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Annals of Mathematics, 102 (1975), 101-137

Higher simple homotopy theory

By A. E. HATCHER*

1. Introduction

In this paper we globalize J. H. C. Whitehead’s simple homotopy theory
[17] by constructing a homotopy functor Wh from polyhedra to simplicial
H-spaces, such that Whitehead’s theory amounts to the calculation of
T, Wh(K), the arc-components of Wh(K). “Higher simple homotopy theory”
is then concerned with the full homotopy type of Wh(K), for example, its
higher homotopy groups.

Recall from Whitehead’s simple homotopy theory the basic geometric
operation of an elementary collapse, written L, \, L,, where L, and L, are
finite cell complexes such that L, is obtained from L, by attaching a ball
along a face in its boundary. The equivalence relation generated by elemen-
tary collapses is called simple homotopy equivalence, and the main theorem
is that a homotopy equivalence of finite complexes is simple if and only if a
single algebraically defined obstruction (the torsion), lying in an abelian group
which depends only on the fundamental group of the spaces involved,
vanishes.

Simple homotopy equivalences are not hard to find in nature. A useful
recognition criterion in the PL category, due to M. M. Cohen [7], is the
following: A PL map f: L,— L, is a simple homotopy equivalence if all the
point inverses f~'(x) are non-empty and contractible. Cohen called such maps
contractible mappings. For example, an elementary collapse L, \, L, can be
realized by an evident contractible mapping. More recently, T. A. Chapman
[3] has vastly generalized Cohen’s theorem to the CW category (with “con-
tractible” replaced by “cell-like”), thereby proving a conjecture of Whitehead
that homeomorphisms are simple.

One nice property of PL contractible mappings not shared by elementary
collapses is that they are closed under composition. Thus we can form the
category C whose objects are finite polyhedra (say, finite subpolyhedra of R”
for definiteness) and whose morphisms are PL contractible mappings. We
have also the full subcategory Cx of C whose objects are polyhedra homotopy
equivalent to the fixed polyhedron K, and the subcategory C(K) c €, whose
objects contain K as a deformation retract and whose morphisms restrict to

* Supported in part by NSF grant GP 34324X.
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the identity on K. One of several equivalent definitions of Wh(K) is the
classifying space BC(K). This is (the geometric realization of) the simplicial

space whose k-simplices are the compositions L, fi L, L L, in
C(K). The various (k — 1)-faces of such a k-simplex are obtained by deleting
an L, and, if 0 < © < k, composing f; with f;,,. The classifying spaces BCx
and BC are defined similarly. The arc-components of BC are, by Cohen’s
theorem, exactly the simple homotopy types of finite polyhedra. BCy is a
union of components of BC, those containing polyhedra homotopy equivalent
to K. Also, 7, Wh(K) is just the group called “Wh (K)” in [8], where White-
head’s theorem is reformulated to say that 7, Wh (K) is naturally isomorphic
to Wh, (7,K), the algebraic torsion group, quotient of K,Z[r,K]. (See also
[10], [13], [15] for similar geometric definitions of Whitehead torsion.)

To breathe a little life into this categorical nonsense, we start by show-
ing that BC actually classifies something: fibrations in the PL category, that
is, PL maps which satisfy the covering homotopy property for polyhedra
(Serre fibrations). Thus € is the “structure group” for PL fibrations. Intui-
tively, the idea is that PL contractible mappings are “local” homotopy
equivalences, and the covering homotopy property is essentially a local
condition. An immediate corollary is that, over a connected base, the fibers
of a PL fibration all have the same simple homotopy type, not just the same
homotopy type, as one might expect.

More usually in topology one works with homotopy fibrations, meaning
maps of arbitrary spaces which are Serre fibrations, or equivalently, PL
maps which are only quasi-fibrations (satisfying the weak covering homotopy
property [9]). Homotopy fibrations with fibers homotopy equivalent to K are
classified by BG(K), where G(K) is the H-space of self-homotopy equivalences
of K. Passing from PL fibrations to homotopy fibrations induces a map of
classifying spaces, whose homotopy fiber turns out to be Wh (K) = BC(K):

(*) Wh(K) — BCx — BG(K) .

Thus Wh (K) measures the global difference between PL contractible map-
pings and general homotopy equivalences. Curiously, Wh(K) has much more
structure than BC or BG(K): it is a homotopy functor of K and, functorial-
ly, an infinite loopspace.

A deeper justification for our definition of Wh(K) is that we can use it
to prove a parametrized version of the PL h-cobordism theorem. Recall that
the h-cobordism theorem says in effect that for a given compact connected
PL manifold M", » = 5, the various h-cobordisms (W, M) are in one-to-one
correspondence with the components of Wh (M), via their torsions. In
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particular, there exists a product structure (W, M)~ (M x I, M) if and only
if W lies in the identity component of Wh (M). The parametrized version
deals with the comparison between different product structures on (M x I, M).
Let P(M) denote the (simplicial) space of PL homeomorphisms of M x I fixed
on M (i.e., pseudo-isotopies). Then we construct a natural map P(M) —
Q Wh (M) which is k-connected whenever n = dim M is large with respect to
k (n = 3k + 8 will do). This is the main theorem of the paper.

An immediate consequence is that there is a “stable” dimension range
% > 1 where 7,;9(M™) depends only on the homotopy type of M. In particular,
the inclusion (M) = P(M x I), f+ f X id;, induces an isomorphism on 7,
if » > 1. With results of Chapman, this leads to a neat reformation of higher
simple homotopy theory in terms of compact Hilbert cube manifolds. Such
manifolds have the form K x @ for K a finite polyhedron and @ the Hilbert
cube. K is determined only up to simple homotopy type, so we may as well
take it to be a PL manifold M. Then Piop(Mx Q) = U, P(M x I*) = QWh (M),
the first equivalence, by [5]. For the composite equivalence Prop(M X Q) =
QWh (M) we can replace M by K, and we have a diagram

Proo(K X Q) — Homeo (K x Q) — G(K X Q) — G(K x Q)/Homeo (K X Q)

=k |
Q Wh(K) QBC, G(K) Wh(K)

where the upper row is a fibration sequence by [6] and the lower row continues
(*). The map G(K x Q)/Homeo (K x @) — Wh(K) is a homotopy equivalence
on identity components, and the precise situation with 7, is covered by
Chapman’s original proof of the topological invariance of Whitehead torsion:
A homotopy equivalence f: K— K’ is simple if and only if f x id: K X Q@ —
K’ x Q is homotopic to a homeomorphism [4]. The equivalence of G(K x
Q)/Homeo (K < Q) with a union of components of Wh(K) therefore globalizes
this result and gives the “topological invariance of higher torsions,” viz.,
that the composition Homeo(K) =—— G(K)— Wh(K) is null-homotopic. I
should add that the equivalence of G(K x Q)/Homeo(K x @) with a then-
hypothetical higher simple homotopy theory was predicted to me a couple of
years ago by F. S. Quinn.

A further application of the stable equivalence P(M) ~ Q Wh (M) is the
calculation’

7T, Wh(M) ~ n,Pp (M) ~ 7, Ppice(M) ~ Wh,(n,M) S Whi(x,M; Z, x ©,M) ,

! Assuming the first Postnikov invariant k€ H3(x;M; 7o M) of M vanishes—see the foot-
note in §10.
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the second and third equivalences by [2] and [11], respectively. (One could
also prove this directly.) Here Wh,(7,) is a certain quotient of K,Z[x];
Whi(z,; Z, % 7,) is deseribed in Section 10.

The calculation of 7, Wh (M) shows that higher simple homotopy theory
is not a functor of fundamental groups alone, as is the classical theory.
Probably the best general statement about the dependence of Wh(K) on
K is that if K— K’ is k-connected, k > 1, then the induced map Wh(K) —
Wh(K’) is (k — 1)-connected. This is proved in Section 7 by a homotopy
excision argument. In fact, we show that Wh satisfies an excision property
formally analogous to excision in ordinary homotopy theory. Consequently
there is a stable simple homotopy theory s.(K) which is a generalized
homology theory. R. K. Lashof had previously constructed this theory in
terms of pseudo-isotopy spaces (using our stability result on P(M)—P(Mx I ).
Also, using results of Morlet and Chenciner he calculated the coefficient
groups: s,(S°) ~ 7, Ppi:«(D") for n large. Since P, (D") is contractible by
the Alexander trick, the effect of this is that s, measures the difference
between Pp:r and Ppr, in the stable range. It is known (see [16], [18]) that
the first non-vanishing s,(S°) occurs for ¢+ = 3.

By way of example we give in the last section of the paper an easy con-
struction of some non-trivial elements of 7, Wh(K) whenever 7, K =+ 0,
together with a way of injecting these into 7, . ,Wh(K x T*), T" the n-torus,
for any » = 1.

In a later paper we intend to clarify the relationship between Wh (K)
and higher algebraic K-theory by defining higher Whitehead groups
Wh,(7,K) and natural maps 7,_, Wh(K)— Wh,(7,K) and K/Z[7,K]—
Wh, (7,K). The best one could hope would be for these two maps to be
surjective (they are for ¢ = 1, 2), but even this seems unlikely in general.
Similar remarks apply to a second family of functors Wh; (7,K; Z, X 7,K)
which extend the summand Wh; (7,K; Z, X 7,K) of 7, Wh(K). And these two
invariants are just the beginning.

I am indebted to T. A. Chapman and F. S. Quinn for some stimulating
conversations about the material of this paper.

2. PL fibrations

We will be working in the PL category. All polyhedra will be sub-
polyhedra of R” though we usually neglect to mention the specific embeddings
in R*. For simplicity we will consider only finite polyhedra. The extension
to the locally finite case (with proper maps) is straightforward; the result
would be a “higher infinite simple homotopy theory,” generalizing [13].
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This section contains preliminary material on fibrations in the PL
category, the mai. results being the local characterization given in 2.1 and
its global form in 2.5.

We begin by describing a completely general way of decomposing any
PL map 7: E — B into elemental blocks over the simplices of some triangula-
tion of B. Given a chain of PL maps

S S

L, L, s L, ,
the iterated mapping cylinder M(f,, - - -, f:) is defined inductively to be the
ordinary mapping cylinder of the composition M(f, ---, fi_1) — Li_, T,

L,, where the unmarked arrow is the obvious projection. Thus for &k = 1 we
have the usual mapping cylinder, for & = 2 the mapping cylinder of M(f))—
L, —f—> L,, ete. (Note that mapping cylinders are well-defined PL objects by
9.5 of [7]; see also [1].) By an iterated mapping cylinder decomposition of
7: E — B we mean: Over each simplex ¢ of some triangulation of B, =7'(0)
is given as an iterated mapping cylinder M(fy, ---, f{), where k = dim o,
such that 7: 77(¢) — o is identified with the standard projection M(f?, ---,
f&) — A*. Moreover, these structures are to be compatible when we pass
from o to simplices of do.

