) € E? X En_z,ﬂ)
0\, Y) = ,

L;,(F (=, ¥)) ((z, y) e E* X E™"™),

Now let g1:(E”, E®) — (8" v 8", yx X yx), gu:(E"%, ™ & (S v §”
yx X yx) be the maps such that

{91(93) = Fi(z, 2" ™) (x € E),
9:(y) = Fa(2", y) (y e B,

The map ¢: can be decomposed into the composite of three mappings co bo a,
where

(5.3)

(5.4) B, B & (B, S5 2 (KD, S5 S (ge X S, g X vs)

a is a map of (E?, E®) into (B, 8™) such that a | E” represents a,b=r1|E},
and ¢ = ¢, | KZ . We orient the cells E} and K_ coherently with the orientation
wr of S, and orient S and S;™ by the requirement that they shall be the
boundaries of the oriented cells (E}, 8™ and (K-, S;™) respectively. It is
easy to see that the orientation of S so defined is wr_,, and that the map
7,| 818" — Sy reverses orientation. If y« X S” is oriented so that the map
y — (yx, y) of §" into y« X S” preserves orientation, it follows from the fact that
v is homotopic to the identity that ¢ preserves orientation. Hence

a| E?:E® — 8" represents a,
(5.5) b| 88 — S5 represents —u,_; ,
c:(KL, 8o — (yx X S, yx X yx) represents ¢,
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and therefore

(5.6) bo a| EP:E” — S5 represents (— 1) o a.

Thus g1 = co bo a represents

(5.7) tro B((—t1)o @) = w(E((—u-1)o ) = —w(E())

by (3.68). By a similar argument, g, represents —w;(E(8)). Since

5:8) o (F@, ) = {F‘(x’ W (&P XET
Fy(z, y) ((z,y) e E* X E™™T)

and since F, represents w(y), F» represents uz(y), it follows from (3.5) that ¢,0 F
represents

(5.9) wm) + w@) + [—v(E@), —w(E®))]

= ml) + w@) + (=177 [w(EB)), wa(E(2))]
and by Theorem 4.18 and (3.29)
H@y) = Qo) = (—1’" (@ *0a)
(5.10) = (1P (=1 P(((=1) W) o @) *B)
= (((—=1)uw)o @) *8.

Nowisn — p < r — 1, then g is zero and we have proved H(y) = 0 as de-
sired fn—p+1=rthenps<n—r+1<3r—-3—-r+1=2r—2580
thatp — 1 < 2r — 3 =2(r —1) — 1, and therefore « = E(a’) for some
o emp2(S™?). Hence (—u)o @ = —a, and therefore ((— D')oa = (—1)a
Because the join is distributive, H(y) = ((—1)'a) *B8 = (—1)"(a *B) as deSIred

Let a € mq1(S™). By (3.71) there is a map f:(E" X E") — 8™ of type (ta ,
Ho(a)ta—y) such that Gf represents =a. It follows that H(a) = == (tn—1 % H, o(@) tna) =
ﬂ:Ho(a)(L,._l * L,._l) = :i:Ho(a)u,._l y and therefore H(a) = :i:Ho(a) Qn—1 .
Thus H is a generalization of the Hopf homomorphism.

THEOREM 5.11. If & € mpy(S™) and n < 3r — 3, then H(E(a)) = 0.

For if f:(E™", E™™) — (8", ys) is a representative of o, then 7, o E,f is a
representative of E(a). Now ¢, o 7, o E1f maps the half-cube {x. = 0} into
yx« X S and maps the half-cube {z, =< 0} into 8" X y« . Hencep.(E()) is the
sum of an element of w;(w,(S")) and an element of w(7.(S")), and it follows from
Theorem 4.18 that H(E(a)) = 0.

Let R: be the group of rotations of S*. Any map f:S” — Ri—; determines a
map f:87 X S8 — §* by the formula

(5.12) f(z, y) = (F@)@) (x e S%,y e ST

The map f determines a mapping g of S* ** into S* by Hopf’s construction, and
the correspondence f — g induces a homomorphism J :7,(Ri-1) — 1r,,+k(S ). Let
x:Ri—1 — S be the map such that

(5.13) k(r) = r(ys) (r € Rp).
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If a ¢ mp(Ri1), then f has type (x(e), w-1), and therefore H(J(a)) =
(—=1)*(x(a) % ) prov1ded that p + k < 3k — 3 and therefore p < 2k — 3. But
x(@) x 41 = E(E( --- E(x(@))) --- ) = E*(x(a)), the k-fold suspension of x(a),
and since p < 2k — 3 = 2(k — 1) —1), E* is an isomorphism. Hence
COROLLARY 5.14. If a € mp(Ri—1) and w(a) = 0, then J(a) #= 0.
This affords a method for constructing mappings with non-zero generalized
Hopf invariant. Some such mappings will be constructed in Section 7.
THEOREM 5.15. If a e wa(S"), and By, B2 e 7.(X), and if n < 3r — 3, then

(5.16) B1+ B2)oa = Broa + Broa+ [Bi, B:o H(a).

The theorem is true by definition of H in the special case X = S v §,
Br= 1 =wm),B: =i = w2(er); for 28" — S" v S is a representative of
B1+ B, so that (81 + B2) o @ =¢.(a). By definition of H(«),p-(a) = m(ﬁx(p,(a)))
+ wa(peler(@))) + 4, .(h(H (a))) Where hi is an adm1351ble map of S* " into E*.

Now p1o ¢r = ¢rand peo ¢r = ¢, ; ; since ¢, and ¢, are homotopic to the identity
map of S on itself, we have

wi(Di(p-()))
(6.17) w(0:(pr())) = w(a) = Beo a,
Yro(R(H())) = [81, Be]o H(e).

This proves the formula in the special case.
Now let g;:8" — X be a representative of 8; for ¢ = 1, 2; then (g; v g2) o ¢, is
a representative of 8, 4+ B;. Letting ¢ = g1 v g, we have

(5.18) (B + B)o a = glp (@) = gliro a + ¢/ 0 a + [ir, i!]o H(a))
=g(iro @) + g(/o @) + g(lur, o]0 H(a)).

If f:8" — S is a representative of «, then « o a is represented by uio f, and
therefore g(r,o a) is represented by go wio f = gyo f; hence g(ir0 @) = B0 a.
Sxmxlarly g(i’ o @) = Byo a. Let f':8" — E* be a map representmg H(a); then
lir, tr]o H(e) is represented by ., ,o f* and therefore (s, o]0 H(a)) is repre-
sented by go ¥, ,o f'. Since go ¢,,, represents [8;, Bi], go ¥r, .o f' represents
[81, B2]lo H(a) and the proof is complete.

THEOREM 5.19. If a e m,(S"), Bem(S"),and n < 8s — 3,r — 3s < 3,n <
3r — 3,and if H(a) = 0, then

(5.20) H@Boa) = HPB)o a.
For

w(a) = Bioa,

@:Bo @) = (i + i)o (Bo )
(5.21) = ((u + )o B)oa
= (o B+ wwoB+[u, e HB))o a
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by Theorem 5.15. Again applying Theorem 5.15, and recalling that H(a) = 0,
(522)  @uBo @) = (o B)oa+ (t/oB)oa+ (i, ] HB)) o a.
But on the other hand
0B @) = (1 + 1)o (Boa)
= o (Boa) + u'o (Boa) + [u, ulo H(Bo a);

by the associative law for composition and because of the fact that left composi-
tion with [es, ¢] maps m.(S*™") isomorphically, we conclude that H(8)o a =
H(Bo a) as desired.

