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Chapter 0: A Preview

Pythagorean Triples

As an introduction to the sorts of questions that we will be studying, let us con-

sider right triangles whose sides all have integer lengths. The most familiar example

is the (3,4,5) right triangle, but there are many others as well, such as the (5,12,13)

right triangle. Thus we are looking for triples (a, b, c) of positive integers such that

a2
+ b2

= c2 . Such triples are called Pythagorean triples because of the connection

with the Pythagorean Theorem. Our goal will be a formula that gives them all. The

ancient Greeks knew this formula, and even before the Greeks the ancient Babylonians

must have known a lot about Pythagorean triples because one of their clay tablets from

nearly 4000 years ago has been found which gives a list of 15 different Pythagorean

triples, the largest of which is (12709,13500,18541) . (Actually the tablet only gives

the numbers a and c from each triple (a, b, c) for some unknown reason, but it is

easy to compute b from a and c .)

There is an easy way to create infinitely many Pythagorean triples from a given

one just by multiplying each of its three numbers by an arbitrary number n . For

example, from (3,4,5) we get (6,8,10) , (9,12,15) , (12,16,20) , and so on. This

process produces right triangles that are all similar to each other, so in a sense they

are not essentially different triples. In our search for Pythagorean triples there is

thus no harm in restricting our attention to triples (a, b, c) whose three numbers

have no common factor. Such triples are called primitive. The large Babylonian triple

mentioned above is primitive, since the prime factorization of 13500 is 223353 but

the other two numbers in the triple are not divisible by 2, 3, or 5.

A fact worth noting in passing is that if two of the three numbers in a Pythagorean

triple (a, b, c) have a common factor n , then n is also a factor of the third number.

This follows easily from the equation a2
+ b2

= c2 , since for example if n divides a

and b then n2 divides a2 and b2 , so n2 divides their sum c2 , hence n divides c .



Chapter 0 Preview 2

Another case is that n divides a and c . Then n2 divides a2 and c2 so n2 divides

their difference c2
−a2

= b2 , hence n divides b . In the remaining case that n divides

b and c the argument is similar.

A consequence of this divisibility fact is that primitive Pythagorean triples can also

be characterized as the ones for which no two of the three numbers have a common

factor.

If (a, b, c) is a Pythagorean triple, then we can divide the equation a2
+b2

= c2 by

c2 to get an equivalent equation
(a
c

)2
+
(b
c

)2
= 1. This equation is saying that the point

(x,y) =
(a
c
,
b
c

)

is on the unit circle x2
+ y2

= 1 in the xy -plane. The coordinates
a
c

and
b
c

are rational numbers, so each Pythagorean triple gives a rational point on

the circle, i.e., a point whose coordinates are both rational. Notice that multiplying

each of a , b , and c by the same integer n yields the same point (x,y) on the circle.

Going in the other direction, given a rational point on the circle, we can find a common

denominator for its two coordinates so that it has the form
(a
c
,
b
c

)

and hence gives a

Pythagorean triple (a, b, c) . We can assume this triple is primitive by canceling any

common factor of a , b , and c , and this doesn’t change the point
(a
c
,
b
c

)

. The two

fractions
a
c

and
b
c

must then be in lowest terms since we observed earlier that if two

of a , b , c have a common factor, then all three have a common factor.

From the preceding observations we can conclude that the problem of finding

all Pythagorean triples is equivalent to finding all rational points on the unit circle

x2
+y2

= 1. More specifically, there is an exact one-to-one correspondence between

primitive Pythagorean triples and rational points on the unit circle that lie in the

interior of the first quadrant (since we want all of a,b, c, x,y to be positive).

In order to find all the rational points on the circle x2
+ y2

= 1 we will use

a construction that starts with one rational point and creates many more rational

points from this one starting point. There are four obvious rational points on the

circle we could use to start, the intersections of the circle with the coordinate axes,

the points (±1,0) and (0,±1) . It doesn’t

really matter which one we choose, so let’s

choose (0,1) . Now consider a line which

intersects the circle in this point (0,1) and

some other point P , as in the figure at the

right. If the line has slope m , its equa-

P

0r( ),

10( ),

tion will be y =mx + 1. If we denote the

point where the line intersects the x -axis

by (r ,0) , then m = −1/r so the equation for the line can be rewritten as y = 1−
x
r

.
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To find the coordinates of the point P in terms of r we substitute y = 1−
x
r

into the

equation x2
+ y2

= 1 and solve for x :

x2
+

(

1−
x

r

)2

= 1

x2
+ 1−

2x

r
+
x2

r 2
= 1

(

1+
1

r 2

)

x2
−

2x

r
= 0

(

r 2
+ 1

r 2

)

x2
=

2x

r

x =
2r

r 2 + 1
or x = 0

Plugging x =
2r

r 2 + 1
into the formula y = 1−

x
r

, we get

y = 1−
x

r
= −

1

r

(

2r

r 2 + 1

)

+ 1 =
−2

r 2 + 1
+ 1 =

r 2
− 1

r 2 + 1

Summarizing, we have found that the point P has coordinates

(x,y) =

(

2r

r 2 + 1
,
r 2
− 1

r 2 + 1

)

Note that when x = 0 there are two points (0,±1) on the circle. The point (0,−1)

comes from the value r = 0, while if we let r approach ±∞ then the point P ap-

proaches (0,1) , as we can see either from the picture or from the formula for (x,y) .

If r is a rational number, then the formula for (x,y) shows that both x and y

are rational, so we have a rational point on the circle. Conversely, if both coordinates

x and y of the point P on the circle are rational, then the slope m of the line must

be rational, hence r must also be rational since r = −1/m . We could also solve the

equation y = 1 −
x
r

for r to get r =
x

1−y
, showing again that r will be rational

if x and y are rational. The conclusion of all this is that, starting from the initial

rational point (0,1) we have found formulas that give all the other rational points on

the circle.

Since there are infinitely many choices for the rational number r , there are in-

finitely many rational points on the circle. But we can say something much stronger

than this: Every arc of the circle, no matter how small, contains infinitely many rational

points. This is because every arc on the circle corresponds to an interval of r -values

on the x -axis, and every interval in the x -axis contains infinitely many rational num-

bers. Since every arc on the circle contains infinitely many rational points, we can say
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that the rational points are dense in the circle, meaning that for every point on the

circle there is an infinite sequence of rational points approaching the given point.

Now we can go back and find formulas for Pythagorean triples. If we set the

rational number r equal to p/q with p and q integers having no common factor,

then the formulas for x and y become

x =
2
(p
q

)

p2

q2 + 1
=

2pq

p2 + q2

y =

p2

q2 − 1

p2

q2 + 1
=
p2
− q2

p2 + q2

This means we obtain Pythagorean triples

(a, b, c) = (2pq,p2
− q2, p2

+ q2)

Here are a few examples with small values of p and q :

(p, q) (x,y) (a, b, c)

(2,1) (4/5,3/5) (4,3,5)

(3,1)∗ (6/10,8/10)∗ (6,8,10)∗

(3,2) (12/13,5/13) (12,5,13)

(4,1) (8/17,15/17) (8,15,17)

(4,3) (24/25,7/25) (24,7,25)

(5,1)∗ (10/26,24/26)∗ (10,24,26)∗

(5,2) (20/29,21/29) (20,21,29)

(5,3)∗ (30/34,16/34)∗ (30,16,34)∗

(5,4) (40/41,9/41) (40,9,41)

(6,1) (12/37,35/37) (12,35,37)

(6,5) (60/61,11/61) (60,11,61)

(7,1)∗ (14/50,48/50)∗ (14,48,50)∗

(7,2) (28/53,45/53) (28,45,53)

(7,3)∗ (42/58,40/58)∗ (42,40,58)∗

(7,4) (56/65,33/65) (56,33,65)

(7,5)∗ (70/74,24/74)∗ (70,24,74)∗

(7,6) (84/85,13/85) (84,13,85)

The starred entries are the ones with nonprimitive Pythagorean triples. Notice that

this occurs only when p and q are both odd, so that not only is 2pq even, but also

both p2
−q2 and p2

+q2 are even, so all three of a , b , and c are divisible by 2. The

primitive versions of the nonprimitive entries in the table occur higher in the table,

but with a and b switched. This is a general phenomenon, as we will see in the course

of proving the following basic result:
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Proposition. Up to interchanging a and b , all primitive Pythagorean triples (a, b, c)

are obtained from the formula (a, b, c) = (2pq,p2
− q2, p2

+ q2) where p and q are

positive integers with no common factor and of opposite parity (one even and the

other odd).

Proof : We need to investigate when the formula (a, b, c) = (2pq,p2
− q2, p2

+ q2)

gives a primitive triple, assuming that p and q have no common divisor.

Case 1: Suppose p and q have opposite parity. If all three of 2pq , p2
− q2 , and

p2
+q2 have a common divisor d > 1 then d would have to be odd since p2

−q2 and

p2
+q2 are odd when p and q have opposite parity. Furthermore, since d is a divisor

of p2
− q2 and p2

+ q2 it must divide their sum (p2
+ q2) + (p2

− q2) = 2p2 and

also their difference (p2
+ q2) − (p2

− q2) = 2q2 . However, since d is odd it would

then have to divide p2 and q2 , forcing p and q to have a common factor (since any

prime factor of d would have to divide p and q ). This contradicts the assumption

that p and q had no common factors, so we conclude that (2pq,p2
− q2, p2

+ q2) is

primitive if p and q have opposite parity.

Case 2: Suppose p and q have the same parity, hence they are both odd since if

they were both even they would have the common factor of 2. Because p and q are

both odd, their sum and difference are both even and we can write p + q = 2P and

p−q = 2Q for some integers P and Q . Any common factor of P and Q would have

to divide P +Q =
p+q

2
+

p−q
2
= p and P −Q =

p+q
2
−

p−q
2
= q , so P and Q have no

common factors. In terms of P and Q our Pythagorean triple becomes

(a, b, c) = (2pq,p2
− q2, p2

+ q2)

= (2(P +Q)(P −Q), (P +Q)2 − (P −Q)2, (P +Q)2 + (P −Q)2)

= (2(P2
−Q2),4PQ,2(P2

+Q2))

= 2(P2
−Q2,2PQ,P2

+Q2)

After canceling the factor of 2 we get a new Pythagorean triple, with the first two

coordinates switched, and this one is primitive by Case 1 since P and Q can’t both be

odd, because if they were, then p = P +Q and q = P −Q would both be even, which

is impossible since they have no common factor.

From Cases 1 and 2 we can conclude that if we allow ourselves to switch the first

two coordinates, then we get all primitive Pythagorean triples from the formula by

restricting p and q to be of opposite parity and to have no common factors. ⊔⊓
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Rational Points on Other Quadratic Curves

The same technique we used to find the rational points on the circle x2
+y2

= 1

can also be used to find all the rational points on other quadratic curves Ax2
+Bxy+

Cy2
+Dx + Ey = F with integer or rational coefficients A , B , C , D , E , F , provided

that we can find a single rational point (x0, y0) on the curve to start the process. For

example, the circle x2
+y2

= 2 contains the rational points (±1,±1) and we can use

one of these as an initial point. Taking the point (1,1) ,

we would consider lines y − 1 =m(x − 1) of slope m

passing through this point. Solving this equation for

y and plugging into the equation x2
+ y2

= 2 would

produce a quadratic equation ax2
+ bx + c = 0 whose

coefficients are polynomials in the variable m , so these

coefficients would be rational whenever m is rational.

From the quadratic formula x =
(

−b±
√

b2 − 4ac
)

/2a we see that the sum of the two

roots is −b/a , a rational number if m is rational, so if one root is rational then the

other root will be rational as well. The initial point (1,1) on the curve x2
+y2

= 2 gives

x = 1 as one rational root of the equation ax2
+bx+c = 0, so for each rational value

of m the other root x will be rational as well. Then the equation y − 1 =m(x − 1)

implies that y will also be rational, and hence we obtain a rational point (x,y) on

the curve for each rational value of m . Conversely, if x and y are both rational then

obviously m = (y − 1)/(x − 1) will be rational. Thus one obtains a dense set of

rational points on the circle x2
+ y2

= 2, since m can be any rational number. An

exercise at the end of this chapter is to work out the formulas explicitly.

If instead of x2
+ y2

= 2 we consider the circle x2
+ y2

= 3 then there aren’t

any obvious rational points. In fact this circle contains no rational points at all. For if

there were a rational point, this would yield a solution of the equation a2
+ b2

= 3c2

by integers a , b , and c . We can assume a , b , and c have no common factor. Then

a and b can’t both be even, otherwise the left side of the equation would be even,

forcing c to be even, so a , b , and c would have a common factor of 2. To complete

the argument we look at the equation modulo 4. (This means that we consider the

remainders obtained after division by 4.) The square of an even number has the form

(2n)2 = 4n2 , which is 0 modulo 4, while the square of an odd number has the form

(2n + 1)2 = 4n2
+ 4n + 1, which is 1 modulo 4. Thus, modulo 4, the left side of

the equation is either 0+ 1, 1+ 0, or 1+ 1 since a and b are not both even. So the

left side is either 1 or 2 modulo 4. However, the right side is either 3 · 0 or 3 · 1
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modulo 4. We conclude that there can be no integer solutions of a2
+ b2

= 3c2 .

The technique we just used to show that a2
+ b2

= 3c2 has no integer solutions

can be used in many other situations as well. The underlying reasoning is that if an

equation with integer coefficients has an integer solution, then this gives a solution

modulo n for all numbers n . For solutions modulo n there are only a finite number

of possibilities to check, although for large n this is a large finite number. If one can

find a single value of n for which there is no solution modulo n , then the original

equation has no integer solutions. In theory, an equation could have solutions modulo

n for every number n and still have no actual integer solution, and there are cases

where this actually happens.

Rational Points on a Sphere

As another application of the same idea, we can find all the rational points on

the sphere x2
+ y2

+ z2
= 1, the triples (x,y, z) of rational numbers that satisfy

this equation. To do this we consider a line from the north pole (0,0,1) to a point

(u,v,0) in the xy -plane. This line intersects the sphere at some point (x,y, z) . We

want to find formulas expressing x , y , and z in terms of u and v .
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Suppose we look at the vertical plane containing the triangle ONQ . From our earlier

analysis of rational points on a circle of radius 1 we know that if the segment OQ

has length |OQ| = r , then |OP ′| =
2r
r2+1

and |PP ′| =
r2−1
r2+1

. From the right triangle

OBQ we see that u2
+ v2

= r 2 since u = |OB| and v = |BQ| . The triangle OBQ is

similar to the triangle OAP ′ . Since the length of OP ′ is
2

r2+1
times the length of OQ

we conclude from similar triangles that

x = |OA| =
2

r 2 + 1
|OB| =

2

r 2 + 1
·u =

2u

u2 + v2 + 1

and

y = |AP ′| =
2

r 2 + 1
|BQ| =

2

r 2 + 1
· v =

2v

u2 + v2 + 1

Also we have

z = |PP ′| =
r 2
− 1

r 2 + 1
=
u2
+ v2

− 1

u2 + v2 + 1

Summarizing, we have expressed x , y , and z in terms of u and v by the formulas

x =
2u

u2 + v2 + 1
y =

2v

u2 + v2 + 1
z =

u2
+ v2

− 1

u2 + v2 + 1

These formulas imply that we get a rational point (x,y, z) on the sphere x2
+y2

+z2
=

1 for each pair of rational numbers (u,v) . We get all rational points on the sphere in

this way (except for the north pole (0,0,1) , of course) since it is possible to express

u and v in terms of x , y , and z by the formulas

u =
x

1− z
v =

y

1− z

which one can easily verify by substituting into the previous formulas.

Here is a short table giving a few rational points on the sphere and the corre-

sponding integer solutions of the equation a2
+ b2

+ c2
= d2 :

(u,v) (x,y, z) (a, b, c, d)

(1,1) (2/3,2/3,1/3) (2,2,1,3)

(2,2) (4/9,4/9,7/9) (4,4,7,9)

(1,3) (2/11,6/11,9/11) (2,6,9,11)

(2,3) (2/7,3/7,6/7) (2,3,6,7)

(1,4) (1/9,4/9,8/9) (1,4,8,9)

As with rational points on the circle x2
+ y2

= 1, rational points on the sphere

x2
+y2

+ z2
= 1 are dense, so there are lots of them all over on the sphere.

In linear algebra courses one is often called upon to create unit vectors (x,y, z)

by taking a given vector and rescaling to have length 1 by dividing it by its length.
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For example, the vector (1,1,1) has length
√

3 so the corresponding unit vector is

(1/
√

3,1/
√

3,1/
√

3) . It is rare that this process produces unit vectors having rational

coordinates, but we now have a method for creating as many rational unit vectors as

we like.

Incidentally, there is a name for the correspondence we have described between

points (x,y, z) on the unit sphere and points (u,v) in the plane: it is called stereo-

graphic projection. One can think of the sphere and the plane as being made of clear

glass, and one puts one’s eye at the north pole of the sphere and looks downward

and outward in all directions to see points on the sphere projected onto points in

the plane, and vice versa. The north pole itself does not project onto any point in the

plane, but points approaching the north pole project to points approach infinity in the

plane, so one can think of the north pole as corresponding to an imaginary infinitely

distant “point" in the plane. This geometric viewpoint somehow makes infinity less

of a mystery, as it just corresponds to a point on the sphere, and points on a sphere

are not very mysterious. (Though in the early days of polar exploration the north pole

may have seemed very mysterious and infinitely distant!)

Pythagorean Triples and Quadratic Forms

There are many questions one can ask about Pythagorean triples (a, b, c) . For

example, we could begin by asking which numbers actually arise as the numbers a ,

b , or c in some Pythagorean triple. It is sufficient to answer the question just for

primitive Pythagorean triples, since the remaining ones are obtained just by multiply-

ing by arbitrary numbers. We know all primitive Pythagorean triples arise from the

formula

(a, b, c) = (2pq,p2
− q2, p2

+ q2)

where p and q have no common factor and are not both odd. Determining whether

a given number can be expressed in the form 2pq , p2
− q2 , or p2

+ q2 is a special

case of the general question of deciding when an equation Ap2
+ Bpq+Cq2

= n has

an integer solution p , q , for given integers A , B , C , and n . Expressions of the form

Ax2
+ Bxy + Cy2 are called quadratic forms. These will be the main topic studied

in Chapter 2, where we will develop some general theory addressing the question of

what values a quadratic form takes on when all the numbers involved are integers.

For now, let us just look at the special cases at hand.

First let us consider which numbers occur as a or b in Pythagorean triples

(a, b, c) . We certainly can’t realize the number 1 since this would say a2
+ 1 = c2 or
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1+ b2
= c2 but 1 is not the difference between the squares of any two positive inte-

gers. For numbers bigger than 1, if we look at the earlier table of Pythagorean triples

we see that all the numbers up to 15 can be realized as a or b in primitive triples

except for 2, 6, 10, and 14. This might lead us to guess that the numbers realizable

as a or b in primitive triples are the numbers not congruent to 2 modulo 4. This is

indeed true, and can be proved as follows. First note that 2pq is even and p2
− q2 is

odd (otherwise both a and b would be even, violating primitivity). Every odd number

bigger than 1 is expressible in the form p2
− q2 since 2k + 1 = (k + 1)2 − k2 , so in

fact every odd number is the difference between two consecutive squares. Note that

taking p = k+1 and q = k does yield a primitive triple since k and k+1 always have

opposite parity and no common factors. This takes care of realizing odd numbers.

For even numbers, they would have to be of the form 2pq , and by taking q = 1 we

realize any even number 2p . However, to have a primitive triple we have to have

p even since p must have opposite parity from q which is 1. Thus we realize the

numbers a = 4k by primitive triples but not the numbers a = 4k + 2. This is what

we claimed was true. To finish the story for a and b , note that a number a = 4k+ 2

which can’t be realized by a primitive triple can be realized by a nonprimitive triple,

at least if k ≥ 1, since we know we can realize the odd number 2k+ 1 if k ≥ 1, and

by doubling this we realize 4k+2. Summarizing this discussion, all numbers greater

than 2 can be realized as a or b in Pythagorean triples (a, b, c) .

Now let us ask which numbers c can occur in Pythagorean triples (a, b, c) , so we

are trying to find a solution of p2
+q2

= c for a given number c . Pythagorean triples

(p, q, r ) give solutions when c is equal to a square r 2 , but we are asking now about

arbitrary numbers c . It suffices to figure out which numbers c occur in primitive

triples (a, b, c) , since by multiplying the numbers c in primitive triples by arbitrary

numbers we get the numbers c in arbitrary triples. A look at the earlier table shows

that the numbers c that can be realized by primitive triples (a, b, c) seem to be fairly

rare: only 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, and 85 occur in the table. These

are all odd, and in fact they are all congruent to 1 modulo 4. This always has to

be true because p and q are of opposite parity, so one of p2 and q2 is congruent

to 0 modulo 4 while the other is congruent to 1, hence p2
+ q2 is congruent to 1

modulo 4. More interesting is the fact that most of the numbers on the list are prime

numbers, and the ones that aren’t prime are products of earlier primes in the list:

25 = 5 · 5, 65 = 5 · 13, 85 = 5 · 17. From this somewhat slim evidence one might

conjecture that the numbers c occurring in primitive Pythagorean triples are exactly

the numbers that are products of primes congruent to 1 modulo 4. The first prime
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satisfying this condition that isn’t on the original list is 73, and this is realized as

p2
+ q2

= 82
+ 32 , in the triple (48,55,73) . The next two primes congruent to 1

modulo 4 are 89 = 82
+ 52 and 97 = 92

+ 42 , so the conjecture continues to look

good. Proving the general conjecture is not easy, however, and we will take up this

question in Chapter 2 when we fully answer the question of which numbers can be

expressed as the sum of two squares.

Another question one can ask about Pythagorean triples is, how many are there

where two of the three numbers differ by only 1? In the earlier table there are

several: (3,4,5) , (5,12,13) , (7,24,25) , (20,21,29) , (9,40,41) , (11,60,61) , and

(13,84,85) . As the pairs of numbers that are adjacent get larger, the correspond-

ing right triangles are either approximately 45-45-90 right triangles as with the triple

(20,21,29) , or long thin triangles as with (13,84,85) . To analyze the possibilities,

note first that if two of the numbers in a triple (a, b, c) differ by 1 then the triple has

to be primitive, so we can use our formula (a, b, c) = (2pq,p2
−q2, p2

+q2) . If b and

c differ by 1 then we would have (p2
+q2)−(p2

−q2) = 2q2
= 1 which is impossible.

If a and c differ by 1 then we have p2
+q2

−2pq = (p−q)2 = 1 so p−q = ±1, and

in fact p − q = +1 since we have to have p > q in order for b = p2
− q2 to be pos-

itive. Thus we get the infinite sequence of solutions (p, q) = (2,1), (3,2), (4,3), · · ·

with corresponding triples (4,3,5), (12,5,13), (24,7,25), · · · . Note that these are the

same triples we obtained earlier that realize all the odd values b = 3,5,7, · · · .

The remaining case is that a and b differ by 1. Thus we have the equation

p2
− 2pq− q2

= ±1. The left side doesn’t factor using integer coefficients, so it’s not

so easy to find integer solutions this time. In the table there are only the two triples

(4,3,5) and (20,21,29) , with (p, q) = (2,1) and (5,2) . After some trial and error one

could find the next solution (p, q) = (12,5) which gives the triple (120,119,169) . Is

there a pattern in the solutions (2,1), (5,2), (12,5)? One has the numbers 1,2,5,12,

and perhaps it isn’t too much of a stretch to notice that the third number is twice the

second plus the first, while the fourth number is twice the third plus the second. If

this pattern continued, the next number would be 29 = 2 · 12 + 5, giving (p, q) =

(29,12) , and this does indeed satisfy p2
− 2pq − q2

= 1, yielding the Pythagorean

triple (696,697,985) . These numbers are increasing rather rapidly, and the next case

(p, q) = (70,29) yields an even bigger Pythagorean triple (4060,4059,5741) . Could

there be other solutions of p2
−2pq−q2

= ±1 with smaller numbers that we missed?

