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EMERGENCE OF THE WITT GROUP
IN THE CELLULAR LATTICE OF RATIONAL SPACES

KATHRYN HESS AND PAUL-EUGÈNE PARENT

Abstract. We give an embedding of a quotient of the Witt semigroup into
the lattice of rational cellular classes represented by formal 2-cones between
S2n and the two-cell complex Xn = S2n ∪[ι,ι] e

4n (n ≥ 1).

1. Introduction

It is now a well-established fact in unstable homotopy theory that the structure of
the Dror Farjoun (cellular) lattice (Top∗, <<) [8] defined on the category of pointed
spaces having the homotopy type of a CW-complex is highly nontrivial. At the
time this paper is being written its full classification is still intractable, to the best
of the authors’ knowledge. Just recently the partial order was in fact shown to be
a (complete) lattice [7]. The dream of course would be to classify it, as Hopkins
and Smith [12] did in the case of the Bousfield lattice [3] of stable p-torsion finite
complexes.

In a first attempt to tackle this classification problem, Chachólski, Stanley and
the second author came up with a criterion to determine when A << B rationally
[6]. This criterion can be extended to the case of spaces that are Bousfield equiv-
alent to Sn, i.e., (n− 1)-connected spaces A such that map∗(Sn, X) ' ∗ whenever
map∗(A,X) ' ∗. We immediately deduce the following strict building relation:

S2 << CP 2 << CP 3 << . . . << CP∞.
Afterwards, Félix constructed yet another such example over the rationals, i.e.,

S2 << . . . << CP 2# . . .#CP 2︸ ︷︷ ︸
n times

<< . . . << CP 2#CP 2 << CP 2.

Furthermore, using the Chachólski-Parent-Stanley criterion together with results
concerning inert cell attachments [10], the first author produced an infinite family
of cellularly incomparable spaces, which all have the same rational homotopy Lie
algebra and the same rational homology coalgebra [11]. Even rationally, therefore,
the structure of the cellular lattice is remarkable.

In this paper we continue the quest for the holy grail of complete classification
of the rational cellular lattice. We consider cellular classes generated by (2k − 1)-
connected spaces X of dimension at most 6k−1 (k ≥ 1) such that π2k(X)⊗Q 6= 0.
Moreover, we ask that these spaces be rationally formal. In these cases, for degree
reasons, the only relevant cells are in dimensions 2k and 4k. The crucial remark is
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that all these cellular classes are contained between S2k and the two-cell complex
Xk = S2k ∪[ι,ι] e

4k (k ≥ 1) (Proposition 3). Let M be the set of cellular classes
generated by such spaces with at most one cell in dimension 4k. In Theorem 7, we
show that M is in one-to-one correspondence with a certain quotient W (Q) of the
Witt semigroup W (Q), where the operation considered is the Kronecker product
of quadratic forms. The quadratic forms within this quotient have been classified
in the work of Lewis and Tignol [13], where they generalize the classical invariants,
i.e., Clifford algebra, signature, and discriminant, associated to isometry classes of
quadratic forms (see the Appendix).

Thanks to the isomorphism between M and W (Q), there is a partial order on
W (Q), corresponding to the building relation on cellular classes. We believe this
partial order to have been unknown previously and intend to study the implications
of its existence for the classification of quadratic forms.

Finally, we exhibit an action of M on the set of cellular classes generated by
these 2-cones where the restriction on the number of 4k-cells is lifted. To the best
of the authors’ knowledge, this is the first time that such algebraic operations have
been defined on a subset of the rational lattice.

2. Notation and background

Throughout this paper all spaces are rationalizations of simply-connected spaces
having the homotopy type of a CW-complex.

2.1. Rational homotopy theory and Quillen models. Rational homotopy the-
ory has its roots in the work of Quillen [15] and Sullivan [17]. For a complete
overview of these techniques, we refer the reader to [9]. We recall here some of the
highlights, in particular, the equivalence of categories between the homotopy cate-
gory of simply-connected rational spaces and the homotopy category of connected
differential graded rational Lie algebras.

Recall that a graded Lie algebra over the field of rational numbers Q consists of
a positively graded Q-vector space L, together with a bilinear product called the
Lie bracket that we denote [−,−], such that

[x, y] = −(−1)|x||y|[y, x]

and

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]]

for all homogeneous x, y, z ∈ L, where |α| refers to the degree of a homogeneous
element α ∈ L. This last identity is known as the Jacobi identity and simply
expresses the fact that the adjoint representation acts as a derivation with respect
to the bracket.

