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1 Introduction

The purpose of this paper is to establish the existence of irreducibleSU(2) repre-
sentations of knot complement fundamental groups near abelian representations
where the equivariant knot signature changes. For knots inS3, Frohman and
Klassen showed the existence of irreducible representations near abelian rep-
resentations corresponding to simple roots of the Alexander polynomial. They
raised the question whether an analogous result holds for multiple roots (see
[F-K]). This paper gives a more general existence result for knots in homology
spheres. It will be shown that if the Tristam-Levine equivariant signature of a
knot takes different values on opposite sides of a root of the Alexander polyno-
mial, then there exist irreducible representations near the corresponding abelian
representation. This condition holds, for example, for any knot whose Alexander
polynomial has a root of odd multiplicity on the unit circle inC.

Let Y be the complement of an open tubular neighborhood of a knot in a
homology sphere. Fix an orientation onY . Choose a longitudeλ for Y ; this is a
simple closed curve in∂Y representing a primitive element ofH1(∂Y ; Z) which is
null homologous inY . Also choose a meridianµ, i.e., a simple closed curve in∂Y
representing a generator forH1(Y ; Z). We require thatµ ·λ = 1 with the induced
orientation onT2 = ∂Y . (We use the convention thatT(∂Y)⊕〈outward normal〉 =
TY.)

Let F be a Seifert surface with boundaryλ, and choose an orientation of the
normal bundle ofF in Y . If {xi }1≤i≤g is a basis forH1(F ; Z), let x+

i denote the
pushoff of xi in the positive normal direction. Define the linking matrixV by
Vij = `k(xi , x+

j ).
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The symmetrized Alexander matrix forY is the matrix

A(t) = t
1
2 V − t−

1
2 V T .

ConsiderB(t) = (1− t)V + (1− t−1)V T . Note thatB(t) = (t−
1
2 − t

1
2 )A(t), so the

complex valuest /= ±1 for which B(t) is singular are exactly the roots of the
Alexander polynomial∆(t) = detA(t).

If t is a unit complex number, thenB(t) is a Hermitian matrix and hence has
only real eigenvalues. The equivariant knot signature ofY , denoted by SignB(t2),
is the function fromU (1) to Z taking t to the number of positive eigenvalues
minus the number of negative eigenvalues forB(t2), counted with multiplicity.
(See [K-K-R] or [H2] for details.) This function is independent of the choice of
F , {xi }, and normal bundle orientation, and it changes sign if the orientation on
Y is reversed. The relationship betweenB(t) and the Alexander matrix implies
that SignB(t2) is continuous int ∈ U (1) except possibly at square roots of roots
of the Alexander polynomial. Note that SignB(1) = 0.

Let i, j , k denote the standard orthonormal basis forsu(2) corresponding to
the identification ofSU(2) with the space of unit quaternions. We shall consider
U (1) = {exp(iθ)} ⊂ SU(2), and we make the identifications span(i) = R and
span(j , k) = C.

We now state the main result in this paper. For each 0< α < π, let
ρα : π1Y → SU(2) be the abelian representation takingµ to exp(iα).

Theorem 1. For any unit root ei 2α of ∆(t) where the right and left hand limits
limβ→α± SignB(ei 2β) do not agree, there is a continuous family of irreducible
SU(2) representations ofπ1(Y) limiting to ρα.

Corollary 2. For any odd multiplicity root ei 2α of ∆(t), there is a continuous
family of irreducible SU(2) representations ofπ1(Y) limiting to ρα.

Remark:There are examples of prime knots for which the Alexander polynomial
has only roots of odd multiplicity (greater than 1) on the unit circle and for
which the Casson invariantλ′(κ) = 0. An example can be constructed as follows.
Let ∆(t) = (t − 1 + t−1)3(−t + 3− t−1)3 be the Alexander polynomial of the
composite of 3 trefoils and 3 figure eight knots. Kondo’s construction in [Ko]
gives a prime knot with this as its Alexander polynomial. The Casson invariant
is 0 and detBκ(t2) changes sign att = e

iπ
6 since∆(t2) does. (The reason we

look for a prime knot for an interesting example is that if either of the knots
in a composite has a family of irreducible representations limiting to an abelian
representation, then, by a simple gluing argument, the composite does also.)

In the course of proving the main result we shall also prove the following
fact.

Corollary 3. Suppose for some0 < α < π the matrix B(ei 2α) has nontrivial
kernel, and suppose that, as t∈ U (1) moves through the value eiα, all eigenvalues
of B(t2) touching zero cross zero transversely, and all do so in the same direction.
Then all of the irreducible representationsρ nearρα sendλ to exp(iσ(ρ)) for some
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smallσ(ρ) /= 0, where the sign ofσ(ρ) corresponds to the direction the eigenvalues
go through0.

