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ANNALS OF MATHEMATICS
Vol. 47, No. 3, July, 1946

ON PRODUCTS IN HOMOTOPY GROUPS!

By GeEorce W. WHITEHEAD
(Received July 28, 1944)

1. Introduction

One of the outstanding problems in homotopy theory is that of determining the
homotopy groups of simple spaces. Even for as simple a space as the n-sphere
very little is known. In fact, in most cases, it is not known whether or not the
homotopy groups are zero.

J. H. C. Whitehead [16]* has defined a product between two of the homotopy
groups m, and m, of a space X with values in 7,,,;. In some instances this
product affords a method for constructing non-zero elements of Tpre—1 (X). He
also defined generalized products, involving the homotopy groups of the rota-
tion groups.

Hurewicz [10] originally defined the group ,(X) as the fundamental group of
a certain function space over X. The elements of ,(X) may also be regarded
as equivalence classes of mappings of the n-sphere S” into X , and it is the latter
definition which has been used in most of the applications.

In this paper the original point of view adopted by Hurewicz is combined with
the second approach. The method of fibre spaces of Hurewicz and Steenrod
[11] is used to study the interrelations between the homotopy groups of a space
X and those of certain function spaces over X. In Section 2 we state prelimi-
nary results, many of which are known, and establish the necessary homomor-
phisms between the homotopy groups of the spaces under consideration. In
Section 3 the products of J. H. C. Whitehead are characterized as operations in
function spaces. Using this characterization, we are able to prove that the
Freudenthal “Einhiingung” of a product is always inessential. A partial con-
verse to this result is obtained.

In Section 5 the generalized products defined by J. H. C. Whitehead are
characterized in terms of known operations. This characterization is used to
verify a conjecture of J. H. C. Whitehead.

2. Preliminaries

We introduce here the function spaces needed in the sequel and discuss the
interrelations among their homotopy groups. Most of the results presented
here are known, but proofs are given when they are necessary for an under-
standing of the results to follow.

Let I” denote the set of points y = (y1, - - - , y,) in Euclidean p-space, such
that 0 < y; < 1,4 =1,---,p). Denote by S? the set of points y in Euclidean
(p + 1)-space such that |y | = D93} = 1. Tt will frequently be desirable to

! Presented to the American Mathematical Society, Oct. 28, 1944.
? Numbers in square brackets refer to the bibliography.
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ON PRODUCTS IN HOMOTOPY GROUPS 461

make use of sets homeomorphic with I”;if X is such a set, choose a fixed homeo-
morphism hx of I’ on X. An arbltrary homeomorphism hy of I” on X will then
be called admissible if the map hy'hy of I” on itself has degree +1. A similar
remark applies to S”.

Let X be a connected locally contractible metric space. Define G*(X) to be
the space of all mappings ? f of I” into X such that the image of the boundary
>~ of I” under f is a single point of X (depending on f). Let r(f) = f(z:”_
(feG"(X)),and F(X x) = 7 (z) (xeX). Itiseasy to see that risa mappingof
G?(X) on the whole of X.

If f, g € F?(X,x), define f 4 g to be the mapping h ¢ F*(X,x) such that

fyr, oo 5 Yo, 29p) 0=
h(yly"')yp—lyyp)= 1
gr,  yYp1,2yp — 1) G=w

IIA

3)3
1.

It is clear that h depends continuously on f and g. Hence the component vy
of h in F?(X,z) depends only on the components a and g of f and g, respectively.
Define « + 8 = v; then + is a well defined operation in the set m,(X,z) of com-
ponents of F?(X,x). Moreover, under +, the set m,(X,x) forms a group, the

% homotopy group of X at the point x [10]. The group m,(X,x) is abelian if p
> 1; while m(X,2) is the fundamental group of X at x.

The homotopy group =,(X,r) can also be defined using maps of spheres into
X. Let y, be a fixed reference point ¢ S”, and define G*(X) to be the space of all
maps of S* into X. Let #(f) = f(yo) (fe G*(X), and FP(X,2) = 7 (z)(x € X).
Choose a fixed mapping ¢ € F*(S”,yo) such that ¢ | I” — > "7 is topologlcal. Any
map ¢’ € F*(S? ,yo) such that ¢/ | I — D" is topological will be said to be ad-
massible if ¢~ maps S” on itself with degree 1.

If ¢/ is an admissible map of I” on S7, then the correspondence ¥’ of G? with
G? defined by

1A

W(@)ly) = g W] (geG”, yel”)

is a homeomorphism between G” and G” such that ¥ PP (X,x)] = FP(X,x).

(2.1)* If X is a compact absolute neighborhood retract, then T and 7 are Sibre
mappings [11] while F*(X,x) and F*(X,x) are fibres in G"(X) and G"(X), respec-
twely. [1,7].

The components of F*(X,z) form a group #,(X,z) isomorphic with m,(X,z),
the group operation being that induced by an admissible mapping ¢ of I ? on
S”. Since any two admissible mappings are homotopic, the group operation
does not depend on the particular y chosen. It can be described explicitly as

3 By a mapping of X into Y is understood a continuous function on X to V. The space
Y X of all mappings of X into Y is metrized by the usual formula p(f, 9) = supzex p [f(z),
g(x)] if X is compact.

