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SURGERY OBSTRUCTIONS ON CLOSED MANIFOLDS AND THE

INERTIA SUBGROUP

IAN HAMBLETON

Abstract. The Wall surgery obstruction groups have two interesting geometrically
defined subgroups, consisting of the surgery obstructions between closed manifolds, and
the inertial elements. We show that the inertia group In+1(π, w) and the closed manifold
subgroup Cn+1(π, w) are equal in dimensions n + 1 ≥ 6, for any finitely-presented group
π and any orientation character w : π → Z/2. This answers a question from [9, p. 107].

1. Introduction

Let π be a finitely-presented group, and let Ln(Zπ, w) denote Wall’s surgery obstruction
group for oriented surgery problems up to simple homotopy equivalence, where w : π →
Z/2 is an orientation character (see [32, Chap. 5-6]). We work with topological (rather
than smooth) manifolds throughout, so rely on the work of Kirby-Siebenmann [15] for
the extension of surgery theory to the topological category.

Let Xn be a closed, topological n-manifold, n ≥ 5, and let c : X → Bπ denote the

classifying map of its universal covering, so that c∗ : π1(X, x0)
≈
−→ π is a given isomorphism.

The orientation class w1(X) ∈ H1(X; Z/2) induces an orientation character w : π → Z/2.
The surgery exact sequence

[Σ(X), G/TOP ]
σn+1(X)
−−−−−→ Ln+1(Zπ, w) −→ S (X) −→ [X,G/TOP ]

σn(X)
−−−→ Ln(Zπ, w)

developed by Browder, Novikov, Sullivan and Wall [32, Chap. 9] relates the classification
of manifolds which are simple homotopy equivalent to X to the calculation of the surgery
obstruction maps σn+1(X) and σn(X).

In the surgery exact sequence Σ(X) = (X × I)/∂(X × I), and S (X) denotes the the
s-cobordism classes of pairs (M, f), where f : M → X is a simple homotopy equivalence.
For a suitable H-space structure on G/TOP (see [15], [18], [24]), these surgery obstruction
maps are homomorphisms between abelian groups.

For a fixed (X,w), let Cn(X,w) ⊆ Ln(Zπ, w) denote the image of σn(X). This is the
subgroup of Ln(Zπ, w) given by the surgery obstructions of all degree 1 normal maps
(f, b) : M → X from some closed n-manifold M . By varying X over all closed manifolds
with the same orientation character w, we define the closed manifold subgroup

(1.1) Cn(π, w) ⊆ Ln(Zπ, w)
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2 IAN HAMBLETON

as the subgroup of the L-group generated by all of the closed manifold subgroups Cn(X,w).
In the oriented case (w ≡ 1), Cn(π) is just the image of the Sullivan-Wall homomorphism
[32, 13B.3]

Ωn(Bπ ×G/TOP,Bπ × ∗) → Ln(Zπ)

defined by the surgery obstruction.
For a fixed (X,w), let In+1(X,w) ⊆ Ln+1(Zπ, w) denote the image of σn+1(X). This is

the subgroup of Ln+1(Zπ, w) which acts trivially on the structure set S (X). The surgery
exact sequence (and the s-cobordism theorem) shows that the elements of In+1(X,w) are
exactly the surgery obstructions of relative degree 1 normal maps

(f, b) : (W, ∂W ) → (X × I,X × ∂I),

where the f restricted to the boundary ∂W is a homeomorphism. By glueing a copy of
X × I along the boundary components in domain and range, we obtain a closed manifold
surgery problem W ∪∂W (X × I) → X × S1. By varying X over all closed manifolds with
the same orientation character w, we define the inertia subgroup

(1.2) In+1(π, w) ⊆ Ln+1(Zπ, w)

as the subgroup of the L-group generated by all of the inertia groups In+1(X,w). By
construction, In+1(π, w) ⊆ Cn+1(π, w) for all fundamental group data (π, w), and n ≥ 5.
Here is our main result:

Theorem A. Let π be a finitely-presented group and w : π → Z/2 an orientation charac-

ter. The inertia subgroup In+1(π, w) equals the group of closed manifold surgery obstruc-

tions Cn+1(π, w) ⊆ Ln+1(Zπ), w), for all n ≥ 5.

