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1 Introduction

The purpose of this paper is to establish the existence of irredusiif2) repre-
sentations of knot complement fundamental groups near abelian representations
where the equivariant knot signature changes. For knotS3jnFrohman and
Klassen showed the existence of irreducible representations near abelian rep-
resentations corresponding to simple roots of the Alexander polynomial. They
raised the question whether an analogous result holds for multiple roots (see
[F-K]). This paper gives a more general existence result for knots in homology
spheres. It will be shown that if the Tristam-Levine equivariant signature of a
knot takes different values on opposite sides of a root of the Alexander polyno-
mial, then there exist irreducible representations near the corresponding abelian
representation. This condition holds, for example, for any knot whose Alexander
polynomial has a root of odd multiplicity on the unit circle @

Let Y be the complement of an open tubular neighborhood of a knot in a
homology sphere. Fix an orientation & Choose a longituda for Y; this is a
simple closed curve ifY representing a primitive elementdi (Y ; Z) which is
null homologous irY . Also choose a meridiamn, i.e., a simple closed curve &Y
representing a generator fBlr (Y ; Z). We require thaj - A = 1 with the induced
orientation orT2 = Y . (We use the convention th&(dY )@ (outward normgl =
TY))

Let F be a Seifert surface with boundaky and choose an orientation of the
normal bundle of in Y. If {X }1<i<, is a basis foHi(F;Z), let " denote the
pushoff ofx; in the positive normal direction. Define the linking mathik by
Vij = k%, ")
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The symmetrized Alexander matrix fof is the matrix
At)=tzV —t—2VT.

ConsiderB(t) = (L—t)V +(1—t~1)VT. Note thatB(t) = (t—2 — tz)A(t), so the
complex valueg # +1 for which B(t) is singular are exactly the roots of the
Alexander polynomialA(t) = det(t).

If t is a unit complex number, thaB(t) is a Hermitian matrix and hence has
only real eigenvalues. The equivariant knot signatur¥ adenoted by SigR(t?),
is the function fromU (1) to Z takingt to the number of positive eigenvalues
minus the number of negative eigenvalues Bgt?), counted with multiplicity.
(See [K-K-R] or [H2] for details.) This function is independent of the choice of
F,{x}, and normal bundle orientation, and it changes sign if the orientation on
Y is reversed. The relationship betweB(t) and the Alexander matrix implies
that SigrB(t?) is continuous it € U (1) except possibly at square roots of roots
of the Alexander polynomial. Note that SB(i) = 0.

Leti,j,k denote the standard orthonormal basis o§2) corresponding to
the identification ofSU(2) with the space of unit quaternions. We shall consider
U(1) = {exp@d)} C SU(2), and we make the identifications spar§ R and
spanj, k) = C.

We now state the main result in this paper. For eachc v < m, let
pa - 1Y — SU(2) be the abelian representation takjmgo exp{c).

Theorem 1. For any unit root &%~ of A(t) where the right and left hand limits
limg_ o+ SignB(e'?%) do not agree, there is a continuous family of irreducible
SU(2) representations of1(Y) limiting to p,,.

Corollary 2. For any odd multiplicity root & of A(t), there is a continuous
family of irreducible SU2) representations of1(Y) limiting to p,,.

Remark:There are examples of prime knots for which the Alexander polynomial
has only roots of odd multiplicity (greater than 1) on the unit circle and for
which the Casson invariatt (x) = 0. An example can be constructed as follows.
Let A(t) = (t — 1 +t71)3(—t + 3 —t~1)3 be the Alexander polynomial of the
composite of 3 trefoils and 3 figure eight knots. Kondo’s construction in [Ko]
gives a prime knot with this as its Alexander polynomial. The Casson invariant
is 0 and deB,.(t2) changes sign at = e's since A(t?) does. (The reason we
look for a prime knot for an interesting example is that if either of the knots
in a composite has a family of irreducible representations limiting to an abelian
representation, then, by a simple gluing argument, the composite does also.)

In the course of proving the main result we shall also prove the following
fact.

Corollary 3. Suppose for somé < a < = the matrix Be'?*) has nontrivial
kernel, and suppose that, agtU (1) moves through the valué all eigenvalues
of B(t?) touching zero cross zero transversely, and all do so in the same direction.
Then all of the irreducible representatiopsiear p, send\ to expo(p)) for some
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smallo(p) # 0, where the sign af (p) corresponds to the direction the eigenvalues
go throughO.

