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Stiefel-Whitney homology classes 

By STEPHEN HALPERIN AND DOMINGO TOLEDO* 

1. Introduction 

In this paper M is a smooth n-manifold without boundary; its tangent 
bundle is z:- TM 'I M, and T,(M) is the tangent space at x. The qth Stiefel- 
Whitney class of M, Wq, is the primary obstruction to finding n - q + 1 
linearly independent vector fields on M. Wq is an element of Hq(M; Z) (q 
odd or q = n) and an element of Hq(M; Z2) (q even and < n); in the first 
case we use twisted coefficients. Thus the Poincare dual of Wq is a homology 
class 

Wn-q 
(Hnq(M; Z) q odd or q = n 
lHn-q(M; Z2) q even and < n 

where we use infinite chains if M is not compact. W, will be called the pth 

Stiefel- Whitney homology class. 
Throughout the paper (K, p) denotes a smooth triangulation of M (K is a 

simplicial complex and p: I K I- M is a homeomorphism from the geometric 
realization of K to M; further g is a smooth embedding on each simplex). 
K' denotes the first barycentric subdivision of K. 

The simplices of K will be denoted by a, a,, b, bi, * *; their barycentres 
are denoted by act aj, b, bi. If a is a p-simplex we write a I = p. The sim- 
plices of K' are denoted by a, z, - - ; and their barycentres are denoted by 
a, A, *... Each p-simplex a < K' is uniquely of the form a = <aO *-- ap> 

where a0< K.. < ap e K. (a < b (resp. a < b) means a is a face (resp. a 
proper face) of b.) 

Each a is given that orientation for which aq, *-, ap is a positive order- 
ing of the vertices. 

An infinite integral simplicial p-chain on M will mean a formal infinite 
integral combination, E XBa, where the sum runs over the distinct p-sim- 
plices of K', ordered as described above. These chains form a complex 
C* (M) = E, Cp(M) whose homology is the standard infinite integral homo- 
logy of M. 

In this paper we present a proof of the following theorem of Whitney [9]. 

* N.S.F. graduate fellow. 
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THEOREM 1. The (infinite) chain 

C = Lao< ... <a SK ( l) ao+ P Ka- aa> (0 < p < n) 

is a cycle (integral if n - p odd or p = 0; mod 2 if n - p even) and repre- 
sents the Stiefel- Whitney homology class Wp. 
(Note that Cp is the sum of all the p-simplices of K', with appropriate signs.) 

The theorem has the obvious 

COROLLARY. The (infinite) chain 

Lao< ...<apK <O ...> 

is a (mod 2)-cycle and represents the pth (mod-2) Stiefel- Whitney homology 
class. 

Remarks 1. The theorem was conjectured by Stiefel [7]. It was then 
proved by Whitney, who wrote up his proof for a book; unfortunately this 
never appeared. A proof using different techniques has recently been obtained 
by Cheeger, and a sketch appears in [3]. However, no complete proof seems 
to have appeared in print. 

Rourke has observed that our proof works in the P.L. category. Sullivan 
has used the corollary to define (mod 2) Stiefel-Whitney classes for more 
general spaces [8]. 

2. CO = Ea<K (- 1)',ca represents (if M is compact and connected) the 
Euler characteristic of M, x(M) e Ho(M; Z) = Z. In this case the theorem 
reduces to the Hopf theorem (W(M) = the index sum of a vector field with 
finitely many zeros). 

The paper is organized as follows: in Section 2 we establish properties 
of the chains Cp for a wider class of spaces than manifolds. These have 
recently been obtained independently by Sullivan. In Section 3 we review 
basic facts about twisted chains and Poincare duality. 

The rest of the paper is devoted to the proof of Theorem 1. In Section 4 
we construct vector fields F1, * * *, Fn on M with the property that the first 
p are linearly independent of the (p - l)-skeleton of K'. These vector fields 
are essentially the same as those given by Whitney in [9]. With the aid of 
these we can write down a representative 2m~a of Wp, where each integer 
ma is the index of Fp+, (mod F1, * * *, Fp) at the barycentre of a. 

In Sections 5 and 6 the integers ma are computed. This is done by deform- 
ing Fp+, to more tractable local sections Z,. The index of Z, is computed by 
expressing its flow as a product of explosions and implosions. 