We will develop tools in Chapter 2 to find all the integer solutions, and it will turn out

that the sequence we have just discovered gives them all.
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Although the quadratic form p2
− 2pq − q2 does not factor using integer coeffi-

cients, it can be simplified slightly be rewriting it as (p−q)2−2q2 . Then if we change

variables by setting
x = p − q

y = q

we obtain the quadratic form x2
− 2y2 . Finding integer solutions of x2

− 2y2
= n is

equivalent to finding integer solutions of p2
− 2pq − q2

= n since integer values of

p and q give integer values of x and y , and conversely, integer values of x and y

give integer values of p and q since when we solve for p and q in terms of x and y

we again get equations with integer coefficients:

p = x +y

q = y

Thus the quadratic forms p2
− 2pq − q2 and x2

− 2y2 are completely equivalent,

and finding integer solutions of p2
− 2pq − q2

= ±1 is equivalent to finding integer

solutions of x2
− 2y2

= ±1.

The equation x2
−2y2

= ±1 is an instance of the equation x2
−Dy2

= ±1 which

is known as Pell’s equation. This is a very famous equation in number theory which

has arisen in many different contexts going back hundreds of years. We will develop

techniques for finding all integer solutions of Pell’s equation for arbitrary values of

D in Chapter 2. It is interesting that certain fairly small values of D can force the

solutions to be quite large. For example for D = 61 the smallest positive integer

solution of x2
− 61y2

= 1 is the rather large pair

(x,y) = (1766319049,226153980)

As far back as the eleventh and twelfth centuries mathematicians in India knew how to

find this solution. It was rediscovered in the seventeenth century by Fermat in France,

who also gave the smallest solution of x2
− 109y2

= 1, the even larger pair

(x,y) = (158070671986249,15140424455100)

The way that the size of the smallest solution of x2
− Dy2

= 1 depends upon D is

very erratic and is still not well understood today.

Pythagorean Triples and Complex Numbers

There is another way of looking at Pythagorean triples that involves complex

numbers, surprisingly enough. The starting point here is the observation that a2
+b2
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can be factored as (a + bi)(a − bi) where i =
√

−1. If we rewrite the equation

a2
+ b2

= c2 as (a + bi)(a − bi) = c2 then since the right side of the equation is a

square, we might wonder whether each term on the left side would have to be a square

too. For example, in the case of the triple (3,4,5) we have (3+ 4i)(3− 4i) = 52 with

3+4i = (2+i)2 and 3−4i = (2−i)2 . So let us ask optimistically whether the equation

(a+bi)(a−bi) = c2 can be rewritten as (p+qi)2(p−qi)2 = c2 with a+bi = (p+qi)2

and a−bi = (p−qi)2 . We might hope also that the equation (p+qi)2(p−qi)2 = c2

was obtained by simply squaring the equation (p + qi)(p − qi) = c . Let us see what

happens when we multiply these various products out:

a+ bi = (p + qi)2 = (p2
− q2)+ (2pq)i

hence a = p2
− q2 and b = 2pq

a− bi = (p − qi)2 = (p2
− q2)− (2pq)i

hence again a = p2
− q2 and b = 2pq

c = (p + qi)(p − qi) = p2
+ q2

Thus we have miraculously recovered the formulas for Pythagorean triples that we

obtained earlier by geometric means (with a and b switched, which doesn’t really

matter):

a = p2
− q2 b = 2pq c = p2

+ q2

Of course, our derivation of these formulas just now depended on several assump-

tions that we haven’t justified, but it does suggest that looking at complex numbers of

the form a+bi where a and b are integers might be a good idea. There is a name for

complex numbers of this form a + bi with a and b integers. They are called Gaus-

sian integers, since the great mathematician and physicist C.F.Gauss made a thorough

algebraic study of them some 200 years ago. We will develop the basic properties

of Gaussian integers in Chapter 3, in particular explaining why the derivation of the

formulas above is valid.

Diophantine Equations

Equations like x2
+y2

= z2 or x2
−Dy2

= 1 that involve polynomials with inte-

ger coefficients, and where the solutions sought are required to be integers, are called

Diophantine equations after the Greek mathematician Diophantus (ca. 250 A.D.) who

wrote a book about these equations that was very influential when European mathe-

maticians started to consider this topic much later in the 1600s. Usually Diophantine

equations are very hard to solve because of the restriction to integer solutions. The
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first really interesting case is quadratic Diophantine equations. By the year 1800 there

was quite a lot known about the quadratic case, and we will be focusing on this case

in this book.

Diophantine equations of higher degree than quadratic are much more challeng-

ing to understand. Probably the most famous one is xn+yn = zn where n is a fixed

integer greater than 2. When the French mathematician Fermat in the 1600s was read-

ing about Pythagorean triples in his copy of Diophantus’ book he made a marginal note

that, in contrast with the equation x2
+ y2

= z2 , the equation xn + yn = zn has no

solutions with positive integers x,y, z when n > 2 and that he had a marvelous proof

which unfortunately the margin was too narrow to contain. This is one of many state-

ments that he claimed were true but never wrote proofs of for public distribution, nor

have proofs been found among his manuscripts. Over the next century other math-

ematicians discovered proofs for all his other statements, but this one was far more

difficult to verify. The issue is clouded by the fact that he only wrote this statement

down the one time, whereas all his other important results were stated numerous

times in his correspondence with other mathematicians of the time. So perhaps he

only briefly believed he had a proof. In any case, the statement has become known

as Fermat’s Last Theorem. It was finally proved in the 1990s by Andrew Wiles, using

some very deep mathematics developed over the preceding couple decades.

Just as finding integer solutions of x2
+y2

= z2 is equivalent to finding rational

points on the circle x2
+ y2

= 1, so finding integer solutions of xn + yn = zn is

equivalent to finding rational points on the curve xn + yn = 1. For even values of

n > 2 this curve looks like a flattened out circle while for odd n it has a rather different

shape, extending out to infinity in the second and fourth quadrants, asymptotic to the

line y = −x :

Fermat’s Last Theorem is equivalent to the statement that these curves have no ra-

tional points except their intersections with the coordinate axes, where either x or
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y is 0. It is curious that these curves only contain a finite number of rational points

(either two points or four points, depending on whether n odd or even) whereas

quadratic curves like x2
+ y2

= n either contain no rational points or an infinite

dense set of rational points.

Exercises

1. (a) Make a list of the 16 primitive Pythagorean triples (a, b, c) with c ≤ 100,

regarding (a, b, c) and (b,a, c) as the same triple.

(b) How many more would there be if we allowed nonprimitive triples?

(c) How many triples (primitive or not) are there with c = 65?

2. Show that there are no Pythagorean triples (a, b, c) with a being a positive integer

multiple of b , or vice versa. (“Show" means “Prove", that is, give a logical argument

why the statement is true.)

3. (a) Find all the positive integer solutions of x2
−y2

= 512 by factoring x2
−y2 as

(x + y)(x −y) and considering the possible factorizations of 512.

(b) Show that the equation x2
−y2

= n has only a finite number of integer solutions

for each value of n .

(c) Find a value of n for which the equation x2
− y2

= n has at least 100 different

positive integer solutions.

4. Show that there are only a finite number of Pythagorean triples (a, b, c) with a , b ,

or c equal to a given number n . (Part of the previous problem may be useful.)

5. Find an infinite sequence of Pythagorean triples where two of the numbers in each

triple differ by 2.

6. Find a right triangle whose sides have integer lengths and whose acute angles are

close to 30 and 60 degrees by first finding the irrational value of r that corresponds to

a right triangle with acute angles exactly 30 and 60 degrees, then choosing a rational

number close to this irrational value of r .

7. Find a right triangle whose sides have integer lengths and where one of the nonhy-

potenuse sides is approximately twice as long as the other, using a method like the

one in the preceding problem. (One possible answer might be the (8,15,17) triangle,

or a triangle similar to this, but you should do better than this.)

8. Find a rational point on the sphere x2
+y2

+z2
= 1 whose x , y , and z coordinates

are nearly equal. (You can decide what “nearly equal" means, but a point like (
2
3
,

2
3
,

1
3
)

doesn’t qualify.)
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9. (a) Derive formulas that give all the rational points on the circle x2
+ y2

= 2 in

terms of a rational parameter m , the slope of the line through the point (1,1) on the

circle. The calculations may be a little messy, but they work out fairly nicely in the

end to give

x =
m2

− 2m− 1

m2 + 1
, y =

−m2
− 2m+ 1

m2 + 1

(b) Using these formulas, find five different rational points on the circle in the first

quadrant, and hence five solutions of a2
+ b2

= 2c2 with positive integers a , b , c .

10. (a) Find formulas that give all the rational points on the upper branch of the

hyperbola y2
− x2

= 1.

(b) Can you find any relationship between these rational points and Pythagorean

triples?

11. (a) For integers x , what are the possible values of x2 modulo 8?

(b) Show that the equation x2
− 2y2

= ±3 has no integer solutions by considering

this equation modulo 8.

(c) Show that there are no Pythagorean triples (a, b, c) with a and b differing by 3.

12. Show that for every Pythagorean triple (a, b, c) the product abc must be divisible

by 60. (It suffices to show that abc is divisible by 3, 4, and 5.)
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1.1 Constructing the Farey Diagram

Our goal is to use geometry to study numbers. Of the various kinds of numbers,

the simplest are integers, along with their ratios, the rational numbers. The large

figure below shows a very interesting diagram displaying rational numbers and certain

relations between them that we will be exploring. This diagram, along with several

variants of it that will be introduced later, is known as the Farey diagram. The origin

of the name will be explained when we get to one of these variants.

0/1

1/1

1/1

1/2

1/2

2/1

2/1

1/0

1 /3

1 /3

3 /1

3 /1

1/4

1/4

4/1

4/1

2 /7
7 /2

2/5

2/5

5/2

5/2

3/5

3/5

5/3

5/3

3/4

3/4

4/3

4/3

3 /7
7 /3

4 /7

7 /4

5 /77 /5

4 /5
5 /4

5/8
8/5

3 /8
8 /3

1/5
5/1

2/3

2/3

3/2

3/2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

What is shown here is not the whole diagram but only a finite part of it. The actual

diagram has infinitely many curvilinear triangles, getting smaller and smaller out near

the boundary circle. The diagram can be constructed by first inscribing the two big

triangles in the circle, then adding the four triangles that share an edge with the two

big triangles, then the eight triangles sharing an edge with these four, then sixteen

more triangles, and so on forever. With a little practice one can draw the diagram
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without lifting one’s pencil from the paper: First draw the outer circle starting at the

left or right side, then the diameter, then make the two large triangles, then the four

next-largest triangles, etc.

The vertices of all the triangles are labeled with fractions a/b , including the

fraction 1/0 for ∞ , according to the following scheme. In the upper half of the

diagram first label the vertices of the big triangles 0/1, 1/1, and 1/0 as shown. Then

by induction, if the labels at the two ends of the long edge

of a triangle are a/b and c/d , the label on the third vertex

of the triangle is
a+c
b+d

. This fraction is called the mediant

of a/b and c/d .

The labels in the lower half of the diagram follow the

same scheme, starting with the labels 0/1, −1/1, and

−1/0 on the large triangle. Using −1/0 instead of 1/0

as the label of the vertex at the far left means that we are regarding +∞ and −∞ as

the same. The labels in the lower half of the diagram are the negatives of those in the

upper half, and the labels in the left half are the reciprocals of those in the right half.

The labels occur in their proper order around the circle, increasing from −∞ to

+∞ as one goes around the circle in the counterclockwise direction. To see why this is

so, it suffices to look at the upper half of the diagram where all numbers are positive.

What we want to show is that the mediant
a+c
b+d

is always a number between
a
b

and
c
d

(hence the term “mediant"). Thus we want to see that if
a
b
>

c
d

then
a
b
>

a+c
b+d

>
c
d

.

Since we are dealing with positive numbers, the inequality
a
b
>

c
d

is equivalent to

ad > bc , and
a
b
>

a+c
b+d

is equivalent to ab + ad > ab + bc which follows from

ad > bc . Similarly,
a+c
b+d

>
c
d

is equivalent to ad + cd > bc + cd which also follows

from ad > bc .

We will show in the next section that the mediant rule for labeling vertices in the

diagram automatically produces labels that are fractions in lowest terms. It is not

immediately apparent why this should be so. For example, the mediant of 1/3 and

2/3 is 3/6, which is not in lowest terms, and the mediant of 2/7 and 3/8 is 5/15,

again not in lowest terms. Somehow cases like this don’t occur in the diagram.

Another non-obvious fact about the diagram is that all rational numbers occur

eventually as labels of vertices. This will be shown in the next section as well.
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Farey Series

We can build the set of rational numbers by starting with the integers and then

inserting in succession all the halves, thirds, fourths, fifths, sixths, and so on. Let us

look at what happens if we restrict to rational numbers between 0 and 1. Starting

with 0 and 1 we first insert 1/2, then 1/3 and 2/3, then 1/4 and 3/4, skipping 2/4

which we already have, then inserting 1/5, 2/5, 3/5, and 4/5, then 1/6 and 5/6, etc.

This process can be pictured as in the following diagram:

−−−

0

1 −−−

1

1

−−−

1

2

−−−

1

3

−−−

1

4

−−−

1

5

−−−

1

6

−−−

1

7 −−−

2

7 −−−

3

7 −−−

4

7 −−−

5

7 −−−

6

7

−−−

5

6

−−−

2

5 −−−

3

5 −−−

4

5

−−−

3

4

−−−

2

3

The interesting thing to notice is:

Each time a new number is inserted, it forms the third vertex of a triangle whose

other two vertices are its two nearest neighbors among the numbers already listed,

and if these two neighbors are a/b and c/d then the new vertex is exactly the

mediant
a+c
b+d

.

The discovery of this curious phenomenon in the early 1800s was initially attributed

to a geologist and amateur mathematician named Farey, although it turned out that

he was not the first person to have noticed it. In spite of this confusion, the sequence

of fractions a/b between 0 and 1 with denominator less than or equal to a given

number n is usually called the nth Farey series Fn . For example, here is F7 :

0

1

1

7

1

6

1

5

1

4

2

7

1

3

2

5

3

7

1

2

4

7

3

5

2

3

5

7

3

4

4

5

5

6

6

7

1

1

These numbers trace out the up-and-down path across the bottom of the figure above.

For the next Farey series F8 we would insert 1/8 between 0/1 and 1/7, 3/8 between

1/3 and 2/5, 5/8 between 3/5 and 2/3, and finally 7/8 between 6/7 and 1/1.
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There is a cleaner way to draw the preceding diagram using straight lines in a

square:

−−−

0

1 −−−

1

1
−−−

1

2−−−

1

3 −−−

2

3−−−

1

4 −−−

2

5 −−−

3

5 −−−

3

4

One can construct this diagram in stages, as indicated in the sequence of figures

below. Start with a square together with its diagonals and a vertical line from their

intersection point down to the bottom edge of the square. Next, connect the resulting

midpoint of the lower edge of the square to the two upper corners of the square and

drop vertical lines down from the two new intersection points this produces. Now add

a W-shaped zigzag and drop verticals again. It should then be clear how to continue.

A nice feature of this construction is that if we start with a square whose sides have

length 1 and place this square so that its bottom edge lies along the x -axis with the

lower left corner of the square at the origin, then the construction assigns labels to
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the vertices along the bottom edge of the square that are exactly the x coordinates of

these points. Thus the vertex labeled 1/2 really is at the midpoint of the bottom edge

of the square, and the vertices labeled 1/3 and 2/3 really are 1/3 and 2/3 of the way

along this edge, and so forth. In order to verify this fact the key observation is the

following: For a vertical line segment in the diagram whose lower endpoint is at the

point
(a
b
,0
)

on the x -axis, the upper endpoint is at

the point
(a
b
,

1
b

)

. This is obviously true at the first

−−−

a
0b( ),

−−−

a
b −−−

1

b( ),

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a c
b d

1
( ),

−−−

c
d −−−

1

d( ),

−−−

c
0d( ),

+
+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−b d+

stage of the construction, and it continues to hold

at each successive stage since for a quadrilateral

whose four vertices have coordinates as shown in

the figure at the right, the two diagonals intersect

at the point
( a+c
b+d

,
1
b+d

)

. For example, to verify that
( a+c
b+d

,
1
b+d

)

is on the line from
(a
b
,0
)

to
( c
d
,

1
d

)

it

suffices to show that the line segments from
(a
b
,0
)

to
( a+c
b+d

,
1

b+d

)

and from
( a+c
b+d

,
1
b+d

)

to
( c
d
,

1
d

)

have

the same slope. These slopes are

1/(b + d)− 0

(a+ c)/(b + d)− a/b
·
b(b + d)

b(b + d)
=

b

b(a+ c)− a(b + d)
=

b

bc − ad

and
1/d− 1/(b + d)

c/d− (a+ c)/(b + d)
·
d(b + d)

d(b + d)
=

b + d− d

c(b + d)− d(a+ c)
=

b

bc − ad

so they are equal. The same argument works for the other diagonal, just by inter-

changing
a
b

and
c
d

.

Going back to the square diagram, this fact that we have just shown implies that

the successive Farey series can be obtained by taking the vertices that lie above the

line y =
1
2

, then the vertices above y =
1
3

, then above y =
1
4

, and so on. Here we

are assuming the two properties of the Farey diagram that will be shown in the next

section, that all rational numbers occur eventually as labels on vertices, and that these

labels are always fractions in lowest terms.

In the square diagram, the most important thing for our purposes is the triangles,

not the vertical lines. We can get rid of all the vertical lines by shrinking each one to

its lower endpoint, converting each triangle into a curvilinear triangle with semicircles

as edges, as shown in the diagram below.
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−−−

0

1 −−−

1

1
−−−

1

2−−−

1

3 −−−

2

3−−−

1

4−−−

1

5 −−−

2

5 −−−

3

5 −−−

3

4 −−−
4

5

This looks more like a portion of the Farey diagram we started with at the beginning of

the chapter, but with the outer boundary circle straightened into a line. The advantage

of the new version is that the labels on the vertices are exactly in their correct places

along the x -axis, so the vertex labeled
a
b

is exactly at the point
a
b

on the x -axis.

This diagram can be enlarged so as to include similar diagrams for fractions be-

tween all pairs of adjacent integers, not just 0 and 1, all along the x -axis:

−−−

0

1

−−−

1

0 −−−

1

0 −−−

1

0−−−

1

0

−−−

1

1−−−

1

1
−−−

1

2−−−

1

2 −−−

1

3−−−

1

3 −−−

2

3−−−

2

3 −−−

2

1
−−−

3

2−−−

4

3 −−−

5

3
--------

We can also put in vertical lines at the integer points, extending upward to infinity.

These correspond to the edges having one endpoint at the vertex 1/0 in the original

Farey diagram.

All these diagrams are variants of the Farey diagram we started with at the begin-

ning of the chapter. Let us call the diagram we have just drawn the standard Farey

diagram and the one at the beginning of the chapter the circular Farey diagram. We

could also form a variant of the Farey diagram from copies of the square:
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−−−

0

1 −−−

1

1

−−−

1

0 −−−

1

0 −−−

1

0 −−−

1

0 −−−

1

0 −−−

1

0 −−−

1

0

−−−

2

1 −−−

3

1−−−

1

1

--
−−−

2

1

--
−−−

3

1

--

Next we describe a variant of the circular Farey diagram that is closely related

to Pythagorean triples. Recall from Chapter 0 that rational points (x,y) on the unit

circle correspond to rational points p/q on the x -axis by means of lines through the

point (0,1) on the circle. In formulas, (x,y) = (
2pq
p2+q2 ,

p2−q2

p2+q2 ) . Using this correspon-

dence, we can label the rational points on the circle by the corresponding rational

points on the x -axis and then construct a new Farey diagram in the circle by filling in

triangles by the mediant rule just as before.

The result is a version of the circular Farey diagram that is rotated by 90 degrees

to put 1/0 at the top of the circle, and there are also some perturbations of the

positions of the other vertices and the shapes of the triangles. The next figure shows

an enlargement of the new part of the diagram, with the vertices labeled by both the

fraction p/q and the coordinates (x,y) of the vertex:
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The construction we have described for the Farey diagram involves an inductive

process, where more and more triangles are added in succession. With a construction

like this it is not easy to tell by a simple calculation whether or not two given rational

numbers a/b and c/d are joined by an edge in the diagram. Fortunately there is such

a criterion:

Two rational numbers a/b and c/d are joined by an edge in the Farey diagram

exactly when the determinant ad−bc of the matrix
(

a c
b d

)

is ±1 . This applies also

when one of a/b or c/d is ±1/0 .

We will prove this in the next section. What it means in terms of the standard Farey

diagram is that if one were to start with the upper half of the xy -plane and insert
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vertical lines through all the integer points on the x -axis, and then insert semicircles

perpendicular to the x -axis joining each pair of rational points a/b and c/d such

that ad−bc = ±1, then no two of these vertical lines or semicircles would cross, and

they would divide the upper half of the plane into non-overlapping triangles. This

is really quite remarkable when you think about it, and it does not happen for other

values of the determinant besides ±1. For example, for determinant ±2 the edges

would be the dotted lines in the figure below. Here there are three lines crossing in

each triangle of the original Farey diagram, and these lines divide each triangle of the

Farey diagram into six smaller triangles.
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1.2 Continued Fractions

Here are two typical examples of continued fractions:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

16
+

−−−

1
3

2
+

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

To compute the value of a continued fraction one starts in the lower right corner and

works one’s way upward. For example in the continued fraction for
7

16
one starts with

3 +
1
2
=

7
2

, then taking 1 over this gives
2
7

, and adding the 2 to this gives
16
7

, and

finally 1 over this gives
7

16
.

Here is the general form of a continued fraction:

To write this in more compact form on a single line one can write it as

p

q
= a0 +

1
�

ր
a1
+ 1
�

ր
a2
+ · · · + 1

�

ր
an

For example:

7

16
= 1
�

ր
2+

1
�

ր
3+

1
�

ր
2

67

24
= 2+ 1

�

ր
1+

1
�

ր
3+

1
�

ր
1+

1
�

ր
4

To compute the continued fraction for a given rational number one starts in the

upper left corner and works one’s way downward, as the following example shows:

If one is good at mental arithmetic and the numbers aren’t too large, only the final

form of the answer needs to be written down:
67
24
= 2+ 1

�ր1+
1
�ր3+

1
�ր1+

1
�ր4 .
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This process is known as the Euclidean Algorithm. It consists of repeated divi-

sion, at each stage dividing the previous remainder into

the previous divisor. The procedure for 67/24 is shown

at the right. Note that the numbers in the shaded box are

the numbers ai in the continued fraction. These are the

=67 2 24 19+.

=24 1 19 5+.

=19 3 5 4+.

=5 1 4 1+.

=4 4 1 0+.quotients of the successive divisions. They are sometimes

called the partial quotients of the original fraction.

One of the classical uses for the Euclidean algorithm is to find the greatest com-

mon divisor of two given numbers. If one applies the algorithm to two numbers

p and q , dividing the smaller into the larger, then the remainder into the first di-

visor, and so on, then the greatest common divisor of p

and q turns out to be the last nonzero remainder. For ex-

ample, starting with p = 72 and q = 201 the calculation

is shown at the right, and the last nonzero remainder is

3, which is the greatest common divisor of 72 and 201.

(In fact the fraction 201/72 equals 67/24, which explains

=201 2 72 57+.

=72 1 57 15+.

=57 3 15 12+.

=15 1 12 3+.

=12 4 3 0+.

why the successive quotients for this example are the same as in the preceding ex-

ample.) It is easy to see from the displayed equations why 3 has to be the greatest

common divisor of 72 and 201, since from the first equation it follows that any divi-

sor of 72 and 201 must also divide 57, then the second equation shows it must divide

15, the third equation then shows it must divide 12, and the fourth equation shows

it must divide 3, the last nonzero remainder. Conversely, if a number divides the last

nonzero remainder 3, then the last equation shows it must also divide the 12, and

the next-to-last equation then shows it must divide 15, and so on until we conclude

that it divides all the numbers not in the shaded rectangle, including the original two

numbers 72 and 201. The same reasoning applies in general.

A more obvious way to try to compute the greatest common divisor of two num-

bers would be to factor each of them into a product of primes, then look to see which

primes occurred as factors of both, and to what power. But to factor a large number

into its prime factors is a very laborious and time-consuming process. For example,

even a large computer would have a hard time factoring a number of a hundred digits

into primes, so it would not be feasible to find the greatest common divisor of a pair

of hundred-digit numbers this way. However, the computer would have no trouble at

all applying the Euclidean algorithm to find their greatest common divisor.
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Having seen what continued fractions are, let us now see what they have to do with

the Farey diagram. Some examples will illustrate this best, so let us first look at the

continued fraction for 7/16 again. This has 2,3,2 as its sequence of partial quotients.

