

On The Homotopy Groups of Spheres and Rotation Groups

George W. Whitehead

The Annals of Mathematics, 2nd Ser., Vol. 43, No. 4 (Oct., 1942), 634-640.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28194210%292%3A43%3A4%3C634%3A0THGOS%3E2.0.CO%3B2-R

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://uk.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://uk.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

ON THE HOMOTOPY GROUPS OF SPHERES AND ROTATION GROUPS¹

By George W. Whitehead

(Received February 11, 1942)

1. Introduction

One of the outstanding problems in modern topology is that of classifying the mappings of an *m*-dimensional sphere S^m into a topological space X. In terms of the Hurewicz theory of homotopy groups² this problem may be phrased as follows: to determine the structure of the m^{th} homotopy group $\pi_m(X)$. Of particular interest is the case where X itself is an *n*-sphere S^n . In this case the results of Hopf,³ Freudenthal,⁴ and Pontrjagin⁵ have led to the solution of the problem for $m \leq n + 2$. For m > n + 2 almost nothing is known concerning the structure of $\pi_m(S^n)$.

That this problem is closely related to the study of homotopy properties of the rotation group R_n of the *n*-sphere has been shown by Pontrjagin,⁵ who has used the one- and two-dimensional homotopy groups of R_n to compute the groups $\pi_{n+i}(S_n)$ (i = 1, 2).

In the present paper we introduce an operation which associates with each mapping $f(S^m \times S^n) \subset S^n$ a mapping $\phi(S^{m+n+1}) \subset S^{n+1}$. This is a generalization of the procedure of Hopf⁶ for the case m = n. This operation is shown to induce a homomorphism of $\pi_m(R_n)$ into $\pi_{m+n+1}(S^{n+1})$, which for m = 1, 2 turns out to be an isomorphism. The connection of this homomorphism with one introduced by Freudenthal⁴ is studied.

In a recent paper Freudenthal⁷ has announced without proof a very general theorem on extension of mappings, and used this theorem to construct maps of S^{2n-1} on S^n of Hopf invariant 1⁶ for all even n. We shall use the above results to construct a counter-example to Freudenthal's theorem. It is further shown that Freudenthal's construction definitely fails if n > 2 and $n \equiv 2 \pmod{4}$.

2. Preliminary concepts

In Euclidean (r + 1)-space \mathcal{E}^{r+1} let S^r denote the unit sphere, i.e., the set of points $x = (x_1, \dots, x_{r+1}) \in \mathcal{E}^{r+1}$ with

(1)
$$|x|^2 = \sum_{i=1}^{r+1} x_i^2 = 1.$$

¹ Presented to the American Mathematical Society, December 30, 1941.

²W. Hurewicz, Proc. Akad. Amsterdam 38 (1935), pp. 112-119

^{*} H Hopf, Math. Ann. 104 (1931), pp. 637-665. We shall refer to this paper as H I.

⁴H. Freudenthal, Comp. Math. 5 (1937), pp. 299-314. We shall refer to this paper as F I.

⁵ L. Pontrjagin, C. R. Acad. Sci. URSS 19 (1938), pp. 147-149, 361-363.

⁶ H. Hopf, Fund. Math. 25 (1935), pp. 427-440. We shall refer to this paper as H II.

⁷ H. Freudenthal, Proc. Akad. Amsterdam 42 (1939), pp. 139-140. We shall refer to this paper as F II.

Let E_i^r (i = 1, 2) be the hemispheres defined by the conditions $x_{r+1} \ge 0$, $x_{r+1} \le 0$, respectively. E^{r+1} denotes the closed (r + 1)-cell $|x| \le 1$ bounded by S^r . We shall refer to the points $x^1 = (0, 0, \dots, 1)$ and $x^2 = (0, 0, \dots, -1)$ as the north and south poles, respectively.

