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ANNALS OF MATHEMATICS
Vol. 43, No. 1, January, 1942

HOMOTOPY PROPERTIES OF THE REAL ORTHOGONAL GROUPS

By GEOrRGE W. WHITEHEAD
(Received September 25, 1941)

1. Introduction

In this paper we propose to investigate the topological structure of the rota-
tion group R, of the n-sphere, with special emphasis on its homotopy properties.
Of particular interest are the homotopy groups =; of R,. These groups, one
for each dimension 7, were first defined for a general space by Hurewicz [1].!
Like the homology groups, they are topological invariants of a space; unlike the
homology groups, however, no general method for computing them is known.
Each space thus presents a problem in itself.

The computation of the groups =:(R,) for ¢ < 5 and all n will be carried out
by the method of fibre mappings and covering homotopies developed by Hure-
wicz and Steenrod [2]. We shall make extensive use of the results of Freuden-
thal (3], Hopf [4], and Pontrjagin [5] on the homotopy groups of spheres.

The groups =;(R,) are useful not only in the study of the homotopy properties
of spheres, but also are used by Whitney in his theory of sphere-bundles [6, 7],
where they appear as coefficient groups for certain cocycle invariants.

Another application of our results appears in the theory of continuous vector
fields over spheres. It is well known that no continuous field of unit vectors
can be defined over the spheres of even dimension. Over the odd-dimensional
spheres, however, one such vector field can always be defined; and if n = 3
(mod 4) or n = 7 (mod 8) it is possible to define three or seven independent
vector fields, respectively, over the n-sphere S". These can be readily con-
structed by the use of the multiplication matrices for quaternions and Cayley
numbers. For a general odd n, however, there is no known result on the maxi-
mum number of independent vector fields which can be defined over S™.

In this paper the case n = 1 (mod 4) is resolved as follows: Any two vector
fields over S (m = 0, 1, 2, -+ - ) are somewhere dependent. As a corollary to
this result it is observed that the tangent sphere-bundle of S™ is not simple if
n > 1andn =1 (mod 4).

This investigation was carried out under the direction of Prof. N. E. Steenrod,
to whom the author wishes to acknowledge his indebtedness for many valuable
suggestions and criticisms.

2. Table of groups =, to =5 of R,

In this section the results of our computation of the homotopy groups =:(R,)
are exhibited, and a set of generators for these groups is given. Proofs will be
deferred until Section 8.

! Numbers in square brackets refer to the bibliography at the end of the paper.
132
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Let « denote the free cyclic group, 2 the cyclic group of order two. If 4
and B are two abelian groups, A + B denotes their direct sum. In terms of
these notations, the groups =;(R,) may be tabulated as follows:

R, R, R; R, Rs Ry --- R,
m | ®© 2 2 2 2 2 .- 2
m | O 0 0 0 0 o --- 0
m | 0 © o 4+ o w® o o «e. o0
m | 0 2 2+4+2 2 0 o --- 0
m | 0 0 0 0 0 o --- 0

The results of the first two rows were first obtained by Cartan [8].
A generator of m,(R,) is given by the map of the circle z} + 23 = 1 defined by

1, —z2 O ‘
To ||z x 0

0 0 I..

’

where I,,_; is the (n — 1)-rowed identity matrix.

4
A generator of m3(R,) (n = 3) is given by the map of the 3-sphere Y, z7 = 1
i=1

Ty —x2 —x3 —xy O
Te X1 —T4 X3 0
T || 23 T4 zn —x 0
Ty —X3 X2 T, 0
0 0 0 0 I,

The corner matrix is the linear transformation of Euclidean 4-space defined by
multiplying every quaternion on the left by 2, + 4z, + jxz + kzs .

The generator of ms(Ry) is the well-known double covering of R, by S°.
Bordering this matrix with a 1 in the lower right hand corner and zeros else-
where, we obtain the extra generator of m3(R;).

To obtain the generator of m4(Rz), we map S* on S° essentially, and then map
S® into R, by means of the generator of m3(R,) given above. Such an essential
map was constructed by Freudenthal [3]. In a similar manner we obtain gen-
erators for my(R;) and mi(Ra).

Finally, the generator of m5(Rs) is determined by the map of S’ into Rs given by

Iy, O
r — || &; — 2ziz; || o —1l°
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3. Preliminary notions

In this section we introduce notations and concepts which will occur through-
out the paper. The relative and absolute homotopy groups of a space are
introduced and two homomorphisms relating these groups are discussed.