We use these three numbers to build a strip of three large triangles subdivided into

2, 3, and 2 smaller triangles, from left to right:

−−−

1

0

−−−

0

1

−−−

1

1 −−−

1

2

2

−−−

4

9
−−−

7

16

−−−

1

3

3

−−−

2

2

5
−−−

3

7

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

16
+

−−−

1
3

2
+

We can think of the diagram as being formed from three “fans", where the first fan is

made from the first 2 small triangles, the second fan from the next 3 small triangles,

and the third fan from the last 2 small triangles. Now we begin labeling the vertices

of this strip. On the left edge we start with the labels 1/0 and 0/1. Then we use the

mediant rule for computing the third label of each triangle in succession as we move

from left to right in the strip. Thus we insert, in order, the labels 1/1, 1/2, 1/3, 2/5,

3/7, 4/9, and finally 7/16.

Was it just an accident that the final label was the fraction 7/16 that we started

with, or does this always happen? Doing more examples should help us decide. Here

is a second example:

−−−

1

0

−−−

0

1

−−−

1

1 −−−

1

2 −−−

3

10 −−−

7

24−−−

1

3

2

−−−

5

17
−−−

9

31

3

−−−

1

4

4
−−−

2

7

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

9 1

1
3

31
+

−−−

1
2

4
+

Again the final vertex on the right has the same label as the fraction we started with.

The reader is encouraged to try more examples to make sure we are not rigging things

to get a favorable outcome by only choosing examples that work.

In fact this always works for fractions p/q between 0 and 1. For fractions larger

than 1 the procedure works if we modify it by replacing the label 0/1 with the initial

integer a0/1 in the continued fraction a0+
1
�րa1

+ 1
�րa2

+· · ·+ 1
�րan . This is illustrated

by the 67/24 example:
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−−−

1

0

−−−

2

4

1

1

−−−

3

1

1

−−−

14

5

−−−

67

24−−−

39

14 −−−
53

19
−−−

5

2 −−−

8

3

3

−−−

11

4
−−−

25

9

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

For comparison, here is the corresponding strip for the reciprocal, 24/67:

−−−

0

1

−−−

1

0 −−−

1

1
−−−

1

4

2

1

−−−

1

3

1

−−−

5

14

−−−

24

67−−−

14

39 −−−
19

53
−−−

2

5 −−−

3

8

32

−−−

4

11
−−−

9

25

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

24

1

1
3

67

+

−−−−−−−−−−−−−−−−−−−−−−−−

1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

Now let us see how all this relates to the Farey diagram. Since the rule for labeling

vertices in the triangles along the horizontal strip for a fraction p/q is the mediant

rule, each of the triangles in the strip is a triangle in the Farey diagram, somewhat

distorted in shape, and the strip of triangles can be regarded as a sequence of adjacent

triangles in the diagram. Here is what this looks like for the fraction 7/16 in the

circular Farey diagram, slightly distorted for the sake of visual clarity:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

3

16
+

−−−

1

0

2

−−−

1

2
−−−

3

7

−−−

1

0 −−−

0

1

−−−

1

1

−−−

1

2
−−−

4

9
−−−

7

16

−−−

1

3

−−−

2

5

−−−

3

7+

Convergents: , , −−−

7

 16
,

In the strip of triangles for a fraction p/q there is a zigzag path from 1/0 to p/q

that we have indicated by the heavily shaded edges. The vertices that this zigzag path

passes through have a special significance. They are the fractions that occur as the

values of successively larger initial portions of the continued fraction, as illustrated

in the following example:



Chapter 1 The Farey Diagram 14

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2

2

3

+

−−−

1
1

4
+

4
11/

5
14/

24
67/

These fractions are called the convergents for the given fraction. Thus the convergents

for 67/24 are 2, 3, 11/4, 14/5, and 67/24 itself.

From the preceding examples one can see that each successive vertex label pi/qi

along the zigzag path for a continued fraction
p
q
= a0 +

1
�րa1

+ 1
�րa2

+ · · · + 1
�րan is

computed in terms of the two preceding vertex labels according to the rule

pi
qi
=
aipi−1 + pi−2

aiqi−1 + qi−2

This is because the mediant rule is being applied ai times, ‘adding’ pi−1/qi−1 to the

previously obtained fraction each time until the next label pi/qi is obtained.





1





It is interesting to see what the zigzag paths corresponding to continued fractions

look like in the standard Farey diagram. The next figure shows the simple example

of the continued fraction for 3/8. We can see here that the five triangles of the

strip correspond to the four curvilinear triangles lying directly above 3/8 in the Farey

diagram, plus the fifth ‘triangle’ extending upward to infinity, bounded on the left and

right by the vertical lines above 0/1 and 1/1, and bounded below by the semicircle

from 0/1 to 1/1.
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−−−

0

1

−−−

0

1

−−−

1

0 −−−

1

0

−−−

1

0

−−−−−−−−−−−−−−−−−−−−−−−−

−−−

−−−−−−

1

1

−−−

1

1

1

2

−−−

1

2

1

3

−−−

1

31

4

3

4

1

5

4

5

2

5

−−−

2

5 −−−

3

8

3

5
3

8

2

3

This example is typical of the general case, where the zigzag path for a continued

fraction
p
q
= a0+

1
�րa1

+1
�րa2

+· · ·+1
�րan becomes a ‘pinball path’ in the standard Farey

diagam, starting down the vertical line from 1/0 to a0/1, then turning left across a1

triangles, then right across a2 triangles, then left across a3 triangles, continuing to

alternate left and right turns until reaching the final vertex p/q . Two consequences

of this are:

(1) The convergents are alternately smaller than and greater than p/q .

(2) The triangles that form the strip of triangles for p/q are exactly the triangles in

the Farey diagram that lie directly above the point p/q on the x -axis.

Here is a general statement describing the relationship between continued frac-

tions and the Farey diagram that we have observed in all our examples so far:

Theorem. The convergents for the continued fraction
p
q
= a0+

1
�րa1

+ 1
�րa2

+· · ·+ 1
�րan

are the vertices along a zigzag path consisting of a finite sequence of edges in the Farey

diagram, starting at 1/0 and ending at p/q . The path starts along the edge from

1/0 to a0/1 , then turns left across a fan of a1 triangles, then right across a fan of a2

triangles, etc., finally ending at p/q .

In particular, since every positive rational number has a continued fraction ex-

pansion, we see that every positive rational number occurs eventually as the label of

some vertex in the positive half of the diagram. All negative rational numbers then

occur as labels in the negative half.
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Proof of the Theorem: The continued fraction
p
q
= a0 +

1
�րa1

+ 1
�րa2

+ · · · + 1
�րan deter-

mines a strip of triangles:









We will show that the label pn/qn on the final vertex in this strip is equal to p/q , the

value of the continued fraction. Replacing n by i , we conclude that this holds also

for each initial seqment a0+
1
�րa1

+ 1
�րa2

+· · ·+ 1
�րai of the continued fraction. This is

just saying that the vertices pi/qi along the strip are the convergents to p/q , which

is what the theorem claims.

To prove that pn/qn = p/q we will use 2× 2 matrices. Consider the product

P =

(

1 a0

0 1

)(

0 1

1 a1

)(

0 1

1 a2

)

· · ·

(

0 1

1 an

)

We can multiply this product out starting either from the left or from the right. Sup-

pose first that we multiply starting at the left. The initial matrix is

(

1 a0

0 1

)

and we

can view the two columns of this matrix as the two fractions 1/0 and a0/1 labeling

the left edge of the strip of triangles. When we multiply this matrix by the next matrix

we get
(

1 a0

0 1

)(

0 1

1 a1

)

=

(

a0 1+ a0a1

1 a1

)

=

(

p0 p1

q0 q1

)

The two columns here give the fractions at the ends of the second edge of the zigzag

path. The same thing happens for subsequent matrix multiplications, as multiplying

by the next matrix in the product takes the matrix corresponding to one edge of the

zigzag path to the matrix corresponding to the next edge:

(

pi−2 pi−1

qi−2 qi−1

)(

0 1

1 ai

)

=

(

pi−1 pi−2 + aipi−1

qi−1 qi−2 + aiqi−1

)

=

(

pi−1 pi
qi−1 qi

)

In the end, when all the matrices have been multiplied, we obtain the matrix corre-

sponding to the last edge in the strip from pn−1/qn−1 to pn/qn . Thus the second

column of the product P is pn/qn , and what remains is to show that this equals the

value p/q of the continued fraction a0 +
1
�րa1

+ 1
�րa2

+ · · · + 1
�րan .
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The value of the continued fraction a0 +
1
�րa1

+ 1
�րa2

+ · · · + 1
�րan is computed by

working from right to left. If we let ri/si be the value of the tail 1
�րai+

1
�րai+1

+· · ·+1
�րan

of the continued fraction, then rn/sn = 1/an and we have

ri
si
=

1

ai +
ri+1

si+1

=
si+1

aisi+1 + ri+1

and finally
p

q
= a0 +

r1

s1
=
a0s1 + r1

s1

In terms of matrices this implies that we have
(

rn
sn

)

=

(

1

an

)

,

(

0 1

1 ai

)(

ri+1

si+1

)

=

(

si+1

ri+1 + aisi+1

)

=

(

ri
si

)

and

(

1 a0

0 1

)(

r1

s1

)

=

(

r1 + a0s1
s1

)

=

(

p

q

)

This means that when we multiply out the product P starting from the right, then the

second columns will be successively

(

rn
sn

)

,

(

rn−1

sn−1

)

, · · · ,

(

r1

s1

)

and finally

(

p

q

)

.

We already showed this second column is

(

pn
qn

)

, so p/q = pn/qn and the proof is

complete. ⊔⊓

An interesting fact that can be deduced from the preceding proof is that for a

continued fraction 1
�րa1

+ 1
�րa2

+ · · ·+ 1
�րan with no initial integer a0 , if we reverse the

order of the numbers ai , this leaves the denominator unchanged. For example

1
�

ր
2+

1
�

ր
3+

1
�

ր
4 =

13

30
and 1

�

ր
4+

1
�

ր
3+

1
�

ր
2 =

7

30

To see why this must always be true we use the operation of transposing a matrix to in-

terchange its rows and columns. For a 2×2 matrix this just amounts to interchanging

the upper-right and lower-left entries:
(

a c

b d

)T

=

(

a b

c d

)

Transposing a product of matrices reverses the order of the factors: (AB)T = BTAT ,

as can be checked by direct calculation. In the product
(

0 1

1 a1

)(

0 1

1 a2

)

· · ·

(

0 1

1 an

)

=

(

pn−1 pn
qn−1 qn

)

the individual matrices on the left side of the equation are symmetric with respect to

transposition, so the transpose of the product is obtained by just reversing the order

of the factors:
(

0 1

1 an

)(

0 1

1 an−1

)

· · ·

(

0 1

1 a1

)

=

(

pn−1 qn−1

pn qn

)



Chapter 1 The Farey Diagram 18

Thus the denominator qn is unchanged, as claimed.

There is also a fairly simple relationship between the numerators. In the example

of 13/30 and 7/30 we see that the product of the numerators, 91, is congruent to

1 modulo the denominator. In the general case the product of the numerators is

pnqn−1 and this is congruent to (−1)n+1 modulo the denominator qn . To verify this,

we note that the determinant of each factor

(

0 1

1 ai

)

is −1 so since the determinant

of a product is the product of the determinants, we have pn−1qn − pnqn−1 = (−1)n ,

which says that pnqn−1 is congruent to (−1)n+1 modulo qn .

Determinants Determine Edges

We constructed the Farey diagram by an inductive procedure, inserting successive

edges according to the mediant rule, but there is another rule that can be used to

characterize the edges in the diagram:

Theorem. In the Farey diagram, two vertices labeled a/b and c/d are joined by an

edge if and only if the determinant ad− bc of the matrix
(

a c
b d

)

is equal to ±1 .

Proof : First we show that for an arbitrary edge in the di-

agram joining a/b to c/d , the associated matrix
(

a c
b d

)

has determinant ±1. This is obviously true for the edges

in the two largest triangles in the circular version of the

diagram. For the smaller triangles we proceed by induc-

tion. The figure at the right shows the three matrices cor-

responding to the edges of one of these smaller triangles.

By induction we assume we know that ad−bc = ±1 for

the long edge of the triangle. Then the determinant con-

dition holds also for the two shorter edges of the triangle since a(b+d)−b(a+ c) =

ad− bc and (a+ c)d− (b + d)c = ad− bc .

Before proving the converse let us pause to apply what we have shown so far to

deduce a basic fact about the Farey diagram that was mentioned but not proved when

we first constructed the diagram:

Corollary. The mediant rule for labeling the vertices in the Farey diagram always

produces labels a/b that are fractions in lowest terms.

Proof : Consider an edge joining a vertex labeled a/b to some other vertex labeled

c/d . By the preceding proposition we know that ad−bc = ±1. This equation implies

that a and b can have no common divisor greater than 1 since any common divisor of
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a and b must divide the products ad and bc , hence also the difference ad−bc = ±1,

but the only divisors of ±1 are ±1. ⊔⊓

Now we return to proving the converse half of the theorem, which says that there

is an edge joining a/b to c/d whenever ad−bc = ±1. To do this we will examine how

all the edges emanating from a fixed vertex a/b are related. To begin, if a/b = 0/1

then the matrices

(

0 c

1 d

)

with determinant ±1 are the matrices

(

0 ±1

1 d

)

, and

these correspond exactly to the edges in the diagram from 0/1 to ±1/d . There is

a similar exact correspondence for the edges from 1/0. For the other vertices a/b ,

the example a/b = 5/8 is shown in the left half of the figure below. The first edges

drawn to this vertex come from 2/3 and 3/5, and after this all the other edges from

5/8 are drawn in turn. As one can see, they are all obtained by adding (5,8) to (2,3)

or (3,5) repeatedly. If we choose any one of these edges from 5/8, say the edge to

2/3 for example, then the edges from 5/8 have their other endpoints at the fractions

(2 + 5k)/(3 + 8k) as k ranges over all integers, with positive values of k giving the

edges on the upper side of the edge to 2/3 and negative values of k giving the edges

on the lower side of the edge to 2/3.

The same thing happens for an arbitrary value of a/b as shown in the right half of

the figure, where a/b initially arises as the mediant of c/d and e/f . In this case if

we choose the edge to c/d as the starting edge, then the other edges go from a/b to

(c + ka)/(d+ kb) . In particular, when k = −1 we get the edge to (c − a)/(d− b) =

(a− c)/(b − d) = e/f .

To finish the argument we need to know how the various matrices
(

a x
b y

)

of deter-

minant ay −bx = ±1 having the same first column are related. This can be deduced

from the following result about integer solutions of linear equations with integer co-

efficients:
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Lemma. Suppose a and b are integers with no common divisor. If one solution of

ay − bx = n is (x,y) = (c, d) , then the general solution is (x,y) = (c +ka,d+ kb)

for k an arbitrary integer.

The proof will use the same basic argument as is used in linear algebra to show

that the general solution of a system of nonhomogeneous linear equations is obtained

from any particular solution by adding the general solution of the associated system

of homogeneous equations.

Proof : One solution (x,y) = (c, d) of ay−bx = n is given. For an arbitrary solution

(x,y) we look at the difference (x0, y0) = (x−c,y−d) . This satisfies ay0−bx0 = 0,

or in other words, ay0 = bx0 . Since a and b have no common divisors, the equation

ay0 = bx0 implies that x0 must be a multiple of a and y0 must be a multiple of

b , in fact the same multiple in both cases so that the equation becomes a(kb) =

b(ka) . Thus we have (x0, y0) = (ka, kb) for some integer k . Thus every solution of

ay −bx = n has the form (x,y) = (c +x0, d+y0) = (c +ka,d+kb) , and it is clear

that these formulas for x and y give solutions for all values of k . ⊔⊓

Now we can easily finish the proof of the theorem. The lemma in the cases n = ±1

implies that the edges in the Farey diagram with a/b at one endpoint account for all

matrices
(

a x
b y

)

of determinant ay − bx = ±1. ⊔⊓

There is some ambiguity in the correspondence between edges of the Farey di-

agram and matrices
(

a c
b d

)

of determinant ±1. For one thing, either column of the

matrix can be multiplied by −1, changing the sign of the determinant without chang-

ing the value of the fractions a/b and c/d . This ambiguity can be eliminated by

choosing all of a , b , c , and d to be positive for edges in the upper half of the circular

Farey diagram, and choosing just the numerators a and c to be negative for edges in

the lower half of the diagram. The only other ambiguity is that both
(

a c
b d

)

and
(

c a
d b

)

correspond to the same edge. This ambiguity can be eliminated by orienting the edges

by placing an arrowhead on each edge pointing from the vertex corresponding to the

first column of the matrix to the vertex corresponding to the second column. Chang-

ing the orientation of an edge switches the two columns of the matrix, which changes

the sign of the determinant.

The identity matrix
(

1 0
0 1

)

has determinant +1 and corresponds to the edge from

1/0 to 0/1 oriented from left to right in the circular diagram. We can use this ori-

entation to give orientations to all other edges when we build the diagram using the

mediant rule. In the upper half of the diagram this
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makes all edges be oriented toward the right, or in

other words from a/b to c/d with a/b > c/d . With

this orientation, all the corresponding matrices have

determinant +1 since
(

1 0
0 1

)

has determinant +1 and

we have seen that the determinant doesn’t change

when we add new edges by the mediant rule. When

we use the mediant rule to construct the lower half of the diagram we have to start

with −1/0 instead of 1/0. This means that we are starting with the matrix
(

−1 0
0 1

)

instead of
(

1 0
0 1

)

. Since the determinant of
(

−1 0
0 1

)

is −1, this means that the edges

in the lower half of the diagram, when oriented toward the right as in the upper half,

correspond to matrices of determinant −1.

The Diophantine Equation ax+by=n

The Euclidean algorithm and continued fractions can be used to compute all the

integer solutions of a linear equation ax + by = n where a , b , and n are given

integers. We can assume neither a nor b is zero, otherwise the equation is rather

trivial. Changing the signs of x or y if necessary, we can rewrite the equation in the

form ax − by = n where a and b are both positive.

If a and b have greatest common divisor d > 1, then since d divides a and b

it must divide ax − by , so d must divide n if the equation is to have any solutions

at all. If d does divide n we can divide both sides of the equation by d to get a new

equation of the same type as the original one and having the same solutions, but with

the new coefficients a and b having no common divisors. For example, the equation

6x−15y = 21 reduces in this way to the equation 2x−5y = 7. Thus we can assume

from now on that a and b have no common divisors.

The Lemma from a page or two back shows how to find the general solution of

ax−by = n once we have found one particular solution. To find a particular solution

it suffices to do the case n = 1 since if we have a solution of ax − by = 1, we can

multiply x and y by n to get a solution of ax−by = n . For small values of a and b

a solution of ax−by = 1 can be found more or less by inspection since the equation

ax−by = 1 says that we have multiples of a and b that differ by 1. For example, for

the equation 2x− 5y = 1 the smallest multiples of 2 and 5 that differ by 1 are 2 · 3

and 5 · 1, so a solution of 2x − 5y = 1 is (x,y) = (3,1) . A solution of 2x − 5y = 7

is then (x,y) = (21,7) . By the earlier Lemma, the general solution of 2x − 5y = 7

is (x,y) = (21 + 5k,7+ 2k) for arbitrary integers k . The smallest positive solution

is (6,1) , obtained by setting k = −3. This means we could also write the general
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solution as (6+ 5k,1+ 2k) .

Solutions of ax − by = 1 always exist when a and b have no common divisors,

and a way to find one is to find an edge in the Farey diagram with a/b at one end

of the edge. This can be done by using the Euclidean algorithm to compute the strip

of triangles from 1/0 to a/b . As an example, let us solve 67x − 24y = 1. We

already computed the strip of triangles for 67/24 earlier in this section. The vertex

preceding 67/24 in the zigzag path is 14/5 and this vertex lies above 67/24 so we

have 14/5 > 67/24 and hence the matrix
(

14 67
5 24

)

has determinant +1. Thus one

solution of 67x−24y = 1 is (x,y) = (−5,−14) and the general solution is (x,y) =

(−5+ 24k,−14+ 67k) . We could also use the edge from 53/19 to 67/24, so
(

67 53
24 19

)

has determinant +1, yielding another formula for the general solution (19+24k,53+

67k) .

From a geometric point of view, finding the integer solutions of ax + by = n is

finding the points on the line ax + by = n in the xy -plane having both coordinates

integers. The points in the plane having both coordinates integers form a square grid

called the integer lattice. Thus we wish to see which points in the integer lattice lie on

the line ax + by = n . This equation can be written in the form y =mx + b where

slope m and y -intercept b are both rational. Conversely, an equation y =mx + b

with m and b rational can be written as an equation ax + by = n with a , b , and n

integers by multiplying through by a common denominator of m and b . Sometimes

the equation ax + by = n has no integer solutions, as we have seen, namely when

n is not a multiple of the greatest common divisor of a and b , for example the

equation 2x+2y = 1. In these cases the line ax+by = n passes through no integer

lattice points. In the opposite case that there does exist an integer solution, there are

infinitely many, and they correspond to integer lattice points spaced at equal intervals

along the line.
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Infinite Continued Fractions

We have seen that all rational numbers can be represented as continued fractions

a0 +
1
�րa1

+ 1
�րa2

+ · · · + 1
�րan , but what about irrational numbers? It turns out that

these can be represented as infinite continued fractions a0 +
1
�րa1

+ 1
�րa2

+ 1
�րa3

+ · · · .

A simple example is 1
�ր1+

1
�ր1+

1
�ր1+ · · · , or in its expanded form:

−−−−−−−−−−−−−−−−−

1

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1
1
−−−−−−−−−−

1

+1

+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

. . .

The corresponding strip of triangles is infinite:

−−−

0

1

−−−

1

0 −−−

1

1

−−−

1

2
−−−

8

13

−−−

34

55−−−

13

21

−−−

21

34 −−−

55

89

−−−

2

3 −−−

5

8

−−−

3

5

Notice that these fractions after 1/0 are the successive ratios of the famous Fibonacci

sequence 0,1,1,2,3,5,8,13,21, · · · where each number is the sum of its two prede-

cessors. The sequence of convergents is thus 0/1,1/1,1/2,2/3,3/5,5/8,8/13, · · ·,

the vertices along the zigzag path. The way

this zigzag path looks in the standard Farey

diagram is shown in the figure at the right.

What happens when we follow this path far-

ther and farther? The path consists of an

infinite sequence of semicircles, each one

shorter than the preceding one and sharing

a common endpoint. The left endpoints of

the semicircles form an increasing sequence

of numbers which have to be approaching a certain limiting value x . We know x has

to be finite since it is certainly less than each of the right-hand endpoints of the semi-

circles, the convergents 1/1,2/3,5/8, · · ·. Similarly the right endpoints of the semi-

circles form a decreasing sequence of numbers approaching a limiting value y greater

than each of the left-hand endpoints 0/1,1/2,3/5, · · ·. Obviously x ≤ y . Is it pos-



Chapter 1 The Farey Diagram 24

sible that x is not equal to y ? If this happened, the infinite sequence of semicircles

would be approaching the semicircle from x to y . Above this semicircle there would

then be an infinite number of semicircles, all the semicircles in the infinite sequence.

Between x and y there would have to be a rational numbers p/q (between any two

real numbers there is always a rational number), so above this rational number there

would be an infinite number of semicircles, hence an infinite number of triangles in

the Farey diagram. But we know that there are only finitely many triangles above any

rational number p/q , namely the triangles that appear in the strip for the continued

fraction for p/q . This contradiction shows that x has to be equal to y . Thus the

sequence of convergents along the edges of the infinite strip of triangles converges to

a unique real number x . (This is why the convergents are called convergents.)

This argument works for arbitrary infinite continued fractions, so we have shown

the following general result:

Proposition. For every infinite continued fraction a0 +
1
�րa1

+ 1
�րa2

+ 1
�րa3

+ · · · the

convergents converge to a unique limit.

This limit is by definition the value of the infinite continued fraction. There is a

simple method for computing the value in the example involving Fibonacci numbers.

