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IMMERSIONS OF MANIFOLDS(!)

BY
MORRIS W. HIRSCH

INTRODUCTION

Let M and N be differentiable manifolds of dimensions & and # respec-
tively, 2<n. A differentiable map f: M~—N is called an immersion if f is of
class €' and the Jacobian matrix of f has rank % at each point of M. Such a
map is also called regular. Until recently, very little was known about the ex-
istence and classification of immersions of one manifold in another. The
present work addresses itself to this problem and reduces it to the problem of
constructing and classifying cross-sections of fibre bundles.

In 1944, Whitney [15] proved that every k-dimensional manifold can be
immersed in Euclidean space of 2k—~1 dimensions, E*-!. The Whitney-
Graustein theorem [13] classifies immersions of the circle St in the plane E?
up to regular homotopy, which is a homatopy f, with the property that for
each ¢, fiis an immersion, and the induced homotopy fi of the tangent bundle
of M into the tangent bundle of N is continuous. In his thesis [8], Smale
generalizes the Whitney-Graustein theorem to the case of immersions of $?
in an arbitrary manifold. In [9] Smale classifies immersions of 5% in E* for
arbitrary k< n; the present work is based on this paper, in roughly the same
way that obstruction theory is based on the theory of hamotopy groups.

The paper is divided into two parts. The first part is devoted to building
up machinery that will construct immersions over successive skeletons of a
triangulated differentiable manifold, if certain conditions are satisfied. We
start from the results of [9] and construct two invariants, @ and r. Given an
immersion f: S¥"'—=E* bk <n, and a field f' of vectors transversal to f{S¥1),
7(f, ') is an element of a certain homotopy group with the following proper-
ties: (1) 7(f, f') =0 if and only if f can be extended to an immersion g of the
k-disk D* whose normal derivative on the boundary of D* is f/; (2) 7{f, f")
=r(g, g) if (f, f') and (g, g') are “regularly hamotopic” (in a sense to bhe
defined later). Given twao immersions f, g: D¥—Er" that agree on S*! and have
the same first derivatives at points of .S¥~1, Q(f, g) is an element of a certain
homatopy group, and has the following properties: (1) Q(f, g)=0if and only
if f and g are regularly homotopic “rel S*~1,” i.e., the homotopy agrees with
fand g on S*! at each stage, up to the first derivative; (2) Q(F, g) enjoys the
usual algebraic properties of a difference cochain, At this point we should like
to be able to make the following statement: “If f is an immersion of the
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i-skeleton of M and 7(f) =0, then f is extendible to the i-+1-skeleton of M.
Unfortunately, this makes no sense at all, because a skeleton of a manifold
is not a2 manifold, and immersions are only defined for manifolds. A second
difficulty is that 7 is defined for immersions of houndaries of disks, while a
triangulated manifold is composed of simplices. These difficulties are over-
come by the notion of M-immersions. If B is a subset of M, an M-immersion
of B is essentially an immersion of a neighborhood of B; we identify two M-
immersions of B if their differentials agree at points of B. M-regular homo-
topies are similarly defined. If B= M, an M-immersion of B is simply an im-
mersion of M.  and r have natural generalizations to M-immerstions and M-
regular homotopies, in fact, we define 7 only for M-immersions; M-immersions
of skeletons make good sense, and @ and 1 can be defined for simplices as well
as disks by “approximating” a simplex by a diffeomorphically embedded
disk. The quoted statement above now makes sense, and is true, if immersion
is replaced by M-immersion. An M-immersion has a well-defined differential,
which is a map of the tangent bundle of M over B into the tangent bundle of
A, taking fibers into fibers through vector space monomorphisms. The differ-
ential induces a map of the bundle of k-frames of M over B into the bundle
of k-frames of 4, and this map is equivariant with respect to the action of
GL(E). It turns out that an M-immersion of the i-skeleton of M can be ex-
tended to the 241 skeleton if and anly if the differential can he extended to
an equivariant map of the bundle of k-frames of M aver the {+1-skeleton.
A similar statement holds for M-regular homotopies, These statements are
made precise in Theorems 5.7 and 3.9, which are the main theorems of Part
I. These theorems can be given the following interpretation: Given M of
dimension %, A of dimension #, B <=, the regular homotopy classes of immer-
sions of M in 4 are in one-one correspondence with homotopy classes of cross-
sections of the bundle associated to the bundle of E-frames of M, whaose fiber
is the bundle of k-frames of A. (If A = E», the fiber may be taken ta be the
Stiefel manifold V,..) For another interpretation, see the intraduction to §5.

It should be remarked that the restriction k <#n is essential; the problem
of immersing a manifold in another of the same dimension is much harder
than the one we consider.

Part II consists of applications of the main theorems of Part I, chiefly
to the problem of the existence of immersions in Euclidean spaces. “Best
possible” results are obtained for projective spaces of dimensions less than 9;
it is shown that a parallelizable manifold can be immersed in Euclidean space
of one dimension higher with normal degree 0; certain sufficient conditions
that two immersions be regularly homotopic are given. The problem of im-
mersing a k-dimensional manifold in E*~2is solved in the compact case when
k=35,

I wish to express my gratitude to my adviser, E. H. Spanier, for his gen-
erous help, and to thank S. Smale for many conversations, and for writing {9].
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DEFINITIONS AND NoOTATION. By manifold we shall always mean a C=
differentiable manifold, endowed with a fixed Riemannian metric 4, with or
without boundary. Submanifold means “C*-imbedded” submanifeld in the
sense of Whitney [16]. If M is a submanifold of N and X is a vector tangent
to N at a point of M, X is called transversal to M if X is not tangent to M.
T (M) denotes the space of tangent vectors of M, A k-frame of Misa set of k
linearly independent tangent vectors of M (with the same base point). T(M)
is the space of all k-frames of M. T(M) is the space of unit tangent vectors of
M. If B is any subset of M, T(M/B) is the space of tangent vectors of Af
whose originisin B; Tw(M/B) and T(M/B) are defined similarly. If X € T(M),
| X| is the length of X in the Riemannian metric of M.

Er is n-dimensional Euclidean space, with an orthonormal coordinate
system %, + -+, % If s <2, E™ is considered to be the subset of E* defined by
setting x;=0,i=m-+1, - - -, n. The b-disk D*is defined as IxEE": ]x| =1 ],
where for any xEE*, x| =g+ - « « +x2)V2 The boundary of D* is the
unit sphere S* 1 of EF*, and is sometimes denoted by D* The common origin
of all the E* is 0. The Stiefel manifold of p-frames in E4 is denoted by V,,,
and is defined as T,(E¢/0). We shall frequently identify V,, with T (E?),
of which it is a deformation retract by parallel translation. \

Immersion means a C' map of one manifold into another of not lower
dimension whose Jacaobian matrix has highest possible rank at each point. A
regular homotopy of M in N is a family f, of immersions of M in 4, 1]
= unit interval, such that f, is a homotopy in the ordinary sense, and differ-
entials fix define a (continuous) homotapy of T(M) into T(N). If B is a closed
subset of M, a map f: B— N is said to be differentiable of class C* il for each
% C B there is a neighborhood I of x and a C* map g: U— N such that g] UNB
=f| UNB. Milnor [5] shows that this implies that f can be extended to a C*
map of a neighborhood of B.

It f: M—N is differentiable, then fo: T(M)—T(N) denotes the differential
of f. If f4 is a vector space monomorphism on each fiber of T(M) (e.g., if f
is an immersion) then f, preserves linear independence, and there is an induced
map Tu(M)—Tu(N) given by { ¥, - - -, Vi) ={felh, » -+, fuVi}. We shall
use fs to denote this map, also.

If B is a subset of M, and f, g: M— XN are immersions, then (f, fi) and
(g, g+) are tangent on B if f|B=g|B and fi| T(M/B) =g¢| T(M/B). This is
denoted by (f, fo}| B= (g, gg.)lB. f and g are regularly homotopic (rel B) if
there is a regular homotopy f: of M in N such that fo=f, fi=g, and (fg,fg*)[_B
=(f,_f4.)|B far all £.

PART I. GENERAL THEORY

1. Known results. Let M and N be manifolds, and ¥ a set of £* maps from
M into N. The €' topology on % is that which is obtained by considering ¥
as embedded in the space of all continuous maps T(M)—T(N), in the com-
pact open topology, under the emhbedding f—s.
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DEerFINITION. A map f: Q—R has the covering homolopy property if the
following condition is satisfied: given a homotopy g of a polyhedron P intn
R and a map k: P—Q such that fh=g,, there exists a homotopy &, of P into
Q such that ks=~4, and fh,=g,.

Let 8 =8, be the space of all C* immersions of D% in E* in the ! tapol-
ogy. Let & =@;., be the set of all pairs (g, g') where g: S5 FE" is a C* im-
mersion and g’ S¥1—>T(E") is a C* transversal field of g. & is topologized
as a subspace of Cartesian praduct of the space of immersions S*1—E=, in
the C! topology, with the space of continuous maps S*1—7(E*"), in the com-
pact-open topology.

Let m: 85@® as follaws: if AE8, let b': S¥1—=T(E") bhe defined by k'(x)
=derivative of % along the radius at x&.5%1, i.e., if #(x) is the unit tangent
vector of D that is normal to 8%~ at x and which points away from the origin,
then &' (x) = har(x). w(h) is defined to be (&| S*1, k’). It is clear that = is con-
tinuous.

TaroREM 1.1. If B <n, then w: &,,— B n, kas the covering homotopy prop-
erty.

The proof is found in [9].

The intuitive content of this theorem is as follows: If we are given an im-
mersed disk in E* and we deform the boundary of the disk and the normal
derivatives along the houndary, then we can deform the whole disk at the
same time so as to induce the given deformation on the boundary and normal
derivatives. It is easily seen that this is false for k=1, as can be shown by very
simple examples with k=1 or 2.

Let 8 =8, be the space of all maps D¢V, ,, in the compact-open
topology. Let ®' =@®;, be the space of all maps S* 1=V, 4, in the compact-
open topalogy. Let 7': §—@®' be the restriction map = (f) =f| $*-1. It is well
known that «* has the covering homotopy property.

Let e;(x}& T(E*/x) be the 7th coordinate vector based at x. For fC8,
define ®(f)ce’ by ®(N(x)=fefealx), - - -, elx)}. Define §: @@ as fol-
lows: express ¢;(x) uniquely as ¢/ (x) +Ar(x), where r{x) is the outward nor-
mal to S* 1 at x€ 8% ! and &/ (x) is tangent to S L If (g, ¢)E®, then
é(g, £ x)= [g*e‘-’ (x)+Ag'(x), - -, geed () Fhuag'{x) ] These vectors are in-
dependent because gee! (x) is tangent to g($* 1) and ¢'(x) is transversal. The
following diagram is commutative:

g —— 8

o I

8 — @

To see this, observe that if g&8 and x(g)={f, f), thenf=g] S*1and f' is by

e ]
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definition the derivative of g along r(x), i.e., f'{x) = ger(x). If X is any vector
at x& S L, tangent to I, X can be expressed uniquely as X" +Ar(x) with X’
tangent to S*1. Then geX =g X’ +)\g,r(x) =fu X' +Af'{x). Applying this to
X = ex), (w'®)(2)(x) = gale(x), - -, alx)} = {fuel (®) + A (x), -
fred () NS (2) } = @) (2) (), for r(g)(x) g{x) if xES%1. Thus Pr= wfl’

If €8, put Tinlg)={fC8ia: (f, f)| S '=(g, g4}]S*}. This is
equivalent to I'y,2(g) =71~Ym(g)). Define

That) = (5D Vath] 4 = 09 57

This is the same as T'f ,(g) =%’ ~1(x'®(g)). Since the above diagram commutes,
@(Fk,,(g}) Cré,n(g} '

DermnitioN. If A and B are topological spaces, a map f: A—B is a weak
" homotopy equivalence if f induces a one-one correspondence between the arc-
compaonents of A and those of B, and f: #{4)—mi(B) is an isomorphism for
all i=1,2, -« -

TraEoREM 1.2.. Let i: D*—E* be the inclusion map. If k<n, ®:T}.(3)
'3 o(1) is ¢ weak homotopy equivalence.

Proof. See [¢].

In the next section we shall prove this for any fE8; ..

