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1. Introduction

This is the second of a series of three papers whose objective is to describe
a C∗-algebraic counterpart to the ‘surgery exact sequence’ of Browder,
Novikov, Sullivan and Wall. In the first paper [8], we defined an analytic
signature invariant in C∗-algebra K-theory. Such an invariant is associated
to any analytically controlled Hilbert–Poincaré complex, and it has ‘homot-
opy invariance’ and ‘bordism invariance’ properties in this analytic context.

In this second paper we will show that analytically controlled Hilbert–
Poincaré complexes arise naturally from various geometric constructions.
Among these are:

(a) the de Rham complex of a complete, bounded geometry Riemannian
manifold (in particular, of a closed manifold);

(b) the simplicial chain complex of a uniform triangulation of a bounded
geometry PL manifold;

(c) the simplicial chain complex of a uniform triangulation of an appropri-
ately bounded Poincaré complex;

(d) various modifications of the above constructions that take into account
covering spaces and the fundamental group.

�The authors were supported in part by NSF Grant DMS-0100464.
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Furthermore, we will show that natural compatibility relations hold among
the above constructions, so that (for instance) the analytic signature asso-
ciated to the de Rham complex of a smooth manifold is the same as the
signature associated to a triangulation of the underlying PL structure, and
also agrees with the appropriate ‘higher index’ of the signature operator in
the sense of Atiyah and Singer [2].

In the case of a Poincaré complex which is not a manifold, there may be
no pseudolocal ‘signature operator’ of which the analytic signature is the
index. This phenomenon – that the signature of a non-manifold Poincaré
space need not belong to the image of the assembly map – will be discussed
at length in paper III, where it underlies the construction of the analytic
surgery exact sequence.

We will freely make use of the notation and terminology of paper I [8].

2. Notations and Definitions from Analysis

In this section we will describe the ‘control categories’ to which we will
apply the theory of paper I in our geometric examples. Most of the follow-
ing definitions and theorems are adapted from [9], and we refer the reader
to that paper and to the book [10] for further details and examples.

A metric space is proper if its closed and bounded sets are compact.
If X is a proper metric space then an X-module is a separable Hilbert
space H equipped with a non-degenerate representation of the C∗-algebra
C0(X) of continuous, complex-valued functions on X which vanish at infin-
ity (non-degenerate means that C0(X)H is dense in H ).

If H0 and H1 are X-modules then the support of a bounded linear
operator T : H0 →H1 is the complement of the set of points (x0, x1)∈X×X
for which there exist functions f0 ∈C0(X) and f1 ∈C0(X) such that

f0Tf1 =0, f (x0) �=0, and f1(x1) �=0.

The operator T has finite propagation if

sup{d(x0, x1) : (x0, x1)∈Supp(T ) }<∞.

The collection of all finite propagation operators is closed under addition,
composition and adjunction.

DEFINITION 2.1. Let X be a proper metric space. Define A∗(X) to be
the C∗-category whose objects are the Hilbert X-modules and whose mor-
phisms are the norm limits of finite propagation operators.

DEFINITION 2.2. A bounded operator T : H0 →H1 between X-modules
is locally compact if the operators f T and Tf are compact, for every
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f ∈C0(X). Define C∗(X) to be the C∗-category whose objects are the
Hilbert X-modules and whose morphisms are the norm limits of finite
propagation, locally compact operators. It is an ideal in A∗(X).

Remark 2.3. We say that an X-module H is locally finite-dimensional if,
for every compactly supported function f on X, the operator on H given
by multiplication by f is of finite rank. This happens, for example, if X is
discrete and H =�2(X). In this case every bounded operator on H is locally
compact.

Remark 2.4. C∗(X) does not have identity morphisms for all objects, so it
is not a category in the usual sense; it is however a ‘non-unital C∗-category’
in the sense of Mitchener. The C∗-categories A∗(X) and C∗(X), defined
above, are not small. Their K-theory groups however may still be defined
by using small cofinal subcategories. See [13,14] for more on these matters.

Remark 2.5. For brevity we will use the phrase ‘analytically controlled over
X’ to refer to the objects and morphisms of the categories A∗(X) and C∗(X)
that we have defined. Thus, for example, an ‘analytically controlled Hilbert
space over X’ is an object of the category A∗(X); an ‘analytically controlled
linear map’ is a morphism of A∗(X); an ‘analytically controlled Hilbert–
Poincaré complex over X’ is analytically controlled over (A∗(X),C∗(X)) in
the sense of Definition 5.3 of the previous paper; and so on.

2.1. EQUIVARIANT THEORY

We will need to generalize our C∗-categories in order to take into account
the possibility of a group action.

DEFINITION 2.6. Let π be a finitely generated discrete group. By a
π -presented space X we will understand a proper geodesic metric space
which is presented as the quotient X̃/π of a proper geodesic metric space
X̃ by an isometric, free and proper action of π . For a fixed π the π -
presented spaces form a category, whose morphisms are equivariant maps
on the presentation covers.

EXAMPLE 2.7. Let X be a compact path metric space which is locally
simply connected, and let π =π1X. Then the universal cover X̃ of X is a
locally compact path metric space on which π acts by isometries, with quo-
tient X; so X is a π -presented space. This is the most significant example,
but it is convenient to have the general language.
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DEFINITION 2.8. Let X be a π -presented space. An equivariant X-
module is an X̃-module H equipped with a compatible unitary represen-
tation of π . Specifically, we assume that for each γ ∈ π there is given a
unitary transformation H →H , which we write as v �→vγ , such that:

(a) The unitaries v �→vγ give a right action of γ , that is,

vγγ
′ = (vγ )γ ′

,

(b) If f ∈C0(X) then

(f ·v)γ =f γ ·vγ ,
where the dot denotes module multiplication and f γ (x)=f (γ x).