If a graded Lie algebra L is endowed with a derivation ∂ of degree −1 such that
∂2 = 0, we call (L, ∂) a differential graded Lie algebra, abbreviated dgL, and ∂ is
its differential.

Let V be a positively-graded Q-vector space, and let TV denote the tensor
algebra on V . When endowed with the commutator bracket, TV is a graded Lie
algebra. The free Lie algebra on V , denoted LV , is the smallest sub Lie algebra of
TV containing V . An element in LV has bracket length k if it is a linear combination
of iterated brackets of k elements of V , i.e., if it belongs to the intersection LV ∩T kV ,
where T kV denotes the subspace of TV generated by the words of tensor length
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k. The subspace of elements of bracket length k is denoted LkV . Note that any
graded linear map of degree 0 from V into a graded Lie algebra L can be extended
uniquely to a Lie algebra map from LV into L. We say that a dgL is free if the
underlying graded Lie algebra is free. The differential ∂ of a free dgL (LV, ∂) can
be decomposed as ∂ = ∂1 + ∂2 + ∂3 + . . . , where ∂k(V ) ⊂ LkV . The summand ∂2

is called the quadratic part of the differential ∂.
Let X be a simply-connected space. The graded vector space π∗(ΩX)⊗Q admits

a natural graded Lie algebra structure, where the bracket is given by the Samelson
product. Together with the Samelson bracket, π∗(ΩX) ⊗ Q is called the rational
homotopy Lie algebra of X , denoted L(X) in this article.

IfX is simply-connected, then there exists a free dgLM(X) = (LV, ∂), unique up
to isomorphism, called the Quillen (or Lie) model of X . It completely characterizes
the rational homotopy type of the space X and has, in particular, the following
properties:
• H∗(M(X)) ∼= L(X) as graded Lie algebras;
• sV ∼= H̃∗(X ;Q) as graded vector spaces, where (sV )n = Vn−1 for all n > 0;
• ∂1 = 0; and
• ∂2 is obtained via desuspension from the coproduct on H∗(X ;Q).

Moreover, geometrically this model corresponds to a cell decomposition where the
cells are represented by the generators, and the attaching maps are encoded into
the differential. This model is intimately linked to the Adams-Hilton model [1], as
shown by Anick in [2]. We will thus refer to an inclusion of the type L(V<n) ↪→ L(V )
as the inclusion of the nth-skeleton of X into X .

Dually (in the sense of Eckmann-Hilton), when the rational homology of X is
of finite type, the essential property of the Quillen model of X is that there is
a quasi-isomorphism of commutative cochain algebras from the Cartan-Chevalley-
Eilenberg construction onM(X) to the de Rham algebra of piecewise-linear forms
on the singular set of X .

Finally, the Quillen model is a natural construction, so that a continuous map
between two simply-connected spaces induces a dgL-map between their respective
Quillen models.

2.2. Cellular spaces. In [8] Dror Farjoun made the following definition. A full
subcategory of pointed spaces, C ⊂ Top∗, is called a closed class if it is closed under
weak equivalences and arbitrary pointed homotopy colimits. We refer the reader to
the work of Bousfield and Kan [4] and to Dror Farjoun’s book [8] for the definitions
and constructions associated with the notion of (pointed) homotopy (co)limits. A
result of Chachólski in [5] shows that a class C of spaces is a closed class if and only
if
• if X ∈ C and Y ' X , then Y ∈ C; and
• if Xi ∈ C, where i belongs to some small category I, then

– hocolim∗(X1 → X2 → · · · ) ∈ C,
– hocolim∗(X1 ← X2 → X3) ∈ C, and
–
∨
i∈I Xi ∈ C.

An important example of such a class is C(A), the smallest closed class containing
the space A (e.g., C(Sn) is the class of all (n− 1)-connected spaces). Thus we say
thatB is A-cellular, or thatA builds B, which we denote A << B, ifB ∈ C(A). Two
spaces A and B are cellularly equivalent, denoted A

∼
c B, if A << B and B << A.
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We say that two Quillen models are cellularly equivalent if their corresponding
rational spaces are equivalent.

The following theorem, due to Chachólski, Stanley, and the second author, is
the foundation of the research presented in this article.