The following material is well known; see Steenrod’s book [10] for de—
tails,

LetAd bea topologlcal space, simple in dimension k. Let f, g: D*—A4, and
assume f(x) =g(x) if x&S* L. There is an element d(f, g) in m(4) with the
following properties: .

LEmuma 1.3.

(a) d{f, £) =0 if and only if f and g are hamotopic (rel S*¥1),

(b) If h: D*—A is such that b| S =f] S-1=g| S¥1, then d(f, g) +d(z, k)
=d(f, k).

(©) d(f, )=0. |

{d) Given [ and a Emp(A), there exists g: D*—A such that d(f, g) =

d(f, g) is represented by mapping the “top” hemisphere of S* by fand the
“bottom” one by g, assuming that the orientation of S* is given by the co-
ordinate frame [el, e, ek} at the “north” pole of S*.

Now let f, g€ 8., with g&ET(f), i.e., m(g) =7(f). Then B(f) and ®(g) are
maps of D* into V, x that are tangent on S¥ 1, and V,. is simple in 2ll dimen-
sions. (Either 8=# or #—1, in which case V, 4 is a group, or else m(V, .} =0.)
Therefare d(B{f), B(g)) is defined.

DEerINITION. d(B(f), ®(2)) Emu(V, 1) is called the ebsiruction to ¢ regular
homotapy (rel S5} between f and g and is denoted by Q(f, 2).

TaEOREM 1.4, Assume k<n, f, g6k, and f, g ().
(@) Qf, £)=0 +f and only if f and g are regularly homolopic (rel S¥1),
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(b) If f, g, RET (1), Qf, 2)+ Qg &) =Q(f, A).

{c} @, N =0.

(d) Given FET (1) and o Smi{ V, i), there exists gE T (6) suck that Q(f, g) =ou

(e) If Qf, g =0 and H: D*XI—+V, is a homotopy (rel S*1) between
B(f) and ®(g), there extsls a regular homotopy (rel S 1} G, between f and g such
that the map F: DX I—V, . defined by Flx, §) =®(G.}(x) is komotopic o H
(rel S*1x IUDEXTY. (F=10, 1})

Proof. Follows from 1.2 and 1.3; for example to prove {a), assume Q(f, g)
=0. By definition, this means that d{(®{f), ®{g}) vanishes. By 1.3, ®(f) and
®(g) are homotepic (rel S¥~1). This means there is an arc in I'},(f} joining
®(f} to B(g). By 1.2, there must be an arc in Iy {f) joining f to g. This arc
provides us with a regular homotopy (rel $¥71) between f and g. Conversely,
if f and g are regularly homotopic (rel S¥~!) by a regular homotopy f. then
®(f)) is a homotopy (rel S*~1) between &{f) and $(g), so d(P(f}, B(g)})=0 by
1.3a. The other statements of 1.4 follow similarly.

Let f, g: S*—E* be C= immersions. Let U be an open set of S* on which
fand g agree, and let p& U, Assume that St— I/ is diffeomorphic to D*. Let
b =f] Sk— U and g =g|S*— U, and consider f and g as C* immersions of D*
in En, Since f and g agree on U, it [ollows that #{fi) =7{g), so that Q{/,, g
is defined. Put @'(f, g) =Q(A, s} EmlV,.0).

THEOREM L.5. If (f, g)=0, f and g are regularly homotopic (rel p).

Proof. See [9] for details. The idea is to use 1.4a to obtain a regular
homotopy (rel S*-1} between f, and g, which is equivalent to a regular
hometopy (rel boundary of U) between f| $*— U and g|S*— U, It will be
shown in 2.5 that this regular homotopy can be combined with the constant
regular homotopy between f| U and g| U to produce the desired regular
homotopy (rel a neighborhood of p, hence rel p} between fand g.

2. Extension of 1.2 and 1.4. The object of this section is to remove the
restriction in 1.4 and 1.2 that f and g belong to I'(#), and to prove 2.5, which
is used several times throughout Part 1.

LEMMA 2.1, Let f, g: M—E” be C* immersions that satisfy the following con-
dition: for any X € T(M), |f*X—g*X| < |f*X|. Then for any (€1, the map
h: M—E defined by hix) =tf{x) + {1 —t)g(x) i5s a C* immersion,

Proof. By hypothesis, | fxX —g+X| <|faX| if X #40. Thisimplies that g« X
cannot vanish, nor can g+X be a negative multiple of f«X, because in either
of these cases, ff*X—g*X] = |f,.Xf. Therefore either f4X and goX are inde-
pendent, or they are positive multiples of each other; in either case, no posi-
tive combination of them can vanish. Therefore for every nonzero X € T{ M),

ho X 70, which is equivalent to saying that % is an immersion. It is obvious
that k is C~.
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Lemuma 2.2, Let Q and R be topological spaces, with R compact. Let A be o
subset of Q; let U be an open subset of QX R containing A X R. Then there exists
an open set V in Q containing A such that AXRCVXRCU.

Proof. U can be written U=U; V;X W;, where ¢ runs over an indexing set
A and V;is open in Q, W;is open in R. For each a€ A4, a XR is campact; it
follows that there is a finite subset A, of A such that a X RCU;ca, Vi X W, and
aC V;if i€ A,. Since A, is finite, V=4, V:is an open set of  containing
a, and a XRCUies, Vo X W, Define V=U, V.. It is easily checked that V
has the required properties.

LEMMA 2.3. Let M be a manifold and C a compact space. Let pE M. Let
F, G be continuous maps of C inlo the space of immersions of M in E~, with the
Ct topology, such that for every cEC, (G(e), G(c)*)|p= (F(e), Flo)x) ! p.

CoNcLusioN. There is a neighborkood W of p and positive real numbers
&, B such that for any XET(M/W), c¢CC, tC1, it is true that a<f£F(c),..X
+(1—-0)Ge)sX ] <B.

Proof. Define n: CX T(M) X I—>El by 5(c, 2, = |t F(€)« X + (1 — )G (€)X | .
7 is continuous and assumes a minimum &g and a maximum 3, on the compact
set CXT(M/p)XI. Moreover, ao>0, for if XET(M/p), F(e)xX =G(c)eX,
hence 5(c, %, 1) = | F(c)d{[ >0, because F(c¢) is regular. Next choose o and 8
such that 0 <& <ay<fB:<@; then 4 '(a, B) is an open set UV in CXT(M) X T
that contains CX T(M/p) X 1. By 2.2 there is an open set V in T(M) such
that CXT(M/p) XTCCX VXICU, and T(M/p) C V. Since T(M) is locally
a product, we may apply 2.2 again and obtain an open set Wof M containing
p such that T(M/W)C V. Then W, e, 8, have the required properties.

LEMMA 2.4. (The hypothesis and notation are as in 2.3.) Given €>0, there
is a neighborkood U of p such that if xCU—p and c=C,

| Fle)(2) = G(e} ()| /d(x, p) < e.

Proof. Choose a fixed ¢ C. Then F(c}(p) =G(c)(p), and we have the
equality:

| F(o)(x) — G(o) (%) | /d(x, p)
= | [F@)(x) — Fl)(p)] — [6)(x) — G B)]] /dx, p).

By the mean value theorem, there are points ¥, 2z on the geodesic between x
and p (which we may assume to be unique if x is close to p) such that the
expression on the right is equal to ] Flc)s Y—G(chZ] where ¥V and Z are unit
tangents to the geodesic at ¥ and z respectively. Let X be the unit tangent at
2. Choose a convex neighborhood V= TV{(c) of p such that if y and zlieon a
geodesic in V through p, and X, ¥, and Z are respectively the unit tangents
to this geodesic at p, ¥, and z, then | F(c)xV—G(c)xZ| lies within € of
| F(c);X—G(C)*Xf. This last is 0, since by hypothesis F(¢)x and G(c)s agree
on vectors based at p. Thus for this particular ¢, | F(e)(x) —G(e) ()| /d(x, p)
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<e. Since F and G are continuous, this inequality holds for all ¢’ in a neighbor-
hood W{¢) of €. Since C is compact, there are points ¢, + + +, & such that
CCU; Wic,). It follows that U=, V(e¢,) satisfies the conditions of the
lemma.

The next lemma is needed in several places. The following example may
help to motivate it: Suppose we are given two immersions f and g, defined
on a manifold M, such that for a point p of M, (f, fx)| p=(g, g+ | . Then the
lemma says that we can deform g se that it becomes equal to f in some
neighborhood of p, and the deformation is constant outside an arbitrarily
small neighborhood of . Intuitively, we pinch the images of f and g together
near p. Actually, the lemma allows us to do this for two regular homotopies
that agree at p at each stage, and p can be replaced by a subcomplex of M.

LEMMA 2.5. Let L be a finite complex embedded in the manifold M in such
a way that each simplex of L is diffeomorphically embedded. Let W be o neighbor-
hood of L in M. Let C be a compact space and F, G maps of C inte the space of
immersions of M in E* (C! topology) such that for each ¢ C, (F(c), F(c)s) | L
=(6(0), G| L. -

CoNCLUSION. There is an open set V of M such that LCVCVCW,and a
homotopy G, of C into the space of tmmersions of M in E*, satisfying the follot-
ing conditions:

(1] Gu:G.

(2) (Gde), G| M—W=(G(c), Gle)s)| M~ W.

(3) (Gile), Gulehw)| V= (F(c), Fe))| V.

(4) Gyle) is CF if Gle) and F(c) are C~.

(5) (GAe), G| 2= (G(e), G} | % if (G(e), Gle)s)|x=(F(e), F(o))]| .

Proof. Let L; be the i-skeleton of L. We shall deform G{c) over successive
skeletons of L.

Let h: I-=7 be a C* function such that A=0 in a neighborhood of 0, A =1
in a neighborhood of 1, and whose derivative is never negative. Let K>>0 be
an upper bound for the derivative.

Let p be a vertex of L. We shall define a >0 so that the closed ball I/
of radius 8 and center p is contained in W. Let u: M—T be defined by u(x)
=Nd(x, p)/8) i xS U; p(x)=1 if €M —U. Because of the properties of
X, uis C=. Define h: M—E™ by h{x)=(1—pu(x))f(x) +u(x)g(x), where for a
fixed ¢€C, flx)=F(e){x), g{x) =G{c)(x). By the proper choice of 8, it will
turn out that for each (&1, the map Gi{c)={1 —f)g+th is a C* immersion
of M in E» satisfying (1), (2), (4), and (5); (3) holds if V is interpreted to be
some neighborhood of the vertex p. § is chosen as follows: Choose a neighbor-
hood U of p and real numbers «, 8 so that for any tCT, X ET(M/ 1), cEC,

(a) 0 <a< |tFEX + (1 — HGEX]| <8

This can be done by 2.3. Next choose a neighborhaod U, of £ so that for any
cCC and x& U —p,
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(b) | Fe)(x) ~ G} (%) | /d(x, p) < o/2K.

This is possible by 2.4. Now choose a neighborhood U; of p such that for
any XET(M/ U, cEC,

{0 | Fle)eX — Gle)aX| < a/2.

This can be done because for X € P(M/p), F(c)xX =G(c)+X for all ¢. Now
choose 8>0 so small that the closed ball I/ of center ¢ and radius & is con-
tained in WM UWN L, and also U is contained in some coordinate neighbor-
hood of p. Assume also that no vertex of L other than ¢ is contained in .

Now let ¢&C; put f=F{¢) and g=G(c). Define h: M—E" by h(x)
= (1 —u(x))f(x) +ux)glx). It is clear that k is €= and depends continuously
on ¢. We shall show now that for each £€ 11, the map g.= (1 —£)g+¢tk is regu-
lar. By 2.1, it is enough to show that | kX —geX | <] geX| for each X CT(M);
however, because g =1 in a neighborhood of M — U, it follows that ks =gx on
T(M/M~—1U), and therefore we need prove only that | X —geX| <|guX|
for X T(M/U). By (a), with =0, @ <|g«X!; thus it suffices to show that
|k,.X — g*X] <a for X € T(M/U). A direct computation vields #uX
= e X{glx) — flx)) + plx)geX + (1 — u(x))fsX. Therefore |k*X — geX|
< | X (g(x) —F2)) | +[ (1 —(=)) (foX — g X)|. By (c) the second term on the
right is less than a/2. If we show that |p,*X| < K/d{x, $}, then the first term
is less than K| g(x) —f(x)| /d(x, p) which is less than Kea/2K by (b), and we
are done. It is enough to show that | ueX| <K/8. X has a unique expression
aV + bZ, where V is a unit wvector normal tc the submanifold
A={uCU:d(u, p)=d(x, p)} (X based at *€U), and Z is a unit vector
tangent to 4. Observe that |a| =1 because a®+5*=1. Since x is constant on
A, paeX =aps Y. Y is tangent to the geodesic though x normal to 4 ; it follows
from the definitions of u and K that f,u* Y| < K /8. This proves that g, is
regular.