We are grateful to J. Munkres for pointing out to us his theorem on 
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smooth cell decompositions [5] which greatly simplifies the computation of mi. 

Section 7 contains the proof of a lemma used in Section 5. 

2. Euler spaces 

The chains C, introduced above have a wider application. Let L be any 
locally-finite n-dimensional simplicial complex, with first barycentric sub- 
division L'. We use L also to denote the geometric realization of L (and L'); 
a simplex a < L is also considered as a closed subset of L. a denotes the 
boundary of a. a" denotes its interior, and Lk (a; L) denotes the link of a in L. 

Define (infinite) simplicial chains 

Cp(L') = (ao< ...-E(-1)Iao?+QaP1 <01 *.. > 

(0 < p < n). Sullivan and E. Akin [8] showed that these chains are (mod 2)- 
cycles if and only if for each x e L, X(L, L - x) 1 (mod 2); and they called 
such spaces (mod 2)-Euler spaces. (For a subspace B of a topological space A, 

X(A, B) = Up (-1)P dim H,(A, B; Q) 
whenever the right hand side makes sense.) 

An n-dimensional locally finite polyhedron L will be called an integral 
Euler space if 

X(LL-x) (-1) for all xeL. 

Sullivan has shown that complex analytic spaces are integral Euler spaces [8]. 

PROPOSITION 1. L is an integral Euler space if and only if 

DCp(L') X(Sn-P)Cp_1(L') p > 1 

Proof. For any x e L there is a simplex a < L such that x e Oa, and 
there is a homeomorphism carrying x to a. Moreover, 

H*(L, L - a; Q) - F*(Lk(c; L'); Q) 

where the isomorphism shifts degrees by 1. Thus L is an integral Euler 
space precisely when 

1 - X(Lk(a; L')) _ (-1), for all a < L . 

Note that Lk(a; L') is homeomorphic to the join it * Lk(a; L). Since a is an 
(I a- 1)-sphere (S-' - b) and 1 - X behaves multiplicatively on joins, L is 
an integral Euler space if and only if 

(-1)a(1 - X(Lk(a; L))) = (-1)% , for all a < L . 
On the other hand, write 
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Then 

(O, **a P-1) = 
Ea<aO (- 1)aIQ+Io!+ +I ap-1 

+ Ei=0 (- 1)i+1 Ea<G<ai+ (-1)Ia+Iao+ i 

+ 1 P-1<a (- 1)P(- 1)IaI+IaoI+ +IaP-1I 

= (- ~1)1a1+--+IaP_11 {X(ao) + Eip2 (_ 1)il(_ 1)1ai1+1 x(Lk(ai; di+1)) 
+ (_ )P(-1)IQP-1I+1 X(Lk(ap-1: L))} 

Since the link of ct in a6+i is an 0 a+- - -2)-sphere its Euler charac- 
teristic is 1 + (-1)Iai?l-aiI. Thus 

(1)Q?I+--+1 +IP-1I X(a[O9 *s [ aP-1) 

= -)Iaol + Ep- [(li+lail - (i~+l+lai+ll] 

-(-1)P+IaP-1IX(Lk(ap-1; L)) 

= 1 + (-1)P+IaP-1(1 - X(Lk(ap-1; L))) 

This integer is X(Sl-P) if and only if 

(_ )'n = (-1)laP-1l(1 - X(Lk(ap-1; L))) 

The proposition follows. q.e.d. 

Proposition 1, in conjunction with Theorem 1, yields the well known fact 
([6], p. 195) that if q is even then Wq+ e Hq+l(M, Z) is the Bockstein of 
Wqfq (Mg. Z2 

3. Poincare duality 

In this section we recall the definitions of twisted cochains and Poincare 
duality. 

Let K" denote the second barycentric subdivision of K. For each a < K' 
with barycentre a we denote by Da and Da the full subcomplexes of K" 
defined by: 

z is a vertex of Da (resp. Da) if and only if a < z (resp. a < z). 
Da is the boundary of Du. The interiors of Da and a are denoted by Da and a. 

Because K is a smooth triangulation of M, for each p-simplex a < K', 
Da is an (n - p)-cell and Do is an n - p - 1 sphere. The collection {Da}0?K, 

decomposes M as a cell complex whose cellular q-skeleton consists of all the 
cells Du of dimension < q. We denote it by Mq. 

