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ON THE HOMOTOPY GROUPS OF SPHERES AND ROTATION GROUPS' 

BY GEORGE W. WHITEHEAD 
(Received February 11, 1942) 

1. Introduction 

One of the outstanding problems in modern topology is that of classifying 
the mappings of an m-dimensional sphere Sm into a topological space X. In 
terms of the Hurewicz theory of homotopy groups2 this problem may be phrased 
as follows: to determine the structure of the mth homotopy group rm(X). Of 
particular interest is the case where X itself is an n-sphere Sn. In this case the 
results of H ~ p f , ~  ~reudenthal ,~ and Pontrjaginb have led to the solution of 
the problem for m 4 n + 2. For m > n + 2 almost nothing is known con- 
cerning the structure of rm(Sn). 

That this problem is closely related to the study of homotopy properties of 
the rotation group Rn of the n-sphere has been shown by ~ontrjagin,' who has 
used the one- and two-dimensional homotopy groups of Rn to compute the 
groups an+i(Sn) (i = 1, 2). 

In the present paper we introduce an operation which associates with each 
mapping f(Sm X Sn) C Sn a mapping 4(Sm+"+') C 8"''. This is a generaliza- 
tion of the procedure of ~ o ~ f '  for the case m = n. This operation is shown to 
induce a homomorphism of r,(Rn) into r,+,+l(~"+'), which for m = 1, 2 turns 
out to be an isomorphism. The connection of this homomorphism with one 
introduced by Freudentha14 is studied. 

In a recent paper Freudenthal' has announced without proof a very general 
theorem on extension of mappings, and used this theorem to construct maps of 
s*"-' on Sn of Hopf invariant 1' for all even n. We shall use the above results 
to construct a counter-example to Freudenthal's theorem. It is further shown 
that Freudenthal's construction definitely fails if n > 2 and n = 2 (mod 4). 

2. Preliminary concepts 

In Euclidean (r  + 1)-space G'+' let ET denote the unit sphere, i.e., the set of 
points x = (XI , . . . , x,+l) e G"' with 

Presented to the American Mathematical Society, December 30, 1941. 
'W. Hurewicz, Proc. Akad. Amsterdam 38 (1935), pp. 112-119 
a H Hopf, Math. Ann. 104 (1931), pp. 637-665. We shall refer to this paper as H I. 

H. Freudenthal, Comp. Math. 5 (1937), pp. 299-314. We shall refer to this paper 
as F I. 

L. Pontrjagin, C. R. Acad. Sci. URSS 19 (1938), pp. 147-149, 361-363. 
6 H. Hopf, Fund. Math. 25 (1935), pp. 427-440. We shall refer to this paper as H 11. 
7 H. Freudenthal, Proc. Akad. Amsterdam 42 (1939), pp. 139-140. We shall refer to 

this paper as F 11. 
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Let E: (i = 1,2) be the hemispheres defined by the conditions xr+l 2 0, xr+l S 
0, respectively. Efl denotes the closed (r + 1)-cell I x 1 4 1 bounded by B. 
We shall refer to the points x1 = (0, 0, . . . , 1) and x2 = (0, 0, . . . , - 1) as the 
north and south poles, respectively. 

Let Y be a metric space with distance function p(y1 , yz), yo a fixed point of Y. 
By ySr we shall mean the space of all mappingss f ( S )  C Y metrized by 

Let xO be the point of LY with co-ordinates (1, 0, . . , 0). Then Y~'(X', yo) 
denotes the subspace of YS' consisting of those mappings f ( S )  C Y such that 
f(xO) = yo . Two mappings f ,  g e YSr (xO, yo) are said to be homotopic if they 
can be joined by an arc in YS' (xO, yo). The relation of homotopy is reflexive, 
symmetric, and transitive and divides the space Y'~(xO, yo) into equivalence 
classes, called homotopy classes. The set of all these homotopy classes we 
denote by r,(Y). We shall denote the homotopy class of any f e YS'(xO, yo) by f .  