We repeat the above construction for every vertex of L, and we observe
that we have proved the lemma for the special case dimension of L =0 by
putting G.(¢) =g, and taking for 1V the union of the interiors of the U’'s
chosen for the various vertices . We proceed by induction on dimension of L.

Assume the lemma is true in case L has dimension 4. Let L have dimen-
sion 241, and let L, be the é-skeleton of L. Given W, C, F, G asin the hypoth-
esis, we apply the inductive hypothesis to L; to conclude that there is a
neighborhood U of L and a deformation G, of G such that L; CUCTCW,
(1), (2), (4}, and (5) hold, and also

(3) (G\(©), Gi(&)s) | U = (B (o), Flo)a) | U.

Let ¢ be an £+1 simplex of L. We can find real numbers «, 8, 8, greater
than 0 such that if d(x, ¢) <8 and X €T (M /x),

(a") 0<a< | tF{che X +(1 —L]Gl(c)*X| <B for any IEI, ¢ EC;

(b)) | Flo)(x) —Gi(e) (x) | /d(x, o) <e/2K if x&a, cEC;

G N

Jp—
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() | F(e)eX —Gi(0)+X | <a/2 for any ¢cE€C.

This can be done by 2.3, 2.4, the compactness of o, and the fact that
(F(0), Fo))|o = (Gi(e), Gi(0)w)| @ by (5).

Let B{e) = {xC M: d(x, ¢) =¢, and « lies on a geodesic normal to ¢}. We
can choose § small enough so that if 0 <e= 8§, B(e) is a €~ submanifold of M
contained in W. Let B be the union of the B(e) for 0 =¢=4§. Let B’ be the
subset of B consisting of points of B that lie on geodesics normal to ¢ and pass-
ing through ¢ Make § still smaller so that B' CU.

Define g: B—I by u(x) =A{d(x, ¢)/8); it is clear that p is €= on the
interior of B. Let ¢ C and put f=F(c), g=0Gi{¢), and define k: B—E" by
Rlx) = (1 —pu{x))f(x) +ulx)g(x). It is easy to see that £ is C* on the interior
of B. It turns out that k=g on a neighborhood of the boundary of B: the
boundary of B is B'\JB(§); B’ C U, and f{x)=g(x) in I7 by the assumption
(3'), while p=1 in a neighborhood of B(8). It {ollows that we may extend %
to afl of A by setting A(x) =g(x) if xS M —B, and k; M—E® is now C=.

We shall show that for each (&1, the map Gi,: M—E" defined by Gy,
=(1—1)g+tk is regular. To do this, it suffices by 2.1 and (a’) to show that
for any X € T(M/B), |k*X-g,..X| <a. The proof of this fallows from (a’),
(b"), and (c’) in the same way as in the case ¢ =p, done earlier.

We da this for each {41 simplex of L in succession; (3) insures that we
never unde our work, i.e., once Gi(¢) has been deformed to agree with F(e)
locally, any remaining deformations preserve this property. Let 7 be the
union of U with the interiors of the B's constructed for each £-+1 simplex o
of L. Then V, and the deformation obtained by first deforming G by G, and
then deforming G by Guy, satisty (1) through (5). This completes the induc-
tion, and 2.5 is proved.

LEMMA 2.6. The space &, of C® tamomersions of D* in En is arcwise con-
nected, provided b <n.

Proof, Let f and g be any two elements of &,.. We shall prove that bath
fand g can be joined to the inclusion ¢: D¥(C E® by arcs in 8;,4. It suffices to
do this for g.

Since & < #n, there is an arc T in the group of proper affine transformations
of En such that Ty is the identity and such that (Tig. (Tig)s)|0=(4, 4|0,
where 0 is the center of D* Since T, is an arc in &, from g to Tig, we may
assume that g itself has the property (g, g+)|0=(Z, i,..)]O. By 2.5 (with L=0,
C=¢, Flc)=1, G(¢)=g) we may assume that there is an #>0 such that if
|x| <7, g(x) =i(x) =x. For 0=t=1/2 define g, by g.(x) =g((1—2t+2r)x).
Then go=g and gu(x) =g{rx) =i(rx)=rx. For 1/2=t=1 define g,(x) by
g24(x) = (2t —1-4+2¢—2tr)x. Then under this definition gi1p(x) =rx and g1(x) = 2.
Thus gy, for tE€1, is an arc in &, from g to 4. This completes the proof.

If 2=1#, a similar argument shows there are two arc components, the ele-
ments of which respectively preserve and reverse orientation. We shall not
use this result.
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Tureorem 2.7. The map $: Ti o(f)—Ti.(B(f)) (defined in §1) is a weak
homotopy equivalence for every fE8,,, provided k <n.

Proof. By 2.6, &;., is arcwise connected. Let a path in &, running from
f to ¢ be chosen, and let C: I—®,;,, be its image under =, so that C(0) == (4},
C(1) =w(f). Put C'=8C: I-®,,. C and ' induce isomorphisms C¢ and C¥
such that the following diagram is commutative for all =0, 1, - - -, where
7q is the set of arc-components:

& | I'{i -

w0, LT, 3
C, Ct
l 1 (CI){ I‘(f))} l §

(L), ) ——— =(T'(), $())

By 1.2, (=i>| I'(z)) is an isomorphism. Since Cy and Cf are also isamorphisms,
(@®| T(f)) is an isomorphism.

THEOREM 2.8. Let f, g€ &k.n, k<n; assume w(f) =w(g) so that Qf, g) is
defined. Then

(a) Q(f, g)=01f and only if f and g are regularly homotopic (rel S*1).

(e) UL =0

(4} Given aEm(V,.4), there exists gET(f) such that Q(f, g) =

(e) If U, g)=0and H: DXI—>V, 1 15 @ homotopy (rel S¥1) between $(f)
and $(g), there is a regular homotopy (rel S¥) G D¥ X I—E® suck that Gy=f,
Gi=g, and the map F: D*XI—V,  defined by F(x, t) =9(G,)(x) is homotopic
to H (rel S*1XI\JD*X1).

Proof. Follows from 2.9 and 1.3 {compare 1.4).

3. M-immersions. Let 4 be an arbitrary subset of the manifold M. Let
fiA—-Nand f': T(M/A)—T(N) (N is a2 manifold) be continuaus maps such
that the following diagram commutes:

f»"

T(M/A) = T(N)
i l
A i) N

DerINtTION. The pair (f, f/) is called an M-regular map, or M-immersion,
of A in N if the following condition is satisfied: there is a neighborhood U of A
in M and an tmmersion g: U—sN such that g T(M/A)=f". It follows that
gl A =f. g is called an admissible extension of f. Observe that f is completely
determined by f'; nevertheless we shall use the redundant notation (f, f') for
M-immersions. We say that (f, ') i¢s C* if g can be chosen to be C*. We shall
use the notation: (f, f): A—N 15 an M-immersion. The following properties
of M-immersions (f, f): A—N are immediate:

e m——
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(1) f'is a vector space monomarphism on each fiber of T(M/A).

(2) If A is a submanifold of A, f is an immersion of 4.

(3) If (g, g") is an N-immersion of B in V, and f(4) CB, then (gf, g’f")
is an M-immersion of 4 in V.

(4} If U is an open subset of M containing A, then an M-immersion of
A is a U-immersion of 4, and conversely.

(5) If BCA, then (f| B, f/| T(M/B)) is an M-immersion of B.

(6) If A=M, f is an tmmersion of M and f' =fa.

(7) If V is a submanifold of M containing 4, then (f, f’l T(V/A)) is a
V-immersion of 4.

(&) If W is an open set of N such that f{4) CW, then (f, f’) is an M-
immersion of A in W; conversely, any M-immersion of 4 in W is also an
M-immersion of A in N.

DermntTIoN. Let BCAC M be subsets. If (£, f), (g, g'): A—>N are M-
immersions such that f| B=g|B and f'| T(M/B)=g'| T(M/B), we say that
(f, f') and (g, g'} are tangent on B, and write this as (f, {') [ B={g, g") | B.

By (1) above, f induces a map Tw(M/A)—T(N), given by { Xy, - - -, X}
—{fXy, -+ f'Xe}. We shall use f' to denote this map also.

We topologize the set of M-immersions of 4 in N as a subspace of the
space of continuous maps {compact-open topology) of T(M/A)—T(N), using
the emhedding (f, f3—f". It follows that the various compositions, restric-
tions, and inclusions discussed in (1) through (8) above are continuous maps.

Next we prove a lemma that gives certain sufficient conditions that (f, )
be an M-immersion.

LeEmMa 3.1, Let A be a submanifold of M; assume dM =93A =empty sel.
Lel f: A—N be a CF immersion. Let f': T(M/A)—-T(N) be a C* map covering
f with the following properties: [’ is a veclor space monomor phism on each fiber of
T(M/A), and f'| T(A) =fs. Then (f, f') is & C* M-immersion of A.

Proof. Let U be a tubular neighbarhood of A, and 8: U—=T(M/A) the
identification of U with a neighborhood of the zero cross-section of the normal
bundle of A in M. The map g: U~sN given by

o 7
U—-TM/A) = T(N)— N,
where the last map is the exponential, is C¥ and ge| T(M/A) =f". Since f'
preserves linear independence by the hypothesis, the Jacobian matrix of g
has maximal rank at points of 4; by continuity, it has maximal rank in a
neighborhood of A. This means g is an admissible extension of f, and so (f, f*)
is an M-immersion. It is obvious that (f, f') is C*.

DEFINITION. Such a g is called a canontcal extension of f.

Let £, f, and 4 be as in 3.1. Suppose further that A has a family ¢ of
narmal frames of highest dimension, i.e., for each xE A, ¢{x) is an element

e e e = TR
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of T.(M/A) which spans the fiber of the normal bundle to 4, where r =dim M
—dim A. Then f'¢(x) is a family of transversal r-frames on f(4}. Conversely,
given a family of transversal r-frames Y (x}, f’ is completely determined by
the conditions fX =f.X if X&T(A), f'p(x) =¢(x). Keeping ¢ fixed, it is
clear that (f, f)—(f, ¥) is a one-one correspondence between M-immersions
(f, f'} and pairs (g, ¥) where g is an immersion of 4 and  is a transversal
r-field on g{A); for given fand ¢, f' constructed as above satisfies the hypoth-
esis of 3.1, and therefore (f, f) is an M-immersion. Specializing to the case
M=F*r A=D* ¢{x)= [ek+;(x), “e e, ek.,.,(x)} (where as usual e, {x) is the
ith coordinate vector at x), we have: .

TrHEOREM 3.2. There is a homeomerphism between the space of E<+-immer-
stons (f, )1 D= E" and the space of pairs (g, ), g: D*>E" an immersion and
¥ a transversal 1-field. (This space 1s a subspace of (space of immersions, C'.
topology) X (space of maps D¥—>T(E*), compact-open topology).) The homeo-
morphism is given by (f, f)(f, ¥) where Y(x) =f {an(x), - - -, ensr(x)}.
Moreover, (f, ') 15 C* if and only if f and  are C*.

Proof. It suffices to check the continuity of the map and its inverse;
this follows immediately from the definitions of the topologies involved.
An analogous result holds for S*!;

THEOREM 3.3. There is o homeomor phism between the space of E¥rrimmer-
stons {f, f'): S* s E" and the space of pairs (g, ), where g: S*'—E" is an
immerston and ¢ 1is a transversal (r +1)-fleld. The homeomorphism is given as
follows: Let ¢ be the normal (v + 1)-field on S¥ ! given by &{x)
= {r(x). eri1{X), -+, ey, (%)}, where r(x) is the outward unit normal to S+
in EX; the homeomorphism is defined by (f, fY—(f, &) where $(x) =f'p(x).