4 In the starred theorems it is assumed that X is a compact absolute neighborhood re-
tract (ANR).
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follows: let K¥, K7 be the hemispheres of S” defined by the inequalities 4,41
2 0, yp+1 = 0, respectively and let yo = (1, 0, - -- 0) e K N K?. If fi e F?(X 2)
(z = 1, 2), then there exists f; in the same component of F?(X,z) as f; such that
fi(K?) = f5(K?) = 2. The sum of the components of f; and f, is the com-

ponent of the map fe F?(X,z) such that

i) (y e KD),
f2(y) (y ¢ KD).

If Y is a set homeomorphic with 17, then any map fof Y into X such that f
maps the boundary of Y into a point z determines an element a of (X ,x):
o is the component of F”(X,x) containing the map fhy. We shall say that «
is represented by f. A similar remark holds for sets homeomorphic with S”.

Let z, 2'eX, o € m,(X,z) and let ¢ be a path in X from z to z’ (so that g is a
map of I' into X such that g(0) = z, g(1) = 2’; such a path exists in virtue of
our assumptions on X). Let E” be the set of points y in Euclidean p-space
such that |y | < 1; then E” is homeomorphic with I?, and we define hg» to be
any homeomorphism such that, if E? and I” are assigned similar orientations
with respect to a given orientation of p-space, then hg» has degree +1. Let
f(E”) C X be a representative of «, and define 6,(c) to be the element of m(X,z’)
represented by the map f’ such that

f(2y1;2y2; )2?]?) (0 éI
92yl -1 G =

Then 6,(e) depends only on « and on the homotopy class of paths from z to 2’
determined by g. Eilenberg [4] has shown

(2.2) 6, is an isomorphism of m,(X,x) with the whole of mp(X, ). If ¢’ is a
path from 2’ to x”" ¢ X, then 0,, = 6,9, .

It follows that the system {r,(X,r) | z ¢ X} is a system of local groups in the
sense of Steenrod [13]. X is said to be p-simple if the system of groups {r,(X,z)}
is simple.

If £ e m(X,x) is represented by a closed path g from z to z, let of = 6,(c)
(a e mp(X,2)). Then the correspondence o — of is an automorphism of 7,(X,z).

(2.3) If @, B e m,(X,x), then « and B belong to the same component of G*(X) if
and only if there exists ¢ € m(X,x) such that B = of [4].

The notion of homotopy group has been relativized by Hurewicz [10]. Let A
be a closed, arcwise connected subset of X, z a point of A, Yo a fixed reference
point in S”'. Then if p = 2 define F” (X,4,r) to be the space of maps f of
E” into X such that f(S*™) C A andf (yo) = z. The components of F” (X,Ax)
form a group =,(X,4,z), the group operation being defined as follows: let E? ,
E? be the subsets of E” defined by y, = 0, y, < 0 respectively, and let y, =
(1, 0,---0)eEf N Ef N 87", If fi (i = 1, 2) e F*(X,A,z), then there exists
fi in the same component of F?(X,A,x) as f; such that f,(EF) = foy(E?) = =.

fly) = {

=3

, 3 |
f(yl»"')yp)— < 1)
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The sum of the components of f; and f, is the component of the map f ¢ F*(X,4,x)
such that

fily)  (yeED),
f:y) (v eED).

The group m,(X,A,x) is called the p*" relative homotopy group of X mod A at .
It is abelian if p > 2. The system of groups {m,(X,4,7) |z ¢ A} forms a system
of local groups in A. Moreover, m,(X,4,r) is isomorphic with ,(X,x) if 4
consists of the single point x, the isomorphism being that induced by /z» .

The following notational conventions will be adopted hereafter: if o e m(X,x)
then G?(X) will denote the component of G°(X) containing «, and the com-
ponent « will frequently be denoted by FZ(X,x). We shall not distinguish
between m,(X,x) and #,(X,r), nor between m,(X,r,r) and m(X,x). If Xisa
set homeomorphic with E? or S, and X is a subset of the same Euclidean p-
space, then hy is to be chosen so that, if X and E” (or SPY) are assigned similar
orientations with respect to a given orientation of p-space, then hyx has degree
+1.

Let A X be as above, zed, and consider the homotopy sequence N (X ,A,2)
of groups and homomorphisms [6]

y) =

- Wp(ny) - WP(X’Ayx) - WP—I(AJ") ad Wp—l(ny) —> e Wl(Xyl")f

defined as follows: if f ¢ F?(X,x), then fhz» e F*(X,A,r), and the correspondence
f — fhg» induces the first homomorphism exhibited. If f e F?(X,A,x), then
f1877" ¢ F*(A,x), and the second homomorphism is that induced by the cor-
respondence f — f | S, Since 4 C X, F*(4,2) C F*(X,x); the identity cor-
respondence induces the third homomorphism.