We define an operation of addition between homotopy classes as follows: 
let f; (i  = 1, 2) e Y"(x', yo). Let 4i (i = 1, 2) be a mapping of E: on S such 
that (1) +i(~'-') = xO; (2) &(E: - ST-') C S' is a topological map of degree 1. 
Then we define a mapping f ( S )  C Y as follows: 

It is easily verified that the homotopy class off depends only on the homotopy 
classes of fl and fi . Let 

~ u r e w i c z ~  has proved that under the operation of addition so defined the set 
r,(Y) becomes a group, called the rth homotopy group of Y. This group is 
abelian if r > 1; in all the cases we consider here it is also abelian if r = 1. 

3. The homomorphism H 
Let Euclidean (m + n + 2)-space be represented as the product space Gmfl  X 

&n+l , points x e Gmfn+2 being represented by co-ordinates (p, q) (p e Gmft, 

q e 6""). Then s"+"+' is defined by 

Let H1 and H2 be the subsets of Smfnfl defined by 

8 All mappings are supposed continuous. 
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respectively. Let 

Evidently I HlHs = 9 2  I HlH; and maps HlH2 into Sm X Sn. Denote this 
mapping by $. Then 

LEMMA 1. The mappings $1 , $2 , and $ defined above are homeomorphic map 
pings oj H1 on E"" X Sn, Hz on Sm X En+', and HlHz on Sm X Sn respectively. 

Let j be a mapping of Sm X Sn into Sn. We associate with j the mapping 
H( j )  = +(sm+"+') C Sn+' as follows: + maps the great circle joining the point 
(0, q) to the point ( p ,  q) on the great circle joining the north pole z' of Sn+' to 
the point j[$-'(p, q)], and maps the great circle joining ( p ,  0)  to ( p ,  q) on the 
great circle joining z2 to j[$-'(p, q)] .  Evidently +(HI) C E;+', t$(Hz) C E;", 
while + = j$-' on HlHz . The functions defining the mapping t$ are given by 

We use this operation to construct a mapping H = H,,, of rm(Rn) into 
rm+n+l(~n+') as follows: let e e Rn denote the identity mapping of Sn on itself, 
and let f e R;"'(P', e ) .  If p e Sm, q e Sn, let fC(p, q) denote the point of Sn 
into which q is carried b the rotation f ( p ) .  Let t$ = H(fC). Then it is easy Y 
to verify that + e Sn+lSm "+'(xO, z2) ,  where xO = ( P O ,  0 )  and zZ is the south pole 
of 8"". Let H ( f )  = +. Evidently f = g implies H ( f )  = H(g), so that H is a 
well-defined mapping of rm(Rn) into rm+,+l(Sn+'). We have further 
THEOREM 1. H i s  a homomorphic mapping of rm(Rn) into r,+,+l(~"+'). 
For let f ,  g t r,(Rn), and let h be the constant mapping h(p) = e ( p  e Sm). 

Then h = 0. Hence f + h = f ,  h + g = g ,  so that H(f  + h) = H( f ) ,  
H(h + g )  = H(g). It is therefore sufficient to prove that 

Let j', g' be mappings of Sm into R, defined by 

Then f' = f + h, g' = h + g. Let F = HCf'*), G = H(gf*). 

0 If j(z) c Y and A is a closed subset of X, j I A denotes the mapping of A into Y ob- 
tained by restricting the range of definition of j to the set A. 
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Let ai denote the vertical projection of zfnfl on E"+"+' (i = 1,  2).  Then 
r i (x )  = x for x E S m f  n. Let Fo = F I K f  "+I, H" = F I K f  "+I, H' = 
G I Efnf l ,  Go = G I Gfnfl .  Then it is easily verified that H'TT' = H" m .  -' 
Call this mapping HO . Evidently Fo(x) = Go(x) = Ho(x) ( x  E S m f  " ) .  

Let Ht (0 $ t 5 1) be a homotopy of HO to xO keeping xO fixed..  hen" 
there exist homotopies Ft , Gt (0 4 t 6 1) of FO , Go respectively, such that 
Ft(x) = Gt(x) = Ht(x)  ( x  E S m f n ) .  Let 

Evidently F: = F, G: = G .  
Let 

ThenH; = H ( f  + g), while H: = F: + G: = F + G = H(f + h) + H ( f  + g)." 
But Hi = H: , which proves the theorem. 

