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EXACT SEQUENCE INTERLOCKING AND FREE HOMOTOPY THEORY
by K. A. HARDIE and K. H. KAMPS

CAHIERS DE TOPOLOGIE

ET GtOMtTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVI-1 (1985)

Resume.On étudie des ph6nombnes d’exactitude entrelac6s 6 1’ex-
tr6mit6 non-ab6lienne d’un diagramme de Kervaire. On en

deduit en particulier des critbres pour l’exactitude des suites de

Mayer-Vietoris associ6es. Ces suites sont 6tudi6es dans le
cas des diagrammes de Kervaire venant : (A) des suites d’homoto-
pie d’un triple, (B) des suites d’homotopie d’un produit fibr6

d’homotopie, (C) des suites de paires d’homotopie pour une

paire d’applications point6es ; de nouvelles suites de Mayer-Viet-
oris sont indiqu6es et des applications sont donn6es en th6orie
des paires d’homotopie et en th6orie des crochets de Toda.

Dans une section finale une suite covariante d’ensembles

d’homotopie libre, associée à une application libre est d6crite.
Cette suite a une structure enrichie 6 1’extremite non-ab6lienne
conduisant à un th6orbme de classification pour un nouvel en-
semble d’homotopie. De plus les r6sultats du d6but permettent
de d6duire une suite de Mayer-Vietoris classifiant les applications
dans un produit fibr6 d’homotopie libre.

0. INTRODUCTION. 

In a wide variety of situations in algebra and topology invariants
appear in the form of long exact sequences. Typically these sequences
consist of homomorphisms of abelian groups becoming non-abelian
at a certain stage and terminating with arrows between pointed
sets. When several objects are interrelated the associated sequences
of invariants tend to interlock. Interlocking phenomena for sequences
of abelian groups have been studied by Wall [20J and results of the fol-
lowing kind obtained. The exactness of one of the sequences ms.
be deduced from the exactness of the others, given certain information.
Again from a (herwaire) diagram of sequences interlocking in a certain

way one can infer the existence of a sequence of Mayer-Vietoris type
convenient for purposes of computation. No results of this kind
have hitherto been available for the non-abelian parts of sequences.
In Sections 1 and 2 we give an analysis of exactness properties, in
the presence of weaker and weaker algebraic structure and prove cer-
tain results of the desired type. Section 3 is devoted to a study of the
more immediate applications. Quite frequently we have found that when
a particular Mayer-Vietoris sequence was known to exist and a proof
could be constructed using the theory of Section 1, the methods also

brought to light other sequences whose existence had not been suspected.
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The systematic study of applications led to an advance of an-
other sort. It has always been recognized that at the pointed set stage
of an exact sequence the information about the objects expressed
by the exactness of the sequence is severely limited. Whereas in the
abelian group stage one may aspire to compute every third group (from
information about the other two and provided one knows how to

determine the group extensions), at the pointed set stage this has been

impossible. An indication that it might be possible occasionally to en-

rich the structure of the objects of the sequence so as to perform com-
putations was given by Rutter [16J when he discovered a sequence, in

retrospect clearly related to the dual Puppe sequence of a map
f, that could be used (given certain powerful assumptions) to classify
maps into the homotopy fibre of f. Examination of the way Rutter’s

sequence could be placed in the framework of Sections 1 and 2
led to the discovery of an exact sequence for free homotopy sets that
can specialize to Rutter’s sequence in the pointed case but that even
there is more general. Moreover the sequence throws light on the type
of extra structure to be expected : one can hope to select arbitrary
elements as base points, but one will need to contemplate parallel sets
of arrows.

The covariant free homotopy sequence of a map is described in

Section 4 together with the associated Kervaire diagram of such se-

quences resulting from the construction of the homotopy pullback of a
pair of maps with common codomain. In an extended application of
the theory of Sections 1 and 2 to this situation, a Mayer-Vietoris se-
quence is obtained by means of which it is possible to give a homotopy
classification of the (free) maps into a (free) homotopy pullback. By
specialization a classification is obtained also for the pointed case.

l. EXACT SEQUENCES Of- GROUPS AND POINTED SETS.

We are dealing with pointed sets and pointed maps. The base

point of a pointed set and the constant map to the base point of a

pointed set will usually be denoted by *. In the case of a group the
base point will be the neutral element.

