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MAPPINGS BETWEEN ANRs THAT ARE FINE
HOMOTOPY EQUIVALENCES

WILLIAM E. HAVER

It is shown in this note that every closed UV°° - map
between separable ANRs is a fine homotopy equivalence.

We extend Lacher's result [6,7] that a closed t/V°°-maρ between
locally compact, finite dimensional ANRs is a fine homotopy equival-
ence to the case of arbitrary separable ANRs. It is hoped that this
theorem will be useful in studying manifolds modelled on the Hubert
Cube. (See [1], section PF3. Added in proof. See also [9]).

A set A CX has property UV00 if for each open set U of X
containing A, there is an open V, with A C V C U such that V is
null-homotopic in U. A mapping /: X -» Y of X onto Y is a l/V00- map
if for each y G F , f~\y) is a C/V00 subset of X. The mapping / is said to
be closed if the image of every closed set is closed and proper if the
inverse image of every compact set is compact. An absolute neighbor-
hood retract for metric spaces is denoted an ANR. If a is a cover of Y
and gι and g2 are maps of a space A into Y,g{ is α-near g2 if for each
aEA there is a U Ea containing g\(a) and g2(a). The map gi is
α-homotopic to gl9gι~g2, if there is a homotopy λ: A xI-*Y taking
gι to g2 with the property that for each aEA there exists UEa
containing λ({α}x/). A map /: X-» Y is a fine homotopy equival-
ence if for each open cover, α, of Y there exists a map g: Y-+X such

that fg~idγ and gf — " idx.

Various versions of Lemma 3 have been proven by Smale [8],
Armentrout and Price [2], Kozlowski [5] and Lacher [6], The differ-
ence in this lemma is that K is not required to be a finite dimensional
complex.

Let K be a locally finite complex and / be a nonnegative
integer. When there is no confusion we will not distinghish between
the complex K and its underlying point set | K | . If σ is a simplex of K,
then N(σ,K) = {τ<K\σΠτ^φ} and st(σ,K) =
{τ<K\σ<τ}. Also K' will denote the /-skeleton of K and >K =
{σ < KI I N(σ,K) | C | K11}. Let °U be a covering of a space Y and B a
subset of Y. The star of B with respect to % st!(B,%), is the set
{U E °U \B Π l/y φ}. Inductively, stn(B,<%) is defined to be
st(stnl(B,^)). A covering V is called a star" refinement of °U if the
covering {stn(V,V)IV E V} refines °U. Every open covering of a
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metric space has an open star" refinement for each positive integer n
(c.f. [3]). We start by stating without proof two easily verified lemmas.

LEMMA 1. Let K be a locally finite complex. Suppose φ: K-+Y
is a map, % is an open cover of Y, and k is a nonnegative integer. Then
there is a subdivision K of K so that:

(a) ifσ is a k-simplex ofK, then φ (N(σ,K)) C U, for some UE%
(b) ifσ< kιK, then σ < K.

We will call such a subdivision, K, a (k,ΰU)-subdivision of K. We note
that for any vertex, v, of K with v£k~ιK it follows that φ(st(v,K)) C U
for some U E °U.

LEMMA 2. Let °U be an open cover of the paracompact space Y
and f: X—• Y a closed UV'-map. Then there is an open locally finite
refinement Ύof6!! such that for each VET, there isaUE°U satisfying

(a) st(V,T)CU
(b) // m is a positive integer and the map y: dB m -> /"!(st( V, Ύ)) is

given, then y can be extended to γ: Bm -*f~ι(U).
We will call such a refinement, T, a l/V00 star refinement of °U.

LEMMA 3. Let f: X-+Y be a closed UV'-map of an arbitrary
space, X, onto the paracompact space Y. Let K be a locally finite
complex and J a subcomplex of K. Let φ: K-*Y and ψf: J-+X be
mappings such that fψr = φ\J. Then given any open cover, a, of Y
there exists a map ψ: K-*X extending ψf so that fψ is a-near φ.