Corollary 4. If x is a knot in a homology sphere and there exists any value
0 < «a < 7 satisfying the hypotheses of Corollary 3, then for n sufficiently large,
both the homology spheres obtained jayand fﬁ surgery onx have nontrivial
SU(2) representations.

We now outline the proof of the main theorem. First identify the set of
representations of1(Y) into SU(2) modulo conjugation with the moduli space
of flat SU(2) connections orY x SU(2) modulo gauge equivalence. We show
that for arbitrarily small perturbations of the flatness equation the perturbed flat
moduli space contains irreducible connections. Using a limiting argument, we
show that this property continues to hold for the unperturbed flat moduli space.

The paper is organized as follows. Section 2 contains basic results about per-
turbing the flatness equation and the perturbed flat moduli space for 3-manifolds
with torus boundary. Subsection 3.1 contains a statement of the basic existence
theorem for irreducible perturbed flat connections under certain assumptions of
nondegeneracy. Subsection 3.2 provides a proof of this result. A proof of Corol-
lary 3 is also given in this subsection. Section 4 then provides proofs of our main
result along with Corollaries 2 and 4.

2 The structure of the flat moduli space

We begin by describinU(2) gauge theory on 3-manifolds with torus boundary,
recalling results from [H1].

Let .4 denote the space of connectionsYor SU(2). Given a fixed trivializa-
tion of this principal bundle, we may identif# with the space oéu(2) valued
1-forms onY, £2%(Y;su(2)). We complete this space using thgSobolev norm.

Let G = Aut(Y x SU(2)) be the gauge group, with th& completion. To each
connectionA is associated its curvature 2-forf(A) = dA+AA A, andA is said
to be flat if F(A) = 0.

The flat moduli space is the quotientt = F~1(0)/G. There is a standard
method of perturbing the flathess equation in order to obtain a moduli space
which is nondegenerate (nondegenerate will be given a precise definition below),
used, for example, in [T], [F], and [H1]. We sketch it below; see [H1] for more
details.

Let { : S' x D? — Y }i<i<n be a collection of embeddings of the solid
torus intoY whose images are disjoint. Letbe the product of a nonnegative
bump function orD? with support in the interior and the standard volume form
onD? Let{h; : R — R}1<i<n be a collection ofC? functions. Let tr hol, (x, A)
be the trace of the holonomy of the connectaround the curvey; (St x {x}).

We define a functiorh : A — R by the formula

h@ =3 /D hi(er hol,, (x, A)n(x).
i=1
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Definition 5. A function h constructed in this way is called admissible per-
turbation function .

Now fix a Riemannian metric oM, and letx denote the Hodge star operator
on su(2) valued forms. Given an admissible perturbation functipmve define

¢h(A) = — ZJ;TF(A) + Vh(A),

whereVh denotes thé.? gradient ofh.

Definition 6. A connection A is callegerturbed flat if it satisfies the equation
(h(A) = 0. Theperturbed flat moduli spaceof Y is

M =G H0)/G.

We shall sometimes write\(Y) to avoid confusion with the perturbed flat
moduli space of the zero surgery 8 which is denoted by, (Yo).

The structure of the perturbed flat moduli space for a 3-manifold with bound-
ary was described in [H1]. We now summarize the results for the case when the
boundary is a torus. Letdan = x,.da — Hes$i(A). Let Hj,(Y;su(2)) and
H}th(Y,aY;su(Z)) be (the harmonic spaces representing) the first and second
cohomology groups of the following elliptic complex (where the grading goes
0,1,2,3):

0 — 2°0Y;su2) & 2XY:su(2)) gy 2Y(Y; su(2)) % 2°(Y; su(2)) — 0.

Let M;;, MP @ and M3U@ denote the portions oM, consisting of irre-
ducible, abelian (noncentral), and central orbits, respectively.

Definition 7. The perturbed flat moduli spagef, is nondegeneratsf it satisfies
the following 5 properties (and otherwislegenerats:

(a) There are no noncentral orbits iMy, which are central when restricted to
aY .

(b) For every[A] € MY, Han(Y,0Y;su(2)) =0,

(c) For all but finitely many orbit§A] € My ©, dimH3 (Y, dY;su(2)) = 0, and
for the remaining abelian orbitslimHii,h(YﬁY;su(Z)) = 2 and StalA acts
nontrivially onH3 (Y, 8Y; su(2)).