To obtain an iterated mapping cylinder decomposition of an arbitrary
PL map ©: E — B, choose triangulations of E and B (which we still call &
and B) and barycentric subdivisions E’ and B’ such that 7: E — B and
7. E'— B’ are simplicial. Let b,, ---, b, be barycenters of simplices B, >
«++ > B, of Bandlet L, = 77'(b,). Define PL maps f,.,: L, — L,,, by sending
a barycenter ¢, € L, of a simplex ¢, of 77'(3;) to the barycenter ¢,,, of ¢,., =
&, N7 Y(B;..), and extending linearly. Then 7~'(b, - - - b,) is identified naturally
with M(f,, «--, fu), andw: 7 '(by - -+ b,) — b, - - - b, is the projection M(f,, - -+,
fi) — A*. (To see this it suffices to consider the case that £ and B are
simplices and 7 is simplicial.)

PROPOSITION 2.1. Suppose 7: E — B is a PL map which is a Serre fibra-
tion (briefly, a PL fibration). Then the maps f7 in any iterated mapping
cylinder decomposition of @ are contractible mappings, i.e., all point-
imverses (f7)7'(x) are non-empty and contractible. Conversely, if in some
iterated mapping cylinder decomposition of @ all the maps f7 are contract-
ible mappings, then w is a PL fibration.

Proof. We first show that the f7’s must be contractible mappings if =
is a PL fibration. For this it suffices to choose £ = M(f) for f: Ly,— L,. If
we L,, then M(f|f'(x)) is a cone C on f~'(z), and we apply the covering
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homotopy property in the diagram
M(f)

a

c-—--10,1]

to the homotopy C—=— [0, 1] —“> [0, 1], k() = min (L — s, £), where T-'(£) =
L,for 0 £t <land7™'(1) = L,. The effect is to produce a continuous family
of contractions of f~'(x) in each slice L, = 77'(¢), 0 £ ¢t < 1. By continuity,
the contraction must take place in a neighborhood of f~'(x) < L, for (s, t)
near (0, 1), so f~'(x) must actually be contractible in itself.

For the converse we start with an iterated mapping cylinder decomposi-
tion of m, with respect to some triangulation of B. Since being a PL fibration
is a local property with respect to B, it will suffice to show that = is a PL
fibration over the star, in the barycentric subdivision of B, of each vertex
v € B. (These stars can be enlarged slightly by isotopy so that their interiors
still cover B.) Thus we may assume B = star (v) = C(A4), the cone on A =
link (v), and, by induction on dim B, that on L = n7'(4), « is a PL fibration.
Moreover, E = 7~!(B) has the structure of a mapping cylinder M(f), where
fi L— K = w7 '(v) is such that its restriction to each fiber 77'(a) in L is a
contractible mapping (being one of the f7’s in the given iterated mapping
cylinder decomposition of 7 or else the identity). Thus the proposition is
reduced to:

LEMMA 2.2. Given a PL fibration m: L — A and a fiber-preserving PL
contractible mapping (f, ©): L—K X A, then the natural projection T: M(f)—
C(A) to the cone on A is a PL fibration.

Proof. Let F: M(f)— K x C(A) be the obvious map. We claim:

F has a homotopy inverse G for which there is a homotopy H,:
M(f)— M(f) from the identity to GF such that 7H, = T and

H
(H) such that H, is fixed on K = 7T'(v), where v is the cone point
of C(A).
Assuming this, we can proceed as follows. Given a lifting problem
M(f)
9/ l_
/ T

let : X — I be such that 67'(0) = g7'(v) and g,(x) = » if s < 6(x) # 0.
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Xx1
\ 977
sl F&
)4
Xx0 'HE; graph of @
Define ¢g;: X — g5'(v) — C(A) — {v} to be g, if s < #and g,if s = 6. This lifts
to gu: X — ¢g5'(v) — M(f) — T *(v) since T | M(f) — 7@ '(v) is a PL fibration.

Then define §,: X — M(f) for s < 6 by g, = H,;»g., where if necessary 6 is
replaced by a smaller function so that each are g,(x), 0 < s < 6(x), approaches
the constant arc g,(x,) as « approaches x, € g;'(v). (This assures that §, is a
continuous extension of §,.) We are left with the problem of lifting g, for
0 < s < 1 with an initial position §, which factors through the trivial fibra-
tion K x C(A) — C(A). This can certainly be done. n

Towards proving (H) we first reprove a result of M. M. Cohen [7]:

PROPOSITION 2.3. A contractible mapping f: L—K is a simple homotopy
equivalence.

Note that this then holds also for the restrictions f| f'(K’), K’ a sub-
polyhedron of K. Hence contractible mappings are closed under composition.

Proof of 2.3. Choose triangulations of K and L such that fis simplicial.
Since f is surjective, we can regard it as a kind of collapsing map: for each
simplex ¢ of K, f collapses the subcomplex ‘(o) of L onto ¢. Thinking of
f in this way, we can factor it as L EELIR L, , L,—> -+ — K where f;
collapses the inverse image of the i-skeleton K* of K to K*. We will show
that each f; is a simple homotopy equivalence, which implies that their com-
position f is also.

Let o be an i-simplex of K* = L!. Since f is simplicial we can choose an
1-cell of L,_, mapped isomorphically onto ¢ by f;. Identify o with this ¢-cell.
Then since f; is a contractible mapping, there is a deformation retraction of
fi'(o) onto g, rel f7'(00), preserving the “fibers” f;'(x). Using these deforma-
tions for the various ¢ in K* we can pass continuously from L, , to L) =
L, U f7Y(K" by a homotopy of the attaching maps of the cells in /(K — K?),
thinking of L,_, as a CW complex (with PL attaching maps). The resulting
homotopy equivalence f;: L,_,— L} is therefore simple. The collapse f{": L;—
L, is clearly a homotopy equivalence; it is simple since the collapsing splits
into the disjoint collapses fi'(g) — o each of which takes place over a con-
tractible, hence simply-connected, part of L,. The composition f{'f{ i
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homotopic to f; (in fact, by a homotopy which is arbitrarily small with respect
to projection on K), so f; is a simple homotopy equivalence. ]

L, L’i L

7 fi ‘
—_— —_—

K K K

Returning to assertion (H), consider first the unfibered case A = point.
Retracing the steps in the proof that f: L — K is a homotopy equivalence, we
can construct g: K— L and a homotopy %,: L — L from the identity to gf
such that fk, is arbitrarily close to f. Letting f%, approach f as we slide
down M(f) to KC M(f) we obtain G: Kx I—M(f) and a homotopy H,: M(f)—
M(f) from the identity to GF (preserving the projection 7 to I) such that
H, is the identity on K C M(f).

In the fibered case when f: L— K is replaced by (f, 7): L— K x A, begin
with g: K x A— L and h,: L — L as above. These two maps commute with
projection to A up to homotopy. Applying the covering homotopy property
to this homotopy, we can deform ¢ and %, so that they commute with projec-
tion to A exactly. Then construct G and H, as in the unfibered case. N

As a consequence of 2.1, being a PL fibration is a purely local property;
i.e., given w: E — B, if every point of E has a neighborhood U such that
7 |U: U—7w(U) is a PL fibration, then 7 is a PL fibration. Also, 7 is a PL
fibration if over one-dimensional subpolyhedra of B it is a PL fibration.

The next lemma, which follows from 2.1, will be useful later.

LEMMA 2.4. Let K— B and L — B be PL fibrations, K' C K a subfibra-
tion, and ¢: K' — L a fiber map. Then L U,K— B is a PL fibration.

Proof. A mapping cylinder in an iterated mapping cylinder decomposi-
tion of L U, K can be chosen of the form M(g U,f), coming from a commuta-
tive diagram

k-1 k&,

/ /
kL K
N N\
¢ R
Ly,— L,
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with f, f’, and g contractible mappings. To check that g U,f is a contractible
mapping, consider first a point x € L,, so that

(9 Usf) @) = 97}(®) Uy (o7 (@)) -
Now f (¢ (x)) deforms into (f”)~*(¢:"(x)) since both are homotopy equivalent
to ¢7'(x) under f and f’, respectively. So (g U, f) '(x) deforms into g~'(x)
which is contractible by hypothesis. Hence (g U, f) '(x) is contractible if
x € L,. Inthe opposite case x ¢ L,, (g U, f)'(x)=7f""(x) is also contractible. []

We define now a classifying space for PL fibrations.

Definition. The simplicial space & has as a typical k-simplex a finite
subpolyhedron L C R® x AF such that the projection L — A* is a PL fibra-
tion. The face and degeneracy maps are the obvious ones induced by
restriction and projection of A* to its (k — 1)-faces.

Using the local characterization in 2.1 it is clear that & is a Kan complex.
Any PL fibration E — B (with compact fibers) is induced from a map B — S.
Homotopic maps correspond to “homotopic” fibrations, i.e., fibrations which
are restrictions to B x {0} and B x {1} of a fibration over B x I. In this
sense S classifies PL fibrations.

Heuristically, S can be thought of as “the space of all finite polyhedra”,
or more precisely, as the (PL) singular complex of this “space”. For if 7: E—
Bis a PL fibration, then the covering homotopy property says somehow that
the fibers 7w~ '(x) are polyhedra which vary “continuously” with x. For
example, one might ask, when can one finite polyhedron be deformed “con-
tinuously” into another, or in other words, what are the arc-components of
S? By 2.1 this amounts to asking when two polyhedra L, and L, can be
joined by a chain of contractible mappings. By 2.3, L, and L, must have the
same simple homotopy type. Conversely, since elementary collapses are
contractible mappings, we see that the arc-components of & are exactly the
simple homotopy types of finite polyhedra.

Recall the definition of the category C and its classifying space BC from
Section 1. We can define a map BC —S§ by sending the k-simplex Lo—fi—>
L,— - i» L, of BC to its iterated mapping cylinder M(f,, ---, f) em-
bedded in R” X A* by general position, preserving the projection to A*.

PropPoOSITION 2.5. BC —§ s a homotopy equivalence.

Proof. We will be a little sketchy, since the result will not be used
essentially in the rest of the paper. Let L be a k-simplex of & with a chosen
lifting L° to BC over dA*, representing an element of 7,(S, BC). As in the
paragraph preceding 2.1 we can decompose L into iterated mapping cylinders
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via triangulations of L and A* such that L — A is simplicial, thereby obtain-
ing a lift L' to BC over A*. The problem is to arrange things so that L' is
homotopic in BC to L° over oA*.