As stated, this holds for the simple surgery obstructions in Ls
n+1(Zπ, w), but the in-

ertial or closed manifold subgroups of Lh
n+1(Zπ, w) are just the images of In+1(π, w) or

Cn+1(π, w) under the natural change of K-theory homomorphism Ls → Lh (or Lh → Lp).
It follows that the inertial and closed manifold subgroups are equal for all torsion decora-
tions in Ki(Zπ), i ≤ 1. In [9] it was proved that the images of these two subgroups were
equal in the projective surgery obstruction groups Lp

n+1(Zπ, w), for π a finite group, and
the question answered here was raised in [9, p. 107].

Remark 1.3. Fairly complete information is available about the closed manifold obstruc-
tions for finite fundamental groups [11, Theorem A], under the assumptions that the man-
ifolds are oriented and surgery obstructions are measured up to weakly simple homotopy
equivalence, with Whitehead torsion in SK1(Zπ). The outstanding open problems in this
area are (i) to investigate the non-oriented case, (ii) to compute the simple closed manifold
obstructions in Ls

∗, and (iii) to decide whether the component κ4 : H4(π; Z/2) → L6(Zπ)
of the assembly map A∗ : H∗(Bπ

w; L•) → L∗(Zπ, w) is zero or non-zero (see Section 2 and
[11, p. 352] for this notation).

For a finitely-presented group π of infinite order, the closed manifold subgroup Cn(π, w)
is contained in the image An(π, w) of the assembly map, but they are not always equal
(see Example 5.4). However, these subgroups do become equal after localizing at 2 (see
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Theorem 4.2), or after stabilizing as follows. The periodicity isomorphism

Ln(Zπ, w)
×CP

2

−−−→ Ln+4(Zπ, w)

allows us to identity Ln
∼= Ln+4k, for all k ≥ 0. We define the periodic image of the

assembly map Aq(π, w), 0 ≤ q ≤ 3, as the subgroup of Lq(Zπ, w) generated by all of the
images of the assembly maps An(π.w), for n ≡ q (mod 4).

Similarly, we define the periodic inertial subgroup Iq(π, w) and the periodic closed
manifold subgroup Cq(π, w), 0 ≤ q ≤ 3, as the subgroups of Lq(Zπ, w) generated by all
In(π, w) and Cn(π.w), respectively, for n ≡ q (mod 4). After stabilization we obtain a
result for all fundamental groups.

Theorem B. Let π be a finitely-presented group and w : π → Z/2 an orientation char-

acter. The periodic inertial subgroup Iq(π, w) and the periodic closed manifold subgroup

Cq(π, w) both equal the periodic image of the assembly map Aq(π, w) ⊆ Lq(Zπ), w), for

0 ≤ q ≤ 3.

Remark 1.4. For infinite torsion-free groups, the L-theory assembly maps are conjectured
to be isomorphisms [7], and this is currently an active area of research. For infinite groups
π with torsion, conjecturally the contribution to Cn(π) arising from finite subgroups is
determined by the virtually cyclic subgroups of π. Theorem B is proved by showing that
the periodic inertial subgroup Iq(π, w) is equal to a periodic stabilization of the image of
the assembly map (see Theorem 5.1).

Acknowledgement. The author would like to thank Matthias Kreck, Larry Smith, An-
drew Ranicki and Larry Taylor for helpful conversations.

2. The surgery assembly map

We will need to use the relationship between the closed manifold subgroup and the
image of the L-theory assembly map. Recall that there is a factorization due to Quinn
[22] and Ranicki [23], [24, §18] (see also Nicas [20, §3]):

[X × I,X × ∂I;G/TOP, ∗]
σn+1(X)

//

∩[X,∂X]
L0

��

Ln+1(Zπ, w)

Hn+1(X
w; L•)

i• // Hn+1(X
w; L0)

c∗ // Hn+1(Bπ
w; L0)

An+1

OO

of the surgery obstruction map σn+1(X) through the assembly map An+1, where L0 de-
notes the (−1)-connective quadratic L-spectrum with Z × G/TOP in dimension zero,
and [X, ∂X]L0 is the fundamental class for symmetric L0-theory. Cap product with this
fundamental class gives a Poincaré duality isomorphism [24, 18.3] for L0, and for its
0-connective cover L• (which has G/TOP in dimension zero). In particular,

H0(X, ∂X; L•) = [X × I,X × ∂I;G/TOP, ∗] ∼= Hn(X
w; L•) .

