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1. Introduction

Let M be a smooth, closed, oriented Riemannian manifold of dimension 4k.
The signature operator on M is a certain linear, elliptic, partial differential
operator whose Fredholm index is the cohomological signature of M. It can
be defined for M of any dimension n, but unless n= 4k its Fredholm index
is zero. However for any n the signature operator has a ‘higher index,’ lying
in the C∗-algebra K-theory group Kn(C

∗
r (π1M)), and this higher index is

decidedly non-trivial. It is closely related to the ‘higher signatures’ of M

studied in manifold theory, and a basic result, which is fundamental for the
application of C∗-algebras to the Novikov higher signature conjecture [2,9]
is that this higher index, like the ordinary signature of M, is an oriented
homotopy invariant [7,8].

This is the first of three articles which will explore in some detail the
relationship between the K-theoretic higher index of the signature operator
and the L-theoretic signature of M, around which surgery theory [21] is
organized and which is the usual context for discussions of manifolds and
their signatures. Kasparov and others [1,9,10] have studied a C∗-algebraic
assembly map

µ : K∗(M)→K∗(C∗r π1M)

�The authors were supported in part by NSF Grant DMS-0100464.
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which maps K-homology to C∗-algebra K-theory and takes the class of the
signature operator in Kn(M) to the higher index of the signature operator
in Kn(C

∗
r π1M). The assembly map fits into a long exact sequence

Kn+1(C
∗
r π1M)−→Kn+1(D

∗
πM)−→Kn(M)−→Kn(C

∗
r π1M),

and we asserted in [5], albeit in a slightly different context, that this can be
regarded as an analytic counterpart to the surgery exact sequence [21]. In
particular we asserted that the term K∗(D∗πM) can be regarded as an ana-
lytic counterpart to the structure set S(M) in surgery theory. Our aim is to
provide justification for this by constructing explicitly a commutative1 dia-
gram from the usual surgery exact sequence to our analytic surgery exact
sequence:

Ln+1(π1M) ��

γ

��

S(M) ��

α

��

N (M)

β

��

�� Ln(π1M)

γ

��
Kn+1(C

∗
r π1M) �� Kn+1(D

∗
πM) �� Kn(M) �� Kn(C

∗
r π1M)

The diagram (all of whose parts will be explained later on) provides the
fullest possible account of homotopy invariance for the higher index of the
signature operator. For instance an element of S(M) is a homotopy equiv-
alence of oriented manifolds M ′ ∼M; we shall give an explicit geometric
construction of a corresponding element in Kn+1(D

∗
πM) and show that its

image in Kn(M) is the difference of the classes of the signature operators
of M and M ′. Homotopy invariance of the index of the signature operator
is thus a consequence of exactness in the bottom row of the diagram.

In order to carry out our constructions we need to associate ‘signature
invariants’ in C∗-algebra K-theory groups to various kinds of ‘Poincaré
duality complexes’, and we need to check that when the complex in ques-
tion arises from a smooth manifold, the signature invariant that we have
constructed agrees with the higher index of the (de Rham) signature oper-
ator. The construction is somewhat elaborate. In this paper we shall show
how to associate a C∗-algebraic signature to what we call an analytically
controlled Hilbert–Poincaré complex – a complex of Hilbert spaces and lin-
ear maps which admits a ‘Poincaré duality’ operator. The construction is
an abstract one at the level of operator K-theory and analysis, and should
be thought of as an analytic version of the construction of the signature of
an algebraic Poincaré complex by Mischenko and Ranicki.

In the second paper of this series we shall show how such analytically
controlled Hilbert–Poincaré complexes can be obtained from natural geo-
metric constructions, the simplest example being the de Rham complex of a

1Strictly speaking, the diagram commutes only modulo certain powers of 2. See paper
III in this series for details.
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complete, bounded geometry Riemannian manifold.2 In the third and final
paper we shall use these geometric constructions to define our map from
surgery theory (specifically, from the structure set S(M) associated to a
compact smooth manifold M) to K-theoretic invariants of C∗-algebras, and
we shall complete the construction of the commutative diagram alluded to
above. A preliminary version of our main results appears in [20].

We thank our colleagues E. Pedersen, A. Ranicki and S. Weinberger for
helpful conversations. The judicious comments of the referee are also grate-
fully acknowledged.

2. Complexes of Hilbert Modules

Let us fix, for the first several sections, a C∗-algebra C. We shall be
considering complexes of Hilbert C-modules3

E0
b1←−E1

b2←−· · · bn←−En. (1)

The C∗-algebra C will be unital, and the differentials bj will be bounded,
adjointable operators. Later on in the paper we shall relax these hypotheses
and develop a somewhat different set of hypotheses.

The homology of the complex is, of course, the sequence of quotient
spaces obtained upon dividing the kernel of bj by the image of bj+1. Note
that, since the differentials need not have closed range, our homology spaces
are not necessarily Hilbert modules themselves.

Let E denote the direct sum of all the modules Ej , and denote by b the
corresponding direct sum of the operators bj ; note that b2=0.

PROPOSITION 2.1. The complex (2.1) is acyclic (that is, its homology groups
are all zero) if and only if the self-adjoint operator B=b∗ +b is invertible

Note that according to a theorem of Mischenko [11, Chapter 3], the ter-
minology ‘invertible’ is unambiguous: a self-adjoint operator on a Hilbert
module E gives a bijective map from E to itself if and only if it is invertible
in the C∗-algebra B(E).

Proof. Suppose that the homology of the complex (E, b) is zero. To prove
that B is invertible it suffices to check that B is surjective (the kernel of
a self-adjoint operator is orthogonal to the image, so surjectivity implies
injectivity). The range of b, being equal to its kernel, is closed. Furthermore,

2The idea of considering C∗-algebraic signatures in this context was introduced by
Novikov [17,18] and was further developed by Kasparov and Mischenko.