Note that for each a the map 

(X, Y)L -x xea 
2 2 yeDa 

(convex combination in K') defines a homeomorphism a, of u x Da onto an open 
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neighborhood, U, of a in M. 
The twisted integral cellular cochain complex C*(M) corresponding to 

the cell decomposition above of M is described as follows: Let G(U) denote 
the group of global sections of the integral orientation sheaf of ZM Do; thus 
G(u) _~Z and its two generators are the two orientations in zM !Do, A twisted 
integral cochain is a map, .P, which assigns to each oriented q-cell (Da, p) an 
element of G(Q), and which satisfies 

(D(Da, - p) = - (Da, p) 
(- cu denotes the orientation of Da opposite to 4u). 

To define the coboundary operator, a, observe that the boundary of a 
(q + 1)-cell, Dz-, is the union of q-cells Dai. With an orientation, V, in Dz 
associate the orientations [ie in Dai which satisfy 

v = (outward normal) x 4i , 

Then set 

(3I)(Dz, v) = t pJOP(Dai, Li)) 

where ps.: G(z) - G(ai) is the restriction isomorphism. 
The canonical projections G(a) Z2 (a < K') define a homomorphism 

from this cochain complex to the (mod 2)-cochain complex; it is called reduc- 
tion mod 2. 

Finally, we recall the definition of the Poincare isomorphism 0: C* (M) 
C *(M) which induces the standard Poincare isomorphism of homology. 

Let (Da, p) be an oriented (n - p)-cell. It determines a generator, 
<a, (Da, p)> of G(a) as follows: Identify the generators of G(a) with the 
orientations in Ua in the usual way, and let <a, (Da, p)> be the orientation 
of Ua for which a a X Dga a U, is orientation preserving. (Here a is oriented 
as described in Section 1, and a x Da is given the product orientation.) 

Now ?D: Cp(M) C"-C (M) is defined by 

D(E: X\t7)(Da, M) = X-a, (Da, M)>. 

The Poincare isomorphism between (mod 2) chains and (mod 2) cochains 
is defined analogously; and the Poincare duality commutes with reduction 
mod 2. 

4. Stiefel-Whitney homology classes 
Consider K (and hence K') as a P.L. subset of RI (N sufficiently large). 

Each p-simplex a < K' spans an affine p-plane T(a) c RN. If x C a, its tan- 
gent space is the linear space Tx(a) obtained from the affine space T(a) by 
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making x the origin. The tangent bundle of a is the product bundle a x T(a) 
(x x T(a) is identified with T,(a)). Note that 

T (a) = T(a)= Ty=(a) x, ye a 

identifies Tx(a) and T,(a) as affine, but not as linear spaces. The orienta- 
tion of a defined in Section 1 determines an orientation in each TJ(c). 

Since (K, p) is a smooth triangulation of M, so is (K', p). Thus the 
restriction, p0, of p to a simplex a < K' is smooth, and its derivative 

dq': a x T(a) - TM 
is a bundle map which restricts to a linear injection in each fibre. Henceforth 
we identify the geometric realization of K (and of K') with M via q. Further, 
for xe a _? K we identify Tx(a) with the subspace of TJ(M) to which it is 
mapped by dq'. 

Let x C M. Its closed star (in K') is denoted by St x. If a < St x is a 
maximal simplex then x C T(a). Thus a continuous cross-section X: St x 
TX is defined by 

X(y) =x yeStx. 
X is smooth in each simplex and is called the radial vector field generated by 
x; X(y) 0 0 if and only if y = x. The radial vector fields generated by the 
points a, oi, b, bj, a, will be denoted by A, Ai, B, Bj, and S. If x = E xiai 
then 

X= iAi 

For xe <o o... * 3p> we write 

X = J:P XaQ.(X)aj. 

Xai is extended to a continuous function in M by setting -\,(x) = 0, X St ai. 

LEMMA 1. Let a = <ao ... ap> < K' and let xevy. Then 
(i) Al(x), ***, Ap(x) is a positively ordered basis of Tx(a). 
(ii) J:P X,,(x)Ai(x) = O. 

Proof. Clear. 

