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Non-commutative multivariable Reidemester torsion and the
Thurston norm

SHELLY HARVEY
STEFAN FRIEDL

Given a 3-manifold the second author defined functions 8,: H'(M;Z) — N, gen-
eralizing McMullen’s Alexander norm, which give lower bounds on the Thurston
norm. We reformulate these invariants in terms of Reidemeister torsion over a non-
commutative multivariable Laurent polynomial ring. This allows us to show that
these functions are semi-norms.

57M27; 57N10

1 Introduction

Let M be a 3—manifold. Throughout the paper we will assume that all 3—manifolds
are compact, connected and orientable. Let ¢ € H'(M;Z). The Thurston norm of ¢
is defined as

l¢llz = min{x—(S)|S C M properly embedded surface dual to ¢},

where for a surface S with connected components Sy, ..., S; we write x_(S) =
Z;‘:l max{0, —x(S;)}. We refer to Thurston [18] for details.

Generalizing work of Cochran [1], the second author introduced in [7] a function
Snt HY (M ;7) — N U {—o0}

for every n € N and showed that §, gives a lower bound on the Thurston norm. These
functions are invariants of the 3—manifold and generalize the Alexander norm defined
by C McMullen in [11]. We point out that the definition we use in this paper differs
slightly from the original definition when n = 0 and a few other special cases. We
refer to Section 4.3 for details.

The relationship between the functions 6, and the Thurston norm was further strength-
ened in Harvey [8] (cf also Cochran [1] and Friedl [4]) where it was shown that the
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756 Shelly Harvey and Stefan Friedl

dn give a never decreasing series of lower bounds on the Thurston norm, ie for any
¢ € H'(M;Z) we have

So(@) <681(¢) <62(¢) =--- = |l@llT-

Furthermore it was shown in Friedl-Kim [5] that under a mild assumption these
inequalities are an equality modulo 2.

In his original paper [18], Thurston showed that || — ||z is a semi-norm. It is therefore
a natural question to ask whether the invariants §, are semi-norms as well. In [7] this
was shown to be the case for n = 0. The following theorem, which is a special case of
the main theorem of this paper (cf Theorem 4.2), gives an affirmative answer to this
question for n > 1.

Theorem 1.1 Let M be a 3-manifold with empty or toroidal boundary. Assume that
8n(¢p) # —oo for some ¢ € H' (M ;Z), then

$n: HY (M ;7) — Ny

1S a semi-norm.

In particular, this allows us to show that the sequence {5, } is eventually constant. That
is, there exists an N € N such that §, = 6 for all n > N (cf Proposition 4.4).

Before we address whether the §, are norms, we discuss a more algebraic problem.
Recall that given a multivariable Laurent polynomial ring [F[z‘llLl e t,fjl] over a com-
mutative field [ we can associate to any non-zero f =Yy cpm aat® € FltEL, ... 1]
a semi-norm on hom(Z", R) by

¢l := supiep (@) —@(B) |aa # 0.ag # 0}.

Thus, to any square matrix B over [F[llil, e, l,fl] with det(B) # 0, we can associate
a norm using det(B) € [F[llil, . ,t,f;l].

Generalizing this idea to the non-commutative case, in Section 2.1 we introduce the
notion of a multivariable skew Laurent polynomial ring K[tlil, ey t,fl] of rank m
over a skew field K. Given a square matrix B over K[tlil, e ,t,fl] we can study
its Dieudonné determinant det(B) which is an element in the abelianization of the
multiplicative group K(zq, ..., %)\ {0} where K(zy, ..., ;) denotes the quotient field
of [K[Zlil, ey tnj;l]. This determinant will in general not be represented by an element
in K[tlil, e ,l,fl:l]. Our main technical result (Theorem 2.2) is that nonetheless there

is a natural way to associate a norm to B that generalizes the commutative case.
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Non-commutative multivariable Reidemester torsion and the Thurston norm 757

Given a 3—manifold M and a ‘compatible’ representation
(M) = GL(K[EYL, ... 51, d)

we will show in Section 3 that the corresponding Reidemeister torsion can be viewed
as a matrix over K[llil, e, t,fl]. Moreover, we will show in Section 4.3 that for
appropriate representations the norm that we can associate to this matrix that agrees
with py, 8, . This implies Theorem 1.1. We conclude this paper with examples of links
for which we compute the Thurston norm using the results in this paper.

As a final remark we point out that the results in this paper completely generalize the
results in [6]. Furthermore, the results can easily be extended to studying 2—complexes
together with the Turaev norm which is modeled on the definition of the Thurston norm
of a 3—manifold. We refer to Thurston [21] for details.

Acknowledgments

The authors would like to thank Tim Cochran, John Hempel, Tachee Kim and Chris
Rasmussen for helpful conversations.

2 The non-commutative Alexander norm

In this section we will introduce the notion of a multivariable skew Laurent polynomial
ring and we will then show that matrices over such rings give rise to semi-norms.

2.1 Multivariable Laurent polynomials

Let R be a (non-commutative) domain and y: R — R a ring homomorphism. We
denote by R[s*!] the one-variable skew Laurent polynomial ring over R. Specifically,
the elements in R[sil] are formal sums ZLm a;st (m <neZ)with a; € R. Addition
is given by addition of the coefficients, and multiplication is defined using the rule
sta = y'(a)s’ for any a € R (where y’(a) stands for (y o---oy)(a)). We point
out that any element > ;_, ais' € R[s*!] can also be written uniquely in the form

S, sta;, indeed, @ = s 'a;s' €R.

In the following let K be a skew field. We then define a multivariable skew Laurent
polynomial ring of rank m over K (in non-commuting variables) to be a ring R which
is an algebra over K with unit (ie we can view K as a subring of R) together with a
decomposition R = @yezm Vy such that the following hold:

(1) Vg is a one-dimensional K—vector space,
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(2) Va-Vp=Vyyp and

.....