Proof. Let KQ be a (0, a )-subdivision of K and let α0 = <*. Define
inductively a sequence of covers of Y, {α,}Γ=o, and subdivisions of Ko,
{K,}Γ=o, such that for each i > 0,α, is a UV°° star refinement of α.-i and Ki
is an (i,a,)-subdivision of !£,_,.

Define ψ0: Ko~>X by letting ^o(^) = Ψ'(v) if V EJ and otherwise
an arbitrary element of f~ι(φ(v)). Assume inductively that there exist
maps {ψι: K\ί -» X}Γ=0 such that for 0 ̂  / ̂  n:

(1) φt | / Π K ί = f | / n K\ and if / < /, φt \% = φ, \%,
(2) if v is a vertex of Kh φi(v)Ef-ι(φ(v)),
(3) if σ is a /-simplex of K\ and k =dimst(σ,K|), then

φ(st(σ,Ki))Ufφi(σ)CU, for some [/EαH,
[Note that φQ: KI-+X satisfies these conditions since if σ is a

0-simplex of Kl the dimension of st(σ,Ko) is 0 and the fact that Ko is a
(0,α0)- subdivision of K implies that φ(st(σ,K0)) Ufφ0(o ) C U for some
UEa0.]

We wish now to define φn+ι: Kn

nX\-^X satisfying conditions (l)-(3)
for i = n + 1. For each vertex v of Kn+ί, let
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ί
ψn(v), if υ is a vertex of nKn

ψ'(υ),iΐvEJ

an arbitrary element of f~ι(φ(v)), otherwise

Assume (subinductive statement) that ψn+ι\Kr

n+ι has been defined
so that

(1') ψn+ι\JΓ)Kr

n+ι = ψ'\JnKr

n+ι and φn+ι\
nKn Π Kr

n+ι =

Φn\
nκnnκr

n+u
(2') if v is a vertex of Kn+U ψn+ι(v)(Ξf-\φ(v)\
(3') if σ is a /-simplex of Kr

n+i and fe = dimst(σ,K;ίj), then
φ(st(σ,Kn+1)) U fψn+ι(σ) C [/, for some U E <**_,.

[Note that ψn+ι\K°n+ι has been defined in such a manner that properties
(Γ)-(3') are satisfied. Properties (Γ) and (2') follow immediately from
the definition. Let v be a simplex of K°n+ί. If υ is a vertex of nKπ, then
property (3') follows from the fact that ψn satisfies property (3) of the
main inductive statement since in this case dimst(ϋ,X"ίί) =
dimst(v,K"). Suppose v is not a vertex of nKn. By the remark
following Lemma 1, φ(st(v,Kn+i)) is contained in some element of an+ι

and hence property (3') is again satisfied.]

Now let σ be an (r -I-1)-simplex of Kn+ί. If σ is a subset of /, let
ψn+ι \σ = ψ'\σ. If σ < nKn, let ψn+ι \σ = ψn\σ. Otherwise, let k =
dimst(σ,K"ίl). For each r-simplex, r, in dσ, there is a uτEak-r

containing φ(st(τ,Xπ+1)) Ufψn+ι(τ). Let τr be a fixed r-simplex in dσ
and note that ψn+ί(dσ)Cf~ι(st(uτ,ak-r)). Since ak.r is a UV00 star
refinement of α*-r-i> there is a L7 E αk-Γ-i = α*-<r+o containing st(l/τ,αk_Γ)
and an extension of ψn+i\dσ which maps σ into f~ι(U). We call this
extension ψn+i and note that φ(st(σ,Kn+,)) Ufφn+ι(σ) C U. In this man-
ner, extend ψn+ι to Kr

n

++\ and note that conditions (Γ)-(3') are
satisfied. This completes the subinductive argument and hence the
main inductive argument.

We now define ψ: K —»X by ψ(x) = limn_̂ oô n(A:). For any x E K,
the local finiteness of K assures that there exists an integer N so that
xGNKN. Hence for n^N, ψn(x) = ψN(x). Therefore ψ is well-
defined and continuous. Let x GK and let σ be a simplex of maximal
dimension containing x. Then there exists an integer N such that
\σ\cNKN. Choose a simplex B in NKN containing x and note that
ψ(x) = ψN(x). By inductive statement (3), there is an open set U E α,,
for some i ^ 0 , such that φ(st(B,KN))Ufψ(B)CU. Since α, refines
αo = α, there is a V 6 α such that {φ(x)}U{fψ(x)}C V. Since ψ
extends ψf, this completes the proof of Lemma 3.



