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1. Introduction.

Let G be any group, and K any ring. The formal sums

(1.1) r1e1+r2e2+...+rnen, r^K, e{eG (* = 1, 2, ..., n),

when addition and multiplication are defined in the obvious way, form a
ring, the group-ring of G over K, which will be denoted by R (G, K). Hence-
forward, we suppose that K has the modulus 1, and we denote the
identity in G by e0. Then R(G,K) has the modulus l.e0. Since no
confusion can arise thereby, the element 1. e in R(G, K) will be written as
e, and whenever it is convenient, the elements e0 in G and re0 in R(G, K)
as 1 and r respectively. The symbol e, with or without subscripts, will
always denote an element in G.

If the elements Ex, E2 in R(G, K) satisfy JE1E2 = 1, Ex will be said to
be a left unit, and E9 a right unit in R(G, K). If 77 is a left (or right) unit
in K, then rje is a left (or right) unit in R(G, K). Such a unit will be
described as trivial. The units in R(G, K) form a group if and only if
every right unit is also a left unit. This is so, for instance, if both G and
K are Abelian. It is also true if G is a finite group, and K is any ring of
complex numbers, for then the regular representation| of G can be
extended to give an isomorphism of R(G, K) in the ring of ordinary
matrices.

The first object of this paper is to study units in R(G,C), where C is
the ring of rational integers. In § 2 we take G to be a finite Abelian group,

I A. Speiser, Theorie der Oruppen von endlicher Ordnung (2 ed., Berlin, 1927), 172,
J, H. M. Wedderburn, Lectures on matrices (New York, 1934), 149,
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and consider the more general coefficient ring C, where C" is the integer
ring of a finite algebraic extension h' of the rational field k. We first
investigate the algebra R{G, /;;'). and determine the structure of its
integer ring, and of the unit group of that integer ring. We then show
that a unit of finite order in R{G, C) is trivial, and that the ranks of the
unit groups of R(G,C) and of the integer ring of R(G,k') are equal.
This suffices to prove, for the particular case of the rational ring C, that
R(G. C) has non-trivial units unless either the orders of all the elements of
G divide four, or they all divide six, in which case R(G,C) has only trivial
units. In § 3 we consider groups all of whose elements have finite order,
and shoAv that, if G is such a group, and R(G, C) has only trivial units,
then either G is Abelian, or it is the direct product of a quaternion group
and an Abelian group, all of whose elements other than the identity have
order two. In § 4 we show that R(G}C) has only trivial units if G belongs
to a class of infinite discrete groups that includes free groups and free
Abelian groups.

Section 5 is concerned with a condition on G which can be expressed as
follows: Consider the following transformations on a matrix j|a,-,||,
i, j—1, .... n, whose elements are in R(G,C):

(a) Multiplying a row on the left, or a column on the right by
± e ; that is, replacing the row (aiv ..., ain) by (±ea,-i> ..., ±ea,-n)>
o r t h e c o l u m n (au, ..., ani) b y (±alte, ..., ±anie), eeG;

(b) Adding to one row (column) of | \atj\ | a left (right) multiple
1.2) of another row (column) by an element in R{G, C); that is}

replacing the row (aiv ..., ahl) by (a^+ra^,..., ain+rajn), or the
column (au, ..., ani) by {axi+aur, ..., ani-]-anjr), i=£j, reK;

(<;) Bordering j|alV|| with a row and a column of zeros meeting
in a 1; t h a t is., p u t t i n g au+1 = an+li —0}i=l,...,n, an+ln+1 = 1;

or the inverse of this.

Then the condition on G is that if |ja,v|| has a left inverse |ja:i:,-,||, so that

(1-3) Za*arj = Su (i, j = 1, ..., n),
r=l

then ||a,-y|| is transformable into the one-rowed matrix || 1|| by a sequence
of transformations (1.2).

The converse, that if a matrix ||aw|| has a left inverse, so has any
matrix derivable from it by transformations ( 1 2 ) , is, of course, always true
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If G is Abelian and R{G, C) has a non-trivial unit E, the condition
\H not satisfied. For the determinant jao| can then be defined as in ele-
mentary algebra, and is altered under transformations (1.2) only by a
factor ^ e . The one-rowed matrix \\E\\ with determinant E cannot,
therefore, be transformed into | | l | | though it has the left inverse || E~x\\.
On the other hand we show in § 5 that the condition is satisfied for certain
groups other than that consisting of the identity alone.

These results are applicable to the topology of a polyhedron P if we
take G to be its fundamental group. For K. Reidemeisterf has shown
that the invariants of certain " incidence matrices " under transformations
(1.2) are invariantst of P. Also J. H. C. Whitehead § could only prove
a certain topological theorem for a polyhedron whose fundamental group
satisfies the above matrix condition.