L’ is given as a union of iterated mapping cylinders M(f?, ---, f7), one
for each j-simplex o of a triangulation of dA*. Triangulate the vertices L?
of M(fy, ---, f7) sothat each f7 is simplicial. This triangulation depends on
o, but we can suppose that if 7 is a face of o, then the r-triangulations sub-
divide the o-triangulations. Since the f7’s are simplicial, each M(f7, - -, f7)
decomposes into iterated mapping cylinders of the restrictions of the f7’s to
simplices of the L{’s. Now triangulate L so that all these iterated mapping
subcylinders are subcomplexes and form L' from this triangulation.

To begin constructing a homotopy in BC from L° to L' we first subdivide
0A* so L® and L' have the same vertices L? and differ only in the maps L —
L3, say f7 for L° and g7 for L'. The change in L° resulting from subdivid-
ing 0A* can clearly be realized by a homotopy of L° in BC.

Next, we construct homotopies from the g;’s to the f7’s, inductively over
the skeletons of our triangulation of Lj. On the restriction M(f’, ---,
f7) | At to a simplex A’ of L{, assuming f7’s and g?’s already agree on M(f7,
«oe, f9) | 0AY, we can perform the well-known Alexander trick of radially
coning off g7 to f7. That is, for successively smaller concentric simplices
Al C A', we use the maps g7 on M(fY, ---, f7)| Al and the maps f7 on M(f7,
<o, f7) | A' — Al. This deformation of the g¢’s on M(fy, ---, f7) | A’ extends
naturally via a regular neighborhood of A! in L to a deformation on all of
M(fs, ---, f7), and then we continue with (! + 1)-simplices of L;. Inthe end
we get a deformation of M(fy, ---, f7) to M(gs, ---, g5) as simplices in BC
(the underlying space M(f7, ---, f{) is unchanged during the deformation).

It remains to piece together these deformations over the various simplices
o of A, the trouble being that the deformation we have constructed over
o depends on the triangulation of Lj. But for faces 7 of ¢ we will have
chosen the triangulation of L to be a subdivision of the triangulation of the
appropriate L?, so further applications of the Alexander trick will provide
a way to glue everything together. Details are left to the diligent reader. []

Remark. The results of this section have analogues for PL quasi-fibra-
tions, in which “contractible mappings” are replaced by “homotopy equiva-
lences” throughout.

3. The simple homotopy functor 5(K)

Recall that a k-simplex of S is a PL fibration L =—— R™ X A*¥— A%, It
will be convenient to label such a simplex by its fibers L, = L N R™ x {t},
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te A*, and to think of L, as a k-parameter family of polyhedra.

Definition. For a fixed polyhedron K < R”, let Sx be the subcomplex
of § consisting of those L,’s of the homotopy type of K, and let S(K) C S
be the subcomplex consisting of L.’s which contain K as a deformation
retract.

S is just a union of components of S. Restricting 2.5 to the subcategories
C(K) C Cx C C (see Section 1) we obtain:

ProPOSITION 3.1. The maps BC(K) — S(K) and BCx — Sk are homotopy
equivalences. O

Thus S(K) is, up to homotopy, the space called Wh(K) in Section 1.

PL fibrations and homotopy fibrations with fibers of the homotopy type
of K are classified by $x and BG(K), respectively. Here G(K) is the H-space
of homotopy equivalences K — K. Since PL fibrations are homotopy fibra-
tions, there is a forgetful map Sz — BG(K).

PROPOSITION 3.2. The homotopy fiber of Sx — BG(K) is S(K).

Proof. The fiber F(K) of §x— BG(K) consists of pairs (L., f;), Where
L, is a simplex in §x and f,: K — L, is a family of homotopy equivalences.
In fact, this datum is exactly a fiber-homotopy trivialization of the fibration
L.,—t. If (L, f,) € F(K), the mapping cylinder M(f,) lies in S(K), since by 2.4,
M(f,) — tis a PL fibration. The correspondence (L,, f,) — M(f;) gives a map
F(K) — S(K) which has as a homotopy inverse the map L, +— (L,, K =— L),
as one can easily check. O

Remark. At the 7, level the fibration sequence
G(K) —> S(K) — Sy — BG(K)

is just the well-known representation of the set 7,5 of simple homotopy
types within the homotopy type of K as the orbit space of 7,5(K)~Wh, (7,K)
under the action of 7,G(K). (See [8, §24].)

PRrOPOSITION 3.3. S(K) is a covariant functor of K, from the homotopy
category of finite polyhedra to the homotopy category of (simplicial) infinite
loopspaces.

COROLLARY 3.4. If K is contractible then so s S(K).

This is because if K is a point we can just cone off all L, in S(K) uni-
formly.
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Proof of 3.3. For amap f: K— K'and L, € §(K), set f«(L;) = K’ UsL,.
By 2.4 this lies in S(K'). Also by 2.4 a homotopy of f induces a homotopy of
S+(Ly) in S(K').

The composition operation “+” in §(K) is “disjoint union with the two
copies of K identified.” To achieve the disjunction we will make essential
use of the given embeddings in R*. Write R® as R X R x Ry. For each
rectangle B = (a, b)) X (a,, b)) X --- inRy, with0 < a,<b,<1and (a; b, =
(0, 1) for sufficiently large ¢, let the cone C(R) be the union of rays in R x R?
from the origin 0 x 0 through points in 1 X B. We can assume that all
L,eS(K)liein Ry x C((0,1) X (0,1) X ---)and that L, N Ry x 0 x 0 = K.
Now to form L, + L, first compress L, linearly into Ry x C((0, 1/2) x (0, 1) x
--+)and L; linearly into R? x C((1/2,1) x (0,1) x ---). Then set L, + L;
equal to the union of the shifted L, and L;, which now intersect only in K.
This sum operation clearly makes S(K) a homotopy associative H-space. In
fact, S(K) now has an obvious “little cubes” structure, making it into an
infinite loopspace [12]. For example, homotopy commutativity follows by
the familiar argument using the first two coordinates of Ry to slide around

in. U
4, Families of PL cell complexes

For a more detailed study of S(K) we will need to replace it by a
homotopy equivalent space, whose k-simplices are k-parameter families of
polyhedra L, with chosen decompositions into PL cells. Each L, will be con-
structed from K by successively attaching cells of various dimensions by PL
attaching maps. The idea in defining a k-parameter family is to allow two
kinds of operations: homotopies of attaching maps, and the “collapsing” of
certain collections of cells by coning them off to a point. For example, an
elementary collapse L, \, L, can be realized by a one-parameter family L,,
0 <t <1, as in the following picture.

n-cell

(n—=1)-cell

l l l

Lo Ll/2 Ll

Another one-parameter family, demonstrating a homotopy of attaching
maps, is the following.
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n-cells

(n—1)-cells \\vﬂ——-l‘g\"/l g

S

As this example illustrates, in parametrized settings it is unreasonable to
require attaching maps to be skeletal in each parameter slice. Indeed, it is
impossible to go from L, to L, by a homotopy through skeletal attaching
maps. Thus the PL cell complexes we permit may not be decomposed as CW
complexes, though the underlying spaces are nice polyhedra.
The full definition of a k-parameter family of PL cell complexes is some-
what complicated:
(i) Set L = K, te A~
(ii) Inductively, build L{® from L™ by
(a) attaching a PL cell ¢}« via a PL k-parameter family of maps oi:
St — L{Y and then
(b) collapsing e} to a point pie L{*™" over some subcomplex of {te
AF | PS™T) = pi}.
Globally, L, = U, Li" is assumed to satisfy:
(iii) For each collapse point p, the cells of L, collapsing to p are attached
consecutively, as a block, without intervening non-collapsing cells.
(iv) The underlying polyhedra of the family L, form a k-simplex of
S(K). That is,
(a) L,— tis a PL fibration.
(b) K=— L, is a homotopy equivalence.
A family of PL cell complexes constructed according to these rules we call
a basic k-parameter family. A general family consists of basic families over
the simplices of some subdivision of A*. Thus in a general k-parameter
family the cells need not be attachable in the same order all over A*. (The
actual order in which cells are attached is not part of the data of L,, only
the decomposition of L, — K into cells.)

Definition. For 0 < ¢ < j £ o, §i(K) is the simplicial space whose k-
simplices are general k-parameter families of PL cell complexes L, such that
all cells of L, — K have dimensions in the range [¢, j]. The face and degen-
eracy maps in &i(K) are the obvious ones.

Si(K) is clearly a Kan complex, since we include general k-parameter
families.
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Remarks. (1) If the normalization condition (iii) were not assumed, it
could easily be achieved by a small homotopy of attaching maps.

(2) In the presence of (iii), condition (iv. a) is equivalent to:

(iv. a’) Near each collapse point p, the block C,(p) of cells which collapse
to p attaches to L{” (for appropriate ¢) inside a small contractible neighbor-
hood N, c L;”, such that N, is a deformation retract of N, U C,(p).

Thus Si(K) can be defined without mention of PL fibrations.

(3) Any family L, e 8i(K) can be homotoped in Si(K) to a family in
which all collapsing is split, i.e., of the form L, \v C,— L,, where C, is con-
tractible. To achieve this, first use the deformation retractions N, U C,(p) —
N, of (iv. a’) to push all non-collapsing cells off C,(p), then use a contraction
of N, to make C,(p) attach to N, at a point.

(4) One can always tell by inspection when a non-zero-dimensional cell
of L, — K collapses: it shrinks to a point. But when two or more 0-cells
merge into one, there is no intrinsic way to tell which 0-cells collapse and
which is the survivor. So let us agree as a convention that collapsing 0-cells
are distinguished. It is easy to achieve this by a homotopy of the family
L,: Letete L,, te A'C A*, be a family of 0-cells. Extend ¢! to a point p, € L,
for te A%, and attach a line segment [0, 1], (with the usual cell decomposition)
to L, by identifying 0, with p,. Then collapse [0, 1], to 1, over A'. The effect
is to replace ¢! by 1, over A’ (and 1, collapses over any part of A' where ¢}
collapsed). Moreover, any 0-cells of the original L, which abut the new 1,
over A'are now distinguished as collapsing 0-cells, since 1, survives near A'.

PROPOSITION 4.1. The natural map 87 (K) — S(K) obtained by ignoring
cell decompositions is a homotopy equivalence.