(d) At each abelian orbifA] € My® with dimH,(Y,dY;su(2)) = 2, the
family of Hermitian matrices H(defined below) has transverse spectral flow.

(e) For each[A] € M, dim H}\Vh(Y, aY;su2) =1

Condition (c) implies thav\/lﬁ(l) is a smooth 1-manifold. To define the
matrix H; in condition (d) we first choose a family of connectioAs with
[A] parameterizing an open set i, @ with #3, ,(Y,0Y;su(2)) nonzero.
The orthogonal complement dT[po]Mﬁ(l) in Hﬂ;o’h(Y;su(Z)) is isomorphic to
H,ﬁo,h(YﬁY; su(2)). The action of Staly gives this space a complex structure,
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and we may view it a§-l,{0_’h(Y; C). Then we define a 1-parameter family of
Hermitian forms orﬂ-[,%mh(Y; C) by the formula

Ht(aaﬂ) = <*dA{,hOé,ﬂ>-

H; is a cohomological pairing on relative cohomology. When the complex di-
mension of this cohomology is H; is simply a real scalar, i.e.,

Hi(a, B) = A(t)<a7 6>

for some real valued functioi(t). Condition (d) requires that’(0) # 0.

In the unperturbed situation, a jump Hi(Y ; su(2)) occurs (for abelian con-
nections) exactly at connections with meridinal holonomy conjugate tpAtel
exp(d) where B.(e'?’) has a zero eigenvalue. The spectral flowBaf(e'??)
through such a point is the negative of the spectral floudo{see [H2]).
Remark:The second part of condition (c) insures that”® is smooth even at
the points where the cohomology jumps.

The flat moduli space for the torus is equalAdr. = T?/Z,, known as the
pillowcase. It is topologically a 2-sphere, but has 4 “corners” corresponding to
the central orbits, i.e., the fixed points of the involution. There is a restriction
mapr : Mp — M.

Theorem 8. (Theorem 15 and Corollary 24, [H1]M}, is compact. IfMy, is non-
degenerate, then it has the following structute;"® consists of 2 pointsit, )

is a smooth 1-dimensional manifold, compact except for two open ends which lim-
iting to the central orbits.M;; is a 1-dimensional manifold, compact except for
open ends which limit to distinct points oty © where dim3 (Y, 9Y; su(2)) =

2. Each such abelian orbit where the relative cohomology jumps is the limit of
exactly one such irreducible end. The restriction map r is an immersion on each
stratum.

Remark: The structure of the flat moduli space around the bifurcation points,
where the irreducible stratum meets the abelian stratum, is the foundation of the
existence result in this paper. There is a gap in the proof in [H1], so we state
this claim as Theorem 12 and provide a complete proof in Section 3.

Given a flat abelian connectiof, let Sym), denote the set of symmetric
bilinear forms orfHx(Y, dY; su(2)) which are Stahinvariant. Given a collection
of n disjoint embedded loop§/; }1<i<n, let

D tr hol, : R" — Hom(HA(Y;su(2)),R)

be the linear function which takes the vectbi,( . . by) to the homomorphism
)
i hol, (A + -0-
o iZ:l:bl g (I hols (A+sa))ls=o

Similarly, let D2 tr hol, : R" — Sym, be the linear function which takes the
vector g, ...b,) to the bilinear form



26 C.M. Herald

n 82
(B1,B2) — > by (tr holy, (A + SP31 +t3))|s=t=0.
v .21: dsot ‘ 1% 152))|s=t=0

Proposition 9. (Lemma 38, Lemma 60, and Theorem 15, [H1]) There is a finite
collection of disjoint embedded l00g$; }1<i<n With the following properties:

1. For all irreducible flat connections A the map
D tr hol,, : R" — Hom(H&(Y; su(2)), R)

is surjective.
2. For all abelian flat connections A the map

D tr hol, @ D?tr hol, : R" — HomHA(Y; R) @ Sym
is surjective.

Choose a collection of loopf; } as in the previous proposition and lgf; }
be a corresponding collection of embeddings of solid tori into disjoint tubular
neighborhoods of the loops. Lét= C?(R,R) and & = &". Let &1 C € be the
subset of n-tupleshg,...,h,) for which the associated perturbed flat moduli
space is degenerate.