Remark 2.9. There is a natural ‘induction’ procedure from unequivariant
to equivariant X-modules. To describe it, note that by standard spectral
theory, every unequivariant X-module is a finite or infinite direct sum of
modules of the form L2(X,µ) where µ is a regular Borel measure on X.
Each such measure lifts to a π -invariant measure µ̃ on X̃ by the formula

µ̃(B)=
∫

X

#(π−1{x}∩B)dµ(x),

where π : X̃ → X is the covering projection. Then L2(X̃, µ̃) is an equi-
variant X-module, which we say is induced from L2(X,µ). It is also easy
to reverse this argument and conclude that every equivariant X-module is
induced from an unequivariant one.

DEFINITION 2.10. Let X be a π -presented space. Denote by A∗(X) the
C∗-category whose objects are equivariant X-modules and whose mor-
phisms are the norm limits of finite propagation, π -equivariant operators.
Similarly denote by C∗(X) the ideal with the same objects, and morphisms
being norm limits of finite propagation, locally compact, π -equivariant
operators.

Remark 2.11. It is a technical question in functional analysis whether the
processes of taking the π -equivariant part and taking the norm limit can
be interchanged in the definition above (see [20]). However, the formulation
that we have given allows one to avoid that question.

LEMMA 2.12. Let X be a compact π -presented space. Then the C∗-algebra
of endomorphisms of any non-trivial object of C∗(X) is Morita equivalent to
C∗
r (π). Consequently, the K-theory of the category C∗(X) is isomorphic to

the K-theory of C∗
r (π).
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Proof. Let H be an equivariant X-module. We say that v ∈H is com-
pactly supported if there is a compactly supported function f on X̃ such
that f · v= v. A C[π ]-valued inner product is defined on the vector space
of compactly supported elements of H by

〈〈v,w〉〉=
∑

γ

〈vγ ,w〉[γ ],

and it is not hard to see that (if H is non-trivial) every element of C[π ]
can arise in this way. Complete this vector space to a Hilbert module E
over C∗

r (π); then one can show that the algebra of ‘compact’ operators on
E (in the sense of Hilbert modules) is isomorphic to the algebra of endo-
morphisms of H in the category C∗(X). For more details of this argument
see [11] or [19].

The second statement of the lemma follows from the definition of
K-theory for C∗-categories (see [13]).

We shall use the phrase ‘equivariant analytic control over X’ to describe
the objects and morphisms of the categories A∗ and C∗, in the same way as
in Remark 2.5 above.

3. Geometric Hilbert–Poincaré Complexes

Let X be a simplicial complex. In what follows we shall use the same nota-
tion both for the abstract simplicial complex X and for its geometric real-
ization. This should not cause any confusion.

DEFINITION 3.1. A simplicial complex X is of bounded geometry if
there is a number N such that each of the vertices of X lies in at most N
different simplices of X.

DEFINITION 3.2. Let X be a connected simplicial complex. The path
metric on the geometric realization of X is as follows:

(i) each simplex in X is given the metric of the standard Euclidean sim-
plex;

(ii) if two points belong to different simplices then the distance between
them is the length of the shortest piecewise linear path connecting
them (the length of each linear segment within a single simplex is mea-
sured using the Euclidean metric there).

We shall work exclusively with connected, bounded geometry simplicial
complexes; equipped with the path metric they are proper metric spaces.

Denote by C∗(X) the space of (finitely supported) simplicial chains
on X, with complex coefficients. Each vector space Cp(X) has a natural
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basis, comprised of the p-simplices in X, and by requiring this basis to be
orthonormal we may complete Cp(X) to obtain the Hilbert space C�

2

p (X)

of square integrable simplicial p-chains on X. It is an X-module in a nat-
ural way: if f ∈C0(X) and if c=∑

cσ [σ ] is an �2-p-chain then we define

f · c=
∑

f (bσ )cσ [σ ],

where bσ is the barycenter of σ . The simplicial differential1 b : Cp(X)→
Cp−1(X) extends to a bounded operator on �2-chains (thanks to our
requirement that X be of bounded geometry) and we obtain a complex of
Hilbert spaces

C�
2

0 (X) · · ·b�� C�
2

n (X)
b�� . (1)

We shall call this complex the �2-chain complex, and we shall call its
adjoint

C�
2

0 (X)
b∗

�� · · · b∗
�� C�

2

n (X) . (2)

the �2-cochain complex. It is easily checked that the differentials b and b∗

are analytically controlled over X. Furthermore they are locally compact,
as indeed are all bounded operators on the Hilbert spaces C�

2

∗ (X). So the
�2-complexes (1) and (2) are analytically controlled over X.

Remark 3.3. One can alternatively define the �2-cochain complex by first
considering the complex of finitely supported simplicial cochains on X, and
then completing to a Hilbert space by the requirement that the natural
basis be orthonormal. It is clear that this process yields an isomorphic
complex to that described above.

We want to consider under what geometric conditions on X the
complex (1) admits a Hilbert–Poincaré structure. This is not an altogether
simple matter, combining as it does issues of analysis (entering through the
�2-completion process) with issues in topology and geometry. We shall con-
sider only some special cases which are adequate for our purposes. They
rely upon the following definitions (compare [3,4]):

DEFINITION 3.4. Let X be a proper metric space. A complex vector space
V is geometrically controlled over X if it is provided with a basis B⊂V and
a function c : B→X with the following property: for every R>0 there is an
N<∞ such that if S⊂X has diameter less than R then c−1[S] has cardinality
less than N . We shall call the function c the control map for V .

1To take care of the signs, we fix an ordering of the vertices of X.
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DEFINITION 3.5. A linear transformation T :V → W is geometrically
controlled over X if

(i) V and W are geometrically controlled, and
(ii) the matrix coefficients of T with respect to the given bases of V and

W are uniformly bounded, and
(iii) there is some C>0 such that the (v,w)-matrix coefficient of T is zero

whenever d(c(v), c(w))>C.

Remark 3.6. Conditions (i) and (iii) above are a standard part of the
boundedly controlled algebra used by topologists (see [15] for instance);
condition (ii) is an additional bounded geometry condition which allows us
to relate the algebra to analysis.

EXAMPLE 3.7. Obviously the main example of a vector space geometri-
cally controlled over X is the space Cp(X) of simplicial chains of a bounded
geometry simplicial complex X. The differential b : Cp(X)→Cp−1(X) is a
geometrically controlled linear transformation. Similar remarks apply to the
complex of finitely supported simplicial cochains.