Let points z in Euclidean (n 4 1)-space be referred to coérdinates (x; , x5, - - -,
Z.41). The unit sphere > 2; = 1 we denote by S”. The equatorial plane
Zns1 = 0 divides S” into two hemispheres Vi and V3 defined by the inequalities

Znp1 2 0 and x4 = 0 respectively. If z = (x1, @2, -+, Tnz1) € S, the anti-
podal point (—zy, —xs, -+, —x,11) is denoted by Z. We shall refer to the
point 2” = (0,0, - - - , 1) as the north pole, and to its antipode Z° as the south pole.

The group R. of all rotations of S™ may be represented as the group of all
real square orthogonal matrices of order n + 1 with determinant +1. The
subgroup of R, consisting of all those rotations of S™ which leave the north pole
fixed is isomorphic with the group R,_, and we shall denote the former group
also by the symbol R,_; .

Let Y be a topological space, F' a closed subset of Y, and y, a fixed point of F.
Let X denote the space of all maps of Vi into Y which carry the boundary
Vi = S"'into F and the north pole z° of S" " into y,. We introduce an
equivalence relation in X as follows: two maps f1, f2 € X are said to be equivalent
if they are homotopic, and during the homotopy S"' remains in F and z°
remains at y,. In other words, two points of ¥ are equivalent if they can be
joined by an arc in X. The relation of equivalence is easily seen to be reflexive,
symmetric, and transitive, and thus divides ¥ into classes of equivalent maps,
called homotopy classes. 'The homotopy class determined by a map f we denote
by {f}; the set of all such homotopy classes by =,(Y, F). Hurewicz [1] has
introduced an operation, called addition, in 7,(Y, F), by means of which it
becomes a group, the ntt relative homotopy group of Y modulo F. If the closed
set F' is specialized to consist only of the point y, , the group 7.(Y, y,) so obtained
is called the absolute homotopy group w,(Y). The latter group may also be
defined by means of mappings of spheres into Y and we shall frequently find it
convenient to use this definition.

We now introduce a homomorphism w of 7,.(Y, F) into m,_;(F). This homo-
morphism is defined as follows: if @ = {f} em.(Y, F), then w(a) denotes the
homotopy eclass of m,_i(F) determined by the map f(S"™') C F. Evidently
{f} = {g} implies w({f}) = w({g}). Thus w maps 7,(Y, F) into =,_;(F), and it
follows from the definition of addition that w is a homomorphism. Let 7,,(Y, F)
denote the kernel of this homomorphism, 7,_; ,(F) the image of 7,(Y, F) under w.
Evidently m,,(Y, F) consists of those homotopy classes determined by those
relative n-cells in ¥ modulo F which are contractible into F, while m,_; .(F)
consists of the classes determined by those (n — 1)-spheres in F which are
homotopic to points in Y.

Since each element of 7,(Y), considered as a set, is a subset of an element of
m.(Y, F), we have a natural mapping ¢ of 7,.(Y) into =,.(Y, F), which is a homo-
morphism. It is not hard to show that ¢({f}) = 0 if and only if some f’ in the
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class of f maps S" into F. If {fi} = {f} and ¥({fi}) = ¥({f2}) = O, then f;
is homotopic in Y to f;. Thus f; and f> determine the same element of
ma(F)/mm(F).  Conversely, if f(S™) C F, then ¢({f}) = 0. Hence the kernel
of the homomorphism y is isomorphic to m,(F)/m..(F). The image of m,(Y)
under ¥ is evidently the group m,.,.(Y, F). We summarize these results in
TuEOREM 1. The natural homomorphic maps wlmr.(Y, F)] C w,_y(F) and
Y[m(Y)] C m.(Y, F) arc related as follows: the kernel of the homomorphism s
isomorphic to w.(F) /mo(F), while the image of m,(Y) under ¢ is the group m, ,(Y,F).

4. Homotopy relations in compact Lie groups

Let G be a topological group, H a closed subgroup of G, and B = G/H the
space of left (or right) cosets of H in G. Then there is a natural mapping =
of G’ onto B defined as follows: for every g € G, w(g) is the coset of B containing g.

If G is a compact Lie group, then = is a fibre map in the sense of Hurewicz
and Steenrod [2]. A slicing function can be defined as follows: a plane of maxi-
mum dimension independent of the tangent plane to H at the identity 1 meets
each coset b in a sufficiently small neighborhood U of b, = = (1) just once. We
denote this point by ¢(1, b). Then if g7'b € U, let ¢(g, b) = go(1, g'b). Evi-
dently ¢ has all the required properties of a slicing function.

The following theorem will be useful in our discussion of the rotation groups:

THEOREM 2. If G is a topological group and B is the space of left (or right)
cosets of a closed subgroup H of G, and if there exists a map f(B) C G such that
7f(b) = b, then G 4s homeomorphic with the product space H X B.