In particular R is 7" —graded. Note that these properties imply that any Vj, is invariant
under left and right multiplication by [K, that any element in V,, \ {0} is a unit, and that
R is a (non-commutative) domain. The example that the reader should keep in mind is
a commutative Laurent polynomial ring [F[zlil, e ,znj;]]. Indeed, let t* := tf” PR il

for o = (a1,...,0m), then Vo = Ft%, o € Z™ has the required properties.

Let R be a multivariable skew Laurent polynomial ring of rank 7 over K. To make our
subsequent definitions and arguments easier to digest we will always pick % € V,, \ {0}
for @ € Z™. Tt is easy to see that we can in fact pick %, o« € Z" such that "% = (¢*)"
for all @ € Z™ and n € Z. Note that this choice implies that (09 = 1. Using the
above choices, the set of t* for o € Z satisfies the following properties:

(1) %%~ @+®) ¢ KX for all o, & € Z™ and
2) t*K =Kt* forall «.

This shows that the notion of multivariable skew Laurent polynomial ring of rank m is
a generalization of the notion of twisted group ring of 7™ as defined in Passman [13,
page 13]. If m = 1 then we have 1™ ¢ Vi) such that 1™ = WY forany n € 7.
We write " = t®™ _ In particular, when m = 1, R is a one-variable skew Laurent
polynomial ring as above.

The argument of Dodziuk et al [3, Corollary 6.3] can be used to show that any such
Laurent polynomial ring is a (left and right) Ore domain and in particular has a (skew)
quotient field. We normally denote a multivariable skew Laurent polynomial ring of
rank m over K suggestively by K[tlil, . ,t,ffl] and we denote the quotient field of
KIEEL L by Kt tm).

2.2 The Dieudonné determinant

In this section we recall several well-known definitions and facts about the Dieudonné
determinant. Let K be a skew field; in our applications /C will be the quotient field of
a multivariable skew Laurent polynomial ring. First define GL(K) := h_n)l GL(KC, n),
where we have the maps GL(/XC,n) — GL(X,n + 1) in the direct system, given by
A (‘(‘)1 (1’), then define K (K) = GL(K)/[GL(K), GL(K)]. For details we refer the
reader to Milnor [12] or Turaev [19].

Let A a square matrix over . After elementary row operations and destabilization we
can arrange that in K (K) the matrix A4 is represented by a 1 x 1-matrix (d). Then

Algebraic €& Geometric Topology, Volume 7 (2007)



Non-commutative multivariable Reidemester torsion and the Thurston norm 759

the Dieudonné determinant det(A4) € K, := K™ /[KC*, K*] (where K£* := K\ {0})
is defined to be d. It is well-known that the Dieudonné determinant induces an
isomorphism det: K(K) — K, . We refer to Rosenberg [14, Theorem 2.2.5 and
Corollary 2.2.6] for more details.

2.3 Multivariable skew Laurent polynomial rings and semi-norms

In this section we show that matrices defined over a multivariable skew Laurent polyno-
mial ring give rise to a semi-norm. We also relate this norm to degrees of one-variable
polynomials.

Let K[s®!] be a one-variable skew Laurent polynomial ring and let f € K[s*!]. If f =
0 then we write deg(f) = —oo, otherwise, for f =>7_, a;s' € K[s*'] with a,, #
0,a, # 0 we define deg( f) := n —m. This extends to a homomorphism deg: K(z) \
{0} — Z via deg(fg~') = deg(f) — deg(g). Since deg is a homomorphism to an
abelian group this induces a homomorphism deg: [K(t);(b — Z. Note that throughout
this paper we will apply the convention that —oco < a for any a € Z.

For the remainder of this section let K[tlil, ey t,fl] be a multivariable skew Laurent
polynomial ring of rank m together with a choice of 1%, a € Z™ as above. Let
fe K[tlil, cee, t,fl]. We can write [ =), cym dqt® for some a, € K. We associate
a semi-norm ||—| ¢ on hom(R™,R) to f as follows. If /=0, then we set ||—||s := 0.
Otherwise we set

@l := sup{p(x) —#(B) | aa # 0.apg # 0}.

Clearly ||—|  is a semi-norm and does not depend on the choice of %. This semi-norm
should be viewed as a generalization of the degree function.

Now let 7 € K (K(¢1,...,tn)) and let f,, fq € K[tlil,...,l,fjl] \ {0} such that
det(r) = fnfd_1 € K(t1,...,tm),,- Then define

¢l := max{0, ¢, — &y,

for any ¢ € hom(R™, R). By the following proposition this function is well-defined.

Proposition 2.1 Let v € K1 (K(t1,....tm)). Let fu. f4.8n.8a € KIEEY, .. 1]\
{0} such that det(z) = fnfd_l = g,,g;1 €K(t1,...,tm),y - Then

I=lg = 1=lps = I=llgn = lI=lga-

We postpone the proof to Section 2.4.
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Let B be a matrix defined over [K[llil, e ,lf,fl]. In general, it is not the case that
det(B) can be represented by an element in [K[tlil, ...,tx1]. But we still have the
following result which is the main technical result of this paper.

Theorem 2.2 If t € K;(K(#1,...,tn)) can be represented by a matrix defined over
K[tlil, .. ,t,ffl], then ||—||; defines a semi-norm on hom(R™, R).

We postpone the proof to Section 2.5.

Now let ¢: Z™ — Z be a non-trivial homomorphism. We will show that ||¢| g can
also be viewed as the degree of a polynomial associated to B and ¢. We begin with
some definitions. Consider

KKer(@)]:= @ K* CK[i™. ... 05
aeKer(¢)

This clearly defines a subring of [K[tlil, ey t,fl] and the argument of Dodziuk et al
[3, Corollary 6.3] shows that [K[Ker(¢)] is an Ore domain with skew field which we
denote by K(Ker(¢)).