3We refer to the book [11] for the basic theory of Hilbert modules and their operators.
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by another theorem of Mischenko, if an operator has closed range then so
does its adjoint, and so

E= Im(b∗)⊕Ker(b)= Im(b∗)⊕ Im(b).

Surjectivity follows easily from this. Conversely, if B is invertible, and if
bv=0, then from v=Bw, for some w, we get

‖b∗w‖2=‖〈bb∗w,w〉‖=‖〈bBw,w〉‖=0,

and hence v=Bw= bw. Thus every cycle v is a boundary bw, and hence
the complex (E, b) is acyclic.

DEFINITION 2.2. A chain map from one complex of Hilbert modules to
another, denoted

A : (E, b)→ (E′, b′),

is a family of adjointable operators Aj : Ej→E′j such that b′jAj =Aj−1bj for
all j . The mapping cone complex associated to A is the complex

E′′0
b1←−E′′1

b2←−· · · bn+1←−E′′n+1.

for which

E′′j =Ej−1⊕E′j and b′′j =
(

bj−1 0
Aj−1 −b′j

)
(j =1, . . . , n+1).

Here we set E−1=0 and E′n+1=0.

It is a simple and well-known matter of algebra to check that:

LEMMA 2.3. A map of complexes A is an isomorphism on homology if and
only if its mapping cone complex is acyclic.

We shall use this basic observation several times in the paper. A simple
application is as follows. From the complex (E, b) in (2.1) we obtain a dual
complex

En

b∗n←−En−1
b∗n−1←−· · · b∗1←−E0 (2)

which we shall denote (E, b∗).

LEMMA 2.4. A chain map A : (E, b)→(E′, b′) is an isomorphism on homol-
ogy if and only if the same is true of the adjoint map A∗ : (E′, b′∗)→ (E, b∗).
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Proof. The chain map A induces an isomorphism on homology if and
only if its mapping cone complex is acyclic. Since the mapping cone com-
plex of the adjoint map identifies with the adjoint of the mapping cone
complex of A, the lemma reduces to showing that a complex is acyclic
if and only if its adjoint complex is acyclic. But this last assertion is an
immediate consequence of Proposition 2.1.

3. Hilbert–Poincaré Complexes

The following definition, which is adapted from the algebraic theory of sur-
gery, particularly Mischenko’s notion of an algebraic Poincaré complex [12,
13], explains what we mean by a ‘complex of Hilbert modules which obeys
Poincaré duality.’ Because the spaces with which we are working are vector
spaces over C, many of the complexities of the algebraic theory of surgery
disappear (in surgery one works with modules over various rings – usually
integral group rings). So our definition will look simpler than Mischenko’s.
Note also that in the context of vector spaces over C the various algebraic
notions of Poincaré complex – in particular the ‘symmetric complexes’ of
Mischenko [12] and the ‘quadratic complexes’ of Ranicki [19] – agree with
one another.

DEFINITION 3.1. An n-dimensional Hilbert–Poincaré complex (over the
C∗-algebra C) is a complex of finitely generated (and therefore projective)
Hilbert C-modules

Ea
b←−Ea+1

b←−· · · b←−En−a (3)

together with adjointable operators T : Ep→En−p such that

(i) if v∈Ep then T ∗v= (−1)(n−p)pT v;
(ii) if v∈Ep then T b∗v+ (−1)pbT v=0; and

(iii) T induces an isomorphism from the homology of the dual complex

En−a
b∗←−En−a−1

b∗←−· · · b∗←−Ea (4)

to the homology of the complex (E, b).

Notice the indexing of the above complexes. In geometric examples one
has a=0, so that the complexes are indexed in the same way as the com-
plexes (2.1) and (2.2). But it is occasionally useful to consider other (inte-
gral) values of a. A systematic way of doing this is to consider two-way
infinite complexes with the property that Ej = 0, for all but finitely many
j . Our arguments will be consistent with this approach.
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We shall refer to the operator T as a duality operator on the complex
(E, b) since it induces ‘Poincaré duality’ on the homology of (E, b). Geo-
metric examples related to the Poincaré duality of manifolds will be given
in the second paper of this series.

Remark 3.2. One might think that in the definition of Hilbert–Poincaré
complex it would be more appropriate to require that T be a chain homot-
opy equivalence from (E, b∗) to (E, b) (rather than just a homology iso-
morphism). But it is not hard to see that this apparently stronger definition
is equivalent to the one we have given.

Let (E, b, T ) be an n-dimensional Hilbert–Poincaré complex over C. We
are going to associate to it a signature in the K-theory group Kn(C). Because
of Bott periodicity there are only two cases to consider: n even and n odd.

DEFINITION 3.3. Let (E, b, T ) be an n-dimensional Hilbert–Poincaré
complex and let

n=
{

2l if n is even,

2l+1 if n is odd.

Denote by S : E→E the bounded operator such that

Sv= ip(p−1)+lT v (v∈Ep)

where i=√−1.

By introducing the operator S we eliminate most of the ±1 signs from
the definition of a Hilbert–Poincaré complex:

LEMMA 3.4. If (E, b, T ) is a Hilbert–Poincaré complex and S is defined
from T as above then S=S∗ and bS+Sb∗ =0.

Proof. This is a straightforward calculation.

Our construction of the signature is based on the following observation.

LEMMA 3.5. Let (E, b, T ) be a Hilbert–Poincaré complex and let B=b∗ +
b. The self-adjoint operators B±S : E→E are invertible.