Theorem 1 ([6]). Let X and A be two (n − 1)-connected (n > 1) rational spaces
such that πn(X) and πn(A) are nontrivial. Then A << X if and only if there
exists a continuous map f : ∨i∈JA → X for some index set J , such that πn(f) is
surjective.

This result, as mentioned by the first author in [11], has the following algebraic
translation. Let X and A be as in the previous theorem. Then A << X if and
only if there is a dgL morphism φ :

∐
i∈JM(A) → M(X) inducing a homology

surjection in degree n− 1, where J is an arbitrary index set, and the coproduct is
taken in the dgL category. It is thus obvious that any nontrivial nth-skeleton of X
builds X .

Proposition 2. Let X be an (n− 1)-connected space such that πn(X) 6= 0. If the
differential ∂ of its Quillen model (L(V ), ∂) is such that ∂2 = 0, then X

∼
c Sn.

Proof. This is a consequence of the Jacobi identity, which implies that all triple
brackets of the type [x, [x, x]] are zero. Let (L(ω), 0) be the Quillen model of Sn

where |ω| = n−1. Choose a basis {x1, ..., xk} for Vn−1, and define a dgL morphism
(L(Vn−1⊕V≥n), ∂)→ (L(ω), 0) by sending x1 to ω, all xi to zero for i > 1, and V≥n
also to zero. This is indeed a dgL morphism since any bracket of length at least
three must contain a generator different from x1. Clearly this morphism induces a
homology surjection in degree n− 1.

Evidently the quadratic part of the differential plays a crucial role in furnishing
examples of spaces cellularly distinct from the spheres. In a first attempt to classify
the rational cellular lattice, we restrict our analysis primarily to models such that
∂ = ∂2, i.e., rational formal spaces.

Finally, recall a result from [6] (for an algebraic proof see [11]) which states that
if X is a (2k)-connected rational space such that π2k+1(X) 6= 0, then X

∼
c S2k+1.

Thus the relevant part of the analysis is done for (2k− 1)-connected spaces X such
that π2k(X) 6= 0.

2.3. Quadratic forms. We refer the reader to [16] for the proof of the classical
results on quadratic forms. We recall here the relevant results for this paper.

All quadratic forms that we consider are regular rational forms of finite dimen-
sion. Let Q and Q′ be two forms of the same dimension n. They are said to be
isometric, denoted Q ' Q′, if there exists an invertible n × n matrix C such that
AQ = CAQ′C

†, where AQ and AQ′ are the matrices associated to Q and Q′, re-
spectively. They are similar, denoted Q ∼ Q′, if there exists a nonzero rational
number r such that rQ ' Q′.

A form Q is said to be isotropic if there exists a nontrivial vector v such that
Q(v) = 0. Otherwise it is said to be anisotropic. Note that the empty form φ = 0
of dimension 0 is counted as being regular and anisotropic.

A classical result asserts that over any field of characteristic different from two,
any n-dimensional form is isometric to a diagonal form. We use the notation
〈α1, α2, . . . , αn〉 to denote a diagonal form, where the αi are the diagonal entries.
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We have two operations defined up to isometry, i.e., given Q ' 〈α1, α2, . . . , αn〉
and Q′ ' 〈β1, β2, . . . , βm〉 one has the sum and the product

Q⊥Q′ ' 〈α1, . . . , αn, β1, . . . , βm〉 and Q⊗Q′ ' ⊥ni=1〈αiβ1, . . . , αiβm〉.
Note that only the product is well defined up to similarity.

Example. Let Q = 〈1〉 and Q′ = 〈−1〉. We have Q ∼ Q′ (clearly Q 6' Q′). Then
Q⊥Q 6∼ Q⊥Q′ since Q⊥Q is anisotropic while Q⊥Q′ is isotropic.

In general, the sum or the product of two anisotropic forms is not anisotropic as
the following examples show. Consider Q ' 〈1, 1〉 and Q′ ' 〈−1, 2〉. They are both
anisotropic, but their sum 〈1, 1,−1, 2〉 and their product 〈−1, 2,−1, 2〉 are not. A
result known as the Witt Decomposition Theorem says that any form φ is isometric
to

〈1,−1〉⊥ . . .⊥〈1,−1〉︸ ︷︷ ︸
i

⊥φo,

where φo is anisotropic and uniquely determined by φ up to isometry. In the
examples above, (Q⊥Q′)o is isometric to 〈1, 2〉, while (Q⊗Q′)o is isometric to the
empty quadratic form. We call the association φ 7→ φo the reduction of φ.

