LOCALIZATION IN HERMITIAN K-THEORY OF RINGS

JENS HORNBOSTEL AND MARCO SCHLICHTING

ABSTRACT. We prove localization and dévissage theorems for the hermitian K-theory of rings analogous
to well-known theorems in algebraic K-theory. Our proofs rely among others on a study of derived
categories, on a generalization of a theorem of Pedersen-Weibel to the hermitian setting and on a
cofinality result for triangular Witt groups. Applications include a proof of a conjecture of Karoubi and
algebraic Bott periodicity.

INTRODUCTION

This article is about localization and dévissage in algebraic hermitian K-theory of rings. Recall from
[Kar73, p. 308] that the hermitian K-theory space (K"(A) of a ring A with anti-involution A — A% :
a — @ and a chosen central element ¢ € A with €€ = 1 has the homotopy type of (K#(A) x B.O(A)*
where (O(A) is the infinite e-orthogonal group of A. Here (K2 (A) is the e-Grothendieck-Witt group of
A, i.e.,the Grothendieck group of the abelian monoid of isometry classes of finitely generated projective
A-modules equipped with a non-degenerate e-hermitian form. The monoid addition is given by the
orthogonal sum of hermitian forms.

In the special case of the ring A x A°? with anti-involution (a,b) — (b,a), the hermitian K-theory
space K"(A x A°) coincides with the algebraic K-theory space K(A) of the ring A. In this sense,
algebraic hermitian K-theory is a generalization of algebraic K-theory. Moreover, it is a way of studying
the homology of more general groups than the general linear group, namely the orthogonal or symplectic
group. For Karoubi, hermitian K-theory was the right framework for proving Bott periodicity theorems,
in the topological as well as in the algebraic setting [Kar73],[Kar80].

In [Gra76, p.229-232], the following theorem of Quillen was proved. Let A be aring, ¥ C A a multiplicative
subset of central non-zero divisors, and let 7x be the exact category of finitely generated ¥-torsion A-
modules of projective dimension at most 1. Then there is a homotopy fibration of K-theory spaces

K(Ts) = K(4) - K(S71A).

Our Localization Theorem 1.15 provides the analogous statement for hermitian K-theory. It states

that if 2 is invertible in A, there is a homotopy fibration
U(Tz) = K"(A) —» K"(Z71A).

Here U(Tyx) is the loop space of the classifying space of an explicit category .W(Tx) associated to the
exact category Ty equipped with the duality Exzthi( ,A) = Homa( ,X7'A/A) : Tx — TSP. The
category W(E), defined by Giffen and Karoubi, is the hermitian analogue of Quillen’s Q-construction
and is defined for any exact category with duality ([CL86], [Uri90], Remark 1.11). Applied to the category
of finitely generated projective A-modules equipped with the duality Hom 4( , A), it yields a delooping of
the homotopy fiber of the hyperbolic map K(A4) — K"(A) (Remark 1.12). So in this case our U-theory
space coincides with Karoubi’s U-theory space (U(A) of the ring A as defined in [Kar80].

In case A is commutative regular and f € A such that A/fA is regular as well, ¥ = {f™ | n € N}, we
have a homotopy equivalence U(Tx) ~ [U(A/fA) (theorem 1.19). In case A is a Dedekind domain, ¥ =
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A—{0} the multiplicative set of non-zero elements, there is a homotopy equivalence U(7x) ~ ®U(A/p)
([Hor02], Theorem 1.22). Together with our localization theorem, this proves a conjecture of Karoubi
from 1974. Namely, he conjectured the existence of a long exact sequence

e = OUL(A]p) = KM'A) » KNEZ1A) 5 0 U, _ 1 (A]p) = ...

where the sum is taken over all prime ideals p C A different from 0 [Kar74, p.393]. The sequence was
conjectured but not proved contrary to the footnote of loco citato. It can be used to explicitly compare
the higher hermitian K-groups of rings of integers and their number fields in certain cases [Hor02].

Localization and dévissage theorems are well known for K-theory [Gra76] and Witt-theory [Bal00].
Heuristically, a theorem which is true for K and Witt theory ought to be true for hermitian K-theory as
well. The link is provided by the “Karoubi induction principle” (5.20). The induction principle is based
on Karoubi’s théoreme fondamental [Kar80] (5.14) which is, to date, only known for additive categories
with duality. However, the category 7x is an honest exact category with duality, i.e., it has sequences
which do not split. So in some sense, the article introduces methods that allow us to use the induction
principle in spite of these restrictions.

There are three new tools which allow us to do this. First, there is a hermitian analogue (1.8) of
Waldhausen’s S. construction [Wal85] which is homotopy equivalent to the Giffen-Karoubi category.

Second, there is a hermitian analogue (Theorem 3.6, 3.16) of a theorem of Pedersen and Weibel
[PW89, Theorem 5.3]. It associates a homotopy fibration of hermitian K-theory spaces or spectra to
certain sequences of additive categories with duality. Our proof applied to the K-theory version yields a
simpler proof than the original one of [PW89] (which uses Thomason’s double mapping cylinder [Tho82])
and the proof in [CP97] (which uses Waldhausen’s machinery of [Wal85]).

Finally, we prove a cofinality theorem for Balmer’s triangular Witt groups (Theorem A.2) which might
be of independent interest. Let B be a triangulated category with duality in which 2 is invertible, and
let A C B be a full triangulated subcategory invariant under the duality. Suppose that every object in B
is a direct summand of an object of A. Then there is a 12-term periodic exact sequence whose terms are
the higher triangular Witt groups of A and of B and Tate cohomology of Z /2Z with coefficients in the
Z [2Z-module Ko(B)/Ko(A) where the action is induced by the duality on B. At this point, we would
like to thank Bruce Williams for having drawn our attention to a similar statement in Ranicki’s work on
L-theory [Ran81].

The strategies of proof of our main theorems - which are outlined at the beginning of sections 6 and
7, respectively - considerably differ from the known strategies used for proving the analogous statements
in algebraic K-theory. This is partly due to the fact that no generalization of Karoubi’s fundamental
theorem [Kar80] from additive to exact categories with duality is known. In part it is due to the fact
that many exact categories considered in ordinary algebraic K-theory don’t have duality functors, e.g.,
the category of finitely generated A-modules, A a Dedekind domain. Although the algebraic K-theory
localization sequence is a consequence of our main result, our proof does not yield a new proof of it, the
result on K-theory being an ingredient of our proof.

Methods developed here are used by the first author in [Hor] to show unstable and stable A'-
representability of hermitian K-theory and Witt groups as well as Bott periodicity in the stable homotopy
category of schemes of Morel-Voevodsky [MV99]. For affine schemes, a more elementary version of Bott
periodicity is explained in 1.25. The representability results provide a proof that Witt groups are strictly
Al-homotopy invariant, which is an ingredient in Morel’s calculation of certain A'-homotopy groups of
spheres.

This article generalizes and thus replaces “Localization in Hermitian K-theory for regular rings”
(Preprint no. 179 of the “Preprintreihe SFB 478 - Geometrische Strukturen in der Mathematik”, Miinster
2001). We thank the SFB 478 Miinster and the University of Illinois at Urbana-Champaign for financial
support.
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1. STATEMENT OF THE MAIN RESULTS

We start with definitions in order to state our main theorems 1.15 and 1.19. At the end of the section
we give two applications, namely Karoubi’s conjecture 1.24 and algebraic Bott periodicity 1.25.

1.1. Let A be a ring. We write A—free for the category of finitely generated free right A-modules. We
write F'(A) for the category with objects the natural numbers N and maps from n to m the abelian group
of m x n matrices (a;,;) with entries in A. Composition is matrix multiplication. Of course, F'(A) and
A—free are equivalent categories.

We write A—proj for the category of finitely generated projective right A-modules. Recall that the
idempotent completion (Karoubianisation, pseudo-abelianisation) of a category C is the category C whose
objects are pairs (C,p) with p : C — C an idempotent in C, i.e., a map such that p?> = p. Maps in C
from (C,p) to (D,q) are the maps f : C — D such that fop = f = go f. Composition of maps in €
is composition in C. A category is called idempotent complete if the functor C — C : C — (C,1) is an
equivalence.

We write P(A) for the idempotent completion of F(A). Of course, P(A) is a small additive idempotent
complete category equivalent to A—proj.

1.2 Remark. For most of the categories occurring in this article (see for example 1.1, 1.3), we will give
explicit functorial constructions, because this makes it easier to check the existence of dualities and of
duality preserving functors.

1.3. The category Tx.. Let ¥ C A be a multiplicative subset of central non-zero divisors. Let ”Hipmj be
the full subcategory of those right A-modules M for which there is an exact sequence of right A-modules

(1.4) 03P 5 P> M—0

with Py and P, in A—proj and ¥ 715 : ¥=1P, — =1 P, an isomorphism (equivalently X~'M = 0). The
category ’Hg,pmj is closed under extensions in the category of right A-modules. Declaring a sequence
in ’le,pmj exact if it is exact as a sequence of A-modules makes ’Hg,pmj into an exact category [Kel96,
Qui73, TT9I0].

We let 75 be the following functorial version of ’Hg,pmj. Objects are monomorphisms i : P, — Py of
A-modules Py, P, € P(A) as above such that ¥~1i is an isomorphism. The group of morphisms from i
to j : Q1 = Qo is the quotient of the abelian group of pairs (f1, fo) of morphisms f; : P, = Q;, i = 0,1
with foi = jfi modulo the pairs of the form (hi, jh) for some map h : Py = Q1. Objects for which 4 is
the identity map of some P € P(A) are zero objects in Ty, we identify them and call the resulting zero



4 JENS HORNBOSTEL AND MARCO SCHLICHTING

object base point. Simple homological algebra shows that the functor coker : Ty — le,proj : 1+ coker(7)
is an equivalence of categories. Via this equivalence we define a structure of an exact category on Tx.

1.5. A category with duality is a triple (C, #,n) with C a category, f : C — C°P a functor and 7 : idc => ff
a natural equivalence such that for all objects A of C we have 144 = 77?4 onat- Given two categories with
duality (A, ,n), (B,4,7), afunctor f : A — Bis called duality preservingif fof = f°Pof and f(n4) = T¢(a)
for every object A of A.

An ezact (resp. preadditive) category with duality is a category with duality (£,4,n) with £ an exact
(resp. preadditive, [Mac71]) category such that the duality functor § : £ — £°P is exact (resp. additive).

Given a category with duality (C,4,n), its associated hermitian category Cy, is defined as follows. An
object is a pair (M,¢) with M an object of C and ¢ : M 35 Mt an isomorphism such that ¢ = ¢fy. A
morphism « : (M, ¢) — (N,) is a morphism « : M — N in C such that afya = 4.

Let € € {+1,—1} and (C,4,7) be a a preadditive category with duality. Then we write .Cp for the
hermitian category associated with the category with duality (C, 8, en).

1.6 Ezrample. Let A be a ring with involution, i.e., a ring equipped with a map ~: A — AP satisfying
a+b=a+b, ba = aband a = a. In other words (4,7, id) is a preadditive category with duality which has
exactly one (non base point, cf. 2.1) object. The duality ~ extends to F(A4) with n* = n, (a;;)* = (@),
and to P(A) with (C,p)* = (C¥, p*). So (F(A),t,id) and (P(A),#,id) are additive categories with duality.

On A—proj the duality § on P(A) can be described in the more familiar way as follows. For M a right
A-module and N an A-bimodule, let homgge,, 4(M, N) be the right A-module

hompew 4(M,N) := {f € homz(M, N)|f(ma) = af(m)}

which is an A-module via fa(m) = f(m)a. Then the duality on A—projis M* = homgpey (M, A). The
identification id — tf is M — M : m — ev,, where ev,, is evaluation at m.
If A is commutative with trivial involution, then § = hom( , A) is the usual involution.

1.7. The duality on Tx. Let (A,f) be a ring with involution, and let ¥ C A a multiplicative subset of
central non-zero divisors closed under the involution. Then the ring of fractions ¥~ A is defined and #
induces an involution on ¥ 7' A4 by (s~!a)* = (s*)"lat.

The functor Extlye, a( ,A4) = R homgge, a( , A) induces an exact duality on Hg: proj and a natural
isomorphism 7 : Id = (Exzt')? (exercise, compare [Kar74]). By our assumptions on ¥, the localization
map A — 7' A is injective and a map of rings with involution. This implies that i¥ : Pg — Pljj is injective
for i € Ty, and the cokernel of i is X-torsion. Thus i ~ i* defines a duality on Ty, making (7x, §,id) into
an additive category with duality. Since f is an explicit version of Extl, .. 4( ,A), it is exact, and thus
(Ts, t,4d) is an exact category with duality.

1.8. The simplicial category with duality R.E. Recall [Wal85] that for any exact category £, Waldhausen
constructs a simplicial exact category S«€ such that the classifying space of iS,& is homotopy equivalent
to Q&, Quillen’s Q-construction. For £ an exact category with duality #, point-wise application of § makes
S,€ into an exact category with duality. We observe that n — S, is not a simplicial exact category with
duality since the simplicial structure maps do not commute with dualities. But its edge-wise subdivision
n +— Sa,4+1€ is a simplicial exact category with duality.

More precisely, for n > 0 an integer, let n be the totally ordered set {n' < (n — 1) < ... <0 <0<

.. < (n —1) < n} considered as a category with duality by declaring I¥ =1’ (I')* =1 for 0 <1 < n.
We will write ' for this duality §. The assignment (6 : [n] = [m]) — (8 : n — m) with §(I) = 6(!) and
0(1") = 0(1)' makes [n] — n into a cosimplicial category with duality.

Denote by Z(n) the category of arrows in n, i.e.,its objects are pairs (p,q) € n x n with p < ¢ and
the morphisms in Z(n) are commutative squares in n. The duality on n induces a duality on Z(n). The
cosimplicial structure [n] — n makes [n] = Z(n) into a cosimplicial category with duality.

Let (£,4,n7) be an exact category with duality. We choose a zero object with 0¥ = 0 and call it
base point. Then (R.&,4,n) is the following simplicial exact category with duality. Objects of R,,£ are
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functors A : Z(n) — £ where all the sequences A,; — A, — Ay, are admissible short exact sequences
in £ whenever p < ¢ < r € n and such that A,, = 0 the base point zero object of £. Morphisms are
natural transformations of functors. The dual of an object is given by (A*),, := (4, ,7)*. The dual of
a morphism is also given by taking the point-wise dual and re-indexing. We set (94)p,q = 74, ,- The
exact structure on R, € we will use throughout this article is given point-wise by the additive split exact
structure on £. (The exact structure given pointwise by the exact structure on £ will not appear in this
article.) We also write 7'265 for the category Ty of 1.7equipped with the split exact structure, which is
therefore equivalent as an exact category to Ro7Tx. The simplicial structure on (R.&,4,7) is induced by
the cosimplicial structure on Z(x). We further write R?E for (R.&)n.

It is straightforward to check that (R.&,t,n) is a simplicial exact category with duality. Forgetting the
duality, we see that R,,£ equals Waldhausen’s Sa,,41& [Wal85], and R.£ is just the edgewise subdivision
[Wal85, p.375] of S.E.

1.9 Notation. Given a category C, we write iC for the category with the same objects as C and morphisms
the isomorphisms of C.

1.10 Definition. For an exact category with duality (£,4,7) we define a topological space [W(E) as
the realization of a bisimplicial set

IV(E) = |(p,q) = Npi REE|

where N, stands for the nerve of a category. We may write (W(A) for the W-theory space associated
with (P(A),§,id) for A a ring with involution. The U-theory space of an exact category with duality £ is

U(E) = QW(E).

