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Abstract

In this paper we carry out a systematic study of modules over a formal triangular matrix ring

T =

[
A 0
M B

]
:

Using the alternative description of right T -modules as triples (X; Y )f with X ∈Mod − A,
Y ∈Mod − B and f : Y

⊗
B M→X in Mod − A; we shall characterize respectively uniform,

hollow, �nitely embedded, projective, generator or progenerator modules over T . For projective
modules an explicit method for constructing a dual basis is described. Also necessary and suf-
�cient conditions are found for a T -module to admit a projective cover. When the conditions
are ful�lled we give an explicit method for constructing a projective cover. c© 2000 Elsevier
Science B.V. All rights reserved.

MSC: 16D40; 16D90; 16S99

0. Introduction

All the rings we consider will be associative rings with 1 6=0 and all the modules will
be unital modules. Unless otherwise mentioned we will be working with right modules.
For any ring R, the category of right R-modules is denoted by Mod−R: Given a formal
triangular matrix ring T =

[ A 0
M B

]
, it is well known [5] that the category Mod − T is

equivalent to a category 
 of triples (X; Y )f where X ∈Mod − A; Y ∈Mod − B and
f : Y

⊗
B M→X is a map in Mod− A:

Denoting the right T -module associated to (X; Y )f by (X ⊕ Y )T ; in Section 1, we
describe the triples in 
 which correspond to submodules and quotient modules of
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(X ⊕Y )T : We determine necessary and su�cient conditions for a submodule (X ′ ⊕Y ′)T
of (X ⊕Y )T to be essential (resp. small) in (X ⊕Y )T : We then use these to charac-
terize respectively uniform, hollow or local modules over T: In Section 2 the Jacobson
radical as well as the socle of (X ⊕Y )T will be determined. Using the description
of the socle we �nd necessary and su�cient conditions for T -modules to be �nitely
embedded. In [9] one of the authors proved that any quasi-injective �nitely embedded
module is co-hop�an. Applying our characterization of �nitely embedded modules over
T we construct examples of �nitely embedded modules which are not co-hop�an, thus
showing that quasi-injectivity is needed for the validity of the result in [9]. In Section 3
we give necessary and su�cient conditions for (X ⊕Y )T to be projective. When it is
projective we give an explicit method for obtaining a dual basis. In Section 4 we �rst
determine necessary and su�cient conditions for (X ⊕Y )T to be a generator. When
(X ⊕Y )T is projective, these conditions take a particularly simple form. Using this re-
sult we obtain necessary and su�cient conditions for a T -module to be a progenerator.
In Section 5 we obtain necessary and su�cient conditions for a T -module to admit a
projective cover in Mod − T: When these conditions are satis�ed we give an explicit
method for constructing a projective cover of (X ⊕Y )T : As an easy corollary of our
results on projective covers, we obtain the well-known result that T is semi-perfect
(resp. right perfect) if and only if A and B are so. Using description of left T -modules
in terms of suitable triples, one sees that an analogous result is valid in the case of
left perfectness as well.
Finally we wish to point out that formal triangular matrix rings play an important

role in the representation theory of algebras.

1. Uniform, hollow, respectively local modules over T

We will �rst explain the notations that we will be adopting. For any left B; right A
bimodule BMA we write T for the formal triangular matrix ring

[
A 0
M B

]
:

Let 
 denote the category whose objects are triples (X; Y )f where X ∈Mod− A; Y ∈
Mod−B and f : Y ⊗B M→X is a map in Mod−A. If (X; Y )f and (U; V )g are objects in

, the morphisms from (X; Y )f to (U; V )g in 
 are pairs (’1; ’2) where ’1 :X →U
is a map in Mod − A; ’2 : Y →V is a map in Mod − B satisfying the condition
’1 ◦ f= g ◦ (’2⊗ IdM ): It is well-known [5] that the category 
 is equivalent to
the category Mod − T: The right T -module corresponding to the triple (X; Y )f is the
additive group X ⊕Y with the right T -action given by

(x; y)
[
a 0
m b

]
=(xa+ f(y⊗m); yb):
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To make the notation less cumbersome we write (X ⊕Y )T for this right T -module. It
not only depends on X and Y but also on f: Often the map f occurring in a triple will
be clear from the context. If (’1; ’2) : (X; Y )f→ (U; V )g is a map in 
 the associated
map ’ : (X ⊕Y )T → (U ⊕V )T in Mod−T is given by ’(x; y)= (’1(x); ’2(y)) for any
x∈X; y∈Y: It is clear that ’ is injective (resp. surjective)⇔ ’1 :X →U , ’2 : Y →V
are injective (resp. surjective).
Let (X; Y )f ∈Obj 
 and (X ⊕Y )T be the associated right T -module. We describe

triples in Obj 
 which correspond to submodules (resp. quotient modules) of (X ⊕Y )T .
Note that under the right T -action on X ⊕Y we have

(0⊕Y )
[
0 0
M 0

]
=(f(Y ⊗M); 0):

We will denote the submodule f(Y ⊗M) of XA by YM: Now consider Y ′ ≤YB and
let j2 : Y ′ → Y denote the inclusion. Then

(0⊕Y ′)
[
0 0
M 0

]
=(f ◦ ( j2⊗ IdM )(Y ′ ⊗M); 0):

The submodule f ◦ ( j2⊗ IdM )(Y ′ ⊗M) of XA will be denoted by Y ′M: Let X ′ ≤XA
satisfy Y ′M ≤X ′: Writing f′ for f ◦ (j2⊗ IdM ) and denoting the inclusion X ′ →X by
j1 we see that (X ′; Y ′)f′ is in 
 and ( j1; j2) : (X ′; Y ′)f′ → (X; Y )f is a map in 
 realiz-
ing (X ′ ⊕Y ′)T as a T -submodule of (X ⊕Y )T : Also it is clear that every T -submodule
of (X ⊕Y )T is obtained in this way. Let X ′′ (resp. Y ′′) be a quotient of XA (resp. YB)
with �1 :X →X ′′ (resp. �2 : Y → Y ′′) the canonical quotient maps. Let X ′= ker �1 and
Y ′= ker �2: Suppose Y ′M ≤X ′: Denoting the inclusions X ′ →X; Y ′ → Y by j1 and
j2; respectively, we get a map f′′ : Y ′′ ⊗B M→X ′′ rendering the following diagram
commutative