The set of isometry classes of anisotropic forms W (Q) equipped with the two
operations ⊥ and ⊗ is known as the Witt ring where the appropriate reductions
are applied. We denote the set of similarity classes of anisotropic forms by W (Q).
Thus (W (Q),⊗) becomes a semigroup with unity 〈1〉, the unique 1-dimensional
similarity class. Moreover, we have a natural semigroup epimorphism

W (Q) −→W (Q).

3. Main results

Let k be a positive integer. Let M = (L(X ⊕W ⊕ Y ⊕ Z), ∂ = ∂2) be a Quillen
model, where X , W , Y , and Z are graded vector spaces such that
• X is of dimension n > 0 and is concentrated in degree 2k − 1;
• W is nontrivial in at most degrees 2k through 4k − 2;
• Y is of dimension m and is concentrated in degree 4k − 1; and
• Z is nontrivial in at most degrees 4k through 6k − 2.

In other words, M is the Quillen model of a (2k − 1)-connected CW-complex of
dimension at most 6k − 1, with n cells of dimension 2k and m cells of dimension
4k. For degree reasons ∂(X ⊕ W ) = 0, while ∂(Y ) corresponds to m choices
of n-dimensional quadratic forms on X . Indeed, given bases {x1, . . . , xn} and
{y1, . . . , ym} for X and Y , respectively, ∂(yi) is a rational homogeneous polynomial
of degree 2 in the variables xj , i.e.,

∂(yi) =
n∑
j=1

αj [xj , xj ] +
∑
l<j

βl,j [xl, xj ] with αj , βl,j ∈ Q.

Notice that [xl, xj ] = [xj , xl] since the degree of the xj is odd.
Moreover, ∂(Z) ⊂ L2(X⊕W ) with at least one nontrivialw ∈W in each bracket.

Note that if Z6k−2 = 0, then the formality condition is automatically satisfied, i.e.,
∂ = ∂2. Clearly, from the inclusion and the projection we get

M
∼
c (L(X ⊕ Y ), ∂ = ∂2).
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Moreover, the following relations hold among these models.

Proposition 3.

M(S2k) ∼= (L(x), 0) << (L(X ⊕ Y ), ∂ = ∂2) << (L(x, y), ∂(y) = [x, x]) ∼=M(Xk).

Proof. The only thing to show is the right-hand building relation. Choose bases
{x1, . . . , xn}, and {y1, . . . , ym} for X and Y , respectively. Denote by Qj the jth

quadratic form ∂(yj) on X (1 ≤ j ≤ m). Define a Lie algebra map

φ : (L(X ⊕ Y ), ∂ = ∂2)→ (L(x, y), ∂(y) = [x, x])

by sending xi to x (1 ≤ i ≤ n) and yj to Qj(v)y, where v is the n-tuple (1, . . . , 1).
A simple computation shows that φ is a dgL-morphism that induces a homology
surjection in degree 2k − 1.

As a first step, we consider spaces having Mn = (L(X⊕Y ), ∂ = ∂2) as Lie models
where X and Y = Qy are respectively n- and 1-dimensional. We will denote by
QM the quadratic form ∂y on X . Thus we can speak of an isotropic or anisotropic
model Mn if its associated quadratic form has the respective characteristic. We
denote by M the set of closed classes generated by the anisotropic models. The
fact that the set of quadratic forms is partitioned in two, i.e., the isotropic forms
versus the anisotropic ones, together with the following proposition and the initial
remarks of this section show that this definition is equivalent to the one given in
the introduction.

Proposition 4. A model Mn is isotropic if and only if Mn
∼
c S2k.

Proof. Let Mn = (L(x1, ..., xn, y), ∂y = QM ). If QM is isotropic, then there is a
nontrivial V = (v1, ..., vn) such that QM (V ) = 0. But then, it is easy to check that
the map φ : Mn → (L(ω), 0) defined by φ(xi) = viω for 1 ≤ i ≤ n, and φ(y) = 0 is
a dgL-morphism that is an H2k−1-surjection. Conversely, if Mn

∼
c S2k, then there

is a dgL-morphism φ : Mn → (L(ω), 0) that is an H2k−1-surjection. Let V be the
(1× n)-matrix associated to the linear map φ2k−1. Again, the requirement that φ
be a dgL-morphism implies that QM (V ) = 0.