Theorem 10. (Theorem 15, [H1]) There is a neighborhood U (6f...,0) € H"
such that Y =& NU has codimension 1.

For any pathh; : [0,¢] — U, define
M{ht} = {([A]vt) € A/g X [076:” Cht(A) = 0}

Proposition 11. (Proposition 49, [H1]) My is compact.

3 Existence of irreducible orbits in the nondegenerate case
3.1 Statement of the theorem and some comments

The existence theorem in the nondegenerate situation is the following.

Theorem 12. Suppose that in some neighborhood of an abelian dihil €
Mﬁ(l) with nonzeroH,{om(Y,aY;su(Z)) the nondegeneracy conditions (c) and
(d) are satisfied. Then there is a neighborhoodU4/G of [Ag] such that LN A,

is a smooth arc with one open end limiting[#]. The tangent space to the image
of U N M;, is transverse to that oM} ™ in the pillowcase.

This theorem will be proved in the next subsection by a somewhat indirect
route. We discuss here what goes wrong with the more direct approach.

The perturbed flat moduli space near an abelian ofjt is homeomorphic
to the zero set of the Kuranishi map
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@ H n(Y:su(2)) = R@® C — Hy (Y, 0Y;su(2)) > C

where @ is defined as follows (see [H1], Section 6.4, for details). The implicit
function theorem gives a map : H}\O’h(Y; SU(2)) — *da, n21(Y; su(2)) (herer
denotes the Dirichlet boundary conditions) such that

Hicerg; h(A+ + () € Hi, n(Y, OY; sU(2)).

The map® is defined by®?(«a) = H"erd/?o o (h(A+ a + (). These maps are
Stabhy = U (1) equivariant. The linearization @ at (,0) in the C direction,
composed with inclusion of relative cohomology into absolute, is equél;to
One would like to argue thak is a 1-parameter family of gradient vector fields
on C (here we identify the relative and absol®@evalued cohomology through
the inclusion of relative into absolute) and hence must be, up to change of
coordinates®(t, z) = tz.

The vector field®(t,z) may not be a gradient vector field @, however.
Recall from [H1] that— 217-\' *F(A)+Vh(A) is not theL? gradient of a function on
A, but rather the gradient of a section obg1) bundle defined with respect to a
connection on that bundle. This connection, restricted to the graph of the function
from H%\om(Y? su(2)) to A given by a — Ag + o + ¢(a), may not be flat. Thus
the gradient with respect to this connection may not in fact be a conservative
vector field.

The difficulty is to rule out families of vector fields dd such as

(t,X,y) = (X — y(x* +yH)" ty — x(x? +y?)"),

which is U (1) equivariant and has the same linearization aléhg {0}, but
has no zeros ofR & {0}. The existence of such families was pointed out to the
author by Eric Klassen.

To avoid this difficulty we propose a somewhat different argument. Consider
the closed manifoldy obtained by O-surgery o¥i. In this setting,— 21‘;1' F(A)+
Vh(A) is truly theL? gradient of CS4) + h(A) : A — R, where CS denotes the
Chern-Simons function, given by

CSQ) = 1 / tr(dAAN A+ 2A/\ ANAA).
47T Yo 3
We establish the existence of a family of irreducible connection¥pwhose
restrictions toy are flat and which limit to the orbit¥] as required. In addition,

we can describe the position of the image of the nearby irreducible orbits in the
pillowcase.

3.2 The picture on ¢f

In this subsection we consider connections on a closed manpldVe begin
with a completely general description of the perturbed flat moduli space near



28 C.M. Herald

a flat connection (with no assumptions of nondegeneracy), and then add the
nondegeneracy assumptions 1-3 as needed.

As before for manifolds with boundary, I€t(A) denote— x 2fTF(A) +Vh(A)
and Xa = {Ao +a| dia = 0}. For any closed subspadt C 2(Yo;su(2)),
denote byIly the orthogonal projection ontd/. The next lemma describes the
Kuranishi picture for the perturbed flat moduli space négt.[For a proof see
[H1], Section 6.4, or [M-M-R], Section 12.1.