THEOREM 5.24. If & € m,(S7), B e m—1(S"™"), and n < 3s — 3 < 3r — 3, then
(5.25) H(E@B)o @) = (B+B)o H(a).

For

(5.23)

0(E@)o @) = (v + u)o E@))o

(o EB)) + («'o EB)o o

by Theorem 5.15, recalling that H(E(8)) = 0. Hence, applying Theorem 5.15
again

(527) E@B)o @) = 1o E(B)o a+ /o E@B)o a+ [0 E@), u o E@]e H(a).
But

(5.28) [ieo E(B), ts o EB)] = [te, t]o (Bx8)

by (3.59), and therefore

(529) @uE@B)oa) = tio BE@)oa + o E@)oa+ [, i/lo (B+B)e Ha).

As before, we conclude that

(5.26)

(5.30) H(EB)o @) = (BxB)o H(a),
as desired.
THEOREM 5.31. If o € mp1(S™Y), B e met(S8™), and p + q < 3r — 2, then
(5.32) H(E(@), E@) = |  odd),
2(a % B8) (r even).

We first note that H(a « 8) = 0 since H(a x 8) € Tpre(S" Dandp +¢— 1<
3r — 3 < 4r — 3.
Now [E(a), E(B)] = [t E(a), vo E@B)] = [wr, u]o (axB), by (3.58), and by
Theorem 5.19
(5.33) H(E(a), E®D = H(ltr, t]o (@ xB))
= H([’-r ’ L,]) ° (a * 5)

It remains to compute H([v, , u]).
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Now
(5.34) ol ul) = Gr + &)o [u, u]
=[v+o,u+ )
= [, ul+[uw, 1+, o]+, o],
by (3.13), (3.2) and (3.3). But
wo [tr, ] = [ur , ul,
o5 o [y ul = [, ),
and therefore
(5.36) [, o H(lwry ul) =@u(ltr, u]) — wolu, u]l = o lu, ul
=lw, 0]+ [, ul
= [, 14 (=D, ]
by (3.4) and Theorem 5.15.

If ris odd, [ir , o]0 H([tr, »]) = O and therefore H([i, «]) = 0, and
H(E(x), E@®)]) = 00 (a *8) = 0.If riseven

(5.37) [y &lo H(ur, o]) = 2[er, ] = [ir, ']o (2up),
and therefore H([¢, , ¢r]) = 2t5—; . Hence for r even,
(5.38) H([E(a), E(B)]) = (2t2r1) 0 (a*B)

= 2(a*)

since H (a*8) = 0 and therefore the right distributive law holds.

For r = 2, 4, 8, Hopf has constructed fibre maps k,: S — S which represent
elements of mz,_1(S") with generalized Hopf invariant w,.;. For these values
of r we have the isomorphism [2, Theorem 15]:

(5.39) Ta(S") & (8™ @ mar(STH).

More precisely, E:mn1(S™™) — 7.(S") and A,:m(S"") — 7,(S") are isomor-
phisms into, and =,(S") is the direct sum of the subgroups Image E and Image
h. . This direct sum decomposition defines a “projection” Hy:m,(S") — m,(S8*);
if B em(S"), a €m(S), then 8 = Hy(a) if and only if there is an element
v € ma_1(S™") such that « = h,(8) + E(y).

THEOREM 5.40. The homomorphism H, and H are identical if n < 3r—3.

We have H(a) = H(h(3)) + H(E(y)). Now H(E(y)) = 0, and therefore
H(a) = H(h(8)). Let o, be the element of m,.1(S") represented by #. , so that
H(ay) = tapy.Since B ema(S* "), andn < 3r —3 <4r —3 =2(2r — 1) — 1,
we have H(8) = 0, and therefore by Theorem 5.19,

H(a) = H(h(8)) = H(aro B)
(5.41) = H(as)o B8
= ur10 B = § = Hi(a).
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THEOREM 5.42. If r is odd and n < 3r — 3, then 2H (a) = 0 for every o e 7, (S").!

Let a em,(S7), and let f:8" — S" be a mapping representing «. The map
pr:S” — 8 defined in (1.11) is homotopic to the identity, and therefore p,o f
represents a. But ¢,0 p,o f = a70 @r0 f by (1.27), and therefore

(5.43) 0-(@) = drp-(a)).
By Theorem (4.22), we have
(5.44) Q@) = Q(6:p+(@))) = (—1)Qlp-(a)),

and therefore 2H (a) = 2Q(@-(a)) = 0if r is odd.

6. Construction of the Freudenthal invariants

In [9), Freudenthal defined, for each nullhomotopy h of the suspension of a
map f of 8" into §", a pair of integers ¢/, ¢”, related by the formulas

¢ — ¢"” = Ho(a),
¢ = ("'1)'"H c’,

where « is the element of ,(S") represented by f. In the present section we shall
give a generalization of the Freudenthal invariants ¢/, ¢” by associating with
each nullhomotopy h of the suspension of a map f:S" — §, a pair of elements
of mn42(S¥ ™), which we shall refer to as the generalized Freudenthal invariants.
(The sense in which these are invariants will be explained below.) The proof of
the properties of the generalized Freudenthal invariants analogous to (6.1) will
be given in §7.

The construction can be described briefly as follows. Suppose that
h:(B™*? J™M) — (8™, y«) is a nullhomotopy of the suspension Eif of a map
f:(E", E™) — (S, y+). We have already (4.13) associated with each map
g (™, E™) — (S v 8™, ys X y«) representing « ¢ Tnp1(S"T v 8™), a map
Qg:(E™, E™™) — (8§ x 8™, §*' v §*') whose homotopy class is Q(a).
Now if § = ¢rs10 (Eif), then Qg is nullhomotopic by Theorem 5.11. We first
construct two nullhomotopies B’, B” (depending only on f) of Qg. On the other
hand, the given nullhomotopy % of E:f defines a nullhomotopy of g and there-
fore a nullhomotopy of Qg (since @ carries the constant map: E™ Sy X ys
into the constant map: E"** — y« X ). The second nullhomotopy depends
on h, but its initial value coincides with the initial values of the nullhomoto-
pies B’, B”; thus it fits with each of B’, B” to produce mappings K', K" of
(E™*, E™*®) into (8™ X 8™, 8" v §'*'). These mappings determine the
desired generalized Freudenthal invariants by means of the isomorphism
G110 3 of §4.

It will be convenient to formulate the association just described as a pair
of homomorphisms. For this purpose we first introduce the function space Fri

(6.1)

4 This theorem was pointed out to the author by J. H. C. Whitehead, to whom the proof
given here is due.
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whose elements are the nullhomotopies of suspensions of mappings of (E", E™)
into (8", yx). Under a suitable equivalence relation the homotopy classes of
such nullhomotopies form a group, and the generalized Freudenthal invariants
can be best described as homomorphisms of this group into m,42(S* ™).