A. Types of exact sequences.

For a pointed map a: A -&#x3E; B let Kera and Im a denote the

pointed subsets a-1(*) and a (A) of A and B, respectively.
For a sequence ( a, 6) of pointed maps,

the following types of exactness (at B) will occur.

(EO) (a,B) is differential : Ba = *.

(El) (a,B ) is exact : 1m a = Kers B.
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(E 2) A is a group operating on B from the left by an action
AxB -&#x3E; B such that

(i) (a(a)=a.* for each a E A ;
(ii) If b, b’ E B, then B(b)= B(b’) iff b’ = a.b for some a E A.

(E2*) (E2) with left operation replaced by right operation.

(E3)a is a group homomorphism such that for b, b’ E B

B (b) = B(b’) iff b’b-1 E Ima.

(E3*) a is a group homomorphism such that for b, b’ E B

B(b) = B(b’) iff õ1 b’ E Imc¿.

(E4) a and B are group homomorphisms with Im a = Ker S.

Clearly, type (E2) is a special case of type (El), and type (E4) is

a special case of both type (E3) and (E3*), the kernel of a group
homomorphism being a normal subgroup. Type (E3) is a special case

of type (E2), the operation of A on B being defined by a.b = a (a)b ,
where a(a)b is the product of a (a) and b in the group B. Similarly, type
(E3*) is a special case of type (E2*).

B. Modification of exact sequences. 

In the applications we will encounter the situation where a map in
an exact sequence has to be modified using inversion in a group
in order to turn a diagram which is anticommutative into a commutative
one. 

1.2. Notation. If a: A -&#x3E; B is a pointed map and A is a group, let ex- :
A -&#x3E; B denote the pointed map defined by 

oci (a) = oc (a for each a E A,

where a is the inverse of a in the group A.

The following lemma will easily be verified.

1.3. Lemma. L et (a, B) be as in (1..l).

(a) If (a, B) is exact and A is a group, then (oF, B) is exact.

(b) If (ot, is exact of type (E2), then (a- , is exact of type
(E2*), and vice versa, the right operation BxA -&#x3E; B being defined from
the left operation AxB-&#x3E; B by

b.a = a 1 .b for a E A , b E B .

(c) If (a, B) is exact and a is a group homomorphism, then (a, B) is
exa ct.
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(d) If (a , (3) is exact of type (E3), then (a, B-) is exact of type
(E3*), and vice versa. 0

C. Examples.

We give some examples from algebra and topology.

1.4. An exact sequence of conjugacy classes. Let 

be a short exact sequence of groups and let x E K. Then there is an
exact sequence of groups and pointed sets

where CK(x) is the centralizer of x in K, [ ] denotes the set of conjugacy
classes and the base points in [K], [G ] and [H] are induced by x. This
sequence is exact of type (E2) at [K], exact of type (E3*) at H and exact
of type (E4) at CJaQ and CK (x) ([17], Exact sequence 1).

1.6. The exact f ibre sequence for groupoids. Let p : G -&#x3E; H be a fibration
of groupoids (see [2], 2) and let x be an object of G. Then there_is an
exact sequence of groups and pointed sets

where F = p 1 px is the fibre over px, G(x) is the vertex group G ( x, x)
at x , TTO denotes the set of components, and the base points of 70 F, lro G
and TToH are induced by x . This sequence is exact of type (E2) at 70 F;
exact of type (E3*) at H (px) and exact of type (E4) at G(x) and
F (x) ( [2 ],Theorem 4.3).

Note that (1.7) can be used to derive (1.5) and, as it has been
shown in [9], more generally, exact orbit sequences for group operations
on sets.

1.8. Exact sequences in homotopy theory. We use the notations of [8].
Let f :xC -&#x3E;Y and g : E -&#x3E;B be pointed continuous maps between pointed
topological spaces. Let

be the Puppe sequence of f , and let

be the dual Puppe sequence (Nomura sequence) of g . Then we have the

following exact sequences of homotopy groups and homotopy sets due
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to Puppe [15J and Nomura [121, respectively,

where V, W are arbitrary pointed spaces and, for example, .f denotes

precomposition with f, g. denotes postcomposition with g.
The sequence (1.11) will be referred to as the Puppe sequence of

f at V, the sequence (1.12) as the *Nomura sequence of g at W. 