We may suppose B is a space of left cosets. Let f/(b) = f(b)-[f(b,)]™"; then
nf'(b) = =f(b) = b, and f'(b,) = 1. We then set up the homeomorphism by
means of two maps p(G) = H X B and ¢(H X B) = G defined as follows:

p(g) = lg " -f'(ng), mg] (9 @),
q(h, b) = f'(b) - (heH,beB).
Then
plg(h, b)] = {A[f'®)I7f'(b), b} = (h, b),
alp(@)] = f'(xg)-[f'(xg)] " -g = g,

and both maps are continuous. Hence G and H X B are homeomorphie.

6. Slicing functions for R, — R,/R._,

In this section the results of Section 4 are applied to the special case G = R, ,
H = R,_,, and an explicit slicing function is constructed. The special cases
n = 1,3, 7 are treated separately, and for these values of #» Theorem 2 is applied.

Let us consider the mapping =(R,) = S" defined by w(r) = r(@°) (r ¢ R,).
As shown by Hurewicz and Steenrod [2], = is a fibre map of R, into §”, the

fibres being the left cosets of R,_, in R, . In terms of the matrix representation
of R, , w(r) is the last column of the matrix r.
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We now define the slicing function promised above: if z £ z°) let ¢(I, z) be
the rotation carrying z° along a great circle into z, and leaving the (n — 2)-sphere
orthogonal to this great circle fixed. In terms of matrices

_ (@i A Sinr) (@i A Sin) |
T+l +1

oI, x) = A(x) = | 63

I,,O\
0 -1

Gj=1-"-,n+1),

where I, denotes the n-rowed identity matrix. Then ¢(r, z) is defined as is
Section 2. Evidently it is impossible to extend ¢(I, x) so as to be defined and
continuous over all of S*.  We shall show later that there is no slicing function
with this property for a general n.

For the dimensions 1, 3, and 7, however, it is possible to define such a slicing
function. Let A,y (n = 1, 3, 7) denote the algebras of complex numbers,
quaternions, and Cayley numbers, respectively, over the field of real numbers.
By means of these algebras a multiplication z -y of points of Euclidean (n + 1)-
space is defined. This multiplication has the property ‘that || z-yll =
l|z||-| |, where || ||* = 2 x? is the square of the distance of the point z
from the origin. Hence S is closed under multiplication and for z, y € S™ we
have z-y = B.(z)-y, where B,(z) € R, , and, if the coordinate system is chosen
so that z° is the unit of the algebra, B,(z°) = I, #B,(z) = z. Since B.(z) is
defined for all z € 8", we have

THEOREM 3. Forn = 1,3, 7, R, is a product space R,—1 X S".

Since the 7t» homotopy group of a product space X X Y is the direct sum of
the ¢*h homotopy groups of X and Y, we have

COROLLARY. For n = 1, 3, 7, mi(R.) s the direct sum m;(R.—1) + m(S");
in particular, Ta1(Ru_1) = ma1(Ry).

(1)

6. The canonical map of S" in R,

We now introduce a mapping C, of S™ into R, which plays an important role
in the following discussion. We shall refer to it as the canonical map. It is
proved that this map is contractible into R,_; if n is even; while for n odd it is
not so contractible. The canonical map is then used to construct a generator
for m.(Ry , Runy)-

In order to define the map C,, let 6(z)(x ¢ S") denote the angular distance
from z° to z, and let x’ be the point in the great circle through z° and x with
6(z') = 26(z). Let C.(x) (x 5 Z°) be the rotation which carries 2° along a great
circle into z’ and leaves the orthogonal (n — 2)-sphere fixed; and let C,(3°) = I.
Evidently

I, O

@) Cn(x)=[An(af)]2=\!6;i—2x,-x,~||.1 L _IH G j=1, - n+1)

We observe that C,, unlike 4, , is defined and continuous over all of S*. Fur-
thermore, antipodal points have the same image, while distinet pairs of antipodal
points have distinct images. Thus the image of 8™ in R, is a projective n-space.
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Let g.(8") = 8" denote the projection =C, of the canonical map. If g, :(z)
is the 7*h codrdinate of g(z), we have g,,i(z) = 22 %011 — 8inpn =1, --- , 0+ 1).

TuEOREM 4. If n is even, g. has degree zero; if n is odd, g, has degree two.

For g, maps the equator 8"~ into #° and maps Vi — 8" topologically on
8" — Z°; in fact, g, can be obtained by a homotopy of S” on itself in which each
point moves along the great circle joining it to the north pole. Thus g, maps V7
on 8" with degree 1. Furthermore, g, maps V5 on S" with degree (—1)""";
for g.(r) = g.(%) (x € V7) and the antipodal transformation x — % has degree
(—1)""'. Hence g, maps 8" on itself with degree 1 + (=1)™

If n is even, g. has degree zero, and hence is homotopic to a point. We shall
give a homotopy of g. which will be useful in a later section. This homotopy
gn(z, t) is given by the equations

gn2iaa(@, ) = 2{(1 — O@eiiZaps + [t — )]s},
(3) gn-Zi(xy t) 2{(1 - t)xﬁxn-&-l - [t(l - t)];xZi—l} (Z = 17 e ,n/2),
Gnna(@, 1) =1 = 2(1 — )(1 — zh4).