Let d € Z such that Im(¢) = dZ and pick B8 = (B1,...,Bm) € Z™ such that
o(B)=d. Let u:= t#. Then we can form one-variable Laurent polynomial rings
(IK[Ker(¢)])[s*!] and K(Ker(¢))[sT'] where sk := pkpu's for all k € K[Ker(¢)]
respectively for all k € K(Ker(¢)). We get an isomorphism

ve: KIEEL L EY] = (K[Ker(®))[s*]
S egm kat® > Y com kgt @14 o@)/d,

where ko € K for all @ € Z™. Note that kot*u~?@/4 ¢ K[Ker(¢)]. An easy
computation shows that y, is an isomorphism of rings. We also get an induced
isomorphism K(#1, . .., tm) — (K(Ker(¢)))(s).

Let B be a matrix over (¢, ..., 7m). Define deg,(B) := deg(det(yy(B))) where we
view y(B) as a matrix over K(Ker(¢))(s).

Theorem 2.3 Let B be a matrix over K(t1,...,t,). Let ¢ € hom(Z™,Z) be non-
trivial and let d € N such that Im(¢) = dZ. Then

¢l z = d max{0. deg, (B);.

In particular, this shows that deg (B) is independent of the choice of 8. The above
theorem is a generalization of [7, Proposition 5.12] to the non-commutative case.
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Proof Since y and deg are homomorphisms it is clearly enough to show that for any
g e K[iEL, .. E1]\ {0} we have

@l = d deg(yy(g))-
Write g = ) ,cym dqt® with ay € K. Let d,B,u and y: K[tlil,...,til] =
(K[Ker(¢)])[s*!] as above. Note that Ker(¢) & ZB = Z™, hence

g = ZiEZ ZaEKer(¢) aa+iﬂta+iﬂ’

Yo(g) = Ziel(zaEKef@’) “a+i/3fa+iﬂ“_i)si‘

Note that aa+iﬂt“+i’3u_i C K. Since K[Ker(¢)] = Dgeker(p)Kt* we get the fol-
lowing equivalences:

ZaGKer(cp) aot—i—iﬂta_l—l:ﬂﬂ_l: =0
aa+iﬂf“+’ﬂu_’ = 0 for all « € Ker(¢)

<
& agyig = 0 forall o € Ker(¢).

Therefore

lolle = d max;ez{there exists a € Ker(¢) such that ay ;8 7# 0}
— d min;ez{there exists a € Ker(¢) such that a,;g # 0}

= d maXieZ{ZaeKer(d)) aa+iﬂta+.iﬂu_.i 75 0}
—d miﬂieZ{ZaeKer@;) a(x+iﬂ[a+llgu_l # 0}
= ddeg(yy(g)).

Thus the theorem is proved. a
2.4 Proof of Proposition 2.1

We start out with the following three basic lemmas.

Lemma24 Let f,g € K[rE', ... tE1\ {0}, then ||| rg = I~y + - lg-

This lemma is well-known. It follows from the fact that the Newton polytope of
non-commutative multivariable polynomials fg is the Minkowski sum of the Newton

polytopes of f and g. We refer to Sturmfels [16, page 31] for details.

Lemma2.5 Letd e K(ty,...,ty) andlet fy, f4,8n. 84 € K[Zfl,...,znﬂjl] such that
d= fnfd_1 =g,,g;1 e K(t1,...,tm). Then

I=lg = 1=lr = I=llgn = lI=lga-
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In particular
I=lla :===lls = 1=z,
is well-defined.

Proof Recall that by the definition of the Ore localization f, fd_l = gp g;l €

K(t1,...,tn) is equivalent to the existence of u, v € K[tlil, e, t,fl] \ {0} such that
fut=gnv and fyu = g v. The lemma now follows immediately from Lemma 2.4. O

Lemma 2.6 Letd,e € K(t1,...,ty), then

I=llae = lI=lla + 1=l

Proof Pick f4, fu.8n.84 € K[lle,...,l,ffl] such that f,',fd_l =d and g,,g‘;1 =e.
By the Ore property there exist u, v € K[tlil, ce, t,flzl] \ {0} such that g,u = fzv. It
follows that

fnfd_lgnggl = fnvu_lgjl = (fnv)(gdu)_l-

The lemma now follows immediately from Lemma 2.4. |
We can now give the proof of Proposition 2.1.

Proof of Proposition 2.1 Let B be a matrix defining an element K (K(#q,...,tn)).
Assume that we have fy, f47, 20,84 € K[tlil, . ,t,:,'fl] such that det(B) = fnfd_l =

gnggl €K(t1,...,tm),,- We can lift the equality fnf;i_l = gng(;l e, ... tm)
to an equality

r

(1) Sufgt =T lai. bilgngg"' € K(tr. ... tm)"
i=1

for some a;,b; € K(t1, ..., 4y). It follows from Lemma 2.6 that | —||[4, 5, = 0. It
then follows from Lemma 2.6 that ||_||f"fd_l = ”_”gng;l . O
2.5 Proof of Theorem 2.2

Let t € K {(K(t1,...,ty)) that can be represented by a matrix B defined over
[I/&[tljEl e t,fl:l]. We will show that ||—||;= ||—|| B defines a semi-norm on hom(R"™,R).
Because of the continuity and the N-linearity of ||—||p it is enough to show that for

any two non-trivial homomorphisms ¢, ¢: 7" — Z we have

lp +¢lls < lllz + lolls.
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Let ¢, (Z: 7™ — 7 be non-trivial homomorphisms. Let d € Z such that Im(¢) = dZ
and pick B with ¢(B) =d . We write 1 =8 . As in Section 2.3 we can form K[Ker(¢)]

and we also have an isomorphism y: K[I;—LI, e, tnﬂ;l] g (K[Ker(¢)])[s*!].