Y ′ ⊗M j2 ⊗ IdM−−−−−→ Y ⊗M �2 ⊗ IdM−−−−−→ Y ′′ ⊗M −−−−−→ 0yf′

yf
yf′′

X ′ j1−−−−−→ X
�1−−−−−→ X ′′ −−−−−→ 0

In this diagram f′=f ◦ ( j2⊗ IdM ) and the rows are exact. Also it is clear that
(�1; �2) : (X; Y )f→ (X ′′; Y ′′)f′′ is a map in 
 realizing (X ′′ ⊕Y ′′)T as a quotient of
(X ⊕Y )T : The kernel of the associated map � : (X ⊕Y )T → (X ′′ ⊕Y ′′)T is precisely
(X ′ ⊕Y ′)T : When we talk of a submodule (X ′ ⊕Y ′)T of (X ⊕Y )T we have X ′ ≤XA;
Y ′ ≤YB; f ◦ ( j2⊗ IdM )(Y ′ ⊗M)≤X ′: The map f′ : Y ′ ⊗M→X ′ is completely deter-
mined; it has to be f ◦ ( j2⊗ IdM ). Similarly, when we deal with a quotient (X ′′ ⊕Y ′′)T
of (X ⊕Y )T the map f′′ : Y ′′ ⊗M→X ′′ is completely determined. Because of these
facts we will not speci�cally mention the maps f′ and f′′ in these situations.
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Let (X; Y )f ∈Obj 
 and L= {y∈Y |f(y⊗m)= 0 for all m∈M}: Then clearly
L≤YB and (0⊕L)T is a submodule of (X ⊕Y )T: The following proposition gives
necessary and su�cient conditions for a submodule (X ′ ⊕Y ′)T of (X ⊕Y )T to be
essential in (X ⊕Y )T :

Proposition 1.1. (X ′ ⊕Y ′)T is essential in (X ⊕Y )T if and only if X ′ is essential in
XA and Y ′ ∩ L is essential in LB:

Proof. Assume that (X ′ ⊕Y ′)T is essential in (X ⊕Y )T : Let 0 6= x∈X: Then (x; 0) is
non-zero in (X ⊕Y )T : We can �nd an element[

a 0
m b

]
∈T with (0; 0) 6=(x; 0)

[
a 0
m b

]
∈ (X ′ ⊕Y ′)T :

But

(x; 0)
[
a 0
m b

]
=(xa; 0):

Thus 0 6= xa∈X ′: This proves that X ′
A is essential in XA: Let 0 6=y∈L: Then (0; y) 6=

(0; 0) in (X ⊕Y )T . We can �nd an element[
a 0
m b

]
∈T with (0; 0) 6=(0; y)

[
a 0
m b

]
∈ (X ′ ⊕Y ′)T :

But

(0; y)
[
a 0
m b

]
=(0; yb) since f(y⊗m)= 0:

Thus 0 6=yb∈Y ′: Since yb∈L we see that 0 6=yb∈Y ′ ∩ L; showing that (Y ′ ∩ L)B is
essential in LB:
Conversely assume that X ′

A is essential in XA and that (Y
′ ∩L)B is essential in LB:

Let (0; 0) 6=(x; y)∈ (X ⊕Y )T : In case x 6=0, we can �nd an a∈A with 0 6= xa∈X ′: It
follows that

(x; y)
[
a 0
0 0

]
=(xa; 0)

is a non-zero element of (X ′ ⊕Y ′)T . Suppose x=0. Then y 6=0: If y =∈ L; we can �nd
an m∈M with f(y⊗m) 6=0 in X: Hence there exists an a∈A with 0 6=f(y⊗m)a∈X ′:
Thus

(0; y)
[
0 0
m 0

] [
a 0
0 0

]
=(f(y⊗m)a; 0)

is a non-zero element of (X ′ ⊕Y ′)T : If on the other hand y∈L we have f(y⊗m)= 0
for all m∈M: Since (Y ′ ∩L)B is essential in LB; we can �nd an element b∈B with
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0 6=yb∈Y ′ ∩L: In this case,

(0; y)
[
0 0
0 b

]
=(0; yb) 6=(0; 0) and (0; yb)∈ (X ′ ⊕Y ′)T :

This proves that (X ′ ⊕Y ′)T is essential in (X ⊕Y )T :

As already observed, (0; L)0 de�nes a submodule (0⊕L)T ⊆(X ⊕Y )T : Using this
observation, from Proposition 1.1, we immediately get the following:

Corollary 1.2. (X ⊕Y )T is uniform if and only if (a) or (b) mentioned below holds.
(a) XA=0 and LB= YB is uniform.
(b) LB=0 and XA is uniform.

We will now give an example to show that (X ⊕Y )T can be uniform, even when
YB has in�nite Goldie dimension.

Example 1.1. Let K be any �eld, A=K(X1; X2; X3; : : :) the �eld of rational functions
in countably many indeterminates; B=K(X 21 ; X

2
2 ; X

2
3 ; : : :) the �eld of rational functions

in X 21 ; X
2
2 ; X

2
3 ; : : : . Let M =K(X1; X2; X3; : : :) be regarded as a left B, right A bimodule

in the usual way. Let

T =
[
A 0
M B

]
; XA=AA; YB=MB:

Since XA is a vector space of dimension 1 over A, XA is uniform. Also YB is a vector
space of in�nite dimension over B: Hence YB has in�nite Goldie dimension. The map
(�(X1; X2; X3; : : :); �(X1; X2; X3; : : :))→ �(X1; X2; X3; : : :)�(X1; X2; X3; : : :) of Y × M in X
gives rise to a map f : Y ⊗B M→X in Mod− A: In the case of the module (X ⊕Y )T
associated to (X; Y )f we have LB=0 and XA uniform. From Proposition 1.1 we see
that (X ⊕Y )T is uniform, yet YB has in�nite Goldie dimension.
If V ∈Mod − R and W ≤VR we write W �V to indicate that W is a small (or

super
uous) submodule of V . The following proposition gives necessary and su�cient
conditions for (X ′ ⊕Y ′)T to be small in (X ⊕Y )T :

Proposition 1.3. (X ′ ⊕Y ′)T is small in (X ⊕Y )T if and only if Y ′ is small in YB
and �(X ′) is small in (X=f(Y ⊗M))A where � :X → (X=f(Y ⊗M)) is the canonical
quotient map.