Lemma 13. Let Ay be a smooth perturbed flat connection. There exist:

(a) aStab@y) equivariant neighborhood §/ of 0 in H}\mh(Yo; su(2)),
(b) a g equivariant neighborhood A of Ay in A,
(c) aStab@y) equivariant real analytic embedding

qb:VAO—)XA

whose differential atO is just the inclusion ofH}\mh(Yo;su(Z)) into
kerdx N £2*(Yo; su(2)), and
(d) a Stabf) equivariant map

@ : Vpy — Hig n(Yo: su(2))
such thatp maps®—1(0) homeomorphically onto the zero set(@fx,u,-

The maps is defined bys(a) = Ag+a+y(a) wherey(a) € xda, 21 (Yo; su(2))
solves

Ty 50500 (g 6(0) + 5 5[ +16(2) A 0+ 6(0)]) = 0.
In other words, the graph af has the property that for any € Va,,
Ilera; Ch(Ao+ a+1p(a)) L *Oag 2*(Yo; su(2)).
The map® is given by
®(a) = Herd; Ch(Ao + o+ ().

Assumption 1Assume thal is the zero framed surgery on the knot complement
Y. Let [Ao] € My P(Yo) and assume thaty ,(Y;R) > R, which guarantees
that Mﬁ(l)(Y) meets nondegeneracy condition (c) neas][ Finally, assume
thatH};mh(Y;C) is nonempty and the graphs of the eigenvalues of the family of
bilinear formsH; defined earlier are transverse to zerd at 0 and all cross it

in the same direction.

Proposition 14. There is an additional perturbation which does not change the
topological structure of\,(Y) near[Ag], but changes its image in the pillowcase
by a diffeomorphism of the pillowcase (minus the corners) in such a way that the
new abelian arc lines up with the flat connections on the Dehn fillingyirA¥ter
performing this perturbation, all the perturbed flat abelian connections on Y near
[Ag] extend over Y as perturbed flat connections.
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Proof: The proof uses the description of perturbed flat connections in Lemma
61, [H1]. If the abelian stratum arounéd] maps into the pillowcase to a curve
which is transverse to the circlé¢ol,, = constan}, then by doing an additional
perturbation using a curve in a tubular neighborhood of the boundary &fus
we can make this piece of the abelian stratum lie on {thel, = id} arc in
the pillow case. Specifically, choose the curve to be a meridian with framing a
parallel meridian in the sam&? c T2 x [0, 1] (implicit in the definition of an
admissible function is a choice of framings of the images of the solid tori), and
choose the function of trace appropriately.

If the tangent direction to the abelian stratum Ag][is vertical, then first
do a perturbation using a trivially framed longitude to tip it slightly so that it
satisfies the former hypothesis. Then perturb as above. The key fact used to
prove this proposition is that a perturbation using a trivially framed longitude
and or meridian changes the picturerof My — M. by a diffeomorphism
of M+2\ {centralg, so this doesn't affect any of the properties.bt which
concern us here. O

Proposition 15. The additional perturbation in the Proposition 14 does not alter
the cohomology of Y atpAnor does it affect the transversality condition on the
eigenvalues of H

Proof: Let h denote the “background” perturbation oh and leth’ be the
perturbation function constructed in the previous proposition. We identify or-
bits of (h + h’)-perturbed flat connections o¥ with the pairs of orbits of
([A], [A]) € Mn(Y) x Mn/ (T2 x [0, 1]) which agree on the torugY = T2 x {0}.

We sketch the proof, leaving the details as an exercise for the reagler.
extends uniquely (up to gauge) over(T?x [0, 1]) to a perturbed flat connection.
We shall use the same notation for this extension.

7-[,%0_’h,(T2 x [0, 1]; su(2)) is two dimensional, and the restriction map to the
cohomology of either boundary component is a surjection. The way to see this
(in the harder case, wham consists of two perturbation curves) is to consider
first H3 1 (T2 x [0, 1]\ {the two perturbation curvgssu(2)), which equals the
ordinary real cohomology of this space wihcoefficients (4-dimensional). Then
use a Mayer Vietoris argument to check that the subspace consisting of coho-
mology classes whose restrictions to the boundaries of the perturbation curves
lie in the image of the (perturbed) cohomology on the solid tori has the required
properties. (Note that the second claim does not contradict the fact that the image
of H}\mh,(T2 x [0, 1]; su(2)) under restriction must be a Lagrangian subspace of
the direct sunHz_ ., (T2 x {0} U T2 x {1};su(2)) with its symplectic structure.
This symplectic structure is the difference of the pull backs of the two pillowcase
symplectic structures because the orientations on the tori differ. The Lagrangian
property is then easily verified.)