Proof. Represent an element of 7,(S(K), $;7(K)) by a family L,c S(K),
te€ A%, having a given lift L{ € §7(K) over dA*. Choose a triangulation T of
L = ., L, such that the families of cells of L} are subcomplexes and such
that the projection w: L — A* is linear on each simplex of T. Intersecting T
with L, gives each individual L, a PL cell complex structure, but the result-
ing family L} of PL cell complexes may not lie in SP(K) because cells may
not collapse to points but to cells of positive dimension. However, if we
perturb 7 slightly so that for each simplex A’ in T, 7(A') has maximal dimen-
sion, namely min (%, [), then the collapsing will be of the sort in S(K). By
repeated application of 4.3 below, this perturbation can be done in §(K), and
over 0AF it is clear that there is induced a deformation of L in 87(K). The
final step is then given by:
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LEMMA 4.2. Let the family Lie S;(K) be a subdiviston of the family
L}e 87(K). Then L} and L; are homotopic in 57 (K).

Proof. Proceeding inductively over simplices of the parameter domain,
we need only to do a relative construction for ¢ € A*. Consider the following
homotopy within a cell e of L, (x > 0). In the first half of the homotopy
we split e} into two n-cells and an (»—1)-cell by intersecting it with a family
of parallel hyperplanes:

OO0

In the second half of the homotopy we reverse the process, but with e
replaced by its subdivision in L!. Doing this simultaneously for all cells of

¢ gives a homotopy from L} to L; in §;°(K). In order to make this homotopy
fixed over dA* (where by assumption L; = L}) we can first deform L} to be
constant on the segments ¢ X [0, ¢] of a collar neighborhood 9A* x [0, ¢],
then damp the homotopy down to zero along these segments. OJ

LEMMA 4.3. Let w: L — A* be a PL fibration, and let =’ be obtained from
7 by perturbing the image of one vertex of some triangulation of L in which
7 is linear on stmplices, then extending linearly. If the vertex lies over the
interior of A* and the perturbation is sufficiently small, then @' is also a
PL fibration.

Proof. Along a line in A* the given triangulation of L gives a decom-
position of m, near a given m-slice L,, into a mapping cylinder projection
M(f_)) UM(f) —[—1, 1] for contractible mappings L_, EER L, S L, If
the line in A is parallel to the direction of the perturbation, the fibers L’ of
7’ near L, can be obtained, up to isotopy along the rays of M(f_,) or M(f.),
as follows. For some function ¢,: L,—[—1, 1], L} intersects M(f_, | f=/(x)) U
M(f.|f7'(x)) in the slices 77'(¢,(x)), x € L,. The projection g,: L, — L, is a
contractible mapping, being the restriction of M(f_,) U M(f,) — L,. So at
least the fibers of 7’ are homotopy equivalent to the fibers of .

We now check that 7’ is a PL fibration along this line in A* parallel to
the direction of the perturbation. A given x € L,lies in a minimal simplex of
the triangulation of L, which intersects L, in a convex cell . We distinguish
two cases:

(1) o does not lie in a fiber of 7’. Then near x the fibers L. are inde-
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pendent of ¢, up to isotopy, so 7’ is a fibration near x.
(’2) o lie;s in a fiber L{. Writing #’ as M(f’) U M(f.) — L, for maps
L. —f;> L(,—fi> L., then we can describe (f1)~*(x) as follows. Let N be a
transverse section of ¢ in L, at «. Thus N is a join 0 N*x, where dN is the
link of ¢ in a neighborhood of ¢ in L,. Let 0N, be spanned by the vertices
of oN for which ¢, > 0, and set N, = N, *x. Then (1) () is g;"(N,), and
so is contractible since N, is a cone. The same arguments apply to points of
L} near x, hence 7’ | M(f') is a PL fibration near z. And similarly with f’.
Thus 7’ is a PL fibration along lines in the direction of the perturbation.
Consider now a mapping cylinder M(f’) for ' in a direction other than
that of the perturbation, f': Li— L;. If ye L; and z< (f")"'(y), let M(f),
f: Ly— L,, be a mapping cylinder for = such that x€ L, and y€ L,. Then
(F'(y) = (9.f) *ty), where g,: L; — L, is as above. Since g, and f are con-
tractible mappings, (f')"'(y) is contractible. O
Probably a more general statement than 4.3 is true, that any perturba-
tion of x sufficiently small with respect to the given triangulation of L is
still a PL fibration. (The proof just given applies in fact to the case that all
vertices are perturbed in one direction.)

5. Suspension in S(K)

In this section we define a suspension operation X: §(K)—S(K) and prove
two facts about it: that it is a homotopy inverse for the H-space structure
“1” on S(K), and that it satisfies a nice stability property. An “external”
suspension S(K) — QS(SK), apparently unrelated to Z, will be defined in
Section 7.

Let r: L — K be a retraction. Its suspension Zr: XL — K is defined as
follows: XL is L x I'with L x oI collapsed to K x oI via » X id;;, then with
K x I collapsed to K via projection. And Zris given by Zr(x, s) = r(x). For
example, if K is a point, XL is just the usual reduced suspension.

Now let L, be a family in §(K). Then there is a family of deformation
retractions r,: L,—K (in the strong sense that K is fixed during the homotopy
r,~id), unique up to canonical homotopy. Consider the suspensions Zr,: ZL,—
K. By 2.4, the two collapses by means of which ZL, is obtained from L,x I
preserve PL fibrations. So ZL, is again a family in S(K). Thus we obtain
2: 8(K) — S(K), determined up to homotopy (the choice of r,).

PROPOSITION 5.1. The map T + id: S(K) — S(K) is null-homotopic.

Proof. Consider the cone operator C on S(K) defined by CL, = L, x
I{(L, x 0) U (K x I) ~ K} as in the definition of X. A deformation r, =~ id
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gives a homotopy C =~ X + id in S(K), by 2.4. But also C =~ 0 from the
projection L, x I— L, x 0 which is a contractible mapping. O

As a simple application we globalize the well-known product formula for
Whitehead torsion. The sum formula can be treated in a similar fashion
(see e.g., §23 of [8] for the classical case).

PROPOSITION 5.2. Let C be a finite connected polyhedron. Then the
product map S(K) — S(K x C), L,+— L, x C, is homotopic to x(C)-t, where
2(C) is the Euler characteristic of Cand i: S(K) — S(K x C) is induced by
wnclusion of a factor.

Proof. Choose a triangulation of C. Then if L,c S(K), deform L, x C
as follows. For A"e C, push L, x A" down into K over dA” via the deforma-
tion 7, = 1. Then compose with a contraction of K X A™ to K x 0. This
deforms L, X A" to the n-fold suspension 2*L,. Doing this for all simplices
of C by downward induction on n, L, x C is deformed to ). . (Z"L,) =
2(C)-i(Ly). U

It will be useful to have X operate in 57(K) as well as in S(K). A priori
the suspension of a family L, € $7°(K) need not lie in §°(K), since the suspen-
sion of a block C,(p) of cells which collapse to a point p € L, — K collapses to
a line p X I, not a point. But there is an easy way to correct this, by
contracting ZC,(p) to the center of p x I as it collapses.

PROPOSITION 5.3. The map X:&I(K)— SitH(K) s (21 — j)-conmnected,
provided © > 1.

LEMMA 5.4. Let the retraction r: L — K be i-connected. Then the sus-
pension X: T, (r) — 7, (Z7r) is an tsomorphism for k < 2t and an epimor-
phism for k = 21.

Proof. Let C be the mapping cylinder of ». In C x [—1, 1] we have the
subspacesC=Cx0,A=Cx —1ULXx[-1,0l,and B=Cx1U L x [0, 1].
Consider the following diagram:

7.(C, AN B)
a‘[z
74.(C x [0, 11; C, B) ’ 7(B, AN B)

C
74(C x [=1, 1: C x [—1, 0], AU B) —> 7,(A U B, 4)

Iz

Ten(C % [—1,1], AU B).
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The four maps labelled isomorphisms come from the various long exact
sequences of the triads (C x [0,1]; C, B) and (C x [-1,1]; C x [—1, 0],
A U B), while the two other vertical arrows are induced by inclusion. The
composite 7, (C, AN B)—m,,,(C x [—1,1], AU B) can be identified with
3: . (r)—7,..(Zr). Since the pairs (4, AN B) and (B, AN B) are t-connected
by hypothesis, (B, AN B)— (AU B, A) is 2i-connected by homotopy excision,
and the result follows. |:]

Proof of 5.3. Consider first a single L;e &iii(K) which we wish to
desuspend. Suppose inductively that we have homotoped the attaching maps
in a subcomplex of L; to a suspension XL’ together with the deformation
retraction 7;: L, — K restricted to ZL{’, say Zr,. Then the attaching map
S'— ZL{" of a cell el*' e L, plus 7} | el*!, give an element of 7,,, (Zr,). Since
r:: L’ — K is i-connected, the lemma says that e!™* and »; | e.*" can be desus-
pended provided ! < 7 < 2¢. This is the inductive step in showing that X is
0-connected if 2¢ — 5 = 0.

Desuspending a family L. representing an element of 7,(X) is done
inductively over basic k-simplices, and cell by cell within each basic k-simplex.
Desuspending cells el** over A, with the assumption of a desuspension over
0A*, is possible if I + k < 7 + k < 2¢ if one uses a straightforward fibered
version of homotopy execision, which we leave to the reader. Collapses are
desuspended to collapses by considering them as the case that K = N,, in
the notation of Remark (2) of Section 4.

The assumption ¢ > 1 is needed to assure that the desuspension L, of L;
actually lies in ${(K). For if ¢ > 1 then 7, K — 7, L, is an isomorphism and
H.(L, K; Z[x,K]) ~ H.(ZL,, K; Z[7,K]) = 0,
so K is a deformation retract of L,. W

6. Trading up cells into two dimensions

One of the main geometric steps in the proof of Whitehead’s theorem on
simple homotopy types is the assertion that any homotopy equivalence is,
modulo elementary expansions and collapses, an inclusion, K =— L such that
the cells of L — K all have dimension either n or n + 1, for a fixed n. We
prove now a parametrized version of this which will be the basis for all the
deeper results about S(K) in the remainder of the paper.

THEOREM 6.1. The tnclusion ;" (K) =—— 7(K) ts (n — 1)-conmected if
n > 1.
Proof. Let the family L, represent an element of 7,87(K), say L, € $i(K)
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for some j = n + 1. By 6.2 below, L, can be deformed to a family L) e
&j-1(K). Then by 5.2 L; is homotopic to an iterated suspension S~ of a
family L} € 87*'(K), provided £ < » — 1. If j is chosen so that j — % — 1 is
even, then by 5.1, L}’ is homotopic to L,. This gives surjectivity of

TS HK) — 1,87 (K) .