Let Y be a metric space with distance function $\rho(y_1, y_2)$, y^0 a fixed point of Y. By Y^{S^r} we shall mean the space of all mappings⁸ $f(S^r) \subset Y$ metrized by

(2)
$$\rho(f,g) = \underset{x \in S^{r}}{\operatorname{L.U.B.}} \rho[f(x),g(x)] \qquad (f,g \in Y^{S^{r}}).$$

Let x^0 be the point of S^r with co-ordinates $(1, 0, \dots, 0)$. Then $Y^{S^r}(x^0, y^0)$ denotes the subspace of Y^{S^r} consisting of those mappings $f(S^r) \subset Y$ such that $f(x^0) = y^0$. Two mappings $f, g \in Y^{S^r}(x^0, y^0)$ are said to be homotopic if they can be joined by an arc in $Y^{S^r}(x^0, y^0)$. The relation of homotopy is reflexive, symmetric, and transitive and divides the space $Y^{S^r}(x^0, y^0)$ into equivalence classes, called *homotopy classes*. The set of all these homotopy classes we denote by $\pi_r(Y)$. We shall denote the homotopy class of any $f \in Y^{S^r}(x^0, y^0)$ by f.

We define an operation of addition between homotopy classes as follows: let f_i $(i = 1, 2) \in Y^{sr}(x^0, y^0)$. Let ϕ_i (i = 1, 2) be a mapping of E'_i on S' such that (1) $\phi_i(S^{r-1}) = x^0$; (2) $\phi_i(E'_i - S^{r-1}) \subset S'$ is a topological map of degree 1. Then we define a mapping $f(S') \subset Y$ as follows:

(3)
$$f(x) = \frac{f_1[\phi_1(x)]}{f_2[\phi_2(x)]} \qquad (x \ \epsilon \ E_1'), (x \ \epsilon \ E_2').$$

It is easily verified that the homotopy class of f depends only on the homotopy classes of f_1 and f_2 . Let

$$\mathbf{f}=\mathbf{f}_1+\mathbf{f}_2\,.$$

Hurewicz² has proved that under the operation of addition so defined the set $\pi_r(Y)$ becomes a group, called the r^{th} homotopy group of Y. This group is abelian if r > 1; in all the cases we consider here it is also abelian if r = 1.

3. The homomorphism H

Let Euclidean (m + n + 2)-space be represented as the product space $\mathcal{E}^{m+1} \times \mathcal{E}^{n+1}$, points $x \in \mathcal{E}^{m+n+2}$ being represented by co-ordinates (p, q) $(p \in \mathcal{E}^{m+1}, q \in \mathcal{E}^{n+1})$. Then S^{m+n+1} is defined by

(5) $|p|^2 + |q|^2 = 1.$

Let H_1 and H_2 be the subsets of S^{m+n+1} defined by

- $(6_1) | p | \leq |q|,$
- $(6_2) |p| \ge |q|,$

⁸ All mappings are supposed continuous.

respectively. Let

$$\psi_1(p, q) = (p / |q|, q / |q|) \qquad ((p, q) \in H_1),$$

(7₂)
$$\psi_2(p, q) = (p | p |, q | p |)$$
 $((p, q) \in H_2).$

Evidently $\psi_1 \mid H_1 H_2 = \psi_2 \mid H_1 H_2^{9}$ and maps $H_1 H_2$ into $S^m \times S^n$. Denote this mapping by ψ . Then

LEMMA 1. The mappings ψ_1 , ψ_2 , and ψ defined above are homeomorphic mappings of H_1 on $E^{m+1} \times S^n$, H_2 on $S^m \times E^{n+1}$, and H_1H_2 on $S^m \times S^n$ respectively.

Let f be a mapping of $S^m \times S^n$ into S^n . We associate with f the mapping $H(f) = \phi(S^{m+n+1}) \subset S^{n+1}$ as follows: ϕ maps the great circle joining the point (0, q) to the point (p, q) on the great circle joining the north pole z^1 of S^{n+1} to the point $f[\psi^{-1}(p, q)]$, and maps the great circle joining (p, 0) to (p, q) on the great circle joining z^2 to $f[\psi^{-1}(p, q)]$. Evidently $\phi(H_1) \subset E_1^{n+1}, \phi(H_2) \subset E_2^{n+1}$, while $\phi = f\psi^{-1}$ on H_1H_2 . The functions defining the mapping ϕ are given by

$$\phi_i(p, q) = 2 |p| \cdot |q| \cdot f_i(p/|p|, q/|q|) \qquad (|p| \cdot |q| \neq 0),$$

$$\phi_i(0, q) = \phi_i(p, 0)$$

 $\phi_{n+2}(p, q) = |q|^2 -$

$$\begin{aligned} \phi_i(p, 0) &= 0 \\ |q|^2 - |p|^2. \end{aligned} (i = 1, \dots, n + 1);$$