Let f:(E" ™ E™™) — (8™, y«) with n > 2, r > 1. A nullhomotopy of E,f is
amapping h: (E", J*™) — (S, y4) such that

(62) h(xl y * sy a1, 1) = df—l(f(xl y " xn—2)) xn—l)'

The map f is determined by h, because d,—; | 8™ ! % 0 is the identity; thus (6.2)
can be phrased

(63) h(xl R e ) 1) = dr—l(h(xl y "0y Tn-2, 0, 1), xn-l)-

We define F; to be the set of all mappings h:(E", J™*) — (S, yx) which satisfy
(6.3), topologized in the usual way by means of the metric in S". We choose
as base point for the homotopy groups of F; the constant map Y4 such that
Ye(x) = ysforz e E".

Let feF; ,and let k be an integer with 1 < k& < n — 2. For each point
z = (21, -+, e E*, let f, be the map defined by

(64) f‘(yl, e 7yn—k) =f(xly"')xk;y11 "':yﬂ—k)

for W1, ,Ynt) €eE™ ™. Then f.e F7 ™, and f, = Y« for z ¢ E*. Hence the
map f: (E*, E*) > (Fr™, V) defined by

(6.5) @) = f. (x e EY)

!s an element of the function space F*(F;~*, Y.), and the correspondence f — J
15 a 1:1 correspondence (in fact, an isometry) between Fr and F¥(F;r™*, Y).
This correspondence induces a 1:1 correspondence between the set x; of path-
components of F; and the elements of m(Fr ") and therefore induces a group
structure on . This group structure is easily seen to be independent of k;
it will be convenient for later applications to take k = 2.

Let f ¢ F7 ,and let Df: (E"™*, E"™*) — (8", yx) be the map such that

(6.6) Df(xl, M 7xﬂ—2) = f(xl, e 7xn—2 )0} 1))

so that f is a nullhomotopy of the suspension of Df. Clearly f homotopic to g
implies Df homotopic to Dg, and therefore D induces a mapping A:m; —
ma2(8™); it follows from the definition of addition in homotopy groups that
A is a homomorphism. Clearly the image of A is the kernel of E:m,_o(S") —
7r,...1(Sf )

Let f:(E™*, E™™) — (S" X &7, 8" v 8"), and define a map Bf:(E"**, E"**) —
(Sr+1 X Sr+1’ Sr+1 v Sr+1) by

(67) Bf(xl y " $n+2) = 8I(f(xl y " xn+l)y xn+2)-

The map Bjf represents the zero element of m,42(S™™ X S, S v 8, as
we show by exhibiting two nullhomotopies B’f, B”f of Bf. These are maps
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of the half-cube {z.4s = 0} of E™ into S X S and are defined as

follows. Let f/ = pio f, f” = p2o f be the projections of f on the two factors of
S % 8 and for zx e ™™, set & = (21, *++ , Tag1), b = Tniz, U = Tnis.
Then for z e E"",u = 0,

(B'f(x) = (&:(f'@), t — w(l + 1), d:(f"(&), t + u( — 1)),

IB”f(x) = (d.(f'(), t + u(l = 1)), d(f"(@), t — u(l + 1))).

Note that B'f(zr) = B"f(z) = yx for 2a1s = 1, Bf(z) = B'f(z) = B"f(x) for
z ¢ E***, while B’f’(z) and B”f(z) belong to 8™ v S* for z ¢ E***. Hence
B’f and B”f are nullhomotopies of Bf.

Now let h: (E™*% J™™) — (8™, y4) be a map representing ¢ e mrii. Let h’ =
Dh:(E", E™) — (8", y«); and for each ¢ e E", let he: (E™, E**') — (8™, y4) be
the mapping defined by
(6.9) R(@y, o+ Tnt1) = A1, -+, Tng, B).

Define further H;:(E™™, E™™) — (S v 8", yx X yx) by He= @riao hs .
Note that
(6.10) QHl = Q(¢r+1° hl) = Q(<Pr+1° Elh')-
From (3.53), (1.25), and (1.6) we have
‘Pr+l(E1h,(x1 y "y xn+l)) = (dr(io:(h'(xl y Ty xn)): x'n+1)’

dr(¢:’(h,(xl y Tty xn)): z'l-i-l))°

(6.8)

(6.11)

Let H' = ¢,0 h';then
(6.12) BQH')(@1, *+* yZn, b, Tny1) = QHi(x1, -+, Tny1, D).
For | z; | < % this follows from (6.10), (6.11) and (4.13). For 3 < 2; < 1 we have
BQH")(xy, **+ yZn, t, Tnt1) ‘
(6.13) = &(ys, or (W (=31 + 21 + 31 + 30), 22, -+, Zn)), Tos)
= QH (z;, -+ ,Tat1,l)

because d,(yx , t) = yx . Similarly, (6.12) holds for —1 < z; < — } and therefore
in all cases.
Finally, define two mappings K’h, K”h of (E™*, E™*®) into (S X SV,
Sr+l v Sr+l) by
QHypa(®1, -+, Tng1,u) (=1 =t=0),

B'(QH')(@1, -+ ,%n, U, Tny1, t)
O=t=1),

QHzpp1(®1, -+ s Xatr,u) (—1=2t20),

B"(QH")(x1, ++* yZn, Uy Tag1, L)
Oo=t=1).

K’h(x1 y ' yTp—1, t, u)

(6.14)

Il

K”h(xl y " 3 Tadl, ty u)
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That K’'h and K”h are well-defined and continuous follows from (6.12). Clearly,
if hy, hy are joined by a path in Fpif, then K'h, is homotoplc to K'hz ] and
K”h, is homotopic to K”h, . Thus K’, K” induce mappings Ao, Ag of =771 into
1rﬂ+3(Sr+1 X Sr+l Sr+1 vSr+l)

(6.15) Ag and Ag are homomorphisms.

For let A, h2 be elements of Fpit such that h'(z; y 'ty Zage) = yxforz, <0,
and (1, - , Tnsa) = Y« for 2, = 0, and let h° e« F4i7 be defined by
x > 0),
(6.16) W) = 2( ) @20
h*(x) (xz2 = 0).
Then for 2z, £ 0
K,hl(xl y " xﬂ+3) = K’h2(xl y —T2,T3, ", xn+3) = Yx,
(6'17) K,hs(xl y " xﬂ+3) = K'hz(xl y " xn+3))
KB (@, =22, %3, *+* , Tnga) = KB @1, =2, 23, * , Tata),

and similarly for K”. It follows from (2.8) that Ao and Ag aré homomorphisms.
If n < 3r — 2, {,41,r+118 an isomorphism onto and we may define

— ,

A" = ho 90 Yri1,ri10 Ao,
-1 "

A” = ho 3o Yri1rq10 Ao,

(6.19). A’ and A” are homomorphisms of iy into waya(SHY).

(6.18)

7. Properties of the Freudenthal invariants

We shall give in this section a proof of two formulas analagous to (6.1) con-
necting the Freudenthal invariants of an element & emrfy . These formulas
will be used as a basis for discussion of the kernel of E:m.(S") — m,y:(S™).
At the end of the section we give a proof of the improvement of one
of Freudenthal’s theorems promised in §3.