Consider yg(B), it is defined over the PID K(Ker(¢))[s*!]. Therefore we can
use elementary row operations to turn y4(B) into a diagonal matrix with entries
in K(Ker(¢))[s*']. In particular we can find a;, b; € K[Ker(¢)] such that

ra
det(yy(B)) = Z slaiby !

i=r1

Since K[Ker(¢)] is an Ore domain we can in fact find a common denominator for
aibl._l,i = ry,...,r,. More precisely, we can find ¢,,,...,c,, € K[Ker(¢)] and
d € K[Ker(¢)] such that a,-bl._1 =cid ' fori =ry,...,ro. Now let ¢ = Zfirl she;.
Then

det(yg(B)) = cd ™! € K(Ker($))(s)

where ¢ € K[Ker(¢)][s*'] and d € K[Ker(¢)]. Now let f = y¢_1 (c)e K[tlil, .. ,t,ﬂl:l]
and g = ydjl(d) € K[Ker(¢)]. Then det(B) = fg—! and by Proposition 2.1 we have

I=lz=1l=ls—=1l-lg-

We now observe that ||¢| ¢ = 0 and ¢ + ¢l = |$|¢ since g € K[Ker(¢)]. Therefore
it follows that

I+ @llr — ¢ +Blle

I¢+ 1y —Illg_

Ielly + 1Bl — 181
Uglly —Iglle) + plr — 191e)
I¢lls + 13115

g+ ¢lla

Al

This concludes the proof of Theorem 2.2.

3 Applications to the Thurston norm

In this section we will show that the Reidemeister torsion corresponding to ‘compatible’
representations over a multivariable skew Laurent polynomial ring give rise to semi-
norms that give lower bounds on the Thurston norm.
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3.1 Reidemeister torsion

Let X be a finite connected CW—-complex. Denote the universal cover of X by X .
We view Cy (f ) as a right Z[m;(X)]-module via deck transformations. Let R be
a ring and let ¢: 7 (X) — GL(R, d) be a representation. This equips R? with
a left Z[m;(X)]-module structure. We can therefore consider the right R—module
chain complex CY(X; R%) = C*(f) ®7[x1(X)] R?. We denote its homology by
HY (X; R If H?(X; RY) = 0, then we define the Reidemeister torsion (X, ¢) €
Ki(R)/ £ (1 (X)) otherwise we write (X, ¢) := 0. If the homomorphism ¢ is
clear we may also write (X, RY).

Let M be a manifold. Since Reidemeister torsion only depends on the homeomorphism
type of the space we can define t(M, ¢) by picking any CW—structure for M . We
refer to the excellent book of Turaev [19] for the details.

3.2 Compatible homomorphisms and the higher order Alexander norm

In the following let M be a 3—-manifold with empty or toroidal boundary. Let
Y Hi(M)— Z™ be an epimorphism. Let [K[tlil, e, tn:';l] be a multivariable skew
Laurent polynomial ring of rank m as in Section 2.1.

A representation ¢: (M) — GL(K[Zlil, .. ,t,fl], d) is called ¥ —compatible if for
any g € m1(X) we have ¢(g) = AtV ® for some A € GL(K,d). This general-
izes definitions in Turaev [20] and Friedl [4]. We denote the induced representation

w1 (M) — GL(K(t1,...,tn),d) by ¢ as well and consider the corresponding Reide-
meister torsion T(M, @) € K{(IK(t1,...,tm))/ £ @(m1(M)) U{0}.

We say ¢ is a commutative representation if there exists a commutative subfield F of
I such that for all g we have ¢(g) = Ar¥(® with A defined over F and if 1%, ¥
commute for any o, & € Z"™ . The following result is our main application of the purely
algebraic results of Section 2.

Theorem 3.1 Let M be a 3-manifold with an empty or toroidal boundary, let
Y. Hi(M) — 7™ be an epimorphism and let ¢: w1 (M) — GL(K[tlil, .. ,t,:,'fl], d)
be a {r —compatible representation such that T(M, ¢) # 0. If one of the following
holds:

(1) ¢ is commutative or

(2) there exists g € Ker{m (M) — 7™} such that ¢(g) — id is invertible over KK,

then ||—||z(ps,p) is a semi-norm on hom(R™, R) and for any ¢: R™ — R we have

¢ ovir = llpllem.p)-

Algebraic €& Geometric Topology, Volume 7 (2007)



Non-commutative multivariable Reidemester torsion and the Thurston norm 765

We point out that if g € Ker{m;(M) — Z™}, then ¢(g)—id is defined over K since
¢ is Y —compatible. We refer to ||—||;(az,) as the higher-order Alexander norm.

In the case that K[tlil, cee, t,fl] equals @[llil, e, t,fl], the usual commutative Lau-
rent polynomial ring, we recover McMullen’s Alexander norm ||—| 4 (cf McMullen
[11]). The general commutative case is the main result in Fried]-Kim [6]. The proof
we give here is different in its nature from the proofs in [11] and [6].

Proof In the case that m =1 it is clear that ||—||;(as,) is a semi-norm. The fact that
it gives a lower bound on the Thurston norm was shown in [1; 7; 20; 4]. We therefore
assume now that m > 1.

We first show that [|¢p oV ||7 > [|¢ |z (ar,p) for any ¢: R™ — R. Since both sides are
N-linear and continuous we only have to show that ||¢ o Y| > [[¢|l(as,e) for all
epimorphisms ¢: Z™ — 7. So from now on, we will assume that ¢: 7" — 7 is an
epimorphism.

Pick pu € Z™ with ¢(u) =1 as in the definition of degy (z(M, ¢)). We can then form
the rings K[Ker(¢)][sT'] and K(Ker(¢))(s). First note that by Theorem 2.3

@ 1lz(r.p) = degy (z(M. ¢))
since ¢ is surjective. The representation
(M) — GL(K[!, ... 35", d) — GL(K(Ker(¢))[s'], d)

is ¢—compatible since 71 (M) — GL(K[Zlil, ce, t,fl], d) is Y —compatible. It now
follows from Friedl [4, Theorem 1.2] that ||¢ o ¥ ||7 > deg(t (M, K(Ker(¢))(s))) =
degy (t(M, ¢)) (cf also Turaev [20]).