Injectivity is similar. If L,, t€ A*"!, is a contraction in Si(K) of an
element of 7,87 (K) for some j with j — n — 1 even, then adjoin to A*** an
external collar supporting a homotopy of L, | dA** to Zi—*'L, | 6A**, The
resulting family L; € $)(K) can be deformed to L} € §i_,(K), rel boundary,
by 6.2 below. If k < n — 1, L desuspends to a contraction in S (K) of the
original L, | 0A**. ]

It remains to prove:

PROPOSITION 6.2. &] (K)=— §{(K) ts a homotopy equivalence (i +1< 7).

Proof. Let L, represent a class in 7,(S{(K), §i.,(K)), and let ¢! be one
of the -cells of L,, attached by ¢,: S** — L{’. We will show how to cancel
e; over a k-simplex A*, assuming a cancellation given over dA*, introducing
only ¢ + 1- and ¢ + 2-cells in the process. Induction on %k will then allow el
to be cancelled everywhere, and the result will follow by iterating for other
1-cells.

The actual elimination of e} over A* proceeds just as in the unparame-
trized case:

LEMMA 6.3. If ¢, extends to a map ¢,: D — L’ over A*, which also
collapses to a point over 6A*, then ei can replaced by an © + 2-cell over A*.

Proof. We may use ¢, to deform ¢, to the constant map. Then U:car el
is an (¢ + k)-sphere in L = J,cst L,. By rechoosing the extension &, by an
elément of 7. (L) = x,,,(K) if necessary, we may assume the t-sphere ¢}
(i.e., trivially attached i-cell) bounds a dise D;*' in L, which also collapses
over dA*. Now introduce a trivial pair of cells ei** and ei** which together
form a disc attached to L, at a point of D;*' and collapsing over 0A*. The
discs D{** give a homotopy of the attaching map of ei*' so that dei*' = e,
Next, push all higher cells off the disc e{ U ei*!. Then cancel ¢! and ei*'. ]

It remains to find the extension ¢,. When & = 0 this is trivial—cells of
lowest dimension must be attached by null-homotopic maps. But for & > 0,
Uicar @0 S5 — U,euar Li may well be non-trivial. Our aim will be to kill
¢, simultaneously for all te A* by attaching new i + 1-cells to L{".

First we specify more closely the subcomplexes L{’, in which of course
the index (*) varies with ¢, since the order of attaching ¢! may vary with .
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We want to choose a subdivision T of A* such that each cell of L, is contained
in L{’ over an open subset of A* which is a union of open simplices of T. To
achieve this we begin with a subdivision T’ of A* such that L, consists of
basic simplices in $i(K) over simplices of T’. We can assume each cell ¢, of
L, lies in L,” over a subcomplex S(e,) of T’. Then we can make ¢, € L’ attach
only to cells of L{’ over a regular neighborhood N(e,) of S(e,) by a small
homotopy of attaching maps. For if ¢, is disjoint from a cell e, over S(e,),
then it is disjoint from the center of e, over a neighborhood of S(e,) and so
it can be pushed off e, near S(e,)). Finally, we enlarge L{’ by including e,
over the interior of N(e,). After doing this for all cells e, we subdivide T’
to a triangulation 7T in which the N(e,) are subcomplexes. (In this construc-
tion we regard collapse points as extensions of the cells which collapse to
them. Thus if a collapse point » belongs to L, then in nearby ¢-slices all
the cells collapsing to p also lie in L{".)

Now we show how to construct ¢, inductively over skeletons of the
triangulation T'of A*. We have already remarked that ¢, exists over vertices
of T; in fact, we can first deform ¢, into K by general position and then
choose for @, the image of e under the retraction r,: L, — K. Assume induec-
tively that @, has been constructed over the (I — 1)-skeleton of T such that
», = el (rel ) in L,, and consider the problem of extending &, over an I-
simplex Al!. By the construction of T in the first place, and by induction
thereafter, we can assume:

@, extends from 0A' up to a neighborhood N < A’ of the center of A!
(+) such that L{” — t is a fibration over N.
The obstruction to finishing the extension is the homotopy class of a map
a: S L, te N. In L,, the cells e themselves provide a contraction\c‘z
of a. Since L{’ >t is a fibration over N, we can assume @ is spread as an
(I — 1)-parameter family (D", 0 Di*')—(L,, L{’), te D', where N = D! x
D!, such that D/** reduces to a point for ¢e C, a collar neighborhood of
oD 'in D', Extend (D;/**, 0D;™")—(L,, L{’) over Nx D*!, a neighborhood
in A*. Now adjoin a trivial pair of cells (ei*!, ¢i*?) which together form a
ball attached to L{’ at a point in D/*'. Using D;*', deform e!*! so that it
attaches to L{’ along 0D;™. If we let L{’ include the cell ¢i™* over N x D*~}
and the cell ei™2 over C x D' x D*!, then we have killed the obstruection to
extending o, over Al.

To guarantee that («) is preserved we need onlych oose N x D*~! to include
the centers of all simplices of T which it meets and to be radially “starlike”
in these simplices. This completes the induction step in the construction of
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#., and hence the proof of 6.2. n

7. Excision in 5(K)

Suppose our base space “K” is the union of two subpolyhedra A and B.
Then we have inclusions
S(A N B) C&(B)
N N
S(A)cS(A U B)
THEOREM 7.1. If (A4, AN B) is m-connected and (B, AN B) is n-con-
nected, with m > 1, then the map

T(S(B), S(A N B)) — m(S(A U B), S(4))

nduced by inclusions is surjective if k< m + n — 2 and injective if
E<m+n—2.

As in ordinary homotopy theory, excision implies a suspension theorem.
Consider the (ordinary) suspension SK of a polyhedron K as the union of two
cones A and Bon K, with AN B = K. Since §(4) and $(B) are contractible,
the homotopy fibers of $(A N B) =—— §(B) and §(4) = S(A U B) are S(K)
and QS(SK), respectively. The map of homotopy fibers S(K) — QS(SK)
induced by the inclusion (S(B), $(4 N B)) < (S(A U B), §(A)) sends L, € S(K)
to the loop L in S(SK) defined by

L: =SKU (L, x s)ycSL, , 0<s=s1,
where SL, is, as usual, L, x I with L, x 0 and L, x 1 collapsed to points.
COROLLARY 7.2. If K 1is m-connected, the suspension map S(K)—
QS(SK) is (2m — 1)-connected. |
Thus the iteration
S(K) — QS(SK) — O S(S*K) — - - -

eventually becomes highly connected, and we can speak of the stable simple
homotopy functor s(K)=1im Q"S(S"K). The stable simple homotopy groups
s;(K) = ,s(K) = limr,,,S(S"K) satisfy excision by 7.1, hence form a
generalized homology theory s.(K).
In the course of the proof of 7.1 we will obtain also the following:
ProposITION 7.3. If K— K’ is m-connected, m > 1, then the induced
map S(K)— S(K') is (m — 1)-connected.

For example, taking K’ to be an Eilenberg-MacLane space K(r,K, 1),
this is the well-known fact that 7,S(K) depends only on 7, K. (If K’ =
K(m,K, 1) is not a finite complex, take “S(K’)” here to be J, S(K.), the union
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over finite subpolyhedra K, c K ’.) The proposition does not extend to m = 1
since a surjection 7, K— 7, K’ may not induce a surjection Wh,(r,K )—
Wh, (7,K’), e.g., if 7, K is a free group, in which case Wh, (7, K) is zero.

LEMMA 7.4. Given K' = KUe™" and L, € Si*'(K"), t € A*, we can deform
the attaching maps of cells in L, — K’ so that they attach to e™ over a
netghborhood of a (k — m)-dimensional subcomplex of A*, staying in Si+(K)
over any part of A*¥ where L, € §7"Y(K).

Proof. Consider for example a cell ¢{*' € L,— K’ and suppose inductively
that lower cells have already been fixed up. Let ¢,: S* — L{” be the attach-
ing map of ¢;"'. In general position ¢, will be transverse to the center z, of
the top cell of L{” (as a k-parameter family), and the pullback U, ¢;(x,) will
be a manifold I, © S* x A* of dimension < k. Outside a small neighborhood
N, of I, we can push ¢, off this top cell of L{’. Then repeat the process for
the next highest cell of L’ to get a manifold I, ¢ S* x A* — N, with neigh-
borhood N,, ete. So we can assume that outside N = U; N, the family o,
maps into K’. Extend ¢, to ¢,: D™ — L{” U ei** by identifying the interior
of D*"' with e{"'. We can choose a family of (¢ + 1)-balls D, < D*** x {¢}
such that U, D, is a small neighborhood of the fiberwise join of N with 0 x
AFin D' x AF, as follows. Write D**' as the union of a small concentric
disc D;”* with an annulus S* x [0, 1], 8% x 1 = dD*"'. Let f: S* x A* — [0, 1]
be 1 on N and 0 away from N. Then set

D, = Di*' x {t} U{(w, s, t) e S* x [0, 1] x {t} | s < F(x, t)},

i.e., the “shadow” of the graph of f. Note that |, D, has a (k + 1)-dimen-
sional spine, since N has a k-dimensional spine.

Now let 7,: L, — K’ be a family of retractions. Since ¢, = 7,4, outside
N, r.3,| D'** — D, defines a homotopy of #. to a new attaching map ¢, which
equals ¢, on N and r,4, | 0D, outside N. In general position the image of the
spine of U, D, under r,4, will meet the center of e™*' in a (k — m)-dimensional
complex, so outside a neighborhood of this we may assume ¢, attaches ei*
to K" — e™™* = K. This is the inductive step. Note that if for certain t ¢ A*
the original L, lies in §/"'(K) c §:*(K’), then choosing r, to retract L, — K
onto K guarantees that the modified L, is still in S{*(K). |

Proof of 7.3. Since S is a homotopy functor, we can take K — K’ to be
an inclusion such that K’ — K consists of cells of dimension =m + 1. For
each of these cells in turn apply 7.4 to a family L, representing an element
of m,(Si*(K"), §1*(K)), k < m. The hypothesis m > 1 is only necessary to
assure that m,K ~ 7, K’, so that the new L, contains K as well as K’ as a
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deformation retract. O

Proof of 7.1. By induction it suffices to take A = KUe™", B = KUe"*'.
Let L, c S:*(A U B), t€ D*, be such that, writing 0D* = DU D*, we have
L,e $iY(A) for te D', L,e $i*Y(B) for te D!, and L, e &' (AN B) for te
D' D**, Applying 7.4, we obtain a set S, © D* — D' over which cells
of L,—(A U B) attach to 4, and S, has a spine of dimension #—m. Similarly
we obtain S;c D* — D*¥* with a (k — m)-dimensional spine. In general
position we can assume that S; is disjoint from sh(S,), the “shadow” of S,
under projection to D*!, provided (k — m) + (k —n) <k —1, or k < m +
n — 2. Then there is an evident homotopy of the family L,, fixed over D,
which excises sh(S,) from its parameter domain. Again, the hypothesis
m > 1 implies that L, actually is in 8:'(B) over the new D* and similarly
that L, is in 8i*'(A N B) over the new D*~'. This shows that the inclusion
(87(B), Si*(A N B))  (S!*'(A U B), Si*(A)) is surjective on m, and injective
on w,_;. [l

