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Introduction

Let M and N be differentiable manifolds of dimensions m and n, and
T(M), T(N) their tangent bundles. An immersion of M in N is a dif-
ferentiable map f: M — N such that the differential f,: T(M) — T(N)
has rank m on each fibre. A regular homotopy is a homotopy f;: M — N
such that each f, is an immersion, and such that f,.: T(M) — T(N)is a
(continuous) homotopy.

In [1] it is proved that the regular homotopy classes of immersions of
M in N, m < m, are in one-one correspondence with the homotopy classes
of fibre maps T (M) — T (NN) whose restriction to each fibre of T'(M) is a
linear map of rank m into a fibre of T'(N). Such maps will be called
linear.

Our purpose is to give, in view of [1], another classification of immer-
sions in the range 2n > 3m + 1, by proving the following result: the
homotopy classes of linear maps T'(M) — T(N) are in one-one correspond-
ence with the homotopy classes of those fibre maps @: T(M) — T(N),
called here skew maps, which have the property that ¢(—X) = —@(X),
and (X) # 0 if X #+ 0. This is proved by showing that the homotopy
groups of the Stiefel manifold V, ,, of m-frames in n-space are the same,
up to a certain dimension, as those of the space X, ,, of maps ¢: R™ — R"
with the property that @ *(0) = 0 and ¢(—X) = —@(X). This fact is
easily proved using the Freudenthal suspension theorems.

A skew map T(M)—R" is essentially the same as a map 6: U — A—S"7,
where U is a neighborhood of the diagonal A of M x M, with the property
that 8(x,y) = —&(y, «) (Theorem 2.1.). Such a map & is called equivariant.
We apply this to immersions f: M — R", replacing the differential
feo T(M) - R by &, U— A — S defined by 8z, y) =
(f@) — fFW)/|f(®) — fl]. In the case where f is one-one, &, is defined on
M x M — A. This permits us to exploit our knowledge of the topology
of M. As a result, we obtain a new proof of Kervaire’s theorems (2.6)
that the Smale invariant of an imbedding f: S™— R™ vanishes if
2n > 8m + 1, and £(S™) has a trivial normal bundle. Other applications
are (2.8), (2.9) and (2.10).

* Supported by National Science Fundation contracts NSF G-10700 and NSF G-11594.
231




232 ANDRE HAEFLIGER AND MORRIS W. HIRSCH

In the general case, where N is not necessarily R, there is a corre-
spondence between skew maps T(M) — T(N) and equivariant maps
0: U— N x N which is one-one on homotopy classes. (Here “equivariant”
means that if 6(z, ¥) = (u, v), then 0(y, ) = (v, u), and uw # v if © + y;
“isovariant” would be more precise.) Since “equivariant map’’ is a topo-
logical concept, we obtain (4.3) a topologically invariant classification of
immersions M — N in the “stable range” of dimensions, 2n > 3m + 1.
If 2n > 3m, the existence of immersions approximating a given map
g: M — N is topologically invariant; if g is a topological immersion, it
can always be approximated by a differentiable one (5.1).

In the first three sections we treat mainly linear maps 7' (M) — T(N),
particularly the differential of an immersion. In the last two sections we
consider the existence and regular homotopy of immersions. For conve-
nience, however, some results (2.10) of this nature are in §2. In §6 we
apply the material of §§1 and 3 to obtain the topological invariance of
the existence of certain tangent frame fields on a differentiable manifold.

By manifold we always mean a differentiable manifold of class C~. We
assume all manifolds to have a complete riemannian metric. Throughout
the paper, M is a manifold of dimension m, and N a manifold of dimen-
sion n. We denote the tangent bundle of M by T (M), and the sub-bundle
of null vectors by Ty(M), which we may identify with M. The diagonal
A C M x M is the set of points (x, ) and is also identified with M. We
use R™ for euclidean m-space; the unit sphere in BR™ is S™'. By transla-
tion, we identify T(R™) with R™, the tangent space of R™ at the origin.