The (co)fibration i• : L• → L0 of spectra induces a long exact sequence relating the two
homology theories. Similarly, we have the formula

σn(X) = An ◦ c∗ ◦ i• ◦ (− ∩ [X]L0).
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The notation Xw or Bπw means the Thom spectrum of the line bundle over X or Bπ
induced by w, with Thom class in dimension zero, and the assembly maps A∗ are induced
by a spectrum-level composite

Aπ,w : Bπw ∧ L0
aπ,w∧1
−−−−→ L0(Zπ) ∧ L0 −→ L0(Zπ)

as described in [11, §1]. In particular, the homomorphisms An, n ≥ 0, are just the maps
induced on homotopy groups by Aπ,w. We define the subgroup

(2.1) An(π, w) = im
(
Hn(Bπ

w; L•)
i•−→ Hn(Bπ

w; L0)
An−→ Ln(Zπ, w)

)

as the image of the assembly map restricted to L•, for any dimension n ≥ 0. Let Aq(π, w)
denote the image of the assembly map made periodic. We observe that the factorization
of the surgery obstruction map implies that

Cn(π, w) ⊆ An(π, w) ⊆ Ln(Zπ, w),

and

In+1(π, w) ⊆ Cn+1(π, w) ⊆ An+1(π, w),

but the inertial subgroup and the closed manifold subgroup have purely geometric defi-
nitions independent of the assembly map.

Remark 2.2. In [24, 18.6(i)] it is stated without proof that Cn(π, w) = An(π, w), for
n ≥ 5. This is not true in general (see Example 5.4), but we will verify this for π finite.
For π any finitely-presented group, we show that Cn(π, w) ⊗ Z(2) = An(π, w) ⊗ Z(2), for
n ≥ 5, and that Cq(π, w) = Aq(π, w), for 0 ≤ q ≤ 3.

3. The characteristic class formulas

We will use the characteristic class formulas for the surgery obstruction maps σ∗(X)
as presented by Taylor and Williams [28] (see also [31], and [11, §1] for the non-oriented
case). Let bo(Λ) denote the connective KO-spectrum with coefficients in a group Λ.
The Morgan-Sullivan characteristic class [19] is denoted L ∈ H4∗(BSTOP ; Z(2)), and
V ∈ H2i(BSTOP ; Z/2) denotes the total Wu class.

(i) ([28, Theorem A]) The spectra L0(Zπ, w) and L0(Zπ, w) are generalized Eilenberg-
MacLane spectra when localized at 2, and when localized away from 2 are both

bo(Λ0) ∨ bo(Λ1) ∨ bo(Λ2) ∨ bo(Λ3),

where Λi = πi(L
0(Zπ, w)) ⊗ Z[1/2]. In particular, there is an equivalence of

spectra L0 ⊗ Z[1/2] ≃ bo(Z[1/2]), defining a characteristic class

∆ ∈ KO0(L• ; Z[1/2])

whose associated map σ : G/TOP [1/2]
∼
−→ BO[1/2] is the homotopy equivalence

of infinite loop spaces due to Sullivan and Kirby-Siebenmann (see [27], [17], and
the exposition in [18, 4.28]).
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(ii) The splitting of L0⊗Z(2) is given by universal cohomology classes ℓ ∈ H4∗(L0 ; Z(2))
and k ∈ H4∗+2(L0 ; Z/2). The domain of the assembly map

Hn(Bπw; L0) ⊗ Z(2)
≈
−→

⊕

i≥0

Hn−4i(π; Zw
(2)) ⊕Hn−4i−2(π; Z/2)

has a natural splitting induced by ℓ and k. The assembly map has component
maps

Im : Hm(π; Zw
(2)) → Lm(Zπ, w) ⊗ Z(2), m ≥ 0

and
κm : Hm(π; Z/2) → Lm+2(Zπ, w) ⊗ Z(2), m ≥ 0

which determine An(π, w) completely (see [11, §1]).

(iii) ([28, Theorem C]) LetX be a closed n-manifold, with a reference map c : X → Bπ
such that c∗(w) = w1(X). Let uX : X → BSTOP classify the bundle ν+ such
that ν+ plus the line bundle corresponding to w is the stable normal bundle νX .
Let f : X → L• determine a degree 1 normal map. Then

σX(f)(odd) = A∗c∗ (f ∗(∆) ∩ [X]bo)

gives the surgery obstruction localized away from 2, where [X]bo denotes the ko-
fundamental class of X. Furthermore, the 2-local surgery obstruction is given
by

σX(f)(2) = A∗c∗
(
(u∗(L) ∪ f ∗(ℓ) + u∗(L) ∪ f ∗(k) + δ∗(u∗(V Sq1V ) ∪ f ∗(k))) ∩ [X]

)

where δ∗ denotes the integral Bockstein and A∗ is the assembly map.