" These theorems will enable us to generalize the results of the earlier sec-
tions to E**-immersions of D* and S*!, by combining them with simple
properties of transversal fields.

DEerintTIoN. Let (f, ) and (g, g’) be M-immersions of 4 in N such that
for a certain (possibly empty) subset B of 4, (f, f) and {g, g") are tangent on
B. We say that (f, f') and (g, g') are M-regularly homotopic (rel B) if there is
a path (&, /) in the space of all M-immersions of 4 in N joining (f, f') to
(g, £'), such that for each ¢, (&, k{)|B=(f, f)| B. Such a path is called an
M-rezular homotopy (rel B), and it is C* if every {(h,, k!) is C*.

DEerFiNtTION. The space of all £ Es-immersions of D* in E# is denoted by
gck, n; q); the space of all €= E¢immersions of 5! in Er is denoted by
gk n; @

It is clear that g(k, #; k) is the same as the space &, defined in §1;
g'(k, n; k) is identified with ®; . by means of 3.3.

In order to prove the next theorem we need the following lemma; it
must be well known, but I do not know a veference. Let M be a manifold.
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LEMMA 3.4, Let ¥ be the space of C= maps D*— M and X' the space of C*
maps S*=1—M, bath spaces having the compact-open topology. Let w: ¥—¥' be
the restriction map. Conclusion: x has the covering homotopy property.

Proof. Let P be a polyhedron and G: PXI—¥, f: P X0—X, such that
G(p, 0)==f(p, 0). We must extend f to F: PXI—X so that 7F=G. By a
compactness argument, I can be subdivided into subintervals I; so small that
if t, YEI; pEP, €S, then G(p, £)(x) and G(p, ¥')(x) lie in the same
convex apen set of A4, Tt suffices to define F successively on P X I, PX1I,, etc.
Therefore we assume that I has the property that for any ¢, €I, pEP,
xES G(p, 1) (x) and G(p, t')(x) lie in the same convex open set of M.

Let «: I XI—{(1, 0)}~T be a function with the following properties:

#(x, ¥) is 2 in x when y is held fixed;

wlx, y)=1if x=1;

(e, =0if y=00r 0Z2c=1/2.

If a, b are in a convex neighborhoad of M, t& 1, let {a, &; t] be the point
¢ on the geodesic joining a to » in the convex neighborhood such that
dla, ¢)/dla, by =1—t, d(c, b)/d{a, b} =1. 11 {CI, pE P, xED*, define

F(p, () = {[f(p, 0)(x), Gp, H(z/| =} );ul] x|, H]  if x50,
’ (5, 0)(=) if « = 0.
This defines a map F: P XI—¥ with the required properties.
Now let m,: glkn;q) — §'(kn;g) be defned by
mo(fe Py=(] S 1) T(Ee/ 5.
If g =4, this is the map 7: &,.—®.. defined in §L.

THEOREM 3.5. 7, has the covering homotopy property if k <n.

Proof. The case g=£% is covered by 1.1; assume ¢>&.

Let {: &' (k, #; )—g' (k, 1; k) be defined by {(7, ') = (/, f') | T(E%/S*"). Let
£ g'(k, n; k)—®,,, be the homeomorphism of 3.3; explicitly, £(f, ') =(f, ¥)

with ¥ (x) =f'r(x). Define v: J(k, #; ¢)—8e.n by ¥{f, f)=f. It is easily seen
that the following diagram is commutative:

¥
rﬂ(k: n, Q) - Sk.n
L7 l« T
§'(ky1;9) = G
Let P be a polyhedron, which we may assume to be a product of intervals,
and suppose we are given maps h: P—g, H: PXI—g' such that H{x, 0)
=7 h(x). We are to find G: P XT—g such that w,G = H and G(x, 0) =h(x).
By 1.1, there exists G': PXI—&;,, such that #G'=£({H, and G'(x, 0)
=~k(x). Let A—>D#*X P XI be the bundle whose fiber over the point (d, p, £}
is the space of g—% frames transversal to G’(p, £)(D¥) at the point G'(p, t)(d)-

e s i T e ey
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Via 3.2 and 3.3, we interpret & and H as defining a cross-section of A over
DX PXOJSFIXPXI, and it suffices to prove that this cross-section can
be extended over D* X P X I so that it is C* when restricted to D* X p Xt Since
DEY P XTI admits DX P XOJS¥1X P X T as a deformation retract, the cross-
section can be extended. Since P is a product of intervals, A is a trivial bun-
dle, and a cross-section is merely a map into the fiber, which is a manifold.
3.4 implies that the cross-section can be chosen with the required differenti-
ability properties.
DerinitioN. For (f, fYE g(k, n; ¢) put U(f, f) ==, (z (f, ).

Lemma 3.6, Let y: glk, n; g)—8:.» be the map described above. Then
'yl U (F, F1: T, fY—T(f) kas the covering homolopy property.

Proof. The proof is similar in principle to that of 3.5 and the details are
left to the reader. The idea is that by 3.2, I',(f, f') is the space of those im-
mersions and transversal fields that agree with (f, /) on 8%, and ¥ projects
this space onto the space of immersions that agree with f on ¥ 3.6 says
that if the immersion is varied continuously, the transversal field can be
varied along with it.

Let ®,: g(&, #n; ¢)—(space of continuous maps D*— V¥, ), the latter space
with the campact open topology, as follows: ®,(f, f)(x) =f {e(x), - - -, 24(x)}.
If g=%&, &, is the map ® defined in §1. DPefine

LG £ = (8 D= Vass ] 8 = 2,(f, 1)}
with the compact-open topology; then ®,(T'(f, /Y T/ {f, -
TaroreM 3.7. &, T (f, 1T, f) ts a weak homotopy equivalence for
every (f, ') in 9(k, n; ), if k<.

Proof. Let p: V. ,— V.. be the bundle projection p{Xy, + -, X,}
={X, -, X} Let4: T/ (f, fY>I'(f) be defined by ¥/ (g) = pg: D¥—>V, ..
#, and hence 7', has the covering homotopy property. It is easily seen that
the following diagram commutes:

Lo f) —5 DL, )
Ly ® Ly

) — I'()
By 2.10, ® is a weak homotapy equivalence. By 3.6 4 has the covering

homotopy property. Let Y =4-1v(f, /'}) and Y =+"7{y'®,(f, f)). If we
can show that <I>q[ V: Y-V is a weak homotopy equivalence we are done,

for then &, must be a weak homotopy equivalence, by applying the five
lemma to the fallowing commutative diagram:

7iilD(N) — 7 ) = 7T, 1)) = v T(H) = 7:i(F)
L@ Tyl @| V) [os L@y (@] P
7 l(D(f)) = 7 ¥7) = 7l D4 (£, 1) — 211 (f)) = wia( V)

T Taaias
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By 3.2 Y is the space of transversal ¢ —#% fields of the iinmersion f, and Y’ is
the space of continucus maps g: D¥—V, , such that pg=®v(f, /). Given a
g—*F field £ transversal to f we obtain, by ®,, a map g: D*—V, ; such that
v'(g) =Bv(f, f'). Conversely, given g: D¥—=V,,, glx}={n(x), - -+, gq(x) ]
such that pg(x) =fs{ei(x), - - -, exlx) }, it follows that {gea(x), - -, go(x)
must be transversal ta f{D*) at f(x), and thus g defines a transversal g—%
field £(g). Since ®,¢ and &, are identity maps on ¥ and ¥’ respectively,
‘bq] Y is a homeomorphism, and we are done.

Let (f, /), (g £)EJ(k, n; g), with m,(f, f)=7,(g, &), so that (f, f)
ET (2, ¢'). Then @ (f, f') and ®,{g, g') are maps D*—>V, , which are tangent
on St

DeriniTiON. Q(F, g') =d(®(f, '), Bz, £} Em{V,,4) is called the ob-
struction to an Ev-regular homotopy (rel S¥1) hetween (f, f') and (g, ¢).

THEOREM 3.8. Q(f, g') has the following properties, if k<n:

(a) Qf, ¢ =0 1if and only if (f, ') and {g, g') are C* Et-regularly hamo-
topic (rel §13,

(b) Given (f, fYEG(k, n; ¢) end aCmu(Va.o) there exists (g, gYCL (S, f)
such that Q(f, g') =«

(c) If (g, g') and (k, &'} are in T o(f, [}, then Q(f, g} +Q(¢' B) =Q(f", '),

(d) Af, f)=0,

(e) If U, g1 =0 and H: D*XTI—V, ; {s a homolopy (rel S¥1) between
& (f, ) and B (g, g'), there is @ C*° Ev-regular homotopy (fu, fI) (rel S¥1) be-
tween (f, ) and (g, g') such that the map D* XTIV, jptvendy (2,8 =0 (fu. fl)
(x) 45 homotopic to H (rel D X I\JS*1X ).

Proof. Follows immediately from 3.7 and 1.3

An explicit definition of Q(f’, g') is as follows: identify the upper and
lower hemispheres of S* with D* Let w:S* — V., be the map w(x)
= f’{el(x), <o, el x)} if x is in the upper hemisphere, w(x)
=g'{a(x), - - -, e,{x)} if x is in the lower hemisphere; w(x) is well defined
on the equator because (f, ') and (g, g} agree on S*1, Then Q(f, g) is the
hometopy class of w.

Next we define an invariant r(g’) defined for (g, ¢') £ g'(k, »; g) whose van.-
ishing implies that (g, g") comes from J{k, #; q).

(f, FIEG (B, #; q) is said to be extendible if there is a (g, g') & gk, #; ¢)
such that 7,(g, 2')=(f, f). Theorem 3.5 has the following important con-
sequence: if (h, k') and (f, f') arve in g'(k, n; ¢) and are C* Et-regularly homo-
topic, then (k, B') is extendible if and only if (f, ') is extendible.

Proof, To say that (f, ') and (k, k") are C* E¢-regularly homotopic is the
same as saying there is an arc joining them in g'(k, #; g). If ({, f') is extendible,
then the map of a one-point polyhedron into it can be lifted to g(&, n; 4),
and by 3.5, the path connecting (f, /) and (k, %'} can be lifted to g also;
therefore (h, b’} is in the image of w4, i.e., is extendible.
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DerinttioN. Let (f, f/): S — E* be a €% Ev-immersion, i.e., {f, f)
C g’ (k, n; q}. The obstruction to extending (f, f'), denated by 1{f) Cmpa( Ved)s
is the homotopy class of the map S* ' — ¥V, , defined by

x_)f,[el(x)x Tty eq(m)}'
THEOREM 3.9. If k<nand (') =0, (f, f') is extendible.

Proof. As is shown above, it suffices to show that (f, f'} is C* Et-regularly
homotopic to an extendible Fx-immersion, (£, ¢'). We shall do this as follows:
first we make (f, '} agree with (Z, 7) in a neighborhood of a point p. Then we
embed a k£ —1 disk diffeamorphically in the complement of $ so that its bound-
ary is in the neighborhood. We can consider f and ¢ as E¢ immersions of this
disk that are tangent on the boundary; it turns out that the assumption
7 =0 implies that these immersions are E¢regularly homotopic (rel baundary
of the disk}). This will imply that (f, ') and (4, ') are C* E+-regularly homo-
topic. We can take for (1, i) either the identity or the reflection in a hyper-
plane; the latter is needed only if ¢ =# and f' reverses orientation. There is a
proper affine transformation T of E* such that (Tf, Tf")| p=(i, ©'}| p where p
is a point of S*L. Applying 2.5, (with L=5) we can deform (Tf, Tf") so
that it agrees with (4, ') in a neighbarhood of #, and it suffices to show that
this new Es-immersion is extendible. We therefore assume: there is a point
pES* 1t and a neighbarhood W of p such that (f, f’)] W=, )| W.