A differentiable imbedding is an immersion which is a homeomorphism
onto its image.

1. Maps of plane bundles

Let #: E— Band n' : E' — B’ be fibre bundles. A map ¢: £ — E’ is
a fibre map if ¢ takes each fibre of E into a single fibre of E’. In this
case there is a unique map #: B — B’ such that @7 = 7’p. We call @ the
map induced by o.

Now assume that E is a bundle of m-planes and E’ a bundle of n-planes,
with structural groups GL(m) and GL(n) respectively. A fibre map
@: E — E'is linear if for each x € B, @ | #~(x) is a linear map of rank m
into the corresponding fibre of E’'. A limear homotopy is a homotopy
@,: E — E' such that each ¢, is linear. A fibre map ¢: E— E’ is a skew
map if @(X) # 0 whenever X # 0 and ¢(—X) = —@(X). Every linear
map is a skew map. The term skew homotopy has the natural definition.

Let L, .. denote the space of linear maps R™ — R" of rank m, and X, ,,
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the space of skew maps R™ — R"; these spaces have the compact open
topology. Let p: L, , — X, ., be the inclusion.

(1.1) LEMMA. If 0 <1< 2n —2m — 1, then o, w(L, ) = 7(X, )
is an tsomorphism. If 1 = 2n — 2m — 1, then p, is onto.

PROOF. Since we are dealing with homotopy groups, we may replace
L, ,, with its deformation retract V, ,,, the space of linear maps of rank
m which preserve length. Thus V, ,, is the Stiefel manifold of orthonormal
m-frames in R". Likewise we replace X, , by the subspace Y, , of radial
maps that preserve length along each radius; Y, ,. is a deformation retract
of X, .. Since each ¢ € Y, ,, is completely determined by ¢ | S™*: S™'—
S*!, we see that Y, , is the space of maps ¢: S™* — S"~! which com-
mute with the antipodal map. We shall prove (1.1) by induction on m.
We denote the inclusion V, ,.cL, ., by 0. fm=1YV,,=Y,,=8""
and proof is complete. Assume now that m >1,and assume inductively that
(1.1,-,) On-e: T Vim—) = Tl Yo 1)

18 an isomorphism for 0<1<2n—2m —3, and 1is onto for
1=2n — 2m — 3.

Letp:V,.,—>V,n.andgq:Y,, — Y, . assign to each linear (respec-
tively, skew) map its restrictions to BR™'. It is well known that p defines
a fibre bundle, and it is easy to see that q defines a fibration in the sense
of Serre. Moreover, ¢0,, = 0,,-,p. Choose ve V, ,_, and put v = 0,,_.(v).
To prove (1.1, it suffices to prove that p,, | p~(v) induces an isomorphism
T(p~'(v)) = (g '(v)) for 1 < 2n —2m — 1, and an epimorphism for
1 = 2n — 2m — 1; then (1.1, is proved by looking at the exact homotopy
sequences of the fibrations defined by p and q. Now p~*(v) is homeomor-
phic to S* ™. We identify ¢~'(v») with the space of maps f: £ — S
such that f| S™* = «, where E™' is the northern hemisphere of S™'.
By contracting f(S™?%) over the southern hemisphere of S** to the south
pole, we see that this space has the homotopy type of the iterated loop
space Q,_,S"', and it is easy to see that p,|q'(v) induces a map
Uy: S™™ — Q™ 'S with the property that w,: 7 ,(S™™) - 7,(Q™'S*™1) =
Tirm_1(S™?) is the iterated suspension; see [2, Ch. XI]. Since this suspen-
sion is an isomorphism for ©+ < 2n — 2m — 1 and isonto for 72 = 2n — m — 1,
proof is established.

Now let 7w : E— B be an m-plane bundle and 7' : E’' — B’ an n-plane
bundle, with respective structural groups GL(m), GL(n). We assume B is
a simplicial complex.

(1.2) THEOREM.
(a) Assume dimB < 2n — 2m — 1. Let @: E— E’ be a skew map.
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There is a linear map : E — E' such that ¥ = @ and + is skew homo-
topic to .