4. Relations between the homomorphisms F, G, and H 
Let S m f n  be the equator of S m f n f l ,  Sn  the equator of Sn+', and let j be a 

mapping of S m f n  into Sn.  We associate with the mapping j a mapping F(f )  = 
+ ( s m + n f l )  s n f l  as follows: + maps the great circle joining the north pole x1 

~m+n+l to the point x E S m f n  on the great circle joining z1 to j(x),andmaps 

the great circle joining x2 to x on the great circle joining z2 to j(x).  Evidently 
+(E;"+"+') c E,"", +(E?+"+') C ~ [ ' l ,  while + = j o n  S m f n .  Iff e S ~ ~ " + " ( X ~ ,  yo), 
then F( f )  e S ~ + ~ ~ " + " ~ ~ ( X ~ ,  yo); moreover, j homotopic to g implies F( j )  homotopic 
to F(g). Thus F induces a mapping F of rm+,(Sn) into T,+,+~(S"+'), which 
was shown by F'reudentha14 to be a homomorphism. 

Let Rn-l be the closed subgroup of Rn consisting of those rotations which 
leave the north pole fixed. Evidently Rn-1 is isomorphic with the group of 
rotations of 8"-'. Since Rn-l C Rn , there is a natural homomorphism G of 
T,(R,-~) into rm(Rn).  

THEOREM 2. The homomorphisms F, G, and H are related by  

10 K. Borsuk, Fund. Math. 28 (1937), p. 101. 
l1  This follows from the definition of addition in T ~ + ~ + ~ ( S ~ + ~ )  given by S.  Eilenberg 

(Ann. of Math. 41 (1940), p. 235), which is easily shown to be equivalent to  the one given 
here. 
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For let f c 7rm(Rm-1), g = F[H,,,-~(j)], g' = H,,,[GGf)]. It is then easily 
verified that g = g' on 8"'". Moreover g t (~Y+nf l )  C E;", g ' (g+nf l )  C E:". 
Hence for no x is gt(x) = -g(x). It follows that g and g' are homotopic, so 
that g = gt. 

Let + be a mapping of Sn-' into Rn-1 defined as follows: if x c Sn-', x' is the 
point in the great circle joining x1 to x whose angular distance from x1 is twice 
that from x1 to x. Then +(x) is that rotation which carries x1 into x' and leaves 
each point in the (n - 2)-sphere orthogonal to x1 and x fixed. Let h = 
H,-I,,-I(+). Then it can easily be shown12 that if n is even h has Hopf in- 
variant 2. We have further : 

THEOREM 3. The kernel of the homomorphism F[Tz,-l(Sn)] C mn(Snfl) 
(n even) is the subgroup of ?rzn-l(Sn) generated by h. 

The author has recently shownla that G(+) = 0; in fact, the kernel of the 
homomorphism G is the subgroup of 7rn-l(Rn-1) generated by +. It follows from 
Theorem 2 that F[Hn-1,,-1(+)] = F(h) = 0. Let g c mn-l(Sn), and suppose 
that F(g) = 0. Then the Hopf invariant of g is even,14 say 2k.  Let f = kh. 
Then F(f - g) = 0, and f - g has Hopf invariant zero. ~ e n c e ' ~  f - g = 0, 
i.e., g = f = kh. 

THEOREM 4. H,,, maps am(Rn) isomorphically for m = 1, 2. H,,, maps 
?rm(Rn) on ?rm+n+l(~n+l) for m = 1 and for m = 2, n > 1. 

Let h(S1) C R1 be defined by 

Then h maps S' homeomorphically on R1, and h is a generator of the free cyclic 
group rl(R1). But Hl,l(h) maps S3 on Sz with Hopf invariant 116 and generates 
the group ?rS(Sz). It follows from Theorems 2 and 3 that HI,, maps 7r1(Rn) 
isomorphically on ?rn+z(Snfl) for n > 1. 

Since ?rz(R,) = 0, it follows that Hz,, is an isomorphism. But 7rn+3(Snf') = 0 
for n > 15, and hence HZ,, maps m(Rn) on T,,+~(s~+'). This completes the proof 
of the theorem. 