Proof. Assume that (X ′ ⊕Y ′)T � (X ⊕Y )T : Let H ≤YB satisfy Y ′ + H = Y: If
� :H→ Y denotes the inclusion, then with g=f ◦ (�⊗ IdM ) we have (X;H)g giving
rise to a T -submodule (X ⊕H)T which satis�es (X ′ ⊕Y ′)T + (X ⊕H)T =(X ⊕Y )T .
The assumption (X ′ ⊕Y ′)T � (X ⊕Y )T yields H = Y . Thus Y ′+H = Y ⇒ H = Y: This
proves that Y ′ � YB:
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Let E≤ (X=f(Y ⊗M))A satisfy �(X ′) + E= �(X ) and D= �−1(E): Then f(Y ⊗M)
⊆D: Hence (D; Y )f gives rise to a submodule (D⊕Y )T of (X ⊕Y )T : From �(X ′) +
E= �(X ) we get X ′ +D=X: Hence (X ′ ⊕Y ′)T + (D⊕Y )T =(X ⊕Y )T : The assump-
tion (X ′ ⊕Y ′)T � (X ⊕Y )T yields D=X: In turn, this yields E= �(X ): Thus �(X ′) +
E= �(X )⇒ E= �(X ): This gives �(X ′)� �(X )A:
Conversely, assume that �(X ′)� �(X )A and Y ′ � YB. Let U ≤XA; V ≤YB satisfy the

condition f ◦ (�⊗ IdM )(V ⊗M)⊆U where � :V → Y denotes the inclusion. Writing h
for f ◦ (�⊗ IdM ); suppose (U; V )h satis�es (X ′ ⊕Y ′)T + (U ⊕V )T =(X ⊕Y )T . Then
Y ′ + V = Y and X ′ +U =X: From Y ′ � YB we see that V = Y: It follows that �= IdY
and f(Y ⊗M)⊆U: From X ′ + U =X we get �(X ′) + �(U )= �(X ): The hypothesis
�(X ′)� �(X )A now yields �(U )= �(X ): Since f(Y ⊗M)⊆U we get U =X . Thus
(X ′ ⊕Y ′)T + (U ⊕V )T =(X ⊕Y )T ⇒ U =X and V = Y . This proves that (X ′ ⊕Y ′)T
� (X ⊕Y )T :

Recall that a module is said to be hollow if it is non zero and in it every proper
submodule is small.

Corollary 1.4. The right T -module (X ⊕Y )T determined by (X; Y )f is hollow if and
only if (a) or (b) mentioned below is true.
(a) YB is hollow and X =f(Y ⊗M):
(b) Y =0 and XA is hollow.

Proof. Assume (X ⊕Y )T hollow. Suppose Y 6=0: Then ∃Y ′ ≤YB with Y ′ 6= YB: If
j : Y ′ → Y denotes the inclusion and f

′
=f ◦ ( j⊗ IdM ); the submodule (X ⊕Y ′)T de-

termined by (X; Y ′)f′ is a proper submodule of (X ⊕Y )T : As such, (X ⊕Y ′)T
� (X ⊕Y )T : From Proposition 1.3 we see that Y ′ � YB and �(X )� �(X )A: But the
latter means �(X )= 0 or X =f(Y ⊗M): Thus if Y 6=0; we see that YB is hollow and
X =f(Y ⊗M):
In case Y =0; since (X ⊕Y )T is hollow by assumption, X 6=0: For any X ′ ≤XA with

X ′ 6=X , (X ′ ⊕ 0)T is a proper submodule of (X ⊕ 0)T : Hence (X ′ ⊕ 0)T � (X ⊕ 0)T :
From Proposition 1.3 we get X ′ �XA: Hence XA is hollow.
Conversely assume either (a) or (b) is valid. In case (a), if (X ′ ⊕Y ′)T is a proper

submodule of (X ⊕Y )T we should necessarily have Y ′$ Y: Because, if Y ′= Y then
X ′ ⊃f(Y ⊗M)=X and (X ′ ⊕Y ′)T =(X ⊕Y )T : If Y ′$ Y; (X ′ ⊕Y ′)T ⊆(X ⊕Y ′)T : We
need only prove that (X ′ ⊕Y ′)T � (X ⊕Y )T : This follows immediately from
Proposition 1.3 since Y ′ � Y and �(X )= 0: In case (b), any proper submodule of
(X ⊕ 0)T is of the form (X ′ ⊕ 0)T with X ′$X . Since X ′ �X , from Proposition 1.3
we get (X ′ ⊕ 0)T � (X ⊕ 0)T :

We now construct an example to show that (X ⊕Y )T can be hollow even when XA
has in�nite dual Goldie dimension in the sense of [8].
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Example 1.2. Let K be a �eld; A=K , B=K and M an in�nite dimensional vector
space over K regarded as a (K; K) bimodule in the usual way. Let

T =
[
A 0
M B

]
:

Let XA=MA; YB=BB; and suppose f :B⊗B M→M is given by f(b⊗m)= bm: Then
from Proposition 1.3 we see that (X ⊕Y )T corresponding to (X; Y )f is hollow, because
YB is hollow and X =f(Y ⊗M). However the dual Goldie dimension of XA is in�nite.
Recall that a module L is said to be local if it has a unique maximal submodule

containing every proper submodule of L. Any local L is cyclic and hollow. If a hollow
module H admits a maximal submodule then H is local. In particular a module L
is local ⇔ L is a �nitely generated hollow module. These comments allow us to
characterize local modules over a formal triangular matrix ring.

Corollary 1.5. The right T -module (X ⊕Y )T determined by (X; Y )f is local if and
only if (a) or (b) mentioned below is true.
(a) YB is local and X =f(Y ⊗M).
(b) Y =0 and XA is local.

Proof. Immediate consequence of Corollary 1.4 and the well-known result (Exercise
1D(b) on p. 7 of [4]) that (X ⊕Y )T is �nitely generated ⇔ the modules YB and
(X=f(Y ⊗M))A are �nitely generated.