(b) Assumedim B < 2n — 2m — 1. Let @, ¢,: E — E' be linear maps.
If ¢, and @, are skew homotopic, they are linearly homotopic; the linear
homotopy may be chosen to cover the homotopy between @, and @,.

Proor. The skew maps E into E’ that cover @ are in one-one corre-
spondence with the cross-sections of the bundle S over B, whose fibre
over x € B is the space (X, ,.), of skew maps of the fibre E, into the fibre
E%.). The linear maps that cover @ correspond to the cross-sections of
the sub-bundle L S consisting of linear maps; the fibre of L over « is
(L, .).. An equivalent formulation of (1.1) is that 7(X, ., L, .) = 0 for
0<1<2n — 2m — 1. Since the obstructions to deforming a cross-section
of S into a cross-section of L lie in these groups, (a) is proved. The proof
of (b) is similar, and is left to the reader.

2. Linear maps T'(M) — R".

If f M— N is an immersion, there is a neighborhood U of the diagonal
Ain M x M such thatif (x,y) e U — A, f(x) + f(y). If N= R", we may
therefore define &,: U — A — S"~ by 8 (z, ¥) = f(x) — f(W)/||F(®) — FW)].
We shall investigate the connection between 8, and f,: T(M) — R™.

There is a neighborhood O, of A such that if (z, y) € O, there is a
unique shortest geodesic joining  to y. We denote by exp the exponential
map T(M)— M, and by Ty(M) the set of null vectors of T'(M). Then
there is a neighborhood A, of Ty(M) in T(M) such that the map
T(M)—> M x M given by X — (exp X, exp —X) maps A, topologically
onto O,. We denote this homeomorphism by e,: A,, = O,. Observe that
if ey(X) = (x, ¥), ex(—X) = (y, x), and ¢,(X) € A if and only if X € Ty(M).

If Uis a neighborhood of A, amap é: U — A — S*' is equivariant if
8y, x) = —&(x,y). Given such a 8, we shall define a skew map
®(8) = ¢p: T(M)— R". (The definition of ® is based on the identification
of T(M) with the normal bundle of A in M x M by means of the expo-
nential map.) Let ¢ be a positive continuous function on T'(M) such that
gX)=¢e(—X), &(X) XeAy, Ne(U), and e =1 in a neighborhood of
Ty(M). Now define ¢: T(M) — R" by ¢(X) = || X || dex(e(X)X) if X # 0,
and @(X) = 0 if X = 0; clearly ¢ is skew. (We use || X || for the norm of
X))

Let us define two equivariant maps §;: U; — A—> S — 1,9 =0,1 to be
germ homotopic if for some symmetric neighborhood V < U, N U, of
A, 8| U, N V— A is equivariantly homotopic to &, | U; N V — A, It is
not hard to prove
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(2.1) THEOREM. ® induces a one-ome correspondence between germ
homotopy classes of equivariant maps U — A — S and skew homotopy -
classes of skew maps T(M) — R".

This can be deduced easily from (3.1), below.

The following elementary fact is crucial to the theory.

(2.2) LEMMA. Let f: M — R" be an immerision. Then f, and ®(8,)
are skew homotopic.

ProoF. Let v be a geodesic segment in M with midpoint a. Letx, y ¢~
be distinct points equi-distant from a. Let X be the tangent to v
at a such that expX =12 exp— X=4y. Then @@, )(X) =
U X (f@) — fF@NIf(®) — f@ ) if X is small enough. Keeping X
fixed and letting x, ¥y > a, the term on the right approaches
| X1 (fX)/(|| £+ X ]1). This provides a skew homotopy from ®(8,) to the
skew map ¥(X) = (|| X || £, X)/(| fX ). (If X =0, at each stage of the
homotopy X — 0). Then the homotopy

(X, 1) > {(@ = )| X/ £ X)) + t}f X
is a skew homotopy from v to f,. We are now ready to prove

(2.3) THEOREM.