It is easy to verify that g.(z, t) contracts ¢,(S") over S” into z°.
If n is odd, g, has degree two. We shall give a deformation of g, into a
second map g, of degree two. The latter map is defined by the equations

g;,i(I):xi (i=1,+---,n—1);
’ 220 Tnta
gn.n(x) =~
4) ° (2% + ah)
4 — 13;+1 - ali 2 2
g"'n‘H(x) (-Tn + Thq # 0),

BRCES I
Grn(t) = gnap(@) =0 (xn = Tps1 = 0).

It is easily seen that g, is defined and continuous over all of S”. The homotopy
gn(x, ) of g, over S™ into g, is given by

H
e ) =t (1 — Dl zy + 2. (1 = Orgicy — [1(1 — )z
Gn.2ii(x, 1) Tai1 + [ ) + Tnt1 {l_t[l_(xi-{-l‘i.;.l)]}i,
.
Guii(t, ) = trs — U(1 = OF zaicy + 2y 0= D7 & UL = Dl ey

{1 — 1 — (Ti + Ii+1)]}%

(5) <i=1,...’";1>,

2%, Tnya
n,n ,t = )
T Ry o= g g TE
2
Grmii(z, 1) = 2011 1 -1 — @+ 22N

=l - @+ 2wl
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Although ¢.(z, t) is not defined everywhere for ¢ = 1, it is easily verified that
lim,_; ga(z, t) = g»(z) uniformly in z.

We now use the canonical map to construct a generator of m.(R., R._1).
We shall take as fixed reference points for this group the north pole of S and
the identity matrix I € R,—;. Since ([2], Theorem 2) 7,(R,, R._1) is isomorphic
to 7,(S") under the map =(R,) = S", a generator of the former group is repre-
sented by any relative n-cell in R, modulo R,_, which projects into S” with
degree 1. To define such a relative n-cell, we observe that C, maps Vi
into R, and S"™" into the coset R,_, opposite to R,_; and projects into S" with
degree 1. Hence the map D.(z) = Cn(x)'i _012 “ (x e V1) defines a

i
relative cell in R, modulo R, ;, and it is easily verified that D,(z°) = I, while
d.(x) = wD,(x) = §n(z) has degree (—1)""". Hence D, represents the required
generator.

Since 1,1 (R, , R.1) = 7,-1(8") = 0, it follows from the results of Section 3
that m_1(R.) = muy(Ra-1)/Tn1,0(Ra1). Thus m,—1(R.) is a factor group of
ma_1(R._1), the kernel of the homomorphism being the group m,_1,,(R.—1). But
Tn1.0(Rn-1) = w[m.(R., Rn_1)]; hence a generator of 7,_1,(R._1) is given by the
map wD, , which is easily shown to be the canonical map C,_;. Hence

THEOREM 5. The kernel of the homomorphism m,_y(Rn_y) — mn_y(R,) is the
subgroup of the former group generated by the canonical map.

g
|0

7. On the possibility of sectioning the cosets of R, in R,

In this section the following question is considered: Is there an n-sphere in R
which projects into S™ with degree 1? It is shown that this question can b
answered in the negative for certain values of n. For other dimensions the ques
tion remains open.

The first step toward the solution of this problem appears in

THEOREM 6. The following conditions are equivalent:

1) there is a map F(8™) C R, such that =F has degree one;

2) R, can be represented as a product space R,_; X S";

3) the homomorphism w,_1(Rn._1) — 7.1(Rx) 18 an isomorphism;

1) the canonical map of 8" into R._; is homotopic to a point in R._; .

The first condition implies the second. For let F(S™) C R, be such that =
has degree one. Since 7F is homotopic to the identity, it follows from tk
covering homotopy theorem ([2], Theorem 1) that F is homotopic to a ma
F'(8") C R, such that F'(z) = x. Then by Theorem 2, R, = R, X 8™

That the second condition implies the third we have observed in the proof «
the Corollary to Theorem 3; that the third implies the fourth follows fro
Theorem 5.

The fourth implies the first; for during the homotopy of C._; to a point
relative n-cell is swept out in R,_; whose boundary is the (n — 1)-sphere define
by the canonical map. But the map D, defines a relative n-cell in R, with t]
same boundary as the first one. Joining these two cells by identifying corr
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sponding points on the boundaries, we obtain a sphere in R, whose projection
has the same degree (—1)"*" as that of d.. The required map is then easily
constructed.

