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KNOTTED (4% — 1)-SPHERES IN 6k-SPACE*

BY ANDRE HAEFLIGER
(Received July 21, 1961)

It is proved in [3] that any differentiably imbedded (4k — 1)-sphere in
an m-sphere S™ is unknotted, i.e., bounds in S™ a differentiable 4k-disk,
provided that m > 6k. We want to show here that this is no longer true
if m = 6k. In fact, there is an infinite number of isotopy classes of
differentiably imbedded (4k — 1)-spheres in 6k-space. Nevertheless ac-
cording to Zeeman [13], in the combinatorial case, any m-sphere is
unknotted in S™ if m > n 4 2.

Following an idea of Fox and Milnor [2], we first define the group =™
of h-cobordism classes of imbedded n-spheres in S™ (see definition in 1.3).
An imbedded n-sphere in S™ is h-cobordant to zero if it bounds a differ-
entiable homotopy (n + 1)-disk in the unit disk D™*'.

According to a new result of Smale [11], in most cases the elements of
smn eorrespond to the isotopy classes of imbedded n-spheres in m-spheres
(cf. 1.3).

The main result of this paper is that =%*~! is isomorphic to the group
of integers, if k > 1.

Here is an outline of the proof which relies heavily on results of Kervaire
and methods of Milnor [7]. We first define a homomorphism 4 : X%~ — Z
as follows. An imbedded (4k — 1)-sphere K*~* in S® is, according to
Kervaire [7], the boundary of a manifold V of index 0 imbedded in a unit
ball B*'!; moreover V admits a field F' of normal (2k + 1)-frames in B.
We then define an integer i(B, V, F') by means of linking numbers (cf. 2.5);
it turns out that i(B, V, F') depends only on the A-cobordism class of the
imbedded K*~'in S and provides a homomorphism ¢ : %%~ — Z (cf. § 2).

It is proved in § 3 that 7 is injective for k > 1, using surgery methods
as in Milnor [7].

Finally a specific imbedding for which ¢ = + 1 is constructed in 4.1,
proving that 7 is surjective.

It is possible to prove, using methods of [3] and results of this paper,
that the isotopy classes of differentiable imbeddings of S*~* in S% (in the
strong sense of [3]) are in 1 -1 correspondence with the integers (even
for k = 1).

In a subsequent paper we plan to give more information on the groups
Smm,

* This work is partially supported by NSF contract G-11594
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A conversation with M. A. Kervaire has helped me to simplify some of
the proofs of § 2.

Terminology. All the manifolds, submanifolds, maps, imbeddings con-
sidered here are implicitly supposed to be differentiable of class C=.

S™ denotes the unit sphere in the euclidean space R*** and D"*! the
unit disk in R*** bounded by S”. By an n-sphere we mean a differentiable
manifold of dimension # having the same homotopy type as S*; an n-disk is
a contractible manifold of dimension 7 with a simply connected boundary.

1. h-Cobordism classes of pairs of manifolds

1.1. DEFINITION. We consider pairs (4, B) of a compact oriented mani-
fold A and a compact oriented submanifold B of A. If A and B have
boundaries 84 and 6B, we suppose that 8B is a submanifold of 64 and
that B meets 04 transversally along 8B. The pair (64, 8B) will also be
denoted by (A4, B). The pair (—A, —B) = —(A4, B) is obtained from
(4, B) by reversing both orientations. An imbedding of a pair (4, B) in
a pair (4’, B’) is an imbedding of A in A’ whose restriction to Bis an
imbedding of B in B’.

Two pairs (M;, N)) and (M, ,N,), without boundaries, are h-cobordant
if there exists a pair (V, W) such that

1) &V, W)= (M, N,) — (M,, N,), i.e., there exists an orientation
preserving diffeomorphism of 8(V, W) onto the disjoint union of (44, N,)
and —(M,, N,),

(2) M; and N; are deformation retracts of V and W resp., ¢ = 1, 2.

This is clearly an equivalence relation noted (M,, N,) < (M,, N,). The
definition can be easily extended to the case where M, and N; have
boundaries.

Notice that M, and M, (resp. N; and N,) are h-cobordant (J-equivalent
in the old terminology, e¢f. Milnor [7]).