Definition 1. The fundamental vector fields F1, ..*, F on M are the 
vector fields given by 

FP(x) =aO<... <apK Xk(x) ... X * (x)Ap(x) 

LEMMA 2. The Fp are well-defined continuous vector fields on M, smooth 
on each simplex. Moreover, 

(i) If x C a then Fp(x) C Tx(a), 1 < p < n . 
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(ii) F,(x) = 0 if x is in the (p - l)-skeleton of K'. 
(iii) If x H a (a = <a( , *t a,>) then Fj(x), ** , F,(x) is a positively 

ordered basis for Tj(a). 
Proof. (i) and (ii) are obvious. To prove (iii) observe that 

F. (x) = P-i enj(x) Aj(x) 

where vii(x) = Xa,(x) ... Xa,(x) > 0. Thus (iii) follows from Lemma 1, (i). 
q.e.d. 

COROLLARY. For any y not in the (q - 1)-skeleton of K' the vectors 

Fi(y)*.m, F,(y) are linearly independent. 

MP will denote the p-skeleton of K' (recall that M, denotes the q-skeleton 
of the dual cell complex). The corollary to Lemma 2 yields a trivial sub- 
bundle of zM I -Mp--l: 

;P: EP 7,(M - MP-') 

whose fibre EP at x is the space spanned by Fj(x), *--, Fp(x). Orient dP so 
that Fj(x), *., Fp(x) is a positive basis of Ex. 

Let n-P XN-P (M - MP-') be the orthogonal complement of dP with 
respect to some Riemannian metric in TM. Define Fp'l- to be the unique cross- 
section of rf-P which satisfies 

F>+(x) - Fp+?(x) C EP x M MP-'. 

Then (again by the corollary to Lemma 2) Fp'+>(x) :: 0 if x X MP. 
F1+j determines a twisted integral n - p cochain, 1, which represents 

Wn-P, as follows: Fix an oriented (n - p)-cell (Da, se). Then Da c M - 
MP-1, and the decomposition 

e IDO D3 
- 

IDa = ZM IDa 

establishes a 1 - 1 correspondence between orientations in yn-P IDo and orien- 
tations in IM IDOL Moreover, Da n MP = {a}; hence FP'+ defines a cross-section 
in 7,70P IDo with a single zero at a. 

Now choose an orientation in fn-p IDo* Use the local product structure to 
obtain from Fp'+i a continuous map 

y0: (Da, Da - {a}) (R n-p R-P - {0}) 

between pairs of oriented spaces. Set 

PD(Da, pe) = (degree of y0)g(a) 

where g(a) C G(a) is the orientation of ZM IDO corresponding to the chosen 
orientation of snap ADO 
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The degree of yO is called the index of F,'-,; it depends only on Fpf l and 
the orientations of Da and IDO. Thus the right hand side of the equation 
above depends only on FPL, and (Da, M); and so it defines an (n - p) twisted 
cochain, (D. 

Moreover, (D (or its (mod 2)-reduction if (n - p) is even and p > 0) rep- 
resents the Stiefel-Whitney cohomology class W-P. This follows easily from 
the obstruction definition of these classes-cf. [6]. For the equivalence of 
this and other definitions see Milnor [4]. 

An orientation of 7'n-, ID, determines an orientation of zM [Do and hence 
it determines an orientation in the open set U, of Section 3. Orientations in 

- 
[Do and in Da will be called compatible if the homeomorphism O a x 

Dou U, is orientation preserving. The following proposition is an immediate 
consequence of the discussion above, and Section 3. 

PROPOSITION 2. Let m0 be the index of Fp'?1 at a, defined with respect to 
compatible orientations of Da and n IDo. Then the (infinite) chain 

'Eaa p-simplex of K' Ma 

(or its (mod 2)-reduction if n - p is even and p > 0) represents W,. 
It remains to compute the integers Mi. Wp is either an integral 2-torsion 

class or a (mod 2)-class if p > 0. In either case if c represents W" so does 
-c. Thus Theorem 1 follows from Proposition 2 as soon as we have proved 

THEOREM 2. The integers ma of Proposition 2 are given by 

(_ 1)P(PD+1)/2Ma = (_ 1)IaOI+ --+IaQPI 

if a = <Kct 0...c> 

5. Deformation of Fp+? 

By a theorem of Munkres ([5], 1.4 and 1.5) any smooth triangulation of 
M is isotopic to a smooth triangulation whose dual cells form a smooth cell 
decomposition of M. If q1, 9?2: K' > M are isotopic smooth triangulations, 
then the indices m0 of the vector fields F1' (defined via (p1 and Tp2) are the same. 