The principal property of Rt (X,A,r) is

(2.4) The kernel of each homomorphism is the tmage of the preceding. [6]

Since X is arcwise connected, the mapping r (G7) = X defined above maps each
component of G” on the whole of X, and 7, = 7| G2 is a fibre map with fibre F' =
7 Y(z) = the union of the sets FZ¢(X,z) for all £ e m(X,x). Letaoe FP(X,x);
since S? is connected (¢ > 0), mi(G'[X],F,a0) = meu(G'[X], F'[Xx], ao)-
The map 7. induces a natural homomorphism (also denoted by 7.) of
Te1(GP[X], F*[X,x], ao) into me1(X,x) as follows:if f e FHY(GPX], FP(X,x], a0),
then 7.fhge+1 € F*(X,x); the homomorphism 7, is that induced by f — 7ofhga+1

(2.5)* 1, is an isomorphism of wen(G7[X], F'[X,z], ao) with the whole of
me(X,x) [11].

Pwo spaces A and B are said to have the same homotopy type [10] if there
exist mappings ¢(4) C B, ¢(B) C A such that ¢y and yyp are homotopic to the
identity maps of B and A respectively. Under these circumstances the
homotopy groups of A and B are isomorphic; more precisely, ¢ and ¢ induce
isomorphisms
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m(4,a) — mp(Byelal) — 75(4, Yle(a)])
m(B,b) — (A (b)) — m,(4, lY(b)])

of the local group systems {r,(4,a),a} and {x,(B,b),b}.
(2.6) Any two components of F?(X,x) have the same homotopy type. [10].
It is sufficient to prove that F§(X,r) and FZ(X,z) have the same homotopy
type. For this purpose let a ¢ F2(X,x), and let —a be the map ¢ FZ,(X,z) such
that

—ay1, 5 Y) = alyr, 0, Y, 1 — ) (1 -+ yp) € I7).

Let o) = f + a (f e F7), ¥(9) = g + (—a) (g € F2). Then o¥(g) =
(@ + [—a) + aeFZ, vo(f) = (f + a) + (—a) ¢ F{. A deformation of y¢
to the identity is then defined by

r< 4y,,> < 1+3t>
_X9p < < T 9
f Y, )yp—171+3t O_yp-— 4 ’
14 3¢ 1 t
ft(yl,"')yp—lyyp)=<a(yl>"',yp—1,4yp'—[1+3t]) (—-:ﬁéypé—2—>,
1 t
a(yl)“.yyl’—l,:')—zy?) <—-2'-' éypél)

Then fo = (f + a) + (—a) = ¥o(f) and fi = f, while f, is continuous in the two
variables f and ¢ Similarly ¢y can be deformed to the identity. We shall
denote by H, the natural isomorphism of r,_4[F2(X,x),a] with melF§ (X,x), ao)
induced by .

On the other hand, the components of G” almost never have the same ho-
motopy type. (For a counter-example, see the Appendix). If, however, there is
a mapping M(X) C G” such that 7.\ is the identity, then a construction similar
to that given above with o(f) = f + A[7(f)] and ¥(g) = g+ (— AMr(@)D (G,
geGZ) shows that Gf and G satisfy the even stronger condition formulated
in

DeriNtTION (2.7). Two fibre spaces X1 and X, over the same space B with
projections 7:(X:) = B (¢ = 1, 2) are equivalent over B if there exist mappings
a(X) C X,, (pz(Xz) C X, such that

(1) 1 ¢2 and @2 ¢1 are homotopic to the tdentity maps of X» and X1, respectively;

(2) 72 ¢1 is homotopic to 1, and T, is homotopic to .

Conversely, we can show

THEOREM (2.8)* If GL(X) is equivalent to G¥(X) over X, then there exists a
map NX) C GI(X) such that 7.\ is the identity.

For let Mo(z) ¢GF(X) be the constant map of I” into z, so that 7o\ is the iden-
tity. Under the hypotheses of the theorem there is a map o[GF(X)] C GE(X)
such that 7,0 is homotopic to 7,. Let A’ = gAy. Then 7.\’ = TapAo 18 homo-
topic to 7A¢ = the identity. By the covering homotopy theorem [11, Theorem
1], N’ is homotopic to a map A such that r,A = the identity.
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Let a, be the constant map of E” into z. We shall define a map of
m[F§(X,x), a0] into Tpie1(X,2) = ma(X,x). The boundary E” X St U
SP1 X E? of E? X E? is a sphere S¢.  Let yo , 2 be the reference points of 8"
and S** respectively, and wo = (yo, 20 the reference point € Sy. Let
¢ € me [FE(X,x), ao] be represented’ by a map f(E” X 8" < X such that
§(87" X 87 = f(E* X 2)) = x. Let Io(f) be the map of S¢ into X' such that

2D (o) B X 87,
Loiw.2) = {f wa) () )

((y2) € 87 X EY).

Then Io(f) represents an element I o(¢) € m(X,x). Since g depends continuously
on f, Io(¢) depends only on ¢ and not on the choice of representative.

TreorEM (2.9). I, maps me[F§ (X, x), ad isomorphically on the whole of
m(X,2). .