If the submanifold N, of M, is isotopic to the submanifold N, of M,,
i.e., if there exists an orientation preserving diffeomorphism of (M, N,)
onto (M,, N,), then these two pairs are h-cobordant. A recent result of
Smale [11] asserts that the converse is true provided that dim N; > 4,
dim M; — dim N; # 2, M;, N; simply connected.

1.2. Connected sum of pairs. Let (M;, N;) be two pairs of closed
connected manifolds, ¢ = 1, 2, dim M; = m, dim N; = n. The connected
sum (M, N,) # (M,, N,) = (M, # M,, N, # N,) is defined as follows. As
in Milnor [8, p. 13], consider the pair (rD™, »D") of the m-disk of radius r
defined by Y #} < »* in R™(2,, &,, +++, *,,) and the n-disk intersection of
rD™ with the plane x; = 0,n < j < m. Let p, and p, be imbeddings of
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(2D™, 2D") in (M,, N,) and —(M,, N,) respectively, which are orientation
preserving. In the disjoint sum

(M, — p,(1/2D™), N, — p,(1/2D") + (M, — pA1/2D™), N, — p,(1/2D")) ,

identify p,(ti) with p,(1/t%), € S™,1/2 <t < 2. One then obtains a
pair (M, # M,, N, # N,) which is unique up to orientations preserving
diffeomorphism of pairs. This follows from the fact that two orientations
preserving imbeddings of (D™, D*) in a pair (M, N) of connected manifolds
are isotopic (proof as in Milnor [8, Theorem 2.2]).

This sum operation, defined for classes of connected pairs of closed
m-manifolds and m-manifolds up to orientations preserving diffeomor-
phisms, is associative and commutative. There is a unit element, the
pair (S™, S*), where S" is imbedded in S™ by the natural inclusion of
R+ in R™+,

Moreover the h-cobordism class of the connected sum of two pairs
depends only on the h-cobordism classes of these pairs; the proof as in
Milnor [7,2.3]. So that the A-cobordism classes of pairs of connected
closed manifolds of dimension m and » respectively form also a semi-group.

This sum operation can also be defined for pairs (M; N;), © = 1, 2, of
manifolds with connected boundaries. In the preceding definition, (D™, D)
is replaced by the pair (D7, D?) of half disks «, = 0; moreover the imbed-
ded p;(2D7, 2D7) must intersect (M;, 0N;) along p,(2D™, 2D""), where
(D™', D*') is the intersection of (D7, D?) with the plane 2, = 0. The
unit element is in this case the pair (D™, D").

1.8. The groups 6™" and =Z™". The h-cobordism classes of pairs
(S™, K™) consisting of an oriented n-sphere K" imbedded in the unit
m-sphere S™ (or rather in an m-sphere h-cobordant to S™) form an abelian
group ™. The inverse of (S™, K")is —(S™, K"); This is proved in the
same way as Lemma 2.4 in Milnor [7]. A pair (S™, K") represents the
unit element of ™" if and only if, in an (m + 1)-disk whose boundary is
S™, K" bounds an (n + 1)-disk.

The correspondence (S™, K*) — K" induces a homomorphism of ™" in
0", the group of h-cobordism classes of n-spheres (cf. Milnor [7]). The
kernel is the subgroup =™ of 0™", of pairs represented by an n-sphere
h-cobordant to the usual S* imbedded in S™. The image is the subgroup
of 0 of h-cobordism classes of n-spheres which admit a representative
imbeddable in S™.

It follows directly from the definition that 3***" = 0 for all n. Ac-
cording to Fox-Milnor [2], the group =*' is not finitely generated. From
[3] it follows that =™ = 0 for 2m > 3n + 3. In the limit case 2m =
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3n + 3, then m = 3d and n = 2d — 1. We shall deal here with the case
d even. When d is odd and > 1, we shall prove later that there exists
a homomorphism of Z, onto 2****-!; we cannot decide in general if this
homomorphism is injective.

1.4. Framed submanifold. A framed submanifold N of M is a triple
(M, N, F'), where (M, N) is a pair of manifolds and F'a framing of the
normal bundle of N in M: at each point xz of N, F(x) is an ordered basis
fi(x), « -, fi(x) of the normal space to N at # which depends differentiably
on &. Moreover the orientation of M at « is the sum of the orientation
of N at « and the orientation given by F'(x)'.