Corollary 4. If κ is a knot in a homology sphere and there exists any value
0 < α < π satisfying the hypotheses of Corollary 3, then for n sufficiently large,
both the homology spheres obtained by1

n and− 1
n surgery onκ have nontrivial

SU(2) representations.

We now outline the proof of the main theorem. First identify the set of
representations ofπ1(Y) into SU(2) modulo conjugation with the moduli space
of flat SU(2) connections onY × SU(2) modulo gauge equivalence. We show
that for arbitrarily small perturbations of the flatness equation the perturbed flat
moduli space contains irreducible connections. Using a limiting argument, we
show that this property continues to hold for the unperturbed flat moduli space.

The paper is organized as follows. Section 2 contains basic results about per-
turbing the flatness equation and the perturbed flat moduli space for 3-manifolds
with torus boundary. Subsection 3.1 contains a statement of the basic existence
theorem for irreducible perturbed flat connections under certain assumptions of
nondegeneracy. Subsection 3.2 provides a proof of this result. A proof of Corol-
lary 3 is also given in this subsection. Section 4 then provides proofs of our main
result along with Corollaries 2 and 4.

2 The structure of the flat moduli space

We begin by describingSU(2) gauge theory on 3-manifolds with torus boundary,
recalling results from [H1].

LetA denote the space of connections onY×SU(2). Given a fixed trivializa-
tion of this principal bundle, we may identifyA with the space ofsu(2) valued
1-forms onY , Ω1(Y ; su(2)). We complete this space using theL2

2 Sobolev norm.
Let G = Aut(Y × SU(2)) be the gauge group, with theL2

3 completion. To each
connectionA is associated its curvature 2-form,F (A) = dA+ A∧A, andA is said
to be flat if F (A) = 0.

The flat moduli space is the quotientM = F−1(0)/G. There is a standard
method of perturbing the flatness equation in order to obtain a moduli space
which is nondegenerate (nondegenerate will be given a precise definition below),
used, for example, in [T], [F], and [H1]. We sketch it below; see [H1] for more
details.

Let {γi : S1 × D2 → Y}1≤i≤n be a collection of embeddings of the solid
torus intoY whose images are disjoint. Letη be the product of a nonnegative
bump function onD2 with support in the interior and the standard volume form
on D2. Let {hi : R → R}1≤i≤n be a collection ofC2 functions. Let tr holγi (x,A)
be the trace of the holonomy of the connectionA around the curveγi (S1×{x}).
We define a functionh : A → R by the formula

h(A) =
n∑

i =1

∫
D2

hi (tr holγi (x,A))η(x).
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Definition 5. A function h constructed in this way is called anadmissible per-
turbation function .

Now fix a Riemannian metric onY , and let∗ denote the Hodge star operator
on su(2) valued forms. Given an admissible perturbation functionh, we define

ζh(A) = − ∗ 1
2π

F (A) +∇h(A),

where∇h denotes theL2 gradient ofh.

Definition 6. A connection A is calledperturbed flat if it satisfies the equation
ζh(A) = 0. Theperturbed flat moduli spaceof Y is

Mh = ζ−1
h (0)/G.

We shall sometimes writeMh(Y) to avoid confusion with the perturbed flat
moduli space of the zero surgery onY , which is denoted byMh(Y0).

The structure of the perturbed flat moduli space for a 3-manifold with bound-
ary was described in [H1]. We now summarize the results for the case when the
boundary is a torus. Let∗dA,h = ∗ 1

2πdA − Hessh(A). Let H1
A,h(Y ; su(2)) and

H1
A,h(Y , ∂Y ; su(2)) be (the harmonic spaces representing) the first and second

cohomology groups of the following elliptic complex (where the grading goes
0,1,2,3):

0→ Ω0(Y ; su(2))
dA→ Ω1(Y ; su(2))

∗dA,h→ Ω1(Y ; su(2))
d∗A→ Ω0(Y ; su(2))→ 0.

Let M∗
h,MU (1)

h , andMSU(2)
h denote the portions ofMh consisting of irre-

ducible, abelian (noncentral), and central orbits, respectively.

Definition 7. The perturbed flat moduli spaceMh is nondegenerateif it satisfies
the following 5 properties (and otherwisedegenerate):

(a) There are no noncentral orbits inMh which are central when restricted to
∂Y .

(b) For every[A] ∈MSU(2)
h , H1

A,h(Y , ∂Y ; su(2)) = 0.

(c) For all but finitely many orbits[A] ∈MU (1)
h , dimH1

A,h(Y , ∂Y ; su(2)) = 0, and
for the remaining abelian orbitsdimH1

A,h(Y , ∂Y ; su(2)) = 2 and StabA acts
nontrivially onH1

A,h(Y , ∂Y ; su(2)).