Let E?, E4 be the subsets of E* defined by z, = 0, z, < 0, respectively, 2
= (1,0, --- 0)eE? N E3 N S E' = E! N Ej, K7 = 87' N E!
(i =1,2). Then E" = E* X E*" septdates Sy into two cells Ki* and K3, where
Kr=E XKI'US™ X E(i=12). Letoer[Ff(X,x), al be repre-
sented by maps fi(E” X S < X with f; (8" X 87N = fullE” X K27
= fo(B* X KI') = z. Then @ = o1 + ¢ is represented by fo, where
fo | EP X K& = fi|E” X K7 G = 1,2). Since Io(fo) | K¢’ = I(f) | K7,
while [Lo(f)I(K3) = [L( RHIED)] = =, it follows that Io(fo) represents
Io(@1) + Io(ge), so that Io(gs) = Io(er) + Io(ee) and Iois a homomorphism.

To complete the proof of the theorem, we first observe that the set H =
E” Xz, U 87! X E* is contractible over itself toa point. Hence there exists a
deformation p(Sg X I ") < 8¢ which contracts H over itself to w, keeping wo
fixed. Let go(S5) < X with go(wo) = =z represent an arbitrary element of
mo(X,x), and define g,(w) = glo(w,)] (weSs, 0 =t = 1). Then g, defines a
homotopy of go keeping wo at  to g1. But g1 = Ig: | E? X S'].  Finally
suppose that f(E? X S7") C X is a representative of ¢ € o1 [FE(X, x), as) such
that Io(¢) = 0, and let h(S¢ X Iy C X be a homotopy of Io(f) to = keeping wo
at z. Then

IIA

pp = @200 O<tshwes)
w,t) =

IIA

deforms Io(f) to z keeping H at . This concludes the proof of the theorem.
Let Io[res(F2(X,x)), a] € m,(X,x) be defined by I, = IsH,. Then
(2.10) I, is an tsomorphism of maalF2(X,x), a] with the whole of ma(X,x)
We shall refer to I, as the Hurewicz isomorphism.

5 Any map f(Z) € G7(X) determines a map f*(Er X Z) < X by the rule f*(y, z) = the
image of y in X under the mapping f(z). For notational convenience we shall not distin-
guish between f and f*.
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3. The products [«, 8]

We now introduce the products defined by J. H. C. Whitehead [16] and charac-
terize them as operations in the function spaces G*. Applications are made to
the homotopy groups of spheres; in particular, it is shown that the ‘“Einhingung”’
[8] of a product is always zero.

Let a € m,(X), Bery(X) be represented by maps a(E”) C X, b(E%) C X, such
that a(S™™) = b(S*™) = x,. Then [e,8] is the element of 7,(X) represented
by

a(y) (yeEP,ze 871,
h(y,2) = -
b(2) (yeS™,ze EY.
(3.1)  The products satisfy the distributive laws-
(.81 + Ba] = [a,81] + [a,8:] (@ > 1),
[a1+a2):8]=[alyﬁ]+[a2)6] (P>1);

Moreover,
8, a] = (=1)"[a, . [16]

Thus for fixed a, the correspondence 8 — [a, 8] is a homomorphism p, of 7,(X,x)
into m.(X,x).

Let 7. be the natural homomorphism of m[G5(X), FX(X, z), a] into
e [F2(X, x), a]. Consider the following diagram:

To(Gay Fo) =% 7 ((F)
T
l Ta I Ia

m(X) —P  ru(X)

The principal result of this section is:

THEOREM (3.2). I . = para

We first state a preliminary lemma. Let ¢ € m1(F) be represented by
f(E* X 8" C X with FOSP7 X 87N =, and f| E” X g = q, the reference
point for =, ;(F2?). Define

1(y,2) (y e E”, z ¢ 877,

9(y,2) =
Zo (y e S, z ¢ B9).

Then

Lemma (3.3). The map ¢(S&) — X represents I, ¢ € 7,(X).

We can assume f(z) = fi(z) + a, where fo represents the element H, ¢ € 7,_;-
(F$). By a repetition of the argument in Theorem (2.8) with p and ¢ inter-
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changed, it is easy to see that the element 6 e 7.(X) represented by g is the sum
of IoHa. ¢ = I ¢ and the element y e 7.(X) represented by the map

x (y e BP, ze87),
h(y,2) = {aly) (yeEE,ze 8D,
Lx (y e S, z e EY).

Clearly ¢ = [o,0] = 0. This establishes the lemma.
To prove Theorem (3.2), let v e 7,(G%, F2), B = 7av; ¢ = I.'le, B]. Choose
for reference point in FZ a map such that a(y) = zo( |yl = 3). Let aly) =

a(y/2) (0 < |y| £ 1). Choose a representative b of 8 such that b maps the
segment (0,2)) into xo . Then [a,8] is represented by the map

) = {ao(y) (y e E”,ze 87,
b(z) (ye 8™ z e EY).
Let ¢ be the mapping of Sg on itself defined by
((2y,2) (lyl = 5lzl=1
twe) =@/ lyl,2-2lyl] (lylz 4 lzl=1),
¥,0) (lyl=1Llz[=1

Then ¢ is homotopic to the identity so that during the homotopy the point w
moves along the segment y, X (0,2,). Hence f¢ is homotopic keeping wo at xoto
f, so that f¢ represents [a,8]. Since fI (S”' X E%).= =z, it follows from the lemma
that ¢ = ft | E* X S*" represents I.'[a,8]. We now extend g to a map
h(E? X E?) C X by defining

1 1 ¢ | —
P, (Gsiwistfh m=n,
sz -2yl +a0 (HE s ivist, le =),

Then h(S”, [1—tlz). = b(tz), so that h defines a map h* of E? into G, while
R*(S"") < FZ and h*(z) = a. Moreover, 7 * = b, so that h represents the
element 77’8 = v». Hence 7.(v) = I7'a, 1a(»)], as was to be proved.