We first define a homomorphism A:m.i(S" X 8, § v §) —
Tapas(S X 8, 8 v §) which is “paralle]” to the suspension
operation in a sense that will be explained below. Let f:(E"", E**, J") —
(8" X 8,8 v S, y« X ys), and let f/ = pi1o f, f” = pzo f. Define a map

Of (Em+3 n+3) (Sr+1 X Sr+1’ Sr+l v Sr+l) by the formula

(7'1) AOf(xl y "y xﬂ+3) = (df‘(f,(xl y "y xn-}-l)y xn+2),
d"(f”(xl y "ty x"+1); xn+3))'
Clearly f homotopic to ¢ implies A¢f homotopic to Acg, and therefore

the operation A, induces a mapping A:m,u(ST X S, S v §) —
Tars(STT X 8 8 v 8, which is easily shown by the use of Theorem 2.11

to be a homomorphlsm
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Next, let f: (E™*, E™™') — (E*, E*), and for z e E"™" let fu(z), - - - , f2r(z) be
the coordinates of f(z). Let Eof be the map of (E"*, E™*®) into (E***, E**?)
for which

(72) E:f(xl y T xn+3)(fl(x)’ e 7fr(x); x';+2 :ff+1(x), v ’f2r(x); xn+3)’

where z = (1, -+ , Tny1) € E™. Again f homotopic to g implies Eof homotopic
to Esg; hence Eg induces a mapping E*:m,1(E”, E*) — mapa(BT T2, B ).
The map of E”* into itself which sends (z; , -+ , Za4s) into
(@1, " 3 %ry Trgz, == 5 Tory Try1, Tor42) has degree (—1)" and transforms Esf
into Eo(Eof); this map, restricted to E¥*, represents (—1) tzp41, and therefore
E* is a homomorphism equivalent to the one which sends a em,(S*™)
into ((—1)"ter+1) o E(E(a)), which is equal to (—1)"E(E(a)) because of (3.64).
The sense in which A is parallel to the suspension operation is explained in
THEOREM 7.3. In the diagram

E*

ﬂ_"_H(EZr’ E’2r) - AN 7I'n+3(E2r+2, E'2r+2)

l;u.r.f l;gﬂl.r'ﬂ
(S X 8, V8 — A m(STH X S Sy S,

the commutativity relation Yr41,.110 E* = Ao 1, , holds.

Let @ e ma41(E”, E¥), and let f:(E"", E™", J™) — (E¥, E”, 2”') be a map
representing «. Then A(,.(a)) is represented by the map Ao, o f), while
Uy+1.-41(E*(2)) isrepresented by ¥,41,,+10 (Eof). But

Ao@riro )@y w20y Tnas) = ([dr(i(@), +++ , F(2)), Tnsa),
& (fra(@), - -+, f2r(2)), Tnss))
= @rn(i(@), -+, (@), Tata),
(7.4) _ Yra(fria(@), « -+, f2r(Z), Tarts))
= Yraren1(fi@), - -+, £(2), Tnaa,
fra(@), + - -, for(Z), Tnta)
= 'J’r+1.r+1(E:f(x1 s " s Tnts))

by (7.1), (1.30), (1.31), and (7.2).
Let w be the map of (E?, E*) into itself such that

(— Q0 —-2)y,z+ 1+ z)y) (-1=y
(x—(1+x)ysx+(l—x)y) (OéySD,

for (z, y) ¢ E*. The map w is easily seen to preserve orientation; hence the map
of (E™*, E™*®) into itself which sends the point 7,11.2(z, 2) Int0 Na41.(z, w(2))
for z e E**', 2 ¢ E°, is homotopic to the identity. Hence if f:(E™", ™) —

(7.5) w(z,y) = {
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(8" X 8,8 vy8), is a_representative of & em,y:(S” X 87, 8" v §7), and if
A’f is the map of (E"**, E™**) into (S X S, 8™ v §™*') such that
(7.6) A'f(Ma12(x, 2)) = Aof(Ma1.2(z, w(2))),

then it is clear that
(7.7) A’f is a representative of A ().
THEOREM 7.8. If § e mrit , then

(7.9) Ao()) — AT (E) = AQ(p-(AR)))).

Let h: (E™*, J™*) — (8™, y4) be a map representing £; then Aq(£) — Ag (¢) is
represented by the map L:(E™" E"*®) — (8™ x S St v 81 such
that

(710) Ly, e, ) = {th(x’ -1 O=t=1
K"h(z, —2t — 1, u) (=1 =t =0).
Nowfor0 =t = %,
@.11) {L(x, t,u) = QHy (1, -+ ) Tnsa , u)
L(z, —t, u) = QHsea(21, - -+ , Tpya, u) = L(z, t, u)
hence Aq(£) — A (£) is also represented by the map L':
L@y, - ) @as1y b, u) = {K,h(x’ b Oac=D,
K"h(zx, —t, u) (-1 =t=0),
B'(QH")(@1, *++ ,Tn, Uy Tny1, t)
(7.12) O=t=1),
BT QEY G, - 2ty Tasts —0)
(-1 =t=0),
= A'QH')(x1, -+ ,%n, Uy Tot1 l).
The mapping (1, - , 41, , ) = (@1, **+ , Tn, U, Tny1, t) has degree 1, and

therefore L’ represents the same element of ,.3(S™™ v 8™+ 8 v §*) ag

A’(QH’) and therefore L represents the same element as Ao(QH’). But QH’

represents Q(p.(A(£))) and hence Ag(f) — Ao (¥) = A(Q(.(A(2)) as desired.
COROLLARY 7.13. If £ e iy and n < 3r — 3, then

(7.14) A® — A"® = (~1EEHQ))).

In order to prove the second Freudenthal formula, we consider a mapping
R:(E™, J**) — (8™, y«) representing £ e 77 and consider the effect on
Ao(¢) and AQ(£) of replacing h by k = p,410 h o 0,4,. We make the following
observations:

(715) If f: (En+l, Em+1) - (Sr+1 v Sr+l) Yx X y*)’ and fl = 0'1,’+1 °f° n+l,
then Or41 © Qfl [ 0n+2 = Qf.
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(7.16) If g:(B"™, E™*") — (" X S, 8" v §), and g, = or o g o bui1, then
Orq1 © B'gg ) 0,.+3 = B”g and Or41 © B”gz o 0,..}.3 = B’g

(7.15) follows from (1.26), (1.28), (1.14), and (4.12), while (7.16) follows
from (1.26), (1.14), and (6.8).