460 WILLIAM E. HAVER

REMARK. By a slightly more cumbersome process, ψ can be
chosen so that fψ is a α-homotopic to φ.

THEOREM. Let X and Y be separable ANRs and f: X-+Y be a
closed UV^-map. Then f is a fine homotopy equivalence.

Proof. Let a be an open cover of Y, Let <xx be a star5 refinement
of a and a2 a star refinement of ax. Let β be an open refinement of a2

such that any two β-near maps from any space into Y are α2-homotopic
(such refinements exists since Y is an ANR, c.f. [4]).

By Hanner's characterization of separable ANRs (c.f. [4]), there
exist a locally finite polyhedron Q and maps c: Q-+Y and s: Q-> Y
with property that sc&idγ. By Lemma 3, there is a map v: Q-+X
such that fv is β- near s. Define g: Y -» X by g = vc. Note that fg is
β-near sc and hence fg&sc. But sc&idγ and hence fgckidγ. Denote
this α,-homotoρy by Λ; then, h: Y*I->Y is a α,-homotopy with
ho = idγ and hλ = fg.

It remains to be shown that gf is f~\a) homotopic to idx.
Choose a locally finite polyhedron, P, maps b: -»P and r: P-+X

and a homotopy W: X x J - ^ X with the following properties:
(a) Wo = rb and W, = idx

(b) W is limited by Γ V i ) and by (g/)"1 ( Γ W ) .
Next, define H:PxI-*Y by H(p,t) = ht(fr(p)) and note that
H(p,0) = /r(p) and H(p,l) = fgfr(p). Define G': P x{0,l}-^X by
G'(p,0) = r(p), G'(p,l) = g/r(p). Then by Lemma 3 there is a map
G: Pxl-+X extending G' with the property that /G is α,-near H.

Define ψ X x / ^ X by ^(jc,f) = G(b(x),t).
Note that: ψo(x) = G(b(x),0) = G'(fc(jc),0) = rb(x) and ^(JC) =

G(&(x), 1) = G'(b(x)91) = g/rfc(jc).
Now, W is a homotopy taking rb to ίdx and is limited by f~ι(otι). Also,
since W is limited by (g/)"1 ( Γ W ) , g / W : X x / ^ X , defined by
gfW(x,t) = g/( W(x,ί)), is a homotopy taking g/rfr to g/ and is limited by

Γ ( )
Recall that α, is a star5 refinement of α. Therefore, to show that

idx

fΊka)gf, it suffices to show that fψ: XxI-^Y is limited by star3

(α,). Fix x E X. Since the homotopy h is limited by αt, there exists
ί7 G α, with h(f(x) xI)CU. we claim that f(ψ(x x /)) Cst3(t7).

Fix t(ΞL Recall f(ψ(x,t)) = f(G(b(x),t)). Thus there exists
I/' e α i such that /" !(I/') contains x and rfe (JC ). Hence f(x) and /rfr (JC )
are elements of U' and U Γ)U' ^ φ. Since h is limited by α,, we can
choose U"^aλ so that htfrb(x) and frb(x) are elements of J7". Note
that [ / " Π [ / 7 ψ . Also, there exists ί / w G α , containing H(b(x)J)
and /(G(fe(jc),ί)), since /G is α,-near H. But
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htfrb (x). Hence U'" ΠU"έ φ and we have completed the proof of the
theorem by showing that fψ: X x J—> Y is limited by star 3 ^).

Added in proof. I would like to thank Bob Edwards for some
suggestions concerning this paper and for pointing out that George
Kozlowski [Images of ANR's, to appear] has shown that a UV°°-map
between ANR's is a homotopy equivalence.

REMARK. If in addition it is assumed that X and Y are locally
compact and / is a proper map it follows immediately that / is a proper
fine homotopy equivalence.
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