Theorem 6 enables us to answer immediately the question posed above for the
case when n is even. For suppose that n is even and suppose that such a map
exists. Then by the fourth condition in Theorem 6, the canonical map Cn
is homotopic to a point in R,_;. Hence g,—1 = 7C._; is inessential. But we
have already shown that g, ; has degree two. This contradiction completes
the proof of

THEOREM 7. If n is even, there is no map F(S") C R, such that =F has
degree one.

We now turn to the much more difficult case where n is odd. A partial answer
to the question is obtained in

TueoreM 8. Ifn > 1and n = 1 (mod 4), there is no map F(S") C R, such
that wF has degree onc.

The proof may be outlined as follows:

1) Since for n odd, g.—: is homotopic to a point, it follows that C,_; is homo-
topic to a map G,_1(S"™") C R._». Such a homotopy is exhibited, and it is
proved that k,_, = 7G,_; is essential if n = 1 (mod 4), and inessential if n = 3
(mod 4).

2) A generator P,(V{) C R,_; of the group m.(R._1, Rn_s) is constructed for
all n = 5, and the projection pi_; of the map wP.(S"™") C R,_, is shown to be
inessential.

When these steps have been established, the proof of the theorem may be
completed as follows: Suppose that n > 1 and n = 1 (mod 4) and suppose that
the theorem is not true. Then C,_;, and consequently G._; , is homotopic to a
point in R,_; . Since G,_; is not homotopic to a point in R,_ , the deformation
of G,_; defines a relative n-cell in R,_; modulo R,_,, and hence an essential
element of m,(R._1, Rn—). This group has been shown by Freudenthal [3] to be
the cyclic group of period 2 if n = 4. Hence wP, and C,_; are homotopic in
R._». But p}_; and k,_; are not homotopic, a contradiction.

LemMa. If n is odd, the canonical map C._; ts homotopic in R._, to a map
G.1(8™™") C R,y , whose projection into 8" is essential if n = 1 (mod 4) and
inessential if n = 3 (mod 4).

Let E™ denote the closed n-cell bounded by the unit sphere "' in Euclidean
n-space. H" denotes the upper half z, = 0 of' E". Let points y e H" be repre-
sented by coérdinates (z, 7) where x € V1" is the central projection of the point
yon Vi~ and r is the distance of the point y from the origin. Let

c s 0 O 0

—s ¢ 0 O 0

. 0 0 ¢ s 0
HO =g 0 —s ¢ Ak



140 GEORGE W. WHITEHEAD
wherec = 1 — 2/%, s = 2r(1 — )} 0=r=1). Let

A -1 ’ _In—l 0
@ W = €@ = C)-HO)Cos@ ™| 7 l’l

(xeVi;0<r < 1)s

map H" into R,_; . Evidently G(z) = C._i[g._1(2)] for z ¢ V7", while G map,
the equatorial plane into R,_, and S"* into a single point. Deform V7~ over
H" into E"' by letting each point move along the perpendicular joining it to the
plane x, = 0. The image of G under this homotopy gives a homotopy of
Cralgna(z)] to a map K(Vi™)) C R,_.. Since under the homotopy S"7%
remains fixed, K maps S" into a single point. Evidently K (x) can be repre-
sented in the form K(z) = G._i[g.—1(x)], where G,,_;(S"™") C R,_, is defined and
continuous over all of $"7', and G,_; is homotopic in R,_; to Cn_; .

By multiplying out the matrices in (6) and computing the homotopy, we find
that the map k.1 = 7G,_; of S"" into 8" is represented by the equations

2(Z2i_1 Tn—g + Toi xn—l)

Y2i1

1 -z ’
o 2<x2..x,(,12_—£;1xn_1> (1 — 1, n_;_?’>,
@ Yoo = 2(35(3,1_2_ -!; f;’;_l) — (1 — 2%}
Yno1 = ZTn (1 — % = 0);

yi=0@G=1,.-+,n—2), Yna = Zn (1 — 2% = 0).

It follows easily that k._, is defined and continuous over all of " and maps
S"' on S™% 1In order to investigate this map, let us consider the map
Maa(S"™) = 8"* obtained by setting 2, = y,—; = 0in (7). This map can be
studied more easily in complex coérdinates. Let z; = xa;, + ize;, w; =
Yo+ y2; (j =1, -+, (n — 1)/2 = k), where wy = y,_, is real. Then S"2
and S"”* are given by the equations Z z2;Z;'= 1, Z w;W; = 1, respectively.
In terms of these codrdinates the equations representing the map m._, take
the form

(8) wi=2zf2k (j=1’...’k_1)’

wy = 22,2, — 1.