Now let h e Frii ,and let B = pry1 0 h o 0aqe. Then

@i, -+ @ng1, 1) = praa(h(—21, 22, -+, Tt 1))
= pr41(@(Dh(—21, T2, -+ , Tn), Tat1))
(7.17) = d,(p(Dh(—21, T2, " ** ; Tn)), Tnt1)
= do(o/(h(—=%1, 2, *** , Tn, 0, 1)), Tnt1)
=d,(R(@1, "+ y T, 0, 1), Tns1)
by (6.3), (6.6), (1.6), and (1.11), and hence R e F2H:. Moreover
Dh = p, o Dho 0,,

while, in the notation used in the definition of the maps K'h and K”h in §6,
we have

(7.18) Bt = pry10 he o bnya,
and hence

Hi =¢ir10hi = @410 pry10 hi o bua
(7.19) = 0r410 @ri1 0 By o Onpr

= 01,-+1 o Hio 0pa
by (1.27). Also
H = ¢. 0o Dh = ¢, 0 p, 0o Dho 0,

(7.20) =or0¢.0Dho b,
=gr0H o6,.
Hence for —1 =t =0,
KRy, -, Tapr, hw) = QHaea(@r, -+, Tay1, %)
(7.21) = or41 0 @Haty1 0 Onga(@1, ** 5 Tas1, U)
= or41 0 QHappr(—21, T2, ***  Tat1, %)

by (6.14) and (7.15). For0 = ¢t = 1,

KR, - 3 Tngr, b u) = BQH @1, -+, Tn, Uy Tn1, 1)
B'(Q(or 0 H' 0 0,)) (X1, *** 5 Tny Uy Tns1, 1)
B'(0r0 QH' 0 0,41)(T1y -+ * 5 Tny Uy Tnt1, 1)

= orp10 B"(QH")(—21,%2, - = ; Tn , Uy Tns1y t)

Il

(7.22)
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by (6.14), (7.15), and (7.16). It follows from (7.21) and (7.22) that

(723) K'E = Or41 © K”h o 0,.+3
and similarly that
(7.24) K"k = 6,410 K'h o Onys.

We next observe that

(7.25) Ifr > 1, the map h represents the element —§ € wryy .

Clearly h o 6.,» represents —%. For 0 < t < 1, let 8, :8 — S be the
rotation of S™*' through an angle =t, about the r-dimensional plane z, = z; = 0,
so that B, the identity, 81 = pr41, B: is given by
7.26) Bi(x1, -+, Try2) = (x1, &2 cOS mt — x5 sin wt, x5 sin 7t — x; cos wt,

Loy, xr+2)°
Then B: ok o 0,1, deformsh o Bnyz into b = pry10 h o Bnys, and for each ¢, it
follows from (6.3), (7.26), and (1.6) that

(7.27) Beoho Ouya(Tr, -+, Tas1,1) = Beo dr(h(bnse(z1, -+, 0, 0, 1)), Znp)
' = &, B (Bns2@1, -+ , Tn, 0, 1)), Znys)
H

so that Bi o h o Opys € Frit . Hence T represents the same element —¢ of =77 as

does b o Onys .

THEOREM 7.28. If n < 8r — 3 and r > 1, then Ao() = (—1)"1A7 (5).

The maps 0.43 maps (E"*, E™*®) on itself with degree —1, and hence
K'h o 0,45 represents — Aq(£), and it follows from (7.23) and (7.25) that

(7.29) Ao(—§) = 6a(—AT(®))
But from the proof of Theorem 4.22 we see that
(7.30) 8,41(— A0 (§)) = (—1)A5(¥).

Combining (7.30) and (7.29) gives the proof of Theorem 7.28.
CoroLLARY 7.31. If n < 3r — 8,7 > 1, £ e mris , then A'(§) = (—1) A" ().
If o € 7,(S") and E(a) = 0, and if £ is an element of 77 such that A(¢) = «,
then

(“IEEH(@)) = A'E) — A"(®)
= A + (—1)A(®.

Since E o E is an isomorphism onto, we conclude
THEOREM 7.33. If o € m,(S") and E(a) = 0, and if n < 3r — 3, r > 1, then

Hl) =0 if r is odd,
H(a) € 2m, (8™ if 7 is even.

This generalizes a part of one of Freudenthal’s theorems.

(7.32)
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Conversely, suppose that r is even, and let 8 e 27.(S**"), and choose 7 ¢
7a(S" ) such that 2y = 8. If n < 3r — 3, then there is an element v’ € mn_,(S")
such that v’ % 1,1 = v,sincen — r < 2r — 3 = 2(r — 1) — 1, and therefore the
r-fold suspension: ,_.(S"") — 7.(S* ") is onto. By Theorem 5.30, H([E(y"), u]) =
2(y' % 1) = 2y = B,and E([E(¥’), v]) = 0 by 3.66. Hence

THEOREM 7.34. If v € .(S¥™") and r is even, there exists an a € w.(S") such that
E(a) = 0 and H(a) = 2v.

In the special case n = 2r — 1, there are integers d’ and d” such that

’ — ’
(7.35) A(E) = d'ur,
A”(§) = d"urn -
We also have

E(EH(@)) = H(a) xu

eHo(a)(tor—1 * 1)

(7.36)
EHo(a) 241

where ¢ = =+1. Therefore we have
{d, — d" = (=1)'¢Ho(a),

(7.37)
d = (—1)*a”.
Comparing with the similar equations (6.1) for the Freudenthal invariants ¢/,

¢”, we conclude that
d' = e(—1)¢,

7.38
( ) {d” — 8(_1)7'0/[.

Thus the homomorphisms A’, A” generalize the Freudenthal invariants.

Let &, & e =i and suppose that A(%) = A(&) = a. Let fi(E", E™) —
(S", y=) be a representative of «, and let k; , hs € FE such that h; is a represent-
ative of & for ¢ = 1, 2, and such that Dh; = Dh, = f. Define a map
T:(En+3, E'm+3) — (Sr—l X Sr+l, Sr+l v Sr-H) by

K'h(x1, 5 Tat1 s 2Tnt2 + 1, Toys)

(1 = 2,42 20)

(739) T(x1, -+, Tnts) = ’
K'ho(y, -+ ) Tat1, 1 — 2%ni2, Tnys)

(0 = 2a42 = 1).
For0 < zp42 < %,
T(@1, -+, Tags) = B(QH2) @1, *** , Tn ) Tnts, Tnt1, 1 — 20asa),
(740) <T(xy, ", Tnt1, —Tnsz ) Tnts)

L = BI(QH{)(I'I 3 * 3Ty Tnt3 ) Totl, 1- 21?,,.{.2) = T(xl y *°° ,$"+3)
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since H; = H, . Hence T is homotopic to the map
To: (B, E™**) — (S % 8™, 8 v §™*) such that

Khi(zy, -, Tog1, t, u)

=QH un(71, -+, Top,u) (—15t=0),
K'ho(z1, -+ ) Tny1, —1, u)

= QHzy 221, , Taya,u) (0=t =1).
Let h:(E™, ™) — (8™, yx) be the map such that

@i, ZTngr, 2pse + 1) (—1 £ 2442 =0),

h2(xl y 0y Tntl, 1 - 2xn+2) (0 § Tn42 § 1).

(7.41) To(xl y **° sy Tntl, t! u) =

(742) h(:vl, ey, $n+2) = {

Then it is clear that
(7.43) Q((p,-+1 o h) = To .

The map 7 is a representative of Ao(t) — A(',(&), ‘and Q(¢r+1 o h) is a repre-
sentative of Q(@r+1(e’)), where o is the element of x,.2(S"*") represented by k.
We have proved that

(7.44) Ao(E) — Ao(E) = Q(@ra(e”))
and therefore

THEOREM 7.45. If &, , &2 e mriy and A(£) = A(L), and if n < 3r — 2, then there
is an o € wp32(S) such that

(7.46) N(&) — (&) = H(a).