In the remainder of the proof we will show that if m > 1 then the Reidemeister
torsion (M, ) € K1 (K(t1,...,tm))/ £ ¢(1(M)) can be represented by a matrix
defined over K[tlil, ..., 1. It then follows from Theorem 2.2 that [—llz(r1,) is @
semi-norm.

Consider the case that ¢ is a commutative representation and let F be the commutative
subfield [ in the definition of a commutative representation. Denote by I]:[zljEl ey z,?;l]
the ordinary Laurent polynomial ring. Then we have y —compatible representations
m (M) — GL(F[¢EY, .. 1. d) — GL(K[rE, ... tE!],d). By [19, Proposition
3.6] we have

t(M,F(th, - tm)) = T(MLK (s - ) € K1 (Kt -+ - b))/ £ 0(1 (M)).

Since m > 1 it follows from [19, Theorem 4.7] combined with [6, Lemmas 6.2 and
6.5] that det(t(M,F(tq,...,tm))) € F(t1,...,tm) equals the twisted multivariable
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Alexander polynomial, in particular it is defined over F[llil, e, l,:,'fl]. This concludes
the proof in the commutative case.

It therefore remains to consider the case when there exists g € Ker{m; (M) — Z"} such
that ¢(g) —id is invertible. We first consider the case that M is a closed 3—manifold.
The proof will use the special CW-structure from the next claim.

Claim There exists a CW—structure for M with one O—cell and one 3—cell and such
the closure of a 1—cell and the cocore of a 2—cell represent g.!

In order to prove the claim pick a Heegaard decomposition M = Gy U Hy. We can
add a handle gq (respectively hg) to G (respectively Hy) in Hy (respectively Gg) so
that the core of g (respectively /) represents g. Adding further handles 44, ..., A,
(respectively g1,...,gr) in M \ Go (respectively M \ Hy) we can assume that
complement Hy \ ([Uj—¢ gi) (respectively Go \ (IUj—, hi)) is again a handlebody. It
follows that G := (GO UlUi—o g,-)\(ULO h,—) and H := (HO Uiz hi)\(U;=0 g,-)
are handlebodies and hence M = G U H is a handlebody decomposition of M .

Now give M the CW structure as follows: take one O—cell, attach 1—cells along a
choice of cores of G such that g is represented by the closure of a 1—cell. Attach
2—cells along cocores of H such that one cocore represents g. Finally attach one
3—cell. This CW-structure clearly has the required properties to complete the claim.

Denote the number of 1—cells by 7. Consider the chain complex of the universal cover
M:

0 G 5 iy B ey iy L co(in)! — o,
where the superscript indicates the rank over Z[w{(M)]. Picking appropriate lifts of
the cells of M to cells of M and picking an appropriate order we get bases for the
Z[71(M)]-modules C; (M), such that if A; denotes the matrix corresponding to 9;,
then A; and A3 are of the form

A3 = (l—g,l—bl,...,l—bn_l)t,
A1 = (1—g,1—a1,...,1—an_1),

for some a;,b; e m(M),i =1,...,n—1. By assumption id — ¢(g) is invertible over
K. Denote by B, the result of deleting the first column and the first row of A,. Let
7= (id—¢(g)) 'o(By)(id — ¢(g))~!. Note that 7 is defined over K[tlil, e, tnfl .
Since we assume that T (M, ¢) # 0 it follows that ¢(B,) is invertible over K(#1, ..., t;)
and t(M,p) =t € Ki(K(t1,...,tm))/ £ @(1(M)) (we refer to [19, Theorem 2.2]

By cocore, we mean the element in 7y given by taking a point on the 2—cell and connecting the two
push-offs through an arc in the 3—cell.

Algebraic €& Geometric Topology, Volume 7 (2007)



Non-commutative multivariable Reidemester torsion and the Thurston norm 767

for details). Therefore T(M, ¢) € K{(K(#1,...,tm))/ £ @(r1(M)) can be represented
by a matrix defined over K[tlﬂ, e ,tfrfl]. This concludes the proof in the case that
M is a closed 3—manifold.

In the case that M is a 3—manifold with non-empty toroidal boundary we can find a
(simple) homotopy equivalence to a 2—complex X with y(X) = 0. We can assume
that the CW—-structure has one O—cell, n 1—cells and n — 1 2—cells, furthermore we can
assume that the closure of a 1—cell represents an element g € Ker{y/: 71 (X) — Z™}
such that id — ¢(g) is invertible. We get a chain complex

~ ad ~ 0 ~
0— C(X)" 13 (X)) =5 Co(X)! — 0.

Picking appropriate lifts of the cells of X to cells of X we get bases for the Z[m1(X)]-
modules C;(X), such that if 4; denotes the matrix corresponding to d;, then A is of
the form

A] = (l—g,l—al,...,l—an_l),

for some a; € w1 (M). Now denote by B, the result of deleting the first row of 4,.
Then 7 := ¢(B»)(id — ¢(g))~! is again defined over K[tlil, e, t,fl] and the proof
continues as in the case of a closed 3—manifold. O

Remark It follows from [4] that if M is closed, or if M has toroidal boundary,
then (M, ¢) # 0 is equivalent to Hy (M ;K(t1,...,t,)) = 0, or equivalently, that
H{(M; K[tlil, ce, t,fl:l]) has rank zero over K[llil, e, t,f,:l].

Remark The computation of polynomials

faeKEE, i and £ e K[, L 5T

such that det(t(M, ) = fu f d_l is computationally equivalent to the computation
of degy(t(M,¢)) for some ¢: H;(M) — Z. Put differently we get the perhaps
surprising fact that computing the higher-order Alexander norm does not take longer
than computing a single higher-order, one-variable Alexander polynomial.