If V is geometrically controlled over X then there is a natural comple-
tion of V to a Hilbert space V in which the given basis of V becomes
an orthonormal basis for V . This is of course precisely how we obtain the
Hilbert spaces C�

2

p (X) from the simplicial p-chains on X.

LEMMA 3.8. A geometrically controlled linear transformation T : V →W

extends to a bounded and analytically controlled linear operator T : V →W .
Proof. A routine calculation using the Cauchy–Schwartz inequality.

PROPOSITION 3.9. A chain equivalence T : V →W in the category of com-
plexes of geometrically controlled vector spaces and geometrically controlled
linear transformations extends by completion to a chain equivalence T : V →
W in the category of X-modules and analytically controlled bounded linear
operators.

Proof. This is immediate from the lemma since all the linear transfor-
mations involved in the chain homotopy (namely T , its homotopy inverse,
and the chain homotopy itself ) extend by continuity to the Hilbert space
completions.

Remark 3.10. Contrary to the case of Hilbert space, it is not always true
that a geometrically controlled homology isomorphism is a chain homotopy
equivalence.
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We need to make some standard remarks on cup and cap products.
Let ϕ and ψ be finitely supported simplicial cochains, of degrees k and
l respectively, for the bounded geometry simplicial complex X. Their cup
product ϕ�ψ is defined by the explicit (Alexander–Whitney) formula

ϕ�ψ([v0 . . . vk+l])=ϕ([v0 . . . vk])ψ([vk . . . vk+l]),

where the notation [v0 . . . vk] denotes the simplex with ordered vertices
v0, . . . , vk. The cap product is the map from cochains to chains defined by
dualizing the cup product. Explicitly, if ψ is a finitely supported l-cochain,
and σ = [v0 . . . vk+l] is a (k+ l)-simplex, then the cap product ψ	σ is the
k-chain defined by

ψ	σ =ψ([vk . . . vk+l])[v0 . . . vk];
we extend by linearity to a product between cochains and chains. We then
have the adjunction relationship

(ϕ�ψ)(x)=ϕ(ψ	x).

Remark 3.11. The same formulae define the cap-product of a finitely
supported cochain with a locally finite chain x; that is, an infinite formal
linear combination of simplices. The resulting cap-product will be an ordi-
nary (finitely supported) chain. Moreover, if the coefficients of the chain x
are uniformly bounded, the linear operator (from cochains to chains) given
by cap-product with x will be geometrically controlled.

The cup and cap products are related to the boundary and coboundary
maps by the standard formulae

b∗(ϕ�ψ)=b∗ϕ�ψ+ (−1)kϕ�b∗ψ

and

b(ψ 	x)=ψ	bx− (−1)kb∗ψ	x.

Thanks to these remarks we obtain:

LEMMA 3.12. Let X be a bounded geometry simplicial complex and suppose
that [X] is a locally finite and uniformly bounded simplicial n-cycle for X.
Then the map P from p-cochains to (n−p)-chains defined by

Pψ=ψ	 [X]

is geometrically controlled and satisfies

bPψ= (−1)n−pPb∗ψ.
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Moreover, if we identify chains and cochains via the canonical inner product,
the geometrically controlled chain maps P and (−1)p(n−p)P∗ are chain homo-
topic (in the geometrically controlled category).

We call P the duality chain map associated to [X].

Proof. These are standard calculations which may be found for exam-
ple in Hatcher’s textbook [7, p. 215–217]. It is necessary to check that the
explicit chain homotopy which verifies the graded commutativity of the
cup-product is geometrically controlled.

DEFINITION 3.13. Let X be a bounded geometry simplicial complex. We
shall say that X is a geometrically controlled Poincaré complex of dimension
n if it is provided with an n-dimensional uniformly finite simplicial cycle
[X] (called the fundamental cycle) for which the associated duality chain
map P is a chain equivalence in the geometrically controlled category.

THEOREM 3.14. Let X be a geometrically controlled Poincaré complex.
Complete the simplicial chain and cochain complexes to complexes of Hilbert
spaces as in displays 1 and 2. Then the duality chain map P extends by con-
tinuity to a bounded operator P on Hilbert space, and the operator

T = 1
2

(
P ∗ + (−1)p(n−p)P

)

provides (C�
2

∗ (X), b) with the structure of an analytically controlled Hilbert–
Poincaré complex over X.

Proof. It follows from Proposition 3.9 that P extends to an analytically
controlled chain equivalence P . By Lemma 3.12, P and (−1)p(n−p)P ∗ are
chain homotopic (in the analytically controlled category). The average T
is therefore an analytically controlled chain equivalence also, and T ∗ =
(−1)p(n−p)T by construction.

3.1. THE EQUIVARIANT CASE

In the above discussion we have not taken into account the possibility of a
group action. It is however easy to do so. Suppose that X is a bounded
geometry simplicial complex in the category of π -presented spaces; this
means that there is given a free simplicial action of π on a complex X̃,
whose quotient X̃/π is identified with X. (Notice that it is then automatic
that X̃ is of bounded geometry.) The simplicial chain and cochain com-
plexes of X̃ are then complexes of geometrically controlled vector spaces
on which π acts (compatibly with the control map); the action of π is by
permuting the basis elements, and is therefore unitary. It now follows by
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the same arguments as before that the Hilbert space completions of these
complexes are equivariantly analytically controlled.

Let [X] be a locally finite and uniformly bounded π -invariant n-cycle for
X̃. Cap-product with [X] then defines an equivariant chain map from the
cochain complex of X̃ to the corresponding chain complex, and the analog
of Lemma 3.12 holds.

DEFINITION 3.15. We will say that X is a geometrically controlled
Poincaré complex in the π -category if it is provided with an n-dimensional
π -invariant locally finite and uniformly bounded simplicial cycle [X] (called
the fundamental cycle) for which the associated duality chain map P is a
chain equivalence in the category of geometrically controlled π -equivariant
maps.