The Mayer Vietoris sequence applied You T2 x [0, 1] now implies that
H,ﬁthrh/(Y UT? % [0,1]; su(2)) = Hio_’h(Y; su(2)), and similarly for relative first
cohomology. In addition, it implies that relative 1-dimensional classes on the
union are represented by forms which are exacTérx [0, 1]. The signs of the
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derivatives of the eigenvalues bk as they pass through O are detected by the
cohomology pairing om/l-\o,h+h’(Y U T? x [0, 1]), which agrees with the one on
Y (see [H2], Section 4). O

By Propositions 14 and 15, we can make the following assumption without
any loss of generality with regard to irreducible orbits ne&j.[
Assumption 2The abelian perturbed flat connections ¥nin the arc through
[Ag] extend over the O-surgeryp.
Remark:This is not a generic situation; reducible and irreducible orbit¥pare
isolated for generic perturbations. We are deliberately putting ourselves in this
degenerate situation. Also, there is nothing special about the 0-framing for the
surgery. We choose this particular Dehn filling simply because in the unperturbed
case there is no perturbation required for the abelian¥ da extend over this
closed 3-manifold.

For the remainder of this subsection we shall workYgnand the connec-
tions, Chern-Simons function, etc., are on this closed 3-manifold unless otherwise
specified. We shall use the same notation to denote the perturbed flat connections
on Yp as their restrictions td .

We can assume after gauge transformation fatakes values in the fixed
1-dimensional subspade C su(2), and that hgJA; = expa) for 0 < o < 7.

The stabilizerU (1) action onsu(2) valued forms is compatible with our decom-
positionsu(2) = R @ C. In particular, the perturbed flat de Rham cohomology
decomposes accordingl§iz, ,(Yo; su(2)) = Hz, (Yo R) ® Ha, n(Yo; C).

Proposition 16. Any perturbed flat abelian connection on a 3-manifold is gauge
equivalent to a smooth connection.

Proof: So long ash is smooth, this follows from a standard argument using
elliptic regularity. In casé is not smooth, ther is still gauge equivalent to a
smooth connection off the perturbation solid tori. On the solid #®an be put
into the canonical form described in Corollary 62, [H1], which is smoothO
AssumeAy is smooth. Consider the Kuranishi picture négr Let ag be
a nonzero element o ,(Yo;R) = TjagMY® which points away from the
trivial connection. Then the abelian stratum ne&g][is parameterized by =
Ao +tag +Y(tag, 0).
Let H;(Yo) denote the family of Hermitian bilinear forms cSH}AO’h(Yo;C)
given by

He(Yo)(B1, B2) = (*0a h /31, B2)L2(vy)-
The spectral flow oH,(Yy) coincides with that oH;(Y).

Proposition 17. The linearization of® at (tag,0,...,0) in the C" direction
agrees with K to the order of £. In particular, these two families of symmet-
ric bilinear forms onH,l%,h(Yo; C) have the same spectral flow. The transversality
requirement on the eigenvalues of ifhplies the same fob, (tayg, 0).
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Proof: Recall that

@(OZ, ﬂ) = errd;{g (*d/-\o,hd}(av 5) + ;[(av ﬁ) + w(aa /8) A (OZ, ﬂ) + 77[1(0!7 5)])

The linearization ofp at (o, 0) takes a tangent vectgt in the Hiio,h(Yo; C)
direction to

P.(a, 0)(B) = Ikerd; (¥dao ntp(ar; 0)(F) + #[(ex, 0) +p(cr, 0) A B + ¢u(r, 0)())).-
Thus

(D.(tao, 0)(B1), B2) = (*[(tao,0) +¢(tao, 0) A 1], B2) +
(*[(tao, 0) +9)(tao, 0) A Yu(taro, 0)(Ba)], B2)-

The first term is exacthH;(«a, ().
Since is a real analytic map ang(0,0) = 0 and«,(0,0) = 0, there is a
constantC such that, Whenevdﬁoon,_% <1,

l(t, a0, 0} < C2

and
4+ (tao, 0)(B)lIiz < CE(|53]l -

By the Multiplication Theorem for Sobolev spaces,

| % [t + ¥(tao, 0) A u(tao, 0)B)][|e < C't2(|5]l12-

We now make our final assumption and prove Theorem 12.