Let {: D*¥158%1—p be a €= regular hameomorphism such that {(S* %
C W, and such that the orientations of the frames {e/(y), - - -, ex(y)} and
(e (E71)), - - L Geaa 1 (EN(Y)), #(3) } agree for each yE¢(D*1). It follows
that the field of frames [e;(y)}, =1, - - -, b, defined on 5*1, can be de-
formed in Tw(F*) to a family [e,-' (y)} such that for xED* 7, e! ({(x)) =Lwef (%)
fori=1, - - -, k—1, and &/ ({{x)) =7({(x)). To see this, let 4(x) be the linear
transformation, defined for each x&€D*1, that takes the frame e {{(x)) into
el ({(x)). Since these frames have the same orientation, A(x) is in the com-
ponent of the identity of GL(k). Since D*? is contractible, the map 4 : Dé1
—GL{k) is homotopic to the constant map taking D* into the identity. Such
a homotopy yields the desired deformation of Ie.-(y)} for y&E{(D*1; the
deformation can be extended over S*! by the usual homotopy extension
theorem. By 3.4 we may assume that the field [e.*' (y)] is C= TFar
t=k+1, - -+, gput el () =eiy).

Define two C° E¢-immersions (&, &f), (b, &'): D* 1> E" as follows:

(o), i=1,e k-,
S R hial) = {f'e; €@, i=k-,a
(3¢ ) wes(x), i=1,---,k—1,
el (£ (%)), i=k 0y
Qbserve that (Re, k) and (R, B') agree on S*2 because (f, f) and {4, )

ko= if; klefx) = {
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agree on W. Assertion: Qkd{, k') =7(f). To see this, let ¢, ¢": {(D*")
—T(E/t(D¥1) bhe the cross-sections ¢(y)={eiy) b, 9y = Ie{ (1},
i=1, « - -, g. By the definition of ¢/, ¢ and ¢ agree {(S¥?). Since ¢’ and f
agree on T(E3/¢(S%?)), the four maps ¢'¢, ©'¢’, f'¢, fld': {(D¥ )2V, all
agree on {(S%?). We shall prove:

(1) d{f'd, V') =71(f"),

(2} d(f'¢’, ¥'¢") =R(kd, k()

(3) d(f'¢, i) =d(f'¢’, i'd"),
where d is the obstruction cochain (see 1.3). This will prove r(f') =Q(%{, &/ ).
{3) is proved by observing that ¢ and ¢’ are homotopic, since {e.-’ } is a de-
formation of {e.}. (2) follows from the definition of @. (1) holds because
f'¢ and 4'¢ have extensions X, u:S*'—V,, defined by A{x} =f’[e,-(x)},
w(x)=1'{ex)}; X\ and p agree on W. [A] =[] is the homotopy class of the
map obtained by joining two spheres at a point, mapping one by X, the other
by u, and composing this map with the map sending a third sphere onto the
join, the equator going into the common point, and one hemisphere going
onto each sphere, with degrees 1 and — 1 respectively. Since A and p agree on
W, this is the same as identifying each hemisphere with {(D*!) and mapping
one by )\| (DA 1) and the other by u[g‘(D"—l), which is exactly the definition
of d{f'¢, i'¢). Since ¢’ and [e;(x)} can he extended to the interior of D¥, u is
null homotopic. Finally, [A] =7(f") by definition. Thus d{f'®, i'¢) = W] — (k]
=r(f'). This proves (1) and so r={L

If 7(f')=0, then by 3.8 there is a C= Etregular homotopy (rel S¥7%),
(b, k{): D¥'—En kg lis a O regular homotopy of {(D*7!) and it is tangent
to £ on {(S*?) at each stage ¢. By 2.5 (with L={(S¥%), C=1, F(t)=1, G{)
={~1k,) we may deform { 'k, so that it agrees with 7 in a neighborhood of
{(S¥1), We can cover the deformation by one of &/ (see 3.2) so that (g, g/)
defined below is a C* E%-regular homotopy of S*1in E=:

() = {f(y) if y € S — p(DFY),
8= ey iy € (DY),
., Bleei(y) iy E (DY, i=1,---,4
glel(y) = { s . B - )
fel(y) ify & S — DY, =1, L, 4.

Then
Sy iy &S = (DY),

8l) = {kui‘”l(j’) = J) = f0) ity € (D).

Similarly, g(y) =i(y); and
flel(y) ity & S — (D),

kel y)) = J(m*ei(r O feeel (y))i : {ei. (‘y ) E—1

el i) = fel ), imheeaa

28 el () =[
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Similarly, g e/ (v) =1'¢/ (¥). This shows that {(g; g/ ) is a €* E%regular homo-
topy between (f, /') and (¢, '}. This proves 3.9.

4, Immersions of simplices. In this section we extend the definitions and
properties of r and @ to Ef%-immersions of simplices.

A* denates a fixed k-simplex in E* whose barycenter is 0; A* is the bound-
ary of A, #: S¥1—A* is the radial projection from 0: if x€ 5!, 8(x) is the
intersection with A* of the half line radiating from 0 through x; § is a Homeo-
morphism. A* is oriented so that § preserves orientation.

Let (f, f'): A*>E* be a C* Es-immersion. Let v: $¥'—V,,, be defined by
v(x) =f{e(8(x)), - -+, e,(8(x))}. We define r(f)Em(Va,) to be the

homotopy class of v,

TueoreM 4.1. {f, ') 1s extendible to a C* Et-tmmersion of A* if 7(f) =0 and
k<n.

Proof. Let 4: /=E” be an admissible (= extension of f, where I 1s an
Etneighborhood of A% Chaose €> 0 small enough so that {x: d(x,A%) <e} C U.
Let a: Dt—F* be a regular € orientation preserving homeamorphism with
the properties that o(S*~1) C{interiar of A%}, and if x&.5*1, d{alx), 8(x)) <e;
thus e(S*1) CU.

Let x: S¥t—FEn" be the £ immersion h(al St=1). Define

k*a*e;(x) t = 1, ey, k,
heda() =k 4+ 1,.00,q.

(x, &) is a €= Esimmersion of S¥1in E* by 3.3. We now show that 7{x’)
=7(f'}: let @;: S¥ =[] be defined by a,(x) = (1 —fla(x) 4-£{0(x) —a(x)). Then
ao=a|S* ! and ey =8. The two maps S**—V,, defined respectively by

K T(E?| $51) — T(E") by 'elz) = {

x — oxes(x) and x — ex(x), £=1, + - -, b, are homotopic, since each is null
homotopic, being extendible to D* This implies that the map S* -7V, ,
given by x—»]u[a*el(x). <o, o), enpilalx)), - - -, e,,(a(x))} whose

homotopy class is v{x, «'), is homotopic to the map
2 — hufela(x)), « - -, efal@)],

which in turn is homotopic to the map x — iy {e.(8(x)), « - -, e,(8(x)) }, using
a;. The homotopy class of this last map is 7{f’), because X = f’'X if
X ET(E1/AY). Therefore 7(x") =1(f").

Now assume 7{f)=0. By 3.9, (x, «'} is extendible to a (= E¢immersion
of D* in E=, which we shall also denote by {x, «’). Let (g, g'): a(D¥)—E» he
the C* Etimmersion defined by glalx)) =«(x), gedalx))=r'efx), if

i=k+1, .-, g and gase(x) =kelx), i=1, - - -, k. Then (g, g)]a(S*)
=(k, he) [ a (5%, for if xE 5%, we have by definition gla(x)) = «(x) = k(alx));
if i=k+1, -, g gedalx))=e(x)=heia(x)), while if ¢=1,..-, &

g'one(x) = K'ei(x) = hyaxei(x). Let g1 be an admissible extension of g; applying
2.5 we may assume that g1 and % agree on a neighborhood V of a(S*™!) in E4.
Now define (fo, fd) as follows: fo: A*—E" is given by



1959] IMMERSIONS OF MANIFOLDS 261

hix) if x € UM AF,
fo(x) = { .
£(x) if £ € a( DY),

Since g and % agree on V, fo is a well defined € immersion of A* in E*, and
fo| Ak =f, f{: T(E1/A¥)—>T(E") is defined as follows: if X is tangent to

hs X if £ € UM AF,
AF at x, f’oX = {* .
gu:X lf X e Ot(D")

fd is well defined because g« and Ay agree on T(E?/V). It follows from 3.1
that {f,, fd) is a C* E¢-immersian of A* in E*; although 3.1 is stated for sub-
manifolds, we can extend f to a neighborhood of A* in E*, {e.g., UNE®) and
cover it with an extension of f¢ and apply 3.1, taking the neighborhood as a
submanifold of Eq. It is clear that (fo. f¢) is an extension of (f, f*). This com-
pletes the proot.

REMARK. f has an admissible extension that agrees with % in a neighbor-
hood of A%, (Compare 5.8.)

Let 8': D —A* be an extension of 8: S¥"1—A%, Let p: S*—D* be the vertical
projection p(xy, + -+ +, Xepr) =(x1, + + -, x). Put p' =8p, thus p' is 2 map of
S*% onto A*,

Let (f, f} and (g, g') be C= E«immersion of A* in E® that are tangent on
A*, Let y: Sc—V, , be defined by

( ) {f!{e‘(p!(x])}’ »i = 1, S, q’ if xk+1 g

) = . .
g!lei(.a‘(x))}: t = 1) ety if Let1 =

DeriniTION. Q(f, g'YExi(Va. o) is the homotopy class of 1.

TueoreM 4.2. If k<<n and Hf', ¢V =0, then (f, f') and (g, ¢') are C= Ex-
regularly homotopic.

0,
0.

Proof. We leave the details to the reader, the proof being similar in prin-
ciple to that of 4.1. Let fi, g1 be admissible extensions of f and g respectively;
fi and g are C= immersions of an E4-neighborhood of A%; (f1, i) and (g1, gis)
are tangent to (f, f) and (g, g') respectively on A*, We apply 2.5 and assume
that f; and g agree on a neighborhood U of A* in E9. Let ov: D¥—E* he a €=
regular arientation preserving homeomorphism such that a{S*1)C UMN\(in-
terior of A%}, a]S““ is homotopic in UNA¥* to 8: St—t—Ak Let ky=fia,
b1 = gia; then kg and &y are C* immersions of D¥ in E». Define

fltatﬂt'(x)s t=1,-, 4
Il ! af [Py — n ! 5 =

hu N kl T(E XD ) T(E ) by ha [ (x) {fl*ei(a(x)), P + 1’ g
and A/ is similarly defined in terms of g. Then for =0, 1, (k;, ki) are C=
Etimmersions of D* in E* that are tangent on S% L It is easy to see that
QUEE, WY =8(F, g). I this last is 0, then by 3.8a there is a ¢* Ed-regular
homotopy (rel S*1) (ke h{) joining (ho, hd) and (&1, k). This can be used
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to define an E¢-regular homotopy on «(D%), which can be combined with the
constant Fe-regular homotopy on A*—a(D*) to produce an Ef-regular homo-
topy (rel A¥) between (f, f') and (g, g'). 2.5 is used to make this C=.
REMARK. If f and g agree on a neighborhood of A%, we can choose the
homotapy to be constant on a (possibly smaller) neighborhood of A¥.

THEOREM 4.3. Let (f, f'), (g, &), (h, k') be C= Ev-immersions of A* in E»
which are all tangent on A,

() Qf, g+, ) =(f, 1)

(b) Q(f, f)=0. :

(€) Given a€m(V,,,) there exists (g, g') such that Q(f, g =0

(d) Suppose Hf', gy =0, and k<n. Let F:A*XI—V, , be a homotopy
(rel A%) between the maps Fo, Fu: AV, , defined respectively by x-—»f’{e;(x) }
and x—g {esx)},i=1, - - -, q. Then there is a C= Et-regular homotopy (fi, f{)
between (f, f') and (g, ¢') such that the map A*XI—-V,,, defined by (x, t)
— fledx) is homotopic (rel A*X I\ JA*XT) to F.

Proof. (a) and (b} follow directly from the definition of Q. (¢} and (d)
follow from (b) and (e} of 3.8.

5. Immersions of manifolds. In this section we consider the problem of
extending an M-immersion, or an M-regular hamotopy, defined on a skele-
ton of M, to the next skeleton. For convenience we shall assume that we are
immersing M in a manifold ¥ without boundary. This is not a strong restric-
tion; an immersion into a manifold with a boundary can always be moved
away from the boundary by means of a vector field normal to the boundary.
The results of this section can be put in the following form: The correspond-
ence f—fy induces a one-one correspondence between the regular homotopy classes
of immersions f : M—N and the equivaviani-homotopy classes of equivariant
maps Ty(M)—Tw(N), where k=dim M <dim N. First we discuss equivariant
maps.

