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Introduction
THIS paper gives another proof of the triangulability of 3-manifolds,
which was first solved by Moise (9) in 1951 and then by Bing (2) in 1957.
I t follows up a suggestion by Kirby and Siebenmann that the methods
they used to solve the problem of triangulation in high dimensions (5),
(6) could be adapted to the three dimensional case.

Unless otherwise stated, manifolds are taken to be paracompact with
or without boundary.

The triangulation problem is closely related to the handle straighten-
ing problem (Theorem 1). Those familiar with Kirby and Siebenmann's
work will recall that by exploiting a certain ingenious torus unfurling
idea they were able to reduce the handle straightening problem in
dimensions > 5 to a certain problem in the PL category, namely,
deciding the nature of PL homotopy equivalences W —»- Bt x Tn which
are homeomorphisms along the boundary (where Bk = [— 1, 1]*, Tn =
S1x . . . x S1 (n times), and W is a k + w-dimensional manifold).

In fact they were able, with Wall and Hsiang and Shaneson, to show
that for k + n > 5 and k + 3 the 2n-fold cover of such a map is homo-
topic relative boundary to a PL homeomorphism, and hence that non
3-handles in dimensions ^ 5 were straightenable; more surprisingly
Siebenmann found that a non-straightenable 3-handle exists in each
dimension > 5.

For k + n = 3 it turns out that a similar reduction of the handle
straightening problem is possible, and Waldhausen has solved the
appropriate problem (Lemma 3) showing that a PL homotopy equiva-
lence W -*• Bk x Tn which is a homeomorphism along the boundary is
itself homotopic relative boundary to a PL homeomorphism, but only
provided that W is also irreducible, that is, every PL 2-sphere in W
bounds a PL 3-ball. To achieve the requisite irreducibility the handles
of Theorem 1 are supposed from the first to lie inside a chart, i.e. a copy
of R3, the irreducibility of which was established by Alexander (1).

I would like to thank very much my supervisor Dr. G. P. Scott, who
spread light where darkness threatened.
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1. Results
THEOREM 1 (The 3-dimensional handle straightening theorem).

Given a topological embedding h: Bkx Rn —>- R3 (k + n = 3) which is PL
(piecewise linear) in a neighbourhood of d(Bt x Rn), there exists a topo-
logical isotopy ht of h = ho such that

(a) h1isPLonBkx Bn,
(b) ht = hond(B*xRn) u^x(R»-2B»).

rBn = [ —r, r]nisaPLn-baUneighbourhoodoftheorigininEuclidean
n-space Rn. d denotes boundary. Bk x Rn should be regarded as an
open ifc-handle with core Bk x {0}, lying inside a chart of the 3-manifold
under consideration.

A close consequence of this theorem is:

THEOREM 2 (The triangulation of 3-manifolds).

1. (Existence). Any topological ^-manifold M has a PL structure.
2. (Uniqueness). Given two PL structures E, X' on M there exists a

topological ambient isotopy (appropriately E-isotopy) of M from the
identity to a PL homeomorphism Mz —*• Mz-.

Let d be a metric on M and e : M —>- (0, oo) a continuous map. Then
an ambient isotopy of M is an e-isotopy if d(x, ht(x)) < e(x) for all
xeM, te[O, 1].

Remarks. Theorem 2.1 is equivalent to saying that M is triangulable:
see for example Theorem 3.8 of (12).

A relative version of Theorem 2.2 also holds—see §3.

2. Proof of Theorem 1
We shall use three lemmas.

LEMMA 1 [Whitehead (15)]. Let M be a PL manifold of dimension
n < 3, with no compact unbounded component. Then there exist PL
immersions of M in Rn.

LEMMA 2 [Wall (14)]. Let Mbea PL ^-manifold with compact boundary
and one simply connected end, and let A be a compact subset of M. Then M
contains a compact PL submanifold K which

(a) contains A in its interior,
(b) has boundary consisting of dM and a 2-sphere.
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Note that although the result is stated in (14) only for manifolds
without boundary, it generalises easily to the formulation above, where
the boundary is compact.

A map <j>: M -*• N of manifolds is proper if (fr-i^N) = dM. A PL
3-manifold N is said to be sufficiently large if it admits a proper PL
embedding of a compact surface F not S2 such that ni(F) maps in-
jectively into ni(N). Let Tn = S1 x . . . xSl (n times) be the n-torus.
Clearly the 3-manifolds Bk xTn (k = 0,1, 2) are sufficiently large.

T/KMMA 3 [Waldhausen (13) or Scott(lO)]. Let M, N be connected
compact orientable irreducible PL ^-manifolds with N sufficiently large,
and let <f>: M —>- N be a proper PL homotopy equivalence which is a
homeomorphism on the boundary. Then <f> is homotopic relative bound-
ary to a PL homeomorphism.

Note that although neither (13) nor (10) give the above result as a
stated theorem, they do actually prove it, as part of the proof of
Theorem 6.1 of (13), or Theorem 2.1 of (10).