(a) Assume2n > 3m. If thereis an equivariant map &: U—A— S,
Jfor some neighborhood U of the diagonal A € M x M, then there is a
linear map : T(M)— R™.

(b) Assume 2n > 3m + 1. Let f,g: M— R™ be immersions. The
linear maps f, g.: T(M) — R" are linearly homotopic if the maps
8s, 8,0 U — A — S™! are equivariantly homotopic for some neighborhood
UofA.

To prove (a), let : T(M) — R™ be the skew map ®(5). The existence
of a linear map follows from (1.3a). To prove (b), we apply (1.8b) and
conclude that it suffices to show that f, and g, are skew homotopic. By
(2.2) it is enough to prove that ®(8,) and ®(8,) are skew homotopic. This
follows from (2.1).

(2.4) COROLLARY. The existence of a linear map T(M)— R is inde-
pendent of the structure of T(M) if 2n > 3m.

In view of (2.3), the question arises as to when equivariant maps ex1st
and when they are homotopic. The following result is well known.

Let X, Y be spaces on which a group G acts in such a way that only
the identity element of G leaves any element of X fixed. Let X/G be the
orbit space of X under the action of G, and let E — X/G be the bundle
with fibre Y associated to the principal G-bundle X — X/G. (We assume
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X — X/G is locally trivial.)

(2.5) LEMMA. The cross-setions of E are in one-one correspondence
with G-equivariant maps X — Y. Two cross-sections are homotopic if
and only if the corresponding maps are equivariantly homotopic.

Thus if Uc M x M is a symmetric neighborhood of A, to study equi-
variant maps U — A— S"!, we examine cross sections of the bundle over
(U — A)/Z, with fibre S** associated to the Z,-bundle U — A— (U — A)/Z.,.
IfU=Mx M, we put (M x M — A)/Z,= M*, and we denote this bun-
dle by Q,.(M)— M*. The obstructions to a cross-section of @,(M) lie in
groups H**(M*, G,.,) where G, , denotes 7w ,(S"™") if n — 1 is odd, and the
following local system otherwise. Let F' C mw,(M?*) be the image of
T(Mx M— A). If g ¢ Fand aem(S*™), define ga € 7,(S™") to be the
homotopy class of the composite S* — S*'— S*~' where the first map
represents «, and the second is the antipodal map. If & € F, put ha = a.
If i < 2n — 2, then g = —a (cf. [5, 23. 8]). This is the case if 2n > 3m.
Thus if n — 1 is even, and 2n > 3m, the local system G, , is the tensor
product of 7;(S™*) and the twisted integer system Z, associated to the
covering M x M — A — M*. The obstructions to making two cross-sec-
tions homotopic lie in the groups H{(M*; G;.,).

(2.6) THEOREM (Kervaire). If 2n >3m + 1 and g,f: S™— R" are
differentiable imbeddings, f,, 9.: T(S™) — R™ are linearly homotopic.

(2.7) COROLLARY.

(@) The Smale invariant C, vanishes.

(b) f(S™) has a trivial normal bundle.

Proor. To prove (2.6), it suffices by (2.3b) to show that the cross-
sections S™ — Q,(S™) corresponding to &8,,8,: S™ x S™ — A— S™* are
homotopic. It is well known that S™ admits real projective m-space as a
deformation retract. (To see this, let the pair (x, ¥) of distinct points of
S™ move uniformly to (x’, ¥'), where 'y’ is the diameter parallel to xy,
and 2’ is nearer to « than to y.) Therefore H*(S™) = 0 for 7+ > m with
any coefficient system. Since m > n — 1, there can be no obstruction to
such a homotopy. The Smale invariant C; € 7,(V, ) can be defined as the
obstruction to making f, and %, linearly homotopic, where 7: S™ — R"
is the inclusion. Thus (2.6) is equivalent to (2.7a). To prove (2.7b), we
observe that the normal bundle of f(S™) is determined by the linear homo-
topy class of f; for the (n — m)-plane normal to f(S™) at f(x) is normal
to the m-plane containing f,(7T'(M/x)).