Similarly, we have the exact cofibre sequence of a pointed cofibra-
tion f : X +Y, more generally a pointed h-cofibration (see [5], (2.2)),
and the exact fibre sequence of a pointed fibration g : E -&#x3E; B, more

generally a pointed h-fibration (see [5 J, (6.4)).

As it has been discovered in [8J there are further two exact

sequences involving sets of homotopy pair classes 7(f, g) :

The type of exactness at the bottom end of all those sequences is
the same as in (1.7). We will come back to the subject in Section 3.

2. INTERLOCKING EXACT SEQUENCES AND MAYER-VIETORIS
SEQUENCES.

Wall’s paper [20] is dealing with the exactness of interlocking se-
quences and Mayer-Vietoris sequences for interlocking exact sequences
of abelian groups. In this section we investigate the essential ingredients
of [20] in the non-abelian case.

As in the preceding section all arrows will be pointed maps between
pointed sets. 

A. Interlocking exact sequences.

Our first subject is the exactness of interlocking sequences in a
so-called Kervaire diagram. The formulation of the following proposition
is adapted to the applications and could partially be generalized.
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2.1. Theorem. L et

be a commutative diagram of exact sequences (A, B, E) , (A, C, F) and

(B, D, F) such that the arrows to the left of A 1 are group homomorph-
isms. Assume in addition that

(1) at A1 the sequence (A, B, E ) is exact of type (E3) and that

(A, C, F) is exact of type (E3*),
(2) (C, D, E) is differential at Dn for each n ? 0.

Then the sequence (C, D, E) is exact except possibly at Do , and the
type of exactness at E 1 is (E3*).

Proof. Exactness at C0: We have

Let co F Co and let y(c0)=* Then y (c)= 6y(cJ = *, hence there is
an element a 1 E Al such that co - a (al). Since

we have

for a suitable element f1 E Fl. By (1) there exists

Then by (1) we have

Thus c. E Im c.

Exactness at E1: We prove exactness of type (E3*). Let el E E1,
di E D1. Then by (1)

Let e1, el E E i and suppose Ë(e J = 1(el’). Thus aE(e)1 =aE: (e 9, hence
E(e#’l)= E(e1) l(f1) for some f 1 E Fl 1 by (1). Then
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for some d 1 E D1 . Since

there exists bI E 81 such that e’1 = e16(di) S(b1) . Thus el = e1 d (d1 S(b 1)) . 
Exactness at D 1 : Since Im y C Ker d by assumption (2), we have

to prove Ker 6 C Im y. Let d1 E D i such that 6 (d1) =1. Then

for some c I E C 1. Then d 1 =y(c1)B(b1) for some b1 E Bi. Since In"’ y
is included in Ker 6, we have

Thus b1=a(a2) for some a2 E A2. Therefore

2.3. Definition. A diagram of interlocking sequences (A, B, E), (A, C, F),
(B, D, F) and (C, D, E) as in (2.2) is called a Kervaire diagram.

Note that in the situation of Theorem 2.1 the exactness of (B, D, F)
at F1 in the simple form Im 6 = Ker T induces the strengthened form
of exactness (E3*) for (C, D, E) at E1. Thus by a "dual" argument to the
second part of the proof of 2.1 we have

2.4. Corollary. In the situation of Theorem 2.1 the strengthened form
of exactness (E3) automatically holds for (B, D, F) at - F 1. 0

The following examples show that in the situation of Theorem 2.1
neither exactness of (C, D, E) at Do nor strengthened exactness properties
at C. can be expected from general algebraic reasons even if (A, B, E),
(A, C, F) and (B, D, F) are exact sequences of homomorphisms of
abelian groups.

2.5. Examples. 1. In the diagram



10

let Z2 denote the integers modulo 2, let i 1 and 12 be the injections
into the first and second factor, respectively, let p2 be the projection
onto the second factor, and let d be defined by

Then we are in the situation of Theorem 2.1, but (i2,d) is not exact.

2. Consider the diagram of interlocking exact sequences

where Z is the additive group of integers, S is multiplication by
2, 71 is the projection onto the integers modulo 2 and y is defined by

Then Kery is trivial, but y is not injective.

B. Mayer-Vietoris sequences.
Next we deduce two Mayer-Vietoris sequences for a Kervaire

diagram (2.2) of interlocking exact sequences in the non-abelian
case. In order to make things transparent the ingredients will be
listed separately.