Lemma 5. If a morphism φ : Mn → M ′m between anisotropic models is such
that n ≥ m is nontrivial, then it is an H2k−1-surjection. Moreover, there are no
nontrivial maps when n < m.

Proof. Let Mn = (L(x1, ..., xn, y), ∂y = QM ) and M ′m = (L(x′1, ..., x′m, y′), ∂′y′ =
QM ′). Let C be the (m×n)-matrix representing the linear map φ2k−1 with respect
to the bases {x1, ..., xn} and {x′1, ..., x′m}, and let α ∈ Q be the scalar such that
φ(y) = α·y′. A simple but tedious computation shows that α·A′ = CAC†, where A
and A′ are the matrix representations of QM and QM ′ , respectively. If α = 0, then
each row vector of C is a zero of QM , and since φ is not trivial, there must be one
such row that is nonzero. This would contradict the fact that QM is anisotropic,
and hence α 6= 0. Now, if φ2k−1 is not onto, then rk(C) < m, i.e., there is a
nontrivial solution to the homogeneous system vC = 0. The result follows since
nontrivial solutions would imply QM ′ isotropic, a contradiction. Finally, if n < m,
then there are no nontrivial maps since the homogeneous system vC = 0 always
has a nontrivial solution.
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Proposition 6. Two anisotropic models Mn and M ′n generate the same cellular
class, i.e., Mn

∼
c M ′n, if and only if their associated quadratic forms are similar,

i.e., QM ∼ QM ′ .

Proof. Let Mn = (L(x1, ..., xn, y), ∂y = QM ) and M ′n = (L(x1, ..., xn, y), ∂′y =
QM ′). Let A and A′ be the matrix representations of QM and QM ′ , respectively.
If Mn

∼
c M ′n, then, by Lemma 5 there is a dgL-morphism φ : Mn → M ′n that

is an H2k−1-surjection. Let C be the matrix representing the linear map φ2k−1

with respect to the basis {x1, ..., xn}, and let α be the nonzero rational such that
φ(y) = α · y. But then, C is invertible, and α · A′ = CAC†, i.e., QM ∼ QM ′ .
Conversely, if QM ∼ QM ′ , then there is an invertible matrix C = (cij) and a
nonzero rational α such that α · A′ = CAC†. Define a map φ : Mn → M ′n by
φ(xi) =

∑n
j=1 cijxj for 1 ≤ i ≤ n, and φ(y) = α·y. Clearly it is anH2k−1-surjection,

and a routine verification shows that φ is a dgL-morphism, and thus Mn << M ′n.
Since C is invertible and α 6= 0, one can construct from C−1 and α−1 an H2k−1-
surjection in the other direction using the same scheme, i.e., M ′n << Mn.

Clearly, from the proof of Proposition 6, we deduce that M is also classified by
the set of isomorphism classes of anisotropic models, i.e., by the set of homotopy
types of spaces having anisotropic models as Lie models.

Theorem 7. There is a natural semigroup isomorphism between W (Q) and M.

Proof. The only thing left to do is to define the multiplication on M. Because
of Proposition 6, the following binary operation is well defined on M. Given two
anisotropic models Mn = (L(X ⊕ Qy), ∂y = QM ) and M ′m = (L(X ′ ⊕ Qy), ∂y =
QM ′) one defines the operation Mn ⊗oM ′m by

Mn ⊗oM ′m = (L((X ⊗X ′)o ⊕Qy), ∂y = (QM ⊗QM ′)o).

Note that we have to apply the appropriate reduction to the model Mn⊗M ′m since
it is not in general anisotropic. But the reduction process is well defined because
of the Witt Decomposition Theorem. The dimension of the rational vector space
(X ⊗ X ′)o is, in general, less than the dimension of X ⊗ X ′ and corresponds to
the dimension of the reduced quadratic form (QM ⊗ QM ′)o. Finally, the Quillen
model of Xk = S2k ∪[ι,ι] e

4k, i.e., (L(x, y), ∂y = [x, x]), for which the corresponding
quadratic form is 〈1〉, clearly acts as the unity with respect to this product.

Figure 1 summarizes the results above.

4. Examples

Example 1. (Unreduced tensor product) Let Mn = (L(x1, ..., xn, y), ∂y = QM )
and M ′m = (L(x′1, ..., x′m, y′), ∂′y′ = QM ′) be two anisotropic models. Then

Mn ⊗M ′m << Mn and M ′m.