(d) At each abelian orbit[A] ∈ MU (1)
h with dimH1

A,h(Y , ∂Y ; su(2)) = 2, the
family of Hermitian matrices Ht (defined below) has transverse spectral flow.

(e) For each[A] ∈M∗
h, dimH1

A,h(Y , ∂Y ; su(2)) = 1.

Condition (c) implies thatMU (1)
h is a smooth 1-manifold. To define the

matrix Ht in condition (d) we first choose a family of connectionsAt with
[At ] parameterizing an open set inMU (1)

h with H1
A0,h(Y , ∂Y ; su(2)) nonzero.

The orthogonal complement ofT[A0]MU (1)
h in H1

A0,h(Y ; su(2)) is isomorphic to
H1

A0,h(Y , ∂Y ; su(2)). The action of StabA0 gives this space a complex structure,
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and we may view it asH1
A0,h(Y ; C). Then we define a 1-parameter family of

Hermitian forms onH1
A0,h(Y ; C) by the formula

Ht (α, β) = 〈∗dAt ,hα, β〉.
Ht is a cohomological pairing on relative cohomology. When the complex di-
mension of this cohomology is 1,Ht is simply a real scalar, i.e.,

Ht (α, β) = λ(t)〈α, β〉
for some real valued functionλ(t). Condition (d) requires thatλ′(0) /= 0.

In the unperturbed situation, a jump inH1
A(Y ; su(2)) occurs (for abelian con-

nections) exactly at connections with meridinal holonomy conjugate to holµA =
exp(iθ) where Bκ(ei 2θ) has a zero eigenvalue. The spectral flow ofBκ(ei 2θ)
through such a point is the negative of the spectral flow ofHt (see [H2]).
Remark:The second part of condition (c) insures thatMU (1) is smooth even at
the points where the cohomology jumps.

The flat moduli space for the torus is equal toMT2 = T2/Z2, known as the
pillowcase. It is topologically a 2-sphere, but has 4 “corners” corresponding to
the central orbits, i.e., the fixed points of the involution. There is a restriction
map r : Mh →MT2.

Theorem 8. (Theorem 15 and Corollary 24, [H1])Mh is compact. IfMh is non-
degenerate, then it has the following structure.MSU(2)

h consists of 2 points.MU (1)
h

is a smooth 1-dimensional manifold, compact except for two open ends which lim-
iting to the central orbits.M∗

h is a 1-dimensional manifold, compact except for
open ends which limit to distinct points onMU (1)

h where dimH1
A,h(Y , ∂Y ; su(2)) =

2. Each such abelian orbit where the relative cohomology jumps is the limit of
exactly one such irreducible end. The restriction map r is an immersion on each
stratum.

Remark:The structure of the flat moduli space around the bifurcation points,
where the irreducible stratum meets the abelian stratum, is the foundation of the
existence result in this paper. There is a gap in the proof in [H1], so we state
this claim as Theorem 12 and provide a complete proof in Section 3.

Given a flat abelian connectionA, let SymA denote the set of symmetric
bilinear forms onH1

A(Y , ∂Y ; su(2)) which are StabA invariant. Given a collection
of n disjoint embedded loops{`i }1≤i≤n, let

D tr hol̀ I : Rn → Hom(H1
A(Y ; su(2)),R)

be the linear function which takes the vector (b1, . . . bn) to the homomorphism

α 7→
n∑

i =1

bi
∂

∂s
(tr hol̀ i (A + sα))|s=0.

Similarly, let D2 tr hol̀ I : Rn → SymA be the linear function which takes the
vector (b1, . . . bn) to the bilinear form
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(β1, β2) 7→
n∑

i =1

bi
∂2

∂s∂t
(tr hol̀ i (A + sβ1 + tβ2))|s=t=0.

Proposition 9. (Lemma 38, Lemma 60, and Theorem 15, [H1]) There is a finite
collection of disjoint embedded loops{`i }1≤i≤n with the following properties:

1. For all irreducible flat connections A the map

D tr hol̀ I : Rn → Hom(H1
A(Y ; su(2)),R)

is surjective.
2. For all abelian flat connections A the map

D tr hol̀ I ⊕ D2 tr hol̀ I : Rn → HomH1
A(Y ; R)⊕ SymA

is surjective.

Choose a collection of loops{`i } as in the previous proposition and let{γi }
be a corresponding collection of embeddings of solid tori into disjoint tubular
neighborhoods of the loops. LetE = C2(R,R) andE = En

. Let E1 ⊂ E be the
subset of n-tuples (h1, . . . , hn) for which the associated perturbed flat moduli
space is degenerate.

Theorem 10. (Theorem 15, [H1]) There is a neighborhood U of(0, . . . , 0) ∈ Hn

such that U1 = E1 ∩ U has codimension 1.