Thus to compute the ma we may and do assume that the dual cells q(Da) 
(a < K') form a smooth cell decomposition of M. Then for a p-simplex a < K', 

To(a) ED Ta(Da) = Ta(M) a 

It follows that for some neighbourhood, WO, of a in Du we have 

d Iwo ( To =vTM w 

Hence we may and do choose the Riemannian metric in rm so that the 
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restriction of n-, to WJ coincides with the tangent bundle of W0. Moreover, 
the orientation induced in zv (i.e. in f'-' 1,1) by an orientation of Da is 
compatible with the orientation of Da in the sense of Section 4. 

Henceforth in this section a = <a, .. a,,> denotes a fixed p-simplex of 
K', and a. < ... < apc L4 denotes the full subcomplex of K' spanned by the 
vertices bj with bj< K O; Li (i = 1, *. I, p) is the full subcomplex spanned 
by the bj with ai, < bj < a,; L7',1 is the full subcomplex spanned by the bj 
with bj > ct. Each Li, i > 1 is a combinatorial (I - i[cy1 I-2)-sphere, 
and Lo is an (laoI - l)-sphere. 

D, will denote the cone on Li with vertex 0; a point w in Di is then of 
the form Ej xjbj where the bj are vertices of Li, \j > 0, and E Xj < 1. If 
w = jbj eDi we write Ej Xj1w!. Then 

Wl i EP~ an 
I 

ai + Zj'jbj WK-*0 1PWI+ v x 

defines a continuous embedding As: Di M. 

Remark. The letters bj may denote any vertices of K'; they will not be 
restricted to vertices of the Li's, unless explicitly stated (as above). In parti- 
cular, unless the bj are restricted to be vertices of L,, the formal sum E xjb. 
does not make sense as a point of Di. 

For each sequence y, 0 * * 9 y+ (yi C Di) there is some simplex z < St a 
which contains all the Ayi. A continuous map 

A: Do x ... D2- ? M 

is given by 

(ygo 9* Y'V+1) I > * zA(yi) 

(convex combination in v). 
We can (and do) choose W, and neighbourhoods Wi of a in Di so that k 

restricts to a homeomorphism 

A: Wo X ... X W7'+1 W- . 

The restriction of * to Wo n -0 x *. x w,'? n -i, (yt a simplex of Di) is 
a smooth embedding. 

We shall deform F,-+1 to a vector field on Da whose flow is a product of 
implosions and explosions along the cone lines of the Di. As a first step, 
define a vector field V0 tangent to Da by 

V0(x) = Ebjoao.. apsjxjBj(x) 

where x = E xjbj C Da and ej = (-1)P1++i if bj C Li. Thus if x C Im An then 
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VI/(x) = 1)P++ E XjBj(x). Since VI is tangent to Du, its restriction to W, 
is a cross-section in 7,-P. 

PROPOSITION 3. Suppose xe W - {a} and let t, s be non-negative num- 
bers, not both zero. Then 

t V(x) + sFl +1(x) 0 . 

In particular V, is a vector field on Du with an isolated zero at a, and index 
ma at a. 

LEMMA 3. If z = <bo * *bq> < K' and x X=ii e 0, then 

(i) BO(X) = q {g ),j+?Fj(X) 

and 

(ii) Bi(x) =l{F(x) + Eqj= iv6ijFj(x)} X0 xi 

where 

and B. is the radial field corresponding to bi. 
Proof. Deferred to Section 7. 

COROLLARY. Bi(x) ( - ) iFq(x) (mod F,(x), .., Fq-i(x)). 

Proof of Proposition 3. Fix x ? Da - {a}. Let Z = <b0 * bq> < K' 
(bo < ... < bq) be its carrier; write x = Eq Xibi. Then p < q and a < z. 
We must show that 

tV,(x) + sF,+?(x) t 0 (mod Fj(x), ** , F,(x)) 

and we proceed by induction on q. 
Suppose first that q=p + 1. Then for some i (O < i < p + 1) 

aj = bj (j < i) and tj = bj+1 (j > i) 
Thus the corollary to Lemma 3 yields 

VO (x) = (-1) + +'XiBi(x)--= F+ l(x) (mod Fj(x), *..., F, (x)) . 