Theorem (3.2) can be restated as follows:

(3.4)* If aemy(X), Bemy(X), then [, Bl = L[1a(72"(8)]. Since 72'(8) is
defined and unique, this gives a new characterization of [a,8].

A mapping f(8” X S% C X is said to be of type (a,B8) (a € mp(X), B e m(X))
(Cf [9]) if f| S X 2 is a representative of « and f | yo X S%is a representative
of B.

CoRrOLLARY (3.5). In order that [a,8] = 0O it is necessary and suflicient that
there exist a map f(S? X 8% C X of type («,B).
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CoroLLARY (3.6). If X admits a continuous multeplication with two-sided
wdentity e (e.g., if X is a topological group), then all products [, 8] vanish.

Let aem,(X,e), B emy(X,e) be represented by maps a(S”) < X, (89 < X
with a(ys) = b(z0) = e. Then the map J*of 87 X S?into X defined by

@2 = a(y) -bz)

has type («,8). By the preceding Corollary, [«,8] = 0.

If X is taken to be an r-sphere S, further results can be obtained. Freuden-
thal [8] has defined an operation associating with each f ¢ G*(S") a map E fe
F"™(S™,%). This element will be referred to as the “Einhéingung” of f, and
can be described as follows: "™ is the set of points {(z,t) | = ¢ E", { ¢ E x| 4 ¢
= 1}, and S**' has a similar parametrization. Let the reference points be
%o = (0, =1) e 8" and & = (0,—1) ¢ S"*". Then if f € G”(S"), Ef is the map
g€ F""(S™ 7)) defined by

(M—=EPly (1 - 74,t) (1t]= 1),
0,1) ([t]=1).

If Ki*' and K" are the hemispheres of S"*" defined by ¢ = 0and ¢ < 0 respec-
tively, and K7™ and K?*' are defined similarly, then ¢(K**) < K™ (@ =
1, 2), while g | 8" = f. Obviously any map of S”*' into $'*' having these
properties represents the same element of Tp41(SY, Z) as g. The mapping E
is an isometric imbedding of G*(S") in F” (8 Zy). Since S is p-simple, it
follows that the element Ea e Tp+1(8" ", &) represented by Ef depends only on
the element o € 7,(S") represented by f.  Freudenthal [8] has proved:

(3.7) The map E[x,(S)] C Tp41(S" ™) is a homomorphism.

38) Ifp < 2r—1 or P = 2r and 7 is even, then Elr,(S")] = (S,
(3.9) Ifp < 2r—1, then E™(0) = 0.

The imbedding E[G*(S")] < F” (8™, %) defines (in many ways, depending
on the choice of the correspondence between G* and (* on the one hand, and
between F”*' and F** on the other) an imbedding of G*(S8") in F**'(S'", z,).
Since F"™(S™,%) and F"*(S™z,) are homeomorphic and S is (p+1)-
simple, it does no harm to replace #, by a point z, ¢ §’. We shall give an ex-
plicit representation of such an imbedding. The process can be described in-
tuitively as follows: a point u, e Int I** is first chosen. Then if f e G"(S"),
the map f is extended to a map f* of I”™ in S"™ such that o = 1027
is a single point depending on f, while *(u2) = x5 . The cell I”*! is then “turned
inside out” to obtain a map E*f such that E¥(3"*™") = x,, while E*f(uy) =
2."". The correspondence f — E*f yields the desired imbedding. Let
w = (0,0, 3),u=(0,0,---,2) eI”™. Define a map d(S8" X S8 X I'
C E™' by setting d(x, ', ) = the point of E'* which separates in the ratio
t:1—t the segment 2z2’. For fixed 2/, d defines a deformation of 8 over E'*!

g(y,t) = {

to the point z’; and the deformation d depends continuously on 2’. ILet
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di(z,x't) (i = 1, 2) be the vertical projection of the point d(z, 2/, t) on K;*.
Let M = 3"UI” X (4, ) < I'™, and if f € G°(S"), define f*(M) < 8™ by

(dl[f(ul y "y up)) f(Zp—l)’ 2_4up+l] (% = Up41 %)’
f*(ul y T uP+1) = %dﬂf(ul y T up); f(zp_l)7 4up+1 - 2] (% = %)7
Lf(Z"") ((ua, -+, Upgr) € Zp)'

Tfued "' X 0,)UI” X 0UTI” X 1, let f* map the point dividing the seg-
ment ww, in the ratio ¢:1—¢into the point di[f(3_*""), %o, ¢}, and define f* simi-
larly over I” X (2,1). Then f* is defined and continuous over I”*', and F O3]
= (™), while f*[I” X (0,3)] < Ki™ and f*I” X (3,1)] € K3, and f*(u)
= 2. Moreover, f* depends continuously on f, and f* e G"*'(S™™).