For any pathht : [0, ε] → U , define

M{ht} = {([A], t) ∈ A/G × [0, ε]| ζht (A) = 0}.
Proposition 11. (Proposition 49, [H1])M{ht} is compact.

3 Existence of irreducible orbits in the nondegenerate case

3.1 Statement of the theorem and some comments

The existence theorem in the nondegenerate situation is the following.

Theorem 12. Suppose that in some neighborhood of an abelian orbit[A0] ∈
MU (1)

h with nonzeroH1
A0,h(Y , ∂Y ; su(2)) the nondegeneracy conditions (c) and

(d) are satisfied. Then there is a neighborhood U⊂ A/G of [A0] such that U∩M∗
h

is a smooth arc with one open end limiting to[A0]. The tangent space to the image
of U ∩M∗

h is transverse to that ofMU (1)
h in the pillowcase.

This theorem will be proved in the next subsection by a somewhat indirect
route. We discuss here what goes wrong with the more direct approach.

The perturbed flat moduli space near an abelian orbit [A0] is homeomorphic
to the zero set of the Kuranishi map
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Φ : H1
A0,h(Y ; su(2))∼= R⊕ C → H1

A0,h(Y , ∂Y ; su(2))∼= C

whereΦ is defined as follows (see [H1], Section 6.4, for details). The implicit
function theorem gives a mapψ : H1

A0,h(Y ; su(2))→ ∗dA0,hΩ
1
τ (Y ; su(2)) (hereτ

denotes the Dirichlet boundary conditions) such that

Πkerd∗A0
ζh(A + α + ψ(α)) ∈ H1

A0,h(Y , ∂Y ; su(2)).

The mapΦ is defined byΦ(α) = Πkerd∗A0
◦ ζh(A + α + ψ(α)). These maps are

StabA0
∼= U (1) equivariant. The linearization ofΦ at (t , 0) in the C direction,

composed with inclusion of relative cohomology into absolute, is equal toHt .
One would like to argue thatΦ is a 1-parameter family of gradient vector fields
on C (here we identify the relative and absoluteC valued cohomology through
the inclusion of relative into absolute) and hence must be, up to change of
coordinates,Φ(t , z) = tz.

The vector fieldΦ(t , z) may not be a gradient vector field onC, however.
Recall from [H1] that− 1

2π ∗F (A) +∇h(A) is not theL2 gradient of a function on
A, but rather the gradient of a section of aU (1) bundle defined with respect to a
connection on that bundle. This connection, restricted to the graph of the function
from H1

A0,h(Y ; su(2)) to A given byα 7→ A0 + α + ψ(α), may not be flat. Thus
the gradient with respect to this connection may not in fact be a conservative
vector field.

The difficulty is to rule out families of vector fields onC such as

(t , x, y) 7→ (tx − y(x2 + y2)n, ty − x(x2 + y2)n),

which is U (1) equivariant and has the same linearization alongR ⊕ {0}, but
has no zeros offR⊕ {0}. The existence of such families was pointed out to the
author by Eric Klassen.

To avoid this difficulty we propose a somewhat different argument. Consider
the closed manifoldY0 obtained by 0-surgery onY . In this setting,−∗ 1

2πF (A) +
∇h(A) is truly theL2 gradient of CS(A) + h(A) : A → R, where CS denotes the
Chern-Simons function, given by

CS(A) =
1

4π

∫
Y0

tr(dA∧ A +
2
3

A∧ A∧ A).

We establish the existence of a family of irreducible connections onY0 whose
restrictions toY are flat and which limit to the orbit [A0] as required. In addition,
we can describe the position of the image of the nearby irreducible orbits in the
pillowcase.

3.2 The picture on Y0

In this subsection we consider connections on a closed manifoldY0. We begin
with a completely general description of the perturbed flat moduli space near
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a flat connection (with no assumptions of nondegeneracy), and then add the
nondegeneracy assumptions 1–3 as needed.

As before for manifolds with boundary, letζh(A) denote−∗ 1
2πF (A) +∇h(A)

and XA = {A0 + a| d∗A0
a = 0}. For any closed subspaceW ⊂ Ω1(Y0; su(2)),

denote byΠW the orthogonal projection ontoW. The next lemma describes the
Kuranishi picture for the perturbed flat moduli space near [A0]. For a proof see
[H1], Section 6.4, or [M-M-R], Section 12.1.

Lemma 13. Let A0 be a smooth perturbed flat connection. There exist:

(a) a Stab(A0) equivariant neighborhood VA0 of 0 in H1
A0,h(Y0; su(2)),

(b) a G equivariant neighborhood UA0 of A0 in A,
(c) a Stab(A0) equivariant real analytic embedding

φ : VA0 → XA

whose differential at0 is just the inclusion ofH1
A0,h(Y0; su(2)) into

kerd∗A0
∩Ω1(Y0; su(2)), and

(d) a Stab(A0) equivariant map

Φ : VA0 → H1
A0,h(Y0; su(2))

such thatφ mapsΦ−1(0) homeomorphically onto the zero set ofζh|XA∩UA.