I should like to thank Mr. Whitehead for many helpful suggestions
and much good advice that he has given me, both in the investigation of
these problems and in the writing of this paper.

2. Finite Abelian groups.

In this section we determine the structure of the unit group of
R{G, C), where G is a finite Abelian group, and C is the integer ring of a finite
algebraic extension k' of the rational field k. To that end we consider
B(G, k'), which is a commutative algebra over k'. It is known|| that
R(G, k') is semi-simple, and therefore is the direct sum of simple algebras
over k'', each of which, being commutative, is isomorphic to an algebraic
extension^ of k'. Moreover there existsff an extension &'(£) of k', such

that in the corresponding reduction of R\G, &'(£)) each simple algebra
over /</(£) is isomorphic to k'(Q. That is, if g is the order of G, there exist
elements 7̂ 0, r)1} ..., rjg^ in R(G, &'(£)] such that

(2.1) (a) ^ , = 0, i^j, i,j = 0, 1, ..., g r - l :

(6) ifca = fy, i = 0, 1, ..., g— 1.

t " Homotopiegruppen von Komplexen'', Abhandlung aus dem Malhematischen Seminar
der Hamburgischen Universitdt, 10 (1934), 211-215.

% Reidemeister proved they are combinatorial invariants, and Whitehead, Quart. J.
of Math. (Oxford Series), 10 (1939), 81-83, has since proved they are topological invariants
of P .

§ Proc. London Math. Soc. (2), 45 (1939), 243-327.
|| Wedderburn, loc. cit., 168.

U Wedderburn, loc. cit., 159 [Theorem 5 (hi)],
ft Wedderburn, loc. cit., 168.
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The first step is the explicit determination of these elements. We then
carry out explicitly the reduction of R{G, k') to a sum of fields. This
enables us immediately to ascertain the structure of the unit group of the
integer ring of R(G, k'). Finally Ave prove the two results concerning the
unit group of R(G, C), namely that its elements of finite order are all
trivial, and that its rank is the same as that of the unit group of the integer
ring of R(G, k').

If h is the maximum order of any element in G, £ can in fact be taken
to be a primitive h-th. root of unity. For since G is Abelian there are
precisely! g irreducible mutually inequivalent representations of G, and
each is of order 1. Denote them by F°, F1, ..., F""1, and the elements of
G by e0, ev ..., eu_v We can regard F1' as a homomorphism of G in a
multiplicative group of complex numbers, and write

(2.2) r>(e,) = x/ (*,i = 0, 1 flf—1).

Since the order of any element in G divides h, x/ is an h-th root of unity
and therefore a number in &'(£). We havef, if x/ denotes the reciprocal
of x/>

'(a) "t
r=0

(2-3)

(b) V Xirxf = h9 (•', .7 = 0, 1, ..., g-1).
r=0

Define elements rj0, rjv .... ^B_j in R[G, k'(£)j by

( 2 . 4 ) •m=^1Xrter (% = 0
r - 0

Given s, er can be written uniquely in the form e(es, and then Xr—XfXs'
so that we have

1 ( 7 - 1

9 /-o
or

(2.5)

Multiplying by xJ a n ( i summing over 5 = 0 , 1, ..., ^ — 1 , we obtain (2.1)
in virtue of (2. 3a).

f Speiser, loc. cit., compare Theorem 136, p. 159, with Theorem 154, p. 176.
J Speiser, loc. cit., 171, 173. The developments of this section as far as the proof of

equations (2.1) are the Abelian case of the first part of paragraph 58 of Speiser's book.
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The linear independence of r)n, •>;,, ..., ,̂;_j follows from equations
(2.1) and since their number is equal to the rank of li(G, &'(£)) they form
a basis for that ring. That is,

(2.6)
r=0

where E is a n y e lement in R G, k'(l) ] ; and , by equa t ions ( 2 . 1 ) , (2 . 5) a n d

(2-4 ) ,

(2.7)
r=0

(b) ai= — S brXi
r (* = 0, 1, ..., g—1).

if r = 0

I n par t icular , since e0 is t h e i den t i t y and therefore xo
l = 1, i — 0, 1, ...,,</— 1,

or direct ly from equa t ions ( 2 . 1 ) ,

(2.8) ^

If a is any transformation in the Galois group of k'{t) relative to k',
the correspondence e3->or( FJ'(e3)J = CT(X/) is a homomorphism, and there-
fore is one of the representations F°, F1, ..., F9"1. We denote it by
r^l#) and say that F ^ is conjugate to F1'. We denote by f,- a root of unity
whose order is the least common multiple of the orders of xo, Xi> •••> Xg-v s o

that k'igi) is the least extension of k' in which the representation F1' exists.
Clearly £• is an h-th. root of unity. But, since h is the maximum order of
any element in G, we can write G as the direct prod*uctf of a cyclic group
{e} of order h, and another group G'. If F' is the representation e->£;

e'-> 1, e' € G', or any of its conjugates, then plainly £,- is a primitive h-th.
root of unity. We have thus established the last part of Theorem 1:

THEOREM 1. Let F°, F1, . . . , F^- 1 be a complete set of irreducible,

mutually inequivalent, and, relative to k', non-coiijugate representations of
a finite Abelian group G. Then the ring R{G, lc') is the direct sum of the.
fields Ro, Rv ..., Rp_1} where Ra is isomorphic to k'(£a), defined as above,
a = 0, 1, ..., p—1. The numbers £0, £1} ..., £p_x are h-th roots of unity, of
which at least one is primitive.

It remains to prove the first part of the Theorem.

f This is an immediate consequence of the theorem concerning the expression of a
finite Abelian group as the direct product of cyclic groups of prime-power order. See
e.g., Speiser, loc. cit., Theorem 48, p. 62.
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Let Ua be the subgroup of the Galois group consisting of those trans-
formations a for which a(a) = a. Then a is in Ua if and only if

that is, if. and only if, a leaves invariant every number in k'(£a). Therefore,
by the fundamental theorem of the Galois theoryf, a number is left
invariant by every transformation in Ua, if and only if it is in k'(£a).

By (2.7a) a necessary condition for E, given by (2.6), to be in
R(Q, k') is that

(2.9) a(b{) = b«f> ( t = 0 , 1, ...,g-l),

holds for every transformation a in the Galois group. By (2. 7b) this
condition is also sufficient. If equations (2.9) hold, ba is in k'($a)
(a = 0, 1, ...,p—1). Conversely, given ba in k'(£a) (a = 0, 1, ...,#—1),
equations (2.9) can be solved uniquely for 6,(i = 0, 1, ...,g—l). For,
by hypothesis, to each number i of the set 0, 1, ..., g— 1 we can assign
a transformation ri in the Galois group such that r((i) = a is one of the
numbers 0, 1, ..., p— 1. Then &,- = rf 1(6O), so that a solution, if it exists,
is unique. On the other hand, if a(i) —j, we have r^j) = j8, where jS is
one of the numbers 0, 1, ...,p~ 1, and therefore riarl"l{a) = ^. Hence
we must have a = jS, and T,-OT "̂1 is in Ua. Since ba is in k' (£a), ri ort~

1(6a) = ba

i.e. ar^1(6u) = T ^ 1 ^ ) . Defining 6,- as T ^ & J , therefore, we have a solution
of equations (2.9). There is thus a 1 — 1 correspondence between elements
in R{G, A:') and sequences (60, bv ..., b.p_^), ba in k'(£a) (a = 0, 1, ..., p— 1).
If we denote E, given by (2. 6) and satisfying (2. 9), by (60, bx, ..., bp_1)}

we have, by (2.1).

(2.10) \
{(b) (bOyb1} ...,bp_1)(co,c1,...,cp_1)==(boco,b1c1) ..^b^c^).

If, therefore, .'lia consists of those sequences for which bp=0, j8 ^ a, the
theorem is true.

The element E in R{G, k') is said to be integral if it satisfies an equation
of the form

Er-\-ar_lE
r-1-\-...-\-axE — <), with av ..., ar_x rational integers.

The integral elements in R(O, k') form a ring, the integer ring of
R(G, k'), and the integral element E is a unit of this ring if there exists
another integral element E' such that EE' = 1. By (2.10), the element

f B. L. vander Waerden, Moderne Algeiyra, 1 (2 ed., Berlin, 1937), 163.
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E, given by (2.6), is integral in R(G,k') if, and only if, ba is integral in
k'(tja) (a = 0, 15 ..., p—1); and it is a unit in this integer ring if, and only
if, ba is a unit in k'(ga). Hence we have

THEOREM 2. The unit group of the integer ting of R(G, h') is the direct
product of groups isomorphic to the unit groups of k'(£Q), k'i^), ..., k'(€P-i)-

If E, given by (2. 6), is in R(G, C), by (2 . 7a) it is in the integer ring of
R{G, k'). The unit group of R(G, C) is therefore a subgroup of the unit
group of this integer ring.

THEOREM 3. A unit of finite order in R(G, C) is trivial.