Proof of Theorem 1. The proof is based on the construction of the
diagram of mappings below [compare Kirby and Siebenmann (6)]. Its
inspiration was Kirby's observation, used in (4) to prove the annulus
theorem (the case k = 0) for n ^ 5, that any homeomorphism g ;Tn -*•
Tn of the 7i-torus such that Tti(̂ ) = identity is covered by a bounded
homeomorphism g of Rn ; g will then extend by the identity to a homeo-
morphism of an 7i-ball Dn for which int Dn = Rn.

Let Tn— + denote Tn with one point removed. I* denote PL structures.
£ = h'1 (standard structure). E = Ei = E2 = £3 = £4 on Bk x Bn. All
horizontal maps are PL. Everything commutes.

9 V(B*x RBL - ^ B ' x R "

1 \
(Bk x T\ —** Bk x T*

(B* x Tn-*)x

(Bk x 2B\ c—*{Bk x R*)z —*• R3
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Case k = 3.
For k = 3 the diagram greatly simplifies:

-1+ B*

_?U R3

(B3)T is a PZ ball since h embeds it in R3, which is irreducible. An
appropriate extension of the identity map id\SB, by coning will thus
give rise to a PL homeomorphism g which is the identity on the boun-
dary. Let gt be the Alexander isotopy from the identity to g. Then

is PL on B3

hgj1 = h on dB3

so that hgj1: B3 —̂  R3 will be the desired handle-straightening isotopy.

Case k = 0, 1, 2.
Construction up to Ei level: Lemma 1 implies that immersions of

Tn — • in Rn exist for each n ^ 3; let a be the product of the identity
on Bk with some such immersion. Arrange a and the inclusion of
Bk x 2Bn in Bk x Tn — * to commute with the inclusion of Bk x 2Bn in

Construction up to E2 level goes via an intermediate level Sn . Essen-
tially (BkxTn)Zii is (BkxT"-*)lt capped off, and ( f i * x r % is
(Bk x Tn)Zil with the non-irreducible part removed.

Ei coincides with the standard structure near the boundary. Extend
£i along the entire boundary of Bk x Tn by letting Ei = standard
structure on a sufficiently small open collar N(dBk x Tn) o£Bk x Tn.

(Bk xT1* — * u N(dBk x Tn))jli has one simply connected end, and
so according to Lemma 2 contains a compact PL submanifold K which

(a) contains Bk x 2Bn in its interior,
(b) has boundary consisting of (dBk x Tn)Zi and a 2-sphere K.

K bounds a topological 3-ball in Bk x Tn by the Schoenflies theorem (3)
applied via the universal cover. Extend the identity map td|# by coning
to a homeomorphism Bk x Tn —>- K u <#K C# denotes the cone). This
homeomorphism induces a PL structure En on Bk x Tn. Note that
En = Si on K => Bk x 2B".

If (Bk x Tn)lti were irreducible then according to Lemma 3 it would
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be PL homeomorphio to Bk x Tn. In general however (Bk x Tn)Zii is a
connected sum of manifolds (7) all but one of which, since every 2-sphere
in (Bk x Tn)Zii bounds a topological 3-ball, will be topological spheres.
(Note that it is a consequence of this paper that every topological
sphere is a PL one, so that (Bk x Tn)Sll is in fact irreducible and this
paragraph is redundant; however we do not know this yet.) Thus
(.B* x Tn)Zil = A u Q where Q is topologically a ball, A n Q = dQ is a
2-sphere a, and A u "Jfcr is indecomposable. Extend the identity map
id | A to a homeomorphism BkxTn^A u <#o. This homeomorphism
induces a PL structure 22 on Bk x Tn. (Bk x Tn)Zi is irreducible being
neither S2 x S1 nor a connected sum (8). Note that £2 = £11 on A. A
may be assumed to contain Bk x Bn as follows.

k = 0: (T3 — B3)Zii has one simply connected end, so Lemma 2
provides a PL 2-sphere T in (2£3-.B3) r ^ = [2B3-B*)Z which bounds
in (T3)Zii a compact set D containing (B3)z. D is a P i ball since h embeds
it in R3, which is irreducible. Choose the connected sum representation
of (T3)Zll in such a way that D lies inside A.

k = 1, 2: the generalised Dehn's lemma (11) provides in (Bkx
(2B"-Bn))z k surfaces, T, of type (0, n) with boundary (8Bk x 5fB»)z.
T u (dBk x fBn)z forms a PL 2-sphere in (Bk x 2Bn)z bounding a com-
pact set D containing (Bk x Bn)z. D is a PL ball since h embeds it in R3.
Choose a connected sum decomposition of (BkxTn)Zii—D. If D is
reattached along T to the relevant indecomposable, and hence irreduc-
ible, summand, it is not difficult to see that the resulting manifold will
also be irreducible. Thus the decomposition of (BkxTn)Zii — D gives
rise in a natural way to a decomposition of (Bkx Tn)Zii in which A
contains D.

We have obtained an irreducible manifold (Bk x Tn)Zl in which
E2 = E o n B * x B n . The identity map (Bk x Tn)Zj ->- Bk x T" is homo-
topic relative boundary to a simplicial approximation <f>, which is a PL
homotopy equivalence and a homeomorphism along the boundary. By
Lemma 3 <f> is homotopio relative boundary to a PL homeomorphism g.