We begin by setting

x = 1
�

ր
1+

1
�

ր
1+

1
�

ր
1+ · · ·

Then if we take the reciprocals of both sides of this equation we get

1

x
= 1+ 1

�

ր
1+

1
�

ր
1+

1
�

ր
1+ · · ·

The right side of this equation is just 1+ x , so we can easily solve for x :

1

x
= 1+ x

1 = x + x2

x2
+ x − 1 = 0

x =
−1±

√

5

2

We know x is positive, so this rules out the negative root and we are left with the final

value x = (−1 +
√

5)/2. This number, approximately .618, goes by the name of the

golden ratio. It has many interesting properties.

Proposition. Every irrational number has an expression as an infinite continued frac-

tion, and this continued fraction is unique.
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Proof : In the Farey diagram consider the vertical line L going upward from a given

irrational number x on the x -axis. The lower endpoint of L is not a vertex of the

Farey diagram since x is irrational. Thus as we move downward along L we cross a

sequence of triangles, entering each triangle by crossing its upper edge and exiting

the triangle by crossing one of its two lower edges. When we exit one triangle we

are entering another, the one just below it, so the sequence of triangles and edges

we cross must be infinite. The left and right endpoints of the edges in the sequence

must be approaching the single point x by the argument we gave in the preceding

proposition, so the edges themselves are approaching x . Thus the triangles in the

sequence form a single infinite strip consisting of an infinite sequence of fans with

their pivot vertices on alternate sides of the strip. The zigzag path along this strip

gives a continued fraction for x .

For the uniqueness, we have seen that an infinite continued fraction for x cor-

responds to a zigzag path in the infinite strip of triangles lying above x . This set

of triangles is unique so the strip is unique, and there is only one path in this strip

that starts at 1/0 and then does left and right turns alternately, starting with a left

turn. The initial turn must be to the left because the first two convergents are a0 and

a0 +
1
a1

, with a0 +
1
a1
> a0 since a1 > 0. After the path traverses the first edge, no

subsequent edge of the path can go along the border of the strip since this would

entail two successive left turns or two successive right turns. ⊔⊓

The arguments we have just given can be used to prove a fact about the standard

Farey diagram that we have been taking more or less for granted. This is the fact that

the triangles in the diagram completely cover the upper halfplane. In other words,

every point (x,y) with y > 0 lies either in the interior of some triangle or on the

common edge between two triangles. To see why, consider the vertical line L in the

upper halfplane through the given point (x,y) . If x is an integer then (x,y) is on

one of the vertical edges of the diagram. Thus we can assume x is not an integer

and hence L is not one of the vertical edges of the diagram. The line L will then be

contained in the strip of triangles corresponding to the continued fraction for x . This

is a finite strip if x is rational and an infinite strip if x is irrational. In either case

the point (x,y) , being in L , will be in one of the triangles of the strip or on an edge

separating two triangles in the strip. This proves what we wanted to prove.

To compute the infinite continued fraction a0+
1
�րa1

+ 1
�րa2

+ 1
�րa3

+· · · for a given

irrational number x we can follow the same procedure as for rational numbers, but it

doesn’t terminate after a finite number of steps. Recall the original example that we
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did:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+3 +

−−−−−−−−−−−−−−−−−−−−−−−−

1

1

−−−−

19

24

+

−−−−−−−−

1
1 +

1 +
2 + = −−−−

1

1924
2 +

−−−

1
1

4
+

−−−−−

1

/

519/

= −−−−−−−−

1

195
2 +

/
= −−−−−−−−

1
2 +

−−−−−−−−

1
1 +

54/
45/

= −−−−−−−−−−−−

1
2 +

3 +
−−−−−−−−

1
1 +

= −−−−−−−−−−−−

1
2 + = 2 +

The sequence of steps is the following:

(1) Write x = a0 + r1 where a0 is an integer and 0 ≤ r1 < 1

(2) Write 1/r1 = a1 + r2 where a1 is an integer and 0 ≤ r2 < 1

(3) Write 1/r2 = a2 + r3 where a2 is an integer and 0 ≤ r3 < 1

and so on, repeatedly. Thus one first finds the largest integer a0 ≤ x , with r1 the

‘remainder’, then one inverts r1 and finds the greatest integer a1 ≤ 1/r1 , with r2 the

remainder, etc.

Here is how this works for x =
√

2:

(1)
√

2 = 1+(
√

2−1) where a0 = 1 since
√

2 is between 1 and 2. Before going on to

step (2) we have to compute
1
r1
=

1
√

2−1
. Multiplying numerator and denominator

by
√

2+ 1 gives
1

√

2−1
=

1
√

2−1
·
√

2+1
√

2+1
=
√

2+ 1. This is the number we use in the

next step.

(2)
√

2+ 1 = 2+ (
√

2− 1) since
√

2+ 1 is between 2 and 3.

Notice that something unexpected has happened: The remainder r2 =
√

2−1 is exactly

the same as the previous remainder r1 . There is then no need to do the calculation

of
1
r2
=

1
√

2−1
since we know it will have to be

√

2+ 1. This means that the next step

(3) will be exactly the same as step (2), and the same will be true for all subsequent

steps. Hence we get the continued fraction

√

2 = 1+ 1
�

ր
2+

1
�

ր
2+

1
�

ր
2+ · · ·

We can check this calculation by finding the value of the continued fraction in the same

way that we did earlier for 1
�ր1+

1
�ր1+

1
�ր1+ · · · . First we set x = 1

�ր2+
1
�ր2+

1
�ր2+ · · · .

Taking reciprocals gives 1/x = 2 + 1
�ր2 +

1
�ր2 +

1
�ր2 + · · · = 2 + x . This leads to the

quadratic equation x2
+2x−1 = 0, which has roots x = −1±

√

2. Since x is positive

we can discard the negative root. Thus we have −1+
√

2 = 1
�ր2+

1
�ր2+

1
�ր2+· · · . Adding

1 to both sides of this equation gives the formula for
√

2 as a continued fraction.
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We can get good rational approximations to
√

2 by computing the convergents

in its continued fraction 1 + 1
�ր2 +

1
�ր2 +

1
�ր2 + · · · . It’s a little easier to compute the

convergents in 2 + 1
�ր2 +

1
�ր2 +

1
�ր2 + · · · = 1 +

√

2 and then subtract 1 from each of

these. For 2+ 1
�ր2+

1
�ր2+

1
�ր2+ · · · there is a nice pattern to the convergents:

2

1
,

5

2
,

12

5
,

29

12
,

70

29
,

169

70
,

408

169
,

985

408
, · · ·

Notice that the sequence of numbers 1,2,5,12,29,70,169, · · · is constructed in a way

somewhat analogous to the Fibonacci sequence, except that each number is twice the

preceding number plus the number before that. (It’s easy to see why this has to be

true, because each convergent is constructed from the previous one by inverting the

fraction and adding 2.) After subtracting 1 from each of these fractions we get the

convergents to
√

2:
√

2 = 1.41421356 · · ·

1/1 = 1.00000000 · · ·

3/2 = 1.50000000 · · ·

7/5 = 1.40000000 · · ·

17/12 = 1.41666666 · · ·

41/29 = 1.41379310 · · ·

99/70 = 1.41428571 · · ·

239/169 = 1.41420118 · · ·

577/408 = 1.41421568 · · ·

We can compute the continued fraction for
√

3 by the same method as for
√

2,

but something slightly different happens:

(1)
√

3 = 1 + (
√

3 − 1) since
√

3 is between 1 and 2. Computing
1

√

3−1
, we have

1
√

3−1
=

1
√

3−1
·
√

3+1
√

3+1
=

√

3+1
2

.

(2)
√

3+1
2

= 1+ (
√

3−1
2
) since the numerator

√

3+1 of
√

3+1
2

is between 2 and 3. Now

we have a remainder r2 =
√

3−1
2

which is different from the previous remainder

r1 =
√

3 − 1, so we have to compute
1
r2
=

2
√

3−1
, namely

2
√

3−1
=

2
√

3−1
·
√

3+1
√

3+1
=

√

3+ 1.

(3)
√

3+ 1 = 2+ (
√

3− 1) since
√

3+ 1 is between 2 and 3.

Now this remainder r3 =
√

3− 1 is the same as r1 , so instead of the same step being

repeated infinitely often, as happened for
√

2, the same two steps will repeat infinitely

often. This means we get the continued fraction
√

3 = 1+ 1
�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+ · · ·
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Checking this takes a little more work than before. We begin by isolating the part of

the continued fraction that repeats periodically, so we set

x = 1
�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+ · · ·

Taking reciprocals, we get

1

x
= 1+ 1

�

ր
2+

1
�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+ · · ·

Subtracting 1 from both sides gives

1

x
− 1 = 1

�

ր
2+

1
�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+ · · ·

The next step will be to take reciprocals of both sides, so before doing this we rewrite

the left side as
1−x
x

. Then taking reciprocals gives

x

1− x
= 2+ 1

�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+ · · ·

Hence
x

1− x
− 2 = 1

�

ր
1+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+ · · · = x

Now we have the equation
x

1−x
− 2 = x which can be simplified to the quadratic

equation x2
+2x−2 = 0, with roots x = −1±

√

3. Again the negative root is discarded,

and we get x = −1+
√

3. Thus
√

3 = 1+x = 1+ 1
�ր1+

1
�ր2+

1
�ր1+

1
�ր2+

1
�ր1+

1
�ր2+ · · · .

To simplify the notation we will write a bar over a block of terms in a continued

fraction that repeat infinitely often, for example

√

2 = 1+ 1
�ր2 and

√

3 = 1+ 1
�ր1+

1
�ր2

It is true in general that for every positive integer n that is not a square, the

continued fraction for
√

n has the form a0 +
1
�րa1

+ 1
�րa2

+ · · · + 1
�րak . The length of

the period can be large, for example

√

46 = 6+ 1
�ր1+

1
�ր3+

1
�ր1+

1
�ր1+

1
�ր2+

1
�ր6+

1
�ր2+

1
�ր1+

1
�ր1+

1
�ր3+

1
�ր1+

1
�ր12

This example illustrates two other curious facts about the continued fraction for an

irrational number
√

n :

(i) The last term of the period (12 in the example) is always twice the integer a0 (the

initial 6).

(ii) If the last term of the period is omitted, the preceding terms in the period form

a palindrome, reading the same backwards as forwards.

We will see in the next chapter why these two properties have to be true.



Chapter 1 The Farey Diagram 29

It is natural to ask exactly which irrational numbers have continued fractions that

are periodic, or at least eventually periodic, like for example

1
�ր2+

1
�ր4+

1
�ր3+

1
�ր5+

1
�ր7 =

1
�ր2+

1
�ր4+

1
�ր3+

1
�ր5+

1
�ր7+

1
�ր3+

1
�ր5+

1
�ր7+

1
�ր3+

1
�ր5+

1
�ր7+· · ·

The answer is given by a theorem of Lagrange from around 1766:

Lagrange’s Theorem. The numbers whose continued fractions are eventually periodic

are exactly the numbers of the form a + b
√

n where a and b are rational numbers

and n is a positive integer that is not a square.

These numbers a + b
√

n are called quadratic irrationals because they are roots

of quadratic equations with integer coefficients. The easier half of the theorem is the

statement that the value of an eventually periodic infinite continued fraction is always

a quadratic irrational. This can be proved by showing that the method we used for

finding a quadratic equation satisfied by an eventually periodic continued fraction

works in general. Rather than following this purely algebraic approach, however, we

will develop a more geometric version of the procedure in the next section, so we

will wait until then to give the argument that proves this half of Lagrange’s Theorem.

The more difficult half of the theorem is the assertion that the continued fraction

expansion of every quadratic irrational is eventually periodic. It is not at all apparent

from the examples of
√

2 and
√

3 why this should be true in general, but in the next

chapter we will develop some theory that will make it clear.

What can be said about the continued fraction expansions of irrational numbers

that are not quadratic, such as
3
√

2, π , or e , the base for natural logarithms? It

happens that e has a continued fraction whose terms have a very nice pattern, even

though they are not periodic or eventually periodic:

e = 2+ 1
�

ր
1+

1
�

ր
2+

1
�

ր
1

︸ ︷︷ ︸

+1
�

ր
1+

1
�

ր
4+

1
�

ր
1

︸ ︷︷ ︸

+1
�

ր
1+

1
�

ր
6+

1
�

ր
1

︸ ︷︷ ︸

+· · ·

where the terms are grouped by threes with successive even numbers as middle de-

nominators. Even simpler are the continued fractions for certain numbers built from

e that have arithmetic progressions for their denominators:

e− 1

e+ 1
= 1
�

ր
2+

1
�

ր
6+

1
�

ր
10+

1
�

ր
14+ · · ·

e2
− 1

e2 + 1
= 1
�

ր
1+

1
�

ր
3+

1
�

ր
5+

1
�

ր
7+ · · ·

The last two formulas were found by Lambert in 1770, while the expression for e itself

was found by Hurwitz over a century later, in 1891.
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For
3
√

2 and π , however, the continued fractions have no known pattern. For π

the continued fraction begins

π = 3+ 1
�

ր
7+

1
�

ր
15+

1
�

ր
1+

1
�

ր
292+ · · ·

Here the first four convergents are 3, 22/7, 333/106, and 355/113. We recognize

22/7 as the familiar approximation 3
1
7

to π . The convergent 355/113 is a particularly

good approximation to π since its decimal expansion begins 3.14159282 whereas

π = 3.1415926535 · · ·. It is no accident that the convergent 355/113 obtained by

truncating the continued fraction just before the 292 term gives a good approximation

to π since it is a general fact that a convergent immediately preceding a large term

in the continued fraction always gives an especially good approximation, because

the next jump in the zigzag path in the Farey diagram will be rather small, and all

succeeding jumps will of course be smaller still.

There are nice continued fractions for π if one allows numerators larger than 1,

as in the following formula discovered by Euler:

π = 3+ 12

�

ր
6+

32

�

ր
6+

52

�

ր
6+

72

�

ր
6+ · · ·

However, it is the continued fractions with numerator 1 that have the nicest proper-

ties, so we will not consider the more general sort in this book.
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1.3 Linear Fractional Transformations

One thing one notices about the various versions the Farey diagram is their sym-

metry. For the circular Farey diagram the symmetries are the reflections across the

horizontal and vertical axes and the 180 degree rotation about the center. For the

standard Farey diagram in the upper halfplane there are symmetries that translate

the diagram by any integer distance to the left or the right, as well as reflections

across certain vertical lines, the vertical lines through an integer or half-integer point

on the x -axis. The Farey diagram could also be drawn to have 120 degree rotational

symmetry and three reflectional symmetries.

Our purpose in this section is to study all possible symmetries of the Farey diagram,

where we interpret the word “symmetry" in a broader sense than the familiar meaning

from Euclidean geometry. For our purposes, symmetries will be invertible transfor-

mations that take vertices to vertices and edges to edges. (It follows that triangles

are sent to triangles.) There are simple algebraic formulas for these more general

symmetries, and these formulas lead to effective means of calculation. One of the ap-

plications will be to computing the values of periodic or eventually periodic continued

fractions.

From linear algebra one is familiar with the way in which 2 × 2 matrices
(

a b
c d

)

correspond to linear transformations of the plane R2 , transformations of the form

T

(

x

y

)

=

(

a b

c d

)(

x

y

)

=

(

ax + by

cx + dy

)

In our situation we are going to restrict a, b, c, d, x, y to be integers. Then by asso-

ciating to a pair (x,y) the fraction x/y one obtains a closely related transformation

T

(

x

y

)

=
ax + by

cx + dy
=
a
(x
y

)

+ b

c
(x
y

)

+ d

If we set z = x/y then T can also be written in the form

T(z) =
az + b

cz + d
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Such a transformation is called a linear fractional transformation since it is defined

by a fraction whose numerator and denominator are linear functions.

In the formula T(x/y) = (ax+by)/(cx+dy) there is no problem with allowing

x/y = 1/0 just by setting (x,y) = (1,0) , and the result is that T(1/0) = a/c . The

value T(x/y) = (ax + by)/(cx + dy) can also sometimes be 1/0. This means

that T defines a function from vertices of the Farey diagram to vertices of the Farey

diagram. We would like T to take edges of the diagram to edges of the diagram, and

the following result gives a condition for this to happen.

Proposition. If the matrix
(

a b
c d

)

has determinant ±1 then the associated linear frac-

tional transformation T takes each pair of vertices in the Farey diagram that lie at the

ends of an edge of the diagram to another such pair of vertices.

Proof : We showed in the previous section that two vertices labeled p/q and r/s are

joined by an edge in the diagram exactly when ps − qr = ±1, or in other words

when the matrix
(

p r
q s

)

has determinant ±1. The two columns of the product matrix
(

a b
c d

)(

p r
q s

)

correspond to the two vertices T(p/q) and T(r/s) , by the definition of

matrix multiplication:
(

a b

c d

)(

p r

q s

)

=

(

ap + bq ar + bs

cp + dq cr + ds

)

The proposition can then be restated as saying that if
(

a b
c d

)

and
(

p r
q s

)

each have

determinant ±1 then so does their product
(

a b
c d

)(

p r
q s

)

. But it is a general fact about

determinants that the determinant of a product is the product of the determinants.

(This is easy to prove by a direct calculation in the case of 2 × 2 matrices.) So the

product of two matrices of determinant ±1 has determinant ±1. ⊔⊓

As notation, we will use LF(Z) to denote the set of all linear fractional transfor-

mations T(x/y) = (ax + by)/(cx + dy) with coefficients a,b, c, d in Z such that

the matrix
(

a b
c d

)

has determinant ±1.

Changing the matrix
(

a b
c d

)

to its negative
(

−a −b
−c −d

)

produces the same linear frac-

tional transformation since (−ax−by)/(−cx−dy) = (ax+by)/(cx+dy) . This is

in fact the only way that different matrices can give the same linear fractional transfor-

mation T , as we will see later in this section. Note that changing
(

a b
c d

)

to its negative
(

−a −b
−c −d

)

does not change the determinant. Thus each linear fractional transformation

in LF(Z) has a well-defined determinant, either +1 or −1. Later in this section we

will also see how the distinction between determinant +1 and determinant −1 has a

geometric interpretation in terms of orientations.
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A useful fact about LF(Z) is that each transformation T in LF(Z) has an inverse

T−1 in LF(Z) because the inverse of a 2× 2 matrix is given by the formula

(

a b

c d

)−1

=
1

ad− bc

(

d −b

−c a

)

Thus if a,b, c, d are integers with ad − bc = ±1 then the inverse matrix also has

integer entries and determinant ±1. The factor
1

ad−bc
is ±1 so it can be ignored since

the matrices
(

a b
c d

)

and −
(

a b
c d

)

determine the same linear fractional transformation,

as we observed in the preceding paragraph.

The preceding proposition says that each linear fractional transformation T in

LF(Z) not only sends vertices of the Farey diagram to vertices, but also edges to edges.

It follows that T must take triangles in the diagram to triangles in the diagram, since

triangles correspond to sets of three vertices, each pair of which forms the endpoints

of an edge. Since each transformation T in LF(Z) has an inverse in LF(Z) , this implies

that T gives a one-to-one (injective) and onto (surjective) transformation of vertices,

and also of edges and triangles. For example, if two edges e1 and e2 have the same

image T(e1) = T(e2) then we must have T−1(T(e1)
)

= T−1(T(e2)
)

or in other words

e1 = e2 , so T cannot send two different edges to the same edge, which means it is

one-to-one on edges. Also, every edge e1 is the image T(e2) of some edge e2 since

we can write e1 = T
(

T−1(e1)
)

and let e2 = T
−1(e1) . The same reasoning works with

vertices and triangles as well as edges.

A useful property of linear fractional transformations that we will use repeatedly

is that the way an element of LF(Z) acts on the Farey diagram is uniquely determined

by where a single triangle is sent. This is because once one knows where one triangle

goes, this uniquely determines where the three adjacent triangles go, and this in turn

determines where the six new triangles adjacent to these three go, and so on.
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Seven Types of Transformations

We will now give examples illustrating seven different ways that elements of LF(Z)

can act on the Farey diagram.

(1) The transformation T(x/y) = y/x with

matrix
(

0 1
1 0

)

gives a reflection of the circu-

lar Farey diagram across its vertical axis

of symmetry. This is a reflection across

a line perpendicular to an edge of the

diagram.

(2) The reflection across the horizon-

tal axis of symmetry is the element

T(x/y) = −x/y with matrix
(

−1 0
0 1

)

.

This is a reflection across an edge of the

diagram.

(3) If we compose the two preceding re-

flections we get the transformation T(x/y) =

−y/x with matrix
(

0 1
−1 0

)

. This rotates the Farey diagram 180 degrees about its cen-

ter, interchanging 1/0 and 0/1 and also interchanging 1/1 and −1/1. Thus it rotates

the diagram 180 degrees about the centerpoint of an edge.

(4) Consider T(x/y) = y/(y − x) corresponding to the matrix
(

0 1
−1 1

)

. This has the

effect of “rotating” the triangle 〈1/0,0/1,1/1〉 about its centerpoint, taking 1/0 to

0/1, 0/1 to 1/1 and 1/1 back to 1/0. The whole Farey diagram is then “rotated”

about the same point.

(5) Next let T(x/y) = x/(x + y) , corresponding to the matrix
(

1 0
1 1

)

. In particu-

lar T(0/1) = 0/1, so 0/1 is a fixed point of T , a point satisfying T(z) = z . Also

we have T(1/0) = 1/1 and more generally T(1/n) = 1/(n + 1) . Thus the triangle

〈0/1,1/0,1/1〉 is taken to the triangle 〈0/1,1/1,1/2〉 . This implies that T is a “rota-

tion” of the Farey diagram about the vertex 0/1, taking each triangle with 0/1 as a

vertex to the next triangle in the clockwise direction about this vertex.

(6) A different sort of behavior is exhibited by T(x/y) = (2x + y)/(x + y) corre-

sponding to
(

2 1
1 1

)

. To visualize T as a transformation of the Farey diagram let us

look at the infinite strip
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We claim that T translates the whole strip one unit to the right. To see this, notice

first that since T takes 1/0 to 2/1, 0/1 to 1/1, and 1/1 to 3/2, it takes the triangle

〈1/0,0/1,1/1〉 to the triangle 〈2/1,1/1,3/2〉 . This implies that T takes the triangle

just to the right of 〈1/0,0/1,1/1〉 to the triangle just to the right of 〈2/1,1/1,3/2〉 ,

and similarly each successive triangle is translated one unit to the right. The same

argument shows that each successive triangle to the left of the original one is also

translated one unit to the right. Thus the whole strip is translated one unit to the

right.

(7) Using the same figure as in the preceding example, consider the transformation

T(x/y) = (x + y)/x corresponding to the matrix
(

1 1
1 0

)

. This sends the triangle

〈1/0,0/1,1/1〉 to 〈1/1,1/0,2/1〉 which is the next triangle to the right in the infinite

strip. Geometrically, T translates the first triangle half a unit to the right and reflects

it across the horizontal axis of the strip. It follows that the whole strip is translated

half a unit to the right and reflected across the horizontal axis. Such a motion is

sometimes referred to as a glide-reflection. Notice that performing this motion twice

in succession yields a translation of the strip one unit to the right, the transformation

in the preceding example.

Thus we have seven types of symmetries of the Farey diagram: reflections across

an edge or a line perpendicular to an edge; rotations about the centerpoint of an

edge or a triangle, or about a vertex; and translations and glide-reflections of periodic

infinite strips. (Not all periodic strips have glide-reflection symmetries.) It is a true

fact, though we won’t prove it here, that every element of LF(Z) acts on the Farey

diagram in one of these seven ways, except for the identity transformation T(x/y) =

x/y of course.

Specifying Where a Triangle Goes

As we observed earlier, the action of an element of LF(Z) on the Farey diagram is

completely determined by where it sends a single triangle. Now we will see that there

always exists an element of LF(Z) sending any triangle to any other triangle, and in
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fact, one can do this specifying where each individual vertex of the triangle goes.

As an example, suppose we wish to find an element T of LF(Z) that takes the

triangle 〈2/5,1/3,3/8〉 to the triangle 〈5/8,7/11,2/3〉 , preserving the indicated or-

dering of the vertices, so T(2/5) = 5/8, T(1/3) = 7/11, and T(3/8) = 2/3. For

this problem to even make sense we might want to check first that these really are

triangles in the Farey diagram. In the first case, 〈2/5,1/3〉 is an edge since the matrix
(

2 1
5 3

)

has determinant 1, and there is a triangle joining this edge to 3/8 since 3/8 is

the mediant of 2/5 and 1/3. For the other triangle, the determinant of
(

5 2
8 3

)

is −1

and the mediant of 5/8 and 2/3 is 7/11.