Note that similar algebraic investigations have been necessary for
the construction of Mayer-Vietoris sequences for relative homotopy
groups based on excision isomorphisms in [11].

2.6. Lemma. L et 
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be a commutative diagram of pointed maps. Let E be a group homomor-
phism and let E 1 operate on C0 from the left by an operation .
such tha t

Asssume that

(2) (y, 6) is differential, (a, B) is exact,
(3) (E, a) is exact of type (E3), (E, y ) is exact of type (E2).

Then

is a weak pullback of sets.

Proof. Diagram (2.7) is commutative by assumption. Let bo E B0, C0 E C
such that B(bo)= y(cJ . We have to show the existence of an element

a 1E A1 such that ex( a 1) = b 0 , ä (a 1) = c,,, - Since 

by (1), we have bo = a(ai’) for a suitable a1’ E AI. Since

by (3) there exists e 1 E E1 such that co - e1. olaV. Then

by (3), and

by (1). Thus a 1 = e(e )a’ is the desired element. 0

2.8. Remark. The typical situation in the applications is that an

operation of Al on C. is given with a(a1)=a1.* inducing the operation
of El on Co via the homomorphism e: el.c. - c (el).c,,. Then condition
(1) of (2.6) is automatically f ulf illed.

2.9. Lemma. L et
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be a commutative diagram of pointed maps.

(a) If (y, 6 ), (B, d) and (a, B) are exact, then

where 6 = Ba = ya, is exact in the following sense :

i.e.
(2.10)

is exact. 
_

(b) If B and y are group homomorphisms and if (a, B) is exact
and (y , 6) and (6, 6) are exact of type (E3*), then (2.10) is exact of
type (E3*).

Proof. (a) Let al E A1. Then

Let do e D. such that

bo E B0. Since _

we have bo = a(a1) for some a1 E A1. Then

(b) The proof is left to the reader.

2.11. Lemma. Let -

m
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be a commutative diagram of pointed maps with group homeomorphisms E
and (p . Let El operate on Co from the left by an operation . such that

Assume that

(2) (E, a) is exact of type (E3), (l, a) is exact of type (E3*), and (E,y)
is exact of type (E2). Then

where A = Ba = ya, is exact in the following sense :
If al, a i E A 1, then A (a1)=A (a 9 iff there are ei E El , fl c Fl

such that a1’ = E(e1)a 1 l(f1).

Proof. Let

by (2). Conversely, let A (a1) = A (al’) . Since ya(ai) = ya (a1’), by
(2) and (1) we have

for some e1 EEl. Thus a’1 = E(e1)a1 l (f1) for some f1 f F1 by (2). 0

2.12. Remark. Note that in 2.11 the weaker form of exactness

A (a1)= * iff there are e 1 E El , fl E Fl such that al = E(e1)l (f1)
can be proved under weaker assumptions without the existence of an

operation of E1 on C..

The following proposition giving the promised Mayer-Vietoris se-
quences for a Kervaire diagram is now an easy consequence of the pre-
ceding lemmas.

2.13. Theorem. Let be given the following commutative diagram of
exact sequences (A, B, E), (A, C, F), (B, D, F), and (C, D, E) such that the
arrows to the left of A 1 are group homomorphisms.
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L et El opera te on Co from the l ef t by an operation . such

that

A ssum e that

(2) at A 1 the sequence (A, B, E) is exact of type (E3) and

(A, C, F) is exact of type (E3*) ; (C, D, E) is exact of type (E2)
a t Co.

Then we have the following exact Mayer-Vietoris sequences

and

where A = yei = Ba and £ ’ = e6 = q 6 . Exactness is understood in the
sense of 2.6, 2.9, 2.11. 0

2.14. Remark. We have written the Mayer-Vietoris sequences in
a form which seems to be closest to the given Kervaire diagram. This
kind of description has already been used in [14, 13, 1, 3J. The Mayer-
Vietoris sequences can of course be written in the following form which
might be more familiar :

Here, for example, E-lcp is defined by
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and B. TIC. denotes the pullback of

The following example shows that in the situation of Theorem 2.13
the right hand square need not be a weak pullback.