Let a group & act an topological spaces A and B on the right and left
respectively. A map f: A —B is eguivariant {with respect to the given actions
of &) if for every x&A and g€G, we have flag) =g~ 'f(x). A homotopy is
equivariant if it is an equivariant map at each stage. If f and g are equi-
variantly homotopic, we shall write fo~.g. If G acts on A, we let & act on
AXI by (x, £}g=(xg, ?); similarly for A XIXI; by an equivariant map of
AXI, or AXIXI, we mean with respect to these actions.

THEOREM 5.1. Let p: E—>B bea préncﬁba! G-bundle and let p': E'—B be an
associated bundle with fiber V. Then the space of cross-sections of E' is homeo-
morphic lo the space of equivariant maps E— Y (both spaces having the compact-

open Lopology).

Proof. E’ can be defined as the set of equivalence classes (e, ¥) of the fol-
lowing relation on EX V: (e, y)~(eg, g7}, with p'le, v)=p(e). If f1 E-YV
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is equivariant, define the cross-section f': BoE' by f'(x) ={e, f{e)} wherc ¢
is anv element of p~'(x). If g: B—E’ is a cross-section, define g': E—V by
g'{e) =y where gp(e) ={e, ¥). I is casy to check that f* and g’ are we!l defined,
g’ is equivariant, f* is a cross-section, (f')' =1, (g') =g, and f—=f" is a homeo-
morphism.

Now assume B is a simplicial complex. Let B; denote the i-skeleton of B,
and let f: L\/B;,—E' be a cross-section. Assume also that the fiber ¥ is simple
in dimension <. We recall the definition of the obstruction cochain of f: For
cach x & B, let 7, be the group m;(p'~1(x)). The groups «, form a lecal system;
see [10] for the definition and properties of lacal systems. For each simplex
o of B let b(q) be its barycenter, and put m,=yy. Let CHYEB, L; [r,}) bhe
the group of relative £+ 1-cochains of B mod L with values in the local system
[;-r,} ; an element of this group assigns to each £+1 simplex ¢ of B an element
of . The abstruction cochain C(f) is defined as follows: assume ¢ has an
orientation; let g,: #—¢ he a homotopy such that ge(x) =%, gi(x) =b(a). Since
f covers go, we can construct a homotopy f; covering g, such that fo=f.
Then C(f){a} is the homotopy class of the map fi: 6—p"1(b(s)). For the
properties of C(f) see [10].

If we choose a local product representation 6é: p'~ea)—e X V, then the
homotopy class of

‘c‘er’—‘(a')—ﬁa' XVY—-¥

defines C{f}(a) up to the action of 7(G) on 7V}, where m(&) is the quotient
of G by the arc-component of the identity element, because two local product
representations differ by an element of &,

A local product representation for p'~!(¢) is obtained by picking such a
representation, ¥ p~l{a}—e X G, for p7{g), and defining ¢ : p' g} —a X ¥ as
follows: if e p~1(x), let Y&} =(x, g). Then ¢{e, ) =(x, gy). It is easily seen
that this is independent of the choice of e.

Now let f: p~1{a)— ¥ be equivariant and let g: 5—p"'(s) be the cor-
responding cross-section (5.1). Chasing through the definitions invalved
praves

LEMMA 5.2. Up to the action of mo{G) on w(v), C(g)(a) is obtained as follows:
Let - p~Ya)—e6 X G be a local product representation. Lot hREG be arbitrary.
Then C{g)(a) is the homotopy class of the map 6V defined by x—ff(x, k)}.

It is natural to define the obstruction to extending an equivariant map to
be the obstruction cochain of the corresponding cross-section. If f is equi-
variant we denote its obstruction cochain by C(f). If f is defined on
P YILMJB), f is extendible to an equivariant map of p~'(L\JB 1) if and only
if C(f)=0.

If M is a manifold, we describe the action of G=GL(r} on T (M), r=g.
Let [X,-}GTQ{M) and g&G, and suppose g is represented by the matrix
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(a3). Then {X;}g="V; where ¥;is defined by Vi=X.if i=r+1, -+, g,
and ¥V;= Ej,la,‘;X,‘, if4=1, - - -, #. This defines an action of ¢ on the right;
if G is to act on the left, we put g{ X:} = [ X;}g'. In particular, GL(k) acts
on V.. on the left.

Now let (f, f'): A*—En be an Etimmersion. Put T=T(E?/A%) and let
p: T—A* be the projection. Then f': p~1(A¥) -V, , is equivariant. It follows
from 5.2 that the obstruction to extending f* over 7T is the cochain that as-
signs to A* the hamatopy class of the map A%V, , defined by x—f' {e) ],
i=1, « -« +, ¢. Since this class is 7(f'}, we have proved

TueoreM 5.3. r(f') = C(f')(AR).

If g0, g1 are equivariant maps agreeing on p~Y{L\JB,;), we define the
obstruction to the equivariant homotopy (rel L\JB,) between gy and g to be the
obstruction to a homotopy (rel L\JB,) between the corresponding cross-
sections. We denote the abstruction by d(ge, g1} S CH (B, L; {rui(# ) }).
An analysis of definitions leads to

TueoreM 5.4. Let (f, f1), (g, g'): A*—E= be Es-immersions tangent on Ak,
Then QUf', ') =a(f', £')(A%).

When ¢ and & vanish we have more precise results:

THEOREM 5.5. Let (f, f'): A*—E" be a C= Et-immersion, k<n. Suppose
B T E1/A¥) >V, is an equivariant extension of f'. Then (f, f') can be ex-
tended to a C= Et-immersion (g, g'): A*—E" such that h'~g" (rel A%},

Proof. Since f’ is extendible, C(f') =0, and therefore r{f’) =0 by 5.3. By
4.1, (f, f') has a C* extension (&, k'), and &' agrees with &’ on T(Ee/A%), By
4.3c there is a C* E2immersion {g, g') of A% in E* such that Q(&', g") =d(&', }').
Then d(g’, k') =4d(g", B'Y+d(&, b')=Q(g', Y +4(¥, W) by 5.4. Since d(¥', k)
=Q(F, g =—Qg', k), d(g', ¥') =0, and so g’} (rel A¥),

TueoreMm 5.6. Let (f, ), (g, g'): A¥—FE= be  Etimmersions tangent on
A%, Let bl : T(Ee/AY)— Y, , be an equivariant komotopy (rel A*) between f' and
g'. There is a C* Et-regular homotopy (rel A%) (f., fl) between (f, f') and (g, g')
such that the two maps T{E1/A) X I—V,, , defined respectively by (X, H—h! X
and (X, £)—fi X areequivariantly homotopic (rel T Es/AR) X IUT (E2/A¥) X I).

Proof. Follows from 4.3d.

In the rest of this section we make the following assumptions: M is a
manifold of dimension &, ¥ is a manifold without boundary of dimension
nw>k GL{E) acts on Ti(M) on the right and on Tw(N) on the left, in the
manner described earlier in this section. We assume that M has a C* triangula-
tion in the sense of Milnor [5] or (equivalently) Whitehead [11]. We shall
use only the property that each simplex of the triangulation is embedded in
M by a C* regular homeomorphism.
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TueorEM 5.7. Let K and b be subcomplexes of M with K CL. Let (f, f'):
K—N bz a C* M-immersion and assume that f* is extendible to an equivariant
map ¢ To(M/L)-TWN). Let € be a positive number,

ConcrustoN. There is a O M-immersion (g, g'): Lo N such that

(1) (g )K= 1)

(2) g'o’ (rel K);

(3) If ¢: LN is the unique map covered by ¢, then d(g(x), ¢(x)) <e.

Proof. The idea is to reduce everything to the case of extending an immer-
sion defined an the boundary of a simplex {of a subdivision of M) into Eu-
clidean space (a coordinate neighbarhood of ¥) and then use the existence of
an extension of f' to conclude that v(f') =0.

Letu= { U,-] be a family of open sets of N with the following properties:

(a) ¢(LYCU: Uy

(b} Each U;is a convex coordinate neighborhaod of diameter less than e.

Let L' be a subdivision of L so fine that each simplex of L is contained
in a coordinate neighborhood, and the image of each simplex under ¢ is
contained in some IJ,. For each simplex ¢ of L’ let U/(a) be a particular U;
containing ¢(¢). Put V(e) =intersection of all U{p), ¢ Cp. Then V{g) is a
convex coordinate neighborhand, since it is a finite intersection of such, and
it contains ¢{c); if ¢ is a face of p, V{(a) C V(p). Let L; be the union of K with
the i-skeleton of L'. We shall define successively £ M-immersions (k;, Af):
T.—N such that:

(i) k(o) C Vo),

(ii) h;’f_vegb’] T M/L;) (rel K) through an equivariant homotopy ¥, with
the property that if ¢ CL;,, X & T3(M/c), then ¢ (X)& TW(N/ V().

(i) (b B E=(f, 1)

[f L has dimension m, then (k. k) is the desired M-immersion of L.

Define an M-immersion (ko, & ): Lo—N by (ho, kf )= (¢, ¢'}] Lo. This is
trivially €= and is an M-immersion because an admissible extension can easily
be constructed by using the exponential map at points of Ly— K, while at
points of K, (¢, ¢') coincides with the M-immersion (f, /). It is clear that
{1), (i1}, and (iii} hold for £=0.

Now assume that (&, k{): L;—N is a C* M-immersion satisfying (i},
(ii) and (iii). Let ¢ C L1 have dimension i+1, ¢ K. Let W be a coordinate
neighborhood of « in M if we identify W with E* and V(¢) with E*, then
(ke BI)| Wis a O Er-immersion of ¢ in E* By 5.5 we can extend (hy, &/) to
g 80 as to satisfy (ii). If ¢ CK, then (k. %) is defined to be (f, f') ou a.
Thus (ks, 2!) can be extended over each 141 simplex of L. Moreover, we can
assume that the extensions all agree in some neighborhood of L, by the re-
mark following 4.1. Thus we can put all the extensions together to obtain
(herty By, 2 € M-immersion of L satisfying (1), (ii} and (iii) ; this completes
the induction.
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Befare praving the next theorem we must prove a lemma motivated by
the follawing considerations: Let A be a subset of M and {f,, f{ ) an M-regular
houmotopy of 4 in N. This means that f; is a homotapy of 4, and for each ¢,
f1 can be extended to an immersion g, of a neighborhood U, such that gu
and f! agree on T(Af/4); but we cannot say that g. is a homotopy of same
netghborhood of 4 in M; even if the g, are defined on some common neighbor-
hood, they may not be continuous in &

LEMMA 5.8. Let {fi, f{ ): Ak—s N be o C* Et-regular homotopy. Assume there
is @ neighborhood U of A* in Bt and a C* regular homotopy go: U—N such that
for each i, g, is an admissible extension off;‘ Ak,

ConcLustoN, There exists a neighborhood W of A¥ in E* and a C* regular
homotopy hy: W— N such that for each t, b, is an admissible extension of f, and
he=g. in an E? neighborhood of A*.

Proof. Let B CA* be obtained by shrinking A* slightly toward 0; we as-
sume that B is disjoint from A* and I/ contains the houndary B of B. For each
! we can find an £ neighbarhood IV, of B and a canonical extension (see §3)
ki Vi— N of fi. By a compactness argument {compare 2.4) we can choose
V:=V to be independent of ¢; as ¢ varies, k; is a regular homotopy of Vin N,
Since both g, and %, are admissible extensions of f, on B, it follows that
{g: Gox) ‘ B=(k, km)] B. By 2.5 (with L=B, C=1, F and G given respectively
by &, and g, Wof 2.5=UMNV} we can deform g, so that it agrees with &, in
an E? neighborhood ¥ of B, with ¥C UMV, Let V' be an E? neighborhood
such that BC YV JV CV and c{A*—~BYN IV is empty. Let [ be an E¢
neighborhood such that cl{(A*—BYC U/ CU, and T'NV’ is empty. Then
ARC UV call this last set W. Define k.: W— N,

g‘(x)! X e U"
kz(x) = gl(x) = kt(x): s ¥,
B{x), = WV,

It is easily seen that %, and W have the required properties.