As a first step toward constructing the desired transformation T we will do some-

thing slightly weaker: We construct a transformation T taking the edge 〈2/5,1/3〉 to

the edge 〈5/8,7/11〉 . This is rather easy if we first notice the general fact that the

transformation T(x/y) = (ax+by)/(cx+dy) with matrix
(

a b
c d

)

takes 1/0 to a/c

and 0/1 to b/d . Thus the transformation T1 with matrix
(

2 1
5 3

)

takes 〈1/0,0/1〉

to 〈2/5,1/3〉 , and the transformation T2 with matrix
(

5 7
8 11

)

takes 〈1/0,0/1〉 to

〈5/8,7/11〉 . Then the product

T2T
−1
1 =

(

5 7

8 11

)(

2 1

5 3

)−1

takes 〈2/5,1/3〉 first to 〈1/0,0/1〉 and then to 〈5/8,7/11〉 . Doing the calculation, we

get
(

5 7

8 11

)(

2 1

5 3

)−1

=

(

5 7

8 11

)(

3 −1

−5 2

)

=

(

−20 9

−31 14

)

This takes the edge 〈2/5,1/3〉 to the edge 〈5/8,7/11〉 , but does it do the right thing

on the third vertex of the triangle 〈2/5,1/3,3/8〉 , taking it to the third vertex of

〈5/8,7/11,2/3〉? This is not automatic since there are always two triangles containing

a given edge, and in this case the other triangle having 〈5/8,7/11〉 as an edge is

〈5/8,7/11,12/19〉 since 12/19 is the mediant of 5/8 and 7/11. In fact, if we compute

what our T does to 3/8 we get

(

−20 9

−31 14

)(

3

8

)

=

(

12

19

)

so we don’t have the right T yet. To fix the problem, notice that we have a little

flexibility in the choice of a matrix
(

a b
c d

)

taking 1/0 to a/c and 0/1 to b/d since

we can multiply either column by −1 without affecting the fractions a/b and c/d . It

doesn’t matter which column we multiply by −1 since multiplying both columns by
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−1 multiplies the whole matrix by −1 which doesn’t change the associated element

of LF(Z) , as noted earlier. In the case at hand, suppose we change the sign of the first

column of
(

5 7
8 11

)

. Then we get

(

−5 7

−8 11

)(

2 1

5 3

)−1

=

(

−5 7

−8 11

)(

3 −1

−5 2

)

=

(

−50 19

−79 30

)

This fixes the problem since
(

−50 19

−79 30

)(

3

8

)

=

(

2

3

)

Here is a general statement summarizing what we saw in this one example:

Proposition. (a) For any two triangles 〈p/q, r/s, t/u〉 and 〈p′/q′, r ′/s′, t′/u′〉 in the

Farey diagram there is a unique element T in LF(Z) taking the first triangle to the

second triangle preserving the ordering of the vertices, so T(p/q) = p′/q′ , T(r/s) =

r ′/s′ , and T(t/u) = t′/u′ .

(b) The matrix
(

a b
c d

)

representing a given transformation T in LF(Z) is unique except

for replacing it by
(

−a −b
−c −d

)

.

Proof : As we saw in the example above, there is a composition T2T
−1
1 taking the edge

〈p/q, r/s〉 to 〈p′/q′, r ′/s′〉 , where T1 has matrix
(

p r
q s

)

and T2 has matrix
(

p′ r ′

q′ s′

)

.

If this composition T2T
−1
1 does not take t/u to t′/u′ we modify T2 by changing the

sign of one of its columns, say the first column. Thus we change
(

p′ r ′

q′ s′

)

to
(

−p′ r ′

−q′ s′

)

,

which equals the product
(

p′ r ′

q′ s′

)(

−1 0
0 1

)

. The matrix
(

−1 0
0 1

)

corresponds to the trans-

formation R(x/y) = −x/y reflecting the Farey diagram across the edge 〈1/0,0/1〉 .

Thus we are replacing T2T
−1
1 by T2RT

−1
1 , inserting a reflection that interchanges the

two triangles containing the edge 〈1/0,0/1〉 . By inserting R we change where the

composition T2T
−1
1 sends the third vertex t/u of the triangle 〈p/q, r/s, t/u〉 , so we

can guarantee that t/u is taken to t′/u′ . This proves part (a).

For part (b), note first that the transformation T determines the values T(1/0) =

a/c and T(0/1) = b/d . The fractions a/c and b/d are in lowest terms (because

ad− bc = ±1) so this means that we know the two columns of the matrix
(

a b
c d

)

up

to multiplying either or both columns by −1. We need to check that changing the

sign of one column without changing the sign of the other column gives a different

transformation. It doesn’t matter which column we change since
(

−a b
−c d

)

= −
(

a −b
c −d

)

.

As we saw in part (a), changing the sign in the first column amounts to replacing T

by the composition TR , but this is a different transformation from T since it has a

different effect on the triangles containing the edge 〈1/0,0/1〉 . ⊔⊓
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Continued Fractions Again

Linear fractional transformations can be used to compute the values of periodic

or eventually periodic continued fractions, and to see that these values are always

quadratic irrational numbers. To illustrate this, consider the periodic continued frac-

tion
1
�

ր
2+

1
�

ր
3+

1
�

ր
1+

1
�

ր
4

The associated periodic strip in the Farey diagram is the following:

We would like to compute the element T of LF(Z) that gives the rightward translation

of this strip that exhibits the periodicity. A first guess is the T with matrix
(

4 19
9 43

)

since this sends 〈1/0,0/1〉 to 〈4/9,19/43〉 . This is actually the correct T since it

sends the vertex 1/1 just to the right of 1/0, which is the mediant of 1/0 and 0/1,

to the vertex (4+ 19)/(9+ 43) just to the right of 4/9, which is the mediant of 4/9

and 19/43. This is a general fact since
(

a b
c d

)(

1
1

)

=
(

a+b
c+d

)

.

The sequence of fractions labeling the vertices along the zigzag path in the strip

moving toward the right are the convergents to 1
�ր2+

1
�ր3+

1
�ր1+

1
�ր4 . Call these con-

vergents z1, z2, · · · and their limit z . When we apply the translation T we are taking

each convergent to a later convergent in the sequence, so both the sequence {zn} and

the sequence {T(zn)} converge to z . Thus we have

T(z) = T(limzn) = limT(zn) = z

where the middle equality uses the fact that T is continuous. (Note that a linear

fractional transformation T(z) =
az+b
cz+d

is defined for real values of z , not just rational

values z = x/y , when T(x/y) = (ax + by)/(cx + dy) = (a
x
y
+ b)/(c

x
y
+ d) .)

In summary, what we have just argued is that the value z of the periodic continued

fraction satisfies the equation T(z) = z , or in other words,
4z+19
9z+43

= z . This can be

rewritten as 4z+19 = 9z2
+43z , which simplifies to 9z2

+39z−19 = 0. Computing

the roots of this quadratic equation, we get

z =
−39±

√

392 + 4 · 9 · 19

18
=
−39± 3

√

132 + 4 · 19

18
=
−13±

√

245

6
=
−13± 7

√

5

6
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The positive root is the one that the right half of the infinite strip converges to, so we

have

−13+ 7
√

5

6
= 1
�

ր
2+

1
�

ր
3+

1
�

ր
1+

1
�

ր
4

Incidentally, the other root (−13 − 7
√

5)/6 has an interpretation in terms of the di-

agram as well: It is the limit of the numbers labeling the vertices of the zigzag path

moving off to the left rather than to the right. This follows by the same sort of argu-

ment as above.

If a periodic continued fraction has period of odd length, the transformation

giving the periodicity is a glide-reflection of the periodic strip rather than a translation.

As an example, consider

1
�

ր
1+

1
�

ր
2+

1
�

ր
3

Here the periodic strip is

The transformation T with matrix
(

2 7
3 10

)

takes 〈1/0,0/1〉 to 〈2/3,7/10〉 and the me-

diant 1/1 of 1/0 and 0/1 to the mediant 9/13 of 2/3 and 7/10 so this transformation

is a glide-reflection of the strip. The equation T(z) = z becomes
2z+7
3z+10

= z , which

simplifies to 2z+7 = 3z2
+10z and then 3z2

+8z−7 = 0, with roots (−4±
√

37)/3.

The positive root gives

−4+
√

37

3
= 1
�

ր
1+

1
�

ր
2+

1
�

ր
3

Continued fractions that are only eventually periodic can be treated in a similar

fashion. For example, consider

1
�

ր
2+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+

1
�

ր
3

The corresponding infinite strip is
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In this case if we discard the triangles corresponding to the initial nonperiodic part of

the continued fraction, 1
�ր2+

1
�ր2 , and then extend the remaining periodic part in both

directions, we obtain a periodic strip that is carried to itself by the glide-reflection T

taking 〈1/2,2/5〉 to 〈8/19,27/64〉 :

We can compute T as the composition 〈1/2,2/5〉→〈1/0,0/1〉→ 〈8/19,27/64〉 cor-

responding to the product

(

8 27

19 64

)(

1 2

2 5

)−1

=

(

8 27

19 64

)(

5 −2

−2 1

)

=

(

−14 11

−33 26

)

Since this transformation takes 3/7 to the mediant (8+27)/(19+64) , it is the glide-

reflection we want. Now we solve T(z) = z . This means
−14z+11
−33z+26

= z , which reduces

to the equation 33z2
− 40z + 11 = 0 with roots z = (20 ±

√

37)/33. Both roots are

positive, and we want the smaller one, (20−
√

37)/33, because along the top edge of

the strip the numbers decrease as we move to the right, approaching the smaller root,

and they increase as we move to the left, approaching the larger root. Thus we have

(20−
√

37)/33 = 1
�

ր
2+

1
�

ր
2+

1
�

ր
1+

1
�

ր
2+

1
�

ր
3

Notice that
√

37 occurs in both this example and the preceding one where we

computed the value of 1
�ր1+

1
�ր2+

1
�ր3 . This is not just an accident. It had to happen

because to get from 1
�ր1+

1
�ր2+

1
�ր3 to 1

�ր2+
1
�ր2+

1
�ր1+

1
�ր2+

1
�ր3 one adds 2 and inverts,

then adds 2 and inverts again, and each of these operations of adding an integer or

taking the reciprocal takes place within the field Q(
√

37) consisting of numbers of the

form a+b
√

37 with a and b rational. More generally, this argument shows that any

eventually periodic continued fraction whose periodic part is 1
�ր1+

1
�ր2+

1
�ր3 has as its
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value some number in the field Q(
√

37) . However, not all irrational numbers in this

field have eventually periodic continued fractions with periodic part 1
�ր1+

1
�ր2+

1
�ր3 .

For example, the continued fraction for
√

37 itself is 6+1
�ր12 , with a different periodic

part. (Check this by computing the value of this continued fraction.)

One Half of Langrange’s Theorem

The procedure we have used in these examples works in general for any irrational

number z whose continued fraction is eventually periodic. From the periodic part of

the continued fraction one constructs a periodic infinite strip in the Farey diagram,

where the periodicity is given by a linear fractional transformation T(z) =
az+b
cz+d

with

integer coefficients, with T either a translation or a glide-reflection of the strip. As

we argued in the first example, the number z satisfies the equation T(z) = z . This

becomes the quadratic equation az + b = cz2
+ dz with integer coefficients, or in

simpler form, cz2
+ (d − a)z − b = 0. By the quadratic formula, the roots of this

equation have the form A + B
√

n for some rational numbers A and B and some

integer n . We know that the real number z is a root of the equation so n can’t be

negative, and it can’t be a square since z is irrational.

Thus we have an argument that proves one half of Lagrange’s Theorem, the state-

ment that a number whose continued fraction is periodic or eventually periodic is a

quadratic irrational. There is one technical point that should be addressed, however.

Could the leading coefficient c in the quadratic equation cz2
+ (d − a)z − b = 0 be

zero? If this were the case then we couldn’t apply the quadratic formula to solve

for z , so we need to show that c cannot be zero. We do this in the following way. If

c were zero the equation would become the linear equation (d − a)z − b = 0. If the

coefficient of z in this equation is nonzero, we have only one root, z = b/(d− a) , a

rational number contrary to the fact that z is irrational since its continued fraction is

infinite. Thus we are left with the possibility that c = 0 and a = d , so the equation

for z reduces to the equation b = 0. Then the transformation T would have the form

T(z) =
az
a
= z so it would be the identity transformation. However we know it is a

genuine translation or a glide-reflection, so it is not the identity. We conclude from

all this that c cannot be zero, and the technical point is taken care of.

Orientations

Elements of LF(Z) are represented by integer matrices
(

a b
c d

)

of determinant ±1.

The distinction between determinant +1 and −1 has a very nice geometric interpreta-

tion in terms of orientations, which can be described in terms of triangles. A triangle
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in the Farey diagram can be oriented by choosing either the clockwise or counter-

clockwise ordering of its three vertices. An element T of LF(Z) takes each triangle

to another triangle in a way that either preserves the two possible orientations or

reverses them.

For example, among the seven types of transformations we looked at earlier, only

reflections and glide-reflections reverse the orientations of triangles. Note that if a

transformation T preserves the orientation of one triangle, it has to preserve the

orientation of the three adjacent triangles, and then of the triangles adjacent to these,

and so on for all the triangles. Similarly, if the orientation of one triangle is reversed

by T , then the orientations of all triangles are reversed.

Proposition. A transformation T(x/y) = (ax + by)/(cx + dy) in LF(Z) preserves

orientations of triangles in the Farey diagram when the determinant ad − bc is +1

and reverses the orientations when the determinant is −1 .

Proof : We will first prove a special case and then deduce the general case from the

special case. The special case is that a,b, c, d are all positive or zero. The transforma-

tion T with matrix
(

a b
c d

)

takes the edge 〈1/0,0/1〉 in the circular Farey diagram to the

edge 〈a/c, b/d〉 , and if a,b, c, d are all positive or zero, this edge lies in the upper half

of the diagram. Since T(1/1) = (a+b)/(c+d) , the triangle 〈1/0,0/1,1/1〉 is taken to

the triangle 〈a/c, b/d, (a+b)/(c +d)〉 whose third vertex (a+b)/(c+d) lies above

the edge 〈a/c, b/d〉 , by the way the Farey diagram was constructed using mediants,

since we assume a,b, c, d are positive or zero. We know that the edge 〈a/c, b/d〉 is

oriented to the right if ad − bc = +1 and to the left if ad − bc = −1. This means

that T preserves the orientation of the triangle 〈1/0,0/1,1/1〉 if the determinant is

+1 and reverses the orientation if the determinant is −1.
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This proves the special case.

The general case can be broken into two subcases, according to whether the edge

〈a/c, b/d〉 lies in the upper or the lower half of the diagram. If 〈a/c, b/d〉 lies in the

upper half of the diagram, then after multiplying one or both columns of
(

a b
c d

)

by

−1 if necessary, we will be in the special case already considered. Multiplying both

columns by −1 doesn’t affect T . Multiplying one column by −1 corresponds to first

reflecting across the edge 〈1/0,0/1〉 , as we have seen earlier. Modifying T in this

way changes the sign of the determinant and it also changes whether T preserves or

reverses orientation, so the special case already proved implies the case that T takes

〈1/0,0/1〉 to an edge in the upper half of the diagram.

The remaining possibility is that T takes the edge 〈1/0,0/1〉 to an edge in the

lower half of the diagram. In this case if we follow T by reflection across the edge

〈1/0,0/1〉 we get a new transformation taking 〈1/0,0/1〉 to an edge in the upper half

of the diagram. As before, composing with this reflection changes T from orientation-

preserving to orientation-reversing and vice versa, and it also changes the sign of the

determinant since the matrix
(

a b
c d

)

is changed to
(

−1 0
0 1

)(

a b
c d

)

=
(

−a −b
c d

)

, so this case

follows from the previous case. ⊔⊓

Computational note: To determine whether a matrix representing an element of

LF(Z) has determinant +1 or −1 it suffices to compute just the last digit of the

determinant, and this can be done using just the last digit of the entries in the matrix.

This is easy to do in one’s head even if the entries in the matrix have many digits.

We will let LF+(Z) denote the elements of LF(Z) corresponding to matrices of

determinant +1.

Proposition. For any two edges 〈p/q, r/s〉 and 〈p′/q′, r ′/s′〉 of the Farey diagram

there exists a unique element T ∈ LF+(Z) taking the first edge to the second edge
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preserving the ordering of the vertices, so T(p/q) = p′/q′ and T(r/s) = r ′/s′ .

Proof : We already know that there exists an element T in LF(Z) with T(p/q) = p′/q′

and T(r/s) = r ′/s′ , and in fact there are exactly two choices for T which are distin-

guished by which of the two triangles containing 〈p′/q′, r ′/s′〉 a triangle containing

〈p/q, r/s〉 is sent to. One of these choices will make T preserve orientation and the

other will make T reverse orientation. So there is only one choice where the determi-

nant is +1. ⊔⊓
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2.1 Topographs

Finding Pythagorean triples is answering the question, When is the sum of two

squares equal to a square? More generally one can ask, Exactly which numbers are

sums of two squares? In other words, when does an equation x2
+ y2

= n have

integer solutions, and how can one find these solutions? The brute force approach of

simply plugging in values for x and y leads to the following list of all solutions for

n ≤ 50 (apart from interchanging x and y ):

1 = 12
+ 02, 2 = 12

+ 12, 4 = 22
+ 02, 5 = 22

+ 12, 8 = 22
+ 22, 9 = 32

+ 02,

10 = 32
+ 12, 13 = 32

+ 22, 16 = 42
+ 02, 17 = 42

+ 12, 18 = 32
+ 32,

20 = 42
+ 22, 25 = 52

+ 02
= 42

+ 32, 26 = 52
+ 12, 29 = 52

+ 22, 32 = 42
+ 42,

34 = 52
+ 32, 36 = 62

+ 02, 37 = 62
+ 12, 40 = 62

+ 22, 41 = 52
+ 42,

45 = 62
+ 32, 49 = 72

+ 02, 50 = 52
+ 52

= 72
+ 12

Notice that in some cases there is more than one solution for a given value of n .

Our first goal will be to describe a more efficient way to find the integer solutions of

x2
+ y2

= n and to display them graphically in a way that sheds much light on their

structure. The technique for doing this will work not just for the function x2
+ y2

but also for any function Q(x,y) = ax2
+bxy + cy2 , where a , b , and c are integer

constants. Such a function Q(x,y) is called a quadratic form, or sometimes just a

form for short.

Solving x2
+ y2

= n amounts to representing n in the form of the sum of two

squares. More generally, solving Q(x,y) = n is called representing n by the form

Q(x,y) . So the overall goal is to solve the representation problem: Which numbers n

are represented by a given form Q(x,y) , and how does one find such representations.

Before starting to describe the method for displaying the values of a quadratic

form graphically let us make a preliminary observation:

If the greatest common divisor of two integers x and y is d , then Q(x,y) =

d2Q(xd ,
y
d ) where the greatest common divisor of

x
d and

y
d is 1. Hence it suf-

fices to find the values of Q on primitive pairs (x,y) , the pairs whose greatest

common divisor is 1, and then multiply these values by arbitrary squares d2 .

Thus the real problem is to find the primitive representations of a number n by a

form Q(x,y) , or in other words, to find the primitive solutions of Q(x,y) = n .

Primitive pairs (x,y) correspond almost exactly to fractions x/y that are re-

duced to lowest terms, the only ambiguity being that both (x,y) and (−x,−y) cor-

respond to the same fraction x/y . However, this ambiguity does not affect the value
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of a quadratic form Q(x,y) = ax2
+ bxy + cy2 since Q(x,y) = Q(−x,−y) . This

means that we can regard Q(x,y) as being essentially a function f(x/y) . Notice

that we are not excluding the possibility (x,y) = (1,0) which corresponds to the

“fraction” 1/0.

We already have a nice graphical representation of the rational numbers x/y and

1/0 as the vertices in the Farey diagram. Here is a picture of the diagram with the

so-called dual tree superimposed:

0/1

1/1

1/1

1/2

1/2

2/1

2/1

1/0

1 /3

1 /3

3 /1

3 /1

1/4

1/4

4/1

4/1

2/5

2/5

5/2

5/2

3/5

3/5

5/3

5/3

3/4

3/4

4/3

4/3

2/3

2/3

3/2

3/2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

The dual tree has a vertex in the center of each triangle of the Farey diagram, and it

has an edge crossing each edge of the Farey diagram. The upper half of the dual tree

does actually look like a bit like a real tree, with the lower half being its reflection

in still water. As with the Farey diagram, we can only draw a finite part of the dual

tree. The actual dual tree has branching that repeats infinitely often, an unending

bifurcation process with smaller and smaller twigs.

The tree divides the interior of the large circle into regions, each of which is

adjacent to one vertex of the original diagram. We can write the value Q(x,y) in

the region adjacent to the vertex x/y . This is shown in the figure below for the

quadratic form Q(x,y) = x2
+y2 , where to unclutter the picture we no longer draw

the triangles of the original Farey diagram.
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For example the 13 in the region adjacent to the fraction 2/3 represents the value

22
+ 32 , and the 29 in the region adjacent to 5/2 represents the value 52

+ 22 .

For a quadratic form Q this picture showing the values Q(x,y) is called the

topograph of Q . It turns out that there is a very simple method for computing the

topograph from just a very small amount of initial data. This method is based on the

following:

Arithmetic Progression Rule. If the values of Q(x,y) in

the four regions surrounding an edge in the tree are p , q ,

r , and s as indicated in the figure, then the three numbers

p , q + r , s form an arithmetic progression.

p

q

r
s

We can check this in the topograph of x2
+y2 shown above. Consider for exam-

ple one of the edges separating the values 1 and 2. The values in the four regions

surrounding this edge are 1,1,2,5 and the arithmetic progression is 1,1+ 2,5. For

an edge separating the values 1 and 5 the arithmetic progression is 2,1+ 5,10. For

an edge separating the values 5 and 13 the arithmetic progression is 2,5 + 13,34.

And similarly for all the other edges.

The arithmetic progression rule implies that the values of Q in the three regions

surrounding a single vertex of the tree determine the values in all other regions, by

starting at the vertex where the three adjacent values are known and working one’s

way outward in the dual tree. The easiest place to start for a quadratic form Q(x,y) =

ax2
+ bxy + cy2 is with the three values Q(1,0) = a , Q(0,1) = c , and Q(1,1) =

a+ b + c for the three fractions 1/0, 0/1, and 1/1. Here are two examples:
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In the first case we start with the values 1 and 2 together with the 3 just above them.

These determine the value 9 above the 2 via the arithmetic progression 1, 2+ 3, 9.

Similarly the 6 above the 1 is determined by the arithmetic progression 2, 1 + 3,

6. Next one can fill in the 19 next to the 9 we just computed, using the arithmetic

progression 3, 2+ 9, 19, and so on for as long as one likes.

The procedure for the other form x2
− 2y2 is just the same, but here there are

negative as well as positive values. The edges that separate positive values from

negative values will be important later, so we have indicated these edges by special

shading.

Perhaps the most noticeable thing in both the examples x2
+ 2y2 and x2

− 2y2

is the fact that the values in the lower half of the topograph are the same as those in

the upper half. We could have predicted in advance that this would happen because

Q(x,y) = Q(−x,y) whenever Q(x,y) has the form ax2
+ cy2 , with no xy term.

The topograph for x2
+y2 has even more symmetry since the values of x2

+y2 are

unchanged when x and y are switched, so the topograph has left-right symmetry as

well.

Here is a general observation: The three values around one vertex of the topo-

graph can be specified arbitrarily. For if we are given three numbers a , b , c then the

quadratic form ax2
+ (c −a− b)xy + by2 takes these three values for (x,y) equal

to (1,0) , (0,1) , (1,1) .

Proof of the Arithmetic Progression Rule: Let the two vertices of the Farey diagram

corresponding to the values q and r have labels x1/y1 and x2/y2 as in the figure

below. Then by the mediant rule for labeling vertices, the labels on the p and s regions
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are the fractions shown. Note that these labels are correct even when x1/y1 = 1/0

and x2/y2 = 0/1.