2. Determination of Rad (X ⊕Y )T and Soc(X ⊕Y )T

Let (X; Y )f ∈Obj 
 and (X ⊕Y )T the right T -module determined by (X; Y )f: In this
section we will determine the Jacobson radical Rad(X ⊕Y )T and the socle Soc(X ⊕Y )T
of (X ⊕Y )T : For this purpose we will �rst describe the maximal (resp. simple) sub-
modules of (X ⊕Y )T : Let L= {y∈Y |f(y⊗m)= 0 for all m∈M}:

Proposition 2.1. Let F1 = {(X ′ ⊕Y )T |X ′ a maximal submodule of XA with f(Y ⊗
M)≤X ′} and F2 = {(X ⊕Y ′)T |Y ′ a maximal submodule of YB}: Let S1 = {(X ′

⊕ 0)T |X ′ a simple submodule of XA} and S2 = {(0⊕L′)T |L′ a simple submodule
of LB}: Then
(a) The family F of maximal submodules of (X ⊕Y )T is precisely F1 ∪F2:
(b) The family S of minimal submodules of (X ⊕Y )T is precisely S1 ∪S2:

Proof. Let (X ′ ⊕Y ′)T be any maximal submodule of (X ⊕Y )T . If Y ′$ YB; since
(X ′ ⊕Y ′)T ⊆(X ⊕Y ′)T $ (X ⊕Y )T we conclude that X ′=X: Also from (X ⊕Y ′)T
⊆(X ⊕Y ′′)T $ (X ⊕Y )T for any Y ′ ⊆Y ′′$ YB we see that Y ′= Y ′′ whenever Y ′ ⊆Y ′′

$ YB. Hence Y ′ is a maximal submodule of YB thereby showing that (X ′ ⊕
Y ′)T =(X ⊕Y ′)T is in F2: Now suppose Y ′= Y: Then f(Y ⊗M)≤X ′: Since (X ′ ⊕
Y ′)T =(X ′ ⊕Y )T is a maximal submodule of (X ⊕Y )T we immediately see that X ′
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is a maximal submodule XA: Thus (X ′ ⊕Y ′)T =(X ′ ⊕Y )T is in F1. Conversely, it is
straightforward to see that any submodule of (X ⊕Y )T belonging to F1 ∪ F2 is a
maximal submodule of (X ⊕Y )T : This proves (a).
Let (X ′ ⊕Y ′)T be any simple submodule of (X ⊕Y )T . If X ′ 6=0, for any 0 6=X ′′

$XA since (X ′′ ⊕ 0)T ⊆(X ′ ⊕Y ′)T we see that Y ′=0 and X ′ is a simple submodule
of XA: If on the other hand X ′=0; we should have f ◦ ( j⊗ IdM )(Y ′ ⊗M)= 0; hence
j(Y ′)⊆LB where j : Y ′ → Y denotes the inclusion. Thus Y ′ ≤LB: Also 0 6= Y ′′ ⊆Y ′$
LB ⇒ (0⊕Y ′′)T ⊆ (0⊕Y ′)T : It follows that Y ′ is a simple submodule of LB: Thus
S⊆S1 ∪S2: Conversely, it is easily seen that any submodule of (X ⊕Y )T belonging
to S1 ∪S2 is simple. This proves (b).

Corollary 2.2. Let � :XA→ (X=f(Y ⊗M))A denote the canonical quotient map. Then
(a) Rad(X ⊕Y )T =(�−1(Rad(X=f(Y ⊗M))A)⊕Rad(YB))T :
(b) Soc(X ⊕Y )T =(Soc(XA)⊕ Soc(LB))T :

Proof. Immediate consequence of Proposition 2.1.

Recall that a module V is said to be �nitely embedded (or �nitely co-generated; see
[1, 7, 10]) if SocV is �nitely generated and essential in V . Proposition 2.1 enables us
to obtain the following.

Theorem 2.3. (1) Soc(X ⊕Y )T is �nitely generated if and only if Soc(XA) and Soc(LB)
are �nitely generated.
(2) Soc(X ⊕Y )T is essential in (X ⊕Y )T if and only if Soc(XA) is essential in XA

and Soc(LB) is essential in LB.
(3) (X ⊕Y )T is �nitely embedded if and only if XA and LB are �nitely embedded.

Proof. From Corollary 2.2(b) we have Soc(X ⊕Y )T =(Soc(XA)⊕ Soc(LB))T : Note that
(Soc(XA)⊕ Soc(LB))T corresponds to the triple (Soc(XA); Soc(LB))0: From a well-known
result (Exercise 1D(b) on p. 7 of [4]) we see that Soc(X ⊕Y )T is �nitely generated
⇔ SocXA=((SocLB)⊗M) and Soc(LB) are �nitely generated. This proves (1). (2) is an
immediate consequence of Proposition 1.1. (3) is immediate from (1) and (2).

Often one is interested in �nding conditions implying Rad(V )�V: In this connection
we have the following.

Proposition 2.4. Rad(X ⊕Y )T is small in (X ⊕Y )T if and only if RadYB is small in
YB and Rad(X=f(Y ⊗M))A is small in (X=f(Y ⊗M))A:

Proof. Immediate consequence of Corollary 2.2(a) and Proposition 1.3.

Let R be a ring and V ∈Mod − R: Recall that V is said to be co-hop�an if ev-
ery injective endomorphism f :V →V is automatically an isomorphism. In [9] one of
the authors of the present paper has shown that any quasi-injective �nitely embedded
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module V is co-hop�an. Using (3) of Theorem 2.3 which characterizes �nitely embed-
ded modules over formal triangular matrix rings, we will construct an example of a
�nitely embedded module which is not co-hop�an, thus showing that quasi-injectivity
of V cannot be dispensed with for the validity of the above result.