Conversely, let £ ¢ T , and let a € mp42(SH). Let by € Fril be a representa-
tive of & . Then® there exists a representative h:(E™*?, E***) — (8™, y4) of
such that

(747) h(xl P il?,.+2) = h(zm y 0y Tty 202 + ]-) (_1 S Tpye S 0)
Let hy € F2 be the map such that

(748) hz(xl y " x".,.z) = h(xl y * 3y Tngl, %(1 - xn+2));

and let £ be the element of ;4 represented by hs . Then from the above dis-
cussion it is clear that

(7.49) A(&) — N(k) = H().

Since hy = hs , we have A(%) = A(&). If & = 0, then —£; e Kernel A, and there-
for the image of H is contained in the image under A’ of the kernel of A. Con-
versely if £& ¢ Kernel A and h, is chosen so that hi(z) = yx for z € E", then hy is
a map of (E"**, E™**) into (S™*", y«) which represents an element a € 7,42(S™).

5 Cf. [21, Lemma 1].
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If we choose h. = Y« , so that & = 0, we find that h is also a representative of
a, and therefore A’(¢;) = H(a), so that A’ maps Kernel A into Image H. We have
proved

THEOREM 7.50. A’ maps Kernel A onto Image H.

Let Q be the projection of mn42(S**") onto its factor group m,42(S**")/Image
H. Since A’ maps Kernel A into Image H, there is a unique homomorphism
d:Kernel E — 7,42(S”"")/Image H such that the commutativity relation

!
+2 A 271
Trpr —— ng2(S7)

(7.51) jA 19

Kernel E —?—» Tag2(S” ") /Image H

Qo A’ = ®o Ashown in the diagram holds.

Freudenthal, [9, §8.6], has proved that if n = 2r — 1, then A’(f) = 0 implies
A(¢) = 0, so that Kernel A’ C Kernel. A. It follows that ® is an isomorphism
into. For if o ¢ Kernel ®, let £ € vy such that A(¥) = a. Then
0 = &) = ®(A@}) = QA'(%)), so that A'(¥) e Image H. By Theorem 7.50,
there is an element £ € Kernel A such that A’(¢) = A’(£). Then ¢ — ¢ ¢ Kernel
A’, and therefore ¢ — ¢’ ¢ Kernel A. But 0 = A(¢ — §) = A() — A@F) = aq,
and & is an isomorphism.

We now prove (3.49). If r is even, it has been proved by Freudenthal in [9]
that Kernel E is infinite cyclic, and by the author in [18, p. 470] that [i,, ¢/
generates Kernel E. Suppose now that r is odd, and that there is an element
o € morp1(S™™) such that Ho(a) = 1. Then Image H = m511(S¥*), and the fact
that ® is an isomorphism implies that Kernel E = 0, i.e., E is an isomorphism.
Since [t , ;] € Kernel E by 3.66, we have [i,, «] = 0. Finally, suppose that
r is odd and no element of wey1(S™) with Hopf invariant 1 exists. Then
[tr, ] # 0 and [i, ] € Kernel E. Now Image H = 2m,41(S”*") and therefore
& maps Kernel E isomorphically into the group m:41(S”*')/Image H, which
is cyclic of order 2. It follows from the fact that ® is an isomorphism of the
non-zero group Kernel E into a cyclic group of order 2 that Kernel E is cyclic
of order 2 and that [i,, «] is the generator of this group.

8. Construction of some essential mappings of spheres on spheres

The following homotopy groups of spheres are known explicitly.

(8.1) ma(S™) is an infinite cyclic group generated by i, , for n = 1. [1].

(8.2) ma(S) = 0 forn > 1.[1].

(8.3) m3(S?) is an infinite cyclic group generated by an element vo with Hopf
tnvariant 1. [13].

(8.4) . mn41(S™) s a cyclic group of order 2 generated by va = E™(vs) for
n = 3.[9].

(8.5) mu(S?) is a cyclic group of order 2 generated by vy o vs . [14].
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Poutrjagin (C.R. Acad. Sci. URSS, 19(1938), pp. 147-149, 361-363) an-
nounced that 7,42(8™) = 0 for n = 3, but a complete proof of this result has not
appeared.

In the following table we give a list of the groups ,(S") which have been
proved to be different from zero, but which have not been explicitly determined,
and exhibit in each case a non-zero element.

n r non-zero element
4k — 1 2k leak 5 ta]
7 4 v
T+k | 4+k vare = E*(v)
8 4 Veo v
(8.6) 10 4 veo vy
15 8 ve
15+ k 8+ k verr = E*(vg)
16 8 ve o vis
18 8 W o vl
22 8 ve o W15

In the table, k ranges over all positive integers; vs and »g are the homotopy
classes of the Hopf maps k8" — S* and hs: S® — S; referred to in §5.

In this section we proceed to extend the table (8.6). We first construct non-
zero elements of 7,(R:), and then apply the results of §5 to obtain non-zero
elements of 7p1241(S**"). We then apply the results of §7 to prove that the sus-
pensions of some of these elements are different from zero.

THEOREM 8.7. m,(S") # 0 for the following values of n and r:

n 14 ’ 14 8 [16k + 2 8k +1 |16k + 3

r 7 l 4 4k "8k 4k + 1 8 + 1

Again k ranges over all positive integers.
We have defined R; as the group of all rotations of S*. It will be convenient
to extend each element of R; to a mapping of the whole infinite-dimensional
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cartesian space C into itself in an obvious fashion. Thus, for the purposes of the
present section, R; is the set of all orthogonal linear transformations of C into
itself which act as the identity on the subspace

(8.8) Ck)=1{zeC|zy= -+ = 241 = 0}

of C. Each element of R; may be represented as a matrix r = (r;;)(,j = 1,2, - -+ )
with infinitely many rows and columns of the form

(8.9) G’%

where 7, is an orthogonal matrix with (k 4+ 1) rows and columns, the zeros repre-
sent rectangular (k + 1) X « and « X (& + 1) matrices of zeros, and I is the
identity e X o matrix, and where the matrix ro has determinant 1. For ease
in writing formulas, however, we shall frequently replace r by r,. We note that
R1 CR2 CRs cC-... CR,. CR,,.H C --- and that

Ri = {r € Ruj1| Tat2, nt2 = 1}.

Denote by y* the point of C whose k™ coordinate is 1 and whose other co-
ordinates are zero. Instead of the mapping « considered in §5 we shall define a
map xRy — S* by
(8.10) a(r) = r@™).

It is not difficult to see that x; = x. Denote also by «; the map « regarded as a
mapping: (Ri, Re1) = (8", ™).

We first prove that m14(S®) # 0 by proving the existence of an element v, e
m7(Rs) such that xs(yz) 0. For this purpose recall that C® can be made into a

(non-associative) algebra C® without zero-divisors over the reals with the fol-
lowing multiplication table:

v =y vy =y oty
vV =9y =y =y

2

I
<

3

vy =-y-y G#g045=1-,7)
vyt =y = G=1-",8
vyt =~y G=1,---,7

and that for z, y e C%, || z-y || = ||z || - || y ||. For each z ¢ C°* we let Z =

—z 4+ 2z54°; thenz-2 = &-z = (|| z |))>%". It is known that the subalgebra
of C® generated by the identity y* and anyother two elements of C®is associative,
and therefore, for each z, y € C°, the element z-y-Z is well-defined. The mapping
£:C® X C*— C® defined by '

(8.12) fla,y) = z-y-z
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carries §' X & into S7, since || Z || = || z || and therefore || f(z, v) || =
Hzll-llyll-l|£]] = 1if ||z || = ||y || = 1. Moreover, it is easily seen that, for
each fixed z € S, the mapping y — f(z, y) is a rotation f(x): since f(z, y*) =
zy’ i = 2% = y° J () belongs to Rs. Thus the correspondence z — f(z) is a
mapping f: S — Ry . Now

ke(f(x)) = x-y7-:t = (2(z127 + 737s), 2(xe7 + 6s), 2(TsT7 — Z178),
2(xazr + 252s), 2(xax7 — za%s), 2(xe2” — Taws), 2(x7 + z3) — 1).