4 Examples of ¥ —compatible homomorphisms

Following [1] and [7] we will use the rational derived series to give examples of ¥ —
compatible homomorphisms. For a given a 3—manifold, we will show that these give
rise to a never decreasing, eventually constant sequence of semi-norms all of which
give lower bounds on the Thurston norm.
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4.1 Skew fields of group rings

A group G is called locally indicable if for every finitely generated non-trivial subgroup
U C G there exists a non-trivial homomorphism U — Z. We recall the following
well-known theorem.

Theorem 4.1 Let G be a locally indicable and amenable group and let R be a subring
of C. Then R[G] is an Ore domain, in particular it embeds in its classical right ring of
quotients K(G).

Higman [9] showed that R[G] has no zero divisors. The theorem now follows from
[17] or [3, Corollary 6.3].

We recall that a group G is called poly-torsion-free-abelian (PTFA) if there exists a
filtration
l1=GoCG;C---CGu1CGr=G

such that G;/G;_; is torsion free abelian. It is well-known that PTFA groups are
amenable and locally indicable (cf [15]). The group rings of PTFA groups played an
important role in Cochran—Orr—Teichner [2], Cochran [1] and Harvey [7].

4.2 Admissible pairs and multivariable skew Laurent polynomial rings

We slightly generalize a definition from Harvey [8].

Definition Let 7 be a group and let /: w — Z™ be an epimorphism and let ¢: 7 — G
be an epimorphism to a locally indicable and amenable group G such that there exists
amap G — 7™ (which we also denote by ) such that

commutes. Following [8, Definition 1.4] we call (¢, ) an admissible pair for .

Clearly Gy, := Ker{G — 7™} is locally indicable and amenable. It follows now
from Passman [13, Lemma 3.5 (ii)] that (Z[G], Z[G ]\ {0}) satisfies the Ore property.
Now pick elements t* € G,a € Z™ such that ¢ (t*) = o and t"* = (t*)" for any
aeZmnel”.

Clearly Z[G)(Z[Gy]\ OH™ ! =3 cm K(Gy)t* is a multivariable skew Laurent
polynomial ring of rank m over the field K(Gy,) as defined in Section 2.1. We denote
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this ring by K(Gy)[rE!, ... 1 !]. Note that Z[] — Z[G] > K(G )i ... ] is
a Y —compatible homomorphism and that IK<(G,)(¢1, . .., f) is canonically isomorphic
to K(G).

A family of examples of admissible pairs is provided by the rational derived series of a

group 7 introduced by the second author (cf [7, Section 3]). Let 71,(0) ;= and define

inductively
n,(") ={ge nr("_l)|gd € [nr(”_l), Jr,(”_l)] for some d € Z\ {0}}.

Note that nr(n_l)/nr(n) ~ (n,(n_l)/[nr(n_l),n,(n_l)])/Z—torsion. By [7, Corollary
3.6] the quotients 7/ Jrr(") are PTFA groups for any 7 and any n. If ¥: w — Z™ is an
epimorphism, then (7 — 7/ n,(”), Y¥) is an admissible pair for 7 for any n > 0.

4.3 Admissible pairs and semi-norms

Let M be a 3-manifold with empty or toroidal boundary. Let
(p: m (M) - G,y 1 (M) — Z™)
be an admissible pair for 7;(M). We denote the induced map
Zmi(M)] — K(Gy) (1, ...\ tm)
by ¢ as well.

Let ¢p: 7™ — 7 be a non-trivial homomorphism. We denote the induced homomorphism
G — 7™ — Z by ¢ as well. We write G4 := Ker{G — Z}. Pick u € G such that
¢(n)Z = Im(¢p). We define Z[Gd,][uil] via uf = ufu~'u. Note that we get an
isomorphism K(Gg)(u) = K(G). If ©(M, ¢) # 0, then we define

86 (¢) := max{0, deg(r (M, K(Gy)()))}.

otherwise we write g (¢) = —oo. We will adopt the convention that —oo < a for any
a € Z. By [4] this agrees with the definition in [8, Definition 1.6] if §G(¢) # —oo and
if ¢: G — Z™ is not an isomorphism or if m > 1. In the case that ¢: G — Z is an
isomorphism and M # S! x D2, S! x S2, this definition differs from [8, Definition

1.6] by the term 1 + b3(M). In the case that ¢: 7 — n/n,(”+l) then we also write

Sn(@) =4,/ i (P).

The following theorem implies Theorem 1.1.

Theorem 4.2 Let M be a 3—-manifold with an empty or toroidal boundary. Let
(p: mi(M) - G, ¥: my(M) — Z™) be an admissible pair for w1(M) such that
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©(M,¢) # 0. Then for any ¢: Z™ — Z we have ||¢|l;(pm,p) = S6(¢) and ¢
max{0, 8g(¢)} defines a semi-norm which is a lower bound on the Thurston norm.

Proof Let ¢p: 7™ — Z be a non-trivial homomorphism. As in Section 2.1 we can
form K(G¢)[si1] and K(Gw)(Ker(tj)))[sil]. Note that these rings are canonically
isomorphic Laurent polynomial rings. If ¢: G — Z" is an isomorphism, then ¢ is
commutative. Otherwise we can find a non-trivial g € Ker(v), so clearly 1 —¢(g) #
0 € K(G). This shows that we can apply Theorem 3.1 which then concludes the
proof. a
In the case that ¢: 7 — n/nr("+1) we denote the semi-norm ¢ — max{0, §,(¢)} by
|I—ll». Note that in the case n = 0 this was shown by the second author [7, Proposition
5.12] to be equal to McMullen’s Alexander norm [11].

4.4 Admissible triple

We now slightly extend a definition from [8].