The mapφ is defined byφ(α) = A0+α+ψ(α) whereψ(α) ∈ ∗dA0Ω
1(Y0; su(2))

solves

Π∗dA0Ω
1(Y0;su(2))(∗dA0ψ(α) + ∗1

2
[α + ψ(α) ∧ α + ψ(α)]) = 0.

In other words, the graph ofψ has the property that for anyα ∈ VA0,

Πkerd∗A0
ζh(A0 + α + ψ(α)) ⊥ ∗dA0,hΩ

1(Y0; su(2)).

The mapΦ is given by

Φ(α) = Πkerd∗A0
ζh(A0 + α + ψ(α)).

Assumption 1:Assume thatY0 is the zero framed surgery on the knot complement
Y . Let [A0] ∈ MU (1)

h (Y0) and assume thatH1
A0,h(Y ; R) ∼= R, which guarantees

that MU (1)
h (Y) meets nondegeneracy condition (c) near [A0]. Finally, assume

thatH1
A0,h(Y ; C) is nonempty and the graphs of the eigenvalues of the family of

bilinear formsHt defined earlier are transverse to zero att = 0 and all cross it
in the same direction.

Proposition 14. There is an additional perturbation which does not change the
topological structure ofMh(Y) near[A0], but changes its image in the pillowcase
by a diffeomorphism of the pillowcase (minus the corners) in such a way that the
new abelian arc lines up with the flat connections on the Dehn filling in Y0. After
performing this perturbation, all the perturbed flat abelian connections on Y near
[A0] extend over Y0 as perturbed flat connections.
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Proof: The proof uses the description of perturbed flat connections in Lemma
61, [H1]. If the abelian stratum around [A0] maps into the pillowcase to a curve
which is transverse to the circles{holµ = constant}, then by doing an additional
perturbation using a curve in a tubular neighborhood of the boundary torus∂Y
we can make this piece of the abelian stratum lie on the{holλ = id} arc in
the pillow case. Specifically, choose the curve to be a meridian with framing a
parallel meridian in the sameT2 ⊂ T2 × [0, 1] (implicit in the definition of an
admissible function is a choice of framings of the images of the solid tori), and
choose the function of trace appropriately.

If the tangent direction to the abelian stratum at [A0] is vertical, then first
do a perturbation using a trivially framed longitude to tip it slightly so that it
satisfies the former hypothesis. Then perturb as above. The key fact used to
prove this proposition is that a perturbation using a trivially framed longitude
and or meridian changes the picture ofr : Mh → MT2 by a diffeomorphism
of MT2 \ {centrals}, so this doesn’t affect any of the properties ofM which
concern us here. ut
Proposition 15. The additional perturbation in the Proposition 14 does not alter
the cohomology of Y at A0, nor does it affect the transversality condition on the
eigenvalues of Ht .

Proof: Let h denote the “background” perturbation onY and let h′ be the
perturbation function constructed in the previous proposition. We identify or-
bits of (h + h′)-perturbed flat connections onY with the pairs of orbits of
([A], [A′]) ∈Mh(Y)×Mh′ (T2× [0, 1]) which agree on the torus∂Y = T2×{0}.

We sketch the proof, leaving the details as an exercise for the reader.A0

extends uniquely (up to gauge) overY∪(T2×[0, 1]) to a perturbed flat connection.
We shall use the same notation for this extension.

H1
A0,h′ (T

2 × [0, 1]; su(2)) is two dimensional, and the restriction map to the
cohomology of either boundary component is a surjection. The way to see this
(in the harder case, whenh′ consists of two perturbation curves) is to consider
first H1

A0,h′ (T
2 × [0, 1] \ {the two perturbation curves}; su(2)), which equals the

ordinary real cohomology of this space withR coefficients (4-dimensional). Then
use a Mayer Vietoris argument to check that the subspace consisting of coho-
mology classes whose restrictions to the boundaries of the perturbation curves
lie in the image of the (perturbed) cohomology on the solid tori has the required
properties. (Note that the second claim does not contradict the fact that the image
of H1

A0,h′ (T
2 × [0, 1]; su(2)) under restriction must be a Lagrangian subspace of

the direct sumH1
A0,h′ (T

2 × {0} ∪ T2 × {1}; su(2)) with its symplectic structure.
This symplectic structure is the difference of the pull backs of the two pillowcase
symplectic structures because the orientations on the tori differ. The Lagrangian
property is then easily verified.)