Clearly the proposition must hold in this case. 
Next assume that q > p + 2 and that the proposition is proved for q - 1. 

Fix an integer r so that br is not a vertex of a. Set v1 = b, *b .r *b bq and 
let 8: Z Z, be the projection from bra 

to E SibIL r1- _ i 
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Its derivative dO: Tj(z) - Ty(z1), (y 0(x)) satisfies 

dO(Bi(x)) = Bi(y) i e {O. 1, *.*.* r^ * * q} 
and 

dO(B7(x)) = 0. 

It follows that for each j 

dO(Fj(x)) = (1 -A,,)Fj(y) + X,(1 - X_)-'F.-_(y) 
(set F,(y) = 0); moreover 

dO(Va(x)) = (1 - r) V(y) 

Thus a relation of the form 

tVq(x) + sF,?1(x) 0 (mod F1(x), *.. , F,(x)) 

would yield (after dO was applied to both sides) the relation 

t(1 - Xr)Va(y) + s(1 - X,)"+'Fv+?(y) 0 (mod F1(y), * .. , Fv(y)) 

This would contradict the induction hypothesis; hence the proposition is 
proved. q.e.d. 

Let S be the radial vector field in St oa which is generated by a. If bj is 
a vertex of St a we write Bj = Bj - S; it is a vector field in St a n St bj. 
With respect to the standard parallelism in the ambient RN, Bj(x) is the 
constant vector field bj - 

We define a vector field, ZO, tangent to Da by 

Z0(x) - j~o, ,ap 
3 V 3 

where x = 6eDu, and ej (_1)P+1+i if bj e Li. 

PROPOSITION 4. tZO(X) + (1 - t) Vq(x) # 0 if x e Da - a and 0 < t < 1. 
In particular, Z, has an isolated zero at a with index mO- 

Proof. Suppose x = Xjbj e Du. Let J = {j/bj # any ai. Then 

Z0(x) = VI(x) - (Zjej&j)S(x) 
Since u = EP (1/(p + 1))ctq, S -EP (1/(p + 1))Ai. Hence 

tZ,(x) + (1 - t)V0(x) = Ej,,sjxjBj(x) - t(Eje 6j j )j)P o 1 A,(x) 

Suppose tZ0(x) + (1 - t) Vq(x) = 0. Since Xj = 0 if bj is not in the carrier 
of X, we obtain a relation among scalar multiples of the vectors corresponding 
to the vertices of the carrier of x. In view of Lemma 1, Section 4, all the 
coefficients must have the same sign, which is clearly impossible. q.e.d. 
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6. The flow of ZO 

We retain the conventions of Section 5. A local flow Ct: W Di (t suf- 
ficiently small) is defined by 

tCi(w) = exp ((- 1)1+1+it) w. 

4tt is an explosion (resp. implosion) along the cone lines of Di if p + 1 + i is 
even (resp. odd). The equation 

? (4t X X cP+l) = Ct ? I 

determines a local flow Ct W, Du. 

LEMMA 4. Fix x E Wq. Then t 1 C,(x) is a smooth curve in W, and its 
tangent vector at x is Zq(x). In particular, C, is the flow generated by Zq. 

Proof. Let x = E',Xjbj e WO. As in Section 5 let J = {j/bj # any Aid 
and set ej ( 1)P+1+i if bj e Li. Then 

t(x) = Zj, e;eiXjjb + E X(t)q 

where X(t) is chosen so that the coefficients sum to 1. The lemma follows. 

Proof of Theorem 2. From Propositions 3 and 4, m, = index Zq. By 
Lemma 4 this is the product of the indices of the flows C;. (For the fix-point 
index of a flow see [1], Chapter XIV). Since Ci is an explosion if p + 1 + i 
is even, and an implosion if p + 1 + i is odd, 

index C2 
1 p + 1 + i even 

1t 
= 

)dimDi p + l + i odd. 