1.11 Remark. There is a category associated to (£, 4, ) due to Giffen and Karoubi [CL86, Uri90, Hor02,
Schb] such that its classifying space is homotopy equivalent to W(£) = |N,iR!€| [Schb]. The category
is a hermitian analogue of Quillen’s Q-construction.

1.12 Remark. For A a ring with involution in which 2 is invertible, there is a homotopy fibration
K(A) B KMA) - W(A).

Therefore, the U-theory space U(A) defined here is homotopy equivalent to the U-theory space U(A)
defined by Karoubi [Kar73] (see also 5.8, 5.9). This result in its W-category-guise is stated in [CL86].
But the article contains a crucial error as on p. 177 of [CL86]: the functor o* doesn’t act as an inner
automorphism as claimed. A proof which avoids this argument is given by the second author in [Schb].

1.13 Remark. The simplicial category i.R"E is equivalent to i .S¢E of [SY96] and the simplicial set
Ob( . RE) is isomorphic to the simplicial set s¢€ of [SY96]. However, it is important to consider R.£ as
a simplicial additive (exact) category with duality as we will see in the proof of our Localization Theorem
1.15.

1.14 Remark. Let &£ be an exact category with duality. The map from Ob(REE) = Ob(E) into the
usual Witt group [Bal01, 1.6] W (&) of £ which sends a hermitian object to its class in W (&), induces an
isomorphism (exercise or [Uri90], [Hor02]) myW(£) = W (€).

We now state the main results 1.15 and 1.19 which will be proved in sections 6 and 7.

1.15 Theorem. (Localization) Let (A,1) be a ring with involution in which 2 is a unit. Let ¥ C A be
a multiplicative subset of central non-zero divisors closed under the involution. Then there is a homotopy
fibration

U(Te) = K"(A) = K"(Z71A)
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where the map K"(A) — K"(X~1A) is the result of applying the hermitian K-theory functor to the
localization map (A,f) — (S71A,f) of rings with involution (1.7).

1.16 Corollary. Under the hypothesis of 1.15 we have a long exact sequence
e g eUn(’rE) - EKZ(A) - EKZ(EilA) - EUnfl(’rE) — eUO(’TE) - ng(A) - ng(EilA)'

Proof. This is the long exact sequence of homotopy groups associated to the homotopy fibration of 1.15.
O

1.17 Remark. The map K!(A) — (K (X~1A) is not surjective, in general, even if A is regular. This
is because the map on classical Witt groups W(A) — W(X~1A) is not surjective, in general, even for
regular A. For A a Dedekind domain, the map on Witt groups is injective (see for example [MH73]), yet
rarely an isomorphism.

The homotopy fibration of Theorem 1.15 extends to a homotopy fibration of spectra (7.3). If A is
regular, then the negative homotopy groups of these spectra can be identified with the triangular Witt
groups of Balmer (7.5). This yields a natural extension of the long exact sequence of Corollary 1.16 to
the right (see 6.16 for a more detailed discussion).

1.18. Let f: A — A° be a ring with involution. Let f € A be a central non-zero divisor with f* = f
and let ¥ = {f™ | n € N}. There is a functor A — Tx of categories which sends A to f : A — A and
amap a: A — A to the map of arrows (a,a) : f — f (f is central). As f* = f, the functor preserves
dualities. Since the map f: A — A is sent to 0 in Ty we obtain a functor of categories with dualities
A/fA — Tx by passage to the quotient. The latter category is idempotent complete, so the functor
extends to a duality preserving functor P(A/fA) — Tx. More precisely, we have duality preserving
functors P(A/fA) — P(Ts) < Tx where the last arrow is an equivalence because Ty is idempotent
complete (see 2.3 for the definition of P(7x)).

1.19 Theorem. (Dévissage) Lett : A — A°? be a commutative ring with involution in which 2 is a
unit, and let f € A be a non-zero divisor with f* = f. Assume that A and A/fA are regular. Write
Y ={f™ | n € N}. Then the inclusion of exact categories with duality P(A/fA) — Ts (1.18) induces
homotopy equivalences

WW(AJFA) S W(Ts) and  U(A/fA) S U(Ts).

1.20 Remark. The homotopy equivalences of Theorem 1.19 extend to homotopy equivalences of non-
connective W- and U-spectra (see the proof of dévissage in section 7).

1.21. Let R be a (commutative) Dedekind domain with trivial involution and ¥ = R — 0. For 0 # p a
prime ideal in R, let ¥, = R, — 0. The localizations R — R, induce by functoriality maps of categories
with duality 7x — Ty, which assemble to a duality preserving functor

= P T

(0)#pCR

as the support of a finitely generated torsion module is a finite set of primes different from (0). This
functor is easily checked to be an equivalence [Bas68, p. 509]. Choosing a local parameter 7, for the
dvr R, we have R/p = Ry /7, and X 'R, = R[r']. Applying 1.19 with A = R, and f = 7, yields
a homotopy equivalence W (R/p) — W (Tx,). Note that this homotopy equivalence depends on the
choice of the local parameter m,. Thus we have shown the following corollary.
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1.22 Corollary. Let R be a Dedekind domain with trivial involution and ¥ = R — 0. Suppose % € R.
Then the inclusions P(R/p) — Tx (1.21) of exact categories with duality induce isomorphisms

D U.R/p) = Un(T).
(0)#pCR
m

1.23 Remark. This result was already established in [Hor02], but there a proof of the fact that the
map of the corollary 1.22 and the similar map for V-theory are compatible with Karoubi’s fundamental
theorem was missing. Using arguments of section 7, this gap can be closed.

1.24. Karoubi’s conjecture. Localization 1.15 and Déwvissage 1.22 for Dedekind domains together yield
a long exact sequence

e = ®U L (A)p) = KE(A) = KP(ETTA) - ©U,_1(A]p) = ...
where the sum is taken over all prime ideals p C A different from 0. As explained in the introduction,

this was a conjecture of Karoubi.

1.25. Application: Algebraic Bott periodicity. First some notation. Let k be a field of characteristic
# 2, and let R be a smooth k-algebra. We write X for Spec R. Let = : R — k be a k-rational point
of X. For a functor F from k-algebras to spectra, we write F(X) for F(R), and F(X) for the reduced
functor which is the fiber of F(z). Given another pointed affine k-scheme (Y, y), we write F(X AY) for
the cofiber of F(X xy) ® F(z xY) = F(X xY). The k-schemes G,, and A! are pointed at 1.
Localization 1.15 and Dévissage 1.19 yield a homotopy fibration of spectra (see remarks 1.17 and 1.20)

U(R) - K"(R[T)) - K"(R[T,T7Y)).

The ring homomorphism R — R[T] induces a homotopy equivalence ;K"(R) & K"(R[T)) as this is
true for K-theory and Balmer’s Witt groups (use Karoubi induction 5.20). Evaluating T at 1 yields a
retraction of (K"(R) = K"(R[T,T~"]) and thus a homotopy equivalence

QK"X x G,,) ~ Q. K"(X) @ [UX).
In terms of reduced functors, this yields a homotopy equivalence
(1.26) QK"(X AGp) = U(X).

Replacing R by UR (5.6) and using the homotopy equivalence 5.15 from Karboubi’s fundamental
theorem K"(U2R) 5 _ K"(V2U2R) ~ _ K"(52R) we find homotopy equivalences

Q.U(R[T,T™') ~ Q. U(R) ® _ K"(R).
Again, in terms of reduced functors, this yields a homotopy equivalence
(1.27) QUX AG,,) ~ _K(X).
For a functor F' as above, we further write F'(X A IP') for the homotopy colimit of the diagram
F(X A(IP' —{0})) «— F(X AG,,) — F(X A (IP" — {c0})).
If F = K or F = U, then this definition implies homotopy equivalences F(X A IP') ~ QF(X A G,,) as
in these cases F(X AA!) ~ x. Now (1.26) and (1.27) become EI~{'L(X/\ﬂ31) ~ U(X) and 6th(X/\Pl) ~

JK(X). In particular, we have homotopy equivalences

KX A (PYM) = O(X A (PY®) ~ _K"(XAPY?) = _ UXAP") ~ K'(X)

for X a smooth affine k-scheme.
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Since in topology (IP1)"*(C) = S8, the previous homotopy equivalence is thought to be the algebraic
analogue of the real Bott periodicity theorem

KgP(X AS®) ~ KigP(X).

For more details and a generalization to non-affine smooth k-schemes in the framework of A'-homotopy
category of schemes, we refer the reader to [Hor].

2. FILTERING CATEGORIES

This section provides some formal properties of filtering maps of preadditive categories most of which are
known. The observation 2.16 seems to be new. We need this abstract formalism to construct the maps
¢k in 6.5.

2.1. Recall [Mac71] that a preadditive category is a category whose hom-sets are abelian groups and
whose composition is bilinear. In order for 2.17 to be true, we also demand that our preadditive categories
in this article come equipped with a chosen 0 object called base point. Additive functors between
preadditive categories are to preserve base points.

For instance, a ring is a preadditive category with exactly one object different from the base point.
Denote by Pac the category of preadditive categories. It is complete, cocomplete and has a symmetric
monoidal tensor product ® defined as follows. The category A ® B has objects pairs A A B with A an
object of A and B an object of B. The objects A A B with A or B a base point are identified with the
base point of A ® B. The Hom-sets are defined by

Homagp(AANB,A' ANB') = Hom4(A,A") ® Homp(B, B').
Composition is defined by (a ® b) o (@' ® V') = (aca’) @ (bod').

2.2. A preadditive category with duality is a category with duality (A, #,7) such that f is a morphism
in Pac. Denote by Pad the category of small, preadditive categories with duality and duality preserving
functors. It is complete, cocomplete and has a symmetric monoidal tensor product. Limits, colimits and
tensor products are formed in Pac and one observes that the resulting category inherits a duality. For
instance, (A, ,7) ® (B,#,7) = (A®B,{®§,n® 7).

2.3. For A in Pad, an A-module is an additive functor from 4°? to the category of abelian groups.
The category of A-modules is denoted by A—Mod. Recall that the Yoneda embedding A — 4—Mod :
A~ Hom( ,A) is fully faithful, and we may write A for the representable functor Hom4( ,A).
Let A—free be the category of finitely generated free .4-modules, i.e., the full subcategory of A—Mod of
those modules which are finite direct sums of representable modules. We write F'(A) for the following
functorial version of A—free. Objects are sequences (Ay, ..., A,) of objects of A and maps are matrices
of maps A; - Bj,i=1,...,n, j =1,...,m where (By, ..., By,) is another object of F/(A). Composition is
matrix multiplication. The empty sequence is declared to be the base point zero object and is identified
with the objects (0, ...,0). So F(A) is in Pac. Moreover, F(A) has a symmetric strict monoidal direct
sum operation @ : (A1, ..., 4p) X (B1, .., Bm) — (A1, ..., An, B1,...By). If Aisin Pad, then so is F(A)
by applying dualities component-wise. Of course, F'(A) is a small preadditive category equivalent to
A—free.

Let A—proj be the category of finitely generated projective A-modules, i.e., the full subcategory of
A—Mod of those modules which are direct factors of finitely generated free A-modules. Let P(.A) be the
idempotent completion (1.1) of F/(A). It is equivalent to A—proj. Any duality on A induces a duality
on P(A) by (F,p)* = (F*,p"), F € F(A).

2.4 Definition. A full inclusion 4 — U of preadditive categories is called right filtering if every
morphism U — A from an object of U to an object of A—free factors through a direct factor of U
belonging to A—proj, i.e., there is an idempotent p of U such that Im(p) is in A—proj and such that the
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map is the composition of the canonical projection p : U — Im(p) and a map Im(p) — A. Note that we
do not require the complement of Im(p) in U to be in Y.

A full inclusion A — U is called left filtering if A°? — U°P is right filtering, it is called filtering if it is
both left and right filtering. We say that U is A-filtered if A C U is filtering.

2.5 Remark. Definition 2.4 is a slightly modified version of [PW89, p.355] and [Kar70, Définition 1.5
which is most convenient for our purposes.

2.6 Definition. A map U — B in Pac is called cofiltering if the kernel category A, i.e., the full
subcategory of U of objects mapped to the base point of B, is filtering in ¢/ and if the induced map
U/A — B is an equivalence of categories which is surjective on objects. The quotient i/ /A in Pac is the
category with set of objects the quotient set Obl/ /ObA (all objects of A are identified with the base point
zero object). Morphisms from U to V' in U/ A are the morphisms of &/ modulo those which are sums of
maps factoring through A.

A sequence A — U — B in Pad is called ezact if A — U is filtering, the composition maps A to the
base point of B and the induced map U/ A — B is an equivalence of categories, surjective on objects.

2.7 Lemma. Let A be a full subcategory of a preadditive category U. Write F(U) for the full subcategory
of P(U) of objects U such that there is a A of P(A) with U & A isomorphic to an object of F(U). Then
A = U is filtering iff P(A) — F(U) is filtering.

Proof. The “if” part is clear by the definitinon of the filtering condition and the equivalence A—proj —
P(A)—proj. For the “only if” part, let ¢ : A — U be a map with A in P(A) and U in F'(i{). Choose
B,B' € A—proj with U @ B a free U-module and A® B @ B’ a free A-module. The map ¢ = p@idg®0:
A® B@® B' - U @ B factors through a direct factor Im(q) of U @ B for ¢ = (g;,;) an idempotent of
U @ B with image in A—proj (2.4). This means that g o ¢ = ¢ which implies g11¢9 = ¢, 12 = 0 and
@22 = 1. Idempotency of ¢ implies ¢?, = q11 and g21g11 = 0. Then the diagonal matrix diag(qi1,0) is an
idempotent of Im(q) and thus has image Im(q11) in A—proj. Since g11¢ = ¢, the map ¢ factors through
Im(q11) which is a direct factor of U. The right filtering condition is similar. O

2.8 Remark. Note that in F'({) all direct factors lying in P(A) have complements in F'(i{). More

precisely, let A AU % Abe two maps with ¢j =1, A € P(A) and U € F(i). Then the cokernel of i
exists in F(U). Note also that the functor F({/A) — F(U)/P(A) is an equivalence.

2.9. Calculus of fractions. Recall that a set S of morphisms in a preadditive category C satisfies a
“calculus of right fractions” if i) S is closed under composition and all identity maps belong to S, ii)
givenmaps f: X =Y, s: Z—Y withs € S, thereexist maps g : W — Z,t: W — X with ¢t € S and
ft =sg andiii) given f : X 5 Y,s:Y - Z with s € S and sf =0, thereisamapt: W - X in S
with ft = 0 [GZ67, 1.2.2]. In this situation, the preadditive category C[S~!], obtained from C by formally
inverting the maps in S, has a simple description in terms of right fractions, cf. loco citato.

Let A — U is a full inclusion of preadditive categories, and let S be the set of split monomorphisms
of F(U) with cokernels in P(A). Then the full inclusion is right filtering if and only if S satisfies a
calculus of right fractions. Conditions i) and iii) are obvious and ii) is equivalent to the right filtering
condition (2.7, 2.8). By the respective universal properties, we get functors F'(U)/P(A) — F(U)[S™]
and F(U)[S~!] — F(U)/P(A) which are inverse equivalences.

2.10. The cone ring C. We now give the main example of a filtering map. The cone ring C is the ring of
infinite matrices (a;,;);,jen with entries a; ; € Z such that in each row and in each column all but finitely
many entries are zero. We have C' = colimger Cs where I runs over the sets S C Nx N consisting of pairs
of integers (i, j) such that for every m,n € N the set Sy, = {(,j) € S| i = m or j = n} is finite. The
module Cs C C is the Z-submodule of those matrices whose entries satisfy a; ; = 0 whenever (i,5) ¢ S.