8. Families of PL handlebodies

We continue to work entirely within the PL category. Let W™*! be a
compact connected manifold and let M" be a codimension zero submanifold
of dW. By a handlebody structure h on (W, M) we mean:

(1) There exists a filtration of W by codimension zero submanifolds
W=W¥MNDWP¥ LD ... DW® where W ~ M x I'isacollaron M x 0 =
McW (with oM x IcoW) and W is obtained from W¢™" by attaching
a handle D™ x D"*'~" via an embedding @': S*~ x D"'™" — g W¢-b,

(2) A product structure on the collar W ~ M x I and on each handle
D™ x D»*'™* is given. That is, the homeomorphisms W©® ~ M x I and
W — W69 a D% x D= are specified only up to product homeomor-
phism f, X fo: M x I D or f, X f,: D" x D***=* <, (Thus in a product struc-
ture on X, x X, the collections of slices {X, x {x.} | x,€ X,} and {{z,} X X, |, €
X} are well-defined.) _

Now we define the notion of a k-parameter family of handlebody struc-
tures h, on (W, M), te A*. We first allow the submanifolds W to vary
through a k-isotopy W.¥, as follows. For 7 = 0 the collar W ” moves by
k-isotopy fixed on M = M x 0. For ¢ > 0 the handle D" x D"*'"" moves
by a k-isotopy D x Dp*'~"i, In particular, the attaching maps @ can vary
by a k-isotopy ®:.

But also we want to allow certain collections of handles to be coned off
to a point. The prescription for this goes inductively on k, as follows. For



124 A. E. HATCHER

t,€ A*, suppose that over the boundary of a small neighborhood of %, in A*
the (& — 1)-parameter family &, has a filtration with layers W < W{? such
that the handles of W9 — W/ attach to 0 W/ inside a disec D;* in such a way
that W is homeomorphic to W;® by a family of homeomorphisms fixed out-
side a small neighborhood of D in W/, In this situation we can obtain a k-
parameter family W/? by simply shrinking W/ — W,* radially to a point
»,€ D as t goes radially from the boundary of the neighborhood of ¢, to ¢,
(the Alexander trick). Thus the submanifolds W% change to W%’ = W, by
isotopy. More generally, we allow simultaneously a finite number of such
collapsing operations to be going on independently at distinct points p, € W.

A k-parameter family of handlebody structures %, on (W, M) obtained
by the above process we call a basic family. A general family &, is one which,
over the simplices of some subdivision of A%, consists of basic families. The
distinction between basic and general is that in a basic family all the handles
can be attached in one order independent of ¢ (though the choice of such an
order is not part of the data of #,). The collection of all k-parameter families,
k=0,1,2, --., forms a simplicial space which we denote S(W, M). The face
and degeneracy maps are the obvious ones, and $(W, M) is clearly a Kan
complex.

Example. We can consider as one-parameter families according to the
above definition all of the handle operations used in the proof of the PL
h-cobordism theorem, namely isotopies of attaching maps of various sorts or
cancellations of complementary pairs of handles. As a very special case, let
(W, M) = (M x I, M x 0) be given first the handlebody structure 4, with no
handles and just the collar W = M x I (in the given product structure).
A second handlebody structure %, on (M x I, M x 0) can be obtained from
a handlebody structure on M as follows. The collar W of &, is M x [0, 1/2],
and for each i-handle D* x D"~* of M we can consider D* x (D""* X [1 — ¢, 1])
as an t-handle in M x Iand (D* x [1/2,1 — ¢]) x D"*as an (¢ + 1)-handle.
See figure (a). We can isotope these two handles in M x I so they attach
only to M x 1/2, as in figure (b). The resulting complementary pair can then
be coned off, producing figure (¢). Doing this successively for all handles of
h.,, we obtain a one-parameter family &, connecting A, with A,.

(NN 6172\ i
g § .. Mx0 g é 2 g
(a) (b) ()
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The reason for permitting collapses in §(W, M) more general than the
collapse of a complementary pair of handles is that with the more general
collapses we can prove the following key result.

THEOREM 8.1. S(W, M) is contractible.

Proof. Let h,, te S*, represent an element of 7, S(W, M). We will show
how to homotope the family &, to a constant family. To begin, we deform
h, so that the collars W,” ~ M x I all agree with a chosen standard collar.
The collars W,* are all standard at M = M X 0, so by an isotopy within W
we can assume they are standard near M x 0, say on M x [0, 1/2]. Then
using the one-parameter family in the preceding example, we can decompose
the remaining non-standard half of W,* into handles by a homotopy of the
family h,, leaving us with only standard collars.

The idea for the rest of the proof is to show that z, = A{ and a constant
family %! have a common subdivision %}? in the obvious sense that hi?
intersects each family of handles D} x D, of h{ or k;in a union of handles
of ki, and in fact, in a family in §(D* x D"*~%, 0D* x D*"~¥). Then by the
obvious handlebody version of 4.2, a family is homotopic to a subdivision of
itself, so h} ~ hi* = hi.

Let T be a triangulation of W x S* such that the k-parameter families
of handles of ¢ and k. are subcomplexes. We can assume T is transverse
to the slices W, = W x {t}, so that a simplex A’ of T intersects each slice W,
in a ball B!~*, a point p,, or not at all. For a slice W, this ball decomposition
leads to a handlebody structure %! in the usual way: small neighborhoods
of the 0-balls are 0-handles, small neighborhoods of the 1-balls, minus the
previously constructed 0-handles, are 1-handles, etc. We shall call such
handles handle neighborhoods N,(B{~*) or N,(p,) (though they are not really
neighborhoods). Unfortunately, this construction fails to give a k-parameter
family in §(W, M). The trouble comes in a neighborhood N of the k — 1
skeleton T*' of T, where a ball B{~* can shrink to a point p, € T**, although
its handle neighborhood N,(B!*) cannot change to the 0-handle N,(p,)
“continuously,” i.e., by any natural path in (W, M). So we will have to
splice things together somehow near T**.

We can choose the neighborhood N of T*~* to have the following prop-
erties:

(1) N=N*'D... D N° where N* is a neighborhood of T* obtained
from N~ by adding handle neighborhoods N(A®) of the i-simplices of T*,
such that N,(A%) = N(A*) N W, is a k-parameter family of 0-handles over the
i-handle 7(N(A%)) in S*, where 7: W x S* — S* is projection.
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(2) If the 4-handle w(N(AY)) is written as D? x D*%, then over
D¢ x 0D* ¢ the 0-handle N,(A?) is the union of 0-handles N,(A?) for 7 > 4
and handles N,(B/™*) of W, — N.

Now we can extend the family of handlebody structures A}?on W x S* — N
to all of W x S*, one simplex A® of T*' at a time by downward induction
on 7, as follows. Over D*® x dD** we have inductively a family of handle-
body structures on the (n + 1)-disc N,(A%). Since S(D**!, ¢) ~ » by 8.2
below, this extends to a family over D* x D*~%, See figures (d), (e), and (f)
for an example when & = 1. Note also that any two such extensions of hl?
over N are homotopic, by the relative form of the same argument.

N1
1

Th-1 ~Jo
/[ : ;
0 0 0
—< N

t t
—_— D ——

(d) Triangulation T (e) Handle Nbds N,(B.™*) (f) Splicing over N
LEMMA 8.2. (D", ¢) and S(D™*', D™) are contractible.

Proof. We can uniformly cone off any family &, in §(D"**, ¢) to a single
0-handle, as in the following sequence:

new Q-handle
% fnew 1-handle m&g

For §(D"**, D*) we can take all collars to be standard and then deform &, €
g(D**, D) to a fixed (1, 0)-handle pair: O

new 0-handle
% ine\v 1-handle %
~ Collar

Returning to the main argument, the family %}* as constructed is not
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vet a subdivision of %! (or h}). Even in the unparametrized case a handle
neighborhood N,(B/7*) of a ball B/* in the intersection of two handles of A?
will not lie inside either handle. But such a ball B/~* lies in D} x aD;+'~% for
only one handle D x D% of h{, so let us enlarge this handle by a small
collar on D; x 0D;+~* consisting of all these N, (B!™*) for which B/~* c D; x

0D*~%  In other words we are moving k¢ to z}* by a small isotopy so that
hi* becomes a subdivision of i*. A similar modification is required for our
fixed collar W ~ M x I. we expand it slightly to include all N,(B/ %) with

Tk C W, Of course we do not want to subdivide W, so we just let h}/? =
hi* on W, See figures (g) and (h).

_”‘

(g) ht (h) hi* (heavy lines)

In the parametrized case we also have to take extra care in extending
hi* to N so that it restricts to a family of handlebody structures on the
handles of #i*. This can be done by building the extension of %}* to N, one
handle of %} at a time, using the second half of 8.2. Also, where a handle
of hi* collapses to a point, choose the extension of Al2 to N to collapse
simultaneously to a point. The result of these modifications of 2}?is a family
ki”®, homotopic to A} since it differs only on N, and homotopic to Al since it
is a subdivision of A}*. Thus A} ~ A}?, and similarly h}? ~ hl. O

It would be interesting to know if the analogue of 8.1 is true in the
topological category (for manifolds admitting a topological handlebody
structure).

9. The parametrized PL Z-cobordism theorem

A well-known representation for the classifying space of the simplicial
group PL(W) of (PL) homeomorphisms of a manifold W is the space of all
submanifolds of R* homeomorphic to W. To make this more precise and to
give a relative form for PL(W, M), the homeomorphisms restricting to the
identity on a codimension zero submanifold M of o0 W, first let & W, M) denote
the simplicial space of embeddings of W in R agreeing with a given fixed
embedding on M. Then PL(W, M) operates freely on &(W, M) by composi-
tion: fe PL(W, M) sends ge & W, M) to gof e & W, M). The principal
simplicial fibration
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PL(W, M) — & W, M) — &(W, M) = & W, M)/PL(W, M)
is universal for PL(W, M) since &(W, M) is clearly contractible. The space
&(W, M) is the representation of BPL (W, M) described at the beginning of
this paragraph.

Recall that a k-simplex of the simple homotopy space S(M) is a sub-
polyhedron L © R® x A* such that the projection z: L — A* is a PL fibration,
and such that a fixed copy of M = M x {t} is a deformation retract of each
fiber 77'(¢). In particular, if (W, M) is an h-cobordism, simplices of & W, M)
are simplices of S(M). Thus we have an inclusion of & W, M) in S(M), in
fact, in the component of $(M) having torsion equal to that of the A-cobordism
(W, M). (Note that (W, M) is always connected.)