These formulas translate the given information about the manifold X and the surgery
problem f : X → L• into a collection of ko-homology classes (away from 2), or a collection
of ordinary Zw

(2) or Z/2 homology classes for (π, w). The surgery obstruction σX(f) ∈

Ln(Zπ, w) is then computed by applying the assembly map to these classes. There are
similar formulas for the obstruction to a relative surgery problem defined by f : Σ(X) →
L•, involving the relative fundamental class [X × I,X × ∂I].

Remark 3.1. Note that the degree 0 component of the class f ∗(ℓ) in the 2-local formula
is zero. The class f ∗(∆) has a similar property which will be made precise in Lemma 5.2.

4. The proof of Theorem A (localized at 2)

We fix the fundamental group data (π, w). The idea of the proof (generalizing [9,
§4]) is to construct enough inertial surgery problems to realize all possible elements of
Cn+1(π, w). The target manifolds for these surgery problems will have the form Xn × I,
where Xn is the total space of an Sn−m-bundle over Y m, with structural group Z/2, and
the dimension of Y has the form m = (n+1)− 4i or m = (n+1)− 4i+2, for some i > 0.
The surgery problems

(f, b) : (W, ∂W ) → (X × I,X × ∂I),

with deg f = 1 and b : νW → νX×I a bundle map covering f , will be constructed by
glueing a simply-connected Milnor or Kervaire manifold surgery problem fibrewise into a
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tubular neigbourhood of Y ⊂ X × {1/2} ⊂ X × I. The details of this construction will
be given below.

The basic input is the relation between bordism and homology or KO-theory.

(i) (localized at 2) The work of Thom [29] and Conner-Floyd [4] the Hurewicz map
ΩSO

m (X,A) ⊗ Z(2) → Hm(X,A; Z(2)) for oriented bordism is surjective for every
pair (X,A). Similarly, the Hurewicz map Nm(X,A) → Hm(X,A; Z/2) for unori-
ented bordism is surjective, m ≥ 0.

(ii) (localized away from 2) There is an isomorphism

h0 : ΩSO
∗ (X) ⊗ΩSO

∗
(pt) Z[1/2]

≈
−→ KO∗(X; Z[1/2])

induced by the image of the KO[1/2]-fundamental class (see [18, 4.15]). In this
tensor product, the action ΩSO

∗ (pt) → Z[1/2] is given by the index homomorphism
if ∗ = 4i, and zero if ∗ 6= 4i.

For finite groups, there is the following foundational result:

Theorem 4.1 (Wall [30, §7]). For π a finite group, and w an orientation character, the

localization map Ln(Zπ, w) → Ln(Zπ, w) ⊗ Z(2) is injective.

We now divide the argument into two cases, since it suffices to show that In+1(π, w)
and Cn+1(π, w) are equal after tensoring with Z(2) and Z[1/2] separately.

Theorem 4.2. Let π be a finitely-presented group, n ≥ 5, and w : π → Z/2 an orientation

character. Then

(i) Cn(π, w) ⊗ Z(2) = An(π, w) ⊗ Z(2), and

(ii) In+1(π, w) ⊗ Z(2) = An+1(π, w) ⊗ Z(2).

Corollary 4.3. If π is a finite group , then Cn(π, w) = An(π, w) and In+1(π, w) =
An+1(π, w), for all n ≥ 5.

Proof. For finite groups, the only elements of infinite order in An(π, w) come from the
trivial group (see [32, 13B.1]). Hence Theorem A for finite groups follows from the 2-local
version and Theorem 4.1. �

The proof of Theorem 4.2. We first show that In+1(π, w)⊗ Z(2) = An+1(π, w)⊗ Z(2), and
note that (ii) ⇒ (i) for n + 1 ≥ 6. Alternately, a direct proof that Cn(π, w) ⊗ Z(2) =
An(π, w) ⊗ Z(2), for all n ≥ 5, can be given along the same lines. The details are similar,
but easier, and will be left to the reader.