Since the quadratic forms are (regular) anisotropic, there are diagonal represen-
tations 〈1, α2, . . . , αn〉 and 〈1, β2, . . . , βm〉 of QM and QM ′ , respectively, up to
similarity. Now

QM ⊗QM ′ ∼ 〈1, β2, . . . , βm, α2, α2β2, . . . , α2βm, . . . . . . , αn, αnβ2, . . . , αnβm〉.
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1

2
Always
trivial

Either trivial
or
π2-surjections

.

.

.

n

CP2

CP2#CP 2

CP2#...#CP 2

Anisotropic models

S 2   : Isotropic models

M : (L(x1, ..., xn, y), ∂2)

n times

Figure 1.

Clearly the required H2k−1-surjections exist, and the statement follows. Moreover,
we have

Mn ⊗M ′m
∼
c M ′m ⊗Mn,

since QM ⊗QM ′ ∼ QM ′ ⊗QM (a simple permutation does the trick). Thus W (Q)
and M are abelian semigroups.

Note that we did not apply the reduction to the resulting model. In general there
is no building relationship between the two original models and their reduced prod-
uct. Consider the two anisotropic models M3 = (L(x1, x2, x3, y), ∂y = [x1, x1] +
[x2, x2] + [x3, x3]) and M ′3 = (L(x1, x2, x3, y), ∂y = [x1, x1] + [x2, x2] − 3[x3, x3]).
Then the model of M3 ⊗M ′3 has nine generators in degree 2k − 1 together with

∂y ∼ 〈1, 1, 1, 1, 1, 1,−3,−3,−3〉,
which is isotropic. The reduced product is

(L(x1, x2, x3, y), ∂y = 2[x1, x1] + 2[x2, x2] + 3[x3, x3]).

Clearly no building relations exist among M3, M ′3, and their reduced product.

Example 2 (The Félix example). Félix showed by an argument involving the ra-
tional cohomology algebra that

S2 << . . . << CP 2# . . .#CP 2︸ ︷︷ ︸
n times

<< . . . << CP 2#CP 2 << CP 2.
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We can also obtain his result using Lie models. Consider

M(CP 2# . . .#CP 2︸ ︷︷ ︸
n times

) ∼= (L(x1, . . . , xn, y), ∂)

where ∂(y) = [x1, x1] + · · ·+ [xn, xn], ∂(xi) = 0, |xi| = 1, and |y| = 3 for 1 ≤ i ≤ n.
The projections give the required H1-surjections, while Lemma 5 makes it strict.
Notice that the associated quadratic form is anisotropic.

Example 3. As we have seen in section 2, the sum ⊥ is not well defined up to
similarity. Thus one cannot define such an operation on the isomorphism classes
of models of the type Mn as we did for ⊗. Geometrically, this reflects the fact
that one has to choose an orientation before making the connected sum. Clearly,
homotopy invariants are blind to this choice. But given two explicit models Mn =
(L(x1, ..., xn, y), ∂y = QM ) and M ′m = (L(x′1, ..., x′m, y′), ∂′y′ = QM ′), one can
define the (formal) connected sum as

Mn#M ′m = (L(x1, ..., xn, x
′
1, ..., x

′
m, y), ∂y = QM⊥QM ′).

This operation makes sense only on the (entire) set of models of the type Mn.
Moreover, without lost of generality, one can assume that both QM and QM ′ are
diagonal since ⊥ is well defined on the isometry classes. It is now clear that

Mn#M ′m << Mn and M ′m.

There are no simple building relations between the two operations # and ⊗ as
the following examples show. Let M1 = (L(x, y), ∂y = [x, x]). Then

M1#M1 << M1 ⊗M1
∼= M1,

which is strict. On the other hand, we have

(M1#M1#M1)⊗ (M1#M1) << (M1#M1#M1)#(M1#M1),

which is strict. Moreover, if M2 = (L(x1, x2, y), ∂y = [x1, x1] + 2[x2, x2]), then the
two models

(M1#M1)#M2 and (M1#M1)⊗M2

are not even comparable.
Again there is no building compatibility between the original models and their

reduced sum. Consider the two anisotropic models M ′2 = (L(x1, x2, y), ∂y =
[x1, x1] + [x2, x2]) and M ′′2 = (L(x1, x2, y), ∂y = −[x1, x1] + 2[x2, x2]). Then

M ′2#M ′′2 = (L(x1, x2, x3, x4, y), ∂y = [x1, x1] + [x2, x2]− [x3, x3] + 2[x4, x4]),

which is isotropic. The reduced sum is

(L(x1, x2, y), ∂y = [x1, x1] + 2[x2, x2]).