Example 2.1. Let

T =
[
Z 0
Zp∞ Z

]

where p is a prime. Consider the T -module (Zp∞ ⊕Z)T associated to the triple (Zp∞ ;Z)f
where f :Z⊗Zp∞ →Zp∞ is the identity map of Zp∞ ; equivalently f(k ⊗ x)= kx for
all k ∈Z and x∈Zp∞ : In this case Zp∞ is �nitely embedded in Mod − Z: Also
L= {k ∈Z | kx=0 for all x∈Zp∞}=0 is �nitely embedded in Mod − Z . From (3)
of Theorem 2.3 we see that (Zp∞ ⊕Z)T is �nitely embedded. Let n be an integer
≥ 2 and relatively prime to p. Let �1 :Zp∞ →Zp∞ and �2 :Z→Z be both given by
multiplication by n. Clearly

Z⊗Zp∞
f−−−−−→ Zp∞y�⊗ Id

y�1
Z⊗Zp∞

f−−−−−→ Zp∞

is a commutative diagram. The map �=(�1; �2) : (Zp∞ ⊕Z)T → (Zp∞ ⊕Z)T is an in-
jective endomorphism. This is because �1 is an isomorphism (since (p; n)= 1) and �2
is injective. However � is not surjective, because �2 is not. Thus (Zp∞ ⊕Z)T is not
co-hop�an.

3. Projective modules and dual bases over T

Projective right ideals over

T =
[
A 0
M B

]

are completely characterized in [3]. (See Proposition 4.5 on p. 110.) Also in case T
happens to be an Artin algebra, �nitely generated projective modules are completely
characterized in [2]. Actually a similar characterization is valid for arbitrary projective
modules over any formal triangular matrix ring T . In this section we obtain such
a characterization and describe a method of obtaining a “dual basis” for projective
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modules over T . Let (X; Y )f ∈
 and let VT =(X ⊕Y )T : Writing I for the two-sided
ideal[

0 0
M B

]

of T it is straightforward to see that VI =(f(Y ⊗M)⊕Y )T : Using the isomorphism[
a 0
M B

]
� a of T=I

with A when we regard V=VI as a right A-module, it is clear that V=VI ∼= (X=f(Y ⊗
M))A: Similarly

J =
[
A 0
M 0

]

is a two-sided ideal of T and VJ =(X ⊕ 0)T : When we regard V=VJ as a right B-module
via the isomorphism[

A 0
M b

]
� b of T=J

with B it is clear that V=VJ ∼= YB in Mod−B: Under these circumstances we have the
following.

Theorem 3.1. (X ⊕Y )T is projective if and only if (X=f(Y ⊗M))A and YB are pro-
jective and f : Y ⊗M→X is one-one.

Proof. Suppose (X ⊕Y )T is projective. Writing V for (X ⊕Y )T we know that V=VI
is projective in Mod − (T=I): Thus, (X=f(Y ⊗M))A and YB are projective. Writing E
for the left ideal[

0 0
M 0

]
of T;

the sequence 0→E ,→ T is exact in T − Mod. Since VT is projective (in particular

at) the sequence 0 → V ⊗T E Id⊗j−→ V ⊗T T is an exact sequence of abelian groups
where j :E→ T denotes the inclusion. Let

e2 =
[
0 0
0 1

]
∈T:

Then for any m∈M we have

e2

[
0 0
m 0

]
=

[
0 0
m 0

]
:
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Hence for any (x; y)∈ (X ⊕Y )T =VT we have

(x; y)⊗T
[
0 0
m 0

]
= (x; y)⊗T e2m=(x; y)

[
0 0
0 1

]
⊗T

[
0 0
m 0

]

= (0; y)⊗T
[
0 0
m 0

]
:

There is an isomorphism Y⊗BM
∼=−→ V ⊗T E of the abelian groups carrying

y⊗B m to (0; y)⊗T
[
0 0
m 0

]
:

Also V ⊗T T is isomorphic to V in Mod-Z under v⊗ t �−→ vt: The composite map

Y ⊗B M
∼=−→ V ⊗T E Id⊗j−→ V ⊗T T

�∼= V carries y⊗m to (f(y⊗m); 0): Since Id⊗ j is
a monomorphism it follows that f is a monomorphism.
Conversely, assume that (X=f(Y ⊗M))A and YB are projective and that f : Y ⊗

M→X is a monomorphism. The projectivity of (X=f(Y ⊗M))A is equivalent to the
projectivity of V=VI in Mod − (T=I) where V =(X ⊕Y )T : Also I = e2T and e2 is an
idempotent in T . Hence T=I is projective in Mod − T: It follows that V=VI is projec-
tive in Mod − T: Also, as observed already VI =(f(Y ⊗M)⊕Y )T : Since f : Y ⊗M
→f(Y ⊗M) is an isomorphism it follows that (f(Y ⊗M)⊕Y )T ∼= ((Y ⊗M)⊕Y )T
where ((Y ⊗M)⊕Y )T is a T -module corresponding to (Y ⊗M; Y )Id: By assump-
tion YB is projective. Hence ∃ some Y ′

B satisfying YB⊕Y ′
B=

⊕
� B� where each

B�=B: Writing ((Y ⊕Y ′)⊗M ⊕ (Y ⊕Y ′))T for the T -module corresponding to the
triple ((Y ⊕Y ′)⊗M; Y ⊕Y ′)Id we see that ((Y ⊗M)⊕Y )T is a direct summand of
((Y ⊕Y ′)⊗M ⊕ (Y ⊕Y ′))T = ((

⊕
�B�⊗M)⊕ (

⊕
� B�))T =

⊕
� (M ⊕B)T =

⊕
� e2T

(direct sum of a family of copies of e2T ). Since e2T is projective in Mod − T we
see that VI ∼= ((Y ⊗M)⊕Y )T is projective in Mod− T:
Since V=VI is projective in Mod − T; the exact sequence 0→VI→V →V=VI→ 0

splits, yielding V ∼= VI ⊕ (V=VI) projective in Mod− T: This completes the proof.