THEOREM 9.1. The inclusion &M x I, M) =—— S(M) is k-connected (onto
the identity component of S(M)) provided dim M = n = 3k+5. Consequently
the looping PL(M x I, M) — QS(M) is k-connected if n = 3k -+ 8.

Of course PL(M x I, M) is just the PL pseudo-isotopy space, denoted by
P(M) in the introduction.

COROLLARY 9.2. The stabilization o: P(M)=——PM x I),d(f) =f x id,,
induces an isomorphism on @, if n = 3k + 11 and an epimorphism if n =
3k + 10.

Proof. Consider the diagram

&M x I, M) =———— S(M)
d o
EMxIxI MxI)=—sSWMx I)
where 0 takes XC R to X X ICR* X IcR” X R =R~ OnS§, ois clearly
a homotopy equivalence since the projection X x I— X is a contractible
mapping. O

We approach the proof of the theorem by giving another version of
BPL(W, M) in terms of handlebodies. PL(W, M) acts by composition on
the space S(W, M) of handlebody structures on (W, M), f € PL(W, M) carry-
ing h € $(W, M) to its image f(kh) under f. Then using the diagonal action
we have a principal fibration

PL(W, M) — &W, M) x S(W, M) — & X S(W, M) .

By 8.1, this is also universal for PL(W, M). For each (g, h) e §(W, M) x
G(W, M) there is the induced handlebody structure g(k) on (g(W), g(M)).
This is invariant under the diagonal action of PL(W, M), so we can interpret
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& X (W, M) as the space of handlebodies in R® homeomorphic to W, col-
lared on the fixed M = g(M). Now let W = M x I and denote by F((M) the
subspace of & X §(M x I, M) consisting of handlebodies whose collars agree
with a fixed collar. Note that the inclusion (M) =—— & x S(M x I, M) is
a homotopy equivalence. (A collar on M in W < R~ is essentially a path of
embeddings M — R* having a fixed initial point, and the space of such paths
is clearly contractible.)

Given a handlebody structure & on (W, M) there is a well-known way
of associating to it a PL cell complex, in the sense of Section 4, by collapsing
each handle to its core and collapsing the collar M x Ito M. More precisely,
a handle D* x D"*~* collapses to D* x {*x} UdD* x D", so there are some
choices involved: first the point * € D**'~% and then the actual collapse D* x
D"t — D* x {*} UdD* x D%, which depends on choosing a small collar
Con oD% x 0D in D* x 0D~ to collapse to d.D* x D"~ (see the figure
below). However, the space of such choices is contractible.

Moreover, collapsing to their cores the handles of a k-parameter family
of handlebodies gives rise to a k-parameter family of cell complexes L, as in
Section 4. Thus we have a map ¢: J((M) — S(M), determined up to homo-
topy —the aforementioned choices made in collapsing a handle to its core.
Letting JCi(M) < JC(M) denote the subspace of handlebodies whose handles
have indices in the range [7, ], we have a diagram

&M x I, M) =—— S(M)

:I | ZT

H(M) —— S7(M)

J ]

IO (M) ——— SI(M) .
Since collapsing handles to their cores is a contractible mapping, the diagram
is homotopy commutative.
PROPOSITION 9.3. J(i(M) = JC(M) is k-conmected if bk + 2 <1< n —
k— 2.
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PROPOSITION 9.4. FCi*/(M) —— (M) is k-connected (onto the identity
component of Si™(M)) if 2t <n — k and n = 5.

These two propositions prove the theorem: choose i = k + 2 and use the
fact that §i*'(M) = &2(M) is (+ — 1)-connected by 6.1.

The analogue of 9.3 in the smooth category, with handlebodies replaced
by €~ functions and gradient-like vector fields, is known only for small
values of k (see §5.3 of [11] for the cases k = 1, 2). This is because the
behavior of singularities of ¢~ functions of higher codimension is not well
understood. In the PL category there is no such problem since, roughly
speaking, one can always just cone off by the Alexander trick—PL singular-
ities are very “flabby”. Perhaps there is an alternate approach in the smooth
category which avoids the mysteries of C* singularities.

To prove 9.3 it will suffice to show:

() Fi (M) = FCi(M) is k-connected if 1 <% —k — 3

since by working with dual handlebodies the same argument shows that
Hi(M) = F(i* (M) is highly connected. The proof of () consists of trans-
lating the proof of 6.2 into handlebody terms. The main difficulty is to
deform attaching maps of cells into embeddings, which are needed in order

to attach handles. The technique for doing this is contained in the following
handlebody analogue of 6.3.

LEMMA 9.5. Suppose the handle D x D;*'~* in the family W, e JCi(M),
t € A%, collapses over 0A*. If its attaching map @,: S x D"~  —dW/* is
null-homotopic in W™ by a homotopy which also collapses to a point over
0A* and if 1 < m — k — 3, then the given i-handle can be replaced by an
(= + 2)-handle over A*.

Proof. The hypothesis on @, gives a family +,: D" — W, such that, if
we write 0D = Dt U DZ,

(1) 4, | Diis a slice D x {x} for some x € 6D "%

(i) (D) c W™,

(iii) ~r(D**) is a point over 0A*,
We claim that +r, can be improved to satisfy also

(iv) 4, is an embedding into a level 0 W’ in each t-slice, t€ N (with
the superscript (-), like (x), depending on ¢);

(v) ¥(0D*') N (D x D7) = Di x {x}.
If we assume this, the given i-handle can be traded for an (7 + 1)-handle over
A* just as in the unparametrized case: Introduce a trivial (z + 1, ¢ + 2)-
handle pair at the level 0 W, use +, to isotope the attaching map of the
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(¢ + 1)-handle to be 4, | 0D**, then cancel the given ¢-handle with the new
(¢ + 1)-handle, using +, | D® to isotope the ¢-handle to a trivially attached
handle.

Now we show how to achieve (iv) and (v). In general position (D)
will be disjoint from the center points of all handles provided 7 < » — k.
Then we can push +,(D**') into |, 0 W». Next, working one handle D] x
D=3 at a time, in the reverse of the order of attaching, put v, in general
position with respect to the sphere {*} x 0D/*'77 so that +r, is an embedding
there (the singularity set of +,, Z,, is of dimension 2(¢ + k + 1) — (» + k) <
i £ 7 = codim ({} x 0Ds*"%) assuming ¢ <n —k — 3). Then X, can be
pushed off D/ x D=4, and eventually down into M x {1}. Let I, be the
union of the transverse pullbacks v;'({x} x 0D~ for the various handles
Di x Df*'~%, This has dimension <k + 1. We can assume that v, maps the
complement of a neighborhood N, of the cone ¢I, € D*** into M x {1}. Now
replace +r, by its restriction to the (¢ 4+ 1)-disc N,. (Even though cI, may not
vary continuously in ¢, the neighborhoods N, can be taken to be a nice PL
family of discs in D**'.) This restriction to N, will be an embedding if we
make I, Ncl, = @, which requires codim X, = (n+k)— (1 +k+1) >dim (cI,) =
k+2,0ori<mn—%k—3. We can improve this to7 < » — k — 3 since condi-
tion (iv) can be weakened to require only that +r, be an embedding on each
concentric S* in D,

To push +, into a single level 0 W)’ we must avoid situations where +,
maps D*** across the top of one handle, which attaches across a second
handle, which attaches across a third handle, etc., the last handle in this
chain attaching to the image of v, again. The coincidences of +,(D**") across
a j,-handle across . .. a j;,-handle are, in general position, of dimension <17 +
k — 7, + 2 — [ in the parameter domain A*. Over this part of A* the inter-
sections of -,(D**') with the attaching sphere of the j,-handle are of dimen-
sion <2t +k —n + 2 — 1. So we can make ¢I, disjoint from these chains of
coincidences (and hence excise them) provided (k+2)+ 2t +k—n+2—-1) <
1+ k+1,ori<n—k— 3+ 1. This finishes 9.5. O

To complete the proof of 9.3 we must Kkill the obstructions to the
attaching map of an ¢-handle being (slicewise) homotopically trivial. It was
shown in the proof of 6.2 how this can be done homotopically by adding
(¢ + 1)- and (¢ + 2)-cells. The technique in the proof of 9.5 for producing
embeddings suitable for attaching handles works just as well here, to show
that the obstructions can also be killed by introducing (7 + 1)- and (¢ + 2)-
handles. O
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Proof of 9.4. Let L, € 8 (M) for t € A* have a lifting W,e I (M) for
t € 0A%, which we wish to extend over A*, We can assume to start that
collapsing handles of W, are attached after all other handles, since in general
position the collapse points of W,, of dimension <k — 2 over dA*, will be
disjoint from (the core spheres of) attaching maps of non-collapsing handles
ifk—2)+G@+k—1)<n+k—1,0ori<n—k+ 2. Also, over A* we
can deform collapsing cells of L, to attach last. Now suppose inductively
that we have thickened into handles all non-collapsing cells of L, up to a
level L, to form W/}’ over A*, and let @,: S*— L{’ ~ W be the attaching
map of the next (¢ + 1)-cell (the case of an t¢-cell is similar). In general
position ®,(S*) will be disjoint from the cores of handles in W if (v + k) +
G+1+k<n+k+1,0or2t <n— k. Then @, can be deformed into o W,
where handles are supposed to attach. Approximate @, by an embedding
(if 2(¢ + k) <n + k, or 20 < n — k again). In order to use ¢, to attach an
(¢ + 1)-handle we need a trivialization of the normal bundle v(®,(S?%), d W,").
(Note that we are in the stable range.) Let r,: L,—M be a family of deforma-
tion retractions and consider r¥(c(M)) where (M) is the stable tangent
bundle of M. Assume inductively that we have an isomorphism r}(c(M )) ~
(W) on W{". The cell ¢i** attached via @, gives a trivialization of »}(z(}))
on ®,(S%) and of 7(®,(S%)), hence also of y(®,(S%), dW,’). So e{** can be
thickened to a handle, at least away from where it collapses.