The analog of Theorem 3.14 states that a geometrically controlled Poin-
caré complex in the π -category can be completed to yield an equivariantly
analytically controlled Hilbert–Poincaré complex. The proof is the same as
that of the unequivariant version.

3.2. POINCARÉ PAIRS

Now let (X,Y ) be a pair of bounded geometry simplicial complexes. Let
[X] be a locally finite and uniformly bounded n-chain for X whose bound-
ary lies in the subcomplex Cn−1(Y )⊆Cn−1(X). Analogously to Lemma 3.12
above, we can then prove

LEMMA 3.16. With hypotheses as above, the map P from q-cochains to
(n−q)-chains defined by

Pψ=ψ	 [X]

is geometrically controlled and satisfies

Image(bPψ− (−1)n−qPb∗ψ)⊆C∗(Y );
in fact, the parenthesized map is simply the operation of cap-product with
b[X]. In particular, P gives rise to a chain map from C∗(X) to the relative
chain complex Cn−∗(X,Y ). Moreover, if we identify chains and cochains via
the canonical inner product, the geometrically controlled chain maps P and
(−1)p(n−p)P∗ are chain homotopic (in the geometrically controlled category)
as maps from C∗(X) to Cn−∗(X,Y ).

DEFINITION 3.17. Let (X,Y ) be a bounded geometry simplicial pair. We
shall say that X is a geometrically controlled Poincaré pair of dimension
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n if it is provided with an n-dimensional uniformly finite simplicial chain
[X], with b[X]∈Cn−1(Y ), for which the associated duality chain map P is a
chain equivalence from C∗(X,Y ) to Cn−∗(X) in the geometrically controlled
category.

The analog of Theorem 3.14 is then

THEOREM 3.18. Let (X,Y ) be a geometrically controlled Poincaré pair.
Complete the simplicial chain and cochain complexes to complexes of Hilbert
spaces. Then the duality chain map P extends by continuity to a bounded
operator P on Hilbert space, and the operator

T = 1
2

(
P ∗ + (−1)p(n−p)P

)
,

together with the orthogonal projection operator onto the closed subcomplex
of �2-chains on Y , provides (C�

2

∗ (X), b) with the structure of an analytically
controlled Hilbert–Poincaré pair over X.

For the definition of analytically controlled Hilbert–Poincaré pair, see
Section 7 of the first paper of this series.

Remark 3.19. There is of course an equivariant version of the theory of
geometrically controlled Poincaré pairs, but we will not formulate that in
detail here. Notice however that X and Y must belong to the π -category
for the same group π . In the usual case where π is the fundamental group,
this corresponds to the π–π condition that π1(Y )→ π1(X) should be an
isomorphism, which is familiar from surgery theory [22].

4. Examples of Geometrically Controlled Poincaré Complexes

4.1. COMBINATORIAL MANIFOLDS

The main examples of geometrically controlled Poincaré complexes are
the bounded geometry combinatorial manifolds. We recall that a combi-
natorial manifold is a simplicial complex in which the star of each sim-
plex is a combinatorial ball. A bounded geometry combinatorial manifold is
just a bounded geometry simplicial complex which is also a combinatorial
manifold.

Suppose that X is an oriented, n-dimensional bounded geometry com-
binatorial manifold. The orientation of X provides a canonical n-cycle [X],
which assigns the scalar +1 to each properly oriented n-simplex in X.
Clearly, this cycle is uniformly bounded.
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PROPOSITION 4.1. Let X be an oriented, n-dimensional bounded geometry
combinatorial manifold. Then the fundamental class [X] provides X with the
structure of a geometrically controlled Poincaré complex.

To prove this we must show that the cap-product with [X] provides a
geometrically controlled chain equivalence between the cochain and chain
complexes. Without the statement of geometric control, this is just classical
Poincaré duality; to verify the proposition one must repeat one of the clas-
sical proofs of Poincaré duality, paying attention to the issue of geometric
control. For the sake of completeness we sketch below one means of car-
rying out this program.

LEMMA 4.2. Let

0 �� C ′ ��

��

C ��

��

C ′′ ��

��

0

0 �� D′ �� D �� D′′ �� 0

be a commutative diagram of semisplit short exact sequences of finite, geo-
metrically controlled chain complexes. If the first and third vertical maps
are geometrically controlled chain equivalences, then so is the second vertical
map.

We say that a short exact sequence of geometrically controlled com-
plexes is semisplit if it splits as a short exact sequence of geometrically
controlled graded vector spaces.

Proof. By working with mapping cone complexes, we can reduce the
desired statement to the following one: if

0→C ′ →C→C ′′ →0

is a semisplit short exact sequence of finite, geometrically controlled chain
complexes, and C ′,C ′′ are chain contractible (in the geometrically con-
trolled category), then C is chain contractible too.

Choose a splitting of the exact sequence (as geometrically controlled
vector spaces). Relative to this splitting one can write

d=
(
d ′ α
0 d ′′

)

,

where α : C ′′
∗ →C ′

∗−1 is geometrically controlled and is a chain map up to
sign (that is αd ′′ +d ′α=0; this follows because d2 =0).



MAPPING SURGERY TO ANALYSIS II 313

Let s ′ and s ′′ be chain contractions of C ′ and C ′′ respectively, so that
s ′d ′ +d ′s ′ =1, and so on. We seek a chain contraction of C of the form

s=
(
s ′ β
0 s ′′

)

,

where β : C ′′
∗ →C ′

∗+1. For this to be a chain contraction we must have

d ′
n+1βn=−βn−1d

′′
n +αn+1s

′′
n + s ′n−1αn. (3)

Our convention is that the subscript on a map denotes the degree in the
domain. We shall define βn by induction on n. Denote by �n the right-hand
side of Equation (3). Then an obvious necessary condition for the existence
of the map βn is that d ′

n�n=0. Moreover, this necessary condition is actu-
ally sufficient because if it is satisfied we may simply define

βn= s ′n�n;
then d ′

n+1βn=d ′
n+1s

′
n�n+ s ′n−1d

′
n�n=�n.