If the complex coordinates occurring in (8) are formally replaced by real ones,
the map g;_; is obtained. In equations (3) and (5) we have constructed homo-
topies of g, for n even and odd, respectively. The functions defining these
homotopies can be extended so as to be defined for complex coordinates, as
follows: if k is odd, i.e., if n = 3 (mod 4), let

oy = 2{(1 — Dz Ze + (11 — )] 2},
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9 (N

2{(1 — Dzg;5 — [t(1 — ) 2551} (j =1---, k;—l) )

Evidently the homotopy (9) deforms m,_, over S"~* to a point. Hence m,_;,
and consequently also k,_; , is homotopic to a point. On the other hand, if %
is even, i.e., if n = 1 (mod 4), let us consider the map m,_,(8" %) C 8" defined
by the equations

w; = z; (=1, -,k —2),
22112
(10) Her = (2k—1 211 +k2k5k)”
o= B~ it ) i+ ad < O);
Wy = wy, = 0 for zpy = 2z, = 0.
Settingw; = 2; =0(j =1, --- , k = 2) in (10) and writing the result in real

codrdinates, we obtain a map of S°* on S* of Hopf invariant +1 (cf. Hopf [4], §5).
It follows from the results of Freudenthal [3] that m,_; is essential.

We shall now define a deformation of m,_; to m,_; (for n = 1 (mod 4)) by
extending the functions in (5) so as to be defined for complex cosrdinates, as

follows: let
(1 - t)22]‘_12k - [t(l —'t)]izkig,
{1 - t[l - (Zk_lfk_l + Zkfk)]}g’

e g — _ As. (1 = Oz + (1 — Hlerz
Wo; = 129 [t(1 9] Zyi1 + 2 1=l = (zeazes + 2zl

Wojy = tzgi g + [t(1 — t)]izﬁ +2

E—2
11 ) = c e -
(11) <.7 L, 1 T g )’
Wiy = 22112
- {1 — 1 — (ze—1Zer + 2:20)]}F°
Wy = 22k % {1 - t[l - (Zk—l 21:—1 + (23 Zk)]}i-

(1 — U1 — (e + 22l

Although this map is not defined everywhere for ¢t = 1, it is readily verified that
as ¢ — 1, the functions in (11) converge to the corresponding ones in (10) uni-
formly in z. Thus m,_, and m,_, are homotopic, so that m,_;, and conse-
quently also k,_,, is essential. This completes the proof of the Lemma.

As indicated above, the next step in the proof is to construct a generator of
the group =,(R._1, R._2). This group is isomorphic with 7.(S"™") under the
projection = ([2], Theorem 2). If n = 4 we may take as generator of the latter
group the map p.(S™) = S" defined by

Pai(z) = f=1,--,n—4),
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z(xn—axn—l + xn—2xn)
2 2 2 2 )
(z3 + 2oy + 70 + 20

2(Tn2Tn1 — Tn—3Tn)
Prnyn— (x) = )
(12) ’ (5 + 2oy + 2y + 7h9)

2 2 2 2
Tpn + Thol — Tueg — Tns
2 2 2 2 4
(@5 + 2+ e+ 2h )}
2 2 2 2
Prnl) = Tri1 (x2 + Ta1 + T + 2,5 7= 0),

pn,n—~3(x) = pn.n—z(x) = pn,n—l(x) = 0 (xn =Tpl = Tpg = Tp3z = O).

pn,n—3(x) =

pn,n—l(x) =

Evidently p, maps V{ into Vi and S"" into 8"%. The latter map is essen-
tial; in fact, it represents a generator of 7, 1(S" ). Let P,(z) = D,_i[p.(z)]
(x e V). Then P, represents the desired generator of m,(R._i, R._s); for
1rP,,(x)1= dn_1[pa(z)], and the latter map represents a generator of m,(S" %, z°) =
T.(S" 7).

Let P} = wP, , and p:_l = =P} its projection into " Since P» Maps
S""into "%, and since wD,_; = Cn_z, we have Pj(z) = C,_s[p.(z)], and hence
P 1(x) = gnalpa(z)] (z € 8"7Y). Let « denote the element of Ta_2(S"7?) deter-
mined by the identity map, 8 the element of x,_;(S" %) defined by the map
p(S"™") = 8" Since {g._2} = 0 or 2« according as n is even or odd, we have
{pr_1} =0 or 48° respectively. But Freudenthal [3] has proved that 26 = 0
if n 2 5; hence for all n = 5 we have {py_;} = 0, so that pi_, is inessential.
This completes the proof of the theorem.

8. Computation of the homotopy groups

We are now in a position to establish the results exhibited in Section 2. The
generators which we shall compute here will differ slightly from those already
exhibited; however, they may be easily seen to be homotopic.