All the definitions of 1.1 and 1.2 can be extended to framed submani-
folds. If M and N have boundaries, then (M, N, F') is the framed
submanifold (6M, 6N, 6F), where 0F is the restriction of F' to ¢N. By
definition —(M, N, F') = (—M, —N, F).

Two closed framed submanifolds (M;, N;, F), i = 1, 2, are h-cobordant
if there exists a framed submanifold (V, W, F') such that

(1) &V, W, F) = (M, N,, F)) — (M,, N,, F)

(2) M;, N; are deformation retracts of V and W respectively.

It follows from the result of Smale quoted above, that the framed
submanifolds (M;, N;, F};), 1 = 1, 2, are h-cobordant, if and only if there
exists an orientation preserving diffeomorphism of (M,, N;) onto (M,, N,)
which maps F, on F,.

The connected sum (M, # M,, N, # N,, F, # F,) of connected framed
submanifolds (M;, N;, F), i = 1,2, dim M, = m, dim N, = n, is also
defined as before. One considers (in the case of closed submanifolds for
instance) imbeddings of the standard framed D" in D™ : (D™, D", F'), where
F=(,, -, t,); t, is the unit vector which defines the orientation of
the k-axis in R™.

The h-cobordism classes of connected closed framed n-submanifolds of
m-manifolds also form a semi-group. The unit element is the standard
framed S" in S™: (S™, S*, F}) = &(D™*, D**', F').

In particular, the A-cobordism classes of framed n-spheres in an m-
sphere h-cobordant to S™ form an abelian group F'™*. There is a natural
homomorphism of F'™" in §™" by ignoring the framing; the kernel consists
of the h-cobordism classes of the framings of the standard pair (S™, S*).

1.5 The suspension. The suspension of an m-disk Bis the (m + 1)-disk

1 In principle, the normal space of N at x will be the quotient of the tangent space M,
of M at x by the tangent space N, of N at x. Nevertheless we shall often identify implicitly
this normal space with a subspace of M, complementary to N,. This ambiguity is not
important because only the homotopy class of the framing F is relevant.
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SB obtained from the product B x D' by smoothing (see Milonr [7,
appendix]) corners along 8B x {1} and 8B x {—1} (recall that D' is the
interval [—1, +1]); B is identified with the subspace B x {0} of SB.

The suspension of an n-sphere K* h-cobordant to S*, i.e., which bounds
an (n + 1)-disk B, is the boundary SK" of SB. Its k-cobordism class does
not depend on the particular choice of B. Again K" is identified with a
subspace of SK™: the boundary of B — SB.

The suspension of a pair (K™, V), where K™ is h-cobordant to S™, is the
pair (SK™, V), where V < K™ c SK™.

The suspension of a framed submanifold (K™, V, F') is the framed
submanifold (SK™, V, SF), where SF' is the field F' completed by the
vector field along V normal to K™ in SK™ (compare Kervaire [4]).

Similar definition if K™ is replaced by a disk,

The h-cobordism class of the suspension of a pair depends only on the
h-cobordism class of this pair; thus suspension induces homomorphisms:
o™ — g™+t and Z™" — S,

The N-fold suspension is the suspension iterated N times.

2. The integer attached to an element of X%
We first state a theorem which follows from results of Kervaire.

2.1. THEOREM. Any (4k — 1)-sphere K, h-cobordant to S*~*, imbedded
in the boundary of a (6k + 1)-disk B, bounds in B a framed submanifold
(B, V, F) with index V = 0.

Let (8B, K, F') be a framed n-submanifold in the boundary of an (m + 1)-
disk B. The Thom construction (see Thom [12]) associates to (0B, K, F')
an element y(F) € 7,(S™ ). This element is 0 if and only if (3B, K, F)
bounds a framed submanifold in B.

On the other hand, according to Milnor-Kervaire [6], any framed 4k-
submanifold in an m-disk which bounds the standard framed S*~' in S™
(cf. 1.4) has index 0. This proves that 2.1 follows from 2.2.