The Mayer Vietoris sequence applied toY ∪ T2 × [0, 1] now implies that
H1

A0,h+h′ (Y ∪T2× [0, 1]; su(2))∼= H1
A0,h(Y ; su(2)), and similarly for relative first

cohomology. In addition, it implies that relative 1-dimensional classes on the
union are represented by forms which are exact onT2 × [0, 1]. The signs of the
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derivatives of the eigenvalues ofHt as they pass through 0 are detected by the
cohomology pairing onH1

A0,h+h′ (Y ∪ T2 × [0, 1]), which agrees with the one on
Y (see [H2], Section 4). ut

By Propositions 14 and 15, we can make the following assumption without
any loss of generality with regard to irreducible orbits near [A0].
Assumption 2:The abelian perturbed flat connections onY in the arc through
[A0] extend over the 0-surgeryY0.
Remark:This is not a generic situation; reducible and irreducible orbits onY0 are
isolated for generic perturbations. We are deliberately putting ourselves in this
degenerate situation. Also, there is nothing special about the 0-framing for the
surgery. We choose this particular Dehn filling simply because in the unperturbed
case there is no perturbation required for the abelians onY to extend over this
closed 3-manifold.

For the remainder of this subsection we shall work onY0, and the connec-
tions, Chern-Simons function, etc., are on this closed 3-manifold unless otherwise
specified. We shall use the same notation to denote the perturbed flat connections
on Y0 as their restrictions toY .

We can assume after gauge transformation thatA0 takes values in the fixed
1-dimensional subspaceR ⊂ su(2), and that holµA0 = exp(iα) for 0 < α < π.
The stabilizerU (1) action onsu(2) valued forms is compatible with our decom-
position su(2) = R ⊕ C. In particular, the perturbed flat de Rham cohomology
decomposes accordingly,H1

A0,h(Y0; su(2)) =H1
A0,h(Y0; R)⊕H1

A0,h(Y0; C).

Proposition 16. Any perturbed flat abelian connection on a 3-manifold is gauge
equivalent to a smooth connection.

Proof: So long ash is smooth, this follows from a standard argument using
elliptic regularity. In caseh is not smooth, thenA is still gauge equivalent to a
smooth connection off the perturbation solid tori. On the solid tori,A can be put
into the canonical form described in Corollary 62, [H1], which is smooth.ut

AssumeA0 is smooth. Consider the Kuranishi picture nearA0. Let α0 be
a nonzero element ofH1

A0,h(Y0; R) = T[A0]MU (1) which points away from the
trivial connection. Then the abelian stratum near [A0] is parameterized byAt =
A0 + tα0 + ψ(tα0, 0).

Let Ht (Y0) denote the family of Hermitian bilinear forms onH1
A0,h(Y0; C)

given by

Ht (Y0)(β1, β2) = 〈∗dAt ,hβ1, β2〉L2(Y0).

The spectral flow ofHt (Y0) coincides with that ofHt (Y).

Proposition 17. The linearization ofΦ at (tα0, 0, . . . , 0) in the Cn direction
agrees with Ht to the order of t2. In particular, these two families of symmet-
ric bilinear forms onH1

A0,h(Y0; C) have the same spectral flow. The transversality
requirement on the eigenvalues of Ht implies the same forΦ∗(tα0, 0).
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Proof: Recall that

Φ(α, β) = Πkerd∗A0
(∗dA0,hψ(α, β) + ∗1

2
[(α, β) + ψ(α, β) ∧ (α, β) + ψ(α, β)]).

The linearization ofΦ at (α, 0) takes a tangent vectorβ in theH1
A0,h(Y0; C)

direction to

Φ∗(α, 0)(β) = Πkerd∗A0
(∗dA0,hψ∗(α, 0)(β) + ∗[(α, 0) +ψ(α, 0)∧ β + ψ∗(α, 0)(β)]).

Thus

〈Φ∗(tα0, 0)(β1), β2〉 = 〈∗[(tα0, 0) +ψ(tα0, 0)∧ β1], β2〉 +

〈∗[(tα0, 0) +ψ(tα0, 0)∧ ψ∗(tα0, 0)(β1)], β2〉.
The first term is exactlyHt (α, β).
Sinceψ is a real analytic map andψ(0, 0) = 0 andψ∗(0, 0) = 0, there is a

constantC such that, whenever‖tα0‖L2
2
≤ 1,

‖ψ(t , α0, 0)‖L2
2
≤ Ct2

and
‖ψ∗(tα0, 0)(β)‖L2

2
≤ Ct2‖β‖L2

2
.

By the Multiplication Theorem for Sobolev spaces,

‖ ∗ [tα0 + ψ(tα0, 0)∧ ψ∗(tα0, 0)(β)]‖L2 ≤ C ′t2‖β‖L2
2
.

ut
We now make our final assumption and prove Theorem 12.

Assumption 3:Suppose now, in addition, thatH1
A0,h(Y , ∂Y ; su(2)) has complex

dimension 1. By Theorem 8, for generich, this is the case at each abelian orbit
where this cohomology is nonempty.