Clearly no building relations exist among M ′2, M ′′2 , and their reduced sum.
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5. Final remarks and open problems

5.1. Minimal number of generators. We have seen that one of the invariants
that classify M is the dimension of the quadratic form. Given two anisotropic
models Mn = (L(x1, ..., xn, y), ∂y = QM ) and M ′m = (L(x′1, ..., x′m, y′), ∂′y′ = QM ′)
such that neither builds the other, one could ask what is the smallest number of wi
in a model of the type M ′′p = (L(w1, ..., wp, y), ∂y = QM ′′) that builds Mn and M ′m.
We have seen that p = n ·m for Mn ⊗M ′m, while p = n + m for Mn#M ′m. One
could do it with one less, i.e., if QM = 〈1, α2, . . . , αn〉 and QM ′ = 〈1, β2, . . . , βm〉,
then we can set p = n+ m− 1 together with

QM ′′ = 〈1, α2, . . . , αn, β2, . . . , βm〉.

It is still unknown if one could do better in general. Note that both Mn⊗M ′m and
Mn#M ′m build M ′′p .

5.2. Geometric interpretation of Mn ⊗M ′m (unreduced). If one allows for a
shift in the degrees of the generators, then the smash product Mn∧M ′m has all the
required characteristics of Mn ⊗M ′m. Let

Mn = (L(x1, ..., xn, y), ∂y = QM ) and M ′m = (L(x′1, ..., x
′
m, y

′), ∂′y′ = QM ′)

be two models. Recall that the smash product is the homotopy cofibre of the
following inclusion:

Mn ∨M ′m ↪→Mn ×M ′m.

Let ∂y =
∑n

i=1 αi[xi, xi] and ∂′y′ =
∑m

j=1 βj [x
′
j , x
′
j ] be two diagonal representations

of QM and QM ′ , respectively. A model for the product is given by (see [18])

(L(xi, x′j , cij , y, y
′, di, ej, z), δ),

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, |cij | = 4k − 1, |di| = |ej | = 6k − 1 and |z| = 8k − 1.
Moreover, after a simple computation ensuring that δ2 = 0 we get

1. δxi = δx′j = 0;
2. δy = QM , and δy′ = QM ′ ;
3. δcij = [xi, x′j ];
4. δdi = [xi, y′]− 2

∑m
j=1 βj [x

′
j , cij ];

5. δej = [y, x′j ] + 2
∑n
i=1 αi[cij , xi]; and

6.

δz = [y, y′] − 2

 n∑
i=1

αi[di, xi] +
m∑
j=1

βj [x′j , ej]


+ 2

n∑
i=1

m∑
j=1

αiβj [cij , cij ].

Thus Mn ∧M ′m has as Lie model (L(cij , di, ej , z), δ), where

δz = 2
n∑
i=1

m∑
j=1

αiβj [cij , cij ]
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is the only nontrivial differential. Clearly this quadratic form is similar to QM ⊗
QM ′ . From the initial remarks of section 3, we obviously have

Mn ∧M ′m
∼
c (L(cij , z), δ),

i.e., we fall back on a model of Mn ⊗M ′m modulo the aforementioned shift in the
degrees of the generators.

Finally, notice that the fact that QM⊗QM ′ is well defined up to similarity shows
that Mn ∧M ′m is independent of the chosen homotopy representative for Mn and
M ′m, respectively, a fact that does not hold for the connected sum.

5.3. Models (L(X ⊕ Y ), ∂ = ∂2) with dim(Y ) = n > 1. This case, in which
each model can be identified with a system of n quadratic forms, is far from being
classified. As mentioned in [14], Chapter 9, there is no natural way of defining a
Witt group on such systems. Nonetheless, one can define the notion of an isotropic
system if that system has a common nontrivial zero. Proposition 4 generalizes in
this context, but Lemma 5 has no such generalization, as the following examples
show. Let M1 = (L(x, y), ∂y = [x, x]), M2 = (L(x1, x2, y), ∂y = [x1, x1] + [x2, x2]),
and M ′2 = (L(x1, x2, y), ∂y = [x1, x1] + 2[x2, x2]), and consider the spaces

M1 ∨M1
∼= (L(x1, x2, y1, y2), ∂y1 = [x1, x1], ∂y2 = [x2, x2]),

and

M2 ∨M ′2 ∼= (L(x1, x2, x3, x4, y1, y2),∂y1 = [x1, x1] + [x2, x2],

∂y2 = [x3, x3] + 2[x4, x4]).