2.2. THEOREM (Kervaire). Let K" be a sphere h-cobordant to S*, imbed-
ded in a sphere K™% h-cobordant to S**¢, with n < 2d — 1. Then K
admits a field F of normal frames in K*** such that

(1) v(F) =0,

(2) after N-fold suspension, N large, (K", K", F') becomes h-cobordant
to the standard framed S™ in S**%+¥,

Statement (1) is proved in Kervaire [4] and [5, Lemma 4.1]. The fact
that K**? and K* are h-cobordant, instead of diffeomorphic, to S**¢ and
S does not play any role in the proof. Before proving (2), we recall a
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few facts.

2.3. Let (K™%, K", F') be a framed n-sphere K" in an (n + d)-sphere
K"+, Given a map € or K™ in the rotation group S0, one gets a new
framed submanifold (K", K", &-F') by letting &(x) act on F'(x) for all
x € K" (see Kervaire [4]); the h-cobordism class of (K"*%, K", £-F) depends
only on the homotopy class of &, also denoted by & € 7,(80,).

It is easy to check (compare Kervaire [5, p. 133]), that

(K44, K", E-F) ~ (S**¢, 8", £-F)) # (K%, K", F)

where (S**¢, S, F}) is the standard framed S™ in S"+%,

The Thom construction v is additive and, according to Kervaire [4],
v(E- F}) = aJ§g, where J is the Whitehead homomorphism 7,(S0,) = 7,1 4(S%)
and ¢ an automorphism of x,.,(S%. Hence (see Kervaire [5, Lemma 4.1])

w(E-F) = oJE + u(F) .

2.4. PROOF OF 2.2, (2). By decreasing induction on d. By 2.2, (1),
there exists a framing F of K* in K**% with v(F') = 0. Suppose the theorem
true for d + 1: there exists an element £ € 7,(S044,) such that, for the
suspension SF' of F, v(£-SF) =0 and the (N — 1)-fold suspension of
(SK**¢, K*, SF") is h-cobordant to the standard (S****¥, S, F,). By 2.3,
JE = 0. From the exactness of the diagram on [4, p. 364] (see also [5,
footnote 5]), there exists an element 7 € 7,(S0,) which gives & by suspension
and such that Jy = 0. Then (K**¢, K", n-F') satisfies (1) and (2) of 2.2
because v(-F) = 0 by 2.3, and its N-fold suspension is k-cobordant to
the (N — 1)-fold suspension of (SK"*¢, K", £-SF).

2.5. The integer i(B, V, F'). Let (B, V, F') be a framed 4k-submanifold
of a (6k + 1)-disk B, the boundary of V being a (4k — 1)-sphere in 8B.
Let f; be the first vector of the field F. We slightly push each 2k-cycle
cof V away from V along the direction f,. More precisely, consider a
riemannian metric on B such that 0B is totally geodesic. Let j be the
map of V in B — V defined by j(x) = exp &fi(x), where ¢ is a positive
number so small that t exp e fi(x)¢ Vfor0 < t < 1. The linking number
of j(¢) with V in B defines a linear function on the 2k-cycles of V, hence
a cohomology class M e H*(V,8V) = H*(V) with integral coefficients
modulo torsion. The value \’[ V] of its square on the fundamental class
of V' is an even integer (cf. Milnor [7, p. 8]).

We define ©«(B, V, F') = 1/2 ] V].

If (B, V, F,),1=1,2, are two such framed submanifolds, their con-
nected sum (cf. 1.2, 1.4) is again a framed 4k-submanifold of a (6k + 1)-disk
whose boundary is a (4k — 1)-sphere. It follows from the definitions that
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":(B1 # By, Vi# V,, F\ # Fz) = i(Bv Vi, F1) + i(Bzy Vi, F2) .

2.6. THEOREM. The integer i(B, V,F')depends only on the h-cobordism
class of the pair (6B, 0V) and on the index of V.

2.7. LEMMA. ©(B, V, F) depends only on the h-cobordism class of
o(B, V, F).

Suppose that 8(B,, V., F)) is h-cobordant to 8(B,, V,, F,). By definition
1.4, there exists a framed submanifold (B,, V,, F,) and a diffeomorphism
h of 8(B,, V,, F,) onto &(B,, V,, F\) — 8(B,, V,, F}). If one identifies the
boundary of the disjoint union (B,, V., F}) — (B,, V,, F},) with the boundary
of —(B,, V,, F,)) by h, one gets a framed 4k-submanifold (M, N, F'), where
M is a (6k + 1)-sphere, because 8B, and 8B, are deformation retracts of B,.