Proof. Consider the mapping cone complex of the chain map S : (E,

−b∗)→ (E, b). Its differential is the operator

bS=
(

b 0
S b∗

)
.
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Since S is an isomorphism on homology the mapping cone complex is acy-
clic, and therefore the operator BS = bS

∗ + bS on E⊕E is invertible. Now
bearing in mind that S is self-adjoint we see that

BS=
(

b∗ +b S

S b+b∗

)
.

The symmetry which exchanges the two copies of E in the direct sum E⊕
E commutes with BS , and since(

b∗ +b S

S b+b∗

)(
v

v

)
=

(
(b∗ +b+S)v

(b∗ +b+S)v

)
,

we see that BS identifies with B+S on the +1 eigenspace of the exchange
symmetry. Similarly it identifies with B−S on the −1 eigenspace.

Using this lemma we can define our notion of signature. As we observed
above, there are two cases:

DEFINITION 3.6. Let (E, b, T ) be an odd-dimensional Hilbert–Poincaré
complex. Its signature is the class in K1(C) of the invertible operator

(B+S)(B−S)−1 : Eev→Eev,

where Eev=⊕pE2p.

If a is an invertible self-adjoint element in a C∗-algebra A, we will use
the terminology positive projection of a for the projection ϕ(a), where ϕ is
a continuous function on the spectrum of a equal to 1 on the positive part
of the spectrum and 0 elsewhere.

DEFINITION 3.7. Let (E, b, T ) be an even-dimensional Hilbert–Poincaré
complex. Its signature is the class in K0(C) determined by the formal differ-
ence [P+]− [P−] of the positive projections of B+S and B−S.

PROPOSITION 3.8. If a Hilbert–Poincaré complex over C is acyclic, its
signature is zero.

Proof. Since neither of the complexes (E, b) or (E, b∗) has any homol-
ogy, the operator tT is a duality operator for all real t . So Lemma 3.5
shows that the operators B ± tS are invertible, for all t . In particular the
operators B+S and B−S are path connected through self-adjoint, invert-
ible operators and the operator (B + S)(B − S)−1 : Eev → Eev is
path-connected to the identity through invertible operators. This proves the
lemma.
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The connection with the usual notion of signature is brought out clearly
by the next result:

PROPOSITION 3.9. For a Hilbert–Poincaré complex over C, of dimension
n=2l, whose homology vanishes except in dimension l, the signature that we
have defined is equal to the formal difference of the positive and negative
projections of the invertible self-adjoint operator S acting on the middle-
dimensional homology.

It is implicit in this statement that (in this case) the middle-dimensional
homology can be identified as a (finitely generated) Hilbert C-module.

Proof. The result is obvious for a Hilbert–Poincaré complex that is con-
centrated in dimension l – that is, for which all the Hilbert spaces Ej , j �= l,
vanish. Thus it will suffice to show that a Hilbert–Poincaré complex whose
homology vanishes except in dimension l can be written as the direct sum
of two such complexes, one of which is concentrated in dimension l and
the other of which is acyclic.

Let (E, b, T ) be a Hilbert–Poincaré complex whose homology is concen-
trated in dimension l. Let E′ be the subcomplex defined by setting E′j =0
for j �= l and E′l=Ker(bl)∩Ker(b∗l+1). Since bl and b∗l+1 have closed range,
Mischenko’s Theorem shows that E′l is an orthogonally complemented
submodule. Both E′ and its orthogonal complement are Hilbert–Poincaré
subcomplexes.

The inclusion of E′ into E is a homology isomorphism. To see this, we
need only check dimension l. If x ∈E′l and x vanishes in the homology
of E, then x= bl+1y for some y. Then b∗l+1bl+1y= 0 and, taking the inner
product with y, we find that x = 0. So the inclusion E′ →E is injective
on homology. On the other hand, suppose that z∈El with blz= 0. Write
z = x + y with x ∈ E′l =Ker(bl) ∩Ker(b∗l+1) and y ∈Ker(bl) ∩Ker(b∗l+1)

⊥.
Since b∗l+1 has closed range, it follows that bl+1 has closed range also and
Ker(b∗l+1)

⊥= Im(bl+1). We conclude that z is homologous to x ∈E′l and so
the inclusion E′→E is surjective on homology.

Now E=E′ ⊕ (E′)⊥ as Hilbert–Poincaré complexes; since the inclusion
E′ → E is a homology isomorphism, the complex (E′)⊥ is acyclic. This
completes the proof.

4. Homotopy Invariance of the Signature

We introduce an equivalence relation of homotopy on Hilbert–Poincaré
complexes as follows:
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DEFINITION 4.1. Let (E, b, T ) and (E′, b′, T ′) be a pair of n-dimensional
Hilbert–Poincaré complexes. A homotopy equivalence between them is a chain
map A : (E, b)→ (E′, b′), comprised of adjointable operators, which induces
an isomorphism on homology, and for which the two chain maps

AT A∗, T ′ : (E′n−∗, b
′∗)→ (E′∗, b

′)

induce the same map on homology.

Remark 4.2. We would obtain the same notion of equivalence if we
required A to be a chain equivalence, and required AT A∗ and T ′ to be
chain homotopic. Compare Remark 3.2.

Our objective in this section is to prove the following homotopy invari-
ance principle:

THEOREM 4.3. If (E, b, T ) and (E′, b′, T ′) are homotopy equivalent,
n-dimensional Hilbert–Poincaré complexes then their signatures in Kn(C) are
equal.

We begin by analyzing a simpler type of homotopy equivalence.

DEFINITION 4.4. Let (E, b) be a complex of Hilbert modules. An opera-
tor homotopy of Hilbert–Poincaré structures on (E, b) is a norm continuous
family of adjointable operators Ts (s ∈ [0,1]) such that each (E, b, Ts) is a
Hilbert–Poincaré complex.