10 JENS HORNBOSTEL AND MARCO SCHLICHTING

As Z-module, Cs is a countable product of copies of Z. So Cg is torsion-free, hence flat over Z. Since C
is a filtered union of the Cg’s, the ring C is a flat Z-algebra. The map which sends a matrix (a; ;) to its
transpose !(a; ;) = (ay,;) defines an involution C — C°P. In this way, C is a ring with involution.

In C we fix the symmetric idempotent p = *p = (a; ;) € C with app = 1 and a; ; = 0 otherwise. Let
C = CUIm(p) be the full subcategory of C-M od with the two non-base point objects C and Im(p) = (C, p)
(2.3). Remark that the endomorphism ring of I'm(p) is Z, so that the functor Im(p)® :Z — C is fully
faithful. In fact, it is filtering as we see by the following argument. A map C' — Im(p) is given by an
element (a;;) € C such that (a;;) = peo (a;;), &.e.,such that a; ; = 0 for i > 0. The requirement that
(as,;) be column finite implies that there is a d € N such that ag ; = 0 for j > d as well. Let t = (t; ;) € C
be the matrix with entries ¢; ; = 1 for 4 = j 4+ 1 and ¢; ; = 0 otherwise, and let = (t; ;) € C be the
matrix with entries #; ; = 1 for j =4 + 1 and ¢;; = 0 otherwise. Now we write the given map as the
composition of the isomorphism (£%+1 pt? ... pi p) : C — C @ Im(p)®+! (with inverse (t*+1 tdp ... tp p))
and (0 ag,q -.- ag0) : C ® Im(p)?*! — Im(p). Similarly for maps Im(p) — C. The filtering condition for
other maps between free Z-modules and objects of C follows formally from the above situation.

2.11. Filenberg swindle. We will construct a ring map f : C' — C such that f(Im(p)) = C as C-modules.
Since C' = C & Im(p) we have a C-module isomorphism e : f(C) = f(C @ Im(p)) = f(C) ® f(Im(p)) =
f(C) & C. Then f extends to a functor f : P(C) — P(C), and e extends to a natural isomorphism
e: f =2 f®id. This is called “Eilenberg swindle” for C.

Let C be the ring of infinite, row and column finite, matrices indexed over N x N with entrees in .
Transposition of matrices makes C into a ring with involution. A choice of bijection N x N — N yields
an isomorphism C — C of rings with involution. So it suffices to construct a map f : C — C with
f(Im(p)) = C as C-modules. The map f sends the matrix (a; ;) to the row and column finite matrix
(b(r,m),(s,m)) With b(r m) (s.,n) = @rs if m =1 and by m),(s,n) = 0 if m # n. One checks that f is a map of
rings with involution. Choose a bijection a : N = Nx N with inverse 3. The right C-module isomorphism
e: (C,f(p)) = f(Im(p)) = C is given by a matrix a € C which sends the (0,n)-th standard vector to the
a(n)-th one, the others to 0. Its inverse b € C sends the (i, j)-th standard vector to the (0, 3(i, 5))-th one.
It is clear that af(p) = a, f(p)b =1, ba = f(p) and ab = 15, so a and b do define inverse isomorphisms
between f(Im(p)) and C.

2.12. The suspension ring S. We now give the main example of a cofiltering map. Let My, be the
two-sided ideal of C' consisting of those matrices which only have finitely many non-zero entries. The
suspension ring S is the quotient ring C/M,,. We give a description of S as a ring of fractions of C. In
particular, S will then be a flat C-algebra, and a fortiori a flat Z-algebra. Recall the matrix ¢ (2.10). The
set {t" | n € N} satisfies the axioms for a calculus of right fractions (2.9). As t is invertible in S (with
inverse #), the map C — S factors through C[t~!] — S which, using the explicit description of C[t~!],
is seen to be an isomorphism. The involution on C induces an involution on S. Henceforth, S will be
considered a ring with involution.

Note that the “Eilenberg swindle” map f : C — C does not induce a map S — S since f(t) is not
invertible in S.

2.13 Lemma. Let A — U be a filtering map of preadditive categories (2.4), and let B be any preadditive
category. Then the map AQB — URDB is filtering. In particular, the functor _® B : Pac — Pac preserves
exact sequences.

Proof. Let aj =), a;;®b;;: Aj AB;j = U A B’ be a finite set of maps with A4;, B; and B', U in A, B,
U, respectively. By the filtering assumption, (a; ;) : EBZ j A; — U factors as the composition of (a; ;) and
the canonical inclusion Im(p) — U with p an idempotent of U and Im(p) in A—proj. Clearly, Im(p) A B
is a direct factor of U A B' lying in A ® B—proj. The «; factor as >, a; ; ® b; j : Aj A Bj — Im(p) A B’
followed by the canonical inclusion Im(p) A B’ — U A B'. The right filtering condition is similar. O
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2.14. Coproducts and coequalizers. Let A, B be two preadditive categories. Their coproduct A V B
has as set of objects the coproduct in the category of pointed sets ObA V ObB. Maps in A V B between
objects of A and of B are zero. The natural inclusions of A, B into AV B are fully faithful. Similarly for
infinite coproducts. Given two maps f,g : A — U between preadditive categories, the coequalizer C of f
and g has as set of objects the coequalizer of f,g: ObA — ObY in the category of pointed sets. Write 7
for the map Obld — ObC. Let X, Y be two objects of C. The group Hom¢(X,Y) of morphisms from X
to Y in C is the abelian group

@ Homy,(Xo,Yo) ® Homy(X7,Y1) ® Homy(X2,Y2) ® ... ® Homy (X, Ys)/~
(X0,Y0,X1,Y1,00sXn,Yn)

where (Xo, Yo, X1,Y1, ..., X, ¥,) runs over all finite sequences of objects of U such that 7(Xp) = X,
w(Y;) = w(Xiq1) for 0 < 4 < n—1and 7(Y,) = Y. The equivalence relation ~ is generated by
L ® f(Oéz) R..~.Q g(ai) Ry e Q0 QU1 Qoo ~ . Qi1 004 X ... ify; = Xit1 and ... Q@ a;_1 ®
idx, @ Qg1 Qoo ~ ... @ i1 ® i1 ® .... Composition is concatenation of tensor products. It is easy to
see that this defines a category C and that this category satisfies the universal property of a coequalizer
of f and g.

2.15 Lemma. The pushout of a full inclusion of preadditive categories along an arbitrary map is a full
inclusion.

Proof. Let B L AL Ubea diagram of preadditive categories with g a full inclusion. Let V be the
pushout of the diagram. It is also the coequalizer of f,g: A — BV U. Write as above 7 = gV f for the
map BV U — V. We have to show that the map g : B — V is a full inclusion. It is certainly injective
on objects and it is easy to check that it is full. Let B, B’ be two objects of B. We construct an inverse
to the map g : Homp (B, B') — Homy (B, B'). Call a sequence of objects (Xo, Yo, X1,Y1,..., Xn,Y,) as
in 2.14 belonging to a non-zero summand non-degenerate if ¥; # X;14 for all 0 < ¢ < n — 1. Remark
that if 7(Xo) = B and 7n(Y,) = B’ then all the X;,Y; of a non-degenerate sequence lie in A or B. In the
following diagram, the first map is composition of morphisms and the second is identity on Homp-factors
and f on the Hom 4-factors and composing the remaining morphisms

®(X0’YO,---,Xn,Yn) HOIIleu(X(), Yb) ®..® HOvau(Xn, Yn)

|

ea(Xo,Yo,...,Xn,Yn) nondeg. Hompyy(Xo,Y0) ® ... ® Hompyy (Xn, ¥n)

|

Homp (B, B').

The composition induces a map p : Homy (B, B') — Homp (B, B') which is inverse to g (check po g = id
and the surjectivity of g). O

2.16 Lemma. The pushout of a filtering map of preadditive categories along an arbitrary map is
filtering.

Proof. Keep the notations of 2.15, and suppose further that g is filtering. By 2.15 we already know that
g is a full inclusion. Given a finite set of maps b; : B; = U in V with B; € B and U € U\A = V\B,
the maps b; can be represented as finite sums of tensor products as in 2.14. Note that in our case each
tensor product summand is equivalent to one of length 2, d.e.,b; = >, Bi; ® u;; with u;; : A;; = U
amap in U and f;; : B; — f(A;;) a map in B. By the left filtering property, we can factor (u; ;) as
(ai;) : @ As; — Im(p), p being an idempotent of U with image in A—proj, followed by the canonical
inclusion ¢ : Im(p) — U. Then b; =10 (3, Bi; ® a; ;) is the required factorization. The right filtering
property is similar. a



12 JENS HORNBOSTEL AND MARCO SCHLICHTING

2.17 Lemma. The pull-back of a cofiltering map is cofiltering

Proof. Let f : U — U be cofiltering with kernel category A (2.6). Let g : B — U be any map of
preadditive categories. Write B for the pull-back of f along g. Its objects are pairs (B,U) with B € B
and U € U such that g(B) = f(U). Maps are pairs of maps sent to the same map in /. An object
(B,U) is in the kernel category of B — B iff B =0, i.e.,iff it is (0, A) for some A € A. Then A ~ (0, A)
identifies A with the kernel category of B — B. Given a finite set of maps (0, a;) : (0, 4;) = (B,U), the
map @ A; — U factors as (o) : @ A; — Im(p) followed by ¢ : Im(p) — U for some idempotent p of U
with image in A—proj. Then (0,a;) = (0,¢) 0 (0, ;). So B is left A-filtered, and it is also right A-filtered
by the dual argument. As I/ — U is full so are B — B and B/.A — B. The latter map is faithful because
amap (b,u) € B is zero in B iff b = 0. But then u = 0 in /A and (0,u) = 0 in B/A. Surjectivity on
objects is obvious. O

2.18 Remark/Definition. The important property of cone and suspension is that the sequence

Im@?

Z c— S

is exact where the latter map is given by the map C' — S and by sending I'm(p) to the base point. This
follows from 2.10 and the explicit description of quotient categories (2.6). For A a preadditive category,
write S" A = A ® S®" and call it the n-th suspension of A. The functor S™ preserves exact sequences
(2.13). Likewise, CA = A ® C is called the cone of A. By 2.13, we have an exact sequence

(2.19) ATOE eu s saA.

Note that the inclusions C' = C and thus C\/A — C.A induce equivalences on projective module categories
P(C) — P(C) and P(CA) = P(CA). So CA and CA will have the same (hermitian) K-theories.

2.20 Lemma. [PW89, 5.2] Let U be an A-filtered additive category with A idempotent complete. Assume
that direct factors of objects in U which lye in A have complements in U (2.8). Then for every morphism
f in U which becomes an isomorphism in U] A there is a split monomorphism i with cokernel in A such
that f o i is a split monomorphism with cokernel in A. In particular, the inclusion of A into the kernel
category of U — U /A is an equivalence.

Proof. Let f : X — Y be a morphism in I/ which is an isomorphism in ¢//A. Represent its inverse by
amap g :Y — X in Y. Recall (2.9) that U/ A = U[E~!] with ¥ the set of split monomorphisms with
cokernel in A. As ¥ satisfies a calculus of right fractions, there is a split monomorphism i : 7 — X
with cokernel A in A such that i = gfi. Replacing X with the isomorphic Z & A such that ¢ becomes
the standard inclusion (1 0), the map pzg, pz = (1 0), becomes a retraction of fi. The map fi is a
split monomorphism with cokernel in A iff the idempotent p = 1y — fipzg has image in A because then
the cokernel of fi exists by the assumption of the lemma. Since p = 0 in U/ A it factors as a map in U
through an object of A. Using the right filtering property, we can replace Y by the isomorphic W & B
with B in A such that p becomes
0 w
(55)

Idempotency of the matrix means b?> = b and wb = w, so p = {(w 1)b(0 1). The image of p is isomorphic
to the image of the projector b since !(w 1) is split injective. The image of b exists in A because A is
idempotent complete. d

3. THE HERMITIAN PEDERSEN-WEIBEL THEOREM

In this section, we prove the hermitian analogue of a Theorem of Pedersen-Weibel [PW89] which allows
us to construct non-connective hermitian K-theory spectra.
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3.1. For a category C, we write BC := |N,C| for the topological space given by the geometric realization
of the nerve of C. We will often drop the letter B to simplify notation. For C a category write ¢C for the
category which has the same objects as C and whose morphisms are the isomorphisms of C.

Let (C,®) be a symmetric monoidal category such that for every object C' € C the translation functor
®C : C — C is faithful (compare [Gra76, p. 220, 2)]). For such a category, Quillen [Gra76] constructs a
new category iC1C, which we abbreviate by C*, and a functor C — Ct such that BC — BC? is a group
completion [Gra76, Th p. 221].

For an additive category with duality (A, ), we observe that the orthogonal sum (A4,a) @ (B, ) :=
(A®B, a®f) makes (Ap, ®) into a symmetric monoidal category meeting the above faithfulness condition.

3.2 Definition. Let (A,f#,7) be a preadditive category with duality. Then for € € {+1,—1}, its
e-hermitian K -theory space is defined by
K"(A) = B(i .P(A)p)*.

The n-th hermitian K-group of A is the n-th homotopy group of this space (K"(A) = m, K"(A),n > 0.
If € = 1, then we often drop the € and write K" and K" instead of (K" and K".

3.3 Remark. For a preadditive category A there is a canonical involution on A x A°P interchanging
the two factors. Note that i.(A x A°P), is equivalent to i.4 so that K"(A) ~ K(A) where K(A) denotes
Quillen K-theory of P(A). In this sense, hermitian K-theory generalizes algebraic K-theory. We remark
however, that the definition of K differs from the standard definition of Quillen and Thomason when
considering additive categories which are not idempotent complete.

3.4 Definition. An object (M, @) of Ay, is called hyperbolic if there is an object L in A together with
an isomorphism of hermitian objects
g (0 1 -

For any additive category with duality (A, #,7), we define the hyperbolic functor

H:iA— i.Ah
by H(M) = (H(M), up) and H(f) = f @ (f~1)*. We write Ag for the full subcategory of Aj consisting
of the hyperbolic objects.

3.5 Remark. If 2 is invertible in an additive category with duality A, then there is an isometry
1 -1 -
(5 55 ) 00006 3 HOD. )
59 59

for any (M, ¢) in Ap. This implies that the full subcategory of hyperbolic objects is cofinal in Aj. It
follows that i(A)}; — i(A);} induces an isomorphism on 7, for n > 0 and a monomorphism for n = 0.

If A = P(A) with A an algebra with involution and if 1 € A, then the free hyperbolic modules are
cofinal in P(A); and hence the connected component of 0 of K"*(A) is homotopy equivalent to Quillen’s
plus construction applied to BO(A) = Beolim,, Aut H(A™) [Kar80, Théoréme 1.6].

Now we can state the main result of this section.
3.6 Theorem. Let U be a preadditive category with duality in which 2 is invertible, and A o full

subcategory with duality. Suppose that U is A-filtered (2.4). Then the exact sequence of preadditive
categories with duality A — U — U/ A induces a homotopy fibration of spaces

KMA) = Kh'U) = K" U/ A).
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3.7. Let S be a symmetric monoidal category acting on a category X. Recall from [Gra76, p. 219] that
the category < &, X > has the same objects as X’ and that a morphism X — Y is an equivalence class
of data (A, z) with A an object of S and z: A® X — Y a morphism in X. The data (A, z) is equivalent
to (A', ") if there is an isomorphism a : A — A’ such that z' o (a ® idx) = z. Composition is given by
the monoidal operation in S. Remark that there is a natural inclusion of categories X =< S, X >.