Define as before the integer (M, N, F') = 1/2\}[ N]; here \ € H**(N)
associates to each 2k-cycle ¢ of N the linking number with N of ¢ pushed
away from N along a vector of F. As 6V, and 9V, are deformation
retracts of V,

’L(My N’ F) = i(Bly Vly Fl) - i(BZ’ V2’ F2) .
Hence 2.7 follows from 2.8. '

2.8. PROPOSITION. For any framed 4k-submamnifold (M, N, F') of a
(6k + 1)-sphere M, the integer ©(M, N, F') is zero.

We may assume that M is the boundary of a (6k + 2)-disk B by replacing
M by M # — M (the value of (M, N, F') is not changed if one removes a
disk in M far away from N).

Suppose that (M, N, F') is cobordant to zero (cf. Thom [12]), i.e., it
bounds a framed submanifold (B, N’, F'). Then (M, N, F)=1/2\}[N]=0.
This is because A is the restriction to N = 0N’ of the cohomology class
N\ € H*(N")defined, like \, by linking numbers; hence M*[N]={\"?,6 N">=0.

Two framed 4k-submanifolds (M;, N;, F;),1 = 1,2, in the boundaries
M; of (6k + 2)-disks B; are cobordant if (M,, N, F) # —(M,, N,, F},) is
cobordant to zero (cf. Thom [12]). The cobordism classes of such framed
submanifolds form a group C**:* with respect to the connected sum.
The integer i(M, N, F') behaves additively and vanishes on framed sub-
manifolds cobordant to zero; hence the correspondence (M, N, F') —
(M, N, F') gives a homomorphism 7 of C%** in Z, the group of integers.

On the other hand, the Thom construction (cf. Thom [12], Pontrjagin
[9]) gives an isomorphism of C**'* on 7, ,,(S**) which is finite (Serre
[10]). Hence the homomorphism ¢ is trivial.

2.9. Proor ofF 2.6. Let (B;, V;, F}),1=1,2, be a framed 4k-submani-
fold V; of a (6k + 1)-disk B; whose boundary is a (4k — 1)-sphere. Suppose
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that index V, = indexV, and also that (@B, 8V,) %~ (@B,,8V,). Then
(B, V,, F\) # —0(B,, V,, F,) is h-cobordant to (S°, S**, £.F}), where
£e Ty _(SOy+,) (cf. 1.4and 2.3). AsIndex(V,# — V,) =0, (S%, S* 1, E.-F,)
bounds in a (6k + 1)-disk a framed submanifold of index 0. According to
Milnor-Kervaire [6], this implies that by N-fold suspension, N large, & is
mapped on the zero element of 7,,_,(S0,,_,+y). As the kernel of the
homomorphism 7,;_,(S0y;+1) = Ty —1(SOy; 14 w) is finite (cf. Borel-Hirzebruch
[1, p. 348]), £ is an element of finite order 7.

It follows that the connected sum of » copies of 8(B,, V,, F)) is h-
cobordant to the sum of » copies of 8(B,, V,,F,). By Lemma 2.7,
ri(B,, Vi, F\) = ri(B,, V,, F,); hence «(B,, V,, F\) = #(B,, V,, F}), q. e. d.

2.10. An element of =%~ represented by a pair (K®, K*'), where
K is the boundary of a disk B, bounds by 2.1 a framed submanifold
(B, V, F') of index 0. The integer (B, V, F') depends only on the -
cobordism class of (K%, K*') and behaves additively (cf. 2.5). We can
now state the final result of this section.

THEOREM. The integer (B, V, F) provides a homomorphism © of
2451 om the group Z of integers.

3. Spherical modifications of framed submanifolds

The object of this section is to prove the following:

3.1. THEOREM. Thehomomorphism i:Z°%*1— Z isinjective for k> 1.

Our aim is to simplify as much as possible the homotopy type of the
submanifold V of 2.1 by spherical modifications. The only obstruction to
getting a disk will be the integer i(B, V, F).