LEMMA 4.5. Operator homotopic Hilbert–Poincaré complexes have the same
signature.

Proof. Consider first the odd-dimensional case. Form the self-adjoint
operators Ss from Ts , as in Definition 3.3. From the resolvent identity

(B±Ss1± i)−1− (B±Ss2± i)−1= (B±Ss1± i)−1(Ss2−Ss1)(B±Ss2± i)−1,

we see that the resolvent operators of B±Ss vary norm-continuously with
s. It follows that (B+Ss)(B−Ss)

−1 varies norm-continuously with s, so the
lemma follows from the homotopy invariance property of K-theory.

The proof in the even-dimensional case is similar.

LEMMA 4.6. If a duality operator T on a Hilbert–Poincaré complex (E, b)

is operator homotopic to −T then the signature of (E, b, T ) is zero.
Proof. We shall consider the odd-dimensional case; as with the previous

lemma the even-dimensional case is similar. Let Ts be an operator homoto-
py connecting T to −T . Repeating the argument used to prove the previous
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lemma, we see that (B+S)(B−Ss)
−1 is a norm-continuous path connecting

the invertible operator representing the signature of (E, b, T ) to the iden-
tity. So the class in K-theory of that invertible operator is zero.

Proof of Theorem 4.3. We are going to argue that the signature of the
direct sum complex (E⊕E′, b⊕b′, T ⊕−T ′) is zero. This will be sufficient
since it is easy to check that

Sign(E⊕E′, b⊕b′, T ⊕−T ′)=Sign(E, b, T )+Sign(E′, b′,−T ′)
=Sign(E, b, T )−Sign(E′, b′, T ′).

Since T ′ and AT A∗ induce the same map on homology the path(
T 0
0 (s−1)T ′ − sAT A∗

)
(s ∈ [0,1]).

is an operator homotopy connecting the duality operator T ⊕−T ′ on the
direct sum complex (E⊕E′, b⊕b′) to T ⊕−AT A∗. Following this, the path(

cos(s)T sin(s)T A∗

sin(s)AT − cos(s)AT A∗

)
(s ∈ [0, π/2])

is an operator homotopy connecting T ⊕−AT A∗ to
(

0 T A∗
AT 0

)
(to see that

the operators in the path really are duality operators, note that if α, α† and
τ are inverse to A, A∗ and T at the level of homology then(

cos(s)τ sin(s)τα

sin(s)α†τ − cos(s)α†τα

)

is inverse to the displayed operator at the level of homology). The last
duality operator in this path is homotopic to its additive inverse along the
path(

0 exp(is)AT

exp(−is)T A∗ 0

)
(s ∈ [0, π ]).

The theorem now follows from Lemmas 4.5 and 4.6.

EXAMPLE 4.7. We shall develop geometric applications at length in the
second paper of this series. But to provide some context, the following con-
crete application may be useful. Suppose that M is a closed, oriented man-
ifold equipped with a triangulation (M might be smooth or just piecewise
linear – it does not matter which). Form the complex

C0
b1←−C1

b2←−· · · bn←−Cn
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which computes the simplicial homology of the universal cover M̃ of M,
with complex coefficients. The spaces Cj are finitely generated, free C[π1M]-
modules, and the differentials are C[π1M]-linear. The proof of Poincaré
duality furnishes the complex with a duality operator T as in Definition 3.1
(the adjoint T ∗ is computed with respect to the natural bases of the spaces
Cj ; the self-adjointness condition (i) is ensured by averaging T and T ∗,
which is one reason why we work over C, not Z). If we now induce up to
C=C∗r (π1M) we obtain a Hilbert–Poincaré structure T ⊗ I on the complex

C0⊗C∗r (π1M)
b1⊗I←−C1⊗C∗r (π1M)

b2⊗I←−· · · bn⊗I←−Cn⊗C∗r (π1M)

(the tensor products are over C[π1M]). Theorem 4.3 shows that the signa-
ture is an oriented homotopy invariant of M. Further details will be given
in the second paper of this series.

5. Analytically Controlled Complexes

It is well known that there exists a second way of associating a ‘higher
signature’ in Kn(C

∗
r (π1M)) to a smooth, closed, oriented manifold: one can

form the signature operator on M and associate to it its K-theoretic index,
as for example in [14]. It is natural to ask whether or not this is the same
invariant. The answer is that it is indeed the same, and in this section we
shall develop some tools to prove this. The complete argument will be given
in the second paper of this series, where other important applications of
the same tools will also be given. We shall however sketch parts of the
argument here as we go along.

One way of obtaining the K-theoretic higher index of the signature oper-
ator is to begin with the de Rham complex of square-integrable, differen-
tial forms on the universal cover of M, equip it with its natural duality
operator (determined by the Hodge star operation), and repeat the steps
taken in Sections 3 and 4 of this paper to obtain a homotopy invariant
signature in K-theory. With this in mind, we shall now alter the basic setup
with which we began the paper, so as to incorporate complexes of Hilbert
spaces in which the differentials are (possibly) unbounded operators. To see
the relationship between this set-up and our earlier one involving Hilbert
modules over C, suppose that ρ : C→B(H) is a faithful representation of
the C∗-algebra C. For each Hilbert module E over C we can form the Hil-
bert space E⊗ρ H , and this process gives a functor which transforms com-
plexes of Hilbert modules into complexes of Hilbert spaces. Moreover, an
operator T on a Hilbert module E is invertible if and only if the operator
T ⊗1, on the Hilbert space E⊗ρ H , is invertible; thus a complex of Hilbert
modules is acyclic, or a chain map of Hilbert modules is a homology iso-
morphism, if and only if the induced complex of Hilbert spaces is acyclic,
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or the induced chain map of Hilbert spaces is a homology isomorphism4.
It follows that a Poincaré complex of Hilbert modules induces a Poincaré
complex of Hilbert spaces.