Let (X; Y )f ∈
. From Theorem 3.1, the module (X ⊕Y )T is projective ⇔ YB is
projective, f : Y ⊗M→X is monic and X =P⊕f(Y ⊗M) with PA projective. Given
any map ’ : Y →B in Mod− B; we can associate a unique map h :f(Y ⊗M)→M in
Mod− A satisfying h(f(y⊗m))=’(y)m: For y; y1; y2 in Y; m; m1; m2 in M we have

’(y1 + y2)m=’(y1)m+ ’(y2)m; ’(y)(m1 + m2)=’(y)m1 + ’(y)m2:

Also for any b∈B; ’(yb)m=’(y)bm: Since f : Y ⊗M→f(Y ⊗M) is an isomor-
phism it follows that there exists a unique homomorphism h :f(Y ⊗M)→M of
Abelian groups satisfying h(f(y⊗m))=’(y)m: For any a∈A; clearly hf(y⊗ma))=
’(y)(ma)= (’(y)m)a: Thus automatically h is a map in Mod− A:
Let {’i; yi}i∈�2 be a dual basis for YB; namely ’i : Y →B are maps in Mod − B

such that:
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(i) ∀y∈Y; ’i(y)= 0 for i outside a �nite subset Fy of �2;
(ii) y=

∑
i∈�2 yi’i(y) for any y∈Y:

As described above we obtain maps hi :f(Y ⊗M)→M in Mod − A satisfying
hi(f(y⊗m))=’i(y)m for y∈Y; m∈M and any i∈�2: Let {�j; pj}j∈�1 be a dual ba-
sis for PA: Note that TT corresponds to the triple (A⊕M;B)g where g :B⊗M→A⊕M
is given by g(b⊗m)= (0; bm): Let � be the disjoint union of �1 and �2: For any
j∈�1 let xj =(pj; 0)∈P⊕f(Y ⊗M)=X and �j :P⊕f(Y ⊗M)→A⊕M be given
by �j = �j ⊕ 0: Let yj =0 in Y for every j∈�1 and 
j : Y →B be the zero homo-
morphism. For any i∈�2; let xi=(0; 0)∈P⊕f(Y ⊗M)=X and �i :P⊕f(Y ⊗M)→
A⊕M be given by �i=0⊕ hi: Let yi ∈Y be the elements appearing in the dual basis
{’i; yi}i∈�2 of YB and 
i=’i : Y →B: We then have the following:

Theorem 3.2. For any �∈�; (��; 
�) : (X; Y )f→ (A⊕M;B)g is a map in 
: Let
�� : (X ⊕Y )T → T =(A⊕M ⊕B)T be the associated map in Mod − T: Then
{��; (x�; y�)}�∈� is a dual basis for (X ⊕Y )T :

Proof. First we check that (��; 
�) : (X; Y )f→ (A⊕M;B)g is a map in 
 for every
�∈�: For this we need to show that ��f(y⊗m)= g(
�(y)⊗m) for all y∈Y; m∈M
and �∈�: If �∈�1; we have ��f(y⊗m)= (0; 0)= g(
�(y)⊗m) in A⊕M: If �∈�2;
we have ��f(y⊗m)= (0; h�f(y⊗m))= (0; ’�(y)m)∈A⊕M and g
�(y⊗m)=
g(’�(y)⊗m)= (0; ’�(y)m)∈A⊕M: This proves that ��f(y⊗m)= g(
�(y)⊗m) for
all y∈Y; m∈M .
To show that {��; (x�; y�)}�∈� is a dual basis for (X ⊕Y )T we need to show that∑

�∈�
(x�; y�)��(x; y)= (x; y) (3.1)

for all (x; y)∈ (X ⊕Y )T : Elements of the form f(y⊗m) generate f(Y ⊗M) in
Mod− A: It su�ces to check (3.1) separately in the following three cases:
(a) x=(p; 0)∈P⊕f(Y ⊗M)=X and y=0 in Y .
(b) x=(0; f(y′ ⊗m))∈P⊕f(Y ⊗M)=X with y′ ∈Y; m∈M and y=0 in Y .
(c) x=(0; 0)∈P⊕f(Y ⊗M)=X and y∈Y arbitrary.
Before dealing with these cases, observe that (A⊕M ⊕B)T is identi�ed with TT

under the bijective correspondence

((a; m); b)→
[
a 0
m b

]
:

For any p∈P note that

(��; 
�)((p; 0); 0)=




[
��(p) 0
0 0

]
if �∈�1

[
0 0
0 0

]
if �∈�2:
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Also x�=(p�; 0)∈P⊕f(Y ⊗M)=X and y�=0∈Y for all �∈�1: Hence
∑
�∈�

(x�; y�)(��; 
�)((p; 0); 0) =
∑
�∈�1

((p; 0); 0)
[
��(p) 0
0 0

]

=
∑
�∈�1

((p���(p); 0); 0)

=




∑
�∈�1

p���(p); 0


 ; 0


 =((p; 0); 0):

This proves (3.1) in case (a). For any y′ ∈Y and m∈M we have

(��; 
�)((0; f(y′ ⊗m)); 0)=




[
0 0
0 0

]
if �∈�1;

[
0 0

’�(y′)m 0

]
if �∈�2:

Also x�=(0; 0)∈P⊕f(Y ⊗M)=X for �∈�2: Hence
∑
�∈�

(x�; y�)(��; 
�)((0; f(y′ ⊗m)); 0) =
∑
�∈�2

((0; 0); y�)
[

0 0
’�(y′)m 0

]

=
∑
�∈�2




 0; f(y�⊗’�(y′)m)


 ; 0




=


0;∑

�∈�2
f(y�⊗’�(y′)m); 0




=




0;∑

�∈�2
f(y�’�(y′)⊗m)


 ; 0




=




0; f(∑

�∈�2
y�’�(y′)⊗m)


 ; 0




= ((0; f(y′ ⊗m)); 0):

This proves (1) in case (b). For any y∈Y we have

(��; 
�)((0; 0); y)=




[
0 0
0 0

]
if �∈�1;

[
0 0
0 ’�(y)

]
if �∈�2:
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Also x�=(0; 0)∈P⊕f(Y ⊗M)=X for �∈�2: Hence
∑
�∈�

(x�; y�)(��; 
�)((0; 0); y) =
∑
�∈�2

((0; 0); y�)
[
0 0
0 ’�(y)

]

=
∑
�∈�2

((0; 0); y�’�(y))

=


(0; 0);∑

�∈�2
y�’�(y)




= ((0; 0); y):

This proves (1) in case (c), thus completing the proof of Theorem 3.2.