3.2. We begin with a few general remarks. Let (B, V, F') be a framed
n-submanifold V in an (n + d)-disk B; F = (f,, f2 ***, fa). Given an
element «a € 7,(V'), we make the following three hypotheses:

(1) aisrepresented by an embedding g: S”— V (away from the bounda-
ry of V);

(2) g can be extended as an imbedding of the unit disk D™ in B so
that g(D™* — S") N V = @ and g(D"*?) is tangent to f; along g(S7).

(3) Consider the isomorphism of 7(R™*')* restricted to S onto the
subbundle of 7(B) generated by 7(¢9S”) and f,, which maps 7(S") on 7(gS")
by dg and the unit vector normal to S”, pointing inside D"**, on f,. The
natural trivialization of 7(R"*!) by the basis vectors gives, via this iso-
morphism, a field of (» + 1) independent vectors ¢,, ¢, « -+, ¢,., along g(S7).

2 (M) denotes the tangent bundle of the manifold M.
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Choose a trivialization of 7(B); we can view it as a bundle map T of z(B)
on R"** whose restriction to each fiber is an isomorphism. Then x —
Te\(x), <« «, Te,1(x), Tfox), « - -, Tfa(x)is a map of S”in the Stiefel manifold
Vitarsa of (d + r)-frames in (n + d)-space. Its homotopy class £¢
T (Vyutaria) is well defined.

The third hypothesis is £ =0and 2r + 2 < n + d.

3.3. PROPOSITION. If the three preceding conditions are verified for
aern,(V), there exists in B x I, I = interval [0, 1], a framed submanifold
(B x I, V, F) such that

(a) tts imtersection with B x {0} = B is (B, V, F),

(b) its intersection with B x {1} = B is (B, V', F'), where V' 1is
obtained from V by a spherical modification associated to « (cf. Milnor
7D,

(¢) ifoV+ o, then ®GBx )N V=0V x I.

We shall say that the new framed submanifold (B, V', F") is obtained
from (B, V, F') by a spherical modification associated to « € 7,(V).

ProOF. We can find in a neighborhood U of g(D"*') local coordinates
@, ¥,2) = (@1, ***, i1, Y, ***y Yury 21, * = *, 24—y) in Which g(D"*?) is defined
by y =2 =0,2*=)_2? < 1. Denote by f}(x) the projection of the vector
JSu(®) in the plane x = 0, parallel toy = z = 0. The homotopy class of the
map ¢ — (f3(x), + -+, £i(x)) of S”into the Stiefel manifold V, 4 , .4, 18 an
element & € 7(V,,4_,-1.4-1). By the natural inclusion of V, 4, 14, in
Veiirarias € gives E. If 2r + 2 < n + d, this inclusion induces an iso-
morphism for homotopy groups of dimension 7, as can be seen from the
homotopy sequence of the fibration associated to this inclusion. Hence
(3) implies & = 0.

We can suppose therefore that f;, = 8/6z;_, on ¢(S7) for 1 <1 < d.
Finally, using the tubular neighborhood theorem (Milnor [8]), we can
choose U and the local coordinates (z, ¥, z) such that (see fig. 1)

(i) V n U is defined by o(x,y) = —a* + ¥* + a(p*) = 0,2 = 0, where
a(0?) is a decreasing function of p* = x* + ¥?, equal to 1 for p < 1and 0
for p = 2,

(ii) on V N U, f, = gradient of ¢,

(iii) f; is the restriction to V. N U of 9/6z,_,, 1 < © = d.

Define in the product B x I the manifold V as follows. Outside of
UxI, Vis (V-U)x I In Ux]I V is defined by o(=,y,t) =
—2* 4+ ¥ + a(0)(1 —2t) =0, tel, and z = 0. Notice that V coincides
with V x I outside the ball 2D"** x I:4* + y* + 2* < 4. The field F=
(fy, *+, fo) will be defined as f; = (£, 0) outside of U x Iandin(Ux I)N V
by f; = 8/0z;_, for 1 < @ < d and f, = gradient of ¢(z, ¥, t).
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Fig. 1.