We shall therefore begin anew with a complex

H0
b1←−H1

b2←−· · · bn←−Hn (5)

in which the spaces Hj are Hilbert spaces, and the differentials bj are closed,
possibly unbounded operators. We shall assume that successive operators in
the complex are composable (that is, the image of one is contained within
the domain of the next). As before, we shall denote by b the direct sum of
the bj acting on the direct sum H of all the Hj . It is a closed operator (its
domain is the direct sum of the domains of the bj ), it is composable with
itself, and b2=0.

LEMMA 5.1. Let (H, b) be a complex of Hilbert spaces, as defined above.
The operator B= b∗ + b (with domain the intersection of the domains of b∗

and b) is densely defined and self-adjoint.
Proof. This is obvious if the differential b is a bounded operator. In the

unbounded case, write H as H ′ ⊕H ′′, where H ′ is the kernel of b. Then b

assumes the form(
0 β

0 0

)

where β is a closed operator from H ′′ to H ′. One checks that B is the
operator associated to the matrix(

0 β

β∗ 0

)

which is certainly densely defined and self-adjoint.

PROPOSITION 5.2. The complex (5) is acyclic if and only if the self-adjoint
operator B=b∗ +b is invertible.

Proof. The proof is the same as that of Proposition 2.1. (In the unbounded
case ‘invertible’ means that B maps its domain one-to-one onto H . By the
closed graph theorem the inverse is then a bounded linear operator.)

In the definition of chain map between complexes (compare Defini-
tion 2.2) we now require that the operators A : Hj→H ′j be bounded and
map the domain of b into the domain of b′. With this, the basic facts about
mapping cone complexes stated in Section 2 carry over, with the same proofs.

4This observation was of crucial importance in [6].
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We define the concept ‘Hilbert–Poincaré complex’ in the new context
exactly as we did in Definition 3.1. We insist that the duality operators
T : Hp→Hn−p be bounded and everywhere defined, that they map the
domain of b∗ into the domain of b, and that the equation

T b∗v+ (−1)pbT v=0,

which appears as item (ii) of Definition 3.1, holds for all vectors v in the
domain of b∗. Lemma 3.5 remains true in this context, interpreting the
word ‘invertible’ as in the proof of proposition 5.2 above; again, the proof
is the same.

Before we can form the signature invariant of one of our ‘unbounded’
Hilbert–Poincaré complexes we need to determine in which K-theory group
the invariant ought to lie. For this purpose let us fix a C∗-subcategory5

A of the category of all Hilbert spaces and bounded linear maps (this is
an additive subcategory whose morphism sets HomA(H1,H2) are Banach
subspaces of the bounded linear operators from H1 to H2, and are closed
under the adjoint operation). Let us also fix an ideal J in A (apart from the
fact that we no longer require identity morphisms, this is a C∗-subcategory
with the additional property that any composition of a morphism in J with
a morphism in A is a morphism in J).

DEFINITION 5.3. An unbounded, self-adjoint, Hilbert space operator D

is analytically controlled over (A,J) if

(i) the Hilbert space on which it is defined is an object of J;
(ii) the resolvent operators (D± i)−1 are morphisms of J; and

(iii) the operator D(1+D2)−
1
2 is a morphism of A.

Remark 5.4. For a bounded operator, the definition simply means that D

is a morphism in J. Requirements (ii) and (iii) together are equivalent to
saying that f (D) belongs to J for every f ∈C0(R), and that f (D) belongs
to A for every function f continuous on [−∞,∞].

DEFINITION 5.5. A complex of Hilbert spaces (H, b) is analytically
controlled over (A,J) if the self-adjoint operator B= b+ b∗ is analytically
controlled over (A,J) in the sense of Definition 5.3. A Hilbert–Poincaré
complex is analytically controlled over (A,J) if

(i) the complex (H, b) is analytically controlled in the sense just defined,
and

(ii) the duality operator T is a morphism in the category A.

5See [3,15,16] for C∗-categories and their K-theory.
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EXAMPLE 5.6. In our geometric example, the objects of A and J are
Hilbert spaces equipped with compatible representations of both π1M and
C0(M̃). The morphisms of A are norm limits of π1M-equivariant, bounded,
finite-propagation operators (see [5]), while the morphisms of J are in addi-
tion locally compact (see [5] again). The L2-de Rham homology complex for
the universal cover M̃ is then analytically controlled over (A,J), and the
Hodge star operator makes it into a controlled Hilbert–Poincaré complex.
All this will be developed in greater detail in the second paper of this series.

We are almost ready to define the signature invariant of an analytically
controlled Hilbert–Poincaré complex. But first we need to carry out one or
two perturbation computations.

LEMMA 5.7. If a self-adjoint operator D is analytically controlled and if S

is a bounded self-adjoint operator in A then the resolvents of the self-adjoint
operator D+S (that is, the operators (D+S± i)−1) belong to J.

Proof. The formula

(D+S± i)= (I +S(D± i)−1)(D± i)

shows that (I +S(D± i)−1 is invertible. As a result, we can write

(D+S± i)−1= (D± i)−1(I +S(D± i)−1)−1

which expresses (D + S ± i)−1 as the product of an operator in J and a
multiplier of J.

LEMMA 5.8. Let D be an analytically controlled self-adjoint operator and
let g : [−∞,∞]→R be a continuous function. If S is a bounded self-adjoint
operator in A then the difference g(D)−g(D+S) lies in J.