For a quadratic form Q(x,y) = ax2
+ bxy + cy2 we then have

s = Q(x1 + x2, y1 + y2) = a(x1 + x2)
2
+ b(x1 + x2)(y1 +y2)+ c(y1 +y2)

2

= ax2
1 + bx1y1 + cy

2
1︸ ︷︷ ︸

Q(x1, y1) = q

+ax2
2 + bx2y2 + cy

2
2︸ ︷︷ ︸

Q(x2, y2) = r

+ (· · ·)

Similarly we have

p = Q(x1 − x2, y1 −y2) = ax
2
1 + bx1y1 + cy

2
1︸ ︷︷ ︸

Q(x1, y1) = q

+ax2
2 + bx2y2 + cy

2
2︸ ︷︷ ︸

Q(x2, y2) = r

− (· · ·)

The terms in (· · ·) are the same in both cases, namely the terms involving both sub-

scripts 1 and 2. If we compute p+ s by adding the two formulas together, the terms

(· · ·) will therefore cancel, leaving just p+ s = 2(q+r) . This equation can be rewrit-

ten as (q + r)− p = s − (q + r) , which just says that p,q + r , s forms an arithmetic

progression. ⊔⊓

Periodic Separator Lines

For most quadratic forms that take on both positive and negative values, such as

x2
− 2y2 , there is another way of drawing the topograph that reveals some hidden

and unexpected properties. For the form x2
− 2y2 there is a zigzag path of edges in

the topograph separating the positive and negative values, and if we straighten this

path out to be a line, called the separator line, what we see is the following infinitely

repeated pattern:
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To construct this, one can first build the separator line starting with the three values

Q(1,0) = 1, Q(0,1) = −2, and Q(1,1) = −1. Place these as shown in part (a) of the

figure below, with a horizontal line segment separating the positive from the negative

values.

To extend the separator line one step farther to the right, apply the arithmetic progres-

sion rule to compute the next value 2 using the arithmetic progression −2,1 − 1,2.

Since this value 2 is positive, we place it above the horizontal line and insert a vertical

edge to separate this 2 from the 1 to the left of it, as in (b) of the figure. Now we

repeat the process with the next arithmetic progression 1,2− 1,1 and put the new 1

above the horizontal line with a vertical edge separating it from the previous 2, as

shown in (c). At the next step we compute the next value −2 and place it below the

horizontal line since it is negative, giving (d). One more step produces (e) where we see

that further repetitions will produce a pattern that repeats periodically as we move to

the right. The arithmetic progression rule also implies that it repeats periodically to

the left, so it is periodic in both directions:

Thus we have the periodic separator line. To get the rest of the topograph we can then

work our way upward and downward from the separator line, as shown in the original
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figure. As one moves upward from the separator line, the values of Q become larger

and larger, approaching +∞ monotonically, and as one moves downward the values

approach −∞ monotonically. The reason for this will become clear in the next section

when we discuss something called the Monotonicity Property.

An interesting property of this form x2
− 2y2 that is evident from its topograph

is that it takes on the same negative values as positive values. This would have been

hard to predict from the formula x2
− 2y2 . Indeed, for the similar-looking quadratic

form x2
−3y2 the negative values are quite different from the positive values, as one

can see in its straightened-out topograph:

Continued Fractions Again

There is a close connection between the topograph for a quadratic form x2
−dy2

and the infinite continued fraction for
√
d when d is a positive integer that is not a

square. In fact, we will see that the topograph can be used to compute the continued

fraction for
√
d . As an example let us look at the case d = 2. The relevant portion

of the topograph for x2
− 2y2 is the strip along the line separating the positive and

negative values:

This is a part of the dual tree of the Farey diagram. If we superimpose the triangles

of the Farey diagram corresponding to this part of the dual tree we obtain an infinite

strip of triangles:
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� 2� 1

1212 12 12

� 2� 1 � 2� 1 � 2� 1

−−−

1

1 −−−

4

3 −−−

7

5 −−−

24

17 −−−

41

29

−−−

1

0 −−−

2

1 −−−

3

2 −−−

10

7 −−−

17

12 −−−

58

41 −−−

99

70

−−−

0

1

Ignoring the dotted triangles to the left, the infinite strip of triangles corresponds to

the infinite continued fraction 1+ 1
�ր2 . We could compute the value of this continued

fraction by the methods in the previous chapter, but there is an easier way using

the quadratic form x2
− 2y2 . For fractions

x
y

labeling the vertices along the infinite

strip, the corresponding values n = x2
− 2y2 are either ±1 or ±2. We can rewrite

the equation x2
−2y2

= n as
(x
y

)2
= 2+

n
y2 . As we go farther and farther to the right

in the infinite strip, both x and y are getting larger and larger while n only varies

through finitely many values, namely ±1 and ±2, so the quantity
n
y2 is approaching

0. The equation
( x
y

)2
= 2 +

n
y2 then implies that

( x
y

)2
is approaching 2, so we see

that
x
y is approaching

√
2. Since the fractions

x
y are also approaching the value of the

infinite continued fraction 1+ 1
�ր2 that corresponds to the infinite strip, this implies

that the value of the continued fraction 1+ 1
�ր2 is

√
2.

Here is another example, for the quadratic form x2
− 3y2 , showing how

√
3 =

1+ 1
�ր1+

1
�ր2 .

� 3� 2

11 1 1

� 3� 2 � 3� 2 � 3� 2

−−−

1

1 −−−

3

2 −−−

5

3 −−−

12

7 −−−

19

11

−−−

1

0 −−−

2

1 −−−

7

4 −−−

26

15

−−−

0

1

After looking at these two examples one can see that it is not really necessary to draw

the strip of triangles, and one can just read off the continued fraction directly from

the periodic separator line. Let us illustrate this by considering the form x2
− 10y2 :
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� 6� 9

6 661 9 10 9 1

� 10 � 6� 9� 6� 1 � 10� 9

−−−

1

0

−−−

0

1

If one moves toward the right along the horizontal line starting at a point in the edge

separating the
1
0

region from the
0
1

region, one first encounters 3 edges leading off

to the right (downward), then 6 edges leading off to the left (upward), then 6 edges

leading off to the right, and so on. This means that the continued fraction for
√

10 is

3+ 1
�ր6 .

Here is a more complicated example showing how to compute the continued frac-

tion for
√

19:

� 15 � 10� 18

6 6 651 5 9 9 1

� 15 � 10� 18� 19 � 19� 18� 3� 2� 3 � 15� 10

From this we read off that
√

19 = 4+ 1
�ր2+

1
�ր1+

1
�ր3+

1
�ր1+

1
�ր2+

1
�ր8 .

In section 2 of this chapter we will prove that the topograph of the form x2
−dy2

always has a periodic separator line whenever d is a positive integer that is not a

square. As in the examples above, this separator line always includes the edge of the

dual tree separating the vertices 1/0 and 0/1 since the form takes the positive value

+1 on 1/0 and the negative value −d on 0/1. The periodicity then implies that the

continued fraction for
√
d has the form
√
d = a0 +

1
�րa1

+ 1
�րa2

+ · · · + 1
�րan

with the periodic part starting immediately after the initial term a0 . In addition to

being periodic, the separator line also has mirror symmetry with respect to reflection

across the vertical line corresponding to the edge connecting 1/0 to 0/1 in the Farey

diagram. This is because the form x2
− dy2 has no xy term, so replacing x/y by

−x/y does not change the value of the form. Once the separator line has symmetry

with respect to this vertical line, the periodicity forces it to have mirror symmetry with

respect to an infinite sequence of vertical lines, as illustrated in the following figure

for the form x2
− 19y2 :
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In particular, these mirror symmetries imply that the continued fraction
√
d = a0 +

1
�րa1

+ 1
�րa2

+ · · · + 1
�րan

always has two special properties:

(a) an = 2a0 .

(b) The intermediate terms a1, a2, · · · , an−1 form a palindrome, reading the same

forward as backward.

Thus in
√

19 = 4+ 1
�ր2+

1
�ր1+

1
�ր3+

1
�ր1+

1
�ր2+

1
�ր8 the final 8 is twice the initial 4, and

the intermediate terms 2,1,3,1,2 form a palindrome. These special properties held

also in the earlier examples, but were less apparent because there were fewer terms

in the repeated part of the continued fraction.

In some cases there is an additional kind of symmetry along the separator line,

as illustrated for the form x2
− 13y2 :

As before there is a horizontal translation giving the periodicity and there are reflec-

tional symmetries across vertical lines, but now there is an extra glide-reflection along

the strip that interchanges the positive and negative values of the form. Performing

this glide-reflection twice in succession gives the translational periodicity. Notice that

there are also 180 degree rotational symmetries about the points marked with dots

on the separator line, and these rotations account for the palindromic middle part of

the continued fraction
√

13 = 3+ 1
�ր1+

1
�ր1+

1
�ր1+

1
�ր1+

1
�ր6
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The fact that the periodic part has odd length corresponds to the separator strip

having the glide-reflection symmetry. We could rewrite the continued fraction to have

a periodic part of even length by doubling the period,
√

13 = 3+ 1
�ր1+

1
�ր1+

1
�ր1+

1
�ր1+

1
�ր6+

1
�ր1+

1
�ր1+

1
�ր1+

1
�ր1+

1
�ր6

and this corresponds to ignoring the glide-reflection and just considering the trans-

lational periodicity.

We have been using quadratic forms x2
−dy2 to compute the continued fractions

for irrational numbers
√
d , but everything works just the same for irrational numbers

√
p/q if one uses the quadratic form qx2

− py2 in place of x2
− dy2 . Following the

same reasoning as before, if the equation qx2
−py2

= n is rewritten as q
( x
y

)2
= p+ n

y2

then we see that as we move out along the periodic separator line the numbers x

and y approach infinity while n cycles through finitely many values, so the term
n
y2 approaches 0 and the fractions

x
y approach a number z satisfying qz2

= p , so

z =
√
p/q . This argument depends of course on the existence of a periodic separator

line, and we will prove in the next section that forms qx2
−py2 always have a periodic

separator line, assuming that
√
p/q is not a rational number, i.e., that p and q are

not both squares.

Here are two examples. For the first one we use the form 3x2
− 7y2 to compute

the continued fraction for
√

7/3.

This gives
√

7/3 = 1+ 1
�ր1+

1
�ր1+

1
�ր8+

1
�ր1+

1
�ր1+

1
�ր2 . For the second example we use

10x2
− 29y2 to compute the continued fraction for

√
29/10,

with the result that
√

29/10 = 1+ 1
�ր1+

1
�ր2+

1
�ր2+

1
�ր1+

1
�ր2 . The period of odd length

here corresponds to the existence of the glide-reflection and 180 degree rotation sym-

metries.
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As one can see in these examples, the palindrome property and the relation an =

2a0 still hold for the continued fractions for irrational numbers
√
p/q assuming that

a0 > 0, which is equivalent to the condition p/q > 1 since a0 is the integer part

of
√
p/q . Fractions p/q less than 1 can easily be dealt with just by inverting them,

interchanging p and q . Inverting a continued fraction a0 +
1
�րa1

+ 1
�րa2

+ · · · + 1
�րan

changes it to 1
�րa0

+1
�րa1

+ 1
�րa2

+ · · · + 1
�րan . For example, from the earlier computation

of
√

7/3 we obtain
√

3/7 = 1
�ր1+

1
�ր1+

1
�ր1+

1
�ր8+

1
�ր1+

1
�ր1+

1
�ր2 .

One might ask whether the irrational numbers
√
p/q are the only numbers having

a continued fraction a0 +
1
�րa1

+ 1
�րa2

+ · · · + 1
�րan or 1

�րa0
+ 1
�րa1

+ 1
�րa2

+ · · · + 1
�րan

satisfying the palindrome property and the relation a0 = 2an . The answer is yes, as

we will see later in the chapter.

Pell’s Equation

We encountered the equation x2
−dy2

= 1 briefly in Chapter 0. It is traditionally

called Pell’s equation, and the similar equation x2
− dy2

= −1 is sometimes called

Pell’s equation as well. If d is a square then the equations are not very interesting

since in this case d can be incorporated into the y2 term, so one is looking at the

equations x2
− y2

= 1 and x2
− y2

= −1, which have only the trivial solutions

(x,y) = (±1,0) for the first equation and (x,y) = (0,±1) for the second equation,

since these are the only cases when the difference between two squares is ±1. We will

therefore assume that d is not a square in what follows.

As an example let us look at the equation x2
− 19y2

= 1. We drew a portion of

the periodic separator line for the form x2
− 19y2 earlier, and here it is again with

some of the fractional labels x/y shown as well.

Ignoring the label 741/170 for the moment, the other fractional labels are the first

few convergents for the continued fraction for
√

19 that we computed before, 4 +

1
�ր2+

1
�ր1+

1
�ր3+

1
�ր1+

1
�ր2+

1
�ր8 . These fractional labels are the labels on the vertices

of the zigzag path in the infinite strip of triangles in the Farey diagram, which we can

imagine being superimposed on the separator line in the figure. The fractional label

we are most interested in is the 170/39 because this is the label on a region where
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the value of the form x2
− 19y2 is 1. This means exactly that (x,y) = (170,39) is

a solution of x2
− 19y2

= 1. In terms of continued fractions, the fraction 170/39 is

the value of the initial portion 4+ 1
�ր2+

1
�ր1+

1
�ր3+

1
�ր1+

1
�ր2 of the continued fraction

for
√

19, with the final term of the period omitted.

Since the topograph of x2
− 19y2 is periodic along the separator line, there are

infinitely many different solutions of x2
− 19y2

= 1 along the separator line. Go-

ing toward the left just gives the negatives −x/y of the fractions x/y to the right,

changing the signs of x or y , so it suffices to see what happens toward the right. One

way to do this is to use the linear fractional transformation that gives the periodicity

translation toward the right. This transformation sends the edge 〈1/0,0/1〉 of the

Farey diagram to the edge 〈170/39,741/170〉 . Here 741/170 is the value of the con-

tinued fraction 4+ 1
�ր2+

1
�ր1+

1
�ր3+

1
�ր1+

1
�ր2+

1
�ր4 obtained from the continued fraction

for
√

19 by replacing the final number 8 in the period by one-half of its value, 4.

The figure above shows why this is the right thing to do. We get an infinite sequence

of larger and larger positive solutions of x2
− 19y2

= 1 by applying the periodicity

transformation with matrix
(

170 741
39 170

)
to the vector (1,0) . For example,

(
170 741

39 170

)(
170

39

)
=

(
57799

13260

)

so the next solution of x2
−19y2

= 1 after (170,39) is (57799,13260) , and we could

compute more solutions if we wanted. Obviously they are getting large rather quickly.

The two 170’s in the matrix
(

170 741
39 170

)
can hardly be just a coincidence. Notice

also that the entry 741 factors as 19 · 39 which hardly seems like it should be just a

coincidence either. Let’s check that these numbers had to occur. In general, for the

form x2
− dy2 let us suppose that we have found the first solution (x,y) = (p, q)

after (1,0) for Pell’s equation x2
− dy2

= 1, so p2
− dq2

= 1. Then based on the

previous example we suspect that the periodicity transformation is the transformation
(
p dq

q p

)(
x

y

)
=

(
px + dqy

qx + py

)

To check that this is correct the main thing to verify is that this transformation pre-

serves the values of the quadratic form. When we plug in (px + dqy,qx + dy) for

(x,y) in x2
− dy2 we get

(px + dqy)2−d(qx + py)2

= p2x2
+ 2pdqxy + d2q2y2

− dq2x2
− 2pdqxy − dp2y2

= (p2
− dq2)x2

− d(p2
− dq2)y2

= x2
− dy2 since p2

− dq2
= 1
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so the transformation
(
p dq
q p

)
does preserve the values of the form. Also it takes 1/0

to p/q , and its determinant is p2
− dq2

= 1, so it has to be the translation giving

the periodicity along the separator line. (We haven’t actually proved yet that periodic

separator lines always exist for forms x2
−dy2 , but we will do this in the next section.)

Are there other solutions of x2
−19y2

= 1 besides the ones we have just described

that occur along the separator line? The answer is No because we will see in the next

section that as one moves away from the separator line in the topograph, the values

of the quadratic form change in a monotonic fashion, steadily increasing toward +∞

as one moves upward above the separator line, and decreasing steadily toward −∞

as one moves downward below the separator line. Thus the value 1 occurs only along

the separator line itself. Also we see that the value −1 never occurs, which means

that the equation x2
− 19y2

= −1 has no integer solutions.

For an example where x2
− dy2

= −1 does have solutions, let us look again at

the earlier example of x2
− 13y2 .

The first positive solution (x,y) = (p, q) of x2
− 13y2

= −1 corresponds to the

value −1 in the middle of the figure. This is determined by the continued fraction

p/q = 3+1
�ր1+

1
�ր1+

1
�ր1+

1
�ր1 = 18/5, so we have (p, q) = (18,5) . The matrix

(
p dq
q p

)
in

this case is
(

18 65
5 18

)
with determinant 182

−13·52
= −1 so this gives the glide-reflection

along the periodic separator line taking 1/0 to 18/5 and 0/1 to 65/18. The smallest

positive solution of x2
− 13y2

= +1 is obtained by applying this glide-reflection to

(18,5) , which gives
(

18 65

5 18

)(
18

5

)
=

(
324+ 325

90+ 90

)
=

(
649

180

)

Repeated applications of the glide-reflection will give solutions of x2
− 13y2

= +1

and x2
− 13y2

= −1 alternately.
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2.2 The Classification of Quadratic Forms

We can divide quadratic forms Q(x,y) = ax2
+bxy+cy2 into four broad classes

according to the signs of the values Q(x,y) for (x,y) 6= (0,0) , where as always we

restrict x and y to integers. (We assume at least one of the coefficients a,b, c is

nonzero, so Q is not identically zero.)

(I) Q(x,y) takes on both positive and negative values but not 0. In this case we call

Q a hyperbolic form.

(II) Q(x,y) takes on both positive and negative values and also 0. Then we call Q

a 0 -hyperbolic form.

(III) Q(x,y) takes on only positive values or only negative values. Then we call Q

elliptic.

(IV) Q takes on the value 0 and either positive or negative values, but not both. Then

Q is called parabolic.

The hyperbolic-elliptic-parabolic terminology is motivated in part by what the level

curves ax2
+ bxy + cy2

= k are, where we now allow x and y to take on all real

values so that one gets actual curves. The level curves are hyperbolas in cases (I) and

(II), and ellipses in case (III). In case (IV), however, the level curves are not parabolas as

one might guess, but straight lines. Case (IV) will be the least interesting of the four

cases.

There is an easy way to distinguish the four cases by looking at the discriminant

∆ = b2
− 4ac :

(I) If ∆ is positive but not a square then Q is hyperbolic.

(II) If ∆ is positive and a square then Q is 0-hyperbolic.

(III) If ∆ is negative then Q is elliptic.

(IV) If ∆ is zero then Q is parabolic.

These statements will be proved later in this section.

We will analyze each of the four types of forms in turn, but before doing this let

us make a couple preliminary general comments. In the arithmetic progression rule

for labeling the four regions surrounding a given edge of the

topograph, we can label the edge by the common increment

h = (q + r) − p = s − (q + r) as in the figure at the right.

The edge can be oriented by an arrow showing the direction

in which the progression increases by h . Changing the sign of h corresponds to

changing the orientation of the edge. In the special case that h happens to be 0 we

will not orient the edge.
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The values of the increment h along the boundary of a region in the topograph

have the interesting property that they also form an arithmetic progression:





We will call this property the Second Arithmetic Progression Rule. To see why it is true,

start with the edge labeled h in the figure, with the adjacent regions labeled p and

q . The original Arithmetic Progression Rule then gives the value p+q+h in the next

region to the right, and another application of the rule gives the label h+ 2p on the

next edge. Thus the edge label increases by 2p when we move from one edge to the

next edge to the right, so by repeated applications of this fact we see that we have an

arithmetic progression of edge labels all along the border of the region labeled p .

Another thing worth noting at this point is something that we will refer to as

the Monotonicity Property: If the three labels p , q , and h adjacent to an edge are

all positive, then so are the three labels for the next

two edges in front of this edge, and the new labels

are larger than the old labels. It follows that when

one continues forward out this part of the topograph,

all the labels become monotonically larger the farther

one goes. Similarly, when the original three labels are

negative, all the labels become larger and larger neg-

ative. This is really just the same principle applied to

the negative −Q(x,y) of the original form Q(x,y) .

Proposition. If an edge in the topograph of Q(x,y) is labeled h with adjacent regions

labeled p and q , then the quantity h2
−4pq is equal to the discriminant of Q(x,y) .

Proof : For the given form Q(x,y) = ax2
+bxy+cy2 , the regions 1/0 and 0/1 in the

topograph are labeled a and c , and the edge in the topograph

separating these two regions has h = b since the 1/1 region is

labeled a+b+ c . So the statement of the proposition is correct

for this edge. For other edges we proceed by induction, moving

farther and farther out the tree. For the induction step suppose

we have two adjacent edges labeled h and k as in the figure,
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and suppose inductively that the discriminant equals h2
− 4pq . Then r = p+ q+h ,

and hence k = (q + r) − p = q + (p + q + h) − p = h + 2q , so we have k2
− 4qr =

(h + 2q)2 − 4q(p + q + h) = h2
+ 4hq + 4q2

− 4pq − 4q2
− 4hq = h2

− 4pq , which

means that the result holds for the edge labeled k as well. ⊔⊓

Hyperbolic Forms

The most interesting of the four types of quadratic forms are the hyperbolic

forms. We will show that these all have a periodic separator line as in the examples

x2
− dy2 and qx2

− py2 that we looked at earlier.

Theorem. For a hyperbolic form Q(x,y) the edges of the topograph for which the

two adjacent regions are labeled by numbers of opposite sign form a line which is

infinite in both directions, and the topograph is periodic along this line.

Proof : Since the form is hyperbolic, all regions of the topograph have labels that are

either positive or negative, never zero. There must exist two regions of opposite sign

since Q is hyperbolic, and by moving along a path in the topograph joining these two

regions we will somewhere encounter two adjacent regions of opposite sign. Thus

there must exist edges whose two adjacent regions have opposite sign. Let us call

these edges separating edges. If we apply the discriminant formula ∆ = h2
− 4pq in

preceding proposition to a separating edge, we see that ∆ must be positive since p

and q are nonzero and have opposite sign, so −4pq is positive while h2 is positive

or zero. Thus a hyperbolic form must have positive discriminant.

At an end of a separating edge the value of Q in the next region must be either

positive or negative since Q does not take the value 0:

This implies that exactly one of the two edges at the end of the first separating edge

is also a separating edge. Repeating this argument, we see that each separating edge

is part of a line of separating edges that is infinite in both directions (and the edges

that lead off from this edge are not separating edges).

As we move off this separating line the values of Q are steadily increasing on

the positive side and steadily decreasing on the negative side, by the monotonicity

property, so there are no other separating edges that are not on this line.
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It remains to prove that the topograph is periodic along the separating line. We

can assume all the edges along the line are oriented in the same direction, by changing

the signs of the h values where necessary. For an edge of the line labeled h with

adjacent regions labeled p and −q , with p,q > 0, we know that h2
+ 4pq is equal

to the discriminant ∆ . From the equation ∆ = h2
+ 4pq we obtain the inequalities

|h| <
√
∆ , p ≤ ∆/4, and q ≤ ∆/4. Thus there are only finitely many possible values

for h , p , and q along the separator line. Hence there are only finitely many possible

combinations of values h , p , and q for each edge on the separator line. It follows

that there must be two edges on the line that have the same values of h , p , and q .

Since the topograph is uniquely determined by the three labels h , p , q at a single

edge, the translation of the line along itself that takes one edge to another edge with

the same three labels must preserve all the labels on the line. This shows that the

separator line is periodic, including the values of Q . ⊔⊓

Conceivably there might be just a single region on one side of the separator line,

but this doesn’t actually happen: There must be edges leading away from the sep-

arating line on both the side where the form is positive and on the side where it is

negative. For if there was just a single region on one side of the line, the second arith-

metic progression rule would say that the h labels along the line formed an infinite

arithmetic progression, and hence the h values would not be bounded, contradicting

the fact that there are only finitely many different values for h along the separator

line, as we just showed.

Here is an interesting consequence of the periodicity of the separator line:

Corollary. For a hyperbolic form Q(x,y) = ax2
+bxy + cy2 , if the equation ax2

+

bxy + cy2
= n has one integer solution then it has infinitely many integer solutions.