Assumption 3Suppose now, in addition, tha{,ﬁo,h(Y,aY;su(Z)) has complex
dimension 1. By Theorem 8, for genetic this is the case at each abelian orbit
where this cohomology is nonempty.

Proof of Theorem 12When the extra cohomology &, is only of complex
dimension 1, the Staly invariance becomes a much stronger condition on the
function (CS +h) o ¢. Let 5 be a nonzero element Gf/%\o,h(Yo; C). Then (CS+

h) o ¢(ta, re'? 5p) depends only om and|r|.

To complete the proof, we perturb once again, so that the abelian parts of
Mhi(Y) and M(S* x D?) no longer match up. For simplicity, we leave the
existing perturbation ofy alone and add a new function of trace of holonomy
around the Dehn filling core to CSh: Basically, we want to gradually sweep
M(S? x D?) across the pillowcase to detect which irreducible orbitsviia(Y)
have images on either side ofM} V(Y)).

Choose an admissible functidr : A(Yy) — R defined using the core of the
Dehn filling in such a way thatV(h’ o ¢)(tag, 0)), o) = 1 andh’ o ¢(0,0) = 0.
Explicit computation of the gradient df’ shows that we can takie’ to be an
appropriatedecreasingunction of the trace of the holonomy around the core in
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the same direction a& (an increasing function would forcé&Vh’, ap ) < 0).
The crucial observation is that any connectiongnwhich is h + h’ perturbed
flat restricts toY to give anh perturbed flat connection.

Consider the functioffi.(t,r) = (CS+h+eh’)o ¢ : R C — R. Then

f.(t,r) =fo(0,0) +et + Ag) r2+0(t2r?) + o(r%.

The lower order terms depend not only bandr but also one.
A local model for the flat moduli space of near ] is the quotient by the
Z, symmetry { — —r) of the set

(1) _ O(tr)

(@l "y or

= 0 for somes}.

This set is the union of(t,0)} and the image under projection onto ther{
coordinate plane of

Of(t,r) _ 10f(t,r)

N ={(t 0
{er.grgo M =

=0} U {(t,0,0)}.

Let P = (P, Pp) : R® — R? wherePy(t,r,¢) = “{") and

At) r=0
PZ(t7r7€) = { of(t,
P r#0
The linearization of? at (0 0,0) is
_ 0O 0 1

The implicit function theorem now implies that there are smooth functignys
andt(r) such that for small, ¢(r),r, e(r)) parameterizedl near (Q0,0). This
shows that, up to gauge equivalence, there is a smooth 1-dimensional family of
irreducible connections oW limiting to [Ag].

The calculation above implies slightly more. Siré@®) =t'(0) ande’(0) # 0
it follows that the family of irreducible orbits leaves the abelian stratum trans-
versely (in the pillowcase). O
Proof of Corollary 3:We first prove the corollary under the additional assumption
(3). Notice that the component ofVf.(t,r) has no zeros whea= 0 or ¢ has
the same sign a¥'(0). It suffices then to determine the position of the perturbed
flat connections on the Dehn filling in terms of the signeof

As was noted above, in order for the perturbation functivnto satisfy
(Vh' o ¢,a0 ) > 0, h' must be a decreasing function of trace of the holonomy
around the Dehn filling core. This has the effect ttdtperturbed flat connections
on the Dehn filling are mapped to the front of the pillowcase, that is, the side
where (1, \) — (exp(7),exp(c)) for 0 < 7 < 7 and 0< o < 7, whene < 0
and to the back whea > 0.



Irreducible representations for knot complements 33

Without assumption (3), we can make a similar argument. \;ét), i =
1,...,n, be the eigenvalues dfl;(Yp). Let Fi(t),...,0n(t) be a 1l-parameter
family of bases of corresponding eigenvectorsﬁd{;’h(Yo; C). and let

r(tag, (X +iy1)B, - -, (% +iyn)Bn) = (Z+y2 +--- +x2 +y2)2.