We proceed as outlined above to construct enough inertial elements to generate the
domain

(4.4) Hn+1(Bπ
w; L•) ⊗ Z(2)

≈
−→

⊕

i>0

Hn+1−4i(π; Zw
(2)) ⊕Hn+1−4i+2(π; Z/2)

of the assembly map restricted to L•.
Suppose that α ∈ Hm(π; Zw

(2)) is a given homology class (with twisted coefficients given

by the orientation character w). Let η denote the line bundle over K(π, 1) with w1(η) = w.
By the Thom isomorphism,

Φ: Hm(π; Zw
(2))

∼= Hm+1(E, ∂E; Z(2))
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where E = E(η) denotes the total space of the disk bundle of η. Let h : (V m+1, ∂V ) →
(E, ∂E) be an oriented (m + 1)-manifold, with reference map to (E, ∂E), whose funda-
mental class h∗[V, ∂V ] = Φ(α). Now let g : Y m → Bπ be the transverse pre-image of the
zero section in E(η), with w1(Y ) = g∗(w). By construction, g∗[Y ] = α.

The model surgery problems with target X × I will be constructed from products
X = Y m × Sn−m. A small tubular neighbourhood of Y ⊂ X × {1/2} ⊂ X × I
is homoemorphic to the product U = Y × Dn+1−m. By our choice of dimensions,
n + 1 −m = 4i or n + 1 −m = 4i− 2, for some i > 0. Let ϕ : (M4i, ∂M) → (D4i, ∂D4i)
and ψ : (K4i−2, ∂K) → (D4i−2, ∂D4i−2) denote the simply-connected Milnor and Kervaire
manifold surgery problems, whose surgery obstructions represent generators of L4i(Z)
and L4i−2(Z) respectively. Recall that these are smooth surgery problems, with boundary
manifolds ∂M4i and ∂K4i−2 smooth homotopy spheres (at least if 4i > 4), but homeomor-
phic to the standard sphere by the solution of the Poincaré conjecture [25]. In dimension
4, we need the E8-manifold constructed by Freedman [8].

Now we define W by removing the interior of U from X × I, and glueing in Y product
with either the Milnor manifold M4i or the Kervaire manifold K4i−2. The degree 1 map
F : W → X×I is the identity outside of U = Y ×Dn+1−m, and inside U is given by id×ϕ
or id × ψ. Similarly, the bundle map b : νW → νX×I is the identity over the complement
of U and given by the simply-connected problem over U . We now have a degree 1 normal
map (f, b) : W → X × I which is the identity on the boundary, hence defines an element
in [Σ(X), G/TOP ].

It follows from the characteristic class formula that the surgery obstruction

σ(f, b)(2) = Am(α) + lower terms

where Am = Im or Am = κm, and the “lower terms” are the images under Aj for j < m
(in this formula we have identified Ln−4i = Ln by periodicity).

The surgery problems constructed so far are enough to deal with degree m = (n+1−4i)
contributions from the first of the summands in formula (4.4) for Hn+1(Bπ

w; L•). To
realize the Z/2-homology classes β ∈ Hm(π; Z/2) arising from the second summand, we
start with a possibly non-orientable manifold g : Y m → Bπ with g∗[Y ] = β.

In this case, n + 1 −m = 4i − 2, for some i > 0, and we let ζ denote the line bundle
over Y with w1(ζ) = w1(Y ) + g∗(w). Let ξ = (2i− 1)ζ ⊕ (2i − 1)ε be the Whitney sum
of (2i− 1) copies of ζ , together with (2i− 1) copies of the trivial line bundle ε. Now let
p : X → Y denote the total space of the associated sphere bundle X = S(ξ), and observe
that the class w1(X) = p∗(g∗(w)). The fibre sphere has dimension 4i−3 = n−m. Notice
that the bundle ξ has structural group Z/2, and the transition functions defining this
bundle operate through the involution denoted S4i−3(2i− 1), meaning the restriction to
the unit sphere of the representation R2i−1

+ ⊕ R2i−1
− in which a generator of Z/2 acts as

+1 on the first subspace and as −1 on the second. Since i > 0 this bundle has non-zero
sections, so we may choose an embedding of Y ⊂ X.