2.15. Example. In the following diagram of sets with base point 0

let [3 be the inclusion and let the pointed maps y, d, d be determined by

Then we are in the situation of 2.13, but the right hand square is not
a weak pullback, since fO, 1, 2} -&#x3E;{0, 1} x 10, 11 cannot be surjective.

3. APPLICATIONS.

A. The exact homotopy sequence of a triple.
The canonical application of Theorem 2.1 is to derive the exact

homotopy sequence of a triple from the exact homotopy sequences of
the pairs involved.

Let (X, A, B, xa) be a triple of topological spaces B C A C X

with base point x 0 E B. Then we have a commutative Kervaire diagram
(see [18J, 3.19)
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composed by the exact homotopy sequences of the pairs (A, B, x)
(X, A, x 0)’ (X, B, xo) and the homotopy sequence

of the triple (X, A, B, xo).
Then after verification that (3.2) is differential at ttn(X, B, xo)

Theorem 2.1 gives the exactness of (3.2) except at Tri (X, B, x.) where
exactness has to be proved separately.

B. Mayer-Vietoris sequences associated to a homotopy pullback.

be a homotopy pullback of pointed topological spaces such that Z is
the double mapping track

BI being the space of paths into B, and pi, p 2 are the obvious

projections. Note that pi 1 and p2 are pointed fibrations ([13], Proposi-
tion 1.9).

Then, for any pointed spac.e A, we have a Kervaire diagram
of homotopy sets and homotopy groups which (up to isomorphism) cont-
ains the Nomura sequences of f and g and the fibre sequences of

pi and P2:

Here, for example, f. denotes postcomposition with f, and
marks the application of the adjunction between the suspension functor
E and the loop functor n . The maps inducing (3.4) appear in the

following diagram of spaces with commutative squares except for

(3.3) which is homotopy commutative :
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Here, Ff is the homotopy fibre of f,

where * denotes the base point, Fg is the homotopy fibre of g , corresp-
ondingly, Nf and Ng are the obvious projections, Mf and Mg are

the obvious injections, and we have

-A being the inverse path.
We observe that diagram (3.4) is commutative except for the

squares

which are anticommutative. we replace Mf. by Mr. and f. by If.
(see 1.2). The resulting Kervaire diagram is commutative, the modified
sequence (f ., Mf. 7 is exact of type (E3) whereas the sequence (g., Mg . )
is exact of type (E3*). Thus we are now in a position to apply Theorem
2.13. We obtain 

3.5. Proposition. There are two Mayer-Vietoris sequences induced by
the homotopy pullback (3.3)
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BB here

Note that the fact that

is a weak pullback of sets does not follow from 2.13 but has to

be proved separately. 0

3.6. Remark. The first Mayer-Vietoris sequence (MV) of (3.5) is up to

E adjunction the exact sequence of [13], Theorem 1.7. It induces

=13], Theorem 1.8 in case g is a pointed fibration, or more generally,
a pointed h-fibration. By specializing A to be the 0-sphere S° we

obtain [3], 4.2 and [61, Theorem.

The second Mayer-Vietoris sequence (MV’) of (3.5) can be prolong-
ated as follows. Let the map r : Ff x Fg -&#x3E; Z to be defined by

where - denotes the addition of paths. For any pointed space A
we have an induced map

3.7. Proposition. The sequence (3.8)

is exact, more precisely, it is exact of type (E3*) at tt (EA, B) , and
exact of type (E2) at n(A, Ff )xtt (A, Fg).

Note that (3.8) involves the unmodified map F4f.. The exactness at

(ZA, B) follov/s from 2.9 (b). The remaining parts have to be proved
directly. This is left to the reader. - 0
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3.9. Remark. (i) The second Mayer-Vietoris sequence (MV’) of (3.5)
and its prolongation (3.8) do not seem to have been previously noted.

(ii) Since Tr(A, Ff) can be interpreted as the relative homotopy
set [ i, f Iwhere i : A-&#x3E; CA is the inclusion of A into the (reduced)
cone over A (see [51, (13.3)), one has the possibility of writing the 

sequences (MV’) of (3.5) and (3.8) in terms of relative homotopy sets.
In the more classical case of A = SO and in which f and g are inclusions,
one obtains an exact sequence

involving the relative homotopy groups (sets) ttn, (B, X), ttn(B, Y).