Clearly the inclusion M1 ↪→ M1 ∨ M1 into either the left or right component is
nontrivial, while the projection of M2∨M ′2 onto either M2 or M ′2 is also nontrivial.

Finally, all is not lost, since there is an obvious action of M on the set of such
models. Namely, given two models M = (L(X ⊕ Qy), ∂y = Q) and N = (L(X ′ ⊕
Qy1 ⊕ . . .⊕Qyn), ∂y1 = Q1, . . . , ∂yn = Qn) we have

M ·N = (L(X ⊗X ′ ⊕Qy1 ⊕ . . .⊕Qyn), ∂y1 = Q⊗Q1, . . . , ∂yn = Q⊗Qn).

Note that we cannot hope to diagonalize simultaneously a system of quadratic
forms. Thus the product is the Kronecker product of two matrices.

6. Appendix : Classification of similarity classes

We have to distinguish the odd-dimensional case from the even-dimensional one.
The odd case is easily disposed of.

Proposition 8. Let Q1 and Q2 be two (2k + 1)-dimensional regular quadratic
forms. Then

Q1 ∼ Q2 if and only if (det(Q1))Q1 ' (det(Q2))Q2.

Proof. Suppose we have r ·Q1 ' Q2, i.e., there exists an invertible matrix C such
that r ·Q1 = CQ2C

†. Applying the determinant to each side yields

r(2k+1) · det(Q1) = (det(C))2 · det(Q2).

Thus r ≡ (det(Q1) · det(Q2)) modulo (Q∗)2. The result follows.

The similarity classes of even-dimensional quadratic forms have only recently
been classified, by Lewis and Tignol.
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Proposition 9 ([13]). Let Q1 and Q2 be two even-dimensional regular quadratic
forms. Then Q1 ∼ Q2 if and only if

• dim(Q1) = dim(Q2);
• det(Q1) ≡ det(Q2) modulo (Q∗)2;
• Co(Q1) ∼= Co(Q2) as algebras over Q; and
• |sign(Q1)| = |sign(Q2)|.

Recall that Co(Q) refers to the even Clifford algebra associated to Q (see [16]).
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61, (1987), pp. 39-67. MR 89e:55022

[11] K. Hess, The rational homotopy algebra and cellular type, preprint.
[12] M.J. Hopkins, J.H. Smith, Nilpotence and stable homotopy theory II, Ann. of Math. 148,

(1998), pp. 1-49. MR 99h:55009
[13] D.W. Lewis, J.-P. Tignol, Classification theorems for central simple algebras with involution,

Manuscripta Math. 100, (1999), pp. 259-276. MR 2000m:16027
[14] A. Pfister, Quadratic forms with applications to algebraic geometry and topology, London

Math. Soc., Lecture Note Series 217, Cambridge University Press, (1995). MR 97c:11046

[15] D. Quillen, Rational homotopy theory, Annals of Math. (2) 90, (1969), pp. 205-295. MR
41:2678

[16] W. Scharlau, Quadratic and hermitian forms, A series of comprehensive studies in mathe-
matics 270, Springer-Verlag, (1985). MR 86k:11022

http://www.ams.org/mathscinet-getitem?mr=17:1119b
http://www.ams.org/mathscinet-getitem?mr=90c:16007
http://www.ams.org/mathscinet-getitem?mr=95c:55010
http://www.ams.org/mathscinet-getitem?mr=51:1825
http://www.ams.org/mathscinet-getitem?mr=97e:55007
http://www.ams.org/mathscinet-getitem?mr=98f:55010
http://www.ams.org/mathscinet-getitem?mr=2002d:55014
http://www.ams.org/mathscinet-getitem?mr=89e:55022
http://www.ams.org/mathscinet-getitem?mr=99h:55009
http://www.ams.org/mathscinet-getitem?mr=2000m:16027
http://www.ams.org/mathscinet-getitem?mr=97c:11046
http://www.ams.org/mathscinet-getitem?mr=41:2678
http://www.ams.org/mathscinet-getitem?mr=86k:11022


THE WITT GROUP IN THE CELLULAR LATTICE OF RATIONAL SPACES 4583

[17] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47
(1977), pp. 269-331. MR 58:31119
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