The author has constructed elsewhere [16, pp. 140-1] a map g: 8" — S° given by

(8.13)

9(@) = @mzr + T275),  2(Zexr — T1Ts),  2(Ts2r + 2479),

(8.14) 2 2
2(x4xr — x3%8), 2(Ts27 + Te2s),  2(zexr — T5Ts), 2(x7 + x3) —1),

and proved that g represents the non-zero element »s of :(S°).
Now if h: 8 — §’ is the map such that

(8.15) h(xl, e ,x8) = (171,1'8,32,30,:54,15;337,378):
and if &’: 8° — S°is the map such that

(816) h’(xl y "ty 37) = (xl » 3y L2, Ts, Te, T4, 37),

then h'o go h = kso J. But h and b’ both have degree —1, and therefore xs o J
represents (—u) o vgo (—i) = vs # 0. Letting v, be the element of x(Rs)
represented by f, we have xs(y;) # 0, and therefore 14(S”) contains the non-
zero element J (v2). Therefore [14] the element vso J (v2) of 714(S*) is also different
from zero.

Eckmann [4] and the author [16] have constructed for each k¥ = 1, an element
Yak—1 € ma(Ra—1) such that wu_i(ys—;) is the non-zero element vi—; € 7o (S*™).
Hence J (va-1) is a non-zero element of g (S*).

We now exhibit a map f: S¥*** - Rg. representing an element g3 e
mses2(Rar—1). In order to do this, we represent S*** as the set of all 2k + 1)-
tuples of quaternions (2o, z:, - - - , zx) such that & = —xois a “pure imaginary”
quaternion and Zf’io:c;i; = 1; and we represent S*™" as the set of all 2k-tuples
(1, -+ ,Ta) With 2; quaternions and )_%2.z;%; = 1. Nowiszisa quaternion, let
L(x) be the matrix of the linear transformation y — z-y, so that, if

z=a + ai + a:j + azk,
then

G —a —a —ag
a. —a a:
(8.17) L) =" % % &
(17 asz aQ —a
az —ap a Qg

If A = (aup) is anr X r matrix with quaternion elements, let L(A4) be the 47 X 4r
real matrix obtained by replacing each element a.s of A by the 4 X 4 matrix
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L(aas). If A is a matrix with quaternion elements, we denote by A* the con-
jugate transpose of A. Then, if A has the property that A*A = the identity, it
follows that L(A) is a proper orthogonal matrix.

If z ¢ S**?, define a matrix F(z) with quaternion elements by

(8.18) Fop(x) = 8op — 2za(1 — xo)_ziﬂ (,6=1,"--, 2k)

where 8,5 = 0 or 1 according as @ # 8 or @ = 8. An easy computation shows
that (F(z))*-F(z) = the identity. Hence the function f defined by

(8.19) fz) = L(F(z)) (z e S**)

is a mapping f: S*** — Rg—1 . Let ~ver—1 be the element of mg;2(Rsi—1) represented
by f.

To compute g1 o f, observe that ¥ is the point (0, - - - , 0, k), and that, for
z ¢ S¥*? the point (f(z))(y™) is obtained from the last column of the matrix
F(z) by right-multiplying each of its elements by the quaternion k2. We have
therefore:

k1 (f(2)) = (—22:(1 — xo) "Fmk, -+, —22ua(1 — z0) "k,
(1 — 2za(l — 20) " Zu)).
The author has constructed elsewhere [19] a map g: S*** — S%" given by
821) g(x) = (1 — 2z,(1 — %0) %1, —225(1 — T0) &1, *+ - , —2au(l — To) i)

and proved that g represents an element Fars1 of Tee4+2(S¥ ") which is the (8k — 5)-
fold suspension of an element of m(S*) whose Hopf invariant is 4=1. Hence the
element 7g_; does not belong to 2mg42(S* ). Let h: S%H2 s S¥ 2 and b/ 8% —
S*~ be the maps such that

h(xo,xx,‘”,xzk) = (xoyxzk,"':xl):

(8.20)

(8.22)

h,(xl, e yxﬂc) = (x%ka te 7x1k)'
Then h'o go h = kg_10 f. Since h and h’ both have degree (—1)*, kgi—10 f repre-
sents ((—1) k1) o Far—10 ((—1) igrs2) = Psr_1, SiDce Fg_; is the suspension of an
element of 7g41(S¥*). We have proved that Byo_1(yss1) = Ps—1 #= 0, and there-
fore miex+2(S¥) contains the non-zero element J (Y8r—1)-

Since H(J(ys—1)) = Rar1(Yah1)*ur1 = a1 is the non-zero element of
r(S*¥), we conclude from Theorem 7.33 that E(J(va-1)) » 0. Hence
1r8;,+1(S”° +1) # 0. In the same way, H (J (’Yék—l)) = ksk_1('ygk_1)*l.ak_1 = f'gk_l*l.sk_l
does not belong to 2ma+2(S"* "), and therefore E(J (ysr—1)) % 0. Hence
m6e+3(S¥TY) # 0. Since E maps 74(S") isomorphically [2, Theorem 15] into
716(S?), E(v2) is a non-zero element of m15(S®). Since E: m5(S%) — m16(S?) maps
the image of E: m4(S7) — m15(S*) isomorphically [9, Theorem II], E(ys) # 0,
and therefore E*(y,) # O for k > 2. Although the groups m144(S"T*) were known
to be non-zero for &k > 0, the non-zero elements E*(y,) constructed here are
different from the known ones. In particular, E(yz) lies in the direct summand
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E(r(S")), and »s generates the infinite cyclic direct summand hs(m15(S™)), of
m15(S"). Hence ms(S®) is not a cyclic group.

9. Proof of the non-existence of elements of mg.43(S***) with Hopf invariant 1

In this section we answer in the negative a question proposed by Hopf [11] by
proving the assertion made in the title of the section for £k > 0. As a corollary,
we observe that S**' does not admit a continuous multiplication with two-sided
identity if £ > 0.

For the proof, we require some preliminaries. Let G” be the space of all maps
of 8" into §” of degree 1, and for each y ¢ §", let Fy = {f e G" | f(y'™") = y}; and
let F* = Fye+1. For f € G, define &(f) = f(y""). Then : @" — 8" is a fibre map-
ping [7], the fibres being the sets Fy . Let ¥’ denote the map & considered as a
map: (G, F') — (8", y*"). Note that R, C @, and that R, N F" = R,_, , while
| Ry = & .