Suppose our complexes begin in degree zero. Then d ′
0�0 = 0. Thus we

can start the induction.
Suppose inductively that β0, . . . , βn−1 have been defined to satisfy Equa-

tion (3). Then we must consider d ′
n�n. By induction,

−d ′
nβn−1 =βn−2d

′′
n−1 −αns ′′n−1 − s ′n−2αn−1.

Substitute this into the definition of � to obtain

d ′
n�n=−αns ′′n−1d

′′
n − s ′n−2αn−1d

′′
n −d ′

nαn+1s
′′
n +d ′

ns
′
n−1αn.

Using the chain map property of α this becomes

d ′
n�n=−αn

(
d ′
n+1s

′′
n + s ′′n−1

)+ (
s ′n−2d

′′
n−1 +d ′

ns
′
n−1

)
αn

and this vanishes because s ′, s ′′ are chain contractions.
Since our complexes are finite the induction terminates after finitely

many steps and produces a geometrically controlled chain contraction.

This lemma sets the stage for a ‘Mayer–Vietoris’ proof of Poincaré dual-
ity. Let Y be a subcomplex of X. Cap-product with [X] defines a relative
duality chain map

PY : (C∗(X,Y ), b∗)→ (Cn−∗(X \Y ), b). (4)

Using the lemma above, one shows that if PY1 , PY2 , and PY1∪Y2 are
all geometrically controlled chain equivalences, then PY1∩Y2 is such an
equivalence also.
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Now by bounded geometry, there is a finite cover of X by subcomplexes
L1, . . . ,LN , each of which is a (possibly infinite) disjoint union of stars
of vertices. The multiple intersections of the Li are then either empty, or
else disjoint unions of stars of simplices. Because X has bounded geom-
etry, there are only finitely many possible combinatorial types of stars of
simplices. From this it is easy to see that PY is a geometrically controlled
chain equivalence whenever Y is the complement of the interior of one of
the Li or a union of some such complements. From the Mayer-Vietoris
argument we deduce that PY is a geometrically controlled chain equivalence
when Y =∅; this completes our sketch proof of Proposition 4.1.

Remark 4.3. The argument sketched above also goes through equivari-
antly to show that if X is a bounded geometry combinatorial manifold in
the π -category, then the fundamental class for X̃ provides X with the struc-
ture of a π -equivariant geometrically controlled Poincaré complex.

4.2. MANIFOLDS WITH BOUNDARY

Suppose now that X is a bounded geometry combinatorial manifold with
boundary Y . We want to show that (X,Y ) is a geometrically controlled Po-
incaré pair, in the sense of Definition 3.17. Moreover, we need to see that
the boundary of this pair (in the algebraic sense of paper I) is in fact the
geometric Poincaré complex associated to the boundary manifold Y .

To make use of the work that we have already done let us embed X in
the bounded geometry combinatorial manifold (without boundary)

X̂=X∪Y Y × [0,∞),

and let Ŷ ⊆ X̂ be Y × [0,∞). We may identify the chain complex C∗(X)
with a subcomplex of C∗(X̂), and we may identify the relative cochain
complex C∗(X,Y )=C∗(X̂, Ŷ ) with a subcomplex of C∗(X̂). An orientation
for X gives rise to an orientation for X̂, and cap-product with the associ-
ated fundamental class gives a duality map

C∗(X,Y )→Cn−∗(X);
this is just the relative duality map PŶ appearing in Equation (4) above.
Our discussion of relative duality yields a proof that PŶ is a geometrically
controlled chain equivalence.

Define the fundamental chain [X] by restricting the fundamental cycle
[X̂] to Cn(X). This restriction process is not a chain map, and thus [X]
has a non-trivial boundary, which is in fact the fundamental cycle [Y ] for
Y . Moreover, cap-product with [X] when applied to C∗(X,Y ) is just the
relative duality map PŶ , and is therefore a geometrically controlled chain
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equivalence. This shows that (X,Y ) is indeed a geometrically controlled
Poincaré pair with the correct boundary.

From Theorem 7.7 of paper I we therefore obtain the following bordism
invariance result:

PROPOSITION 4.4. Let X be a bounded geometry combinatorial manifold
with boundary Y . Then the signature Sign(Y )∈K∗(C∗(Y )) vanishes under the
map K∗(C∗(Y ))→K∗(C∗(X)) induced by the inclusion Y →X.

4.3. FINITE POINCARÉ COMPLEXES

In classical surgery theory a finite Poincaré complex is a finite simplicial
complex K equipped with a fundamental class [K]∈Hn(K), which has the
following property: the cap-product with [K] induces an isomorphism

H ∗(K;Z[π ])→Hn−∗(K;Z[π ]),

where π =π1(K). See [21,22]; we are assuming for simplicity that the ‘ori-
entation character’ w is trivial.

To see that [K] provides K̃ with the structure of a geometrically con-
trolled Poincaré complex we simply note the following fact:

LEMMA 4.5. Let X be a proper metric space on which π acts properly,
freely and with compact quotient. Let V and W be geometrically controlled
vector spaces over X which are equipped with compatible actions of π (this
means that π should act by permutations on the given bases and that the con-
trol maps should be equivariant). Then any equivariant linear transformation
T : V →W is geometrically controlled.

Proof. If Z is a compact subset of X whose π -saturation is all of X
then there are only finitely many basis elements of V which belong to Z.
The conditions in Definition 3.5 obviously hold when v is restricted to this
finite subset of the basis of V . By equivariance, the conditions then hold
(with the same constants) for all basis elements of V .

It is clear that in the above discussion we may take π to be any homo-
morphic image of π1K, rather than π1K itself.

Remark 4.6. In the next paper of this series we shall in fact need to
consider the signatures of certain non-compact Poincaré spaces, obtained
by gluing together noncompact bounded-geometry manifolds with com-
pact boundary by homotopy equivalences of the boundary components. It
should be clear to the reader that our discussion will extend to this case,
but we postpone a detailed consideration until paper III.
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5. Riemannian Manifolds

5.1. THE DE RHAM COMPLEX

Let X be an oriented, complete Riemannian n-manifold and form the de
Rham complex

0(X)
d �� · · · d �� n(X) (5)

of smooth, compactly supported differential forms on X. Passing to L2-
completions, and taking the adjoint b (in the sense of operator theory) of
the de Rham differential, we obtain a complex of Hilbert spaces

0
L2(X) · · ·b�� n

L2(X).
b�� (6)

The domain of b consists of those L2-forms ω for which the formal adjoint
of the de Rham differential, applied to ω in the sense of distribution the-
ory, produces an L2-form.