Hence I (1) (IapI-Iap-1I-1) + (Iap-2I-Iap.3I-3) +1 + (IGl) p even 
_ 1) (Icpl-lap-ll-1) + (Iap-21-lap-3-1) + + +(Iall-1aol-) p odd 

and in either case this is (-1)P(P+l)/2+?oo+- -+apl. This finishes the proof of 
Theorem 2; Theorem 1 is now proved as well. 

7. Lemma 3 

If =<bo * *bq> < K' and x= vb. , then 

(i) Bo(x) = 
(- 
( Fj(x) 

and 

(ii) B,(x) - {F(x) + Eq=,+, IijFj(x)l 

where 



STIEFEL-WHITNEY HOMOLOGY CLASSES 523 

W 
-i 

(0,! ... :!91,--< j-a 1.. ji 1 

and B. is the radial field corresponding to bi. 
Proof. (i) Note that 

Jiq ( 1)'Fj(x) 

- Bo (?p< >-l i)O *..\jl)$$Z 

- - ~~ - . i __- >Bx 

= -g~l ((l-\? ~B~(x)( -\ * X X ( Xi B(x) 
t=1 B~~~x) = Bo~~~~o(X$i . 

(ii) The expression on the right can be re-expressed in terms of the 
vectors Bk(x) (k > i). The coefficient of B,(x) (in the resulting expression) 
is obviously 1; it must be shown that the other coefficients vanish. Fix k > i. 
The coefficient of Bk(x) is given by the formula 

1 
* * d {..? . <-< iStil<k [Io * X 1 

To show that this is zero we divide the expression inside { } by x0 ... Xk and 
set m = k-i, I = j-i; it then reads 

11 

(6.1) + L7sj1 (d .1. .O 1P?1? 

+ ( 1)?><- >~ , A 

and we must show that it vanishes. 
Let E be a vector space with basis eo, *.**, ek-1; let F be the subspace 

spanned by eo, ..., em; and let F1 be the subspace spanned by ei+, ..., ek-1. 

AE, AF, and AF1 are the exterior algebras over E, F, and F1; and VF is the 
symmetric algebra over F. 

Grade W = NE ? VF by setting W. = ?2=s AYE ? VF. Let p: 
E F be the projection with kernel F1, and define an operator d in W, 
homogeneous of degree +1 by setting 
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d(l ( z) = 0 

and 

d{xo A ... A xs 8 z) = rj=o (-l)jxo A ... * j ... A x. 8 p(xj) V z . 

Then d2 = 0 and so (W, d) is a chain complex. Evidently 

(W, d) - (AF1 ?(3 (AF ? VF) , identity ?3 d) 

and since (cf. [2]) (AF ( VF, d) is acyclic, it follows that the inclusion 
AF1 ? 1 W induces an isomorphism 

AF- -H(W, d). 

In particular, Hj (W. d) = O if j > dim F1 = k-i- 1 . 
On the other hand (W, d) is the direct sum of subcomplexes Ws given by 

W'S= p+ s AYE ? ViF . 
Thus H(W, d) is a direct sum of the H(W8); since Wk-i n w = o ( < k - 
i - 1) it follows that 

H(Wki, d) = 0 . 

Denote Wk-i by C and consider (C, d) as a complex with the gradation of C 
given by C= Cl where m = k-i, and 

C = Am-lE (3 V1F 

(this is different from the other gradations!) 
Finally, define a linear map (D: E E by setting 

(D (e) = e, . 

(D restricts to a transformation of F, and these maps extend to a unique auto- 
morphism of the algebra W, which we again denote by (D. It satisfies 

mod = doD . 

Moreover, (D restricts to an automorphism of (C, d); denote the restriction 
of (D to Cl by (D,. Then the number 

EJ=n (-1)1 trace (D, 

is precisely given by (6.1). Since H(C, d) = 0, and (D is a chain map; this 
number vanishes. 

Exactly the same argument as given in the proof of Lemma 3, (ii) 
establishes 

PROPOSITION 5. Let R be a commutative ring with identity. Let Xo, ... * q 
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be invertible elements R. Then the q x q upper triangular matrices A = 
(aij) and B = (bij) given by 

aij =E?<5o< ..<Pi-j<j xyo * *Bj-j xii < j 

and 

- 1 1)-i i <j bX >0 ... XisX,;D i xlolspj-isA,......... , . 

are inverse: 

AB= I= BA 

(3ij is the Kronecker delta). 
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