We will now show that the Kervaire sphere ∂K4i−2 admits an orientation-reversing
involution which is Z/2-equivariantly homeomorphic to S4i−3(2i−1). Recall thatW 4i−3(d)
denotes the Brieskorn variety given by intersecting the solution set of the equation

zd
0 + z2

1 + · · · + z2
2i−1 = 0
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with the unit sphere in C2i, with d ≥ 0 an odd integer. There is an involution Td on
W 4i−3(d) given by complex conjugation zj 7→ z̄j in each coordinate. It is known that
W 4i−3(d) is a homotopy sphere if d is odd, which is diffeomorphic to the standard sphere
if d ≡ ±1 (mod 8), and to the Kervaire sphere ∂K4i−2 if d ≡ ±3 (mod 8) (see [12]). The
complex conjugation involution extends to the perturbed zero set, which is diffeomorphic
to the Kervaire manifold K4i−2 if d ≡ ±3 (mod 8).

Lemma 4.5. The involution (W 4i−3(d), Td), with d odd, is Z/2-equivariantly homeomor-

phic to S4i−3(2i− 1).

Proof. These involutions were studied by Kitada [16], who gave necessary and sufficient
conditions for (W 4i−3(d), Td) to be Z/2-equivariantly diffeomorphic to (W 4i−3(d′), Td′). We
need only the easy part of his argument, namely that (W 4i−3(d), Td) is Z/2-equivariantly
normally cobordant to S4i−3(2i − 1) by a normal cobordism which is the identity on a
neighbourhood of the fixed set. The remaining surgery obstruction to obtaining an equi-
variant s-cobordism lies in the action of L4i−2(Z[Z/2], w) ∼= Z/2 on the relative structure
set of the complement of the fixed set. In the smooth category, this action is difficult to
determine, but in the topological category the action is trivial (since this element is in
the image of the assembly map). �

We can now glue in the simply-connected Kervaire manifold surgery problem in a

tubular neighbourhood U of Y ⊂ X × I. The boundary ∂U = Ỹ ×Z/2 S
4i−3, where Ỹ is

the double covering of Y given by w1(ζ) and the fibre sphere has the action S4i−3(2i− 1).
We have a homeomorphism

Ỹ ×Z/2 S
4i−3 ≈ Ỹ ×Z/2 ∂K

4i−2

given by Lemma 4.5, and this is used to glue in Ỹ ×Z/2 K
4i−2 defined by the extension of

the complex conjugation involution over K4i−2. The characteristic class formula shows as
before that the surgery obstruction

σ(f, b)(2) = κm(α) + lower terms

where the “lower terms” are the images under Aj for j < m. �

5. The proof of Theorem A (at odd primes) and Theorem B

By Theorem 4.2, the inertial subgroup and the closed manifold subgroup are both equal
to the image of the assembly map, after localization at 2. We now localize away from 2,
and this is where we will need to stabilize to identify the image of the assembly map. As
above, let Aq(π, w), 0 ≤ q ≤ 3, denote the periodic image of the assembly map, generated
by all the An(π, w) for n ≡ q (mod 4). We will prove:

Theorem 5.1. Let π be a finitely-presented group, and w an orientation character. Then

(i) In+1(π, w) ⊗ Z[1/2] = Cn+1(π, w) ⊗ Z[1/2], and

(ii) Iq(π, w) = Cq(π, w) = Aq(π, w).

The procedure in this setting will be similar, but since the transfer map on L-theory

Res : Ln+1(Zπ, w) ⊗ Z[1/2] → Ln+1(Zπ
+) ⊗ Z[1/2]
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to the orientation double covering (π+ = kerw) has the property that Ind ◦Res is mul-
tiplication by 2, we may assume that w is trivial. The domain of the assembly map is
now

Hn+1(Bπ; L0) ⊗ Z[1/2] ∼= kon+1(Bπ; Z[1/2]),

and by the characteristic class formula we must consider the surgery obstructions of
elements of the form

α = (f ∗(∆) ∩ [V ]bo) ∈ ko∗(V ; Z[1/2]),

for some closed (n+1)-manifold V with reference map c : V → Bπ. The map f : V → L•

classifies a given closed manifold surgery problem with range V .
We need more information about the class ∆. Recall that there is a Conner-Floyd

isomorphism

h0 : Ω4∗(X) ⊗Ω∗(pt) Z[1/2]
≈
−→ KO0(X; Z[1/2])

which gives the KO-theory for a finite complex X in terms of oriented cobordism away
from 2.

Lemma 5.2. The class ∆ ∈ KO0(G/TOP ; Z[1/2]) is represented by a formal sum of

classes ∆̂k ∈ Ω4k(G/TOP )⊗ Z[1/2] of positive degrees k > 0.