To turn collapsing cells into collapsing handles, choose a triangulation
of the set of collapse points and proceed by downward induction on the
simplices of this collapse set as follows. For an [-simplex A’ (which we can
identify with its projection to the parameter domain AF) one has given over
the boundary of its dual cell D*!in A* layers W/” c W{?, with the handles
of W9 — W to be coned off at A' N D*!, Excising all but a neighborhood
of these handles from W/” leaves us with an h-cobordism (V,, D) in each
t-slice of 0D*! since the corresponding cells of L, do collapse at A' N D*7%,
By the (simply-connected) h-cobordism theorem (V,, D) ~ (D*, D) if n=5.
Moreover, since PL(D"*, D) is contractible by the Alexander trick, we
can choose trivializations of (V,, D) consistently for all ¢t € 0D*'. This is
just what is required for the coning off of the handles of W — W over
D*¥ !, This completes the induction step and the proof of 9.4, hence of 9.1. []

Compared with the proof of 9.3, the proof of 9.4 is rather crude, using
only general position to embed below the middle dimension. It seems that
the more delicate excision technique of 9.3 for deforming attaching maps
into embeddings in levels 0 W’ does not work in the relative case when
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embeddings are given over 0A*. Using the absolute case one can only show
that

T I (M) — 7, ST (M)

is onto (and presumably split) if ¢ <% — k — 2, hence that 7, P(M) ~
7, JC(M) maps onto 7, 5(M) if n = 2k + 4.

10. A few examples
From the pseudo-isotopy theorem ([11], [16]) we have®
7.85(K) ~ Wh,(7,.K) @ Wh{ (z.K; Z, x 7,K) .

Let us consider the second summand Wh{ (7;; Z, X @,). Denote by (Z, X 7,)[x,]
the additive abelian group of finite linear combinations ), a0, for a, € Z,x 7,
and o, € ;. Then Wh; (7;; Z, X 7,) is just the quotient group of (Z, X 7,)[x,]
modulo the subgroup generated by elements of the form ao — a*toc™" and
B-1, where a° denotes the usual action of 7€ 7, on the 7, component of «
and the trivial action on the Z, component.

A one-parameter family L, € S(K), t € [0, 1], representing a generator ac
of Wh{ (z,K; Z, x m,K) has the form L, = (K VvV S ) U, ei*', © > 2, the cell
ei™* being attached by the level slices @, of a map “proj + ac”: S* x I —
K/ S* which is the result of first pinching S* x Ias in the following picture,

—_ T -
/\) =V N ==\

Ve ~N e AN // ~,
v
Stx I Six I IxI S+t

then, on S* x I projecting to S*c K \V S% on I x I wrapping each level
segment around a loop representing o¢ 7, K, and on S**' taking the sum
a, + [a,, idsi], where a, € 7, (S?) € 7., (K V S?) is the Z, component of & and
[a,, idi] denotes Whitehead product with «,, the 7,K component of «. Thus
L, = L, and the family L, is a loop in S(K). If a loop based at the natural
basepoint K € §(K) is desired, just connect L, to K by first pulling in the

2 It appears now (May, 1975) the proof in Part II of [11] (Part II is not joint with Wagoner, -*

that the 7, part of the second obstruction is well-defined makes implicit use of an additional
hypothesis on K, namely, that the first Postnikov invariant k€ H%=,K; n.K) of K is zero.
When k; is non-zero all that the arguments of [11] prove is that 7,;5(K) maps onto Why(z, K) P
Whi (7, K; Z,) with kernel a quotient of Whi(m K; 7. K).
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“tail” where @, wraps around o, then collapsing the resulting K \V D**! to K.
It is not too hard to figure out why loops L, constructed according to

the above scheme for elements ac — a’zor™ and B-1 in (Z, X 7, K)[7,K]

should be homotopically trivial in §(K). But to prove that this is exactly

the kernel of the resulting map (Z, x 7,K)[7, K] — 7,5(K) is a real task; this

is essentially the content of Part II of [11]. Computing the kernel of the k-

parameter analogue 74(QK) — 7, S(K) looks like a very tough problem.
Now let us compute the terms in the exact sequence of 3.2:

(1) — 17,G(K) — 7,8(K) — 7.8, —> T,G(K) — 7,5(K) —>
in the case K = S'. Since S' is a K(Z, 1) it is easy to check that G(S') =

0(2), the orthogonal group. Thus §g — BG(S') has a section. Also, Wh, (Z)
and Wh,(Z) are known to vanish. So (1) becomes, for K = S,

0 Z,J¢, t7] Z,[t, t7] —
(2) Z Z0] Z0] X7 Ly Z,—0
where T denotes the twisted product in which conjugation by the generator
of Z, interchanges ¢t and ¢!,

It is instructive to compare this with the case K = S* VvV S* with ¢ > 2.
Clearly 7,G(S' VV S¥) ~ Z, x Z,, generated by the degree —1 maps on S* and
S*. Also, one can check that 7,G(S* VV S%) ~ Z,[t, t™'], generated by the loops
v, = idg1 V @,, where @, is the family of maps S* — S* \V S* described above.
Lemma 10.1 below says that 7,G(S! VV S%) — 7,8(S* v S?) is surjective, so
the sequence (1) becomes now
proj Z,t, t7] 0

Z,[1]
Thus, although 7,8(K) depends only on the low dimensional skeletons of K,
the maps in (1) depend on all of K.

The interpretation of (2) and (3) in terms of homeomorphisms of Hilbert
cube manifolds (see the introduction) is somewhat curious. On S* X @ there
are many, many homeomorphisms which are homotopic but not isotopic, but
on (S* Vv 8% x @ for ¢ > 2 there are none.

LEMMA 10.1. The tmage of m,G(KV S*)—n.S(K V S) contains the
summand Whi (7,; Z, X ©,) if © > 2.

Proof. The map G(K)— S(K) sends f: K— K to its mapping cylinder
M(f) = (K x [0, 1] U K)/(x x 1 ~ f(x)), considered as lying in S(K) by identi-
fying K with K x 0 < M(f). Inthecaseathandy: KV S*— KV S'is the
identity on K, so we may collapse K x [0, 1] € M(vy) to K x 0 by a con-
tractible mapping. The resulting L, has the form L, = (K V S; V Sf) U;,ei™,

(3) — Z[t, t7] Zy X Ty —s Ty X 2y — 0 .
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where S¢ and S} correspond to S* x 0 and S* x 1in M(v,) and 7, is a level
slice of the map

proj, + proj, + (ao);: S* x I—> K VvV S¢ v St .
Now we consider S as a trivially attached i-cell ¢i, and, simultaneously for
each t€ [0, 1], we deform its attaching map across S/, producing again a
trivially attached e¢f{. But on examining what has happened to 7, we find
that proj, + proj, + (ao), has changed to (ao), + proj, + («o),. The follow-

ing diagrams depict this change at ¢ = 0 (or 1), when L, changes to K Vv
Sot \/ Ds’+1.

We can assume that (ao), is added to proj, in the ¢-interval [0, 1/2] and that
(a0), is added in [1/2, 1]. Then for ¢ € [0, 1/2] the pair (¢i*, e) can be collapsed
by an elementary collapse. The remaining L, for ¢ € [1/2, 1] is just the family
called L, at the beginning of this section, with K replaced now by K \V S*. []

Finally, we show that 7,S(K) is a direct summand of z,,,S(K x S?),
giving a cheap way to mass produce elements of 7,5(—) from the known
models in 7, and 7,. (The technique is also known, independently, to Hsiang-
Sharpe and Burghelea-Lashof-Rothenberg.)

PROPOSITION 10.2. For a compact mantifold M, P(M x I)is a homotopy
retract of QP(M x S*). Hence S(K) is a homotopy retract of QS(K x S*).

Proof. Let us change notation slightly and let P(M) denote pseudo-
isotopies M x I— M x I fixed on M x 0 U 0M x I, rather than just on M x 0.
This new P(M) is homeomorphic to the old one since (M X I, M X 0) ~
(M x I, M x 0UoM x I). Also, for M a proper submanifold of some V'
(i.e., MN oV = 0M) denote by P(M, V) the space of proper embeddings
M x I—V x I agreeing with the given M —V on M x 0 UoM x I, and
such that M x 1 —V x 1. We will be interested in the following diagram:

QP(M % 8') —22 <, QP(M x R)
e / ‘
AN
Qpli EP(M X I) z1gpﬁ

| =~

Vv Oy |
QP(M, M x S) —= QP(M, M x R) .

The maps \, and ), are obtained by lifting to the cover M x R— M x S,
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while the fibrations p, and p, come from restriction to M x 1< M x S* and
M x 0c M x R. The fiber of p, is clearly contractible, so Qo, is a homotopy
equivalence. The fiber of p, can be identified with P(M x I), and via this
identification, 7 is defined by taking fe P(M x I) c P(M x S*), forming the
commutator £ f* where 6: M X S* x I O is rotation through the angle
# € S, then considering 0f07'f* as a loop by letting 6 run around S'. The
two unlabelled maps and ¢ are defined to make the diagram commute.

For example, ¢ is restriction of a pseudo-isotopy (M x I) X I D to the
family of slices M x s) X IC(M X I) X ICc(M xR) xI for 0 =s=<1,
followed by the translation £ — 2 — s in the R direction. With this descrip-
tion we recognize o as a section for the map ¢ in the following fibration
sequence (identifying (R, 0) with ((0, ), 1)):

QP(M, M % (0, =) —— P(M x I) — E —2— 9(M, M x (0, =) .

Here E is the space of proper embeddings M x [0,1] X I— M X [0, ) X I
which are the identity on M x 0 x TUM x [0,1] x 0 UOM x [0,1] x Iand
carry M x [0,1] x 1 to M x [0, =) x 1. The map p is restriction to M X
1 x I; that p is a fibration depends crucially on the compactness of M.
Since E is evidently contractible (essentially by restriction to the seg-
ments M x [0, s] x I), 8 and o are homotopy inverses, and we have shown
that P(M x I) =~ QP(M x R) is a homotopy retract of QP(M x S*). These
constructions respect the stabilization M — M x I—M x I*— - .-, so passing
to the limit we get QS(M) a homotopy retract of Q:S(M x S'). To deloop
this we appeal to [14] (which inspired the present proposition) for the asser-
tion that nS(M)~ Wh,(7,M) is a direct summand of 7,5(M x S') ~
T P(M x SY). O
Remarks. 1. The proposition holds also in the smooth and topological

categories, with the same proof.

2. The pseudo-isotopy spaces P(M) and P(M, V) can be replaced by the
spaces of homeomorphisms M — M and embeddings M — V, both rel 6.

3. The map )\, has a section induced by embedding R in S*. Burghelea-
Lashof-Rothenberg have shown that o, also splits. Thisis clear if M = N X
I for some N—an inclusion I X S*cI x I gives Nx I X S*c N x I x I,
hence a projection of (N x I x S*)onto the fiber of p,, P(N x I x I). Thus
we get a formula

QS(M x S') = QS(M) x S(M) x QOUM)
where 91(M) is the fiber of the stabilized \,. Presumably the relationship of
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this to a well-known formula in algebraic K-theory for K,A[¢, ¢7'] is more
than coincidental.
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