We say that a map of symmetric monoidal categories is a homotopy equivalence after group completion,
or a commutative square is homotopy cartesian after group completion, if the corresponding statement is
true after applying the group completion functor ( )T.

3.8. Now let T be a symmetric monoidal category such that translations @7 : T — T are faithful
and such that every morphism in 7 is an isomorphism.

Assume further that any morphism in 7—!7 is monic. Let S be a full symmetric monoidal subcategory
of 7. The inclusion § C 7T induces an action of S on 7.

3.9 Lemma. In the situation of 8.8, the commutative square

S T

| l

<8,8>——<S8,T>

is homotopy cartesian after group completion and the lower left corner is contractible.

Proof. The lower left corner is contractible since it has an initial object, namely the unit object with
respect to the monoidal structure of S. Consider the map of symmetric monoidal categories S —
T—YT : A (0,A) inducing an action of the first category on the second. Remark that the translations
ST 'T:Aw (X,A®Y) are faithful for all objects (X,Y) in 7 '7T. By [Gra76, p. 223] (choose
X = T71T), the commutative diagram

S8 STTT

| |

<8,8>——<ST7T'T>

is homotopy cartesian. Remark that all categories in the diagram are group complete. There is a map of
commutative squares from the diagram in the statement of Lemma 3.9 to the above diagram which on
the upper left corner is A — (0, A), in the upper right corner is X — (0,0, X), on the lower left corner is
the identity and on the lower right corner is X — (0,X). The map of commutative squares is point-wise
a homotopy equivalence after group completion. It follows that the diagram in 3.9 is homotopy cartesian
after group completion. O

3.10. Let (U,8,n) be an additive category with duality and A an idempotent complete full additive
subcategory closed under the duality. Suppose that U is A-filtered (2.4) and that direct factors lying in A
of objects of U have complements in I (compare 2.8). Write Uy for the full subcategory of Uy, consisting
of objects (U, \) for which there is an (4,a) in Ay with (U, A) @ (4, a) isomorphic to an object of Ug.
In the following proposition, we don’t assume that 2 is invertible in U.

3.11 Lemma. Under the hypothesis of 3.10, for any split monomorphism 'Y — H(X) with cokernel in
A, there is a split monomorphism H(Z) — Y with cokernel in A such that the composition H(Z) — H(X)
restricts the standard hyperbolic form on H(X) to the standard hyperbolic form of H(Z).

Proof. Let the object A of A be a complement of Y in H(X). So there is an isomorphism

(m y);X@Xﬂ3Y@A.
a b
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Since U is A-filtered, there is an object B of A, an isomorphism X = Z @ B and a commutative diagram

b* a

Al X A
(",j\\ lg%;
" zZeB

One can see this as follows. Apply the definition of U being A-filtered (2.4) to the map X — A to
obtain a temporary Z and apply the definition again to the map A* — Z to obtain the decomposition
in the diagram. The inclusion of Z @ Z* into (Z ® B) & (Z* ® B*) @ X @ X! 2 Y @ A followed by the
canonical projection Y @& A — A is the zero morphism. It follows that the map H(Z) — H(X) induced
by Z — Z & B = X factors through Y. By construction, the hyperbolic form on H(X) restricts to the
hyperbolic form on H(Z). O

3.12 Proposition. In the situation of 3.10, the sequence of symmetric monoidal categories

is a homotopy fibration after group completion.

Proof. The last map of the sequence factors as illg —< iAp,illy > > i(U/A)g. We claim that the
functor ¢ is a homotopy equivalence. Using lemma 3.9 and the fact that group completion preserves
homotopy equivalences the proposition will follow. To simplify notation, we will assume ff = id, n = id.

First note that morphisms (U, ¢) — (V, ) in < iAp,ildzr > are in bijection with split monomorphisms
i : U — V with cokernel in A such that ¢ = ¢y := i* 09p oi. To see this, let i be such a split
monomorphism. The map p =i o0 ¢~! 04f 01} is an idempotent of V whose image is isomorphic to U via
i. Its cokernel A = Im(1 — p) is in A. We have 1y op = p* o9) and ¢ o (1 — p) = (1 — p*) o ¢). Hence,
Y = Y/m(p) Y/ mm-p) = ¢ ® Y4 and [(4,9a), (1 — p) © i defines a map (U, ) — (V,4). The other
direction is obvious.

According to Theorem A of [Qui73, p.92] it suffices to show that the categories (o | x) are filtering,
hence contractible, for all objects = of i(U{/A)g. Since every object of i(U/A)g is isomorphic to a
hyperbolic object we can assume x = H(X), the image of an hyperbolic object of U, and we see that
(¢ 4 H(X)) is non-empty.

Let (U,¢) and (V,4) be two objects of Uy equipped with isomorphisms u : (U,¢) — H(X) and
v: (V,¢) - H(X) in (U/A)r. The isomorphism v~'u in & /A can be written as a fraction ji~! with
i:W — U and j: W — V split monomorphisms with cokernel in A (2.9, 2.20). Since ifopoi = jior)oj
in U/ A, we can replace W by a ”smaller” direct factor, still called W, of U and V with cokernels in A
such that @|w = ©|w (2.9). As the object (U, ¢) is in Uy, U is a direct factor of a hyperbolic object
H(Y) with quotient in A and such that the form ¢ is the restriction of the hyperbolic form on H(Y).
According to lemma 3.11, we can then find a hyperbolic direct factor H(Z) of W with quotient W/H(Z)
in A4 and such that the hyperbolic form on H(Z) is the restriction of the one on H(Y"). It follows that
the form on H(Z) is the restriction of the form on W which was a common subform of (U, ¢) and (V, ).
It follows that for any two objects of (o | x) there is an object which is ”smaller” than both.

Let a,b : (U,¢) = (V,4) be two morphisms in < iA,,ildy > and let y : (V,) - H(X) be a map
in i(U/A)g such that yoa = yob in i(/A)g. By the calculus of fractions (2.9), there is a split
monomorphism ¢ : W — U with cokernel in A such that a o i = boi. Using the fact that (W, dw) is a
(possibly degenerated) subform of an hyperbolic object with quotient in A, as (U, ¢) is, and lemma 3.11,
it follows that there is a hyperbolic subobject H(Z) of W and a morphism ¢ : H(Z) — (U, ¢) such that
aoc=boc. O

3.13 Corollary. For A a preadditive category in which 2 is invertible, there is a homotopy equivalence
K"A) ~ QK"(SA).
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Proof. Applying Proposition 3.12 to the exact sequence P(A4) — F(CA) — F(SA) (2.18, 2.7, 2.8) and
cofinality for the total and base space (3.5), it remains to show that K"(C.A) is contractible. But this
follows from the Eilenberg swindle (2.11) which extends to a natural isometry f ®id = f in P(C.A). This
yields K2(f) + K}(id) = K}(f), hence idgnr(c.4y = 0. a

Proof of Theorem 3.6. By Lemma 2.13, the sequence SA — SU — SU/A is also exact. Because of 2.8
we can apply Proposition 3.12 to the sequence P(SA) — F(SU) — F(SU/.A) and we obtain a homotopy
fibration whose loop space is the homotopy fibration of Theorem 3.6 (use 3.13 and cofinality for total
and base space). O

3.14 Definition. Let A4 be a preadditive category with duality in which 2 is invertible. Its non-
connective hermitian K -theory spectrum is the spectrum K”(A) whose n-th space is K"(S™A). The
structure maps are given by the homotopy equivalences of 3.13. Define its n-th hermitian K-groups as
KM A) := 7,(K"(A)). For a more precise and functorial definition, we refer the reader to appendix B.

3.15 Remark. As K"(A) is an Q-spectrum, we have 7, K"(A) = m, K" (A) for n > 0 (3.2), so Definition
3.14 is compatible with Definition 3.2. For n < 0 the groups coincide with Karoubi’s negative hermitian
K-groups [KV73, Paragraphe 3].

3.16 Theorem. If the preadditive category with duality U is A-filtered and if 2 is invertible in U, then
the sequence A — U — U/ A induces a homotopy fibration of non-connective hermitian K -theory spectra

K"(A) - K"U) - KU/ A).

Proof. This is Theorem 3.6 applied to the exact sequences S A — S"U — S"(U/A) (2.13),ne N. O

3.17. Mapping cones. For f : A — B a map of preadditive categories, the pushout C(f) of the diagram
CA + A — B is called the mapping cone (or simply the cone) of f.

Applying the functor K" to a diagram obtained by a pushout in Pad of a map along a filtering map
yields a homotopy cartesian square of spectra (2.16, 3.16). In particular, as K?(CA) is contractible (see
proof of 3.13), for any map f : A — B of preadditive categories, the sequence A — B — C(f) of induces
a homotopy fibration

K"(A) - K"(B) - K"(C(f)).

In the literature, one uses a different cone construction, e.g., [Kar80]. Let C(f) be the pull-back of the
diagram CB — SB + SA and call it the limit cone of f. Then there is an exact sequence B — C(f) — SA
(2.17) and a homotopy fibration (3.16, 3.13)

K"(A) = K"(B) - K"(C(f)).
There is a natural map C(f) — C(f) given by the universal properties of limit and mapping cone. It
follows from the above discussion that it induces a homotopy equivalence K*(C(f)) = K"(C(f)).
4. BACKGROUND ON TRIANGULATED CATEGORIES

In this section, we review localization sequences for exact and triangulated categories and discuss how this
applies to K-theory and Witt groups. For notation and conventions regarding triangulated categories and
the bounded derived category Dy(E) of an exact category £, we refer the reader to [Kel96]. Complexes
will be written homologically, i.e., differentials lower degree.

4.1. We recall some classical facts about Ky of triangulated categories, where Ky in this paragraph 4.1
means usual Ky, i.e., before taking idempotent completion. For an exact category &, there is a natural
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isomorphism Ky (&) = Ko(Dy(E)) (exercise!). Let S — T be a cofinal map of triangulated categories,
i.e., fully faithful, and every object of 7 is a direct factor of an object of S. If K¢(S) — Ko(T) is
an isomorphism, then § — 7T is an equivalence. This follows from Thomason’s classification of dense
subcategories [Tho97].

4.2 Definition. A sequence of triangulated categories R — S — 7T is called exact up to direct factors if
R — S is fully faithful, and the functor from the Verdier quotient S/R to T is cofinal, i.e., fully faithful,
and every object of the latter category is a direct factor of an object of the Verdier quotient. The sequence
is called ezact, if it is exact up to direct factors and if moreover R is closed under direct factors in S and
S — T is, up to isomorphism, surjective on objects.

4.3. Let A be a ring and let ¥ C A be a multiplicative subset of central non-zero-divisors. Let
D} (A-proj) C Dy(A—proj) be the full subcategory of those complexes which are acyclic after localization
at X. Then the sequence of triangulated categories

(4.4) D;(A—proj) = Dy(A—proj) — Dy(E~ A—proj)

is exact up to direct factors. This is almost by definition, we only have to observe that the localiza-
tion with calculus of fractions A—free — Y ~!A—free induces a localization functor Chy(A—free) —
Chy (B~ A—free) and a fortiori a localization Dy(A—free) — Dy (X! A—free). Moreover, for any ring R,
the functor Dy(R—free) — Dp(R—proj) is cofinal.

We will give a description of DbE(A—proj) as the derived category of certain exact categories below.
First, we notice the following.

4.5 Lemma. The triangulated category D,,E(A—proj) is generated, up to direct factors, by complexes of
the form

(4.6) e 0 ASAS0 -

with s € X in the sense that it is the smallest idempotent complete triangulated subcategory of Dy(A—proj)
which is closed under isomorphisms and which contains the complexes (4.6).

Proof. Let T be the triangulated category generated by the complexes (4.6). It is clear that T C
Dy (A—free). Let (A.,d.) be a complex in D}’ (A—free) which is acyclic (and hence contractible) after
localization at . Suppose 4; = 0 for ¢ > 1. The map Y ~1d; is split injective because of the acyclicity
assumption. By the calculus of fractions, there is an A-module map e : Ag — A; and an s € ¥ such that
ed; = s. The maps e and id,, define a map of complexes from A, to the complex A; = A; concentrated

in degree 0 and 1 which is a direct sum of complexes of the form (4.6). The contractible complex Ay l—d> Aq
concentrated in degree 1 and 2 is a direct factor of the cone of the map of complexes. If A; # 0 for some
i < —1, then the complement of the contractible complex is shorter (i.e., has fewer non-zero terms) than
A,. By construction, the shorter complex is in 7 if and only if A, is, so we may reduce the number of
non-zero objects of A, inductively. If in the complex A, we have 4; = 0 for i # 0,1, then ¥~ 'd; is an
isomorphism. By the calculus of fractions, there are A-module maps e: Ag — Ay, f: A1 = Ag, s,t € X
with s = ed; and t = fe. This implies that d; (and e, f) is an isomorphism modulo 7. Thus, the cone
of A, is a direct factor of an object of T. O

Let Hy, e be the full subcategory of right A-modules of those modules M for which there is an exact
sequence of right A-modules

(4.7) 0= A" 3 A" -+ M — 0

with ¢ an upper triangular matrix whose diagonal has entries in ¥. The category Hifree is extension
closed in the category of right A-modules, and thus is declared to be a fully exact subcategory of this
category. Let ’Pé,free be the full subcategory of right A-modules of those modules E for which there is an
exact sequence of right A-modules

(4.8) 0>P—->E—-M-—>0
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with P finitely generated free and M in ’Hé’ﬁee. The category Pifree is extension closed in the category of
right A-modules, and thus is a fully exact subcategory. The inclusion H3; g0, C Py gree induces a triangle
functor Dy(H3; ree) = Db(Ps; free) Which by [Kel96, 12.1 b), 11.7] is fully faithful. Moreover, the inclusion
A—free C Py, g, induces an equivalence Dy(A—free) 2 Dy (Pg; 4,,) by resolution. Since the exact category
H3: free 18 generated by the modules of the form A/sA with s € ¥, and since Dy(H5, r00) C Dj (A—proj),
it follows from Lemma 4.5 that we have an equivalence of triangulated categories

(49) D?(A—pl‘o.]) = Db(HlE,free)N
where ~ denotes idempotent completion as before (1.1).

Recall that the exact category ”Hé,pmj has already been introduced (1.3). By similar arguments as
above, we obtain a triangle equivalence

(4.10) D? (A—proj) = Dy(HL

,proj)'

Note that the right hand term is already idempotent complete because le,pmj is [BSO1].

4.11. Triangulated and preadditive exactness. Let A — B — C be an exact sequence of preadditive
categories in the sense of 2.6. Then the sequence of triangulated categories

Dy(P(A)) = Dy(F(B)) = Dy(F(C))
is exact (see 2.7 for the definition of F'). This is implicit in [CP97]. For an explicit proof and a general-
ization to exact categories, see [Scha, 2.6]. It follows that for any preadditive category A, the sequence
(2.19) induces an exact sequence up to direct factors.

(4.12) Dy(A—proj) = Dy(C A—proj) — Dy (S A—proj).

Since CA—free — S A—free is surjective on objects, it follows that not only Ko(C A—proj) = 0 but also
Ko(SA—free) = 0 (for the usual Ky, i.e., before taking idempotent completions). Using 4.1, we see that
the following sequence is exact

(4.13) Dy(A—proj) = Dy(C A—proj) — Dy(SA—free).