Proof. It suffices to prove the lemma for g(x)=x(1+x2)−1/2. From the
integral representation

g(x)= 2
π

∫ ∞
1

t√
t2−1

x(x2+ t2)−1 dt,

it is easy to calculate that

g(D)−g(D+S)= 1
π

∫ ∞
1

t√
t2−1

R(t)SRS(t)dt

+ 1
π

∫ ∞
1

t√
t2−1

R(−t)SRS(−t)dt,

where R(t)= (D+ it)−1 and RS(t)= (D+S+ it)−1. These are norm conver-
gent, improper Riemann integrals and the integrands lie within J. So the
integrals lie there too.



MAPPING SURGERY TO ANALYSIS I 291

Combining these results we obtain in particular

PROPOSITION 5.9. If D is an analytically controlled self-adjoint operator
and S is a bounded self-adjoint operator in A, then D+S is analytically con-
trolled also.

Suppose now that (H, b, T ) is an n-dimensional Hilbert–Poincarè com-
plex analytically controlled over (A,J). Its signature invariant will lie in the
K-theory group Kn(J). To avoid getting too involved with the K-theory of
C∗-categories let A be the C∗-algebra of A-endomorphisms of H , and let
J be the ideal of J-endomorphisms. We will define a signature invariant in
Kn(J ); the C∗-categorical signature invariant is the image of this one under
the natural map Kn(J )→Kn(J). As before there are two cases to consider,
and we will begin with the case where n is odd.

Because Lemma 3.5 remains true for our unbounded complexes (as we
noted above), we may form the invertible operator F = (B+S)(B−S)−1 ∈
A. Since B − S is analytically controlled and invertible, (B − S)−1 ∈ J and
therefore I − F =−2S(B − S)−1 ∈ J also. So we can make the following
definition:

DEFINITION 5.10. Let (H, b, T ) be an odd-dimensional analytically con-
trolled Hilbert–Poincaré complex. Its signature is the class in K1(J ) of the
invertible operator

(B+S)(B−S)−1 : Hev→Hev.

which belongs to the unitalization J+ of J .

In the even-dimensional case, let P+, P− ∈A be the positive projections of
the invertible self-adjoint operators B+S, B−S. It follows from Lemma 5.8
that their difference P+−P− is an element of J . But a pair of projections in
A whose difference belongs to J gives rise to a ‘formal difference’ element
[P+]− [P−]∈K0(J ). Hence we can make the following definition:

DEFINITION 5.11. Let (H, b, T ) be an even-dimensional analytically con-
trolled Hilbert–Poincaré complex. Its signature is the class in K0(J) deter-
mined by the formal difference [P+]− [P−] of the positive projections of
B+S and B−S.

Let us turn now to the formulation and proof of the homotopy
invariance property of the signature. Homotopy equivalence of analytically
controlled Hilbert–Poincaré complexes is defined exactly as in Definition 4.1,
except that we require in addition that the chain map A should be a mor-
phism of A.
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THEOREM 5.12. If (H, b, T ) and (H ′, b′, T ′) are homotopy equivalent,
n-dimensional, analytically controlled Hilbert–Poincaré complexes then their
signatures in Kn(J) are equal.

The proof is the same as the proof given in Section 4, using the notion of
operator homotopy. The calculation below replaces the proof of Lemma 4.5
in the even-dimensional case (the proof in the odd-dimensional case needs
no additional argument).

PROPOSITION 5.13. Let B be an analytically controlled, unbounded self-
adjoint operator and let St (t ∈ [0,1]) be a norm-continuous family of analyti-
cally controlled, bounded self-adjoint operators. If the operators B and B+St

are all invertible then the formal difference [P ]− [Pt ] of the positive spectral
projections for B and B + St defines a class in K0(J) which is independent
of t .

Proof. One can choose a single continuous function g : [−∞,∞]→R

such that the operators g(B) and g(B+St) are the positive spectral projec-
tions of B and B + St , for all t . Let P be the positive spectral projection
of B, considered as a constant function on [0,1] and let Q be the func-
tion mapping t to the positive spectral projection of B+St . By Lemma 5.8
(applied to the pair of categories (C[0,1]⊗A,C[0,1]⊗J)) the formal differ-
ence [P ]− [Q] defines a class in K0(C[0,1]⊗J). Evaluation at s∈ [0,1] maps
this element to the formal difference of the spectral projections of B and
B + St in K0(J). But by the homotopy invariance of K-theory all these
evaluation homomorphisms are the same, so all the formal differences, for
different t , are the same.

EXAMPLE 5.14. In our running example, the K-theory of J identifies
with the K-theory of the C∗-algebra C∗r (π1M). The signature invariant in
Kn(C

∗
r π1M) in Example 4.7 from the complex

C0⊗C∗r (π1M)
b1⊗I←−C1⊗C∗r (π1M)

b2⊗I←−· · · bn⊗I←−Cn⊗C∗r (π1M)

corresponds to the signature invariant constructed from the analytically
controlled Hilbert–Poincar’e complex of Hilbert spaces

C0⊗	2(π1M)
b1⊗I←−C1⊗	2(π1M)

b2⊗I←−· · · bn⊗I←−Cn⊗	2(π1M)

(once again, all tensor products are over the complex group algebra). By
well-known arguments (basically integration of differential forms over sim-
plices), this complex is homotopy equivalent to the (homology) L2-de Rham
complex


0
L2(M̃)

b1⊗I←−
1
L2(M̃)

b2⊗I←−· · · bn⊗I←−
n
L2(M̃)
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for the universal cover (even as analytically controlled Hilbert–Poincaré com-
plexes). By the homotopy invariance theorem, it follows that the ‘simplicial’
signature of M is equal to its ‘de Rham’ signature, and from here it is easy to
check that the simplicial signature coincides with the index of the signature
operator. For more details see the second paper in this series [4].