Let ¥ € F**' (S™*', yo) be an admissible map such that ¢[I” X (0,3)] C KfY,
YIIP X GD]c K2 and y(u) = 7. Let ¢/ e FP (8" §o) be an admissible
map such that ¢/ maps a cell IZ™" with w, e I7* < Int I"*" into KP™*', ¢/~
(I"P =12 < KM, and /(us) = yo. Let Yo = y¢/". Then ¢ is a topo-
logical map of S**' on itself of degree 1 which interchanges y, and §, . Since
1o and o are in the arcwise connected subset y1[I” X (4, 1)], it follows that there
is a homotopy {¥o: |0 < ¢ < 1} of ¥, to the identity such that the image of 7
remains in Y[I” X (2, 1)] during the homotopy.

Now define E¥f = f*y"'y’. Then E* is easily verified to be a topological map
of G"(8") into F*™(8"*', z). Moreover, E* is equivalent to E in the sense that
the mappings of G”(S") into F**'(S" %) given by the following diagram are
homotopic:

1A

é up+l

E

GH(S) —Eo PRS0
{

Fp+1(ST+l, xo)
! !

*
GP(Sr) i__) Fp+l(S*+1, xo) .

Here the map G"(S") <> G*(S') is that induced by ¢* = ¢ | I” X }; the map
FPH (S xg) <> FPP(S™ 7o) is that induced by ¢/; and the map F**'(S"™*, %)
o FP(8 xp) is that induced by any path from &, to o (the homotopy class
of the latter map is independent of the path, since S+ is simply connected).
The proof of the above statement is continued in the fact that if fe G”(S),
then the map g defined by g = E*(f¢ | I” X ). ¢'" has the property that
g (K™ < K" while g | 8” = f. Hence there is a homotopy of Ef to g which
is continuous in f.

The map E* induces a homomorphism J of 7,1[G7(S,)] into Toa[FEEH (S,
Combining this with the natural homomorphism ¢ of =, i[FZ(S")] into
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7o1[G2(8")] we have a homomorphism Jo = J¢ of m,_4[FZ(S")]into w1 [FZ(S")].
This homomorphism is equivalent

ret 2] 5 w6205 L ms (P2 (5]

[ 1. [ Ine

() E o man(S)

to the Freudenthal homomorphism E[r.(S")] C ,41(S™™) in the sense that

TaeoreEM (3.10). Iz,Jo = EI, .

The first step in the proof is the observation that the imbedding of G?(S") in
G"*'(8"™") defined by the correspondence f — f* maps F*(S",x,) into F** (8™, xo)
and that the induced homomorphism of n,[F?(S)] into m,[F?T(S™)]
is Jo. For if feFP(S ), let fi = f*% o/. Then fi = Wy
= f* while ff = Y = E*f; and since f e F*(S",x,), then f*[I* X (0,1)]
= =z, and consequently fi(227) = Y o (%) ¢ S WP X (0, D) =
A" X (0,9)] = 2.

Now let ¢ € w,1[F3(S’, xo)] be represented by a map f(I” X S* ") < § with
FOP' X 8" =zpand f| E® X 2 = a. Then EI, ¢ is represented by a map
R(8™™) c S with H(K}*) < K", while h | 8¢ = I.(f). On the other hand,
it follows from the remarks of the preceding paragraph that Jo is represented by
J*, so that Ig.Jep is represented by b’ = I.(f*). But from the representation
of Ig, given in Lemma (3.3) it follows that A'(K?*") < Kt and b’ | 8¢ = I.f.
Hence IgoJop = EI .o as desired.

TrEOREM (3.11). If a e m,(S"), B en,(S), then Ela, 8] = 0.

Consider the diagram:

wlG2(S7), Fa(S)] 2 wra[FZ(S) 5 moa[GE(ST] 5 mea[FEE'(S™)]
| 1. | . [ s
Wq(Sr) P Wn(Sr) 5 —"'Tn+l(Sr+l)

The statement to be proved is: Ep, (8) = 0(8 € 7,(S"). But, by Theorems (3.10)
and |(3.2)Ep., = (Ugadod3) T ataTa) = Igad {Nara = 0, since ¢ and 7, are two
successive homomorphisms in N[GZ(S"), FE(S"), al, so that {5, = 0.

Theorem (3.11) can be restated: pa[r,(S?)] € E'(0). The converse inclusion
is trivially true if n < 2r — 1; for then E is an isomorphism. It is also true if
n =2r — 1,q = riseven, and o = ., the element of =,.(S") determined by the
identity map. For the author has proved [15] that then E~'(0) is a cyclic group
generated by an element of m,_;(S") of Hopf invariant 2 [9]. But, since r is
even, the element [, ] has Hopf invariant 2, and E[i, ] = 0. Hence any ele-
ment of E'(0) has the form k[, J = p,[k.].
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The equality E7'(0) = the union of the subgroups pa[m,(S)] (a e 7,(S"),p + ¢
= n + 1) is in general false if n > 2r — 1. For a counter-example, see the
Appendix.

TuroreM (3.12). There exists a map of S on S of Hopf snvariant 1 if
and only if [, ] = 0.

This follows from (3.5) ; for Eilenberg has shown [5] that there is a map of St
on S"*' of Hopf invariant 1 if and only if there exists a map of 8" X S"on S of
type (i, o).