We have already observed that 7,(R.:) is a homomorphic image of ,(R.).
In a similar manner we can prove (cf. [2], Theorem 5) that m,(R.i) (k =
1,2, --- ) is isomorphic with 7,(R,;1). Another useful result is the following:

THEOREM 9.  If n is even, m.(R,) is a factor group of m.(Ra_1); the kernel of the
homomorphism is the group m,,.(R._1).

Since {D.} is a generator of =,(R., R,_;) and since w{D,} = {C._;} = 0 for
n even, it follows that 7, o(R. , R.1) = 0. Hence 7,.(R,) = m(Ra_1)/Tn.o(Rn_1).

In order to compute m(R,), we first observe that, since R, is homeomorphic
to S', its fundamental group is the free eyclic group generated by any map of S"
on R; of degree 1. Such a generator «; is given by the map

o 1
—X1 X2

By(z) =

Since R, is homeomorphic with projective 3-space P?, it follows that m(R,)

2 This follows easily from Theorem II b’ of [4].
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is the cyclic group of order two. But m(R») is a factor group of mi(R:); hence
for a generator of m(Rs) we may take the generator a; for =;(R,) subject to the
condition 2a; = 0 in R;. The same result holds for = (R,).

Since all the higher homotopy groups of S' vanish, the same holds for R; .
In particular, wo(R,) = 0. Then, by Theorem 9, m(R,) = 0 for all n.

The higher homotopy groups of R, are isomorphic to those of its covering
space S°. In particular, m(R,) is the free cyclic group, and a generator oz is
represented by the covering map H(S®) = R, given by the equation

T — 15— 13 + 7 2(x1 20 — T3%4) 2(z a3 + x224)
H(x) =|| 2(xi05 + 2o24) 25 — 23 + 25 — 21 2(z025 — 2124)
I 2(z125 — 274) 2(z1%4 + To13) x5 + 25 — 25 — 71

We observe that =H (z) maps S°* on S* with Hopf invariant 1.

Since R; is the product space of R; and the quaternion subgroup @°, the
homotopy groups of R; are the direct sums of the groups of the same dimension
of R and @’ = S°. In particular, m5(R;) = m3(Rs) + m3(S%) is a free group with
two generators. For one of these generators we may take the generator o of
m3(Ry); the second generator 8; is determined by the quaternion matrix

1 Ty T3 — X9 Il‘;ii
B ) —X3 X4 I fz” ( Ss)
= o x .
s k —T2s —X Ty 131 )
| |
E‘\ —x1 —x2 —X3 1‘4il

To compute m3(Rs) = m3(R;)/m3,.(R;), we observe that
H(z) 0]
Cs(x) = Ba[ga(x)] ,| ‘
Il

so that {Cs} = 28; + a3 = 0in Ry. Hence m3(R,) is a free cyclic group with the
one generator B; , and the same is true of m(R,) (n = 4).

We now consider the groups my. Freudenthal [3] and Pontrjagin [5] have
proved that m(S°) is the cyclic group of order two, a generator being determined
by the map ps(S*) = S°. Hence a generator a4 of m4(Ry) is determined by the
map Hp, . The group m4(R;) is the direct sum of two cyclic groups of order two;
for generators we may take as and 84 = {Bsps}.

We have observed in the proof of Theorem 8 that my,(Rjs) is generated by

w{Ps} = {Ps }. But

P5 (2) = Bs[P4 (x)]- ”H[m(x)] 01

and {pf} = 0,s0 that {Pf} = s = 0in R,. Hence mi(Ry4) is the cyclic group
of order two generated by 8, .
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We have proved in Theorem 8 that {Cs} # 0 in Ry. Hence my,(Rs) =
7!'4(R4), so that 7I'4(R5) = m(R,.) =0 (n = 5)

We conclude by computing the five-dimensional homotopy groups of R, .
Pontrjagin [5] has proved that m5(S®) ‘= 0; hence m5(R;) = m5(R;) = 0. Hence
ms(Ry) = m5,0(Ry, R;) = Osince my,0(Rs) # 0. This in turn implies that =5(Rs) =
ms5,0(Rs, Rs). But ms(Rs) contains the essential element a5 = {Cs}, and since
7C5 has degree two, it follows from Theorem 8 that m;(Rs) is the free cyclic group
generated by a5 . Since a; = 0in Rs , we have finally that m5(Rs) = 75(R,) = 0
(n = 6).

9. Continuous vector fields over spheres

The above results will now be applied to the study of continuous vector fields
over 8". Geometrically, a continuous vector field may be thought of as a set of
functions V'(z) (i = 1, - -+ ,n + 1; x ¢ S”) defining a unit vector tangent to S™
at the point x, the functions V'(z) being continuous over all of S". A set of P
such fields are said to be independent if the vectors of the fields at each point
of S™ are independent vectors.