Let E, given by (2.6), be a unit of order m. Then

and therefore 6,- and each of its conjugates has absolute value 1. The
same is true of x/- Since E is a unit, we can choose i so that a,- is not zero.
Now

\at

1 ( 7 - 1

9 r=0

1 0-1

2 |
r=0

and the same is true for each conjugate of a,-. But the product of these
conjugates is the norm of a,-, a rational non-zero integer. Hence equality
holds above, and

By (2 . 7b) and (2 . 3b), ai — 0, if j =£i, so that the unit E is trivial.
This disposes of the finite part of the unit group. We have next

THEOREM 4. There exists an integer n such that the n-th power of any
unit in the integer ring of R(G, k') is in R(G, C).

Let n be the number of residue classes modg' in k'(Q that are prime to
g, and let E, given by (2.6), be a unit in the integer ring of R(G, k').
Then

6,- (t = 0, 1, ..., gr-1)

is a unit in &'(£) and is therefore prime to g. By Fermat's theorem for
ideals!,

6,n = 1 mod g,

i.e. bi
n—l = cig [c,- an integer in k'('C)].

t D. Hilbert, Gesammdte Abhandlungen, 1 (Berlin, 1932), S2.
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By (2.8) therefore,

E" = eo+ S1 (6/"-1) >?, = eo+ s ' c,. gm.
(=0 (=0

By (2.4) the coefficients in gr]i are algebraic integers. So, therefore,
are those in En, which is therefore an element in R(G, C).

THEOREM 5. The unit groups of R(G, C) and of the integer ring of
R(G, k') have the same rank.

Since E-" is the n-th power of E'1, it also is in R{G, C), so that EH is
a unit in R{G, C). Moreover the n-th. powers of an independent set of
units are themselves independent, so that the rank of the unit group of
R(G. C) cannot be less than the rank of the unit group of the integer ring
of R(G. k'). .But the former group is a subgroup of the latter, and cannot
therefore have a greater rank, whence the theorem follows.

Apptying these results to R(G, C) we obtain

THEOREM 6. / / G is a finite Abelian group, R(G, C) has non-trivial units
unless G is the direct product of

(i) I cyclic groups of order two, 1^0,

and (ii) either (a) m cyclic groups of order three, m ^ 0 or (b) n cyclic
groups of order four, n^O,

in which cases R{G, C) has only trivial units.

The "direct product of 0 groups . . ." is, of course, to be interpreted
conventionally as the group consisting of the identity alone.

By Theorem 3, a unit of finite order in R(G, C) is trivial. Conversely,
since C contains no units of infinite order, a trivial unit in R(G, C) is of
finite order. Hence R(G, C) has only trivial units if, and only if, the
rank of its unit group is zero. By Theorem 5, Theorem 2, and the last
sentence of Theorem 1, the rank of the unit group of R{G, C) is zero if,
and only if, the rank of the unit group of k{t) is zero, that is to sayf, if,
and only if, h = 2, 3, 4, or 6. Finally the groups mentioned in the
enunciation are just those % for which h=2, 3, 4, or 6.

3. Groups all of whose elements have finite order.
THEOREM 7. Let G* be the direct product of a group G and a cyclic

group of order two. If all the units in R(G, C) are trivial, so are all the units
in R(G*, C).

t Hilbert, loc. cit., 102 (Theorem 47).
% This is an immediate consequence of the theorem concerning the expression of a finite

Abelian group as the direct product of cyclic groups of prime-power order. See, e.g.,
Speiser, loc. cit., Theorem 48, p. 62.
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Let the cyclic group of order two be generated by / . An element in
i?(#*, C) can be written uniquely in the form a-fj8/, where a, /? are in
R(G, 0). If

then ay+j8S = 1, a8+/Sy = 0.

Hence (a+iS)(y+S) = i, (a_0)(y_8) = l.

Because R(G, C) has only trivial units, we must have a-|-/3= i e ^
a—j8= ±e2. Hence a — \(-±.ex±e2). But a is in (̂G ,̂ C), so that we
must have e1 = e2, so that a+jS= ±(a—jS). If a-f-j8 = a—/? = i e 1 } we
have a = ±el5 j8 = 0, and so a-fj8/= i ^ . If a+j8= — (a—j8) = ±ei»
we have similarly, a+/?/ = zh^i/- In all cases a+/3/is a trivial unit, and
the theorem is therefore proved.

THEOREM 8. Let G be a quaternion group. Then all the units in
R(G, C) are trivial.

Let the group G be generated by x, y, z, subject to

x2 = y2 = z2 = xyz = P,

say, and let A = ao-\-a1x-\-a2y-\-azz-\-bQP-\-bxxP-\-b2yP-\-b3zP be a
unit in B(G, C). The correspondence x->i, y->j, z->k, P-> —1 is a homo-
morphism of R(G, C) on the ring of quaternions with integer coefficients.
In this ring the only units f are ± 1 , ±i, -±,j, ±fe. Hence A is carried into
one of these quantities. That is, for some index i (i = 0, 1, 2, or 3).