Proof : Suppose (x,y) is a solution of Q(x,y) = n . If (x,y) is a primitive pair, then

the number n appears in the topograph of Q infinitely many times, via the periodicity

of the separator line, so there are infinitely many solutions in this case. If (x,y) is

not primitive then it is m times a primitive pair (x′, y ′) with Q(x′, y ′) = n/m2 .

This latter equation has infinitely many solutions as we just saw, so after multiplying

these solutions (x′, y ′) by m we get infinitely many solutions of Q(x,y) = n . ⊔⊓

In the previous chapter we gave an argument that showed that infinite continued

fractions that are eventually periodic always represent quadratic irrational numbers.

This is one half of Lagrange’s Theorem, and now we can prove the other half, the

converse statement:
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Theorem. The continued fraction expansion of every quadratic irrational is eventually

periodic.

Proof : A quadratic irrational number α has the form A + B
√
n where A and B are

rational numbers and n is a positive integer that is not a square. Letting α be the

conjugate A − B
√
n of α , we see that α and α are roots of the quadratic equation

(x−α)(x−α) = x2
−2Ax+ (A2

−nB2) = 0 whose coefficients are rational numbers.

After multiplying through by a common denominator we can replace this equation

by an equation ax2
+ bx + c = 0 with integer coefficients having α and α as roots.

The leading coefficient a is nonzero since it arose from multiplying by a common

denominator.

From the quadratic equation ax2
+ bx + c = 0 we obtain a quadratic form

Q(x,y) = ax2
+ bxy + cy2 with the same coefficients a,b, c . We claim that this

quadratic form is hyperbolic. It cannot take on the value 0 at an integer pair (x,y) 6=

(0,0) since if ax2
+ bxy + cy2

= 0 then we cannot have y = 0, otherwise the equa-

tion would become ax2
= 0 with a 6= 0, forcing x to be 0 as well. Since y 6= 0

we can divide the equation ax2
+ bxy + cy2

= 0 by y2 to get a quadratic equation

a(x/y)2 + b(x/y) + c = 0 with a rational root x/y , contrary to the assumption

that the root α , and hence also α , was irrational. Thus the quadratic form Q(x,y)

does not take on the value 0. To see that Q(x,y) takes on both positive and neg-

ative values, note that a(x/y)2 + b(x/y) + c takes on both positive and negative

values at rational numbers x/y since the graph of the function ax2
+ bx + c is a

parabola crossing the x -axis at two distinct points α and α . Multiplying the formula

a(x/y)2 + b(x/y)+ c by the positive number y2 , it follows that ax2
+ bxy + cy2

also takes on both positive and negative values at integer pairs (x,y) .

Since Q is hyperbolic, its topograph contains a periodic line separating the pos-

itive and negative values. This corresponds to a strip in the Farey diagram which is

infinite in both directions. The fractions xn/yn labeling the vertices along this strip

have both xn and yn approaching ±∞ as n goes to ±∞ . (The only way this could fail

for a path consisting of an infinite sequence of distinct edges in the dual tree would be

if all the edges from some point onward bordered the 1/0 or 0/1 region, which is not

the case here since periodic separator lines have only a finite number of edges border-

ing a given region.) The values Q(xn, yn) = ax
2
n + bxnyn + cy

2
n = kn are bounded,

ranging over a finite set along the strip. Thus a(xn/yn)
2
+b(xn/yn)+c = kn/y

2
n→0

as n→ ±∞ , so at one end of the strip we have xn/yn→α and at the other end we

have xn/yn→α . Joining either end of the strip to 1/0 in the Farey diagram then
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gives infinite strips corresponding to infinite continued fractions for α and α that

are eventually periodic. ⊔⊓

Let us look at an example to illustrate the procedure in the proof of this theorem.

We will use a quadratic form to compute the continued fractions for the two quadratic

irrationals
10±

√
2

14
. The equation (x − α)(x − α) = 0 is x2

−
10
7
x + 1

2
= 0, so with

integer coefficients this becomes 14x2
− 20x+ 7 = 0. The associated quadratic form

is 14x2
− 20xy + 7y2 . To compute the topograph we start with the three values at

1/0, 0/1, and 1/1 and work toward the separator line:

This figure lies in the upper half of the circular Farey diagram where the fractions

x/y are positive, so if we follow the separator line out to the right we approach the

smaller of the two roots of 14x2
− 20x + 7 = 0, which is

10−
√

2
14

, and if we follow the

separator line to the left we approach the larger root,
10+

√
2

14
. To get the continued

fraction for the smaller root we follow the path in the figure that starts with the edge

between 1/0 and 0/1, then zigzags up to the separator line, then goes out this line

to the right. If we straighten this path out it looks like the following:

The continued fraction is therefore

10−
√

2

14
= 1
�

ր
1+

1
�

ր
1+

1
�

ր
1+

1
�

ր
1+

1
�

ր
2

It is not actually necessary to redraw the straightened-out path since in the original

form of the topograph we can read off the sequence of left and right “side roads” as

we go along the path, the sequence LRLRLLRR where L denotes a side road to the

left and R a side road to the right. This sequence determines the continued fraction.

For the other root
10+

√
2

14
the straightened-out path has the following shape:
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The sequence of side roads is LRRRRLLRR so the continued fraction is

10+
√

2

14
= 1
�

ր
1+

1
�

ր
4+

1
�

ր
2

A natural question to ask is whether every periodic line in the dual tree of the

Farey diagram is the separator line of some hyperbolic form, and the answer is yes.

To find the form one first uses the periodic line to construct a continued fraction

that is eventually periodic, then one computes the value of this continued fraction

by finding a quadratic equation that it satisfies, and this quadratic equation gives the

desired quadratic form. As an example, let us find a quadratic form whose periodic

line looks like the following:

A periodic continued fraction corresponding to this strip is 1
�ր1+

1
�ր2+

1
�ր3 . The value

of this continued fraction was worked out in an example in Section 1.3 by find-

ing a quadratic equation that it satisfies, which was 3x2
+ 8x − 7 = 0 with roots

(−4 ±
√

37)/3. The positive root (−4 +
√

37)/3 is the value of 1
�ր1+

1
�ր2+

1
�ր3 . The

corresponding quadratic form is 3x2
+ 8xy − 7y2 , and if we compute its separator

line we get

This provides a realization of the given periodic line as the separator line in the to-

pograph of a quadratic form. Notice that the separator line is not symmetric under

reflection across any vertical line, unlike all the separator lines we have seen up to

this point. This is the simplest example without this bilateral symmetry property
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since the strips associated to continued fractions 1
�րa1

and 1
�րa1

+ 1
�րa2

obviously have

bilateral symmetry, as do the strips for continued fractions 1
�րa1

+ 1
�րa2

+ 1
�րa3

if two

of the numbers a1, a2, a3 are equal.

Elliptic Forms

An elliptic quadratic form Q(x,y) takes on either all positive or all negative

values at integer pairs (x,y) 6= (0,0) . The two cases are equivalent since one can

switch from one to the other just by putting a minus sign in front of Q . Thus it

suffices to consider the case that Q takes on only positive values, and we will assume

we are in this case from now on.

Let p be the minimum value taken on by Q , and consider

a region of the topograph where Q takes the value p . All the

edges having one endpoint at this region are oriented away

from the region, by the arithmetic progression rule and the

assumption that p is the minimum value of Q . The mono-

tonicity property then implies that all edges farther away from

the p region are also oriented away from the region, and the

values of Q increase as one moves away from the region.

We know that the h -labels on the edges making up the

border of the p region form an arithmetic progression with

increment 2p . There are two possibilities for these h -labels:

(I) Some edge bordering the p region has the label h = 0. The topograph then has

the form shown in the first figure below. An example of such a form is px2
+ qy2 .

We call the 0-labeled edge a source edge since all other edges are oriented away from

this edge.

(II) No edge bordering the p region has label h = 0. Since the labels on these edges

form an arithmetic progression, there must be some vertex where the terms in the
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progression change sign, and so all three edges meeting at this vertex will be oriented

away from the vertex, as in the second figure above. We call this a source vertex since

all edges in the topograph are oriented away from this vertex. The fact that the three

edges leading from a source vertex all point away from the vertex is

equivalent to the three triangle inequalities

p < q + r q < p + r r < p + q

In the case of a source edge one of these inequalities becomes an

equality r = p + q .

Proposition. Elliptic forms have negative discriminant.

Proof : In the case of a source edge with the label h = 0 separating regions labeled p

and q , the discriminant is ∆ = h2
− 4pq = −4pq , which is negative. In the case of

a source vertex with adjacent regions labeled p,q, r , the edge between the p and q

regions is labeled h = p + q − r so we have

∆ = h2
− 4pq = (p + q − r)2 − 4pq

= p2
+ q2

+ r 2
− 2pq − 2pr − 2qr

= p(p − q − r)+ q(q − p − r)+ r(r − p − q)

In the last line the three quantities in parentheses are negative by the triangle inequal-

ities, so ∆ is negative. ⊔⊓

Parabolic and 0-Hyperbolic Forms

These are the forms whose topograph has at least one region labeled 0. Each edge

adjacent to the 0 region has the same label h , and the labels on the regions adjacent

to the 0 region form an arithmetic progression. The discriminant is ∆ = h2 , a square.





A special case is h = 0. Then the topograph is as shown in the next figure, and the

form is parabolic with discriminant ∆ = h2
= 0. Notice that the topograph is periodic

along the 0 region since it consists of the same tree pattern repeated infinitely often.



Chapter 2 Quadratic Forms 24

In the other case that h is nonzero, so that the discriminant ∆ = h2 is a nonzero

square, the arithmetic progression of values of Q adjacent to the 0 region includes

both positive and negative numbers, so Q is 0-hyperbolic. If the arithmetic progres-

sion includes the value 0, this gives a second 0 region adjacent to the first one, and the

topograph is as shown at the right. If the arithmetic

progression does not include 0, there will be an edge

separating the positive from the negative values in

the progression. We can extend this separating edge

to a line of separating edges as we did with hyper-

bolic forms, but the extension will eventually have to

terminate with a second 0 region, otherwise the rea-

soning we used in the hyperbolic case would yield two

edges along this line having the same h and the same positive and negative labels on

the two adjacent regions, which would force the line to be periodic and hence extend

infinitely far in both directions, which is impossible since it began at a 0 region at one

end. Thus the topograph contains a finite separator line connecting two 0 regions.

If one of the 0 regions is the 1/0 region and the other is the p/q region, then the

separator line follows the strip of triangles in the Farey diagram corresponding to the

continued fraction for p/q . The quadratic form Q(x,y) = qxy−py2
= (qx−py)y

has a topograph with this behavior. For example, for p/q = 2/5 the topograph of the

form 5xy − 2y2
= (5x − 2y)y is the following:
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We have seen that the discriminant of a form that takes the value 0 is a square.

Here is the converse:

Proposition. If the discriminant of a form Q(x,y) is a square, then Q(x,y) = 0 for

some pair of integers (x,y) 6= (0,0) .

Proof : Suppose first that the form Q(x,y) = ax2
+ bxy + cy2 has a 6= 0. Then

the equation aX2
+ bX + c = 0 has roots X = (−b ±

√
b2 − 4ac)/2a . If b2

− 4ac

is a square, this means the roots are rational. If X = p/q is a rational root then

a(p/q)2+b(p/q)+c = 0 and hence ap2
+bpq+cq2

= 0 so Q takes the value 0 at a

pair (p, q) with q 6= 0. There remains the case that a = 0, so Q(x,y) = bxy + cy2 ,

which is 0 at (x,y) = (1,0) . ⊔⊓

In particular, this shows the discriminant of a hyperbolic form is not a square.

Since we showed earlier that a hyperbolic form has positive discriminant, this com-

pletes the characterization of the four types of forms in terms of their discriminants.

Equivalence of Forms

In the pictures of topographs we have drawn, we often omit the fractional labels

x/y for the regions in the topograph since the more important information is of-

ten just the values Q(x,y) of the form. This leads to the idea of considering two

quadratic forms to be equivalent if their topographs “look the same” when the labels

x/y are disregarded. For a precise definition, one can say that quadratic forms Q1

and Q2 are equivalent if there is a vertex v1 in the topograph of Q1 and a vertex v2

in the topograph of Q2 such that the values of Q1 in the three regions surrounding

v1 are equal to the values of Q2 in the three regions surrounding v2 . Since the three

values around a vertex determine all the other values in a topograph, this guarantees

that the topographs look the same everywhere, if the labels x/y are omitted.

With this definition, a topograph and its mirror image correspond to equivalent

forms since the mirror image topograph has the same three labels around each vertex

as in the corresponding vertex of the original topograph. For example, switching the

variables x and y reflects the circular Farey diagram across its vertical axis and hence

reflects the topograph of a form Q(x,y) to the topograph of the equivalent form

Q(y,x) . As another example, the forms ax2
+bxy +cy2 and ax2

−bxy +cy2 are

equivalent since they are related by changing (x,y) to (−x,y) , reflecting the Farey

diagram across its horizontal axis, with a corresponding reflection of the topograph.
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Theorem. Up to equivalence, there are just a finite number of forms with a given

discriminant, except in the special case that the discriminant is zero.

This fails to hold for forms of discriminant 0, the parabolic forms, since multi-

plying such a form by different integers produces infinitely many inequivalent forms.

Proof : Consider first the case of forms of positive discriminant. These are either

hyperbolic or 0-hyperbolic. Hyperbolic forms have a separator line. For an edge in

the separator line labeled h with adjacent regions labeled p > 0 and −q < 0 we have

∆ = h2
+ 4pq , so each of the quantities |h| , p , and q is bounded in size by ∆ . This

means that for fixed ∆ there are only finitely many possibilities for h , p , and q for

each edge of the separator line, hence just finitely many possible combinations of h ,

p , and −q for each edge, so there are just finitely many possibilities for the form, up

to equivalence. The same reasoning applies also to 0-hyperbolic forms that have a

separating edge in their topograph. The only ones that do not have a separating edge

are the ones with two adjacent regions labeled 0. In this case the edge separating

these two regions has h2
= ∆ , so the value of h on this edge is determined by ∆ ,

hence the form is determined by ∆ .

For forms of negative discriminant we can assume we are dealing with positive

elliptic forms since a form Q and its negative −Q have the same discriminant. If

a positive elliptic form has a source edge in its topograph, this edge has h = 0 so

∆ = −4pq where p and q are the values of Q in the adjacent regions. For fixed ∆
there are only finitely many choices of p and q satisfying ∆ = −4pq , so there are only

finitely many positive elliptic forms of discriminant ∆ having a source edge. In the

other case of a source vertex surrounded by values p,q, r of the form, we obtained

the formula ∆ = p(p−q−r)+q(q−p−r)+r(r −p−q) with the three quantities in

parentheses being negative, so p+q+r ≤ |∆| and hence there are only finitely many

possibilities for p , q , and r for each ∆ . ⊔⊓

As an example, let us determine all the quadratic forms of discriminant 60, up

to equivalence. Two obvious forms of discriminant 60 are x2
−15y2 and 3x2

−5y2 ,

whose separator lines consist of periodic repetitions of the following two patterns:

From these topographs it is apparent that the two forms are not equivalent, and also

that the negatives of these two forms, −x2
+ 15y2 and −3x2

+ 5y2 , give two more



Chapter 2 Quadratic Forms 27

inequivalent forms. To see whether there are others we use the formula ∆ = 60 =

h2
+4pq relating the values p and −q along an edge labeled h in the separator line,

with p > 0 and q > 0. The various possibilities are listed in the table below. Note

that the equation 60 = h2
+ 4pq implies that h has to be even.

h pq (p, q)

0 15 (1,15), (3,5), (5,3), (15,1)

2 14 (1,14), (2,7), (7,2), (14,1)
4 11 (1,11), (11,1)

6 6 (1,6), (2,3), (3,2), (6,1)

Each combination of values for h , p , and q in the table occurs at some edge along the

separator line in one of the two topographs shown above, or the negatives of these

topographs. Hence every form of discriminant 60 is equivalent to one of these four.

If it had not been true that all the possibilities in the table occurred in the topographs

of the forms we started with, we could have used these other possibilities for h , p ,

and q to generate new topographs and hence new forms, eventually exhausting all

the finitely many possibilities.

For finding all the positive elliptic quadratic forms of a given discriminant, up

to equivalence, the procedure is simpler since one doesn’t have to actually draw any

topographs. At a source vertex or edge in the topograph for such

a form Q let the smaller two of the three adjacent values of Q be

a ≤ c , with the edge between them labeled h ≥ 0, so that the third

adjacent value of Q is a+ c −h . The form is then equivalent to the

form ax2
+ hxy + cy2 . Since a and c are the smallest values of

Q we have a ≤ c ≤ a+ c − h , and the latter inequality implies that

h ≤ a . Thus we have the inequalities 0 ≤ h ≤ a ≤ c . Note that these

inequalities imply the three triangle inequalities at the source vertex

or edge: a + c − h ≤ a + c , a < c + (a + c − h) , and c < a + (a + c − h) . For the

discriminant ∆ = −D we have D = 4ac − h2 , so we are seeking solutions of

4ac = h2
+D with 0 ≤ h ≤ a ≤ c

The number h must have the same parity as D , and we can bound the choices for h by

the inequalities 4h2
≤ 4a2

≤ 4ac = D+h2 which imply 3h2
≤ D , or h2

≤ D/3. Every

positive elliptic form is equivalent to one of the forms ax2
+ hxy + cy2 for triples

(a,h, c) satisfying these conditions 4ac = h2
+ D , 0 ≤ h ≤ a ≤ c , and h2

≤ D/3.

Different choices of (a,h, c) satisfying these conditions never give forms that are
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equivalent since a and c are the labels on the two regions in the topograph where the

form takes its smallest values, and h is determined by a , c , and D by the formula

4ac = h2
+D .

As an example, when D = 80 we must have h even and h2
≤ 80/3 so h must

be 0, 2, or 4. The corresponding values of a and c that are possible can then be

computed from the equation 4ac = 80 + h2 , keeping in mind that h ≤ a ≤ c . The

possibilities are shown in the following table:

h ac (a, c)

0 20 (1,20), (2,10), (4,5)

2 21 (3,7)
4 24 (4,6)

Thus every positive elliptic form of discriminant −80 is equivalent to one of the forms

x2
+ 20y2 , 2x2

+ 10y2 , 4x2
+ 5y2 , 3x2

+ 2xy + 7y2 , or 4x2
+ 4xy + 6y2 , and no

two of these are equivalent to each other, as explained earlier.

We know there are only finitely many forms of a given nonzero discriminant, up

to equivalence, but what about the question of whether every integer occurs as the

discriminant of a form? For a form ax2
+bxy +cy2 we have ∆ = b2

−4ac , and this

is congruent to b2 mod 4. A square such as b2 is always congruent to 0 or 1 mod 4,

so the discriminant of a form is always congruent to 0 or 1 mod 4. Conversely, for

every integer ∆ congruent to 0 or 1 mod 4 there exists a form whose discriminant is

∆ . Namely, if ∆ = 4k then the form x2
−ky2 has discriminant 4k , and if ∆ = 4k+1

then the form x2
+xy−ky2 has discriminant 4k+1. Here k can be positive, negative,

or zero. The forms x2
− ky2 and x2

+ xy − ky2 are called the principal quadratic

forms of these discriminants.

The number of equivalence classes of quadratic forms with a given discriminant,

where one only considers forms having positive values in the elliptic case, is known

as the class number for the given discriminant. Of special interest are the cases when

the class number is 1, so all forms of that discriminant are equivalent. There are nine

negative discriminants ∆ = −D of class number 1:

D = 3, 4, 7, 8, 11, 19, 43, 67, 163

It was conjectured by Gauss around 1800 that this is the complete list for negative

discriminants. It was shown in the 1930s that there is at most one more, and then in

the 1960s the possibility of an elusive tenth such discriminant was finally ruled out,

finishing the proof of the conjecture. For positive discriminant there are many more
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cases where the class number is 1, but it is still unknown whether there are infinitely

many such discriminants.

In the nine cases D = 3,4,7,8,11,19,43,67,163 it is very easy to check that all

forms are equivalent. For example when D = 163 we must have h odd with h2
≤

163/3 so the only possibilities are h = 1,3,5,7. From the equation 4ac = 163+ h2

the corresponding values of ac are 41,43,47,53 which all happen to be primes, and

since a ≤ c this forces a to be 1 in each case. But since h ≤ a this means h must

be 1, and we obtain the single quadratic form ax2
+ hxy + cy2

= x2
+ xy + 41y2 .

The corresponding polynomial x2
+x+41 has a curious property discovered by

Euler: For each x = 0,1,2, · · · ,39 the value of x2
+ x + 41 is a prime number. Here

are these primes:

41 43 47 53 61 71 83 97 113 131 151 173 197 223 251 281 313 347 383 421

461 503 547 593 641 691 743 797 853 911 971 1033 1097 1163 1231 1301

1373 1447 1523 1601

Notice that the successive differences between these numbers are 2,4,6,8, · · · . The

next number in the sequence would be 1681 = 412 , not a prime. (Write x2
+ x + 41

as x(x + 1) + 41 to see why x = 40 must give a nonprime value.) A similar thing

happens for the other values of D . The nontrivial cases are:

D

7 x2
+ x + 2 2

11 x2
+ x + 3 3 5

19 x2
+ x + 5 5 7 11 17

43 x2
+ x + 11 11 13 17 23 31 41 53 67 83 101

67 x2
+ x + 17 17 19 23 29 37 47 59 73 89 107 127 149 173 199 227 257

It’s interesting that these lists include all primes less than 100 except for 79.
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2.3 Representing Numbers by Forms

With the various things we have learned about quadratic forms so far, let us

return to the basic problem of trying to determine what values a given form Q(x,y)

can take on, or in different terminology, determining which numbers are represented

by Q . Remember that it suffices to restrict attention to the values in the topograph

since these are the values for primitive pairs (x,y) , and to get all possible values

one just multiplies the values in the topograph by arbitrary squares. We focus on the

forms that are either elliptic or hyperbolic, as these are the most interesting cases.

As we will see through a series of examples, the type of answer one gets to the

representation problem varies from quite simple to slightly complicated to quite com-

plicated indeed.

The First Level of Complexity

As a first example let us try to find a general pattern in the values of the form

x2
+ y2 . In view of the symmetry of the topograph for this form it suffices to

look just in the first quadrant of the topograph. A piece of this quadrant is shown

in the figure at the right, somewhat distorted to

squeeze more numbers into the picture. What is



shown is all the numbers in the topograph that are

less than 100. At first glance it seems hard to find

any patterns here, but the key is to look at how the

numbers in the topograph factor into primes. First

of all, the primes that occur in the topograph are

2,5,13,17,29,37, 41,53,61,73,89,97. Apart from

2, these are just the primes congruent to 1 modulo

4. The remaining primes are congruent to 3 mod-

ulo 4, namely, 3,7,11,19,23,31,43,47,59,71,79,83, and these do not appear in the

topograph. Moreover, all the numbers in the topograph that are not prime are prod-

ucts of primes in the topograph: 10,25,26,34,50,58,65,74,82,85. If we remember

that the topograph only shows the values of Q(x,y) for primitive pairs (x,y) , this

means that the remaining values of Q(x,y) are obtained from those in the topo-

graph by multiplying by an arbitrary square m2 . Thus we are led to predict that the

following result might be true:
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Theorem of Fermat. The values of the quadratic form Q(x,y) = x2
+ y2 as x and

y range over all integers are exactly the numbers of the form m2p1p2 · · ·pk where

m is an arbitrary integer and each pi is either 2 or a prime congruent to 1 modulo 4 .

Here we allow the possibility that the number of prime factors pi in m2p1p2 · · ·pk

is zero, so the number represented by Q is simply m2 , which is Q(m,0) . We will

prove this theorem later in this section.

As a second example consider the form Q(x,y) = x2
+2y2 . Here is a portion of

its topograph showing all values less than 100 again:

Inspecting the values here, we see that the following two statements appear to be true:

(1) The prime numbers that occur as values of x2
+ 2y2 are 2 and the primes

congruent to 1 or 3 modulo 8. In the part of the topograph shown these are

3,11,17,19,41,43,59,67,73,83,89,97. The remaining primes are congruent to

5 or 7 modulo 8 and these do not occur as values of x2
+ 2y2 .

(2) The values of x2
+2y2 are exactly the numbers that can be expressed as products

m2p1p2 · · ·pk where m is an arbitrary integer and each pi is a prime values of

x2
+ 2y2 as in (1).