Let P, denote the point of S™ whose coérdinates are 8 (1, k =1, --- , n + 1).
R._, denotes the subgroup of R, consisting of all rotations leaving P; fixed
k=n—p+2 ---,n+1). The coset space R./R._, may be thought of as
the space of all sets of p mutually orthogonal points of S”; for two elements of
R, are in the same coset of R,_, if and only if their last p columns are identical.
These columns define the orthogonal p-tuple associated with the given coset.
Conversely, given a set of orthogonal points @1, Q. , - - - , @, , the required coset
is the set of all rotations carrying P, .2 into @, --- , and P,,; into Q, .

Since R,_, C R,_;, each coset of R,_, lies in some coset of R,_;. Thus a
natural mapping R,/R._, — R,/R._, = S" is defined; each coset of R,_, is
mapped into the coset of R,_; containing it. We refer to this map as the
projection; it is easily verified that it is a fibre map. If we regard an element of
R./R._, as being determined by a set of p mutualiy orthogonal points, the pro-
jection is the pt" point of the set.

Since the usual process of orthogonalizing a set of independent vectors can be
carried out here, there is no loss of generality in assuming that the vectors of the
fields we are dealing with are orthogonal at each point and of unit length.

TueoreM 10. Every set of p orthogonal vector fields over S* defines a mapping
of 8" into R,/R._p,_1 whose projection tnto S™ is the identity; conversely, any such
map defines a set of p orthogonal vector fields.

By translating the vectors at any point = to the center of 8" and adjoining
the point z, we obtain an orthogonal (p + 1)-tuple whose projection is z. This
process is continuous and gives the required map. Conversely, given such a
map, we define the p orthogonal vectors at z as follows: the given map associates
with z an orthogonal (p + 1)-tuple, the (p + 1)t point of which is . Transla-
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tion of radius vectors drawn to the first p points to the point x gives the set of
vectors at z.

CoroLLARY. There exists a set of p independent vector fields over S™ if and
only if the canonical map of 8" into R,_; is contractible in R,_; into Rn_p_s .

It follows from Theorem 7 that there is no vector field over S” if n is even.
However, if n is odd, it follows from the Lemma used in the proof of Theorem 8
that there is at least one. Over S* and S" are three and seven orthogonal fields,
respectively. These are defined by the mappings S* — R; — S* and §7 —
R; — S of degree one given by the matrices B and B obtained in Section 5.

TaEOREM 11. Ifn = 3 (mod 4) there at least three orthogonal vector fields over
S";if n = 7 (mod 8) there are at least seven.

We shall prove the theorem for n = 4m + 3; the proof for n = 8m + 7 is
entirely analogous. Let Vi(z) ( = 1, 2, 3; 2 ¢ S") define a set of orthogonal
vector fields over S"; the components of the vector V'(z) will be denoted by
Vi(x) (j = 1,2,3,4). We extend V'(z) to be defined over all of E* asfollows:
if y € E*, let = be the central projection of y on S°, r the distance of y from the
origin. Then V'(y) = rV'(z) defines a set of three orthogonal vectors at each
point of E*, and these vectors vanish only at the origin.

If z is a point of E*™** with coordinates (2, - - - , 2emsa), let ° (j = 1, -+,
m + 1) denote the point of E* with coordinates (zsj—s, 24j—2 , 24,1, 21;). Then
we define three vector fields W'(z) over E*™** as follows:

Wiin(z) = Vi@a™) (i=1,23;7=0,--- ,m;k = 1,23, 4).
Evidently the vectors W'(z) are mutually orthogonal at each point z, and if
z € $"*° they are of unit length. Thus the theorem is proved.

The problem of determining the maximum number of independent fields
which can exist over 8™ has not yet been solved for general odd n. Forn =1
(mod 4) the solution appears in

THEOREM 12. Ifn = 1 (mod 4) any two vector fields over S™ are somewhere
dependent.

The theorem is evidently true for n = 1. Suppose n > 1 and suppose that
the theorem were not true. Then by the Corollary to Theorem 10, the canonical
map C,_; would be contractible in R,_, into R,_; . Hence the map G,_,(S8"™") C
R._» would be homotopic in R,_, to a map F(S8"") C R,.;. Hence
{Gra} — {F} emuo(Ruz). But #[{Ga} — {F}] = 7{Gua} — #{F} =
7{G,_1} ¥ 0. In the proof of Theorem 8 we have shown that this is impossible.

CoroLLaRY. Ifn > 1and n = 1 (mod 4) the tangent sphere-bundle of S™ is
not simple ([7], p. 788).
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