(3.1) »,-&,= ± 1 , at-bt = 0 (j^i,j=O, 1, 2, 3).

Let G' be a direct product of two cyclic groups of order two, and let its
elements be 1, x', y', z''. The correspondence x->x', y->y', z->z', P-> 1 is
a homomorphism of R(G, C) on R(G', C). In this ring, by Theorem 6, or
by Theorem 7, the only units are ± 1 , ±x', ±2/', ±z''. Hence A is carried
into one of these quantities. That is, for some index i' (i' = 0, 1, 2, or 3),

(3.2) a H - 6 r = ± l , a3+6, = 0 (j=£i', j = 0, 1, 2, 3).

f The norm a2-^b2+c2-\-d* of the unit a+bi+cj+dk must be equal to 1.
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Since ab &,• are integral, we have, on comparing (3.1) and (3.2), i = i'.
Hence either

ov a{ = 0 , ^ = ± 1, aj = bj = 0 (j ^»)•.

In either case the unit A is trivial.

THEOREM 9. Let G be a group such that all the units in B(G, C) are
trivial. Then, if P, Q are in M{G, C), PQ = 0 implies QP = 0.

Suppose on the contrary that PQ = 0,QP^ 0. Then (QP)2 = 0, so that

Since QP =£ 0, 1 — 3QP cannot be of the form ±e, and is therefore a non-
trivial unit.

THEOREM 10. Let G be a group such that all the units in R{G, C) are
trivial. Then every cyclic sub-group of G of finite order is self-conjugate.

Let ex generate a sub-group of order n, and let e2 be any element in G.
Let

Then PQ = 0, so that, by Theorem 9, QP = 0. That is

e2+e1e2+...-feJ-1e2 = e2e1+eie2e1+...-l-e^-1e2

For some r, therefore,

" = c 16261 = e1 62, i.e.

That is to say, the subgroup e2{e^e^1 coincides with {ej and {ej is self-
conjugate.

THEOREM 11. / / all the elements of a group G have finite order, R(G, C)
lias non-trivial units unless G is either

(i) an Abelian group the orders of whose elements all divide four;

or (ii) an Abelian group the orders of whose elements all divide six;

or (iii) the direct product of a quaternion group and an Abelian group the
orders of whose elements all divide two.

In these cases R{G, C) has only trivial units.

Let G be a group whose elements all have finite order such that
R(G, G) has only trivial units. By Theorem 6, the orders of the elements
of G can only be 2, 3, 4, or 6. If G is Abelian it must therefore be of type
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(i) or (ii). If 0 is not Abelian, by Theorem 10, every cyclic subgroup of
G is self-conjugate, and G is therefore Hamiltonian. It is known f that
a finite Hamiltonian group is the direct product of a group of type (iii) and
an Abelian group all of whose elements have odd order; and this theorem
can easily be extended to cover groups all of whose elements have finite
order j : . If, however, the second factor in this product were not the
identity alone, G would contain an element of order 4#>, where p is an odd
prime, which is impossible. Hence G is of type (iii).

Conversely, let Ghea, group of type (i), (ii), or (iii), and let E be a unit
in R{G, C), where

Then ev ..., er generate a finite subgroup G' of G. G' is itself of one
of the three given types, and E is a unit in R{G', C). But all the units
in R(G'', C) are trivial, by Theorem 6 if G' is Abelian, and by Theorems 7
and 8 if G' is not Abelian. Hence E is a trivial unit, and R(G, C) has
only trivial units.

4. Infinite discrete groups.

A group H is said to be indexed if we are given a homomorphism y of
H in the additive group of rational integers, such that y(H) does not consist
of zero alone. In general, a group can be indexed in more than one way.
If e is an element in H, y(e) will be called the degree of e (relative to y). If
K is any ring, an element in R(H, K) which can be put in the form

p = mi

f H. Hilton, Finite groups (Oxford, 1908), 178.
J Hilton's proof (loc. cit.) requires the following alterations :
(i) The theorem at the top of page 177 is replaced by:
There are no Hamiltonian groups the orders of all of whose elements are powers of p,

if p is a prime greater than 2. If p =2, a Hamiltonian group all of whose elements have
orders a power of p is the direct product of a quaternion group, and a group all of whoso
elements other than the identity have order 2.

The proof is unchanged.
(ii) To show that a Hamiltonian group is the direct product of groups all the elements

in any one of which have orders which are powers of the same prime, we need two observa-
tions. First, the commutator of two elements in a Hamiltonian group is a power of each
of them. Elements having relatively prime orders therefore commute. Secondly, if two
elements in a Hamiltonian group have orders pa and p&, the subgroup that they generate is
isomorphic to a factor group of the group given by XPa = 1, YV13 = 1, XYX~l — Yr, for
some value of r, and the order of this group is pa+0. The elements of a Hamiltonian group
having a power of p as order therefore form a group.