6. Euler Characteristics

An analytically controlled complex of Hilbert spaces (H, b) has an Euler
characteristic in the K-theory group K0(J ) which generalizes the usual Eul-
er characteristic of a complex of finite dimensional vector spaces. This is a
simpler invariant than the signatures we have been studying up to now, but
for completeness we give a brief account of it.

Take the operator B=b∗ +b on H and form its Cayley transform

U = (B+ i)(B− i)−1.

Consider also the symmetry (i.e. the self-adjoint unitary) S on H which
is +1 on the spaces H2j and −1 on the spaces H2j+1. A straightforward
calculation shows that

(i) SU =U ∗S, so that the operator SU is also a symmetry; and
(ii) the difference S−SU lies in J .

Now to every symmetry S there is a corresponding projection P = 1
2(S+1),

and to every pair of symmetries whose difference lies in J there corre-
sponds a pair of projections whose difference lies in J . The formal differ-
ence of such a pair of projections defines an element of the group K0(J ).
Thus the complex (H, b) determines a pair of symmetries, which determines
a pair of projections, whose formal difference determines a class in K0(J ).
This class is the Euler characteristic.

PROPOSITION 6.1. If a complex is acyclic, its Euler characteristic is zero.
Proof. By Proposition 2.1, if a complex (H, b) is acyclic then B=b+b∗

is an invertible operator. Consider now the one-parameter family of com-
plexes formed by replacing b by tb, t ∈ [1,∞), and thus B by tB. The
corresponding operators Ut = (tB+ i)(tB− i)−1 vary continuously in norm,
so the K-theory class defined by the formal difference

[S]− [SUt ]

is independent of t and equal to the Euler characteristic. But since B is
invertible, Ut→1 in norm as t→∞, by the spectral theorem, and thus the
Euler characteristic vanishes.
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PROPOSITION 6.2. In the case that b is bounded, the Euler characteristic
is equal to the alternating sum∑

i

(−1)i [Hi ]∈K0(J ).

Proof. Notice that in the bounded case J =A is unital and thus the objects
Hi define classes in K0(J ) (for instance, via the corresponding orthogonal
projections).

Follow the argument of the preceding proposition where now t ∈ (0,1]
and tends to 0. Then the Euler characteristic is represented by the formal
difference [S]− [−S] of symmetries, which belong to J (by unitality). In
terms of projections, S corresponds to the orthogonal projection onto the
even Hj , and −S corresponds to the orthogonal projection onto the odd
Hj ; the result follows.

7. Bordism Invariance of the Signature

In this section we shall prove the bordism invariance of the signature. our
main result implies, for example, that if a smooth, closed, oriented mani-
fold M is the boundary of a smooth, compact manifold W with the same
fundamental group, then the signature of M in Kn(C

∗
r (π1M)) is zero.6

For simplicity, we shall work with complexes of finitely generated Hil-
bert modules over a unital C∗-algebra, as we did in the first sections of the
paper. This is sufficient for the applications we have in mind. The results of
the section extend easily to analytically controlled complexes in which the
differentials are bounded operators (we shall state the result in this gener-
ality at the end of the section), but the story for unbounded differentials is
a bit more complicated and will not be discussed.

Let (E, b) be a complex of Hilbert modules (as in Section 2) in which
the differentials b are bounded. The following definition is fairly obvious:

DEFINITION 7.1. A (complemented) subcomplex of the complex (E, b) is
a family of (complemented) Hilbert submodules E′p⊂Ep such that b maps
E′p into E′p−1, for all p.

We will be considering exclusively complemented subcomplexes, and it
will be convenient use the language of orthogonal projections rather that
Hilbert submodules. We note that given orthogonal projections P : Ep→Ep,

6Actually, the ‘manifold’ W need be nothing more than a Poincaré complex, and by
considering mapping cylinders of homotopy equivalences one can see that the bordism
invariance result we are about to prove generalizes the homotopy invariance result in
Theorem 4.3.
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their ranges determine a subcomplex of (E, b) if and only if PbP = bP . If
a family of orthogonal projections P : Ep→Ep determines a subcomplex in
this way then the differential on the subcomplex is of course

Pb=b : PEp→PEp−1.

The adjoint of this differential is

Pb∗ : PEp−1→PEp

(note that Pb∗ �=b∗ in general). We shall denote the subcomplex by (PE,Pb)

and its dual complex by (PE,Pb∗).
If (PE,Pb) is a subcomplex of (E, b) then there is a corresponding quo-

tient complex (P⊥E,P⊥b). The inclusion PE⊂E gives a chain map from
(PE,Pb) into (E, b), whereas the orthogonal projection E→P⊥E gives a
chain map from (E, b) onto (P⊥E,P⊥b). For computations, it is useful to
note that P⊥b=P⊥bP⊥.

The following definition, like our definition of algebraic Hilbert–
Poincaré complex, is borrowed from the algebraic theory of surgery [12,19].

DEFINITION 7.2. An (n+ 1)-dimensional algebraic Hilbert–Poincaré pair
is a complex of finitely generated Hilbert modules

Ea
b←−Ea+1

b←−· · · b←−En−a
b←−En−a+1 (6)

together with a family of bounded adjointable operators T : Ep→En+1−p

and a family of orthogonal projections P : Ep→Ep such that

(i) the orthogonal projections P determine a subcomplex of (E, b); that
is, PbP =Pb;

(ii) the range of the operator T b∗ + (−1)pbT : Ep→ En−p is contained
within the range of P : En−p→En−p;

(iii) T induces an isomorphism from the homology of the complex (E, b∗)
to the homology of the complex (P⊥E,P⊥b) (note that the previous
item implies that T is a chain map between these complexes); and

(iv) T ∗ = (−1)(n+1−p)pT : Ep→En+1−p.