We use this operation to construct a mapping $\mathbf{H} = \mathbf{H}_{m,n}$ of $\pi_m(R_n)$ into $\pi_{m+n+1}(S^{n+1})$ as follows: let $e \in R_n$ denote the identity mapping of S^n on itself, and let $f \in R_n^{sm}(p^0, e)$. If $p \in S^m$, $q \in S^n$, let $f^*(p, q)$ denote the point of S^n into which q is carried by the rotation f(p). Let $\phi = H(f^*)$. Then it is easy to verify that $\phi \in S^{n+1^{S^{m+n+1}}}(x^0, z^2)$, where $x^0 = (p^0, 0)$ and z^2 is the south pole of S^{n+1} . Let $H(f) = \phi$. Evidently f = g implies H(f) = H(g), so that H is a well-defined mapping of $\pi_m(R_n)$ into $\pi_{m+n+1}(S^{n+1})$. We have further

THEOREM 1. H is a homomorphic mapping of $\pi_m(R_n)$ into $\pi_{m+n+1}(S^{n+1})$.

For let f, g $\epsilon \pi_m(R_n)$, and let h be the constant mapping $h(p) = e \ (p \ \epsilon \ S^m)$. Then $\mathbf{h} = 0$. Hence $\mathbf{f} + \mathbf{h} = \mathbf{f}$, $\mathbf{h} + \mathbf{g} = \mathbf{g}$, so that $\mathbf{H}(\mathbf{f} + \mathbf{h}) = \mathbf{H}(\mathbf{f})$, H(h + g) = H(g). It is therefore sufficient to prove that

(9)
$$H(f + h) + H(h + g) = H(f + g).$$

Let f', g' be mappings of S^m into R_n defined by

(10₁)
$$f'(p) = \frac{f[\phi_1(p)]}{(p \in E_1^m)},$$

$$h[\phi_2(p)] \qquad (p \in E_2^m);$$

$$a'(p) = \frac{h[\phi_1(p)]}{p \in E_1^m},$$

(10₂)
$$g'(p) = \frac{m[\phi_1(p)]}{g[\phi_2(p)]}$$
 (p $\in E_2^m$).

Then f' = f + h, g' = h + g. Let $F = H(f'^*)$, $G = H(g'^*)$.

636

 (7_1)

(8)

⁹ If $f(x) \subset Y$ and A is a closed subset of X, $f \mid A$ denotes the mapping of A into Y obtained by restricting the range of definition of f to the set A.

Let π_i denote the vertical projection of E_i^{m+n+1} on E^{m+n+1} (i = 1, 2). Then $\pi_i(x) = x$ for $x \in S^{m+n}$. Let $F_0 = F \mid E_1^{m+n+1}$, $H'' = F \mid E_2^{m+n+1}$, $H' = G \mid E_1^{m+n+1}$, $G_0 = G \mid E_2^{m+n+1}$. Then it is easily verified that $H'\pi_1^{-1} = H''\pi_2^{-1}$. Call this mapping H_0 . Evidently $F_0(x) = G_0(x) = H_0(x)$ $(x \in S^{m+n})$.