The results in (2.7) are due originally to M. Kervaire [3, 4].

(2.8) THEOREM. Let M be a compact unbounded m-manifold such that
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H(M)=0for0 <1< k.

@) Ifk < %m, there exists a linear map T(M) — R*".

(b) Assume k< imand n=2m —k + 1. If f,9: M— R" are dif-
Sferentiable imbeddings, f,, 9,: T(M)— R"* are linearly homotopic.

(2.9) CorOLLARY. f(m) and g(M) have equivalent normal bundles.

PrOOF. We may assume that M is connected. To prove (a), we con-
struct a cross-section of Q,,_,(M) — M* and apply (2.3). To prove (b), it
will suffice to show that any two cross-sections of Q,(M) are homotopic.

Both these results are proved by showing that all obstructions vanish.
This, in turn, is proved by computing the cohomology of M*. It suffices
to show that H{(M*; G;,) =0, and H{(M; *G,_,,) = 0 for © = 2m — k.
Let Z’ be either integer coefficients Z or the twisted integer system Z,
associated to the covering M x M — A — M*, and let Z” be the other.
Now 7;,(S™™") is a finitely generated abelian group, hence a direct sum of
cyclic groups. Therefore it suffices to show that Hi(M*; Z' ® Z,) = 0
for m =2,3, -+, ». By examining the exact cohomology sequence
[5, 38. 5] corresponding to the sequence 0 > Z' - Z' - Z2' ® Z,, — 0, we
find it suffices to prove H(M*;Z’) =0 for © = 2m — k. Consider the
Thom-Gysin sequence of the covering M x M — A — M*: «-.—
Hi(MxM— A)—»>H\(M*; Z') > H+*(M*; Z") > H " (Mx M—A)—- ..
This sequence is exact and is described in [6, Ch. I, III]. If we can show
HY(M x M — A) =0 for © = 2m — k, proof will be complete; for, by ex-
actness, then H'(M*; Z')~ H*"\(M*; Z") for 1 =2m — k, and both
groups vanish for ¢ > 2m since dim M* = 2m. But H(M x M — A) ~
H,, ,(M x M,A) by Lefschetz duality, and this last is 0 for
2m = 1 = 2m — k by the Kiinneth formula and the connectedness of J.
This completes the proof.

We remark that if M is either non-compact or bounded, this result can
be improved by elementary means, for there is no obstruction to construc-
ting a linear map T'(M)—R*" "', and no obstruction to a linear homotopy
between linear maps T (M) — R*, if n = 2m — k. This is because such
obstructions lie in H**'(M; 7 Vym-i-1.)) and H(M; z,(V, ,.)) respectively,
and 7(V,,) =0fort < p—gq.

Combining (4.1) and (2.8) proves

(2.10) THEOREM. Let M be as in (2.8). If k < im, there exists va/n
immersion M — R*™ " Ifk<4imand n<2m —k + 1, any two dif-
Sferentiable imbeddings M — R™ are regularly homotopic.

3. Linear maps T (M) — T(N).
Let U be a neighborhood of Ain M x M. We callamap §: U—-> N x N
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equivariant if 6(x, y) = (u, v) whenever 6(y, x) = (v, ), and u #+ v if
x#+y. Welet | A: M — N bedenoted by §. If f: M — N is an immer-
sion, there is some neighborhood U of A such that the map 6,: U— N x N,
defined by 0,(x, y) = 0(f(x), f(y)) is equivariant. Obviously 4, = f.