Since it is convenient to work with closed unbounded operators, from
here on we shall denote by d the operator-closure of the de Rham differ-
ential on ∗

L2(X).
Let us recall that if D is a partial differential operator (on differential

forms, say) then its maximal domain is the set of all L2-forms such that the
distribution Dω is L2, and its minimal domain is the collection of all L2

forms ω for which there exist smooth compactly supported forms ωn such
that ωn→ω and Dωn→Dω in L2. The following calculation is well known:

THEOREM 5.1. If D is the de Rham differential d on the complete mani-
fold X, its formal adjoint, or the sum of the two, then its minimal domain is
equal to its maximal domain.

Recall that the Hodge operator

T : p
L2(X)→

n−p
L2 (X)

is defined by

〈T α,β〉=
∫

M

α∧β.

It is an isometric Hilbert space operator and if α is any L2p-form then

T ∗α= (−1)(n−p)pT α.

If α is a smooth and compactly supported form then one calculates that

T dα+ (−1)pd∗T α=0,
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or in other words

T b∗α+ (−1)pbT α=0. (7)

Theorem 5.1 and an approximation argument show that T maps the
domain of b∗ into the domain of b, and that (7) holds for all α in the
domain of b∗.

A further calculation shows that

T 2α= (−1)np+pα,

for any L2 p-form α, and thus T not only maps the complex (∗
L2, b

∗)
to the complex (∗

L2, b) but it also defines a map the other way, which is,
up to signs, an inverse. So T is an isomorphism on homology, and hence
provides the L2 de Rham complex of X with the structure of a Hilbert–
Poincaré complex.

DEFINITION 5.2. We shall call the Hilbert–Poincaré complex so defined
the Hodge–de Rham complex of X.

PROPOSITION 5.3. Let X be an oriented, complete Riemannian manifold.
The Hodge–de Rham complex of X is analytically controlled over X.

Proof. The Hilbert spaces ∗
L2(X) are X-modules in the obvious way,

and the operator T is analytically controlled over X since its support is the
diagonal in X×X. It remains to note that the resolvents of the operator
B = b∗ + b are analytically controlled and locally compact. Analytic con-
trol is a simple consequence of the finite propagation speed property of the
Dirac-type operator B; local compactness is a consequence of the elliptic-
ity of B combined with the Rellich lemma of Sobolev space theory. See [10,
Chapter X] or [16] for details.

5.2. THE SIGNATURE OPERATOR

Let X be an oriented, complete Riemannian manifold. The fact that T 2 =
±I in the Hodge–de Rham complex allows us to associate to X a signature
operator, as follows.

DEFINITION 5.4. Form S= ip(p−1)+lT as in Section 3, and observe that
it is a self-adjoint unitary which anticommutes with the operator B. If the
dimension of X is even then the signature operator on X is simply B=d+
d∗ itself, viewed as an operator which is graded by the symmetry S. If the
dimension of X is odd then the signature operator is the self-adjoint oper-
ator iBS, viewed as acting on acting on even degree differential forms.
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The definition in the even-dimensional case is standard. In the odd-
dimensional case one checks easily that

Dω2p= i2p+l+1(d ∗−∗d)ω2p,

where ∗ is the Hodge operator. So our definition is consistent with others
appearing in the literature [1].

In either case, the signature operator has an index lying in the C∗-alge-
bra K-theory group Kn(C

∗(X)). We refer the reader to [17,18] for details
of this construction (although it will be reviewed in the course of the proof
of the next theorem). Our aim in this subsection is to prove the following
result:

THEOREM 5.5. Let X be an oriented, complete Riemannian manifold. The
index of its signature operator is equal to the signature of the algebraic
Hilbert–Poincaré complex associated to the de Rham complex of X.

5.2.1. Even-dimensional case
We begin by recalling the definition of the K-theoretic abstract index.
The formulation used here is borrowed from [17], but the construction
goes back to Milnor’s description of the boundary map in algebraic
K-theory [12].

Let A be a unital C∗-algebra, J an ideal in A, and suppose that S1 and
S2 are symmetries in A whose anticommutator S1S2 + S2S1 belongs to J .
Then −S2S1S2 is a symmetry differing from S1 by an element of J , and
therefore the formal difference

[−S2S1S2]� [S1]

defines a class in K0(J ), which we denote by i(S1;S2).
This quantity is related to the analytic index in the following man-

ner. Suppose that A and J act on a Hilbert space H , and that D is
an unbounded self-adjoint operator which is analytically controlled in the
sense that f (D)∈ J for all f ∈C0(R) and g(D)∈A for all g ∈C[−∞,∞].
Suppose further that A contains a symmetry S, the grading operator, which
anticommutes with D. If we choose a normalizing function g which is odd
and tends to ±1 at ±∞, then the operator g(D)∈A is a ‘symmetry mod-
ulo J ’ and it therefore defines a symmetry in the quotient algebra A/J .
Because this symmetry is odd relative to the grading S, it has the matrix
form

(
0 U ∗

U 0

)
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relative to the grading; the unitary U defines a class in K1(A/J ) and
the image of this class under the boundary map ∂ : K1(A/J )→K0(J ) is
the index. Examination of the explicit formula for the boundary map in
K-theory shows that this index can be expressed as i(S1;S2), where S1 =S
is the grading operator and S2 is any symmetry in A which differs from
g(D) by an element of J . An explicit formula for such a symmetry is

S2 =g(D)+Sf (D), (8)

where f (λ)=
√

1−g(λ)2.

LEMMA 5.6. With notation as above, suppose that S1 + S2 is invertible.
Then i(S1;S2)= i(S2;S1).