Remark 7.3. As with Hilbert–Poincaré complexes, in the natural geomet-
ric examples the index a is zero.

The definition is clearly analogous to Definition 3.1. In fact if P = 0
then an (n+1)-dimensional algebraic Hilbert–Poincaré pair is just an (n+
1)-dimensional Hilbert–Poincaré complex. This should of course be com-
pared with the observation that an (n+1)-manifold with empty boundary
is just a closed (n+1)-manifold.

The following computation is carried out in [12].
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LEMMA 7.4. Let (E, b, T ,P ) be an (n+ 1)-dimensional algebraic Hilbert–
Poincaré pair. The operators

T0=T b∗ + (−1)pbT : Ep→En−p

satisfy the following relations

(i) T ∗0 = (−1)(n−p)pT0 : Ep→En−p;
(ii) T0=PT0=T0P ;

(iii) T0b
∗v+ (−1)pbT0v=0 if v∈PEp; and

(iv) T0 induces an isomorphism from the homology of the complex
(PE,Pb∗) to the homology of the complex (PE,Pb).

Proof. The first three items are straightforward calculations. To prove
the fourth, one considers the following diagram, in which the rows are long-
exact sequences of homology and cohomology groups:

· · · �� Hp(PH,Pb∗) ��

T0

��

Hp+1(P⊥H,P⊥b∗) ��

T

��

Hp+1(H, b∗) ��

T

��

· · ·

· · · �� Hn−p(PH,Pb) �� Hn−p(H, b) �� Hn−p(P⊥H,P⊥b) �� · · ·
The middle vertical map is the one given in item (iii) of Definition 7.2.

The right-hand vertical map is defined thanks item (iii) and the fact that
T ∗ = (−1)(n+1−p)pT . The left-hand vertical map is the one we are to prove
is an isomorphism. The diagram commutes, so the result follows from the
five-lemma.

The lemma asserts that T0 provides the subcomplex (PE,Pb) with the
structure of an n-dimensional algebraic Hilbert–Poincaré complex. Accord-
ingly we make the following definition:

DEFINITION 7.5. The algebraic Hilbert–Poincaré complex (PE,Pb,T0) is
the boundary of the algebraic Hilbert–Poincaré pair (E, b, T ,P ).

We are going to prove the following bordism invariance result:

THEOREM 7.6. If (E, b, T ,P ) is an (n+1)-dimensional algebraic Hilbert–
Poincaré pair then the K-theoretic signature of its boundary (PE,Pb,T0) is
zero.

Proof. Let λ be a real number and define a complex (Ẽ, b̃λ) by

Ẽp=Ep⊕P⊥Ep+1 and b̃λ=
(

b 0
λP⊥ −P⊥b

)
.
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This is the mapping cone complex for the chain map λP⊥ : (E, b)→
(P⊥E,P⊥b). If we introduce the operators

T̃ =
(

0 T P⊥

(−1)pP⊥T 0

)
: Ẽp→ Ẽn−p

then for any λ (including λ= 0), the triple (Ẽ, b̃λ, T̃ ) is an n-dimensional
Hilbert–Poincaré complex.

If λ �= 0 then the formula Av= v⊕ 0 ∈Ep ⊕Ep+1 defines a chain map
A : (PE,bP )→ (Ẽ, b̃λ). It is in fact an isomorphism on homology (by basic
properties of mapping cone complexes). Moreover, if λ=−1, then A is a
homotopy equivalence of Hilbert–Poincaré complexes

(PE,Pb,T0)
A−→∼ (Ẽ, b̃−1, T̃ ).

So the signature of (PE,Pb,T0) is equal to the signature of (Ẽ, b̃−1, T̃ ).
By the homotopy invariance of K-theory, the signature of (Ẽ, b̃−1, T̃ ) is

equal to the signature of (Ẽ, b̃0, T̃ ). But when λ=0 the duality operator T̃

is operator homotopic to its additive inverse along the path
(

0 exp(is)T P⊥

exp(−is)(−1)pP⊥T 0

)
(s ∈ [0, π ]).

So the signature is zero by Lemma 4.6.

Remark 7.7. The algebraic theory of surgery, as developed by Ranicki
and others, defines the L-groups Ln(A) of an additive category with dual-
ity7 as the algebraic bordism groups of algebraic Poincaré complexes over
A. Thus, our bordism invariance result implies that if A is the C∗-cate-
gory of finitely generated, projective C-modules, then the analytic signature
defines a forgetful map

Ln(A)→Kn(C)

from L-theory to K-theory. In paper III of this series we will use a geomet-
ric implementation of this map in the classical case, based on the geometric
definition of the L-groups in Chapter IX of [21].

We conclude by stating the extension of Theorem 7.6 to the analytically
controlled context.

7The distinction between symmetric and quadratic L-theory is not pertinent to the
present discussion.
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DEFINITION 7.8. We shall say that a quadruple (H, b, T ,P ) is a analyt-
ically controlled Hilbert–Poincaré pair if (H, b) is an analytically controlled
complex of Hilbert spaces (in the sense of Definition 5.5) with bounded
differentials, and if the operators T and P are morphisms in A.

Note that if (H, b, T ,P ) is analytically controlled then so is its boundary
(PH,Pb,T0).

THEOREM 7.9. If (H, b, T ,P ) is an (n+ 1)-dimensional analytically con-
trolled Hilbert–Poincaré pair then the K-theoretic signature of its boundary
(PH,Pb,T0) is zero.
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