Let H_t $(0 \le t \le 1)$ be a homotopy of H_0 to x^0 keeping x^0 fixed. Then¹⁰ there exist homotopies F_t , G_t $(0 \le t \le 1)$ of F_0 , G_0 respectively, such that $F_t(x) = G_t(x) = H_t(x)$ $(x \in S^{m+n})$. Let

(11₁)
$$F'_{t}(x) = \frac{F_{t}(x)}{H_{t}[\pi_{2}(x)]} \qquad (x \in E_{1}^{m+n+1}), \\ (x \in E_{2}^{m+n+1});$$

(11₂)
$$G'(x) = \frac{H_i[\pi_1(x)]}{G_i(x)} \qquad (x \in E_2^{m+n+1}), \\ (x \in E_2^{m+n+1}).$$

Evidently $\mathbf{F}'_1 = \mathbf{F}, \mathbf{G}'_1 = \mathbf{G}$. Let

(12)
$$H'_{t}(x) = \frac{F_{t}(x)}{G_{t}(x)} \qquad (x \in E_{1}^{m+n+1}), \\ (x \in E_{2}^{m+n+1}).$$

Then $\mathbf{H}'_0 = \mathbf{H}(\mathbf{f} + \mathbf{g})$, while $\mathbf{H}'_1 = \mathbf{F}'_1 + \mathbf{G}'_1 = \mathbf{F} + \mathbf{G} = \mathbf{H}(\mathbf{f} + \mathbf{h}) + \mathbf{H}(\mathbf{f} + \mathbf{g})$.¹¹ But $\mathbf{H}'_0 = \mathbf{H}'_1$, which proves the theorem.

4. Relations between the homomorphisms F, G, and H

Let S^{m+n} be the equator of S^{m+n+1} , S^n the equator of S^{n+1} , and let f be a mapping of S^{m+n} into S^n . We associate with the mapping f a mapping $F(f) = \psi(S^{m+n+1}) \subset S^{n+1}$ as follows: ψ maps the great circle joining the north pole x^1 of S^{m+n+1} to the point $x \in S^{m+n}$ on the great circle joining z^1 to f(x), and maps the great circle joining x^2 to x on the great circle joining z^2 to f(x). Evidently $\psi(E_1^{m+n+1}) \subset E_1^{n+1}, \psi(E_2^{m+n+1}) \subset E_2^{n+1}$, while $\psi = f$ on S^{m+n} . If $f \in S^{n^{S^{m+n}}}(x^0, y^0)$, then $F(f) \in S^{n+1^{S^{m+n+1}}}(x^0, y^0)$; moreover, f homotopic to g implies F(f) homotopic to F(g). Thus F induces a mapping \mathbf{F} of $\pi_{m+n}(S^n)$ into $\pi_{m+n+1}(S^{n+1})$, which was shown by Freudenthal⁴ to be a homomorphism.

Let R_{n-1} be the closed subgroup of R_n consisting of those rotations which leave the north pole fixed. Evidently R_{n-1} is isomorphic with the group of rotations of S^{n-1} . Since $R_{n-1} \subset R_n$, there is a natural homomorphism **G** of $\pi_m(R_{n-1})$ into $\pi_m(R_n)$.

THEOREM 2. The homomorphisms F, G, and H are related by

$$\mathbf{FH}_{m,n-1} = \mathbf{H}_{m,n}\mathbf{G}.$$

¹⁰ K. Borsuk, Fund. Math. 28 (1937), p. 101.

¹¹ This follows from the definition of addition in $\pi_{m+n+1}(S^{n+1})$ given by S. Eilenberg (Ann. of Math. 41 (1940), p. 235), which is easily shown to be equivalent to the one given here.

For let $\mathbf{f} \in \pi_m(R_{m-1})$, $g = F[H_{m,n-1}(f)]$, $g' = H_{m,n}[G(f)]$. It is then easily verified that g = g' on S^{m+n} . Moreover $g'(E_1^{m+n+1}) \subset E_1^{n+1}, g'(E_2^{m+n+1}) \subset E_2^{n+1}$. Hence for no x is g'(x) = -g(x). It follows that g and g' are homotopic, so that $\mathbf{g} = \mathbf{g}'$.

Let ϕ be a mapping of S^{n-1} into R_{n-1} defined as follows: if $x \in S^{n-1}$, x' is the point in the great circle joining x^1 to x whose angular distance from x^1 is twice that from x^1 to x. Then $\phi(x)$ is that rotation which carries x^1 into x' and leaves each point in the (n - 2)-sphere orthogonal to x^1 and x fixed. Let h = $H_{n-1,n-1}(\phi)$. Then it can easily be shown¹² that if n is even h has Hopf invariant 2. We have further:

THEOREM 3. The kernel of the homomorphism $\mathbf{F}[\pi_{2n-1}(S^n)] \subset \pi_{2n}(S^{n+1})$ (n even) is the subgroup of $\pi_{2n-1}(S^n)$ generated by **h**.