Notice that V' N 2D*+* is diffeomorphic to S” x D "and V' N 2D*+* to
D+t x S outside of 2D+, V = V".
This completes the proof of 3.3.

3.4. Let £€m,(V,14.,+4) be defined as in 3.2, (8). Let @ be the boundary
operator of the homotopy sequence of the bundle E: 80,,s— V,iartar
with fibre so,_,.

LEMMA. 6¢em,_(S0,-,) ts the obstruction to trivializing the normal
bundle of g(S7) in V.

This is because the bundle of normal frames to g(S”) in V is isomorphic
to the inverse image of E by &.

3.5. PROOF OF 3.1. Any pair which represents an element of 34—t
bounds a framed 4k-submanifold (B, V, F'), where B is a (6k + 1)-disk
and index V = 0 (cf. 2.1). '

First remark that the index of V is not changed by spherical modi-
fications (cf. Thom [12]). The same is true for the integer i(B, V, F)
(cf. proof of 2.8).

After a sequence of spherical modifications, we can suppose that V is
(2k — 1)-connected (Milnor [7]); indeed, the conditions (1), (2), (3) can
always be verified if r < 2k.
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According to Milnor [7], it is possible to find a basis (ay, *« +, &, B, *+ +, 8.)
of H,(V,Z) with intersections <{a;, @;> = 0,<{B8;, 8;> = 0,<;, B;) = ;.
Moreover if s > 1, one can suppose, after a suitable change of basis which
does not mix up the a’s and the B’s, that Ma,) = 0; A € H*(V) is the class
which defines i(B, V, F) = 1/22[V] = 3 Ma)MB;) (cf. 2.5).

Now for a homology class a € H,(V) such that {a,a>=0 and M«) =0,
the three conditions of 3.2 can be verified if k£ > 1. First there exists an
imbedding ¢: S?**— V which represents a by Whitney’s imbedding theorem,
provided k& > 1, (compare Milnor [7, 5.9]). The condition Ma) = 0 means
that g(S?) pushed in the f,-direction is homologous to zero in B — V; so
it is also homotopic to zero in B — V which is (2k — 1)-connected; the con-
dition (2) is verified using Whitney’s imbedding theorem (2k + 2 < 6k + 1).
Finally, consider the commutative diagram

b
7T (S*) — Ty—1(SO4)

l l

a .
Toi(Vers1,a641) — T —1(S04)

associated to the inclusion S* = S0,;41/S0s = Virrn.uks1 = SO 41/S0z. The
class £ (as defined in 8.2, (8)) is the image of » times the generator of
7,.(S™), and 6 is the obstruction to trivializing the normal bundle of g(S*)
in V (Lemma 3.4). According to Milnor [7, proof of 5.11], <a,a> =0
implies that n = 0. Hence £ = 0.

From 3.3 and Milnor [7], it is then possible to get, after s — 1 spherical
modifications, a framed submanifold (B, V, F') such that Hy( V) has two
generators a, 8 with{a,a>=0,¢{8,8> =0,<{a, 5> =1. Nowif (B, V,F) =
Ma)M(B) = 0, then Ma) =0 or \(B) = 0. A last spherical modification
will lead to a framed submanifold (B, V, F'), where V is a disk. This
completes the proof of 3.1.

3.6. REMARK. The same argument shows, according to 2.8, that each
element of 7, (S*'") is represented by a framed 4k-submanifold of R
which is an homotopy sphere.

4. The generator of the group =

We describe here a specific imbedded (4 — 1)-sphere in 6k-space which
bounds in a (6k + 1)-space B a framed submanifold (B, V, F') with
i(B, V, F) = +1. This will prove that the homomorphism ¢ of 2.10 is
surjective.

4.1. We consider in the numerical space R* of coordinates (x,9y,2) =
(X1, +*,%ay Y1 = * =1 Yar 21y * * +, %a) three imbedded (2d — 1)-spheres (see fig. 2):
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z= (z]' "’O'Zd)

y=®p Y

Fig. 2.
Siie=0 Y12 _4
1- 1 az Bz ’
S,:y =0 2%y
2y— ] C?‘ Ez‘— )
_ Y
S3 Z—O, C?""E‘—lr

a and S are real numbers, a > 8 > 0.