4. Generators, projective generators, respectively pro-generators in Mod − T

In this section we �rst determine necessary and su�cient conditions for (X ⊕Y )T to
be a generator. When (X ⊕Y )T is projective, these take on a particularly simple form.
Observing that (X ⊕Y )T is a progenerator ⇔ it is �nitely generated projective gener-
ator, we obtain necessary and su�cient conditions for (X ⊕Y )T to be a progenerator.
In all the result stated below, TT will be identi�ed with the right T -module associated
to (A⊕M;B)g where g :B⊗M→A⊕M is given by g(b⊗m)= (0; bm) for all b∈B;
m∈M:

Theorem 4.1. (X ⊕Y )T is a generator if and only if the following are valid:
(i) X=f(Y ⊗M) is a generator in Mod− A.
(ii) for some set J; there exists a surjective map Y (J )

q−→ B in Mod−B and a map
’ :X (J )→M in Mod − A satisfying ’ ◦f( J ) = h ◦ (q⊗ IdM ): Here X ( J ) (resp. Y ( J ))
denote direct sum of X (resp. Y ) indexed by the set J: Furthermore f( J ) : Y ( J )⊗M =
(Y ⊗M)( J )→X ( J ) is induced by f and h :B⊗M→M is given by h(b⊗m)= bm:

Proof. Suppose (X ⊕Y )T is a generator. Then for some set J , there exists a surjec-
tive map (X ⊕Y )( J )T → TT =((A⊕M)⊕B)T : Observing that (X ⊕Y )( J )T corresponds
to the triple (X ( J ); Y ( J ))f( J ) ; then the above yields surjective maps �1 :X ( J )→A⊕M
in Mod − A and �2 : Y ( J )→B in Mod − B satisfying �1 ◦f( J ) = g ◦ (�2⊗ IdM ): If
pA :A⊕M→A; pM :A⊕M→M denote the respective projections, then pA ◦ �1 :X ( J )
→A; pM ◦ �1 :X ( J )→M are surjective maps in Mod − A satisfying pA ◦ �1 ◦f( J )
= 0 and pM ◦ �1 ◦f( J ) = h ◦ (�2⊗ IdM ): From pA ◦ �1 ◦f( J ) = 0 we conclude that
pM ◦ �1 :X ( J )→A induces a surjection (X=f(Y⊗M))( J )→A in Mod − A: Hence
X=f(Y ⊗M) is a generator in Mod−A: If we denote pM ◦ �1 by ’ then ’ :X ( J )→M
is a map in Mod− A satisfying ’ ◦f( J ) = h ◦ (�2⊗ IdM ): This yields (i) and (ii).
Conversely assume (i) and (ii). From (i) we get a surjective map in Mod − A;

(X=f(Y ⊗M))( J1) �−→ A for some indexing set J1. Let � :X →X=f(Y ⊗M) denote the
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quotient map. From (ii), there exist an indexing set J2; a surjective map q : Y ( J2)→B
in Mod− B, a map ’ :X ( J2)→M in Mod− A satisfying ’ ◦f( J2) = h ◦ (q⊗ IdM ): Let
I = J1

•∪ J2 the disjoint union of J1 and J2: We write X I as X ( J1)⊕X ( J2) and Y I as
Y ( J1)⊕Y ( J2): Let �1 :X ( I) =X ( J1)⊕X ( J2) →A⊕M and �2 : Y ( I) = Y ( J1)⊕Y ( J2) →B
be the maps satisfying the following conditions:

�1(u)=

{
(��( J1)(u); 0)∈A⊕M for any u∈X ( J1);
(0; ’(u))∈A⊕M for any u∈X ( J2):

�2(v)=

{
0∈B for any v∈Y ( J1);
q(v)∈B for any v∈Y ( J2):

Also note that f( I) : Y ( I)⊗M→X (I) is the same as f( J1)⊕f( J2): Since �( J1)f( J1)
(Y ( J1)⊗M)= 0 we see immediately that g ◦ ((�2 |Y ( J1) )⊗ IdM )= 0= (�1 |X ( J1) ) ◦f( J1):
Also, for any v∈Y ( J2) and m∈M we have

g ◦ (�2⊗ IdM )(v⊗m) = g(q(v)⊗m)= (0; q(v)m)
= (0; h ◦ (q⊗ IdM )(v⊗m))
= (0; ’ ◦f( J2)(v⊗m))= �1(f(I)(v⊗m)):

So g ◦ (�2⊗ IdM )= �1 ◦f(I); thus (�1; �2) : (X (I); Y (I))f(I) → (A⊕M;B)g is a mor-
phism in 
: Since q : Y ( J2)→B is surjective and h :B⊗M→M is an isomorphism,
we see that h ◦ (q⊗ IdM ) :Y ( J2)⊗M→M is surjective. From ’ ◦f( J2) = h ◦ (q⊗ IdM )
it follows that ’ :X ( J2)→M is surjective. Also � ◦ �( J1) :X ( J1)→A is surjective. It fol-
lows that �1 :X (I)→A⊕M is surjective. Since q : Y ( J2)→B is surjective, we see that
�2 : Y (I)→B is surjective. It follows that the map � : (X ⊕Y )(I)T → ((A⊕M)⊕B)T = TT
induced by (�1; �2) is surjective. Hence (X ⊕Y )T is a generator.

Theorem 4.2. Assume that (X ⊕Y )T is projective. Then (X ⊕Y )T is a generator if
and only if (X=f(Y ⊗M))A and YB are generators.

Proof. From Theorem 3.1 we see that (X=f(Y ⊗M))A and YB are projective and that
f : Y ⊗M→f(Y ⊗M) is an isomorphism. In particular, it follows that XA=f(Y ⊗M)
⊕PA with PA projective. To prove Theorem 4.2 we have only to show that condition
(ii) of Theorem 4.1 is satis�ed. Since YB is a generator, there exists a surjective map
q : Y ( J )→B in Mod−B for a suitable indexing set J . We have X ( J ) =f(I)(Y ( J )⊗M)
⊕P( J ) with f( J ) : Y ( J )⊗M→f(I)(Y ( J )⊗M) an isomorphism. Now h ◦ (q⊗ IdM ) :
Y ( J )⊗M→M is a map in Mod − A. If we de�ne ’ :X ( J )→M by ’ |f ( J )(Y ( J ) ⊗M)

=

h ◦ (q⊗ IdM ) ◦ (f( J ))−1 and ’ |P ( J ) = 0 it is clear that ’ ◦f( J ) = h ◦ (q⊗ IdM ):

As an immediate consequence of Theorems 3.1, 4.2 of the present paper and
Exercise 1D(b) on p. 7 of [4] we get:
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Corollary 4.3. (X ⊕Y )T is a progenerator if and only if (X=f(Y ⊗M))A and YB are
progenerators and f : Y ⊗M→X is monic.