4.14. Let A be aring and let ¥ C A be a multiplicative subset of central non-zero divisors. Let B be a
flat Z-algebra. Then the set X ® 1 = {f®1p | f € £} is a central multiplicative subset of A ® B which
consists of non-zero divisors because of the flatness assumption. We have (X®15) 1 (A®B) = S71A® B.
Recall that cone and suspension rings are flat Z-algebras (2.10, 2.12). The localization map from the
sequence (4.12) for R = A to the sequence (4.12) for R = ¥~! 4 induces a sequence of “kernel categories”

(4.15) D} (A—proj) — Dy®'¢ (CA—proj) — D;®'s (S A—proj).

4.16 Lemma. The sequence of triangulated categories (4.15) is exact up to direct factors.

Proof. Tt is clear that D} (A—proj) is the “kernel category” of DbE®IC(CA—pr0j) — DbE‘X’IS(SA—proj).
Therefore, it remains to show that D,?@lc (CA—proj) — DE@S (SA—proj) is a localization up to direct
factors. We will show that ®cS : Hsig1,, free = Hg1s tree 1S @ localization with calculus of left fractions.
This implies that Db(’H%@lC’ﬁee) — Db(HE@S’ﬁee) is a localization. By (4.9), this yields the claim.
Recall (2.12) that the suspension ring S is obtained from the cone ring C by a calculus of right fractions
with respect to the multiplicative set {t” | n € N}. Thus, for M a right A® C-module, right multiplication
with ", n € N, satisfies the axioms of a calculus of left fraction. Note that S = colim(C XocXcx.. -)
and M ®¢ S = colim(M Xmdms.. -). If M and N are finitely presented right C A-modules, then

homg(N ®ca SA, M ®@c4 SA) =homey(N, M ®ca SA) = home 4 (N, colim(M X M % ...))
= colim(home 4 (N, M) "D Ly,
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This shows that any subcategory of finitely presented right C'A-modules defines a localization with cal-
culus of left fractions onto its image in the category of right SA-modules. Thus, for ®¢S : Hig, o free
Higr s .free 10 be a localization with calculus of left fractions is the same as to be surjective on objects,
up to isomorphisms. Surjectivity on objects follows from the fact that any object of 7-[12@5,&% has a
presentation (4.7) with A replaced by SA. The map o can be lifted to give a presentation (4.7) with A
replaced by C A because CA — SA is surjective. d

4.17 Lemma. Let A be a full additive subcategory of an additive category U. Suppose the inclusion
L: A CU admits a right adjoint R : U — A such that the counit ey : LRU — U is monic for all U in
U. Then the quotient map U — U[ A induces an equivalence of triangulated categories

Dy(U)/Dy(A) = Dyp(U]A).

Proof. Recall that Dy(A) is a full triangulated subcategory of Dy(Uf) as both categories are homotopy cat-
egories of chain complexes. Thus the quotient category Dy(U)/Dy(.A) and the induced map to Dy(U/A)
do exist. Both categories are generated as triangulated categories by the objects U € U considered as
complexes concentrated in degree zero. By the five lemma for homomorphism groups in triangulated
categories, it suffices to show that the map

homp, ) /Dy (4) (U, V[i]) = homp, @s/.4) (U, Vi])
is an isomorphism for all objects U,V € U.

Write 7 : id4 — RL for the unit of the adjunction. As L is a full inclusion, 7 is an isomorphism.
Degree-wise application of L, R, 1, € on chain complexes yields an adjoint pair of functors between the
derived categories and their unit and counit maps, still called L, R, 1, €. In this situation, the cone ¢(€) of
e defines a triangle functor Dy(I4) — Dy(U) which is trivial on Dy(.A) and thus defines a triangle functor
Dy(U)/Dy(A) — Dy(U) which is known to be fully faithful (exercise, or see [NeeO1, Proposition 9.1.18]).
Thus we have to show that

homp, @) (c(ev), c(ev)[i]) = homp, @i/ (U, VIi])
is an isomorphism. For ¢ # —1,0,1 both sides are trivial on the chain complex level. For i = —1,1 the
right hand side is trivial on the chain complex level. For ¢ = —1, the left hand side is trivial on the chain
complex level because € is monic. For ¢ = 1, chain maps on the left hand side are homotopic to zero as
any map from an object of A to an object W of U factors through RL(W). For ¢ = 0, the right hand side
is the set of maps from U to V modulo those which factor through an object of A, thus modulo those
which factor through RL(V'), by adjointness. This is exactly the description of the left hand side. d

Exact sequences of triangulated categories are useful because of the following theorem and because of
Theorem 4.20 below.

4.18 Theorem. Let A — B — C be a sequence of exact categories such that Dy(A) — Dy(B) = Dy(C)
is exact up to direct factors. Then the induced sequence of non-connective K -theory spectra

K(A) - K(B) - K(C)

is a homotopy fibration.
Proof. This is a special case of [Sche, 11.10], see also [Sche, 5.5, 11.13]. O

4.19. Triangular Witt groups. Let (T,4,7) be a triangulated category with duality, Balmer defines
its triangular Witt groups WJ(7T) as the monoid of isomorphism classes of symmetric spaces (i.e., of
hermitian objects in 7) relative to the duality functor 7™ o §, modulo “neutral spaces” [Bal00, Definition
2.12]. Balmer’s triangular Witt groups are 4-periodic [Bal00, 2.14]. Let e = 1 or e = —1, we write W(T)
for W2(T, 4, en). By [Bal00, Remark 2.16], there is a natural isomorphism _ W% (T) = W% (T).
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Moreover, there is a natural isomorphism W (€) — WS (Dy(£)) for £ an exact category with duality
[Bal01, 4.3], [BW02, 1.4]. For £ an exact category, we may write [WWg(E) for V5 (Dy(E)).

4.20 Theorem. [Bal00, Theorem 6.2] Let R — S — T be an ezxact sequence of triangulated categories
(4.2) with duality in which 2 is invertible. Then there is a natural long exact sequence

(4.21) e = WE(R) = WE(S) = WE(T) = WETHR) — ...

4.22 Lemma. Let D be a triangulated category with duality and let A, B,C be triangulated subcategories
with duality closed under direct factors in D and such that A C B,C. Assume that the induced map on
quotients f : C/A — D/B is an equivalence. Assume further that there is a triangle map D — B/A which
is the quotient map B — B/A when restricted to B and which is trivial when restricted to C. Then the
two compositions W*(D) % W*(B/A) 38 W*t1(A) and W*(D) % W*(D/B) = W*(C/A) % W*+1(A)
differ by a sign.

Proof. We have induced exact sequences of triangulated categories C/.A i DJ/A 3 D/C and B/ A EN

D/ A LA D/B which induce split short exact sequences of Witt groups since i = f is an equivalence.
This implies that the map e = «j induces an isomorphism on Witt groups and the split exact sequences
J '8
0——W*(B/A) — W*(DJA) =—=W*(C/A) —=0
e o g

1

represent the middle term as the sum of the two outer terms. Thus we have 1 = if '8 + je la. By

Balmer’s localization sequence, the composition W*(D) = W*(D/.A) 24 W**L(A) is zero, hence we have
0=104c= 6Aif_1,30+(5Aje_1ac = 5cf_1a+(53b. O

5. KAROUBI INDUCTION

The purpose of this section is to review Karoubi’s “Fundamental Theorem” and the induction principle
that can be derived from it both in the language and the generality that turn out to be necessary for our
proofs of localization and dévissage.

5.1. The ring V. Following [Kar80] we introduce a ring V. The ring homomorphism F' : Z — Z x Z°P :
a — (a,a*), where Z x Z°P is equipped with the canonical involution (3.3), is duality preserving. The
map F is called forgetful map. Let V be the limit cone (3.17) of F' : Z — Z x Z°P. 1t is a preadditive
category with duality which has as objects, the ring with involution V' defined by the pull-back square

(5.2) v S
| |
C x (% ——= § x S°p

and some objects of V' —proj. Note that in this description of V', we used the isomorphism of rings with
involution (Z X Z°P) @ A= Ax A — A x A°? : (a,b) — (a,b).

5.3 Definition. For A a preadditive category with duality, we write V. A for AQV, .V (A) for the loop
space of (K" (V.A) and (V(A) for the loop spectrum of K" (V A).

5.4 Remark. The inclusion V. A—proj - A ® V—proj is an equivalence of categories with duality. By
2.13 and 2.17, A® V is the limit cone of the forgetful map Fu ;= AQF : A - A x A°P. So there is a
homotopy fibration (3.17, 3.3)

V(A) = Kh(A) S K(A).
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5.5 Remark. Note that, as a kernel of a surjective map, S x C' x C°? — § x S of flat Z-modules, V'
is a flat Z-algebra. Moreover, lemma 5.11 below shows that V' — S and V — C x C°P are flat as well.

5.6. The ring U. We define an involution on the ring M5 of 2 x 2 matrices with entries in Z by

(ca)=(22)

The ring homomorphism H : 7 x Z°? — My : (a,b) — diag(a, b*) is duality preserving, where 7 x Z°P is
equipped with the canonical involution. The map H is called hyperbolic map. Let U be the limit cone
(3.17) of H : Z x ZL°? — M>. Tt is a preadditive category with duality which has as objects the ring with
involution U defined by the pull-back square

(5.7) U S x Sop

b

MQ(C) e MQ(S)

and some objects of U—proj.

5.8 Definition. For A a preadditive category with duality, we write UA for AQU, U(A) for the loop
space of .K"(UA) and ;U(A) for the loop spectrum of [K*(UA).

5.9 Remark. As in 5.4 there is a homotopy fibration
UA) - K(A) B KA

since by Morita equivalence My ® A—proj and A—proj are equivalent categories with duality.

5.10 Remark. Note that, as a kernel of a surjective map, M>(C) x S x S°? — M5(S) of flat Z-modules,
U is a flat Z-algebra. Moreover, S x S°? — M,(S) and M>(C) — M(S) are flat, the latter map is
surjective, so U — S x S°? and U — M»(C) are flat by 5.11 below.

5.11 Lemma. Let f:B — D and g:C — D be ring homomorphisms. Let A be the pull-back ring of
f along g. If f and g are flat and g surjective, then the induced maps g: A — B and f : A — C are also

flat.

Proof. Let £ be the following category: objects are triples (M, N, ¢) where M is an object of B-Mod, N is
an object of C-Mod and ¢ : N®cD = M®pD is an isomorphism in D-Mod. A morphism from (M,N, )
to (M',N', ¢') is a pair of morphisms y : M — M’ and v : N — N’ such that ¢'o(v®c1p) = (u®pB1p)o@.
The category £ is a Grothendieck abelian category with small projective generator P = (B, C,id).
Kernels, cokernels and sums are formed component-wise (use f, g flat). The projectivity claim follows
from flatness and surjectivity of g. The fact that P is a generator is a consequence of the surjectivity
of g. Tt follows that & is equivalent to End(P)-Mod [Pop73, 3.7, exercise 4]. With A = End(P), by
construction, the equivalence A-Mod — & sends an A-module M to (M ®4 B,M ®4 C,id). As an
equivalence it is exact and so A — B, A — C are flat ring homomorphisms. O

5.12 Notation. For A a ring with involution and B a preadditive category with involution we write A™B
for the preadditive category with involution B @ A®™.

5.13. Karoubi defined a map _ K}(V®? ® Z[1]) = 1 K{(R) and an element z in _ K} (V®? ® Z[1])
corresponding to 1 € 1 K{(R) under this map [Kar80, 3.3]. Let z be represented by (Pi, A1) — (P2, \s2).
For any preadditive category A, tensoring with P; defines a map ® P; : A — P(V2A) <+ V2, tensoring
with (P;, \;) defines a map ®(P;, \;) : P(A)p = —P*(V2A)p + _P(V2A)4, the left arrow map being
an equivalence. Group completing yields maps f; : (K" (A) — _.K"(V2A). By abuse of notation, we
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will write Uz = fy — fa : K"(A) = _K"(V2A) as a map of spaces. Saying that cup product with z
is a homotopy equivalence means by definition that on homotopy groups the difference ;(f1) — m;(f2)
induces an isomorphism for all i. The proof of the following theorem can be found in [Kar80].

5.14 Theorem. (Karoubi’s “théoréme fondamental”) For any preadditive category with involution A
in which 2 is invertible, cup product with z induces a homotopy equivalence

Uz: K"A) S _K"V2A).

Proof. Every idempotent complete additive category with duality is the filtered colimit of categories with
dualities of the form P(A) for some rings with involutions A [Schb, appendix]. The theorem follows from
Karoubi’s théoréme fondamental of [Kar80] where it has been proved for rings with involutions. O

5.15 Remark. The maps ®(P;,\;) induce maps of spectra f; : K"(4) 5 _ K"(V2A). Using the
isomorphism S"V2A = V25" A, we can apply Karoubi’s fundamental theorem 5.14 with S™A in place of
A to obtain a homotopy equivalence of spectra

~

fi—fo: KM(A) 3 _ K" (V2A).

5.16 Remark. [Kar80, 1.4] In this paragraph, all maps of preadditive categories have to be tensored
with Z[gl] which we omit to avoid cumbersome notations. By definition of the preadditive category with
duality V (5.1), there is a filtering inclusion ¢ : Z x Z° — V with quotient S (2.17). Tensoring the
hyperbolic map (5.6) with ¢ yields a commutative square in Pad

(Z x Z.°P) x (Z x Z.°P)°P xer Y x Yop

Hzxzwl LH\;

op
MQ(Z X Z ) W MQV

Let j be the full inclusion Z — P(Z x Z°P) sending Z to the image of the idempotent (1,0) € Z x Z°P.
Then P(Hyzxzor) © (j X j°P) is a hermitian K-theory equivalence as it induces an equivalence on finitely
generated projective modules by Morita equivalence. The map P(t)oj is a K-theory equivalence because

K(Z) "5* K(Z x Z°?) » K(V)

is a homotopy fibration (3.17). Hence, the map P(: X t°P) o (j X j°P) is a hermitian K-theory equivalence
(3.3). It follows that the homotopy cofibers in hermitian K-theory of M2(:) and Hy are homotopy
equivalent, in other words, there is a hermitian K-theory equivalence of UV with S. The argument is
also valid after tensoring with any preadditive category A with duality (2.13). In particular, there is a
natural homotopy equivalence [K"(UV A) ~ K" (SA).

5.17 Remark. Applying Karoubi’s théoréme fondamental to the preadditive category with involution
UA we find the more familiar version of this theorem, namely a homotopy equivalence [Kar80]

QUA) S _V(A).
This follows from the above discussion.

5.18. Karoubi Witt groups. Let A be a preadditive category with duality. The hyperbolic functor (3.4)
induces a morphism of spectra H : K(A) —. K"(A). Following Karoubi [Kar80] one defines

IVE(A) := coker(Kn(A) 25 K"(A)), neZ.
These groups are 4-periodic up to 2-torsion [Kar80]. Note that W (A) = W (A—proj), the usual Witt
group.
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5.19 Remark. We show in A.4 that WX (A4) ® Z[3] = W™ (A—proj) ® Z[3]. Nevertheless, there are
interesting elements in the 2-torsion of Karoubi’s higher Witt groups which do not exist in Balmer’s
Witt groups. For example, let F' be a field of characteristic different from 2, the determinant of an
automorphism of a hermitian object defines a surjective map W (F) — oF* = 7Z/27. However, the
Balmer Witt group W' (F) is trivial [Bal01, 5.6].