TureoreM 5.9. Let K CLCM be subcomplexes of M. Let (f, [, (g, ¢'):
LN be C* M-tmmersions, Let (f., fi): KN be ¢ C2 M-regular homotopy
satisfying the following conditions: (fy, f¢)={F, f’)IK, (fi, f1Y=(2, £)| K;
there is a C° regular homotopy of a neighborhood of K in N which is an admis-
sthle extension of f, at each stage I Assume also that f{ con be extended to an
equivartant homotopy ol To{ M/L) > Tu( N}, such that ¢d =f', ¢ =g'. Choose
>0,

CONCLUSION. (fe, f!) can be extended ta a C° M-regular homotopy (hi, hl):
LN such that:

(1) (ho, B} =(f, f'} and (u, b ) ={(g, g'}.

(2) The maps &' and ¢': To(M/L) XI—Tw(A) are equivariantly homotopic
(rel To(M/LYXI\OTW(M/K)XI).

b PR
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(3} There is o C* regular homotopy of a neighborhood of L which ts an ad-
misstble extension of k, for each (.
(4) If ¢ys L— N 1s the unigue map covered by ¢¢, d(ki(x), d,(x)) <e.

Proof. Let U= [ U;} be a family of open sets in N with the following
properties:

(a) ¢.(L)CU; U; for each L.

(b) Each U; is a convex coordinate neighborhood of diameter <e.

Choose a subdivision 0=fy< - - - <f=1 of I and a subdivision L' of L
so fine that for any o CL' and I;= [£;.1, ¢}, ¢(a X1;) is contained in some U;
and each ¢ is contained in a coordinate neighborhood of M. Let ¢{aXI;)
CUeXI)e; put VieXI) =N, UlpXI).

Let W be a neighborhood of K in M and k,;: W—N a C* regular homotopy
such that for each ¢, %, is an admissible extension of f, as in the hypothesis.

Put L;=L! UK. Define (for, 04): Lo N by (Bas, 04) = (bs, ¢{)| L. By the
definition of ¢ and ¢', this is 2 €2 M -regular homotopy, when restricted to K;
using the exponential map, it can be made into a €* M-regular homotopy of
Lo Moreover, there is a C* M-regular homatopy Wa— N of some neighbor-
hood W, of Iy which is an admissible extension of #q for each £: this follows
from the assumptions made about f; and properties of the exponential map.
Observe that (8o, 85) = (g, )| Lo.

Now assume inductively that there is a C= extension (f;,, 04): L, — N of f,
such that 8a, (03) = (g, )| Z:, and a C= regular bomotopy Yu.: Wi—N, where
W is a neighborhood of L, such that

(i) 8:(e XI)C V(e X1, for each e CLy, j=1, -, s

(i) 02, ¢'| T M/L)XT (rel To(M/T)XIVTW(M/K)XI).

{iii) Y4 1s an admissible extension of 8; for each £. These conditions hold
for ¢=0. Let & be an {+1 simplex of Z,;1 not contained in X, We want to ex-
tend (8, 8/} to a C* M-regular homotopy defined on ¢. To do this, let
ee: Ditl—(interior of ¢) be a C* regular homeomorphism such that a(SY)
CWiNea. There is a C* map a': TW(E*/Dt)—T(M/o) such that (a, o) isa
C=» Er-immersion. Then (Y e, Yime') is a C° Ef-regular homotopy of Stin V.
If we restrict our attention to values of £in 7, the homotopy takes place in
the coordinate neighborhood V(e XI;) which may be identified with E=
Since ¢ is contained in a coordinate neighborhood of M, we can apply 3.4
and conclude that (Y., Yime’) can be extended a €= E*-regular homotopy of
D1, Daing this for successive values of § we obtain a € extension (8,, 8/ ) of
(W, Yima’). It follows that (8.7, B o/~1) is an extension of (i, Yim) | @(S5).
By 2.5 we can make this extension agree with (¥, Y1) in a neighborhood of
«(S%, and together they form a C= extension of (8., 04), say {(g:, ¢/ ). By 5.8
there is a C* regular homotopy of a neighborheod of ¢ into N which is an
admissible extension of ¢, for each {, and which agrees with ¢, in a neighbor-
hood of &. Therefore, after doing this for each o, we can put all the (g., g/ )
together, since they have admissible extensions agreeing with ¥, aud we ob-

R
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tain a C* M-regular homoatopy (4. ¥{): Lisi—N which is an extension of
(8ie, 84). By the inductive hypothesis, (y1, ¥/ )| Zi=(g, £")| Li. We must show
that for each i+ 1 simplex ¢ C L4, the obstruction to an M-regular homotopy
(rel @) between (71, ¥{ )} ] aand (g, ') ] a vanishes. Since everything takes place
in the coordinate neighborhood V{eX1,}, we shall use results on E+immer-
sions in Euclidean spaces already proved. If this obstruction vanishes for
each ¢, then the induction will be completed by applying 4.2 and obtaining
a C* M-regular homotopy between (y1, v/) and (g, g')| Lip1 (with the help
of 5.8 to piece the homotapies on each ¢ tagether).

We shall use 5.4 and show that the equivariant mapsy{ and g’, cansidered
as maps To(M/a)—=TW(N/ V(e X 1)), are equivariantly homotopic (rel ¢}, and
that the equivariant homotopy £, can be chosen so that £ ®%/!, where ®
means path multiplication, satisfies (i1). Since we are dealing with equivariant
maps, by 5.1 we may replace them by cross-sections of a certain bundle over
o X IxI. Since such a bundle is trivial, we can replace the cross-sections by
maps into the fiber V=T,{d/ V(e X 1,})). Let G: & X I XI— ¥ be an equivariant
homotopy as in (ii). Extend G to ¢ X0XI\Ja X1XI by G(x, 0, &) =f"(x),
G(x, 1, )=g"{(x), where " and g are the maps o— ¥ corresponding respec-
tively to f* and g'. Then extend G to e XI X1 by G{x, ¢, 1) =¢{’ (), where ¢’
corresponds to ¢'. Thus G maps all but the one face ¢ X I X0 of the boundary
of e XIXI; by a well known theaorem of homotopy theory, we can extend &
to all of ¢ XIXI; assume this has been done. Now let J=[—1, 0]. Define
H:aXIX{=1}=Y by H(x, t, —1)=v{'(x), where ¥ corresponds to ¥'.
Extend H to e XOXJUUeXIXIJoeXIX0 by H(x, 0, £)=~i(x)=f"{(x)},
Hix, t, ) =G{(x, ,0), H(x, t,0)=G(x, t, 0). H is defined on all but one face of
the boundary of & X I X J. An extension to the last face provides an equivari-
ant homotopy (rel ) between v{ and g’, while an extension to the whole of
o X IXJ provides an equivariant homotopy as in (ii} for the case {+1. Since
this extension is possible, the induction is complete and 5.9 is provern.

THEOREM 5.10. Let f1 M— N be a continuous map. If f is homotopic to an
immersion g: M—N, then f can be approximated by an immersion. (Recall that
dim M <dim N}

Praof. Since f is homotopic to g, and g can be covered by the equivariant
map gy To(M)—T(N), f can be covered by such a map. The theorem fol-
lows npon applying 5.7 with X empty and L= M.

Part I1. APPLICATIONS

6. Immersions in Euclidean spaces. In this section we give some condi-
tions that are sufficient (and trivially necessary} for the inmersibility of a
manifold in Euclidean space of given dimension. All the results have general-
izations to M-immersions of subcomplexes, with practically identical proofs.
As usual we identify Tw(E®) with V, . by parallel translation. All immersions
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and cross-sections are to be understood to be €. M is @ manifold of dimension
kE<n.

THEOREM 6.1. M 45 tmmersible in E* with a transversel »-field if and only
if there is an equivartant map y: To( M)V, vy, Moreover, given such a ¢,
there is an immersion f+ M—E® and a transversal r-field ¢ such that the map
Tl M)V pir defined by

{Xh Sty X#} —* {f*Xh <oy JeXy, dulx), - - - :¢r(x)}:

where the X; are based at x and ¢p(x) = [q’n(x), I qS,(x)}, 15 equivarianily
homotopic to .

Proof. Let p: Vi, ip-— Va.i be the bundle projection that deletes the last r
vectors of each k-+r-frame. The map pf: TW(M)—V, 1 is equivariant; by
5.7 (with L=M, N=E~", K empty) there exists an immersion f: M—E»
such that fa: TW{M)— V, i is equivariantly homotopic to pf. It follows from
the fact that # has the covering homotopy property that fx can be [ifted to an
equivariant map g: Ti(M)—>V, rer, so that fa=pp. The following map

$f: M — V,, is transversal to f:¢(x) = [YHI, e, YH.,} where if
[Xl, .+, X} isany frame based at x, g{ X3, « + +, X3} = ] Vi, « - oy Yige}.
By the definition of the action of GL(E) on Ve | Yirrs + -+, Viyr} de-
pends only on %. ¢ defines a transversal field because ¥, - « -, Vi span the

tangent plane to f{M) at f(x).
Using the correspondence between equivariant maps and cross-sections,
described in 5.1, the last result can be restated as follows:

THEOREM 6.2. M s immersible in E* with a transversal r-field if and only if
the bundle associated to Tw( M) with fiber V, 4ir has a cross-section.

It is interesting to observe that the immersibility of M in E* (or any other
manifold) depends only on the equivalence class of the principal bundle
Tw{ M), and not on the complete differentiable structure of M. In other words,
if M and M’ are homeomorphic manifolds with equivalent frame bundles,
they are immersible in exactly the same manifolds, in fact their regular
hamaotopy classes of immersions correspond. For example, the manifolds
constructed by Milnor [6] which are homeomorphic, but not diffeomorphic,
to 57, have trivial frame bundles, since 7¢(O(7})) =0, and hence they can be
immersed in E® It is not known whether there exists a pair of haomeomorphic
manifolds with inequivalent frame bundles,

TuroREM 6.3. If M is parallelizable it is immersible in EbtE,

Proof. If Ty(M) is trivial, any associated bundle has 2 cross-section, and
6.2 can be applied with =0, =241,

THEOREM 6.4. If M is immersible in Evtr with a transversal r-field, it is
immersible in E*(%).

() The proof shows that such an immersion in Estr regularly homotopic to one in B~
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Proof. It suffices to show that A is immersible in E**~1 with a trans.
versal r—1 field, and apply this result  times.

Let S be the unit #-+7—1 sphere in E*tr, Let f: M—E»*r he an immersion
with a transversal r-field. It is well known that this field can be normalized,
so we assume that f has an orthonormal r-field x(x) = [x1(x), e, x,.(x)}.
Consider r{x} as having origin 0; then x.(x} defines an element of .5, The map
xr: M—S can be covered by a map ¢: To(M) > Tt 1(S) by sending each
frame [Xl, ‘e ,Xk} based at x into [f*Xl, o X alx), - - - ,x,_l(x)};
and it is clear that ¢ is equivariant. Since k<n and r2 1, dim M <dim S and
therefore ¥, is homotopic to a constant map M-—a&S. This hamotopy can
be covered by an equivariant homotopy ¢, with ¢¢=¢. Then ¢:: TW()
—Trpr1(S/@) = Vteot r4r—1, and ¢y is equivariant. The theorem is proved by
applying 6.1.

THEOREM 6.5. If M dis immersible in E* (any n) with a lrivial normal
bundle, it is tmmersible tn E*+1,

Proof. Apply 6.4.
THEOREM 6.6 (WHITNEY). M is tmmersible in E¥1,

Proof. By 6.4 it suffices ta immerse M* in E* with a transversal field. M
can always be immersed in E* because r Vi) =0 for £=0, - - -, r—1
[10] and therefore the bundle associated to Tw(M) with fiber V. has a cross-
section, and we apply 6.2. We distinguish three cases: (1} M net compact, or
with boundary. In this case H*(M) =0, and so the obstruction to a cross-
section in the bundle associated to Tw(M)} with fiber Va._;; vanishes and
again 6.2 can be applied. (2} M compact, without boundary, & odd. In this
case the Stiefel-Whitney class W* of M, which is the obstruction to a normal
field, vanishes. (See [12] for the properties of W*.) This follows from the
fact that if % is odd, W* has order 2 [10, 38.11] while it lies in an infinite
cyclic group [10, last sentence of 39.5]. (Observe that the local systems de-
fined by the tangent sphere bundle of 3 and the normal sphere bundle of
an immersion of M in E* are the same.) (3) M compact, k even. It will be
shown in 8.2 that M can be immersed in E? in such a way that the normal
class of the immersion vanishes. This implies that the immersion has a nor-
mal field.