C. Mayer-Vietoris sequences for a pair of maps.
Let f : X -&#x3E; Y and g : E -&#x3E; B be pointed continuous maps between

pointed topological spaces.
Then we can associate a Kervaire diagram of homotopy sets and

homotopy groups which, up to E n adjunction, contains the Puppe se-
quence (1.11) of f at B, the Nomura sequence (1.12) of g at X and

the exact sequences (1.13), (1.14) in homotopy pair theory :

We will not give the complete details of the construction which
can essentially be found in [ 8] but restrict ourselves to point out the
general method of applying the results of Section 2.

The construction is such that the triangles and rectangles of

(3.10) commute except for the rectangles

in case n is even, n 1 0, which are anticommutative. Thus, for n

even, we replace Mg. by Mg. and B’ by (3’ (see (1.2)). Then we are in
a position to apply the results of Section 2. We can use Theorem 2.1
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to derive the essential parts of exactness of (1.14) from the correspond-
ing properties of (1.13) though, of course, there is the possibility of
obtaining (1.14) from (1.13) by duality. Theorem 2.13 provides us with
two Mayer-Vietoris sequences.

3.11. Proposition. For a pair of maps f : X - Y , g : E -&#x3E; B vve have
the following exact Mayer-Vietoris sequences

The special topological situation enables one to prolongate
the second Mayer-Vietoris sequence (MV’) of (3.11) in a similar way
as in the preceding example.

3.12. Proposition. There is a map

such that the sequence (3.13)

is exact. More precisely, (3.13) is exact of type (E3*) at tt ( Z X, B)
and exact of type (E2) at n(X, Fg)x tt(C f, B).

The proof will be given elsewhere. 0

The connecting map A : n (IX, B) -&#x3E; tt(f, g) of , Proposition 3.11 is

intimately connected with the theory of the Toda bracket or secondary
composition [19]. Let h : Y - E be a map such that hf - * and gh - *.
Then the Toda bracket

is a certain double coset of the subgroups C. L: f) tt(E Y, B) and g.tt (EX, E),
in that order. As an application we give a short proof of the following
proposition.
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3.14. Proposition. The bracket fg, h, f} contains the neutral element of

1T(L:X, B) iff the element 0 of Tr(f, g) represented by the commutative
square

is trivial.

Remark. Proposition 3.14 is equivalent to [8], Theorem 8.6, but

the proof in [8J depended on the rather complicated theory of diagonal
factorization of a homotopy pair class.

Proof of 3.14. Let T E { g, h, f} and let t-1 denote its inverse in tt(Ex, B).
In [8], Theorem 5.3 it is proved that At-1 = 0 . Hence T 1 belongs to the
kernel of A iff 0 = 0. But T I is an element of a double coset of the

subgroups g.7(ZX, E) and (. Ef) tt(E Y, B) in that order and by Proposition
3.11 the trivial double coset of these subgroups is precisely the
kernel of A . 0

3.15. Remark. There is a third exact sequence involving the homotopy
pair sets TF(Enf, g) (n &#x3E; 0) described in [8]:

The exactness of 3.16 is established via the theory of diagonal factoriza-
tion in [8]. We note that it can also be obtained by applying a variant
of Theorem 2.1 to the Kervaire diagram 

D. Mayer-Vietoris sequences for groupoids.
The exact Mayer-Vietoris sequence of [4], Theorem 3.3 associated

to a homotopy pullback (3.3) of groupoids can be obtained in much the
same way as sequence (MV) of (3.5) above. Though in this special
situation this is certainly not the simplest way this approach leads to
the discovery of a new exact sequence in groupoid theory involving
the groupoid homotopy fibres of the morphisms f and g . This sequence
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is the prototype of the bottom end of the prolongated Mayer-Vietoris
sequences (MV’) of (3.5) and (3.11) in 3.7 and 3.12.

This sort of topic will be dealt with elsewhere.

4. EXACT SEQUENCES FOR FREE HOMOTOPY SETS.

The constructions of this section can be carried out both in the

free and pointed category of topological spaces or, more generally,
in a suitable abstract homotopy category (see for example [10J).

Let W and B be topological spaces. We recall the definition of
the track groupoid ttW1(B) ([2], see also [16J).