5.20 Lemma. (Karoubi induction) Let f : A — B be a map of preadditive categories with duality
such that 2 is invertible in A and B. Suppose f induces isomorphisms K.(A) — K.(B), x € Z and
either a) K"(A) = KMB) are isomorphisms for i = NN +1 and e = 1,1, or b) Wx(P(A)) =
JVE(P(B)) are isomorphisms for n € Z and € = 1,—1.  Then the induced maps K"(A) = KI(A)
are isomorphisms for e = 1,—1 and a) for all i > N, b) for all i € Z, respectively.

Proof. To prove part a), observe that our hypothesis has the following implications: 7y (V' (f)) iso (five
lemma) = _ .Uy, (f) iso (5.17) = _eK']\,H(f) epi (five lemma) = wn11(—cV(f)) epi (five lemma) =
K 12(f) iso (5.17 and five lemma). The claim follows by induction. To establish part b), let C'(f) be
the mapping cone (3.17) associated with f. By 2.16, we have exact sequences up to direct factors (4.12)
Dy(A—proj) — Dy(CA—proj) — Dy(SA—proj) and Dy(B—proj) — Dy(C(f)—proj) — Dy(SA—proj),
and f induces a map between them which is the identity on Dy(S.A—proj). By assumption, Theorem 4.18
and K(CA) ~ 0, it follows that K(C(f)) ~ 0. Let 7; and 7> be the image categories of Dy(C.A—proj) —
Dy(SA—proj) and Dy(C(f)—proj) — Dy(SA—proj), respectively. The cofinal inclusion 71 C 73 is an
equivalence (4.1) because both have Koy = 0 (as Ko(C A—proj) = 0 and Ko(C(f)—proj) = 0). Replacing
in the exact sequences up to direct factors the third term with 77 and 73, respectively, we obtain exact
sequences, and thus associated long exact sequences of triangular Witt groups (4.19). Since WE(P(f))
is an isomorphism, we have W3 (C(f)—proj) = 0. Hence WX (C(f)—proj) = 0 (A.3), i < 0. With
K.(C(f)) = 0 we have .K",(C(f)) = 0 for i < 0. So K!'(A) — K}(B) is an isomorphism for i < 0
(3.17). Using part a) we are done. O
The proof of this Lemma is easier for regular rings as then one may use Lemma A.5.

6. PROOF OF LOCALIZATION

To enhance readability, we will frequently drop the index e from our notation in this section if no confusion
may arise, e.g., a statement about K" is actually a statement about K" both for e =1 and € = —1.

6.1. OQutline of the proof. We introduce a simplicial additive category with duality G, and a sequence
of simplicial additive categories with duality (6.2)

PA) 5 G B RTx.

In each degree, the sequence will induce a homotopy fibration of hermitian K-theory spaces (6.7). This is
deduced from the corresponding localization theorems in ordinary K-theory, in Balmer’s theory of Witt
groups and Karoubi induction (which in turn relies on cofinality.) The Bousfield-Friedlander theorem
[BF78] will imply that after topological realization

K"(4) % [K"(G)] 5 [KM(R.Ty)]

we still have a homotopy fibration (6.10). The last step consists of identifying (up to m) |K"(G.)| and
|K"(R.Ts)| with K*(£71A) and W(Tx) (6.11, 6.10).

6.2 Definition. We define a simplicial additive category with duality (G, 4, id). Recall the cosimplicial
category with duality [n] — n (1.8). The simplicial additive category G, is the full subcategory of the
category of additive functors P : n — P(A) of those objects P such that P(i < j) : P; = P; is an inclusion
with 3-torsion cokernel. The duality # on A induces a duality § on G, by Pi(i < j) = (P(j' < i"))*
such that (G, f,id) becomes an additive category with duality. The cosimplicial structure [n] — n gives
(G, t,id) the structure of a simplicial additive category with duality.
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There is an additive duality preserving functor ¢, : P(A) — G, sending @ to the constant diagram
P(i < j) = idg. Furthermore, there is an additive duality preserving functor p, : G, = R, Tx sending
P to p,(P) with p,(P);; = P(i < j) and maps pp(P)i; — pn(P)r,; given by the inclusions P(i) C
P(j), P(k) C P(l). Considering P(A) as a constant simplicial additive category with duality these two
functors assemble to give functors of simplicial additive categories with duality

(6.3) PA) 5 G, B R.Ts.

Note that the composition of the two functors is trivial.

6.4 Proposition. For any integer n > 0, the maps 6.3 induce a short exact sequence of triangulated
categories with duality

Dy(P(4)) "% Dy(Gr) V8™ Dy (R T).

Proof. The inclusion ¢, : P(A) C G, admits a right adjoint, namely G,, - P(A4) : P — P(n'). The
counit is monic since all maps P(n' < m) are monic. It is simple homological algebra to check that the
map G, /P(A) — R, Tx is an equivalence of categories. Now the claim follows from 4.17 since Dy(P(A))
is the kernel category of Dy(G,) = Dy(G,)/Dy(P(A)). This is because Dy(P(A)) is idempotent complete
as P(A) is [BSO01]. O

6.5. Recall the definition of the cone of a duality preserving map of preadditive categories with duality
(3.17). Since the composition P(A) X8 G — R Tx is trivial, the universal property of push-outs yields
a functor ¢y, : C(1r) = Ry Tx of preadditive categories with duality sending CP(A) to the base point 0.

6.6 Proposition. If2 is invertible, then the functor ¢, : C(t,) = R, Ts induces homotopy equivalences
of non-connective hermitian K -theory spectra

K"C(in) = K"(RuTx).

Proof. Since R, Ty is idempotent complete, the functor ¢, : C(1,) = R, Tx extends to ¢, : PC(i,) —
RnTs and all its subcategories. Consider the commutative diagram of additive categories with duality

P

P(4) —= G, R Ts:

Y

FCP(A) — FC(1,,)

l |

FSP(4) —> FSP(A).

The first horizontal and the two vertical lines induce exact sequences of bounded derived categories with
duality (4.11, 6.4). We therefore have associated homotopy fibrations of non-connective K-theory spectra
(4.18) and long exact sequences for triangular Witt groups (4.19).

As the vertical homotopy fibrations have the same base, the top square induces a homotopy cartesian
square of K-theory spectra. It maps to the homotopy cartesian square belonging to the homotopy
fibration of the top row. As K(CP(A)) ~ x by the Eilenberg swindle, the map ¢, induces a homotopy
equivalence of non-connective spectra, by the five lemma. Moreover, the existence of a retraction to ¢,, as
additive categories, namely G,, = P(A) : P — P(0), implies that K(G,) — K(C(1,)) is surjective on all
m;. Thus the composition of usual K-groups (no idempotent completion before taking Ko!) Ko(G,) —
Ko(F(C(tn))) = Ko(P(C(1,))) is surjective. In particular, the last map is surjective, hence bijective as
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it is always injective by cofinality. So the functor Dy(FC(t5)) — Dy(PC (1)) is an equivalence (4.1). In
particular, replacing FC(t,) with PC(1,) doesn’t change neither (usual) K-groups nor triangular Witt-
groups.

There is a map from the Mayer-Vietoris long exact sequence for triangular Witt-groups associated
with the top square to the long exact sequence of triangular Witt-groups associated with the top row.
Commutativity for the boundary maps (up to sign) was checked in 4.22. Again by the Eilenberg swindle
and the five lemma we conclude that W*(¢,) is an isomorphism. Since FC(i,) = PC(ty) and R, T —
PR, Ts induce isomorphisms for all triangular Witt groups, we may apply Karoubi induction (5.20 b))
to obtain the claim. d

6.7 Corollary. For any integer n > 0, the maps defined in 6.2 induce a homotopy fibration
(GPANF S (iGa)i B (RLTs)

Proof. Tt follows from 3.16 that applying non-connective hermitian K-theory spectra to the top square
in the diagram of the proof of 6.6 yields a homotopy cartesian square. It maps to the square that belongs
to the top row of the diagram with 0 in the left lower corner. Since all of these maps are hermitian K-
theory equivalences, it follows that the top row induces a homotopy fibration of non-connective K-theory
spectra. As P(A4), G, and R, Tx are idempotent complete, the claim is just —1 connected cover of this
homotopy fibration. O

6.8. We would like to apply the Bousfield-Friedlander Theorem [BF78, Theorem B.4] to conclude that
the topological realization

(IP(A)F 3 [(1G)F | 2 [RT) |
is still a homotopy fibration. For this we have to check the two conditions of [BF78, Theorem B4].
The “m.-Kan-condition” holds because we are dealing with simplicial H-groups. But the morphism
70 ((iGr) ) B mo (iR Tx)* might not be surjective, in general. If we write 7. for the full subcategory of
i(RET)T consisting of those components lying in the image of i(G,)} — i(R:Tx)™T, then we can prove
the following:

6.9 Lemma. If 2 is invertible, then there is a homotopy fibration
[Tl = [GRETR) | = |Li|

where L, is a constant simplicial abelian group.

Proof. We define the simplicial abelian group L. by L,, := coker[ro(T,) = mo((iR:Tx)")] = coker[KH(G,) —
K!(R,Tx)]. By the Bousfield-Friedlander Theorem, we have a homotopy fibration |7,| — |(iR"Tx)*| —
|L.|- Denote by LY the cokernel of W3(G,,) = W3(R,Tx). The induced map on cokernels L,, — LY is
an isomorphism since K¢(G,) — Ko(R,Ts) is an epimorphism (6.4). Consider L¢ as a constant simplicial
abelian group. We claim that the natural map of simplicial groups . : Ly — L, induced by oy, : [n] = [0]
is an isomorphism. Considering W5 (P(A)) as a constant simplicial abelian group, the residue homomor-
phisms of Balmer’s localization sequence 4.20 (associated to the short exact sequences of Proposition 6.4)
8 : W5 (R.Ts) — WE(P(A)) yield a simplicial factorization W3 (R.T) LY WL (P(A)).
It follows that for any € : [n] — [m] in A the induced map 6 : L,, — Ly, is a monomorphism. In particular,
G, and 7 are monomorphisms for any 7 : [0] — [n]. Using the identity 7 o &5, = idr,, we conclude that
the map &, is an isomorphism for all n. d

6.10. Since G, and R, Ty are simplicial strict symmetric monoidal categories (as P(A) is), the natural
maps |(iG«)n| = |(iG4); | and |iR!Ts| = |(iR"Tx)*| are group completions (e.g. [Schb]). The latter
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map is already a homotopy equivalence because mo([iR?Tx|) is the usual Witt group and thus a group
(1.14). It follows that we have homotopy fibrations

iP(A)f = i(G.)f = W(Ts) and thus U(Tx) = iP(A)} — i(Gy)}.

Denote by P'($71A) the full subcategory of P(X~!A) of objects which are localizations of finitely
generated projective A-modules. By cofinality, the inclusion P'(¥7'4) — P(X7!A) induces a map
of hermitian K-theory spaces iP'(S~1A4)f — iP(X"!'A)} which is a monomorphism on 7o and an
isomorphism on 7;, ¢ > 1. Theorem 1.15 now follows from the following proposition.

6.11 Proposition. There is a homotopy equivalence
[i(Ge)n|T =P/ (S AT,
and if Ko(A) = Ko(X71A) is surjective, there is a homotopy equivalence
li(Gn|t S iP(E7TA)S,
such that composition with iP(A)} — i(Gx)n|T yields the localization map induced by A — L1 A.

Proof. For any category C, we denote by N,C its nerve (a simplicial set), and by N,C the simplicial
category with NV,,C = Fun([n],C), the category of functors from [n] to C and natural transformations
as maps. Note that N,C = ObN,C. The bisimplicial set N,iN,C is isomorphic to the nerve of the full
simplicial subcategory of N.C with objects those functors [n] — C that send maps in [n] to isomorphisms
in C. Considering C as a constant simplicial category, we have a map from C to this full simplicial
subcategory which sends an object C' € C to the string of isomorphisms consisting only of identity maps
ido. This map is degree-wise an equivalence of categories. Hence we have a homotopy equivalence
C S iN.C.

For (C,4,id) a category with duality, let Cj4 denote the category of all hermitian objects including
the degenerate ones. More precisely, objects are pairs (M, ¢) with ¢ = ¢* : M — M?* not necessarily
an isomorphism, and maps are as in Definition 1.5. Furthermore, we write (NV£C,1,id) for the simplicial
category with duality with N¢C the category of functors [n] — Fun(n,C). For F : n — C, its dual
is defined by F¥(i < j) = (F(j' < i'))*. Note that there is an isomorphism of simplicial categories
INE(C)n = iNL[(C)na)-

We write mP C P(A) for the subcategory with the same objects and those morphisms which are
monomorphisms with ¥-torsion cokernel. The inclusion mP C P(A) is closed under the duality, and thus
(mP,#,id) is a category with duality. Composing the inclusion with the localization map A — ¥4
yields amap L : mP — P'(X~1A) of categories with duality which sends all maps to isomorphisms. Note
that i(G.)p = i(NEMP)p,.

The first homotopy equivalence of the proposition follows once we show that the last map in the
diagram

i(G)n = iNEmP)p = iN[(mP)ha] & (MP)pg = iP (S A)

is a homotopy equivalence.

Let M € P'(X7!A) be a localization of a finitely generated projective A-module. A lattice in M
is a finitely generated projective sub-A-module P C M such that the induced map ¥~'P — M is
an isomorphism. Lattices form a non-empty partially ordered set under inclusion. Given two lattices
P,QQ C M, the A-module P/(P N Q) is a finitely generated and ¥-torsion. We can find an s € ¥ with
[P/(PNQ)]s=0. Thus P = Ps C PN Q is a lattice contained in P and Q.

Given a non-degenerate e-hermitian form ¢ : M — M* on M, the dual lattice PV of P is the set of all
x € M such that < z,y >€ A for all y € P where <, > denotes the e-hermitian bilinear form associated
with ¢. Tt is identified with P* ¢ ¥~1(P*) = M* under the map ¢ and thus is indeed a lattice. Note that
PV = P. Let L(M,¢) be the partially ordered set of lattices in M which are contained in their dual
P C PV. It is not empty as any lattice in PN PV is contained in its dual, for P a lattice. It is filtering
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as any two lattices contained in their dual have a common sub-lattice which is necessarily contained in
its dual. Thus £L(M, ¢) is contractible.

The functor L(M, ¢) — (L | (M, ¢)) sendingi : P C M to ¢oi : P — P* together with the isomorphism
¥~!P — M induced by P C M is an equivalence of categories. Thus all categories (L | (M, ¢)) are
contractible and L : (mP)yq — iP'(X "t A); is a homotopy equivalence by Quillen’s theorem A.

We show the second homotopy fibration. By the first homotopy fibration and cofinality, we only
need to show that K2(P'(£71A)) — K} (P(X71A)) is surjective Given an object (P,¢) of P(S71A),
our assumption implies that Ko(P'(X714)) - Ko(P(X7!A)) is an isomorphism. Therefore, there is an
object P' of P'(¥71A) such that P @ P’ is in P(¥"1A). Then H(P') ® (P,¢) is in P'(X"1A); and the
element [H(P') & (P, )] — [H(P'")] of K} (P'(X71A)) maps to [M, ). O

For the rest of the section, keep the hypothesis of 1.15 and assume that Ko(4) — Ko(Z 1A4) is
surjective. The above discussion immediatly yields the following variant of Theorem 1.15.