Proof. We first recall the description of ∆ given in [18, Chap. 4]. For each k > 0, let
Sk : Ω4k(G/TOP ) → Z be the homomorphism which assigns to an element f : X →
G/TOP , the signature difference (indexM − indexX)/8 for the associated surgery prob-
lem M → X. These are Ω∗(pt)-module homomorphisms, where Ω∗(pt) acts on Z[1/2] via
the signature in dimensions ≡ 0 (mod 4), and zero otherwise.

By [18, Lemma 4.26], the collection {Sk} induces a homomorphism

σ0 : KO0(G/TOP ; Z[1/2]) → Z[1/2].

The proof uses Conner-Floyd and an inverse limit argument over finite skeleta of G/TOP .
Now one applies the universal coefficient formula for KO-theory [33, (2.8)], and in par-
ticular the isomorphism

eval : KO0(G/TOP ; Z[1/2]) → HomZ(KO0(G/TOP ; Z[1/2]),Z[1/2])

to get the element

∆ ∈ K̃O0(G/TOP ; Z[1/2]) = [G/TOP,BO[1/2]],

with eval(∆) = σ0 (see [18, p. 86] and the proof of [18, (4.26)] for the assertion that eval is
an isomorphism). Note that the element ∆ lies in reduced KO0 since the homomorphisms
Sk have positive degree. The associated map σ : G/TOP → BO[1/2] is the Sullivan
homotopy equivalence (see [18, 4.28]).

By the Conner-Floyd isomorphism for cobordism, there is a unique element

∆̂ ∈ Ω̃4∗(G/TOP )⊗Ω∗(pt) Z[1/2],

such that h0(∆̂) = ∆ ∈ K̃O0(G/TOP ; Z[1/2]). We may consider this tensor product as
a quotient of the corresponding direct product, and represent elements as infinite formal
sums.
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Quillen [21, Theorem 5.1] proved that the reduced cobordism group of a finite complex
is generated by elements in strictly positive dimensions, modulo the action of Ω∗(pt).

Therefore, ∆̂ is represented in the tensor product by a formal sum of elements

∆k ∈ Ω̃4k(G/TOP ; Z[1/2])

with k > 0. �

We now consider an element α = (f ∗(∆) ∩ [V ]bo) ∈ ko∗(V ; Z[1/2]) whose image under
the assembly maps gives an element of Cn+1(π, w)⊗Z[1/2]. By Lemma 5.2 and Poincaré
duality for bordism theory [2], we can express

α =
∑

k>0

ak[Y
n+1−4k, gk]

as a finite Z[1/2]-linear combination of oriented manifolds gk : Y n+1−4k → V , with ak ∈
Z[1/2] and k > 0. Let g : Y n+1−4k → Bπ be a manifold with reference map (induced by
V ), such that k is the smallest integer with ak 6= 0. Hence g∗([Y ]bo) = α + lower terms.

We will now construct an element in In+1(π). We write n + 1 −m = 4k, and define
X = Y m × S4k−1. The surgery problem

(f, b) : (W n+1, ∂W ) → (X × I,X × ∂I)

will be constructed as above, by gluing in the Milnor manifold surgery problem

(M4k, ∂M) → (D4k, ∂D4k)

fibrewise along a tubular neighbourhood U ⊂ X × I of Y ⊂ X × {1/2} in the interior of
X × I. Let f : Σ(X) → L• also denote the normal invariant of (f, b), which factors as the
composite

f : Σ(X)
project
−−−−→ Y ×D4k/Y × S4k−1 1×ϕ

−−→ L•,

where ϕ : S4k → L• is the normal invariant of the Milnor problem (i.e. the generator of
π4k(L•) = Z). The characteristic class formula

σ(f)(odd) = A∗(g × 1)∗
(
f ∗(∆) ∩ [Y × S4i]bo

)
= A∗(α) + lower terms,

since f ∗(∆) ∩ [Y × S4i]bo = [Y ]bo, and g∗([Y ]bo) = α+ lower terms. This completes the
proof of part(i) of Theorem 5.1.