Let w and w’ be maps from W to B and suppose that ht and

ht are homotopies such that

Then h and h’ are defined to be equivalent (relatively homotopic),
denoted ht= h’ , if there exists a homotopy of homotopies Ht,s
that satisfies

( s, t E I). Let (ht) denote the equivalence class of ht . It is often
convenient to denote this class diagrammatically by the homotopy
square

or simply

Then we have the (w, w’)-track set

If w = w’ then this becomes the w-based track group TIt (B; w) with oper-
ation
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Note. (i) The track addition defines a right action of TT1 w (B ; w’ ),
resp. a left action of 7§’(B ; w ) on TIi’ (8 ; w, W’).

(ii) 7T(B ; w) is an invariant of the homotopy class of w, for

if ht has ho= w and h 1 = w‘ then 

defines an isomorphism

A. A new homotopy set.

Let w : W - B and f : X -&#x3E; B be maps. A map u : W -&#x3E; X and an
element {ut} E ttW1 (B ; w, f u ) determine a homotopy commutative square

denoted by (ut, u ) . Let tt(w, f/B) denote the set of those squares fac-
tored out by the relation - where if we are given a homotopy ht : W - X
we have

The equivalence class of (ut, u) in new, f /B) will be denoted by
{ut, u . The notation 7(w, f/B) is intended to suggest "classes of maps
from w to f over B ".

4.2. Remark. There is a canonical map from the set [w, f L of homotopy
classes over B (see [5], (0.22)) to tt (w, f /B). This map is a bijection
if f is a fibration (or, more generally, an h-fibration) (see [10], 3.7).
If we are in the pointed category and if we let w = * : W - B (i.e. the
constant map) then there is an obvious bijection of tt(w, f/B)With the
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homotopy pair set T-’W*, f) and hence with 7r(W, Ff ), see [8]. Hence
tt(w, f /B) can be regarded as a generalization of 7T(W, Ff). We pursue
this line of thought by studying what may be regarded as the covariant
free homotopy sequence of a free map f : X -&#x3E; B.

First note that d{ut u} = {u} defines a domain restriction oper-
a t o r d : 1r(w, f/B)-&#x3E; -n(W, X).

Let u: W - X be a map such that fu= w. Choose (the class of)
a homotopy ut from w to fu. This determines the homotopy commuta-
tive square U = ( I-Lt’ u) (see (4.1)) and its class

Then an operator mu: tt1 w (B; fu)-&#x3E;tt(w, f/B), that depends on the
choice .of U is defined by the rule

4.3. Theorem. The following sequences of pointed sets (with base points
DvJ u, w as indicated) is exact. Moreover it is exact of type (E3*) at
1T 1 ( B ; fu).

Proof. The exactness at tt(W, X) is obvious and clearly dmU{ht}= {u}.
Let {d t, v} E 7(w, f/B)U and suppose that d {dt’ v} ={u}. Then there
is a homotopy 1Vt with w0 = v and w1 = u. Then mU sends the element
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Exactness at 1rF(B ; fu) : First observe that

Suppose that mU{ ht } = U. Then for some {nt} E tt1W(X; u) we have

Thus fnl-t - ht and hence f.{n1-t}= {ht}. Finally suppose that {ht }
and {nt’} are sent to the same element of tt(w, f/B) by mU. Then

for some

Hence f wt =h1-t+ ht, so that {ht}-1 x {h’t} E Im f . as required. 0

4.4. Remark. (i) Alternatively, Theorem 4.3 can be deduced using
groupoid methods from the exact fibre sequence for groupoids (1.7)
by replacing the induced morphism of track groupoids f . : tt1W(X) -&#x3E;ttW1(B)
by its associated mapping track fibration. This implies that we

have exactness of type (E2) atlr(W, X)u . Here we have given preference
to the simpler direct approach.

If W is locally compact or if we are in a convenient category of
topological spaces, then the track groupoid 111 (X) is isomorphic to the

fundamental groupoid ttt (XW) of the function space Xw and the homotopy
set tt (w, f/B) can be identified with the component set 7o (Ffw ) of
the homotopy fibre of the induced map of function spaces fW: XW -&#x3E; BW.

(ii) The sequence in 4.3 can be continued to the left. The ramifi-
cations will be considered elsewhere.