SER. 2. TOL. 46. HO. 2274. R
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where e(i, ei2, ..., eir are all of degree a, will be called homogeneous of degree
a. Any element P in B(H, K) can be written in the form

(4-1) P = Pa1+P«2+... + P v

Pa. homogeneous of degree a,, ctj < a2 < ... < ap. Plainly, if P = 0, then,
in any such expansion, Pa. = 0, i= 1, ..., p. If similarly

( 4 . 2 ) h h f i ,

QPi homogeneous of degree /?,-, j8x < /32 < ... < j8g, then we. have

(4-3)

where the unwritten terms have degrees exceeding the degree 0^+^ of
POi QPi but less than the degree av-\-f$q of P QPr

A group G is said to be indicable throughout if every subgroup of
G not consisting of the identity alone can be indexed. Any free group
can obviously be indexed, and any subgroup of a free group is either a
free group or the identity alone f, so that any free group is indicable
throughout. Similarly any free Abelian group is indicable throughout.
In an Appendix to this paper we show that, if two groups are indicable
throughout, so are their free product and their direct product.

THEOREM 12. / / G is indicable throughout and K has no zero-divisors,
li(G, K) has no zero-divisors.

In other words we must show that, if

(4.4) P = m1eil+m2eh + ...+mreir, Q = n1eil+n2eia+...+n8eu

(/• ̂  1. 5 > 1; m,A ^ 0, nh ^ 0; eu ^ eL, eh ^ e^, if A ^ /x) are elements
of B(H, K), then P . Q ^ O . Plainly it is sufficient to prove this assertion
in the case e,-x = e3i = 1. The proof is by induction on r-\-s. If r = 5 = 1
the assertion is true because K has no zero-divisors.

Suppose then that it is true for r-\-s < n (n > 2) and suppose that r-\-s = n.
Then eix, ..., eir, e^, ..., eis generate a subgroup H of G not consisting of the
identity alone. / / can therefore be indexed, and we can suppose P, Q,
to be given by (4.1), (4.2), with none of Pai, Pa , Q^, QPq zero. P and Q can-
not both be homogeneous of degree zero, or we should have y(H) = 0. But
e,-, e;i are both of degree zero. Hence either p > 1 or q > 1. In either

f O. Schreier, " Die Untergruppen der freien Gruppen", Abhandlungen aus dem
Mathemalischen Seminar des Hamburgischen Universitat, 5 (1927), 161-183.
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case we have, Pai QPi ^ 0 by the hypothesis of the induction. By (4.3),
therefore, PQ ^ 0.

THEOREM 13. If G is indicable throughout and K has no zero-divisors,
all the units of R{G, K) are trivial.

This is a corollary of the assertion: If P, Q are given by (4.4) with
r + s > 2, then

PQ = Pl eKi+p2 eK2 + . . . +pt eKt

(pK z£ 0, eKx =£ eK>i if A ^ p), and t^- 2. As before, it is sufficient to prove the
assertion when eti = eh = 1. Let H have the same meaning as in the proof
of Theorem 12. Since r-\-s> 2, H does not consist of the identity alone.
It can therefore be indexed and we can suppose P, Q to be given by (4.1)}

(4.2) with none of POi, Pap, Q^, QPq zero. As in the proof of Theorem 12
we have either p > 1 or q > 1, and therefore o-x-\-^x ^ap-\-fiq. But, by
Theorem 12, Pa i QPi ^ 0, Pa> QPii ^ 0. These, as we have seen, have different
degrees, so that by (4.3) our assertion is true.

5. Matrices.

Let G be a group satisfying the following condition:
Given ax, a2, ..., an in R(G, C) such that the equation

(5.1) A 1 a 1 +A 2 a 2 +. . .+A n a n =l

can be solved for Al5 A2, ..., An in B(G, C), then we can transform
av a2, ..., an into 1,0, ..., 0 by a sequence of transformations of the
following types:

(5.2) (a) replacing at by at-\-ra} (j ^=i), r being an element in R{G, C);

(6) replacing a( by ±ea,-, e being an element in G.

Then G satisfies the matrix condition of § 1. For we may take
av a2i ..., an to be the last column of any matrix with a left inverse whose
elements are in B(G) C). By (1.3), equation (5.1) can then be solved.
We can therefore reduce the last column of the matrix to the form
0, 0, ..., 0, 1, by a manipulation of rows according to transformations
(1.2). Hence the order of the matrix can be reduced, and by repeating
the process we eventually arrive at the matrix | | 1 | | .