4. A generalization

We now define a new product which includes the Hurewicz isomorphisms and
the J. H. C. Whitehead products as special cases. This product associates with
an element of m,_;(F2) and an element of 7, 1(F§) (a € m,(X), B € m,(x)) a third
element in 7,(X). The new product will then be characterized in terms of the
I, and [B, »].

Let ae m,(X), B € m1(X), ¢ € m11(F%, a), ¥ € m,_1(F§, b), and choose represent-
atives a € FZ, b € F§ for a, 8 respectively. Let g and ¢ be represented by maps
F(E* X 87 C X, g(8"" X EY) C X, with f(S7" X 87" = ¢(8"" X 87") =
Xoand f|E” X 20 = a, g |y X E* = b. Let

{ (W, 2)  (yeB",z e 87,
lgtw, ) (yeS™, z € EY).
Then h(S¢) < X, h(yo, 20) = o, so that h defines an element 6 =
(o, B50, ¥) € m,(X). Evidently 6 depends only on a, 8, ¢, ¥, and not on the repre-
sentatives chosen. Since «, 8 depend on ¢, ¥, we may regard (o, 8; ¢, ¥) as

defining a multiplication between =, 1(F2) and m,1(F§) with values in m.(X).
It is obvious from the definition that

h(y, z) =

(4.1) (a, 850, 0) = [, B].
while

(4.2) (2, 050, 0) = Ia(p)
follows from (3.3); and

(4.3) ©, 8;0,¥) = (=1)™Is(¥)

follows from (4.2) and the fact that E” X E? can be mapped on E* X E’ with
degree (— 1) so that the positively oriented cells E” X 0 and 0 X E* are mapped
on 0 X E? and E* X 0 with degree 1.

TuroreMm (4.4). (o, 850, ¥) = o, B] + Lap + (—1)"Ig).

We first observe that the theorem is true for « = 0, 8 = 0. Forlet a and b
be the constant maps of E? and E? into z,, and choose representatives f for ¢
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arlxcg g for ¢E§uch that LL STEX 8T =g S X 8T = fIEP X KiTt =
g X 1 = Xo. t

fw)  weE” x 87V,
f*(w) - {xo (w € Sp—l X Eq\;
"w) = {’” (weB x 57,
T 0 wes™ x BY;

hw) = {f(w) (weE” X 87,

g(w) (we S X EY).
Then f* | K = ¢g*|K{ = x, while h | KI' = f* |K, h |K; = g*| K.
Hence h represents the sum Iop + (—1)"Io of the elements of ,(X) repre-
sented by f* and g*. On the other hand, the third equation above shows that
h represents (0, 0; ¢, ¥).

Let F be a map of S"UE" = K'UE"UK} into X with F(w,) = zo, where
w eS”' X ST'NE™". Let hi(i = 1, 2) be an admissible map of S on K}UE"
which is the identity on K} and such that h,(E? X K¢") = E» X E*". Let F,
=F|8", F;=Fh;(i =1,2) map S"into X and let a , a1 , a; be the elements of
m2(X) represented by Fo, Fy, F, respectively. Then it is well-known (cf. [16])
that ap = a; + a5 .

To complete the proof of the theorem, choose the reference point for S™ as
above. Choose a representative f for ¢ such that f(y, z) = a(y) fory e E?,z ¢ Ki7',
and a representative g for ¥ such that g(y, z) = b(z) for (y, 2)eS”" X E? , where
a is the reference point for F'; and b, the reference point of F3 , is such that b(E%)
=1xo. Thenif ¢isa topological map of E*on Ef,and ¢’ = g | S*~' X E%, ¢’ (y, 2)
= ¢'(y, a(2)), it is evident that ¢ represents the element Hgy.

Let

fly,2)  ((y,2) e B X 877,
h(y,2) = <9y, 2)  ((y,2) ¢ 85 X E9),
(aly) ((y, 2) e B X E°Y).
Then W(KfUK;UE™) € X, h(w)) = 2. On KJUE,,

a(y) ((y,2) ¢ E* X K{7)
h(y, 2) = {b(2) ((y, 2) € 8" X EY)
a(y) ((y, 2) e B® X E*7).

Clearly hh; represents [, 8. On K;UE"
flys2)  ((y,2) e B X K§7),
My,2) = <9y, 20 ((y,2) ¢ 8" X EY),
la() ((y,2) e E* X E")
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Evidently hh, | E* X S represents ¢, while hhs | SP! X E° represents Hgy.
Hence hh, represents (a, 0; ¢, Hgy), and it follows that A | K UK, represents
la, B] + (a, 0; ¢, Hey). Hence [a, 8] + (o, 050, Hg¥) = (o, B5 ¢, ). Similarly,
(a) 0; ¢, Hﬁ‘p) = [av 0] + (0) 0; Ha‘pv Hﬁ\b) = IOHa‘P + (—1)quOHﬁ¢' Combin-
ing these results we have the desired equation

(a, B;0, %) = lo, B] + Tap + (—1)™Igy.
5. The Generalized Products of J. H. C. Whitehead

In this section we shall prove that the generalized products of J. H. C. White-
head can be characterized in terms of known operations. Using this character-
ization we can then verify a conjecture of Whitehead’s.