6.12 Theorem. Under the hypothesis of 1.15 assume furthermore that Ko(A) — Ko(X71A) is surjec-
tive, e.g., A reqular. Then there is a homotopy fibration

K" (A) 5 KMETHA) - W(T).
O
6.13. The map K} (X71A) — Wy(Tx). We give a description of the map K2 (%71 A4) — Wy (Tx) under

the hypothesis of Theorem 6.12. Inclusion of zero simplices into the simplicial fibration of Corollary 6.7
yields a commutative square of spaces

K" (Gy) KMTE)

| |

Kh(S14) — W(T3).

When applying 7o, the vertical maps are surjective, the right one obviously, the left one because of the
proof of 6.11. This defines the map K}E71A) — Wy(Tx).

6.14. The isomorphism v : Wi(Ts, Ext') = W™ (D (A)). We now construct a duality preserving
equivalence of triangulated categories ¢ : (Dy(Ts), Ext') — (D] P(A),T4) in the sense of [Gil02, Defini-
tion 2.6]. This yields an isomorphism W} (s, Ext') = Wi (DY (A)). Note that the first category has
a 1-duality and the second a —1-duality!

The modified cone of a map of complexes f, : (A.,d2) = (B.,dP) is the complex (C(f)«,d.) with

~ B (_1)i—1¢,
C(f)z :Bi@Az',l, dz = dl ( l)A fzfl ]
0 di—l

Consider a chain complex in Gy as a map of chain complexes in P(A), then taking the modified cone
yields a map F : ChyGy — ChyP(A). The map F preserves degree-wise split exact sequences and
contractible chain complexes, hence homotopies. It therefore induces an exact functor of homotopy
categories F' : DyGo — Dy P(A) which obviously has image in D}’ P(A). Note that T-1 o F = Fo T~
The functor F is duality preserving if we choose as natural isomorphism 7 : Foff — (T'#) o F multiplication
with (—1)des,

Next, the composition DyPA — DyGo — Dy P(A) is zero, thus induces a duality preserving map
(Dy T2, Ext') — (DY P(A),#) by 6.4. As quasi-isomorphisms in Ch7x are isomorphisms in D P(A),
the map induces a duality preserving map ¢ : (DyTs, Ext') — (Di P(A),#) which is an equivalence of
triangulated categories (4.10).
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6.15. The following diagram commutes

Wi (Go) Wi (T, Ext!)

| |

Wi (571 4) — Wi (DEP(A))

where § is the boundary map of Balmer’s localization sequence for the exact sequence 4.4. Going first
horizontally and then vertically is the map F of 6.14.  Inspecting the definition of § [Bal00], the
commutativity is obvious.

6.16. There is a commutative diagram

K} (A) —— KB (SLA) ——> Wy (Ts, Eat') 22> Wh(A) —> Wh(S4) —---

L e

WH(A) —= WS~ A) —= WE(DF(P(A))) T—= Wh(A) —= WEH(Z™'4) — -+
where the first two horizontal maps are the maps given by applying 7 to the fibration of Theorem 6.12.
The lower sequence is Balmer’s localization sequence applied to the exact sequence 4.4 which is exact
because of the Ky assumption. Commutativity of the second square follows from 6.13 and 6.15. Since
the lower sequence is exact, and since ¢ is an isomorphism (6.14), the upper sequence is also exact.

6.17. One checks that the boundary map W* (7%, Ext') — W**1(4) associated to the exact sequence
of 6.4 equals the composition W*(7¥, Ext') = W*(Ts, Ext') - W*T1(DF(P(A4))) - W*t1(A).

7. PROOF OF DEVISSAGE

For this section, we fix a ring A (not necessarily commutative) with involution and a multiplicative subset
3 C A of central non-zero divisors closed under the involution. However, the dévissage theorem we will
prove in this section is only valid for commutative rings as the corresponding result for Witt groups is
only known in this case. As for localization, the proof of dévissage uses Karoubi induction starting in
negative degrees. What is new is that we will need functorial deloopings for the hermitian K-theory of
a non-split exact category, namely the category of torsion modules 7x. This is solved using appendix B
and showing that the map mo f below is an isomorphism.

7.1. Let B be a flat Z-algebra with involution. Then the set 15 ® ¥ = {1p® f | f € X} is a central
multiplicative subset of B ® A which consists of non-zero divisors because of the flatness assumption
The set is closed under the involution. We have (¥ ® 15)"}(A ® B) = ¥7'A ® B. Let BTs. denote the
category Tugi,- If B — B’ is a flat map of flat Z-algebras with involution, then B'®p : BTy, — B'Tx
is a well defined exact functor preserving dualities. In this way, suspensions STy, cones CTy of Ty, the
categories UTx, VTx and various functors between them are defined (¢f. 2.10, 2.12, 5.1, 5.6).

7.2. The W-spectrum. For notations, the reader is referred to appendix B. The less “functorially
minded” reader may just forget about appendix B, drop the index n of K*( ), and take the definition
of the hermitian K-theory spectrum given in 3.14.

For £ an exact category with duality, we define the space W(E), to be the topological realization of
the simplicial space (K"(R.E)n. Note that WV(Tx)o = IV(Tx) (if you drop indices then the inclusion
WV(Ts) = W(Tx)o is a homotopy equivalence).

The exact functor QS : T — STy induces a simplicial duality preserving functor SR.Tx — R«STx.
The structure maps (B.2) of the [K"-theory spectrum K"(R;Tx)n AS' = (K"(SRiTs)n+1 yield maps

W(T2)n AST = K" (RuTz)n ASY = | K" (SRTs)nt1| = | K" (RuST)nt1] = V(STs)nra
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which are the structure maps of a spectrum
EW(’]-E) = {GW(E)7 CW(SE)h €W(SQ7'E)27 }

It follows from our Localization Theorem 1.15 that 2 ‘W is an Q-spectrum which fits into a homotopy
fibration of 2-spectra (actually, ;K" is only an Q-spectrum beyond the 0-th space, in any case, we have
a homotopy fibration of spectra)

(7.3) QW(Tz) » K'A) » K'Z1A).

The following proposition shows that under suitable hypothesis, the spectrum (W is itself an Q-spectrum.
7.4 Proposition. Suppose A satisfies K;(A) = 0 and K;(X1A) = 0 for all i < 0 and Ko(4) —

Ko(E71A) is surjective, e.g., A= S™R, R a regular ring. Then the adjoints IV (S'Tx)n = Q W(S™H1Ts)ni1
of the structure maps for ;W defined in 7.2 are homotopy equivalences.

Proof. Tt suffices to show the case i = 0. The general case is obtained from this case by replacing A with
St A. The functorial construction of the spectra K" and ;W applied to 6.3 and 6.11 yield a commutative
diagram of spaces

KA, ——— KM=14), (T

SR

QK" (SA) 1 — QK"(SE 1 A)py1 — QW(STs) ns1

in which the columns are the adjoints of the structure maps and the rows are homotopy fibrations under
our hypothesis (6.12). So Qf is a homotopy equivalence. As all spaces in the diagram are H-groups, we
are left with checking that 7o f is an isomorphism.

Consider the diagram

K (A) — KG(Z7'4) Wo(Ts) Wp(A) —= Wp(S4)

7r0041l ﬂoazl ﬂ'of‘/ (+) B1T /32]\

KH(SA) — KNE1SA) — mQW(STs) — K2 (SA) — K (2 1SA)

where the upper row is the exact sequence of 6.16 and the lower row is the exact sequence of homotopy
groups associated to the lower (“unlooped”) homotopy fibration of the previous diagram. The maps 1,
Bo are the isomorphisms of A.5. The maps mga;, moas are isomorphisms because the first two vertical
arrows in the first diagram are homotopy equivalences. We now show commutativity of (+) up to sign
which yields the desired isomorphism by the five lemma.

Composing (+) with the inclusion of zero simplices Rg — R. and with the hermitian K-theory
equivalence C(19) = 75 (6.6) yields a diagram

K5 (Cl)) — K5 () Wo(Ts) W s(A)

S

K(SC()) — KMSTY) — mQW(STs) — KE(SA)

whose first two squares are commutative. Since (K (TF) — W (Tx) is surjective, it suffices to show
that the outer square commutes. By B.3, going first vertically then horizontally yields the map which is
induced by the cofiltering map C(t9) — SA. By 6.17, the map K} (T:¥) = W' (A) is the composition
of the canonical surjection .K§ — W, composed with the boundary map associated to the exact
sequence of triangulated categories 6.4. Recall (proof of A.5) that §; is the composition of the surjection
Kb — W, and the boundary map associated to A — CA — SA. So we are left with checking that
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the two compositions [Wy(C(w)) = Wo(T) N JVHA) and Wo(C(w)) = Wo(SA) A VA

coincide up to a sign. But this is 4.22 for the inclusion of triangulated categories with duality Dy(P(A)) C
Dy (Go), Dy(CP(A)) C Dp(C(0))- U

7.5 Corollary. Let R be a ring with trivial negative K -groups and let A, X be as in 7.4. Then forn <0,
there are isomorphisms m,( W(R)) = W g"(P(R)) and m,( W(Tx)) = Wg"(Ts) In particular, the
map (W (A/f)) = mn( W (Tx)) is isomorphic to the map W 5"(A/f) = V5" (Tx).

Proof. Let £ be P(R) or Tx. Then the sequence S — CS"E — S™1€ induces homotopy fibrations of
W-spectra with contractible total space. For rings, thisis 3.16 and 1.12. For £ = Ty, this follows from the
ring case and 7.3. Thus 7, W (A/f) = 7, ¢ W(Tx) is isomorphic to 79 W(S™™A/f) = 19 W (S "Tx)
which is Wo(S™™A4/f) = Wy(S "Tx) by 1.14 and 7.4.

The sequence also induces exact sequences Dy(S"E—proj) — Dy(CS"E—proj) — Dy(S"T1E—proj)
of triangulated categories. For rings, this is 4.11 together with the fact that D,(CS™E—proj) —
Dy (S™t1E—proj) is a localization as both categories have Ky = 0 since R has trivial negative K-groups.
For £ = Ty, exactness up to direct factors follows from 4.16, 4.10. Exactness follows from the fact that
negative K-groups of 7Ty is trivial since A is regular. By 4.20, the sequence induces long exact sequences
of triangular Witt groups where all terms [W5CE = 0. Thus Wg"(4/f) - Wg"(Tx) is isomorphic
to WH(S~"A/f) = WV%(S™"Tx) which is Wo(S™"A/f) = Wo(S™"Tx) (4.19). 0

Proof of Dévissage. Let £ be Ts, or P(R) with R a regular ring. Recall that the rings C' (2.10), S (2.12),
U (5.10) and V' (5.5) are flat Z-algebras, and that all maps in the digrams (5.2) and (5.7) are flat. So
the categories with dualities C&, SE, UE, VE and various maps between them are defined (7.1). The
diagrams (5.2) and (5.7) induce homotopy fibrations of spectra

W(E) = W(E XEP) - W(VE),

W(E X EP) = W(E) = WUE).
For rings, this follows from 1.12; and the corresponding statements about hermitian K-theory. For
& = Ty, this follows from the ring case and the localization homotopy fibration of spectra (7.3). Recall
also that (W(& x £°P) is a delooping of the K-theory spectrum of £ as i (£ x £), is equivalent to i€.

As in 5.13, tensoring with the hermitian modules (P;, A;) of 5.13 induces maps of categories with
dualities and thus maps f; of W-spectra. We have a commutative diagram of spectra

W(U(A/f)) W(UTs)

f1—f2l lh—fz

WU (A/f) — WV UTs)

with vertical maps homotopy equivalences. For A/ f this is Karoubi’s fundamental theorem 5.14, and for
Tx,, this follows from Karoubi’s fundamental theorem for the rings UA and UX "' A and the homotopy
fibration of spectra (7.3) applied to the localization UA — UX ! A. By the arguments of 5.16 which also
apply to Ty, there is a natural homotopy equivalence between the functors ®S and ®U ® V. Moreover,
QW(SE) ~ W(E).

By Corollary 7.5, Lemma 7.6 below and W% = _W%t? the map ;W(A/f) - W(Tx) is an
isomorphism on 7,, n < 0. Moreover, A/f — Tx is a K-theory equivalence by Quillen’s dévissage
theorem [Qui73]. Karoubi’s induction principle 5.20 a) applies now to the functor A/f — Tx with K"
replaced by (W. This yields the homotopy equivalence ;W(A/f) = W (Tz). O

7.6 Lemma. The map j: A/f — Ts of 1.18 induces isomorphisms of triangular Witt groups for n € Z
Wg(A/f) = Wg(Tx).
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Proof. We just treat the case n = 0, the general case is similar composing everything with 7" and
changing signs following [Bal00]. The commutative square of triangulated categories

Dy(P(A/)) Dy(Tx)

C

Dy(A/f — mod) —=— D7 (A — mod)

with ¢ and ¢ the obvious inclusions extends to a commutative diagram of triangulated categories with
dualities

(Dy(P(A/ 1)), Ext',1,1) — 22— (Dy(Ts), Ext', 1,1)

l(zd,c)
) ﬁ/falaeu) (¢,p)

l(i,z’d)

(Dp(A/f — mod), 8/ f,1,ev) —— (DbE (A —mod),TH,—1, —ev)

in the sense of [Gil02, Definition 2.6]. Here we define p and 7 using the same sign conventions as for g
in [Gil02, p.129], compare also 6.14. See e.g. [Kar74] (and 1.7) for the isomorphism ¢ between Ext! and
t/f = homy,¢( ,A/f) which already exists on the category P(A/f), so no signs appear. The functors i
and ¢ induce isomorphisms on W by resolution and [Gil02, Theorem 2.7], and « induces an isomorphism
on Witt groups by dévissage [Gil02, Theorem 4.1]. Hence j also induces an isomorphism on W7 as
claimed. d

(Dy(P(A/f

(1)

APPENDIX A. COFINALITY FOR TRIANGULAR WITT GROUPS

A.1. For what follows the reader is advised to have a copy of [Bal00] at hand as we will make frequent use
of its terminologies and results. Let (B, ,w,d) be a triangulated category with -duality. Let A C B be
a full triangulated subcategory invariant under the duality functor. Suppose A is cofinal in B, i.e., every
object of B is a direct factor of an object of A. Let K(B,.A) be the monoid of isomorphism classes of
objects of B under direct sum operation modulo the monoid of isomorphism classes of objects of A. The
identity map on generators yields an isomorphism K (B, A) = Ko(B)/Ko(A). Moreover, an object B of
B yields the trivial class 0 = [B] € K(B, A) iff B is isomorphic to an object of A.

The duality functor  induces a Z/2Z-action on K (B, A). Write o for the generator of Z/27Z. Let
H(Z /27, K (B, A)) be the i-th Tate cohomology group of Z/2Z with coefficients in K (B, A). It is the
i-th cohomology group of the complex

v — KB, A) % K(B, A) —% K(B, A) 22~

where the middle term is placed in cohomological degree zero.

A.2 Theorem. If B is a triangulated category with §-duality such that % € B and if A a cofinal full
triangulated subcategory of B invariant under the duality, then there is a natural (12-term periodic) long
exact sequence

v ——=Wh(A) —= WE(B) — Hi(Z/2Z,K (B, A) —= W5 (A) —= W5 (B) — -

Proof. Write * for the (—d)-duality T o f and n = —dw, then (x,n7) = T(#,w) [Bal00, 2.8. Definition].
By definition of triangular Witt groups [Bal00, 2.13. Definition] it suffices to construct a natural exact
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sequence
B

1) W(A, 8, w) — W(B, §,w) —% kerll—0) W (A, ,1) ——> W (B, *,1).

Im(1+40)

The maps i, j in the sequence are induced by the inclusion A C B.