THEOREM 14. The above condition is satisfied by the cyclic groups of
orders two, three, and four, and by the direct product of two cyclic groups of
order two.

R 2



244 G. HIGMAN [Feb. 16,

We shall prove the theorem for the cyclic group of order four. The
other cases are similar.

Let 0 be generated by e, with e4 = 1, and let av a2, ..., an be elements
in B(G, C) such that (5.1) can be solved. The correspondence e-^iis
a homomorphism of R(G, C) on the ring of Gaussian integers. In this
ring there is an algorithmf; any sequence Pl, p2, ..., Pn can be*reduced to
the form a, 0, ..., 0 by a sequence of transformations of the following
types:

(5.3) (a) replacing Pj-\-rpk (j^zJc), r being a Gaussian integer;

(6) replacing Pi by -Pi or by ±iPi.

Let pv ..., pn be the images of av ..., an in the homomorphism. Any
transformation (5.3) on pv ..., pn can be induced by an appropriate
transformation (5.2) on av ..., an. This sequence can therefore be
transformed by means of transformations (5.2) into a sequence of the
form:

+S/e3, a,' = (a2'+j82'e)(l+e2)3

Using in a similar way the homomorphism e-> — 1 of R(G, C) on the ring
of integers, we transform this sequence in turn into one of the form :

e 2 + 8 r e3, a'2' = (<

and this can itself be transformed into a sequence of the form:

(5.4) a r = a;"+/3re+yre2+SrV, a'2" = (a'2"+M'e)(l+e*),

), <' = •» <' = 0-

Now let us call a transformation (5. 2a), or the resultant of a sequence
of such transformations, admissible if, when it is applied to (5.4), the result
is of the same form:

( 5 . 5) a(
x
iv> = a

a£v> = a<3
iv>(l+e)(l+e2), a£v> = ... = a£v> = 0.

f van der Waerden, loc. dt., '62.
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Consider now the functions

+Si", fa = a

An admissible transformation (5. 2a) alters at most one of them. Hence
an admissible sequence of transformations such that, when the transfor-
mations of the sequence are applied successively to (5.4), at each stage
one of 1^1, \<f>2\, I fa1 is reduced, must be of finite length. Suppose now
that (5.5) represents the result of applying such a sequence of maximal
length to (5.4). Then no admissible transformation applied to (5.5)
reduces the absolute value of any of the corresponding functions

But the transformation a§v>->4iv>+ro(l+ea)(l+e)a£iv) leaves a™ and aliv>
unaltered, and carries a3

iv) into (a$v)-\-4mfa)(l-\-e)(l-\-e*). I t is therefore
an admissible transformation, and changes <f>3 into fa+imfa. Hence, for
all integral values of m, we have \<f>z-\-^in<f>i\ ^ l^l- Therefore either
^ = 0 or 21^31 < I ^ |. Similarly, either fa = 0 or | fa | ^ 21 <f>31. That is
to say, either fa=0, <£3 = 0 or |^ i | = 2|^3 | . But the equation in
a(iv) corresponding to (5.1) is soluble for A,- in R(O, C). Hence, putting
e = 1, we have, for some integral values, of /L ,̂ /U2, /X3,

Hence fa ^ 0, | fa | i=- 21 <f>31. Therefore fa — 0. Similarly, fa — 0, so that

4iv) = a2
iv)(l-e)(l+e2), agv> = ... = a™ = 0.

Treating similarly the functions fa = a^v)—j8fv)+yilv)—8$_iv>, ^2 =
 a2iv)

5
 w e

can reduce this to the form a(v), 0, ..., 0. The theorem now follows, since
all the units in B(G, C) are trivial.

THEOREM 15. The matrix condition of § 1 holds for the free cyclic
group.

Let ||atj || be a matrix whose elements are in R(O, C), where O is the free
cyclic group generated by x. Obviously we can transform || a(j || by means
of transformations (1.2) so that it contains only positive powers- of x.
Moreover we can transform it so that it contains no power of x higher
than the first. For let xn, n > 1, be the highest power of x in ||a,-,!|, and
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let cbij=VijXn-\-qijy where qti contains no power higher than the (n— l)-th,
and p{j is an integer. Then we have

0

9a

0

-»

and the assertion follows by induction on n.
Suppose, therefore, that aij = bij-\-cijx, where 6ti and % are integers.