The author has recently shown¹³ that $G(\phi) = 0$; in fact, the kernel of the homomorphism G is the subgroup of $\pi_{n-1}(R_{n-1})$ generated by ϕ . It follows from Theorem 2 that $\mathbf{F}[\mathbf{H}_{n-1,n-1}(\boldsymbol{\phi})] = \mathbf{F}(\mathbf{h}) = 0$. Let $\mathbf{g} \in \pi_{2n-1}(S^n)$, and suppose that F(g) = 0. Then the Hopf invariant of g is even,¹⁴ say 2k. Let f = kh. Then $\mathbf{F}(\mathbf{f} - \mathbf{g}) = 0$, and $\mathbf{f} - \mathbf{g}$ has Hopf invariant zero. Hence¹⁵ $\mathbf{f} - \mathbf{g} = 0$, i.e., $\mathbf{g} = \mathbf{f} = k\mathbf{h}$.

THEOREM 4. $\mathbf{H}_{m,n}$ maps $\pi_m(R_n)$ isomorphically for m = 1, 2. $\mathbf{H}_{m,n}$ maps $\pi_m(R_n)$ on $\pi_{m+n+1}(S^{n+1})$ for m = 1 and for m = 2, n > 1. Let $h(S^1) \subset R_1$ be defined by

$$h(x) = \begin{vmatrix} x_1 & -x_2 \\ x_2 & x_1 \end{vmatrix}.$$

Then h maps S^1 homeomorphically on R_1 , and **h** is a generator of the free cyclic group $\pi_1(R_1)$. But $H_{1,1}(h)$ maps S^3 on S^2 with Hopf invariant 1^{16} and generates the group $\pi_3(S^2)$. It follows from Theorems 2 and 3 that $\mathbf{H}_{1,n}$ maps $\pi_1(R_n)$ isomorphically on $\pi_{n+2}(S^{n+1})$ for n > 1.

Since $\pi_2(R_n) = 0$, it follows that $\mathbf{H}_{2,n}$ is an isomorphism. But $\pi_{n+3}(S^{n+1}) = 0$ for $n > 1^5$, and hence $\mathbf{H}_{2,n}$ maps $\pi_2(R_n)$ on $\pi_{n+3}(S^{n+1})$. This completes the proof of the theorem.

5. Freudenthal's theorem

Freudenthal has recently announced⁷ without proof a very general theorem on extension of mappings, and used this theorem to construct maps of S^{2n-1} on Sⁿ with Hopf invariant 1 for all even n.¹⁷ In this section the foregoing results are used to construct a counter-example to Freudenthal's theorem, and to show that the above-mentioned construction fails if n > 2 and $n \equiv 2 \pmod{4}$.

¹² Cf. H II, p. 431.

¹³ Ann. of Math. 43 (1942), Theorem 5.

¹⁴ F I, Satz III.

¹⁵ F I, Satz II, 2.

¹⁶ H I, p. 654.

¹⁷ F II, p. 140.

Let points z of Euclidean 2n-space be represented by complex co-ordinates (z_1, \dots, z_n) . Then S^{2n-1} is represented by the equation $\sum_{i=1}^{n} z_i \bar{z}_i = 1$.

Let P_{n-1} denote complex projective (n-1)-space. Then there is a natural mapping $\phi(S^{2n-1}) \subset P_{n-1}$ defined by mapping each point $z \in S^{2n-1}$ into the point of P_{n-1} with the same coordinates. This is evidently a fibre map in the sense of Hurewicz and Steenrod,¹⁸ the fibres being great circles. This mapping $\phi(S^{2n-1}) \subset P_{n-1}$ can be extended to a mapping $\psi(E^{2n}) \subset P_n$, where $\psi(z_1, \dots, z_n) = (z_1, \dots, z_n, (1 - \sum z_i \bar{z}_i)^{\frac{1}{2}})$. It is easily verified that ψ is a homeomorphism on $E^{2n} - S^{2n-1}$ and $\psi = \phi$ on S^{2n-1} .