Definition Let 7 be a group and v: m — Z™ an epimorphism. Furthermore let
@1: m — G and ¢,: T — G, be epimorphisms to locally indicable and amenable
groups G; and G,. We call (@1, ¢y, ¥) an admissible triple for m if there exist
epimorphisms ®: G| — G, and ¥,: G, — 7™ such that ¢, = oy, and ¥ = Yr0¢;.

Note that (¢;, ¥),i = 1,2 are admissible pairs for 7. Combining Theorem 4.2 with
[4, Theorem 1.3] (cf also [8]) we get the following result.

Theorem 4.3 Let M be a 3—-manifold with empty or toroidal boundary. If (¢1, @2, V)
is an admissible triple for 71 (M) such that T(M, ¢;) # 0, then we have the following
inequalities of semi-norms:

I=llzm02) = I=llzmio) = =7

In particular we have
I=llo =ll=llh =--- =l

Let M be a 3-manifold with empty or toroidal boundary and let ¢ € H'(M;Z).
Since §,(¢) € N for all n it follows immediately from Theorem 4.3 that there exists
N € N such that §,(¢) = dn(¢) for all n > N . But we can in fact prove a slightly
stronger statement, namely that there exists such an N independent of the choice of
pe H (M;Z).
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Proposition 4.4 Let M be a 3-manifold with empty or toroidal boundary. There
exists N € N such that §,(¢) = Sn(¢) foralln > N and all p € H' (M ;R).

Proof Write w = m(M), m, = n/n,("+1) and m = by (M). Let : w — Z™ be an
epimorphism. Write (1,)y, = Ker{y: 7, — Z"}. Now pick elements t* € 7, € Z"
such that ¥ (%) = « and k% = (t*)k for any o € Z™,k € Z. Consider the map
2] = Z[mn] = K((n)y ) (t1s - - - o tm) . We write 7, = T(M, K((775)y ) (11, - - - . 1))
We can find fy, gn € K((714)y) € [tlil, .. .,t,j’;l] such that 7, = fng,'.

Now let H be a real vector space and C C H a convex subset. Then C defines a
dual convex subset d(C) C H* = hom(H,R). Under the canonical identification
(H*)* = H we have d(d(C)) = C. We use ¥ to identify H;(M;R) with R™.
Let f =73 em aat® € K((mmn)y) € [tlil, ..., t;x!] and denote by N(f) its Newton
polytope, ie N(f') is the convex hull of {a|ay # 0} C H; (M ;R). Clearly d(N(f)) C
(H{(M;R))* = H'(M;R) equals the norm ball of || . By the above discussion
we see that d(||—||s) = N(f), in particular d(|[—||s) has only integral vertices.

By the definition of 8, = |||, = ”_”fgg;l it follows that

d(8n) +d(gn) = d(tn) +d(gn) = d(fu)

where “+” denotes the Minkowski sum of convex sets. It is easy to see that this implies
that d(d,) has only integral vertices.

Theorem 4.3 implies that there is a sequence of inclusions
d(8o) Cd(éy) C---Cd(|=l7)-

Since d(||—||7) is compact and since d(8,) has integral vertices for all # it follows
immediately that there exists N € N such that d(§,) = d(§y) for all n > N . This
completes the proof of the proposition. O

S Examples

Before we discuss the Thurston norm of a family of links we first need to introduce
some notation for knots. Let K be a knot. We denote the knot complement by X (K).
Let ¢: H{(X(K)) — Z be an isomorphism. We write §,(K) := §,(¢). This agrees
with the original definition of Cochran [1] for n > 0 and if Ag(¢) = 1, and it is one
less than Cochran’s definition otherwise.

In the following let L = L U---U L, be any ordered oriented m—component link.
Leti € {l,...,m}. Let K be an oriented knot with Ag(¢#) # 1 which is separated
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from L by a sphere .S'. We pick a path from a point on K to a point on L; and denote
by L#; K the link given by performing the connected sum of L; with K (cf Figure 1).
Note that this connected sum is well-defined, ie independent of the choice of the path.
We will study the Thurston norm of L#; K.

Figure 1: The link L#; K.

Now assume that L is a non—split link with at least two components and such that
I=llo = I-|l7- Many examples of such links are known (cf [11]). For the link
L#; K denote its meridians by p;,i = 1,...,m. Let ¥: Hy(X(L#;K)) — Z™ be the
isomorphism given by ¥ (i;) = e;, where ¢; is the i th vector of the standard basis of
7m.

We write 7 := 1 (X (L#; K)). For all « € Z™ we pick t* € 71/71,("+1) with ¥ (%) =«
and such that /¢ = (1%)! for all & € Z" and [ € Z. Furthermore write #; := 1% .

Proposition 5.1 Consider the natural map
¢ 1w — K/x"Y) = Koy /7)),
where m is as defined above. There exists
S (@) € Ky /" MO € WGy /a Oy

such that deg( f(t;)) = 8,(K)+1, and there existsa d = d(t1,...,tm) EK(t1, ..., tm)
with ||—|la = |I—|lo, such that
(2)

T(X(L#K) ) = d(tr, ... 1) f (i) € Ky (K(ry /7" D) (01, tm) ] £ ().

Furthermore, if 8, (K) = 2genus(K) — 1, then

I=llexces k),0) = =T
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Proof Let S be the embedded sphere in S3 coming from the definition of the
connected sum operation (cf Figure 1). Let D be the annulus S N X (L#; K) and we
denote by P the closure of the component of X (L#; K)\ D corresponding to K. We
denote the closure of the other component by P’ (see Figure 2 below). Note that P
is homeomorphic to X(K) and P’ is homeomorphic to X (L). Denote the induced

K

Figure 2: The link complement of L#; K cut along the annulus D.

maps to (K) := K(nw/nr("ﬂ))(tl, ..., tm) by @ as well. We get an exact sequence
0— CL(D; (K)) — CL(P; (K) & CL (P (K)) = CL(X(L# K); (K)) — 0
of chain complexes. It follows from [19, Theorem 3.4] that

3) (P.o)t(P'.¢) =t(D,0)t(X(Li#K), ) € (Ki1((K))/ £ ¢(r)) U{0}.