Since the ordinary elementary transformations on integer matricesf are a
particular case of transformations (1.2), we may suppose either that
||613|| or that ||clV|| has diagonal form. But if ||a,v|| has an inverse, the
determinant | atj | has the value ±xP, so that at least one of | &,-,-1, | c(j | is zero.
If \bti\ is zero suppose that ||6,-3|| is reduced to diagonal form; otherwise
suppose that ||%|| is reduced to diagonal form. Then some column of
\\dij\\, which we may take to be the last, consists either entirely of integers
or entirely of integer multiples of x. In the latter case multiply it by ar1.
By a further manipulation of rows, this column can be made to take
the form

(0,0, ..., 0,A),

where, since ||alV|| has an inverse, A= ± 1 . Hence the order of the matrix
can be reduced without destroying its linearity. By an induction on
order the theorem follows.

Appendix.

The purpose of this appendix is to show that, if two groups are indicable
throughout, so are their direct product and their free product.

LEMMA. / / a self-conjugate subgroup H of a group 0 and the corre-
sponding factor group G/H are both indicable throughout, then 0 is indicable
throughout.

Let K be a subgroup of 0 not consisting of the identity alone. If K is
contained in H, it can be indexed, since H is indicable throughout. If,

j" See, for instance, those given by M. Bocher, Introduction to higher algebra (New
York, 1907), 268, ex. 2. The interchange of two rows, or columns, can be brought about
thus: (a, b)-+(a, a+b)->( — b, a + b) ->( — b, a) ->(&, a), so that this type of transformation
is superfluous,
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however, K is not contained in H, let D be the intersection of K and H.
Then D is a self-conjugate subgroup of K, and the factor group KjD is
isomorphic to a subgroup of G/H not consisting of the identity alone f.
It can, therefore, be indexed. We can, therefore, index K by giving each
of its elements the degree of the element of KjD containing it. s

THEOREM 1. / / two groups are indicable throughout, their direct product
is indicable throughout.

For the direct product G x H of two groups G and //, contains a self-
conjugate subgroup isomorphic to G, whose factor group is isomorphic
to H.

THEOREM 2. / / two groups are indicable throughout, their free product
is indicable throughout.

An element in the free product O O H of two groups G and H can be

written in the form

(1) V = 9ih92h2...grhr ( r ^ l , g(eG, h^H, » = 1, 2, ..., r).

Consider the self-conjugate subgroup U consisting of those elements for
which

(2) Sri9r2---9rr= 1; M 2 . . . f c r = l .

The factor group (GoH)/U is isomorphic to the direct product GxH of
G and H. Theorem 2 therefore follows from the lemma when we have
proved the following theorem.

THEOREM 3. The subgroup U of the free product Go H of two groups
G and H, defined as above, is a free group freely generated by the commutators
(g, h) = ghg-1h~1, where g, h cover independently all elements other than the
identity in G, H respectively.

We have, identically, as can easily be shown by induction on r,

g1h1g2h2...grhr

»=1
g1gz...grh1h2...hr.

Omitting on the right any commutators in which either term is 1, and the
factor gxg2 ...grh1h2...hr, we obtain an expression for y, given by (1) and

I Speiser, loc. cit., 36 (Theorem 25). Speiser's proof in no way depends on the fact
that he is dealing with finite groups.



248 THE UNITS OF GROUP-RINGS.

satisfying (2), in terms of the commutators (g, h), g e 0, h eH, g ^ 1, h ^ 1.
These commutators do therefore generate U.

To prove that U is the free group in these generators, we must show
that if the expression

(3) *=((h*1>1)*{(H,b%)*...(*Q,b9Y'

(a{eG, bi€H, 0 , ^ 1 , 6 , ^ 1 , ij,= ± l , * = 1 , 2, ..., q)

is equal to 1, then for some value of i

(4) «j

Now if an element 8 of G O H can be written as x1x2...xp (p^ 1), where
x( is an element of G or H, x^l, and no two consecutive elements x(, xi+1

are in the same group G or H, then S 7̂  1. It is sufficient therefore to show
that if 8 is given by (3) with (4) false for i = 1, ..., q— 1, then 8 can be put
in this form with xx = al5 #2 = bx> or â  = 6X, x2 = als according as ^ = 1 or
•^ = — 1. This is certainly true for q = 1, and will be proved by induction
on q. Since the roles of G and H are identical there is no loss of generality
in supposing that -qx = 1. The element (o2, 62)

r'2 (a3, 63)''
3... (ag, b^'i, by the

hypothesis of the induction, can be written in the form a2b2X or in the
form b2a2X according as rj2 = 1 or rj2=—1. In the former case,
§ = ax bx cq1671 a2 b2 X. In the latter, if bx ^ 62,8 = ax bx aj1671 b2 a2 X, and
if bx — b2, 8 = aj &! aj1 a2 X. We cannot also have ax = a2, since (4) is
false for i=l. In all cases 8 is reduced to the desired fown.

Balliol College,
Oxford.