Let I: wi(F") — m:4.(S") be the Hurewicz isomorphism [18]; I is an isomorphism
onto, and if J': wi{(R,—) — mi(F") is the injection homomorphism, we have [18]
9.1) Io.J =J.

The homomorphism &: 71(G7, F') — 7;41(S") is an isomorphism onto
[14]. The author has proved [18, Theorem 3.2] that if « e w;_;(S"), then
1) ™ (@) = la, ul.

ﬂi+1(Gr, Frr) -q) 1I','(F’)
9.2) ""J 1 I
mi1(S7) mipr(S).
Let f:8™ — R,_; be the map such that
I, 0
93) fe) = f'(x)-( ] —1> (o eS8
where
(9.4) @) = (8 — 2xx;) » (xeS).

The map f represents an element o e w,—1(R,—;) which is the image under a:
m(Ry, R,) — m_(R,—1) of a generator 8 of the infinite cyclic group
m(Ry , Rr1) = 7(S) [16].

7By , Rrt) O mp1(Roa)
Jlll 1'.,/
(9.5) (@, Y 2 r (P

2| E

1I',-(S') 1r2,_1(S')
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Let J”: m(R,, Rr—)) — m(@, F") be the homomorphism induced by the
identity map; then # o J” = %, . Since x, and & are isomorphisms onto, J” is
an isomorphism onto. Since J” (8) is a generator of =,(G", F"), we have ®'(J”(8)) =
=+, , and therefore J'(a) = J'(3(8)) = 3(J"(B)) = 4+3((#) (1)), and there-
fore J(a) = I(J'(@)) = =£[er, t]).

The author has proved [17, Theorem 2] that Jo ey—y = E o J,

Tr—1(Ry—2) 2 ra(Rom)

(9.6) Jl lJ

rara (5™ Ly (S0

where a,_; is the identity map of R.—; into R,—; . Suppose now that r = 4k + 1
and & > 0. Then it has been proved by the author [16, pp. 139—40] that
a(Ya—1) = @, and therefore we have

E(J (yam) = J(eur(vae—1)) = J(@) = E[er1, 1]

We have shown that E(J (ya—)) # 0, and therefore [uk+1, tr+1] # 0. By (3.71)
and (3.72), no element of mg.+3(S***) with Hopf invariant 1 can exist.

10. Concluding remarks

Consider the following sequence of groups and homomorphisms:

(100)  mora(S) = + - — 7a(8) 2 mpa (54 Hmy (s L,
7,-"_1(8') — e

The homomorphism P, is defined as follows. The (r + 1)-fold suspension E” +,
Tnr(S) = mn1(S**") is an isomorphism onto forn < 3r — 1. Let P n  Tar(S) —
7a—1(S") be defined by

(10.2) Pa(@) = [e, &

Then P = Pno (B

We have shown that H,o E, is the zero homomorphism, and the author has
shown elsewhere [18, Theorem 3.11] that E,_;0 P., is zero, and therefore E, ;0 P,
is likewise trivial. On the other hand, if « € 7,_,(S") and P.(a) = 0, then there
is a map f: E™* X E"* into S" of type (a, t.). The map Gf: E*** — S repre-
sents an element 8 of m,11(S™") such that H,(8) = a * i, = E""'(a). Thus P.(a) =
0 implies that there exists 8 € m,1(S™"") such that H.(8) = . We have

Kernel H, D Image E,
(10.3) Kernel P, C Image H,
Kernel E,_, D Image P, .

It is not known whether the opposite inclusions hold.
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An examination of the Freudenthal theorems shows that they can be formu-
lated as follows:

Kernel H, = Image E., forn < 2r,
(10.4) Kernel P, = Image H, forn = 2r,
Kernel E,_; = Image P, forn < 2r.

The problem of generalizing the Freudenthal theorems might then be formulated
as that of determining whether or not the inclusions opposite to those in (10.3)
hold.

Let o € 7,(S"), and let G2 be the space of all mappings: S* — S” which repre-
sent a. Let F2'" be the set of all f e G2 such that f(y«) = yx . The space G5 can
be imbedded in a natural way in F' 24271 and then the injection homomorphisms:
1 (F2) — m(FEEa ) is equivalent [18, Theorem 3.10] under the Hurewicz iso-
morphism to the suspension homomorphism E:my1o(S7) — 7pierr(S™). The
homomorphism A’ : 7% — m0001(S" ) can be modified slightly to yield a
homomorphism T4 : 7, (F2tay ™, F2™) — mp1011(S™ ™). In the diagram

5/ s/
I T NI o 2 S I 7T 1 7 o WL G -2 SR

S o |

(105) -+ — wo(F2") 5 wo(FEEN Ly m (PE¥EH B2y B 0 (P27
Ial IE(a)JV I;l Ini

E P

r H r
s 7rp+a(S ) I 7rp+q+l(Sr+l) g 7rp+q+1(52'+1) E— 7r7+q—1(S ) —> ..

the top sequence is the homotopy sequence of the pair (G2, F2'"), the middle
sequence is the homotopy sequence of the pair (FZ¢sy*', F2"), and the bottom
sequence is (10.1). The homomorphisms e, e’, e” are induced by identity maps,
while the homomorphisms I, and I z(s) are the Hurewicz isomorphisms onto. All
the commutativity relations suggested by the diagram are known to hold, except
possibly for the relations ITwoj = Holgw and Inod = Po I,. Since the
Hurewicz homomorphisms are known to be isomorphisms onto, it is natural to
ask whether I is an isomorphism onto. Examination of the diagram

(G2 F2T) B (8D
(106) e’ l
!

, I
wo(F gn)'ﬂ, FF'y _“*sn p+q+1(Szr+l)
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where I(8) = B*a, suggests the conjecture that lo x = I,o e”. If this is so, then
the fact that in the case p = r, « = «,, the homomorphism ! is an isomorphism
onto for ¢ < 2r — 1, would show that I, is onto and e” an isomorphism into.

One may also ask whether the Hopf homomorphism can be further generalized
to the case n = 3r — 3. A crucial case seems to be n = 3r — 2. Investigation of
the homomorphism of w3 1(E" X E, (E" X E')’) into ms%(S" X S, S" v 8)
induced by ¥,.. suggests the possibility of a new invariant essentially distinct
from the Hopf invariant. For let f:(E" ™, E*™) — (8" X &, S'v ") be a
mapping representing « e m5,1(S” X S7, §” v §7). The element « is the image
under ¥, . of an element 8 € ms,—1(E*, E™) if and only if f is homotopic to a map-
ping g such that g~'(«) is a single point for some u € (8" X 87) — (8" v §"). The
set f~'(u) carries an (r — 1)-dimensional cycle z,_, interior to E**; if ¢, is a chain
bounded by z,_, , then the image of ¢, under f is an r-cycle of 8™ X S” which is
homologous to a(S" X yx) + b(ysx X 8") for some integers a, b. This pair of
integers is easily seen to be a homotopy invariant of f; and the results of Eilen-
berg [5] suggest that f is homotopic to a map g as above if and only if a = b = 0.
Thus to each element o € m5,_2(S") it is possible to associate a pair of integers
(a, b), which measure in some sense the impossibility of defining a Hopf invariant
of o as we have done for n < 3r — 3. It is not known to the author whether there
exists an element a € m3,—2(S") such that (a, b) = (0, 0).
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