First note that D is homotopy equivalent to a circle and that Im{y: 7{(D) - 72"} =
Ze; . It is now easy to see that 7(D, ¢) = (1—at;)~! for some a € K(n,/,/nr(nﬂ))\{O}.
Next note that Im{y: w1 (P) — Z"} = Ze;. In particular 7(P, ¢) is defined over the
one-variable Laurent polynomial ring (s, / Jr,("H))[tl.il] which is a PID. Recall that

we can therefore assume that its Dieudonné determinant f{(#;) lies in <y, /71,("+1))[tijE 1
as well.

Claim
deg(t(P, ¢: 711 (P) — Ky /7" D) (1)) = 8n(K).

Proof First recall that there exists a homeomorphism P =~ X (K). We also have an
inclusion X' (L#; K) — X(L;#K). Combining with the degree one map X (L;#K) —
X (K) we get a factorization of an automorphism of 1 (X (K)) as follows:

71 (X(K)) = 7 (P) » m (X (L#; K)) — 7 (X (Li#K)) — 71 (X(K)).
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Since the rational derived series is functorial (cf [7]) we in fact get that

7 (XKD /m (XKD = 7y (P) /0 (P
— 7 (X (LK) /7 (X (LK)
— 1 (X(K))/my (X (K))"*
is an isomorphism. In particular
71 (X (K)) /1 (X (KNDEHD — 01 (X (L# K)) /01 (X (Lt K)) D)
is injective, and the induced map on Ore localizations is injective as well. Finally

note that Ker{m; (X (K)) — m1(P) i) 7™} = Ker(¢) where ¢: m1(X(K)) = Z is
the abelianization map. It now follows that

5n(K) = deg(r(X(K), 71 (X(K)) = K(m1 (X(K)) /71 (X(K) D) (1))
= deg(r(X(K), 1 (X (K)) = K(ry /7" ) (1)
= deg(v(P, 71 (P) = K(y /7" D) 1)).

Note that the second equality follows from the functoriality of torsion (cf [19, Proposi-
tion 3.6]) and the fact that going to a supfield does not change the degree of a rational
function. This concludes the proof of the claim. |

Claim We have the following equality of norms on H'(X(L);Z):
I=llzp0) = lI=llT-

Proof First recall that P’ is homeomorphic to X (L). The claim now follows imme-
diately from Theorem 4.3 applied to ¢ and to the abelianization map of 71 (P’), and
from the assumption that |—|lo = ||—||7 on H'(X(L);Z). |

Putting these computations together and using Equation (3) we now get a proof of
Equation (2).

Now assume that 6, (K) =2genus(K)—1. Let S; be a Seifert surface of K with minimal
genus. Let ¢p: 7™ — Z be an epimorphism and let / = ¢ (;) € Z. We first view ¢ as an
element in hom(H; (X (L); Z). A standard argument shows that ¢ is dual to a (possibly
disconnected) surface S which intersects the tubular neighborhood of L; in exactly /
disjoint curves. Then the connected sum S’ of S with / copies of S; gives a surface
in X(L#; K) which is dual to ¢ viewed as an element in hom(H (X (L#; K);Z). A
standard argument shows that S’ is Thurston norm minimizing (cf eg [10, page 18]).

Clearly x(S’) = x(S) +1(x(S;) —1). A straightforward argument shows that further-
more x—(S’) = x—(S) + [(x-(S;) + 1) since L is not a split link and since K is
non-trivial.
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We now compute
I¢llr = x-(S")
= x-(8)—n(x(S)—1)
= ||¢|l7 + 2/genus(K)
= [|¢lla +20a(K)+ 1)
= ||¢llg +2deg(f (%))
= [1®llex L K).0)-
By the R-linearity and the continuity of the norms it follows that

P llex s x)0) = ol T
for all ¢: 7" — R. |

We now combine Proposition 5.1 with results of [1] to give explicit examples of the
sequence of semi-norms ||—||,.

Denote by ((n, m) the convex polytope given by the vertices (:I:%, 0) and (0, i%).
Let (n;)ien and (m;);en be never decreasing sequences of odd positive numbers which
are eventually constant, ie there exists an N such that n; = ny for all i > N and
m; =mpy for all i > N . According to [1] we can find knots K; and K, such that
0; (K1) =n; for any i, 65 (K;) =2genus(K;)—1 and 8;(K,) = m; for any i and
Sn(Ky) =2genus(Ky) —1.

Let H(Ky, K>) be the link formed by adding the two knots K; and K, from above to
the Hopf link (cf Figure 3). Recall that the Thurston norm ball of the Hopf link is given
by O(1,1). Let w := w1 (X (L)). It follows immediately from applying Proposition 5.1

K,

K>

Figure 3: H(K;, K3) is obtained by tying K; and K, into the Hopf link
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twice that the norm ball of ||—||; equals {(n; + 1,m; + 1) and that |—||x = ||—||7-
The following result is now an immediate consequence of Proposition 5.1.

Corollary 5.2 We have the following sequence of inequalities of semi-norms

I=la=l=lo=l=ll =l=ll2=---=l-lI~ = l-lT.

In [7] the second author gave examples of 3—manifolds M such that

I=lla=ll=llo =lI=lh =l=l2=---
but in that case it was not known whether the sequence of norms ||—||; eventually
agrees with ||—|| 7.
It is an interesting question to determine which 3—manifolds satisfy ||—||7 = ||—||» for

large enough n. We conclude this paper with the following conjecture.

Conjecture 5.3 If (M)ﬁ“’) = Npen T1 (M)ﬁ”) = {1}, then there exists n € N such
that ||—|l7 = [|=lln-
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