5. Projective covers in Mod − T

In this section we will give necessary and su�cient conditions for (X ⊕Y )T associa-
ted to (X; Y )f ∈Obj 
 to admit a projective cover in Mod− T and explicitly describe
the projective cover of (X ⊕Y )T when these conditions are satis�ed.
Assume Y admits a projective cover H ”2−→ Y in Mod − B and that X=f(Y ⊗M)

admits a projective cover �1 :P→X=f(Y ⊗M) in Mod − A: Let � :X →X=f(Y ⊗M)
denote the quotient map. Since PA is projective we get a map 
1 :P→X in Mod− A
satisfying � ◦ 
1 = �1: Let �=f ◦ (”2⊗ IdM ) :H ⊗M→X and �1 : (H ⊗M)⊕P→X be
given by �1 |H ⊗M = � and �1 |P = 
1: From Theorem 3.1 we see that (((H ⊗M)⊕P)
⊕H)T associated to ((H ⊗M)⊕P;H)j where j :H ⊗M→ (H ⊗M)⊕P denotes the
inclusion as the �rst summand, is indeed a projective right T -module. Since �1 ◦ j=
�=f ◦ (”2⊗ IdM ) we see that (�1; �2) : ((H ⊗M)⊕P;H)j→ (X; Y )f is a map in 
:
We write � for the associated map (((H ⊗M)⊕P)⊕H)T → (X ⊕Y )T in Mod − T .
With these conventions we now state and prove the main result of this section.

Theorem 5.1. (X ⊕Y )T admits a projective cover if and only if (X=f(Y ⊗M))A and
YB admit projective covers. When these conditions are satis�ed; let �1 :P→
X=f(Y ⊗M) and �2 :H→ Y denote projective covers in Mod−A and Mod−B respec-
tively. Then � : (((H ⊗M)⊕P)⊕H)T → (X ⊕Y )T described in the above paragraph
yields a projective cover in Mod− T .

Proof. Assume (X ⊕Y )T has a projective cover. As seen already in Theorem 3.1
any projective module in Mod − T is associated to a triple (’(H ⊗M)⊕P;H)’
with HB and PA projective and ’ :H ⊗M→’(H ⊗M) an isomorphism in Mod − A:
Let (�1; �2) : (’(H ⊗M)⊕P;H)’→ (X; Y )f yield a projective cover in Mod− T: Let
K = ker �1 :’(H ⊗M)⊕P→X and L= ker �2 :H→ Y: Then �1 :’(H ⊗M)⊕P→X
and �2 :H→ Y are surjective and (K ⊕L)T � ((’(H ⊗M)⊕P)⊕H)T : Let
� :’(H ⊗M)⊕P→P denote the projection map. From Proposition 1.3 we see that
�(K)�P and L�H: The latter fact shows that �2 :H→ Y is a projective cover in
YB:
Also from �1 ◦’=f ◦ (�2⊗ IdM ) and the surjectivity of �2⊗ IdM :H ⊗M→ Y ⊗M

we see that �1(’(H ⊗M))=f(Y ⊗M): It follows that �−11 (f(Y ⊗M))=K +
’(H⊗M): By passage to quotients, �1 induces a surjection �1 :P→X=�1(’(H ⊗M))
=X=f(Y ⊗M) with ker �1 = �(�−11 (f(Y ⊗M))= �(K): (Here we are regarding P as
the quotient of (’(H ⊗M)⊕P by ’(H ⊗M)). Since �(K)�P; it follows that
�1 :P→X=f(Y ⊗M) is a projective cover of (X=f(Y ⊗M))A:
Conversely, assume �1 :P→X=f(Y ⊗M) and �2 :H→ Y are projective covers in

Mod−A and Mod−B respectively. To prove that � : (((H ⊗M)⊕P)⊕H)T → (X ⊕Y )T



A. Haghany, K. Varadarajan / Journal of Pure and Applied Algebra 147 (2000) 41–58 57

is a projective cover we have to prove the following:
(i) �1 : (H ⊗M)⊕P→X and �2 :H→ Y are surjective.
(ii) If K = ker �1 and L= ker �2 then �(K)�PA and L� YB where � : (H ⊗M)⊕

P→P is the projection onto P:
Since �2 :H→ YB is a projective cover, �2 is surjective and L� YB: By construc-

tion, �1 |H ⊗M =f ◦ (”2⊗ IdM ): Since �2 :H→ Y is surjective, we get �1(H ⊗M)=
f(Y⊗M): Also �1 |P = 
1 is a lift of �1 :P→X=f(Y ⊗M) to a map P→X . Since �1 is
surjective we get �1(P)+f(Y ⊗M)=X: It follows that �1((H ⊗M)⊕P)=f(Y ⊗M)+
�1(P)=X: Thus �1 : (H ⊗M)⊕P→X is surjective. Since �1(H ⊗M)=f(Y ⊗M) we
get �−11 (f(Y ⊗M))=H ⊗M + K: From the modular law, we have H ⊗M + K =
(H ⊗M)⊕ (P ∩K): This immediately yields, �(K)=P ∩K: But ker �1 = 
−11 (f(Y
⊗M))=P ∩ �−11 (f(Y ⊗M))=P ∩{(H ⊗M)⊕ (P ∩K)}=P ∩ (H ⊗M)⊕ (P ∩K)
(again by the modular law ) =P ∩K = �(K):
Since �1 :P→X=f(Y ⊗M) is a projective cover we get �(K)�PA: This proves (i)

and (ii) and completes the proof of Theorem 5.1.

The following well-known result is an immediate consequence of Theorem 5.1.

Corollary 5.2. Let

T =
[
A 0
M B

]
:

(i) T is semi-perfect if and only if A and B are semi-perfect.
(ii) T is right perfect if and only if A and B are right perfect.

Proof. (ii) is immediate from Theorem 5.1, while (i) needs the characterization of
�nitely generated T -modules.

Remark 5.3. In (ii) we can replace “right perfect” by “left perfect” throughout.

Finally we wish to record that in [6] injective modules and injective hulls of modules
over a ring of a Morita context (thus in particular over a formal triangular matrix ring)
have been characterized.
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