We describe next an operator ® assigning to every equivariant map
0: U— N x N a skew ®(0): T(M)— T(N). We first assign to § a map
& T(M)— T(N) which is not necessarily a fibre map, but satisfies the
other conditions for a skew map, namely & —X) = —&(X) an &X) # 0 if
X =+ 0. This is done as follows. Let V be a neighborhood of T,(M) in
T(M) such that V< A, and e, (V) < U N G*(Oy). (See §2 for the def-
inition of ey, Ay, Oy). Let ¢ be a positive continuous function on T'(M)
with the properties that e(X) = e(—X), (X)X € V, and ¢ = 1in a neigh-
borhood of Ty(M). Define &: T(M)— T(N) by &(X) = 1/e(X)ex*0e,(e(X) X).
Given such a map & we construct a skew map @ as follows. Let
&: M — N be the restriction of £ to T(M) with M and T(N) with N in
the obvious way. Let W be a neighborhood of T,(M) such that if X e W
is based at x, and £(X) is based at ¥, then (£(x), y) € Oy. Let ¢ be a posi-
tive function on T'(M) such that e(—X) = &(X), &(X)X € W,and ¢(X) =1
in a neighborhood of T\(M). If (x,y) € Oy, let 7,,: T(N/y) = T(N/x) be
the operation of parallel translation along the minimal geodesic joining x
to y. Now define ¢: T(M) — T(N) by ©(X) = 1/(e(X))Te (), E(6(X)X). It
is easily verified that @ is skew, and @ = &. Moreover if £is skew, @ = £
because &(x) = y and 7, is the identity.

Starting with an equivariant map 6, the construction § - &€ - @ pro-
duces a skew map P(d). Conversely, starting with a skew map
@: T(M) — T(N), we define an equivariant (@) = g: O, > N x N by
0(x, s) = eypey'(x, y). It is easy to see that if 9 = ©(®,), then ©(0) and @,
are skew homotopic; while if ¢ = @(6,), then ®(@) and 6, are equivariantly
homotopic on some neighborhood of A. Furthermore, ® carries skew
homotopic maps into equivariantly homotopic maps, while if 6, and 6, are
equivariantly homotopic on some neighborhood of A, then ®(,) and ®(6,)
are skew homotopic. Finally if ¢, = ®(6,) or 6, = &(p,), then & = 4,.

We define two equivariant maps @,: U,— N x N, @,: U, — N x N to be
germ homotopic if there is an equivariant homotopy +,: V— N x N such
that v, | VN U, =9, | VN U fori=0,1.

The above results are summarized in

(3.1) THEOREM. ©® induces a one-one correspondence between skew
homotopy classes of skew maps T(M) — T(N) and germ homotopy classes
of equivariant maps 0: U—> N x N. If &(p) = 0, then 6 = P,

(3.2) COROLLARY. If 2n > 3m, the existence of a linear map
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T(M)— T(N) is independent of the structures of T(M) and T(N).
Proor oF (3.2). Clearly the existence of equivariant maps is independ-

ent of any differential considerations. The proof follows from (3.1) and
(1.3).

4. Existence and classification of immersions
The results of this section are based on

(4.1) THEOREM. Assumen > m. If ¢: T(M)— T(N)is linear, @ can
be approximated by immersions f: M — N such that f, and @ are line-
arly homotopic. Two immersions f, g: M — N are regularly homotopic
if and only if f, and g, are linearly homotopic.

Proor. See [1, §5].

Applying (1.3) we have

(4.2) THEOREM.

(a) Assume 2n > 3m. If @: T(M)— T(N) is skew, @ can be ap-
proximated by immersion f: M — N such that f, and @ are skew homo-
topic.

(b) Assume2n > 3m + 1. Two immersions f, g: M — N are regular-
ly homotopic if and only if f, and g, are skew homotopic.

From this and (3.1) we obtain

(4.3) THEOREM.

(a) Assume 2n > 3m. If U is a neighborhood of A in M x M, and
8: U— N x N is equivariant, & can be approvimated by immersions
f: M — N such that &, and & are germ homotopic.

(b) Assume 2n > 3m + 1. Two tmmersions f,g9: M — N are regular-
ly homotopic if and only if 6, and 8, are germ homotopic.

(4.4) COROLLARY. If 2n > 3m, the existence of immersions M — N is
independent of the differential structures of M and N.

5. Topological immersions

A map f: M — N is called a topological immersion if some neighbor-
hood of each point of M is mapped topologically.