Remark 5.3. This formula is consistent with the rationalization of the calculation at
2. Note that the the Poincaré dual L(Y ) of the L-genus gives the rational part of the
L0-theory fundamental class [Y ]Q ∩ L(Y ) ∈ Hm−4∗(Y ; Q), by [24, 25.17]. Under the
equivalence L0 ⊗Z[1/2] ≃ bo(Z[1/2]), the fundamental class [Y ]L0 ∈ Hm(Y ; L0 ⊗Z[1/2])
maps to [Y ]bo ∈ kom(Y ; Z[1/2]).

The proof of Theorem B. By Theorem 4.2 it is enough to show that Iq(π, w) ⊗ Z[1/2] =
Aq(π, w) ⊗ Z[1/2], for 0 ≤ q ≤ 3. We start with an integer m ≡ q (mod 4), m ≥ 5,
and an arbitrary element Am(α) ∈ Am(π, w) ⊗ Z[1/2], which is the image of an element
α ∈ kom(π; Z[1/2]) under the assembly map.

Since KO-homology satisfies the wedge axiom, the group kom(π; Z[1/2]) is the direct
limit of the ko-homology of the finite skeleta of the classifying space Bπ. By using the
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Conner-Floyd theorem [18, 4.15] and the 4-fold periodicity kom+4k = kom, k > 0, we can
express

α =
∑

k>0

ak[Y
m+4k, gk]

as a finite Z[1/2]-linear combination of the images of fundamental classes [Y ]bo of oriented
manifolds gk : Y m+4k → Bπ, ak ∈ Z[1/2]. The surgery obstruction of a typical element
(gk)∗[Y ]bo ∈ kon+1(Bπ; Z[1/2]) in this sum lies in Cn+1(π, w) ⊗ Z[1/2], where n + 1 :=
m+ 4k ≥ 9. But Cn+1(π, w)⊗Z[1/2] = In+1(π, w)⊗Z[1/2], by Theorem 5.1, part (i), so
we conclude that Am(α) ∈ Im(π, w) ⊗ Z[1/2]. �

Example 5.4. We give an example (based on work of Conner and Smith) to show that,
in a given dimension n, the image of the assembly map An(π, w) is not always equal to the
closed manifold subgroup Cn(π, w). In particular, this contradicts [24, 18.6(i)], and shows
that for a suitable finite complex K the elements of Hn(K; L•) are not always represented
by closed manifold surgery problems.

We will need [10, Prop. 2.6], which is a variation of the Kan-Thurston theorem [14],
[3]. For any finite complex X, there exists a finitely-presented group ΓX with BΓX of
dimension ≤ dimX, and an epimorphism ϕ : ΓX → π1(X) with perfect kernel. Moreover,
there is a lifting α̃X : X → (BΓX)+

ker ϕ of the classifying map αX : X → Bπ1(X) which
is a homotopy equivalence. In other words, X is obtained by applying the Quillen plus
construction to BΓX . It follows (from the Atiyah-Hirzebruch spectral sequence) that
ko∗(X) ∼= ko∗(BΓX). it is therefore enough to produce the following example:

Lemma 5.5 (Conner-Smith). There exists a finite complex X such that the natural map

ΩSO
m (X) ⊗ Z[1/2] → kom(X; Z[1/2])

is not surjective onto the odd torsion in some dimension m ≥ 5.

Proof. In a series of papers Conner and Smith studied the relation of complex bordism
to connective complex K-theory. Our interest is in real connective K-theory, but since
MU ≃ MSO ∧ Σ2MSO away from 2, their results apply to our situation.

According to a result of Johnson and Smith [13, Theorem 1], for a finite complex X the
natural map ΩU

∗ (X) → k∗(X) is onto if and only if the projective dimension of ΩU
∗ (X)

over ΩU
∗ (pt) is ≤ 2. The right-hand side is connective complex K-homology theory. On

the other hand, by a result of Conner and Smith [6, Theorem 5.1], a large N -skeleton X
of K(Z/p, n), p an odd prime, will have a large homological dimension over MU . We may
pick one with hom. dimΩU

∗
(pt) ΩU

∗ (X) ≥ 3, and with p an odd prime, and both n and N
fairly large (see also [26, p. 854] for an explicit example). Such a finite complex X gives
the required example. �

We note that the reduced ko-theory of X will be p-torsion, since the 1/p-type of X is
a wedge of spheres. In Conner and Smith [5, Theorem 10.8], they show that any class
in kom(X; Z[1/2] can be realized by a closed manifold after stabilizing by powers of the
periodicity element t = [CP 4]. The statement above shows that stabilizing is actually
necessary.
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