Let R,_; be the proper orthogonal group in p variables; B, may be considered
as a group of transformations of E” (or alternatively of S77"). Let a e m,(X),
Bemy(X),p€me1(Rp1), ¥ emp1(Re). Then the generalized product {a, 8; ¢, ¥}
is the element of ,(X) defined by

alf(y, 2)] (yeE", ze ST

h(y, 2) =
W { blg(y, 2)] (ye S, ze EY,

where a, b, f, g are representatives of «, 8, ¢, ¥ respectively. [16]

Since each element of R, ; transforms SP7! on itself with degree 1, we may
assume R,_; € GP7'(S*™"). Let L be the natural homomorphism of mg_1(Rp—1) In
wq_l[Gf’_l(S” ™), H = I,JL. The homomorphism H has been considered
by the author [15] in another connection. If oe me_1(Rqe 1) is represented
by f(S7' X ST C SP7! then Hy is represented by a mapf*(S™) < S with
f*E X 87 Ki,f*(8"™" X E%) C K3, and f* | Sl x 8 = f.

Turorem (5.1). {a, B; ¢, ¥} = [a, B + a-He + (—=1)™8-Hy'.

Let f(E" X S") C E” be a representative of ¢; let ¢ be the map ¢ | E* X 877,
where ¢ is the mapping defined in the proof of (3.2);finally, let Y be amapof E”on
S? of degree 1 such that V(8" = and ¢ | E7 — S*! is topological. Define
fo = y¢f-&'. Although 7" is not defined everywhere, fo is a well-defined and
continuous map of S" into S” which represents the element Hep. letap = ay
then a, is well-defined and continuous and maps S” into X. Let f = aofo ; then
f represents a- He. There is a homotopy {: of ¢ to the identity such that ¢, is a
homeomorphism (0 < ¢ < 1) and such that (ST X EY) C S*' % E°. Hence
J = aff! is homotopic to the map h defined by

[a[f(y, 2)] ((y,2) e E" X 87,
2o ((y,2) e S X EY).

1=

6If o € m(S7), B ¢ 7(X), then B-a denotes the element of 7.(X) represented by the
composite map gf, where g, f are representatives of 8, a respectively.
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Then hy | E" X 87" = h | E* X 8" represents I;'[a-H(p)]. Similarly h | §*
X E? represents (—1)*I5'[8- H(y)]. Hence, by (4.4), h represents the element

(o, B, I H(@)], I5'[8-HW)]) = [, Bl + a-H(g) + (—1)"3-H().
Consider the special case X = 8%, a = /, 8 = 0,¢ = 2,p > 1. The author
has shown [15] that H maps m(R,_,) isomorphically on 7,,,(S”). Hence
(5.2)  The correspondence ¢ — {1/, 0; ¢, 0} is an 1somorphism of m(R,_;) with
7rp+1(Sp)‘
This verifies a conjecture of J. H. C. Whitehead [16].

Appendix

ExampLE 1. We shall prove that m[G5(S%)] is the direct sum of an infinite
cyclic group and a group of order 2, while m,[G2(S%)] is a group with at most two
elements. Hence Gi(S%) and G(S%) do not have the same homotopy type.

We first observe that m[F(S%)] = m[F3(S%)] = (8% is a group with two
elements [8; 12]. Since there is a map X of S? into G3(S%) such that 7o\ is the
identity, it follows [2, p. 170] that m[G5(S")] = m[F3(S”)] + m(S%), and m(S?) is
infinite cyclic. This proves the first assertion.

It is now sufficient to prove that every map of S*into G? is contractible into
F?. Choose for reference point the identity map ¢ and consider the homomor-
phism {[m(F})] C m(GL), n[m(G)] C m(G?, F?), Elms(G? , F?)] C m(F?), associated
with M(G: , F?, 7). To prove that &m(F?)] = m(G?) as desired, it is sufficient,
by (2.3) to prove that 5[m(G?)] = 0; again by (2.3) it is sufficient to prove that
¢ is an isomorphism. The group m(G: , F?) = m(S?) is infinite eyclic, and since
R, C G}, R, C F? ,a generator for the former group is determined by a generator
a of m(R,, R;). This has been constructed independently by Eckmann [3]
and the author [15], and it is proved in the references cited that ¢(a) = 28, where
B is a generator of the infinite cyclic group m(R,)). But m(R:) is mapped iso-
morphically on m(F7) = 73(S%)[15]. The second assertion then follows immedi-
ately. (It would not be difficult to prove more; namely, that m(G°) contains
exactly two elements).

2. We shall construct an element « € m4(S%) such that Ea = 0, and a # [, (]
for any B e m(S?). The group m4(S%) is cyclic of order 2; let « be its non-trivial
element. Since 75(S%) = 0[12], Ea = 0. We must then prove [B, ] = O for all
Bems(SY. This is equivalent by (3.5) to proving that for every g e m;(.S?) there
is a map S° X 8% into S* of type (8, 1). But there exists a map » of §° into R,
(the double covering of the projective 3-space R, by S°) [3 ; 14] whose projection
by 7. | R;into S*is the Hopf map of invarant 1. Then if 8 has Hopf invariant k,
the element kv e w3(R,) defines the required map.

Purbpue UNIVERSITY.
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