To get an imbedded (2d — 1)-sphere S, we join S, to S, and S, to S, by
thin tubes T, and T,. More precisely, orient S,, S,and S,. Then construct
an imbedding 7, : D' x D* — R® such that {—1} x D is imbedded in S,
with orientation preserved, {41} x D**is imbedded in S, with orientation
reversed, and 7,(D' x D?*) does not meet S,, S, or S, elsewhere. Denote
by DF* the interior of the unit disk D*. Then remove 7,(D* x D) from
the union S, U 7,(D* x D*) U S, and smooth corners along 7,(6D* x D).
One gets a new imbedded (2d — 1)-sphere denoted by S, # S, (this operation
is just a spherical modification as described in 8.3). The k-cobordism class
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(or more precisely, the isotopy class) of S, # S, does not depend on the
particular choice of the imbedding 7, if d > 1, because two such imbed-
dings are isotopic. In the same way, piping a tube from S, # S, to S,,
we get finally an imbedded (2d — 1)-sphere S = S, # S, # S, in R*, or
in S3 if one adds the point at infinity.

4.2. PROPOSITION This imbedded sphere S bounds in the unit disk
B g framed submanifold (B, V, F) such that (B, V, F) = +1(d = 2k).
Removing the point at infinity, we replace B***' by the half space
R¥*\(x,y,z2,t),t = 0. To construct V (see fig. 3), consider the three

t
(A x D)
K
Fig. 3.
disks in R*** which bound S,, S, and S;:
? P t .
Dl:w=0, —y—"l“l-é—-'-az':l,
t
D,:y=0, 2 v,
1Y a+,8 +,3’
Diz=0, Z4+LiL-1 p<v<a
[
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The intersections D, N D, and D, N D, are empty and D, N D, is the
(@ — 1)-sphere S : 2z =y = 0; 2* = £* = a’F*/(a®> + 5. = bounds in D, the
d-disk A:x =y =0, 2/ + |5 = 1, 2* < &*B*/(a® + ).

Now consider an imbedding 7 of A x D%" in the plane x = 0, such
that 7(dA x D*") c D,, (A x D) intersects D, only on A and does not
meet D,. Moreover the intersection of 7(A x D) with the plane x =
¥y =0is ¢(A x DY), D* c D%,

Replace D, by the submanifold D] = D, — (A x D¢*') with corners
smoothed along 7(0A x 9D?"') (again D?** denotes the interior of D?*).
In fact D] is obtained from D, by a spherical modification. Notice that
DiND,=@and D, N D,= Q.

D1 is (d — 1)-connected. Hy (D}, Z) has two generators: one is repre-
sented by the cycle a = 7({§} x D), 8 € A; the other one by the eycle
b, union of 7(A x {¢}), £ D", and of the d-disk A’ that 7(6A x {£}) bounds
inD, N (@x=y=0).

The manifold V'is obtained from Dj, D,, D, by joining, in R**!, D! to D,
and D; to D, with half tubes (diffeomorphic to D' x S* with boundary
D, x S**in R*®) such that 8V = S. Again Vis (d — 1)-connected; Hy(V)
has the two generators a and b with intersections <a, a)> = 0, (b, b> = 0,
{a, by = +1.

The framing F' = (fi, +++, far,) of Vin R%**'is obtained by extending
the natural framings of D,, D,, D, to D!, D,, D, and then to V along the
half tubes. For instance f, restricted to D} will be a vector field normal
to D7 in the plane x = 0.

Now the cycle a bounds in R**** the disk 7({§} x D%"') which meets D,
at 7(3); b bounds a disk in the plane x = y = 0 which intersects D, at the
point x =y = 0,¢t = v. Moreover these disks are tangent along their
boundaries to a vector field homotopic to f.. Hence \(a) = +1, and
Ab) = +1.

As a consequence if d = 2k, ¢(B, V, F) = + Ma)Mb) = +1.

Combining 3.1 and 4.2, we get the main result :

4.3. THEOREM. The homomorphism i: %41 — Z is an 1somorphism
if k> 1, and is surjective if k= 1. The generator of Z**-1! {s the
imbedded sphere S described in 4.1.
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