The equivariant map 6, is defined as before. A topological regular
homotopy is a homotopy f,: M — N such that for each point x of M, there
is a neighborhood U which is mapped topologically by each f,. The in-
dependence of U from ¢ is important here. It follows that §,, is an
equivariant homotopy on some neighborhood of A.

(56.1) THEOREM.

(a) Assume 2n > 3m. A topological immersion f: M— N can be
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approximated by differentiable immersions g: M — N such that &, and
8, are germ homotopic.

(b) Assume 2n > 3m + 1. Two differentiable immersions f,g: M - N
are differentiably regularly homotopic if and only if they are topologi-
cally regularly homotopic.

Proor. Apply (4.3).

(5.2) COROLLARY. If M 1is homeomorphic to a m-manifold, M can be
rmmersed in R, where 2n > 3m.

PROOF. [1, 6.5], a 7-manifold of dimension m can be immersed in B™*".
Now apply (5.1a).

REMARK.. Let d be an integer such that H(M) = 0 for < > d (and any
group of coefficients). J. Milnor has pointed out to us that in §4 and §5,
3m could be replaced by 2m + d (also in (2.8), (2.4) and (3.2)). This is be-
cause in the hypothesis of (1.3), dim B can be replaced, without any
change in the proof, by any integer d such that H{B) = 0 for ¢ > d.

6. Tangent vector fields

In this section (which is independent of immersion theory) we show
how to apply §§ 1 and 3 to obtain results which prove that certain invari-
ants of the tangent bundle of a manifold are homeomorphism invariants.
(It is not known whether the tangent bundle itself is a homeomorphism
invariant. Added in Proof: Milnor has recently proved it is not.)

Let M and M’ be differentiable m-manifolds with the same underlying
topological space K, which we assume to be triangulated. No assumptions
as to the compatibility of the differentiable and combinatorial structures
are made; K can equally well be considered as a Cw-complex.

Let A be a field of tangent k-frames on M, over the (¢ — 1)-skeleton
K,_; briefly, a k-field in M over K, ,. Then there is an obstruction co-
chain w(\) e CY(K; 7;_(V,,) whose vanishing is necessary and sufficient
for the extension of A over K.

(6.1) THEOREM. Let )\ be a k-field in M over K,_,, with obstruction
cochain w(\). If1 < 2m — 2k — 1 there is a k-field N' in M' over K,_,
such that o(\') = o(\).

Before proving (6.1), we point out some consequences.

(6.2) COROLLARY. If M admits a k-field with k<}(m—1), so does M.

PROOF OF (6.2). Take 7 = m in (6.1). By assumption, there is a k-field
X in M over K, _, such that w(\) = 0. By (6.1), there is a k-field A’ in M’
over K,,_, with w(\') = 0. Thus )\ can be extended over K,,.

As a special case of (6.1), pointed out to us by Milnor, suppose M is
closed (i.e., connected, compact, and unbounded) and (kK — 1)-connected.
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Then H{(M; ;_(V,..)) = 0 for @ < m; hence there is a k-field » in M over
M — z, for any x € M. The obstruction to extending \ lies in 7,,_(V,...),
and is independent of the choice of A. Thus to each (k — 1)-connected
closed differentiable manifold M is associated an elementw(M) e 7,,_ (V. 1).
(Actually @ depends on k as well as M.) Applying (6.1) yields

(6.3) COROLLARY. If M and M'are homeomorphic closed (k — 1)-con-
nected m-manifolds, then w(M) = w(M’).

Proor or (6.1). Since M and M’ are homeomorphic, by (8.1) there is a
skew map @: T(M) — T(M') covering the identity map of K. Now a k-
field A in M over K,_, is nothing but a linear map \: K;_, x R* —» T(M)
covering the identity map of K, ,, and likewise for M’. Thus
on: K, x R*— T(M’) is a skew map covering the identity map of K,_,.
By (1.2), there is a linear map \: K;,_, x R*—> T(M') which is skew
homotopic to @», and which also covers the identity map of K, ,. It
follows from (1.1) that w(\') = w(\).
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