6. Freudenthal's theorem 

Freudenthal has recently announced7 without proof a very general theorem 
on extension of mappings, and used this theorem to construct maps of Szn-' 
on Sn with Hopf invariant 1 for all even n." In this section the foregoing 
results are used to construct a counter-example to Freudenthal's theorem, and 
to show that the above-mentioned construction fails if n > 2 and n E 2 (mod 4). 

l2 Cf. H 11, p. 431. 
18 Ann. of Math. 43 (1942), Theorem 5. 
l4 F I, Satz 111. 
Is F I, Satz 11, 2. 
la H I, p. 654. 
l7 F 11, p. 140. 
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Let points z of Euclidean 2n-space be represented by complex co-ordinates 
(zl , . . ,zn). Then S2"-' is represented by the equation x?-l ziZi = 1. 

Let Pn-1 denote complex projective ( n  - 1)-space. Then there is a natural 
mapping +(s2"-') C Pn-1 defined by mapping each point z E 8'"-' into the point 
of P,-1 with the same coordinates. This is evidently a fibre map in the sense 
of Hurewicz and  teenr rod," the fibres being great circles. This mapping 
4(S2"-') C Pndl can be extended to a mapping +(E2") C Pn , where 
+(zl , . , zn) = (21 , . - , zn , ( 1  - zgi)'). I t  is easily verified that + is a 
homeomorphism on E2" - s2"-l and + = 4 on S2"-I. 

Let X be a topological space, j a mapping of Pn-l into X. Then 
THEOREM 5. The mapping j(Pn-1) C X can be extended to a mapping 

p ( P n )  C X if and only if the mapping j+(s2"-') C X is inessential. 
For if j4 is inessential, there is a mapping F(E'") C X such that F = j+ on 

S2"-'. Let S = F+-'. Then S is the required extension. Conversely, if fr 
is an extension of j, let F = /*+. Then F maps E ~ "  into X and F = f$ on 
S2"-'. Hence fd is inessential. 

Let g(S1) c ~ 2 , - ~  be defined by 

Then g is essential or inessential according as n is odd or even. For if n = 1, 
g is a generator of 7rl(Rl), so that g is essential. If n = 2, we have g(S1) C Q3, 
where Q' is the quaternion subgroup of R3 . But 7 r l ( ~ ~ )  = 7r1(S3) = 0. Hence 
g = 0 in Q~ C R3 , and g is inessential. The proof is completed by induction. 

Let h = H ( g ) .  Then it follows from Theorem 4 that h(s2"+') C s2" is essen- 
tial if n is odd and inessential if n is even. Moreover, it can be directly verfied 
that there is a mapping ht(Pn) C s2" such that h = ht4, and that ht has degree 1. 
An application of Theorem 5 gives 

THEOREM 6. If n is even, the mapping ht(Pn) C s2" can be extended over 
Pn+l . I j  n is odd, it cannot be so extended. 

The theorem of Freudenthal's referred to above can be phrased as foll~ws:'~ 
Let K be a complex, j a normal of Kq into Sq. Suppose that j can be 
extended over Kg+'. Then j can be extended over K"-'. 

Let K be a triangulation of P,+l , so that Pn becomes a closed subcomplex L 
of K .  Then L C K ~ " .  Let ht be the mapping of L into s2" of degree one 

18 W. Hurewicz and N. E. Steenrod, Proc. Nat. Acad. 27 (1941), pp. 60-64. 
F 11, p. 140. 

20 I.e., j (Kc1) = 20 .  
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described above.  hen" h' can be deformed into a normal map h"; moreover, 
h" can be extended over K if and only if the same is true of ht. Let r ( K  - L) 
denote the r t h  cohomology group of K - L with integral coefficients. Then 
F ( K  - L) = 0 for r < 2n + 2, while H~"+'(K - L) is a free cyclic group. 
In particular, H2"+'(K - L) = 0. It follows from a theorem of whitneyn 
that htt can be extended over K2"+'. But htt cannot be extended over K~"+' 
for n odd. 

Freudenthal's construction of maps of 8""-' on sZn is based on an application 
of his theorem to the case K = Pzn , f(KZn) C S2", where f(Pn) C SZn is of 
degree one. The argument above shows that this construction breaks down if n 
is odd and > 1 ; for f cannot even be extended over the subspace P,+ of P2, . 

'1 H. Whitney, Duke Journal 3 (1937), p. 53. 
22 Loc. cit., Theorem 2. 