4.5. Remark. If we are in a pointed category and w =* then the se-

quence in 4.3 is equivalent to the sequence studied by Rutter [16J and
used there to classify the maps from any space into the homotopy
fibre of f . Theorem 4.3 leads to. a similar classification of tt (W, f/B).
Let K(u, w) denote the set of left cosets of f.tt1W (X ; u) in ttW1 (B; fu),
observe that I-C(u, w) depends only on the homotopy classes ful and fwl,

4.6. Corollary. There is a bijection
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B. Classifying the maps into a homotopy pullback.
Let f : X -&#x3E; B, g : Y -&#x3E; B and w: W-&#x3E; B be fixed maps and let

u : W -&#x3E; X and v : W -&#x3E; Y be maps such that fu =w and gv = vv. Then

homotopies jt and Vt with

determine homotopy commutative squares U = (ut, u) , V = (vt, v)
and elements

respectively. If yt = v1-t+ ut then the square

represents an element {l} E tt (W, Z), where Z is the homotopy pullback
as in (3.3), and every element can be represented in this way. It is a

consequence of the theory of homotopy pullbacks that {l} depends
only on the homotopy classes of u and v and on the equivalence
class of CPt. Thus we will use the notation {l} = {v, CPt , u}. Now con-
sider operators

given by the rules

Finally let mU: tt1W(B; fu)-&#x3E;tt(w, f/B) be given by
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noting the distinction between the definitions of mtj and mU. Then we
have the following theorem.

4.7. Theorem. The following diagram in which X = fyt if and X = À-1 

is commutative and its sequences of pointed sets, with base points
I wl, f ul, lvl, {l}, 0, V as indicated, are exact.

Moreover

is exact of type (E3) at ttW1W(B; fu) (resp. of type (E3*) at ttW1 (B ; gv)).
There is an operation of Tri (X ; u) on tt(w, g/B) given by

that satisfies

(4.8)

Further

is exact of type (E2) a t TI(w, g/B), where nV = m vx f.

Proof. The commutativity of the diagram can readily be checked. The
exactness of

is a consequence of Theorem 4.3, in particular exactness of type
(E3*) at ttA1 (B ; gv). Next consider

Certainly

Suppose that p2.{w} = fl . Then {w} is represented by a square of form
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Then

Exactness at 71 ( w, f/B) : Let nu = mUy g. , then i

we have

(since

Now if fc7t , u’} E 7( w, f /B) then JV fat, u’} is represented by a square

and if this square represents fTl E n(W, Z) then there exist

Then
r

as required. The exactness of

is only affected by the switch from mU to m(j in that type (E3) is pro-
duced at tt1W(B; fu). To check the equality (4.8) :

It remains to check that

is exact of type (E2) at tt(w, g /B). Regarding the action of ttW1 (X ; y u) on
TT(w, g/B), we have to check
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and we have

(ii) Suppose that 

Then

so that there exists a homotopy kt , from v’ to v" with

Then

Conversely, if jU {pt, v’} = jU/{p’t,v" then there exist

so that

Hence

as required, completing the proof of Theorem 4.7. 0

Applying Theorem 2.13 and Lemma 2.11 we have the following
corollary.

4.9. Corollary. The sequence

is exact, where

Moreover the images of two elements under 6. coincide iff they belong
to the same-double coset of the subgroups f.ttW1 (X ; u) and yg.ttW1(Y; v). 0

Let K(w, u, v) denote the set of double cosets in 711 (B ; fu) of
the subgroups f. ttW1(X ; u) and yg.ttW1(Y; v). Then the following is an

immediate consequence of Corollary 4.9. 
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4.10. Classification Theorem. There is a bijection

4.11. Remark. The classification 4.10 is also valid in the pointed
category . IfBW and YW are H 0 - spa c e sin the sense of Rutter [16]
then f. and g. are homomorphisms of abelian groups and can sometimes
be computed as discussed in [16].

4.12. Remark. The Kervaire diagram 3.4 can be recovered through spe-
cialization of the diagram in Theorem 4.7. A point free treatment of

homotopy pair theory can be given enabling the Kervaire diagram
3.10 to be obtained by specialization. Details will be given elsewhere.

4.13. Remark. Proposition 3.14 can be regarded as an item of information
about the secondary structure of the relevant Mayer-Vietoris sequence.
A more systematic study of such secondary structure is in preparation.

The first author acknowledges grants to the Topology Research

Group from the University of Cape Town and the South African
Council for Scientific and Industrial Research.
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