These statements are in fact true and were also known to Fermat.

These two examples were elliptic forms, but the same sort of behavior can occur

for hyperbolic forms, as we see in the next example, the form x2
−2y2 . The negative

values of this form happen to be just the negatives of the positive values, so we need

only show the positive values in the topograph:
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Here the primes that occur are 2 and primes congruent to 1 or 7 modulo 8. We

can count the negative of a prime number as a prime as well, and then the primes

represented are ±2 and the primes congruent to ±1 modulo 8. The nonprime values

are the products of the primes represented and squares times these numbers.

In these three examples the crucial idea was to look at prime factorizations and at

primes modulo certain numbers, the numbers 4, 8, and 8 in the three cases. Notice

that these numbers are just the absolute values of the discriminants −4, −8, and 8

in the three cases. Looking at primes modulo |∆| turns out to be a key idea for all

quadratic forms, as we will see.

A special feature of the discriminants −4, −8, and 8 is that all forms of each

of these discriminants are equivalent, or in other words, the class numbers are 1 for

these discriminants. It is a general fact that whenever the class number is 1, the

representation problem has the same sort of simple answer as in the examples above.
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The Second Level of Complexity

An example with slightly more complicated behavior is the form x2
−10y2 . Here

is a portion of its topograph showing all the positive values less than 100:

There is no need to show any more of the negative values since these will just be the

negatives of the positive values. The prime values less than 100 are 31,41,71,79,89.

These are the primes congruent to ±1 or ±9 modulo 40, the discriminant. However,

in contrast to what happened in the previous examples, there are many nonprime

values that are not products of these prime values. In fact these nonprime values

are products of the primes 2,3,5,13,37,43, none of which occur as a value of the

form. Rather miraculously, these prime values are realized instead by another form

2x2
− 5y2 having the same discriminant as x2

− 10y2 . Here is the topograph of this

companion form 2x2
− 5y2 :



The prime values this form takes on are 2 and 5, which are the prime divisors of the

discriminant 40, along with primes congruent to ±3 and ±13 modulo 40, namely

3,13,37,43,53,67,83.

Apart from the primes 2 and 5 that divide the discriminant 40, the possible val-

ues of primes modulo 40 are ±1,±3,±7,±9,±11,±13,±17,±19 since even numbers

and multiples of 5 are excluded. There are 16 different congruence classes here, and
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exactly half of them, 8, are realized by one or the other of the two forms x2
− 10y2

and 2x2
−5y2 , with 4 classes realized by each form. The other 8 congruence classes

are not realized by any form of discriminant 40 since every form of discriminant 40

is equivalent to one of the two forms x2
− 10y2 or 2x2

− 5y2 , as is easily checked

by the methods from the previous section.

This is in fact a general phenomenon, valid for all discriminants: If one looks at

primes that do not divide the discriminant, then the prime values of quadratic forms

of that discriminant are exactly the primes in one-half of the possible congruence

classes modulo the discriminant.

Let us mention in passing a famous theorem of Dirichlet, proved in the 1820s

or 1830s, which says that every arithmetic progression a, a+ d, a+ 2d, a+ 3d, · · ·

contains infinitely many primes, provided that one rules out the obvious exceptions

where a and d have a common divisor, which would then be a common divisor of all

the numbers in the progression. For example, when we take d = 40, each of the 16

congruence classes listed above gives an arithmetic progression containing infinitely

many primes, such as the progression 1,41,81,121,161,201, · · · or the progression

17,57,97,137,177,217, · · ·. In fact Dirichlet proved more: If one looks at primes less

than some large number N such as a million, then each of the possible congruence

classes contains approximately the same number of primes less than N .

The analog of Fermat’s Theorem for discriminant 40 is the following pair of state-

ments:

(1) The numbers represented by one of the two quadratic forms Q1 = x
2
− 10y2 or

Q2 = 2x2
−5y2 of discriminant 40 are exactly the numbers n = ±m2p1p2 · · ·pk

where m is an arbitrary integer and each pi is 2 , 5 , or a prime congruent to

±1,±3,±9 , or ±13 modulo 40 .

(2) If the number of factors pi in n = ±m2p1p2 · · ·pk that equal 2 , 5 , or ±3 or ±13

modulo 40 is even, then n is represented by Q1 , and if this number is odd then n

is represented by Q2 . In particular, the primes represented by Q1 are the primes

congruent to ±1 or ±9 modulo 40 and the primes represented by Q2 are 2 , 5 ,

and primes congruent to ±3 or ±13 modulo 40 .

An interesting consequence of (2) is that no number n is represented by both forms

x2
− 10y2 and 2x2

− 5y2 , apart from n = 0 which is trivially represented by every

form Q(x,y) when (x,y) = (0,0) .

Another case which is similar to the preceding one is discriminant 12. Here there

are two forms up to equivalence, x2
− 3y2 and 3x2

− y2 , which is equivalent to
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−x2
+ 3y2 , the negative of the first form. Here is the topograph for x2

− 3y2 :

For the form −x2
+3y2 we get the negatives of the numbers represented by x2

−3y2 .

For discriminat 12 we have the following answer to the representation problem:

The numbers represented by one of the two quadratic forms x2
−3y2 or −x2

+3y2 of

discriminant 12 are exactly the numbers n =m2p1p2 · · ·pk where m is an arbitrary

integer and each pi is −1 , 2 , 3 , or a prime congruent to ±1 modulo 12 . If the

number of factors pi equal to −1 , 2 , 3 , or congruent to −1 modulo 12 is even, then

n is represented by the form x2
−3y2 , and if this number is odd then n is represented

by −x2
+ 3y2 .

The Third Level of Complexity

In the preceding examples it was possible to determine which numbers are rep-

resented by a given form by looking at primes and which congruence classes they fall

into modulo the discriminant. A consequence of the way the answer was formulated

was that no number (except 0) could by represented by two inequivalent forms of the

same discriminant. Both of these nice properties fail to hold in general, however. An

example is provided by forms of discriminant −56. Two inequivalent forms of this

discriminant are Q1 = x
2
+ 14y2 and Q2 = 2x2

+ 7y2 . The primes 23 and 79 are

congruent modulo 56, and yet 23 is represented by Q1 since Q1(3,1) = 23, while 79

is represented by Q2 since Q2(6,1) = 79. Also, 30 is represented by both Q1 and

Q2 since Q1(4,1) = 30 and Q2(1,2) = 30.

The class number for discriminant −56 is actually 3, and a third form with this

discriminant, not equivalent to either Q1 or Q2 , is the form Q3 = 3x2
+ 2xy + 5y2 .

Here are portions of the topographs of these three forms:
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Apart from the primes 2 and 7 that divide the discriminant −56, all other primes

belong to the following 24 congruence classes modulo 56, corresponding to odd

numbers less than 56 not divisible by 7:

1 3 5 9 11 13 15 17 19 23 25 27 29 31 33 37 39 41 43 45 47 51 53 55

The six congruence classes whose prime elements are represented by Q1 or Q2 are

indicated by underlines, and the six congruence classes whose prime elements are
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represented by Q3 are indicated by overlines. Primes not represented by any of the

three forms are in the remaining 12 congruence classes.

As general terminology, one says that two quadratic forms of the same discrim-

inant belong to the same genus if they cannot be distinguished by considering their

values modulo the discriminant. Thus the preceding two forms Q1 and Q2 are of

the same genus while Q3 is of a different genus from Q1 and Q2 . Equivalent forms

always belong to the same genus, of course. The first two of the three levels of com-

plexity we have described correspond to the discriminants where there is only one

equivalence class in each genus. For discriminant −56 there are two different genera

(“genera" is the plural of “genus"). In more complicated examples there can be large

numbers of genera and large numbers of equivalence classes within a genus.

For negative discriminants there is a simple formula for the number of genera of

forms of a given discriminant ∆ , namely, the number of genera is 2k−1 where k is

the number of distinct prime divisors of |∆| .

A Criterion for Representability

Suppose a number n is represented primitively by some form Q(x,y) of dis-

criminant ∆ , so n appears in the topograph of Q . If we look at an edge of the

topograph bordering the region labeled n then we obtain an equation

∆ = h2
−4nk where h is the label on the edge and k is the label on the

region on the opposite side of this edge. The equation ∆ = h2
− 4nk

says that ∆ is congruent to h2 modulo 4n . In case n is negative we

interpret “modulo 4n" to mean “modulo 4|n|", but for the sake of simplicity we will

still write “modulo 4n".

This in fact gives an exact criterion for primitive representability:

Proposition. Let two numbers n and ∆ be given. Then the following two statements

are equivalent : (1) There exists a form of discriminant ∆ that represents n primitively.

(2) ∆ is congruent to a square modulo 4n .

Proof : As we saw above, if we have a form of discriminant ∆ representing n prim-

itively then we get an equation ∆ = h2
− 4nk for some integers h and k , and this

equation says that ∆ is the square of h modulo 4n . Conversely, suppose that ∆
is the square of some integer h modulo 4n . This means that h2

− ∆ is an integer

times 4n , or in other words h2
−∆ = 4nk for some k . This equation can be rewrit-

ten as ∆ = h2
− 4nk . The three numbers n , h , and k can be used to construct a

form whose topograph contains an edge with these three labels, for example the form
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nx2
+hxy+ky2 , which has these three labels on the 1/0,0/1 edge. The discriminant

of this form has the desired value ∆ = h2
− 4nk . ⊔⊓

Let us see what this proposition implies for small values of n . For n = 1 it says

that there is a form of discriminant ∆ representing 1 if and only if ∆ is a square mod-

ulo 4. The squares modulo 4 are 0 and 1, and we already know that discriminants

of forms are always congruent to 0 or 1 modulo 4. So we conclude that for every

possible value of the discriminant there exists a form that represents 1. This isn’t

really new information, however, since the principal form x2
+dy2 or x2

+xy+dy2

represents 1 and there is a principal form for each discriminant.

In the next case n = 2 we will get some new information. The possible values of

the discriminant modulo 8 are 0,1,4,5, and the squares modulo 8 are 0,1,4 since

02
= 0, (±1)2 = 1, (±2)2 = 4, (±3)2 ≡ 1, and (±4)2 ≡ 0. Thus 2 is not represented

by any form of discriminant congruent to 5 modulo 8, but for all other values of the

discriminant there is a form representing 2. Explicit forms are:

∆ = 8k : 2x2
− ky2

∆ = 8k+ 1 : 2x2
+ xy − ky2

∆ = 8k+ 4 : 2x2
+ 2xy − ky2

For n = 3 the discriminants modulo 12 are 0,1,4,5,8,9 and the squares modulo 12

are 0,1,4,9 since 02
= 0, (±1)2 = 1, (±2)2 = 4, (±3)2 = 9, (±4)2 ≡ 4, (±5)2 ≡ 1,

and (±6)2 ≡ 0. The excluded discriminants are those congruent to 5 or 8.

One could continue farther in this direction exploring which discriminants have

forms representing a given number, but this is not really the question we want to

answer, which is to start with a given discriminant, or even a given form, and decide

which numbers it represents. The sort of answer we are looking for, based on the

various examples we looked at earlier, is also a different sort of congruence condition,

with congruence modulo the discriminant rather than congruence modulo 4n . So

there is more work to be done before we would have the sort of answer we want.

Nevertheless, the representability criterion in the preceding proposition is the starting

point.

Proof of Fermat’s Theorem

Without a huge amount of extra work we can now settle the simplest case, the form

x2
+ y2 . Recall that the statement to be proved is that a number n is representable

by the form x2
+ y2 if and only if it can be written as n =m2p1 · · ·pk where each
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pi is either 2 or a prime congruent to 1 modulo 4. The possibility that n is simply

m2 is allowed. Another way of stating the condition on n is to say that every prime

factor p = 4k + 3 of n occurs to an even power, so it can be absorbed into the m2

factor.

As a preliminary step to proving this, let us look at the condition in the preceding

proposition for a number n to be primitively represented by x2
+ y2 , which is that

the discriminant −4 is a square modulo 4n . This means that we have an equation

h2
= −4 + 4nk for some integers h and k . The number h must be even for this

equation to hold, so h = 2l and the equation becomes 4l2 = −4+4nk . Canceling the

4’s, this becomes l2 = −1+nk . This just says that −1 is a square modulo n , so this

is our new criterion for n to be primitively represented by x2
+y2 .

Now we begin the proof proper. First we show that if n is represented by the

form x2
+y2 then every prime factor p = 4k+3 of n must occur to an even power in

n . Suppose on the contrary that we have a number n represented by x2
+y2 whose

prime factorization has a prime factor p = 4k+3 occurring to an odd power. If this n

is not primitively represented, we can cancel square factors of it until we get a new n

represented primitively, with the same prime p still occurring to an odd power. Our

representability criterion then says that −1 is a square modulo n . Since the prime

p = 4k+ 3 is a factor of n , this implies that −1 is a square modulo p . Applying the

representability criterion in the reverse direction, this implies that p is represented

(primitively) by x2
+ y2 , so p = x2

+ y2 for some x and y . Since p = 4k+ 3, if we

look at the equation p = x2
+y2 modulo 4, it says that 3 is the sum of two squares

modulo 4. But this is impossible since the squares modulo 4 are 0 and 1 so adding

two of them cannot give 3. This contradiction shows that primes p = 4k + 3 must

occur in the prime factorization of n to an even power whenever n is represented by

x2
+y2 .

To finish the proof of the theorem it suffices to prove two things:

(1) The primes p = 2 and p = 4k+ 1 are represented by x2
+ y2 . (This is obvious

for 2.)

(2) If two numbers m and n are represented by x2
+ y2 then so is their product

mn .

The second statement is easier to prove so we do this first. Suppose m and n are

represented as m = a2
+ b2 and n = c2

+ d2 . Using complex numbers we can then

factor m and n as m = (a + bi)(a − bi) and n = (c + di)(c − di) . This gives a

factorization of mn as a product of four factors, and by rearranging the factors we
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can obtain a representation of mn as a sum of two squares:

mn = (a2
+ b2)(c2

+ d2)

=
[
(a+ bi)(a − bi)

][
(c + di)(c − di)

]

=
[
(a+ bi)(c + di)

][
(a− bi)(c − di)

]

=
[
(ac − bd)+ (ad+ bc)i

][
(ac − bd)− (ad+ bc)i

]

= (ac − bd)2 + (ad+ bc)2

The result of this calculation is the identity

(a2
+ b2)(c2

+ d2) = (ac − bd)2 + (ad+ bc)2

which shows that the product of two numbers that are sums of two squares is again

a sum of two squares. This identity can be checked directly without using complex

numbers, just by multiplying both sides out, but the advantage of using complex

numbers is that they show where the identity comes from.

It remains to prove the nontrivial part of the earlier statement (1), that every prime

p = 4k+ 1 is representable as the sum of two squares. Such a representation has to

be primitive since p is prime. An equivalent statement is then that −1 is a square

modulo p , and this is what we will show by finding an explicit but rather large number

h such that h2
≡ −1 modulo p .

Let us first illustrate how the proof will go by doing a specific example, the case

p = 13, which is of the form 4k+ 1. Each of the numbers from 1 to p − 1 = 12 has

a multiplicative inverse modulo 13:

1 · 1 ≡ 1 2 · 7 ≡ 1 3 · 9 ≡ 1 4 · 10 ≡ 1 5 · 8 ≡ 1 6 · 11 ≡ 1 12 · 12 ≡ 1

The last congruence could have been written (−1) · (−1) ≡ 1. The only cases when

a number equals its own inverse modulo 13 are 1 and 12. Therefore if we consider

the product

(p − 1)! = 12! = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

all the terms that are not equal to their inverse will cancel in pairs, leaving only the last

term 12. Thus we have the congruence 12! ≡ 12 modulo 13, which we can rewrite as

12! ≡ −1. Now notice that modulo 13 we have 7 ≡ −6, 8 ≡ −5, 9 ≡ −4, etc., so we

have
−1 ≡ (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

≡ (1)(2)(3)(4)(5)(6)(−6)(−5)(−4)(−3)(−2)(−1)

= (6!)2
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This shows that −1 is a square modulo 13, namely (6!)2 . We will generalize this by

showing that for every prime p = 4k + 1 the congruence −1 ≡
[
(2k)!

]2
modulo p

holds.

The first fact we need about congruences modulo a prime p is that each of the

numbers a = 1,2, · · · , p − 1 has a multiplicative inverse modulo p . To see why

this is true, notice that each such a has no common factors with p , so we know from

Chapter 1 that the equation ax+py = 1 has an integer solution (x,y) . This equation

can be rewritten as ax ≡ 1 modulo p , which says that x is an inverse for a modulo

p . Note that any two choices for x here are congruent modulo p since if ax ≡ 1 and

ax′ ≡ 1 then multiplying both sides of ax′ ≡ 1 by x gives xax′ ≡ x , and xa ≡ 1

so we conclude that x ≡ x′ .

Which numbers equal their own inverse modulo p? If a · a ≡ 1, then we can

rewrite this as a2
− 1 ≡ 0, or in other words (a + 1)(a − 1) ≡ 0. This is certainly

a valid congruence if a ≡ ±1, so suppose that a 6≡ ±1. The factor a + 1 is then

not congruent to 0 modulo p so it has a multiplicative inverse modulo p , and if we

multiply the congruence (a + 1)(a − 1) ≡ 0 by this inverse, we get a − 1 ≡ 0 so

a ≡ 1, contradicting the assumption that a 6≡ ±1. This argument shows that the only

numbers among 1,2, · · · , p − 1 that are congruent to their inverses modulo p are 1

and p − 1.

Now if we consider the product (p − 1)! = (1)(2) · · · (p − 1) modulo p , then

each factor other than 1 and p − 1 can be paired up with its multiplicative inverse

and these two terms multiply together to give 1 modulo p , so the whole product

simplifies to just (1)(p − 1) . Thus we have a fact known as Wilson’s theorem:

(p − 1)! ≡ −1 modulo p whenever p is prime.

Now let us assume that p is a prime of the form p = 4k+ 1. In the product (p − 1)!

there are p − 1 = 4k terms. The first 2k of these are (2k)! and the last 2k , in

reverse order, are p − 1, p − 2, · · · , p − 2k . Modulo p the latter are equivalent to

−1,−2, · · · ,−2k , so we have

(p − 1)! = (4k)! ≡ (1)(2) · · · (2k− 1)(2k)(−2k)(−(2k− 1)) · · · (−2)(−1)

The last 2k of these factors are the negatives of the first 2k factors, and 2k is even, so

the signs on all the negative terms cancel out and we see that (p−1)! is congruent to

(2k)!·(2k)! modulo p . Combining this with Wilson’s theorem we get the desired result

that −1 is a square modulo p , namely −1 ≡
[
(2k)!

]2
modulo p . This finishes the

proof of Fermat’s theorem answering the question of which numbers are representable

as sums of two squares.
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Quadratic Reciprocity

We have seen that the condition for a prime p to be represented by some form of

discriminant ∆ is that ∆ is a square modulo 4p . (For primes there is no need to add

the condition that the representation is primitive since this is automatic for numbers

with no square factors, in particular for primes.) What we need is a way to convert

this criterion from a condition on ∆ modulo 4p to a condition on p modulo ∆ . The

main tool to make this conversion is something called Quadratic Reciprocity. Here is

what it says:

Quadratic Reciprocity. Let p and q be two distinct odd primes. If p and q are not

both congruent to 3 modulo 4 , then p is a square modulo q if and only if q is a

square modulo p . In the exceptional case that p and q are both congruent to 3

modulo 4 , then p is a square modulo q if and only if q is not a square modulo p .

This is a surprising statement because congruences modulo p and congruences

modulo q generally have nothing to do with each other when p and q have no com-

mon factors, as is the case here with distinct primes. It is only on a special question

like whether or not a number is a square modulo p or q that there is a connection.

The principle of quadratic reciprocity was discovered in a more rudimentary form

by Euler, and the final version given above was formulated by Legendre. The first

person to prove it, however, was Gauss around 1797 or 1798. This is well over 100

years after Fermat, and it seems Fermat was not aware of quadratic reciprocity. Even

though Gauss’s proof was correct, he was not satisfied that he understood quadratic

reciprocity completely and later produced several different proofs. Since that time,

many other proofs have been found. Many of them are elementary in the sense that

they can be presented in a couple pages with no more background than we are assum-

ing here. Some of the proofs involve a little geometry, but it is still not easy to really

“see" why the result is true.

Let us do an example to see how quadratic reciprocity applies to the representabil-

ity problem. This will be the case of discriminant 13, a prime, which simplifies the

use of quadratic reciprocity. Our general theory tells us that a prime p is represented

by some form of discriminant 13 if and only if 13 is a square modulo 4p . For p = 2

this says that 13 is a square modulo 8, which is not true since the squares modulo 8

are 0,1,2,4. Thus 2 is not represented by any form of discriminant 13.

From now on we assume that p is odd. If 13 is a square modulo 4p , it is certainly

a square modulo p since p divides 4p . We apply quadratic reciprocity now. Since

13 is not congruent to 3 modulo 4, reciprocity says that 13 is a square modulo p if
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and only if p is a square modulo 13. The squares modulo 13 are easily listed: 0, 1,

4, 9, 16 ≡ 3, 25 ≡ 12, and 36 ≡ 10. (There is no need to go farther since 7 ≡ −6,

8 ≡ −5, etc.) Thus if p is represented by a form of discriminant 13, p is congruent

to one of 0,1,3,4,9,10,12 modulo 13. The only prime congruent to 0 modulo 13

is 13 itself, so we can say that the primes represented by forms of discriminant 13

must be either 13 or primes congruent to one of 1,3,4,9,10,12 modulo 13, or in

other words, ±1,±3,±4 modulo 13. Each of these six congruence classes contains

infinitely many primes by Dirichlet’s theorem on primes in arithmetic progressions.

The converse is also true, that every prime satisfying these conditions is actually

represented by some form of discriminant 13. All the steps in the reasoning above

were reversible except for the step of going from 13 being a square modulo 4p to

13 being a square modulo p . In fact this step is reversible too, for suppose 13 is a

square modulo p , so there is a number h such that h2
−13 is divisible by p . We can

assume h is odd since if it is even we can replace h by h+ p , which is odd since p

is odd, and the new h will still satisfy h2
≡ 13 modulo p . Since h is odd, we have

h2
≡ 1 modulo 4. Since 1 ≡ 13, this can be rephrased as saying h2

≡ 13 modulo

4, which means that h2
− 13 is divisible by 4. We already knew that h2

− 13 was

divisible by p , so h2
− 13 is divisible by 4p since 4 and p have no common factors.

Thus we have shown that 13 is a square modulo 4p if it is a square modulo p .

This completes the characterization of the primes that are representable by some

form of discriminant 13, assuming that quadratic reciprocity is known. As it happens,

the class number for discriminant 13 is one, as you can easily verify, so all forms of

discriminant 13 are equivalent to the principal form x2
+xy−3y2 and so we have an

exact criterion for which primes this form represents: p = 13 and primes congruent to

±1, ±3, or ±4 modulo 13. One could predict this was true by drawing a large enough

part of the topograph, but a full proof requires more than this since it is obviously

impossible to draw the whole topograph all at once and check all the infinitely many

primes that occur in it. (For one thing, there is the difficulty of knowing when a large

number is a prime.)

The full answer to which numbers, not just primes, are represented by the form

x2
+ xy − 3y2 is what you would now expect: The numbers represented are the

numbers n =m2p1 · · ·pk where each pi is 13 or a prime congruent to ±1, ±3, or

±4 modulo 13. The rest of the proof of this follows the same pattern as in the proof

we gave for Fermat’s theorem on the form x2
+ y2 . The only new ingredient needed

is a formula showing that the product of two numbers represented by x2
+xy −3y2

is also represented by this form. The formula is not difficult and we will derive it in
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the next chapter for all principal forms.

For other values of the discriminant ∆ the procedure for determining the primes

that are represented by some form of discriminant ∆ is similar to the case ∆ = 13, but

when ∆ is not itself a prime there are some extra steps required to go from quadratic

reciprocity, which is just a statement about pairs of primes, to determining when a

nonprime ∆ is a square modulo 4p . The extra steps are not as difficult as quadratic

reciprocity, however. With more effort of a similar nature one can go farther and

answer the question of which numbers, not necessarily primes, are represented by

some form of a given discriminant. It is only when the class number is one, however,

that this answers the question of which numbers a particular form represents.