Construction up to £3 level: Let e be the universal covering map of
BkxTn. Let £3 = e-1(I2). Arrange the inclusion of .B*x2.B» in
(Bk x Rn) l 3 so that everything still commutes, g lifts to a homeomor-
phism g of Bk x Rn which is the identity on the boundary, g is bounded
on the Rn factor since 711(0) is the identity.

Construction up to £4 levd: Let y: BkxRn c-t-BkxR" he a PL
inclusion which is the identity on Bk x Bn and which maps Bk x Rn onto
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Bk x 2Bn- {0} x 82B». Let 0 = y^y"1 on Bk x 2B»- {0} x 82B". Since
gf is bounded on the Rn factor 0 will extend by the identity on {0} x
32Bn to a homeomorphism of Bk x 2Bn which is the identity on the
boundary. Extend O by the identity everywhere else to a homeomor-
phism of JB* x Rn. Let 24 = O~x (standard structure), so that E3 = £4
on Bk x 5».

"NT l t a — /Alexander isotopy from the identity to 0 on Bk x 2Bn

°W 6 ' ~ {identity on 5 t x R " - 5 * x 2 B » (t e [01]).
Then

Wo1 = h

hG'1 is PL on Bk x B n

hOj1 = h on 35* x R» u £* x Rn-2Bn

so that AC "̂1: Bk x Rn -»- R3 will be the desired handle-straightening
isotopy.

This completes the proof of Theorem 1.

3. Proof of Theorem 2
Proof of Theorem 2.2. First ambient (e—) isotop i f to a homeo-

morphism which is PL near the boundary, using the classification of
surfaces and the uniqueness of collars (16; V-20).

The relative version of Theorem 2.2 which follows will now complete
the proof.

THBOBEM 2.2 (Relative version). Suppose the topological homeomor-
phism h: Mx -*• MZ' is PL on a neighbourhood N(K) of some closed
subset K 2 dM of M. Then there is an ambient (e — ) isotopy of M
relative K from h to a PL homeomorphism.

Remark. The condition K 2 3M may be removed once the initial
statement of this section is itself made relative.

Proof. Subdivide some Z — triangulation of M — K so finely that
every simplex is contained in some E' — chart of M. Such a triangulation
gives rise to a handle decomposition of M — K in which each handle,
being taken sufficiently narrow, may be supposed to lie inside a £' —
chart of M. Apply the handle straightening theorem simultaneously to
all those 0-handles which have non-empty intersection with M — N(K)
(the others are already straight). The resulting ambient isotopy of M
remains the identity on smaller neighbourhood NQ(K) of K. Now
simultaneously straighten all those 1-handles which have non-empty
intersection with M — NQ(K), to obtain an ambient isotopy of M which
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remains the identity on another neighbourhood Ni(K) s No(K) of K.
Straightening thus successively the handles of increasing index, one
eventually attains an ambient isotopy of the desired character.

It becomes an e-isotopy if the triangulation of M — K is taken suffi-
ciently fine.

Proof of Theorem 2.1. Any topological manifold M certainly has local
PL structures: the idea is to isotop these together.

From the classification of surfaces and the existence of collars (16;
V-13) a PL structure may be assumed to have been defined on a collar
of if.

Let 'Hi = [Ui\ 4>i)i-\tz... be a locally finite (and therefore countable)
cover by charts of M. The subset <&o of 'Hi consisting of the boundary
charts may be assumed to be PL compatible, as above. Renumber the
e l e m e n t s o f "Ho, a s Uo, U-i, U-z, . • • a n d t h o s e o f 'Hi — <Hlo a s TJ\, U %,...,
and suppose inductively that a PL structure has been defined on
{J{__00 Ut. 4>r+1 induces a PL structure on UT+1. Let U be the manifold
Ur+1 n (JLoo Ui with the PL structure inherited from {JL^ Uf, V the
same manifold with the PL structure inherited from Ur+i. UT+i
intersects a finite subset {Ui}UI of 'Hi. Refine 'Hi to an open covering
•V = {Vi}in in which

?i <=Ut if i e / (N.B. r + lel)

Vi = Ut if i$ I.

Triangulate U and let K be the (finite) union of closed 3-simplexes of U
which have non-empty intersection with F r + 1 n U/n<-co...r) ^i> which
is compact. The triangulation gives rise to a handle decomposition of
U: apply the handle straightening theorem to the handles correspond-
ing to K, th^ O-handles first, then the 1-handles, and so on, to obtain a
homeomorphism h : U —*• U' which is PL on K and the identity outside
some compact subset N(K) say. Then [j1^ Vt has a well-defined PL
structure inherited from \JL<xjUi on ( J l^ F4, from Ur+1 on F r + 1 —
N(K), and induced by <pr+ih on Vr+\ n U. Taking the induction to its
limit, which the local finiteness condition makes feasible, finally gives
rise to a PL structure on all M, as desired.
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