This time the function (CS ) o ¢(tag, (X1 +1y1)51, . . . , (X +iyn)Gn) has the

form
n

> Aiz(t) O +y?) +O(t’r?) +O(r?).
i=1

Thet component of the gradiemt is

Ny
> M@ +yp+ord) + o),

i=1
Consideration of the same family of perturbations now completes the praof.
Remark:The assumption that the spectral flow is only in one direction is neces-
sary to conclude that there are no irreducible representations which take the lon-
gitude to the identity negs,,. For example, ifY is the complement of the square
knot, then there is a component.&1*(Y) which limit to orbits in MY ®)(Y) and
whose image inV+2 coincides with that of (part oY D(Y). In this example,
the total spectral flow oH; through these abelian limit points is zero. By taking
a composite of two right handed and one left handed trefoils, however, we get
an example of this behavior where the spectral flow is algebraically nonzero.

Proof of Corollary 4: Suppose there exists ansatisfying the hypotheses. Theo-
rem 12 says that there is a continuous family of irreducible flat orbits limiting to
the flat abelian orbit corresponding the representation exp(«). By Corol-

lary 3, the image of this irreducible family in the pillowcase is on one side of
the abelian arc hgl=id. Before perturbatior,(M(Y)) is symmetric under the
involution (holy, hol,) — (holy, —hol,) (as can be seen from the Wertinger pre-
sentation of the fundamental group). This symmetry implies that the irreducible
moduli space limits to the abelian arc from both sides. Thusrfpolarge enough,
this family of irreducible representations of Y must intersect the curve of slope
iﬁ in the pillowcase, which corresponds to the set of representationsgTof
which extend over the corresponding Dehn surgeries. O

4 General existence theorem

In this section we use Theorem 12 to prove Theorem 1.

Proof of Theorem 1Find a collection of curves irY satisfying the conclu-
sion of Proposition 9, and le& and U; be as in Theorem 10. Choose a path
hs : [—¢,¢] — U with hg = 0 which is transverse ttJ;. We can take: small
enough thatMy, is nondegenerate when<0s < e.
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Let Ao be the flat abelian connection with hél = exp{ca). There is a 2-
parameter family of abelian connectioAs; near the connectiofg ¢ such that
[Ass] € MY®. Let

Hst (81, B2) = (xda,  n 01, B2)

be the corresponding 2-parameter family of bilinear formgiiQO(Y; o).
Let B be an arbitrarily small ball aroundA o] in M+2. By shrinkingB and
e if necessary, we can assume there 52 0 such that

1. for (s,t) € [0, €] x [-6, 6], detHs; = 0 impliesr[As] € B.
2. fors € [0, €], r[As 1s] ¢ B.
3. fors € [0, €], each curve{r[As]| t € [6,6]} intersectsB.

Loosely speaking, the family of perturbations separates the spectral flow
points along the abelian stratum but still keeps their images in the pillowcase in
the small ballB.

Let M;S denote the closure of the irreducible stratumiet,, i.e., the irre-
ducible stratum compactified by adding the abelian limit points. For &ll9< e,
r(/\/l;s) consists of an immersed compact 1-manifold with an odd number of end-
points in the interior oB. Thereforer (M;S) NoB #0 forall 0 <s<e.

By Proposition 11;(Mzhs}) N 0B (wheres ranges over [(¥]) is compact,
and hence (M )NdB =r (M )NdB # 0. Since the same is true for arbitrarily
smallB, [Ag,] is in M. If there were no continuous path M) connecting
[Ao] to OB, then we could separatéd] andr (M") N 9B by a continuous loop
v: St — (B\r(M")). The above argument showing thgiM )N dB # () could
then be applied to (M*) N ~(SY) to give a contradiction. O
Proof of Corollary 2: Under the hypothesis of the corollary,

A(t) =t —to)°g(t)

for some unit complex numbep, odd integerp, and functiong(t) which is
nonzero and holomorphic on some neighborhoodoofParameterize the unit
circle nearty = €% by

eis - eiso + r(S)eie(s)

wherer (s) changes sigh & = .
SinceA(€') = r (s)PelP?® g(to+r (s)€' ) is a real valued functiorgP?® g(to+
r(s)e'?®) is real valued (and nonzero). Thuge's) changes sign sinags)P does.
To complete the proof, note that

deB(t?) = det(t ! — t)A(t?)) = (t~1 — 1) detA(t?))
is a nonzero real valued function multiplied by(t?), so if A(t?) changes sign

then an odd number of eigenvaluesB(t?) must also change sign. O
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