Proof. Let U be the unitary S1S2. The identity 1+U=S1(S1 +S2) shows
that 1+U is invertible, and therefore that −1 does not belong to the spec-
trum of U . Therefore, we may form a square root V =U 1/2, applying the
functional calculus to a branch of the function z �→z1/2 defined in the plane
cut along the negative real axis. Note that

S1U =U ∗S1, S2U =U ∗S2

and so

S1V =V ∗S1, S2V =V ∗S2.

Finally let W be the unitary V S2. It is now easy to check that

W ∗S1W =S2V
∗S1V S2 =S2S1V

2S2 =S2S1(S1S2)S2 =S2

and

W ∗S2W =S2V
∗S2V S2 =S2S2V

2S2 =S2S2(S1S2)S2 =S1.

The result now follows from the obvious invariance of the quantity
i(S1;S2) under conjugation.

Proof of Theorem 5.5. (Even-dimensional case). Let D be the signature
operator and S the grading operator. Take the C∗-algebras A and J to
be the algebras of endomorphisms, in the controlled categories A∗(X) and
C∗(X) respectively, of the Hilbert space of L2-forms on X (or on X̃ in the
equivariant case). Note that the hypothesis of Lemma 5.6 is satisfied when
S1 =S and S2 is defined by Equation (8). Indeed,

(S1 +S2)
2 = (g(D)+S(1+f (D)))2 =2(1+f (D))�2

since f is a positive function and f (D) is therefore a positive operator.
Thus i(S1;S2), which is by definition the index of the signature operator,
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is equal to i(S2;S1). Let us make the particular choice g(λ)=λ(1+λ2)−1/2,
so that f (λ)= (1+λ2)−1/2. Thus

S2 = (D+S)(1+D2)−1/2 = (D+S)|D+S|−1/2

is the ‘phase’ of D+S, and since S anticommutes with D,

−S1S2S1 =−S(D+S)S(1+D2)−1/2 = (D−S)|D−S|−1/2

is the phase of D − S. The difference between these two phases is our
definition of the signature [8, Definition 5.11], expressed in terms of
symmetries rather than projections; so we have completed the proof that
our signature is equal to the index of the signature operator, in the even-
dimensional case.

5.2.2. Odd-dimensional case
Again, let us describe the construction of the analytic index. Let the nota-
tions A, J , D, and g have the same meaning as in the previous section; this
time, however, we do not assume the presence of a symmetry which acts
as a grading operator. Then g(D)∈A is a symmetry modulo J ; its image
in A/J defines a class in K0(A/J ); and the image of that symmetry under
the boundary map ∂ : K0(A/J )→K1(J ) is the odd-dimensional index that
we require. Using the explicit description of this boundary map in terms of
the exponential function, we see that the index is represented by the uni-
tary − exp(iπg(D)) in the unitalization of J . It is convenient to choose g
so that this representative becomes the Cayley transform (D+ i)(D− i)−1

of D.

Proof of Theorem 5.5. (Odd-dimensional case). The index of D is the
class in K1(J ) of the Cayley transform (D+ i)(D− i)−1 But note that

(D± i)= (iBS± i)= (B±S)(iS),
so that

(D+ i)(D− i)−1 = (B+S)(iS)(iS)−1(B−S)−1 = (B+S)(B−S)−1,

which shows that the index and the signature are equal at the level of
cycles for the group K1(J ).

5.3. COMPARISON WITH SIMPLICIAL COHOMOLOGY

Following roughly the approach of Whitney [24], we are going to prove
an analogue of the de Rham theorem for the signature of a complete
Riemannian manifold. A very similar result is proved by Dodziuk in [6],
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and since his argument needs only minor adaptation to suit our purposes
we shall be brief.

Perhaps it is worth noting that the case of the universal cover of a
closed manifold is rather simpler than the general case of our theorem. One
should compare the calculations of [5] to those of [6].

We require the following hypothesis.

DEFINITION 5.7. A complete Riemannian manifold has bounded geome-
try if it has positive injectivity radius and the curvature tensor is uniformly
bounded, as is each of its covariant derivatives.

It is probably harmless to drop the uniform boundedness of the covar-
iant derivatives, but in any case, the additional assumption will not stand
in the way of the applications we have in mind.

DEFINITION 5.8. Let X be a bounded geometry, complete Riemannian
manifold. A smooth triangulation of X is of bounded geometry if it is a
bounded geometry simplicial complex, and if the identity map from the
complex X into the manifold X is a bi-Lipschitz homeomorphism.

Remark 5.9. An unpublished theorem of Calabi is said to assert that
every complete Riemannian manifold of bounded geometry has a smooth
triangulation of bounded geometry. The proof is outlined in [3]. In our
applications in paper 3, the Riemannian manifolds in question will have a
simple structure at infinity (they will be cones over compact manifolds) and
for these examples it is easy to construct bounded geometry triangulations
directly, without appealing to the general result.

Of course, some examples arise immediately:

EXAMPLE 5.10. If X is the universal cover of a closed Riemannian man-
ifold V then X has bounded geometry, and any triangulation of X which
is lifted from a triangulation of V is of bounded geometry.

Let us suppose now that X is a complete Riemannian manifold of
bounded geometry, equipped with a smooth triangulation of bounded
geometry.

If �= (d+d∗)2 then the heat kernel e−� is a chain equivalence from ∗
L2

to itself, for either the de Rham differential or its adjoint – in other words
for either homology or cohomology. By elliptic regularity theory, its image
consists entirely of smooth forms on X. By the finite propagation property
of the first order operator d + d∗, the map e−� is analytically controlled.
It follows from [6] that the supremum norm of e−�ω is bounded by a
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multiple of the L2 norm of ω (here is where we use the full strength of the
definition of bounded geometry). These remarks, together with Stokes’ the-
orem, show that by mapping an L2 p-form ω to the function σ �→∫

σ
e−�ω

on the p-simplices in the triangulation of X we obtain a chain map
� from (∗

L2(X), d) to the complex (C�
2

∗ (X), b
∗) computing �2-simplicial

cohomology.

THEOREM 5.11. The chain map � :
(
∗
L2(X), d

) →
(

C�
2

∗ (X), b
∗
)

is a
homology isomorphism.