Proof of Theorem 12:When the extra cohomology atA0 is only of complex
dimension 1, the StabA0 invariance becomes a much stronger condition on the
function (CS +h) ◦ φ. Let β0 be a nonzero element ofH1

A0,h(Y0; C). Then (CS +
h) ◦ φ(tα0, rei θβ0) depends only ont and |r |.

To complete the proof, we perturb once again, so that the abelian parts of
Mh(Y) and M(S1 × D2) no longer match up. For simplicity, we leave the
existing perturbation onY alone and add a new function of trace of holonomy
around the Dehn filling core to CS +h. Basically, we want to gradually sweep
M(S1 × D2) across the pillowcase to detect which irreducible orbits inMh(Y)
have images on either side ofr (MU (1)

h (Y)).
Choose an admissible functionh′ : A(Y0) → R defined using the core of the

Dehn filling in such a way that〈∇(h′ ◦ φ)(tα0, 0)), α0〉 = 1 andh′ ◦ φ(0, 0) = 0.
Explicit computation of the gradient ofh′ shows that we can takeh′ to be an
appropriatedecreasingfunction of the trace of the holonomy around the core in
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the same direction asλ (an increasing function would force〈∇h′, α0 〉 < 0).
The crucial observation is that any connection onY0 which is h + h′ perturbed
flat restricts toY to give anh perturbed flat connection.

Consider the functionfε(t , r ) = (CS +h + εh′) ◦ φ : R⊕ C → R. Then

fε(t , r ) = f0(0, 0) + εt +
λ(t)

2
r 2 + O(t2r 2) + O(r 4).

The lower order terms depend not only ont and r but also onε.
A local model for the flat moduli space ofY near [A0] is the quotient by the

Z2 symmetry (r 7→ −r ) of the set

{(t , r )| ∂fε(t , r )
∂t

=
∂fε(t , r )
∂r

= 0 for someε}.

This set is the union of{(t , 0)} and the image under projection onto the (t , r )
coordinate plane of

N = {(t , r , ε)| r /= 0,
∂fε(t , r )

∂t
=

1
r
∂fε(t , r )
∂r

= 0} ∪ {(t , 0, 0)}.

Let P = (P1,P2) : R3 → R2 whereP1(t , r , ε) = ∂fε(t,r )
∂t and

P2(t , r , ε) =

{
λ(t) r = 0
1
r
∂fε(t,r )
∂r r /= 0

The linearization ofP at (0, 0, 0) is

DP(0, 0, 0) =

[
0 0 1

λ′(0) ∗ 0

]
.

The implicit function theorem now implies that there are smooth functionsε(r )
and t(r ) such that forr small, (t(r ), r , ε(r )) parameterizesN near (0, 0, 0). This
shows that, up to gauge equivalence, there is a smooth 1-dimensional family of
irreducible connections onY limiting to [A0].

The calculation above implies slightly more. Sinceε′(0) = t ′(0) andε′′(0) /= 0
it follows that the family of irreducible orbits leaves the abelian stratum trans-
versely (in the pillowcase). ut
Proof of Corollary 3:We first prove the corollary under the additional assumption
(3). Notice that thet component of∇fε(t , r ) has no zeros whenε = 0 or ε has
the same sign asλ′(0). It suffices then to determine the position of the perturbed
flat connections on the Dehn filling in terms of the sign ofε.

As was noted above, in order for the perturbation functionh′ to satisfy
〈∇h′ ◦ φ, α0 〉 > 0, h′ must be a decreasing function of trace of the holonomy
around the Dehn filling core. This has the effect thatεh′ perturbed flat connections
on the Dehn filling are mapped to the front of the pillowcase, that is, the side
where (µ, λ) 7→ (exp(iτ ), exp(iσ)) for 0 < τ < π and 0< σ < π, when ε < 0
and to the back whenε > 0.
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Without assumption (3), we can make a similar argument. Letλi (t), i =
1, . . . , n, be the eigenvalues ofHt (Y0). Let β1(t), . . . , βn(t) be a 1-parameter
family of bases of corresponding eigenvectors forH1

A0,h(Y0; C). and let

r (tα0, (x1 + iy1)β1, . . . , (xn + iyn)βn) = (x2
1 + y2

1 + · · · + x2
n + y2

n)
1
2 .

This time the function (CS +h) ◦φ(tα0, (x1 + iy1)β1, . . . , (xn + iyn)βn) has the
form

n∑
i =1

λi (t)
2

(x2
i + y2

i ) + O(t2r 2) + O(r 3).

The t component of the gradientΦ is

n∑
i =1

λ′i (t)
2

(x2
i + y2

i ) + O(tr 2) + O(r 3).