Let X be a topological space, f a mapping of P_{n-1} into X. Then

THEOREM 5. The mapping $f(P_{n-1}) \subset X$ can be extended to a mapping $f^*(P_n) \subset X$ if and only if the mapping $f\phi(S^{2n-1}) \subset X$ is inessential.

For if $f\phi$ is inessential, there is a mapping $F(E^{2n}) \subset X$ such that $F = f\phi$ on S^{2n-1} . Let $f^* = F\psi^{-1}$. Then f^* is the required extension. Conversely, if f^* is an extension of f, let $F = f^*\psi$. Then F maps E^{2n} into X and $F = f\phi$ on S^{2n-1} . Hence $f\phi$ is inessential.

Let $g(S^1) \subset R_{2n-1}$ be defined by

$$g(x) = \begin{bmatrix} x_1 & x_2 & 0 & 0 & \cdots & 0 & 0 \\ -x_2 & x_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & x_1 & x_2 & \cdots & 0 & 0 \\ 0 & 0 & -x_2 & x_1 & \cdots & 0 & 0 \\ & & & & & \\ 0 & 0 & 0 & 0 & \cdots & x_1 & x_2 \\ 0 & 0 & 0 & 0 & \cdots & -x_2 & x_1 \end{bmatrix}$$

Then g is essential or inessential according as n is odd or even. For if n = 1, g is a generator of $\pi_1(R_1)$, so that g is essential. If n = 2, we have $g(S^1) \subset Q^3$, where Q^3 is the quaternion subgroup of R_3 . But $\pi_1(Q^3) = \pi_1(S^3) = 0$. Hence g = 0 in $Q^3 \subset R_3$, and g is inessential. The proof is completed by induction.

Let h = H(g). Then it follows from Theorem 4 that $h(S^{2n+1}) \subset S^{2n}$ is essential if n is odd and inessential if n is even. Moreover, it can be directly verifed that there is a mapping $h'(P_n) \subset S^{2n}$ such that $h = h'\phi$, and that h' has degree 1. An application of Theorem 5 gives

THEOREM 6. If n is even, the mapping $h'(P_n) \subset S^{2n}$ can be extended over P_{n+1} . If n is odd, it cannot be so extended.

The theorem of Freudenthal's referred to above can be phrased as follows:¹⁹ Let K be a complex, f a normal mapping²⁰ of K^q into S^q . Suppose that f can be extended over K^{q+1} . Then f can be extended over K^{2q-1} .

Let K be a triangulation of P_{n+1} , so that P_n becomes a closed subcomplex L of K. Then $L \subset K^{2n}$. Let h' be the mapping of L into S^{2n} of degree one

¹⁹ F II, p. 140.

²⁰ I.e., $f(K^{q-1}) = x^0$.

¹⁸ W. Hurewicz and N. E. Steenrod, Proc. Nat. Acad. 27 (1941), pp. 60-64.

described above. Then²¹ h' can be deformed into a normal map h''; moreover, h'' can be extended over K if and only if the same is true of h'. Let $H^{r}(K - L)$ denote the r^{th} cohomology group of K - L with integral coefficients. Then $H^{r}(K - L) = 0$ for r < 2n + 2, while $H^{2n+2}(K - L)$ is a free cyclic group. In particular, $H^{2n+1}(K - L) = 0$. It follows from a theorem of Whitney²² that h'' can be extended over K^{2n+1} . But h'' cannot be extended over K^{2n+2} for n odd.

Freudenthal's construction of maps of S^{4n-1} on S^{2n} is based on an application of his theorem to the case $K = P_{2n}$, $f(K^{2n}) \subset S^{2n}$, where $f(P_n) \subset S^{2n}$ is of degree one. The argument above shows that this construction breaks down if nis odd and >1; for f cannot even be extended over the subspace P_{n+2} of P_{2n} .

PURDUE UNIVERSITY

²¹ H. Whitney, Duke Journal 3 (1937), p. 53.

²² Loc. cit., Theorem 2.