Proof. We shall essentially follow the argument of Dodziuk [6], who in
turn follows an argument of Whitney [24]. In the context of smooth closed
manifolds, Whitney constructs a right inverse � to the chain map which
integrates smooth forms over simplices. The main ingredient for this is a
smooth partition of unity subordinate to the star-neighborhoods of the ver-
tices in the triangulation of X. If ϕv is the smooth function associated to
the vertex v, and if σ is the simplex in X with vertices v0, . . . , vp then Whit-
ney defines

�σ =p!
p∑

i=0

(−1)iϕvi dϕv1 . . .
ˆdϕvi . . . dϕvp ,

where the ‘hat’ denotes omission of the specified term. See [24, Chapter IV,
Section 27]. This is right inverse to integration over simplices at the chain
level, and is left inverse up to chain homotopy: the homotopy is constructed
using the Poincaré lemma on the simplices of the triangulation. Dodziuk
shows that in the context of bounded geometry manifolds and L2-coho-
mology, Whitney’s formula continues to provide a map from �2-cochains to
L2-forms, provided the functions ϕv are chosen with uniformly (over the set
of vertices) bounded covariant derivatives. See [6, Section 2]. Since our chain
map I contains the smoothing operator e−�, the composition of �, followed
by �, is not the identity. But since e−� is chain homotopic to the identity,
so is the composition � ◦�. Whitney’s argument (which Dodziuk chooses
not to follow) now shows that the reverse composition is chain homotopic
to e−�, which is in turn chain homotopic to the identity (we use here the
bounded geometry of X and its triangulation once more, which ensures that
the chain homotopy implicit in the Poincaré lemma may be made uniformly
bounded in norm, over the simplices of X).

Let us now equip the complex of �2-simplicial chains on X with the
Hilbert–Poincaré structure derived from the structure of X as a combina-
torial manifold.
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Form the adjoint

A=�∗ :
(

C�
2

∗ (X), b
)

→ (
∗
L2(X), b

)

of the cohomology isomorphism considered above. It induces an isomor-
phism from �2-simplicial homology to L2-de Rham homology.

THEOREM 5.12. The chain map A is a homotopy equivalence from the
Hilbert–Poincaré complex (C�

2

∗ (X), b) to the Hodge–de Rham complex of X.
Proof. All that needs to be checked is that the duality operators on the

two complexes are compatible with one another, via A, in the sense of
[8, Definition 4.1]. Since the duality operator on (C�

2

∗ (X), b) is chain ho-
motopic to the operator T , as in Proposition 4.1 and its proof, we may
as well work with T . The theorem now follows from the assertion that the
cup product of simplicial cochains is compatible with the wedge product of
forms, at the level of �2-cohomology and via the map �. For closed mani-
folds this is well known, and is proved for instance in [24, Chapter IV, Sec-
tion 29] (see also [23]). The argument there adapts to the present context,
and is omitted.

References

1. Atiyah, M. F., Patodi, V. K. and Singer, I. M.: Spectral asymmetry and Riemannian
geometry I, Math. Proc. Cambr. Philos. Soc. 77 (1975), 43–69.

2. Atiyah, M. F. and Singer, I. M.: The index of elliptic operators I, Ann. Math. 87
(1968), 484–530.

3. Attie, O.: Quasi-isometry classification of some manifolds of bounded geometry.
Math. Z. 216 (1994), 501–527.

4. Block, J. and Weinberger, S.: Large scale homology theories and geometry, in: Geo-
metric Topology (Athens, GA, 1993), AMS–IP Studies in Advanced Mathematics,
American Mathematical Society, Providence, RI, 1997, pp. 522–529.

5. Dodziuk, J.: de Rham–Hodge theory for L2 cohomology of infinite coverings,
Topology 16 (1977), 157–165.

6. Dodziuk, J.: Sobolev spaces of differential forms and the de Rham–Hodge isomor-
phism, J. Differential Geom. 16 (1981), 63–73.

7. Hatcher, A.: Algebraic Topology, Cambridge University Press, 2002.
8. Higson, N. and Roe, J.: Mapping surgery to analysis I: analytic signatures. this issue.
9. Higson, N. and Roe, J.: The Baum–Connes conjecture in coarse geometry, in:

S. Ferry, A. Ranicki and J. Rosenberg (eds.), Proceedings of the 1993 Oberwolfach
Conference on the Novikov Conjecture, LMS Lecture Notes, Vol. 227, Cambridge
University Press, Cambridge, 1995, pp. 227–254.

10. Higson, N. and Roe, J.: Analytic K-Homology, Oxford Mathematical Monographs,
Oxford University Press, Oxford, 2000.

11. Higson, N., Roe, J. and Schick, T.: Spaces with vanishing �2-homology and their fun-
damental groups (after Farber and Weinberger), Geometriae Dedicata 87 (1–3) 2001,
335–343.



324 NIGEL HIGSON AND JOHN ROE

12. Milnor, J. W.: Introduction to Algebraic K-theory, in: Annals of Mathematics Studies,
Vol. 72, Princeton University Press, Princeton, NJ, 1971.

13. Mitchener, P. D.: C∗-categories, Proc. London Math. Soc. (3) 84 (2) 2002, 375–404.
14. Mitchener, P. D.: KK-theory of C∗-categories and the analytic assembly map.

K-Theory 26 (4) 2002, 307–344.
15. Ranicki, A. A.: Lower K- and L-theory, Cambridge University Press, 1992.
16. Roe, J.: Partitioning non-compact manifolds and the dual Toeplitz problem, in:

D. Evans and M. Takesaki (eds.), Operator Algebras and Applications, Cambridge
University Press, Cambridge, 1989, pp. 187–228.

17. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds,
Mem. Amer. Math. Soc., 497 (1993).

18. Roe, J: Index Theory, Coarse Geometry, and the Topology of Manifolds, in: CBMS
Conference Proceedings, Vol. 90, American Mathematical Society, Providence, RI,
1996.

19. Roe, J.: Comparing analytic assembly maps, Oxford Quart. J. Math., 53 (2002), 1–8.
20. Roe, J.: Lectures on Coarse Geometry, American Mathematical Society, 2003.
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