Consideration of the same family of perturbations now completes the proof.ut
Remark:The assumption that the spectral flow is only in one direction is neces-
sary to conclude that there are no irreducible representations which take the lon-
gitude to the identity nearρα. For example, ifY is the complement of the square
knot, then there is a component ofM∗(Y) which limit to orbits inMU (1)(Y) and
whose image inMT2 coincides with that of (part of)MU (1)(Y). In this example,
the total spectral flow ofHt through these abelian limit points is zero. By taking
a composite of two right handed and one left handed trefoils, however, we get
an example of this behavior where the spectral flow is algebraically nonzero.

Proof of Corollary 4:Suppose there exists anα satisfying the hypotheses. Theo-
rem 12 says that there is a continuous family of irreducible flat orbits limiting to
the flat abelian orbit corresponding the representationµ 7→ exp(iα). By Corol-
lary 3, the image of this irreducible family in the pillowcase is on one side of
the abelian arc holλ = id. Before perturbation,r (M(Y)) is symmetric under the
involution (holλ, holµ) 7→ (holλ,−holµ) (as can be seen from the Wertinger pre-
sentation of the fundamental group). This symmetry implies that the irreducible
moduli space limits to the abelian arc from both sides. Thus for|n| large enough,
this family of irreducible representations ofπ1Y must intersect the curve of slope
± 1

n in the pillowcase, which corresponds to the set of representations ofπ1T2

which extend over the corresponding Dehn surgeries. ut

4 General existence theorem

In this section we use Theorem 12 to prove Theorem 1.
Proof of Theorem 1:Find a collection of curves inY satisfying the conclu-
sion of Proposition 9, and letU and U1 be as in Theorem 10. Choose a path
hs : [−ε, ε] → U with h0 = 0 which is transverse toU1. We can takeε small
enough thatMhs is nondegenerate when 0< s ≤ ε.
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Let A0,0 be the flat abelian connection with holµA = exp(iα). There is a 2-
parameter family of abelian connectionsAs,t near the connectionA0,0 such that
[As,t ] ∈MU (1)

hs
. Let

Hs,t (β1, β2) = 〈∗dAs,t ,hsβ1, β2〉
be the corresponding 2-parameter family of bilinear forms onH1

A0,0
(Y ; C).

Let B be an arbitrarily small ball aroundr [A0,0] in MT2. By shrinkingB and
ε if necessary, we can assume there is aδ > 0 such that

1. for (s, t) ∈ [0, ε] × [−δ, δ], detHs,t = 0 impliesr [As,t ] ∈ B.
2. for s ∈ [0, ε], r [As,±δ] /∈ B.
3. for s ∈ [0, ε], each curve{r [As,t ]| t ∈ [−δ, δ]} intersectsB.

Loosely speaking, the family of perturbations separates the spectral flow
points along the abelian stratum but still keeps their images in the pillowcase in
the small ballB.

Let M∗
hs

denote the closure of the irreducible stratum ofMhs , i.e., the irre-
ducible stratum compactified by adding the abelian limit points. For all 0< s ≤ ε,
r (M∗

hs
) consists of an immersed compact 1-manifold with an odd number of end-

points in the interior ofB. Thereforer (M∗
hs

) ∩ ∂B /= ∅ for all 0 < s ≤ ε.

By Proposition 11,r (M∗
{hs}) ∩ ∂B (wheres ranges over [0, ε]) is compact,

and hencer (M∗
h0

)∩∂B = r (M∗
)∩∂B /= ∅. Since the same is true for arbitrarily

small B, [A0,0] is in M∗
. If there were no continuous path inr (M∗

) connecting
[A0] to ∂B, then we could separate [A0] and r (M∗

) ∩ ∂B by a continuous loop
γ : S1 → (B \ r (M∗

)). The above argument showing thatr (M∗
)∩∂B /= ∅ could

then be applied tor (M∗
) ∩ γ(S1) to give a contradiction. ut

Proof of Corollary 2:Under the hypothesis of the corollary,

∆(t) = (t − t0)pg(t)

for some unit complex numbert0, odd integerp, and functiong(t) which is
nonzero and holomorphic on some neighborhood oft0. Parameterize the unit
circle neart0 = eis0 by

eis = eis0 + r (s)ei θ(s)

wherer (s) changes sign ats = s0.
Since∆(eis) = r (s)peipθ(s)g(t0+r (s)ei θ(s)) is a real valued function,eipθ(s)g(t0+

r (s)ei θ(s)) is real valued (and nonzero). Thus∆(eis) changes sign sincer (s)p does.
To complete the proof, note that

detB(t2) = det((t−1 − t)A(t2)) = (t−1 − t)2g det(A(t2))

is a nonzero real valued function multiplied by∆(t2), so if ∆(t2) changes sign
then an odd number of eigenvalues ofB(t2) must also change sign. ut
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