The map « is defined as follows. Let (B, ) be a symmetric space in (B, #,w), then [B] € ker(1 — o) as
B is isomorphic to B¥ via ¢. If (B, ) is neutral, i.e., the cone of some symmetric map u : C — T~(C*),
then [B] = [TC]+[(TC)*] € Ko(B) as [TC] = —[C] and (T'C)* ~ T~1(C*). It follows that [B] € Im(1+0)
and the map a with a([B, ¢]) = [B] is well-defined.

The map S is defined as follows. Let [B] € ker(1 — o), then B ® T(B*) = B @ B* is an object of A.
Let H(B) be the hyperbolic form associated with B and the (—§)-duality (x,7), i.e.,

H(B) = (B@B*,( TSB é))

Then H(B) is a symmetric space in (A,*,n). Suppose [B] € Im(1 + ), i.e.,[B] = [C & C¥] = —[TC] -
[T~1C*] in K(B,.A) for some C in B. So [B&TC ®T~1C* =0, hence B&TC & T~1C* is an object of
A. Now H(B) is the cone of the (f,w)-symmetric morphism [Bal00, 2.10 Definition] in A

0 0 0
0 0 1 |:BteTCeT 'Ct— B*aT 'CteTCH.
0 Two 0

Therefore, H(C) is neutral in the triangulated category A with —4 duality (*,7) and the map S given
by B([B]) := [H(B)] is well-defined.

We need to show exactness of the sequence (1). First, the composition of consecutive maps is zero.
This is obvious for a¢ o i and j o 8. For B o «a, let (B,¢) be a symmetric space for (B,4,w), then
Boa(B,¢$) =[H(B)]. But H(B) is the cone on the symmetric morphism in A

-1
( (¢*2 X ) .B'eT'B - B¥ o TB".
Consequently, H(B) is neutral in (A, *,n) and so 8o a = 0.

Exactness at W (B, ,w). Let (B, ¢) be a symmetric space for (B, §,w) and suppose a([B, ¢]) = [B] = 0.
Then [B] = [C @ C*] in K(B,.A), hence B® TC & (TC)* is in A as its class is zero in K (B,.4). Write
L(C) for the neutral symmetric space in (B, ,w)

L(C) = (C@cﬁ,( woc é))

Then (B, ¢) ® L(TC) is a symmetric space in (A, #,w) which is equivalent to (B, ¢) in W (B, §,w).

Exactness at the middle term. Let B be an object of B with [B] = [B*] in K(B,A) such that
B(B) = H(B) is Witt-trivial, hence neutral in (A, f,n) [Bal00, 3.5. Theorem]. This means that there is
a symmetric morphism u : A — A* in (A,4) (v = u® o wa) such that H(B) is the symmetric cone on
u [Bal00, 2.12. Definition, 1.6. Theorem]. Eliminating redundant variables, this means that there is an
exact triangle in A

Swi' bt
” ~Ta! Ea Tb)
A—— A —— B3 TB'—TA.

Let C be the cone of 6T’1(w§1bﬁ). Apply the octahedron axiom TR4 ([Bal00, section 1]) to the compo-
sition EP——
(1 0)o ( e ) ) = 0T~ (wp'b)

to find maps g : A = C and g» : C — A" such that gog; = v and a map of exact triangles
(T 'a,ido,Tat,a) : (1T 'a,—g2, 0w b*) — (g1,—(Tab)go, Th). As f is d-exact ([Bal00, 2.2. Defi-
nition]), the triangle (—ghw (T~ 'a), g}, dw bt) is exact as well (after identification of B with B via wg).
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By TR3, the partial map of exact triangles (1,7,1,1) : (g1(T'a), —g2, dwp'b?) = (—ghwa(T~'a), g}, dwpztbt)
can be completed to a map of triangles (1, ¢,1,1) with ¢ necessarily an isomorphism (5 lemma). Putting
these two maps of exact triangles together we obtain a commutative diagram in which the rows are exact
triangles

T—Ig'éwA(T_l(gfﬁ gE " 6w§1bu B
T_la,l ] lTa’j la
#
A 91 C_(Tau)QZTB Tb TA.
One checks that ¢fwe can replace ¢ in the above commutative diagram, then ¢ := (¢ + ¢*wc) can
replace ¢ as well. We have gfqbgh = —g291 = —u, hence gf(q&uwc)gl = —u (use u = vfwy) and so
9?4591 = g§9091 = —u. Since ¢ is an isomorphism, so is ¢ ([Bal00, 4.6. Lemma]). By construction,

¢ = ¢*wo. Tt follows that (C,¢p) is a symmetric space in (B,#,w) and thus defines an element in
W (B, ,w). We have a(—[C,¢]) = —[C] = —[T(B*)] = [B*] = [B] in K(B,.A). This shows exactness at
the middle term.

Exactness at W (A, *,n). Let (A, ¢) be a symmetric space for (A,*,n) which is Witt-trivial, hence
neutral in (B, *,7), i.e.,, (A, ¢) is the cone on some (#,w)-symmetric morphism v : B — B*. Tt follows
that [B] = [B*] in K(B,A), in particular, H(B) is in A. Since H(B) is the cone on the symmetric
morphism 0 : T~'B — TB* we see that H(B) @ (A, ¢) is the cone on the symmetric morphism 0 ® u :
T~'B® B — TB*'® B* which is a morphism in A. Hence, H(B) @ (4, ¢) is neutral in (A, *,7), and so
[4,6] = —[H(B)] = —B([B]) = B(—[B)) is in the image of 5. o

A.3 Corollary. Let A — B be a map of idempotent complete additive categories with duality. Suppose
that 1 € A, B and that the map induces isomorphisms W5 (A) — W}(B), x € Z and K;(A) — K;(B),
i <0. Then it induces isomorphisms WX (A) - WE(A), i <0.

Proof. By induction on n we show that W} (S™A—proj) — W}(S™B—proj) are isomorphisms. The case
n = 0 is the hypothesis on Balmer Witt groups. The induction step follows from the natural exact
Cofinality sequence A.2 applied to the idempotent completion SC—free — SC—proj, the isomorphism
W} (S"C—free) = Wt (S"+1C) (4.13, 4.20) for C = A, B and the five lemma. O

A.4 Lemma. For any ring A in which 2 is invertible, there is a natural isomorphism

WEA)Z[1/2]=W;™(A) @ Z[1/2).

Proof. As Tate cohomology of Z /27 is 2-torsion, a consequence of the Cofinality Theorem A.2 is the iso-
morphism Wi (A)®Z[1/2] 5 Wi, (A)®Z[1/2] for any triangulated category with duality. By Balmer local-
ization 4.20 applied to 4.13 we thus have isomorphisms W5 (S™ 1 A—proj) ® Z[1/2] = W (S™ A—free) ®
Z[1/2) = W3 (S™ A—proj)®Z[1/2], * € N. Since by definition WX (4) = W3 (S?A—proj), i > 0, induction
on n starting with n = 0, proves the result for n < 0. For n > 0 we use the fact that W}, and WX ®Z[1/2]
are periodic of period 4 [Bal00], [Kar80]. O

The following result identifies Balmer’s Witt groups with Karoubi’s negative Witt groups for regular
rings (not only up to 2-torsion):

A.5 Lemma. Let N <0 be an integer. Let A be an idempotent complete additive category with duality
in which 2 is invertible such that K,(A) = 0 for all N < n < 0. Then WX(A) = W;"(A) for all
N < n <0. In particular, there is an isomorphism K'A) 5 W;"(A), N <n < 0 which is natural for
additive categories satisfying the above condition.
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Proof. The proof is the same as the proof of A.4 without tensoring with Z[2] since W} (S™A—free) =
W§(S™A—proj) for —N > n > 0. This is because of the assumption on negative K-groups. O

A.6 Remark. If one is interested only in regular rings, then it is possible to prove Corollary 6.6 applying
this comparison lemma and a result of the second author on the vanishing of K _; of abelian categories
instead of cofinality for triangular Witt groups. This approach was discussed in preliminary versions of
this article.

APPENDIX B. THE NON-CONNECTIVE HERMITIAN K-THEORY SPECTRUM

This appendix is devoted to the construction of functorial versions of non-connective hermitian K-theory
spectra announced in definition 3.14. This construction uses I'- spaces to produce strict deloopings. A
similar construction of deloopings for ordinary algebraic K-theory can be found in [Jar97, section 5.1].

B.1. The —1-connected hermitian K -theory spectrum and pairings. Let I'°P be the skeletal category of
finite pointed sets. The object with n non-base points is denoted by n.. The elements of n are labeled 0
through n with 0 as base point. The category I'°? is symmetric strict monoidal under the smash product
of pointed sets A : ['? x I'? — I'? sending (m4,n4) to my A ny where my A ng is identified with
(mmn)4 by ordering its elements i A j lexicographically. Recall that a I'-object in a category is a covariant
functor from I'°? to that category.

Let A be in Pad. We construct I'-objects A, k € N, in Pad associated with A as follows. For n € N,
the category Ayg(n, ) has objects pairs (4,0) with 4 : N — ObA and o : N* — n, maps of sets such
that for all but finitely many i € N* we have o(i) = 0 and such that 4; = 0 whenever o(i) = 0. A map
a: (A,o) = (B,p) is a collection of maps a;,; : A; = Bj in A, i,j € N*, such that a;,; = 0 whenever
a(i) # p(j). We identify the objects (0, o) with the base point of A (n4). For amap 6 : ny. — my in TP,
the map A () sends (A, o) to (A4,000) with (#A); = 0 for oo (i) = 0 and (AA); = A; for foa(i) #0. It
sends a map a to 6(a) with §(«),; = 0 whenever oo (i) =0 or oo (j) =0 and 0(«x);,; = a;,; otherwise.
Notice that a duality # on A induces a duality § on Ay, by declaring (4,0)* = (A%, 0) and (a¥);; = (a;)".
This makes Ay, into a T'-object in Pad functorial in A. Taking idempotent completions, hermitian objects,
associated isomorphism categories and nerves yields a I'-object in the category of pointed simplicial sets

BY = NLi(P(Ap))n-

Given a I'-object F in the category of pointed simplicial sets and given a finite pointed simplicial set
K (i.e.,a functor A°? — T'°P), the pointed simplicial set F(K) is the diagonal of the bisimplicial set
m,n — F(Kp)p. For two finite pointed simplicial sets K, L, there is a map F(K)A L — F(K A L)
which sends an n-simplex z Al to F( Al)(z) where Al is the map X,, - X, AL, : ¢ — z Al. When
K, L run through the spheres S™ = (S')"", these maps become the structure maps of a spectrum
{F(8%),F(S"),F(S?),..}. If F is a special T-space, i.e., the maps F(n;) — F(1;)", induced by the
various projections n; — 1, sending all but one element to the base point, are homotopy equivalences,
then the spectrum is an (2-spectrum except possibly at F(S°), i.e., the adjoints |F(S™)| — Q|F(S™t1)| of
the topological realizations of the structure maps are homotopy equivalences for n > 0 [BF78, Theorem
4.4]. The spectra obtained from special I" spaces are —1-connected.

The T'-space B% is special for k > 0 as the map Ay (n4) = Ak(14)™ is an equivalence of categories
with duality for each n. The associated spectrum is therefore an {2-spectrum beyond the 0-th space. In
our case, the first structure map |F(S%)| — Q|F(S?)| of the associated spectrum is a group completion
[May75, section 15] as F(S1) can be identified with the Bar construction on F(S°). Since Ag(14) is
equivalent to A—free as category with duality, the spectrum k"(A); given by the I'-space B represents
—1-connected hermitian K-theory, k > 0.

For k = 0 we obtain the suspension spectrum of |[iP(A)y| as Ag(n4+) = AV AV ...A (n-times) and
thus BY (n4) = NyuiP(A), Any.
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Given A, B € Pad, there are maps of categories

Ap(my) x Bi(ny) — (A ® B)rri(my Any)

(A7U)5(Bap) — (A/\B,a/\p)

where (AAB); ; = A;AB;. On morphisms the maps are given by the ordinary tensor product of matrices.
These maps induce maps,

By (my) A Bh(ny) = Bif@fB (m4 Any) functorially in my, ny, and thus

Bi\(K) A BL(L) - B35 (K A L) functorially in K and L.
Writing K" (A); for Qf|B%(S)], the maps induce pairing maps
K"A); AK"B); = K"(A® B)iy;

functorially in A and B. For i > 0, the space K"(A); has the homotopy type of the hermitian K-theory
space of A.

More precisely, the object Z of P(Z) equipped with the trivial form id : Z — Z* = Z defines a point
in BL(S%) = N,iP(Z)p, thus a map S° — BL(S°) — QBL(S') = K"(Z),. Smashing with K(A), and
composing with the pairing map yields a map ¢, : K"(A), = K"(A), A S - K"(A), A K"(Z)1 —
K"A®Z)py1 = K"(A)nq1 which is a homotopy equivalence for n > 0 and a group completion for n = 0
(exercise).

B.2. The non-connective hermitian K -theory spectrum [Kar80]. Recall that C denotes the cone category
(2.10). The object (¢,0) of C; with ¢(i) = 0 for ¢ # 1 and o(1) = 1, ¢; = Im(p) and hermitian form
id : (C,p) — (C,p)* = (C,p* = p) defines a zero simplex of B}(S°). It induces a map n : S —
|BL(S%)| = Q|BL(S")| = K"(C)1. Choose a contraction h: K*(C)1 AT — K"(C)1, h1 = id, hg = . This
is possible since the hermitian K-theory of C is trivial by the Eilenberg swindle. Define p : S* — K"(S);
by the commutativity of the diagram

[———=1/8°= 5" L~ Kh(9),

. |

KMC) AT K"C),

Smashing with K”(A), yields a commutative diagram

KA, AT KA A S —22 KR (A), A KP(S)) — KP(SA)nis

| |

KhA), AKMC) AT AL K"(A),, AK"(C);.

Write R for the map K*(A),AS' = K"(SA),+1 and H for the map K" (A),AK"*(C); AT = K"(SA)p 1.
In the commutative diagram

K (A)n A S© —2L KR (A), A KMC) —> K'(SA)nst

'

K"(A)n1 K"CA)ny1 K"(SA)n1




36 JENS HORNBOSTEL AND MARCO SCHLICHTING

the lower row is a homotopy fibration (3.6). Since the vertical maps are all homotopy equivalences (the
middle one because both spaces are contractible) the top row is a also a homotopy fibration.
The map of homotopy fibrations

KM (A)n A S° —22 Fh(A), AK(C) — KM (SA)ppa

adj(R)J/ ladj(H) l:

QKM(SA)pi1 PK"(SA)np1 K" (SA)nta

is a homotopy equivalence on base and total spaces, hence on fibers as well. Therefore, adj(R) : K"(A),, —
QK"(SA),41 is a homotopy equivalence. The sequence {K"(A)g, K"(SA)1, K"(S%2A)s, ...} with the
structure maps given by the adjoint of R is called the non-connective hermitian K -theory spectrum of A
and is denoted by K”(A). By the preceding arguments, it is an {-spectrum beyond its O-th space. The
construction is functorial in A.

B.3. Let f:.A— B be amap of preadditive categories with duality. Recall (3.17) that

AL B oy

induces a homotopy fibration in hermitian K-theory and that we have the cofiltering map C(f) — SA.
The following diagram commutes (exercise)

K3 (C(f)

|

K1 (SC(f)) = KA(SA)

where the vertical arrow is induced by the adjoint of the structure map, the horizontal map is the boundary
map for the homotopy fibration and the diagonal map is induced by the cofiltering map C(f) — SA.
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