Next we examine the problem of immersing the k-dimensional manifold
M in E*2, We are able to give complete results for compact M if k=3, 4, 5,
and k=1 {mod 4). In these cases the immersibility of M in E*~?is a topo-
logical invariant of M.

THEOREM 6.7. Every compact 3-manifold M is immersible in E4,

Proof. By 6.4 it suffices to immerse M in E? with a normal 2-field. By 6.6
M can be immersed in E% W?(M) is the obstruction cohomology class to
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constructing a normal 2-field on M in ES; if M is compact, W2=0 [14].
Therefore there is a normal 2-field on the 2-skeleton; the obstruction cochain
to extending this field over M vanishes, since it has values in m3( Vy.0) =0 [10].

THEOREM 6.8. Let M have dimension k=1 {mod 4). Then M is immersible
in E%=2 if and only if We—1(M) =0.

Proof. One implication is obvious. If on the other hand W 1=0, then
M is immersible in E2* with a normal 2-field on the k— 1 skeleton. This field
can be extended to M, for the obstruction cochain to doing so has values in
w1 Vi) =0if k=1 (mod 4) {7].

Now suppose M has dimension 5. Using the formulas of Wu [17] for
Stiefel-Whitney classes, it is easy to show that W*(M)=0. Applying 6.8
proves

TrEOREM 6.9. Every compact 5-manifold is immersible in E*,

THEOREM 6.10. Let W2 and P* be the normal Stiefel- Whitney and Pontryagin
classes, respectively, of the compact 4-manifold M, M can be immersed in E® ¢f
and only if there exists an integral cohomology class aS H*(M) such that
a=W? {mod 2} and o= P*.

Proof. Let M be immersed in E? (6.6); W2 and P* are determined by the
normal 2-sphere buridle on the immersion. By [14] W#=0, i.e., the character-
istic class of the normal sphere bundle vanishes. By a result of Massey [3],
the existence of & is equivalent to the existence of a cross-section of the nor-
inal sphere bundle, i.e., a normal field. By 6.4, this is equivalent to the exist-
ence of an immersion of M in E4

The complex projective plane is an example of a 4-manifold that is not
immersible in Ef, This is because P* is three times the fundamental class,
and the pairing H?*X H*—H* given hy the cup product is the natural pairing
ZXZ—Z, while 3 is not the square of an integer.

7. Immersions of projective spaces. Let P* denote the real projective
space of dimension %,

THEOREM 7.1. The following immersions are possible:
{a) P%in K&
(b) Pt in E7,
(c) Pin ET,
(d) P?in E?,
(e) Pin ES,

Proof. P* and PT are known to be parallelizable, so (a) and (d) follow
from 6.3, Since P7 is orientable, any immersion of it in Ef has a transversal
field, and since P*C P*C P7, there exist immersions of P% and P in E® with
transversal fields, by d; (b) and (¢c) now follows from 6.4. Finally, (e) follows
from 6.8 because WP =0. '
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(a) was first proved by Milnor [4] and Lashof-Smale [2].
A consideration of normal Stiefel-Whitney classes shows that (a) through
(d} are best possible, but the problem of immersing P9 in E% js open.

THEOREM 7.2. Let k be even. P* is immersible in E¥*' if and only if P**! is
parallelizable(®).

Proof. If P! is parallelizable it is immersible in E**?, and any such
immersion has a normal field (6.3). Therefore P*C P ! is immersible in
Ex+? with a normal field, and by 6.4 P* is immersible in E**+L

Conversely, if P* is immersed in E*!, and % is even, its normal line
bundle is the unique nontrivial line bundle aver P*, and is therefore equiva-
lent to the normal line bundle of P% in P*1, Therefore we can immerse a
tubular neighborhood of P* {(in P*+t1) in E¥( E*+2, The obstruction to ex-
tending this P*+l-immersion of P* in E**? takes values in #u( Vigs z41). The
assumption that P* is immersible in E*t! means that all the normal Stiefel-
Whitney classes must vanishk, and this is only possible if 2 has the form
2i—2, if & is even. For these values of &, mi( Viseen) =0; see [7] for the cases
k=2, 6; for higher values of % (of the form 2¢—2) see [1]. Therefore P! is
immersible in E*2 The composite immersion S¥— P15 EH2 where the
first map is the double covering, is an immersion of S**! in E*t? with even
normal degree. (The normal degree of an immersion M*»—Ertt ig the homo-
logical degree of the induced map M*—5"%, each point x of M* going into the
oriented line normal to the image of T(M*/x).) Milnor [4] shows that in this
case S*t1ig parallelizable, and since P#+! is immersed in E¥2 P4+t myst also
be paralielizable [4].

8. Regular homotopy. In [9] Smale proves that two immersions of S* in
E% gre regularly homotapic if and only if they have the same normal class,
and that any even 2&-dimensional cohomology class is the normal class of
some such immersion. We generalize this result in two ways: replacing S*
by M?*, and replacing E* by N* (but not both!). Thus, for these special
cases the normal class and the homotopy class are the only invariants of the
regular homotopy class of the immersion.

LemMma 8.1. Let D be a k-disk, and f, g: D—E™ immersions such that
(f. fx)| D=1(g, gs)| D. Let ¢ be a field transversal to f (and g) on D. Let C be the
value of the obstruction cochain to extending ¢ over f(D) on the generator of
Ci(D, D), and C' the corresponding value of the obstruction to extending ¢ over
2(D); thus C, CEme1(V), where V is the fiber of the bundle of vectors trans-
versal to f (or g). Let 8:mi( Vo) —mea(Y) be the boundary operator of the
komotopy sequence of the bundle Vo 11— Var v, whose fiber isalse V.

CowcLusioN. dQf, gy =C—C".

() According to recent results of Kervaire, Bott, and Milnor, 59, and hence P4, is parallel-
izable only if d==1, 3, 7,
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Proof. Let .S be the k-sphere obtained by identifying the boundaries of
two copies of D. Let B—.5 be the bundle obtained by identifying the trans-
versal bundles of f and g over D. Let ¢: S— Va1 be the map ¢{x) =f*[e.-(x)}
if x is in the upper hemisphere of .S, ¢(x) =g« { ei(x) } if x is in the lower hemi-
sphere, i=1, - - -, kB, each hemisphere being identified with D. Then by
definition, {f, g) is the homotopy class of ¢, which is the same as ¢#(s) where
5 1s the generator of 7,{S) that corresponds to the orientation of S given by
orienting its upper hemisphere by the orientation of D, ¢ can he covered by
the map &: B~ Vi iqa defined by $(X) = {fser(x), - - -, faer(x), X} or $(X)
= {geer(x), - - -, geer(x), X} according as X is a transversal vector to f(D)
at f{x) or to g{D) at g{x); this map identifies the fiber of B aver x with the
fiber of Vi i1 over ¢(x). Therefore the following diagram is commutative:

i)
m(B) — mS) — m(¥)
1 Lés A | identity
TV s =1} = (Vi) — me1(Y)

Therefore 3Q =d¢s(s) =a(s). By [10, 35.12] 8(s) is the Kronecker index of the
characteristic class of B with the generator of Hy{S). This characteristic class
is the cohomology class of the ohstruction cochain to a cross-section. Chaoos-
ing the cross-section ¢, we see that the obstruction cachain to extending ¢
takes the values C and — €’ on the respective upper and lower hemispheres of
S, when they are coherently oriented. Therefore the Kranecker index is
C— ' =38(s) =0¢p#(s) =

THEOREM 8.2. Let M be a manifold of even dimension k. Two immersions
[, g1 M—E* gre regularly homotopic if and only if they have the same normal
class, and any even class of H*(M) is the normal class of some immersion of M
in K2,

(By H* M) we mean cohomology with coefficients in the local system
determined by the unit tangent sphere bundle of M; this is the same system
as that determined by any immersion of 3 in E*:;if M is compact and with-
out boundary, H*(M) is infinite cyclic [10], otherwise H:(M)=0.)

Proof. If H*(M) =0, the obstruction cohomology class to making f and g
regularly homotopic vanishes, since it lies in H*{Af). (The first nonvanishing
homotopy graoup of Vi s is in dimension k.) This disposes of the cases M non-
compact or with boundary.

Assume M is compact without boundary. If f and g are regularly homo-
topic, their normal bundles are equivalent, and 8o they have the same normal
class. T'o prove the converse, we can deform f by a regular hometopy so that
it agrees with g (and fx with g«) on the B—1 skeleton of M. This can be done
by 5.9, because the obstruction to making fs and ge¢ equivariantly homotopic
on the k—1 skeleton of M has values in 7_1( Vau i) =0. We can choose the



274 M. W. HIRSCH INovember

equivariant homotopy so that the obstruction cochain to extending it van-
ishes on the caomplement of a k-disk D embedded in M. Therefore we assume
thatfand g agreeon M —D. Let¢ bhea transversal fietdonf(M — D)y =g(M —D);
we assume ¢ is defined on the boundary of D also. It is clear that fand g are
regularly homotopic if and only if Q(f] D, g| D) =0. Let mC H*(M) be the
generator corresponding to an orientation of D. It follows from definitions
that W(f) = Cm, We(g) = C'm, where C and (' are defined as in 8.1. Now as-
surme g is even. In this case the exact homotopy sequence of the bundle
Vg;,.k+1-—) ng.g with fiber ¥ reduces to

a
0 { Vap i) —me (V) ome o (Vag i) =0

[10] which is the sequence 0—Z—Z—Z,—0. As in [10] there is an exact

sequence
.

He( A Z) > HY M) —HYM; Z,)
induced from the short sequence above. Since H*{ M) = Z and every element of
HYM; Zs)

obviously has order 2, §* =0 and by exactness 3¢ is one-one. It follows from
8.1 that 3(Qf| D, gl D)ym) =(C— CYm=Wr(f) — Wt(g), which is 0 if f and ¢
have the same normal classes. Since d is one-ane, =0, and so f and g are
regularly homotopic.

To prove the rest of the theorem, let f: M—E* he a fixed immersion,
which exists by virtue of 6.2. By [17], W*(f) is even. Let a=28C H*(M).
Letting D be a diffeomorphically embedded k-disk of A, let g: D—E% be an
immersionsuch that (g, g4) [ D=(f fe [ D and such that Q.((g,f)] D)y =4, this is
possible by 2.8d. g can be extended to an immersion of M by defining g(x)
=f(x} for x& M —D, and by 2.5 we can defarm g slightly so that it isa =
immersion of M. Then as abave, 3Q((g, f}| D} = W¥(g) — W*(f). Since 9 is multi-
plication by 2, we have shown that W#(g) =a+ W*(f). Since 8 was arbitrary,
this completes the proof.

THEOREM 8.3. Let S be a sphere of even dimension k and N a manifold of
dimension 2k, A necessary and sufficient condition that twe immersions f, g:
S—N be regularly homotopic is thal they be homolopic and have the same normal
class. Given a homolopy class of S in N and an even element of H*(S), there is an
immersion in the homotopy class with the element as normal class.

Proof. It suffices to prove the sufficiency of the condition. Choose a
homotaopy (not regular} fi: S—>N with fo=f, fi=g. Cover f. by ¢, with
¢a=f: Tr(S)—=T(N). We can alter f, slightly so that f; agrees with g on some
neighborhoad of S, (S; is the i-skeleton}, by 2.5. Thus (f, fx) [ Saand (g, g«) I S
are regularly hamotopic. The obstruction cohomology class to extending this
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regular homotopy to one between f and g lies in H'(S; m(Tw(N)})=0. This
means that there is a different regular homotapy which is extendible to Si.
We can choose this regular homotopy to approximate the first as a homolopy,
because by 5.9, choosing a different regular homotopy is equivalent to choos-
ing a different equivariant map covering f., and then altering it slightly to
obtain as its projection a regular homotopy, which it covers. This process
can be continued inductively over successive skeletans of S until the follow-
ing situation is reached: There is a regular homotopy f: of f such that
(f1, fis) | S =g, g4) [ Si—1, and f; and g are homotopic (rel Si ;) as continuous
maps. Moreover, we can assume that .§ has a simplicial subdivision so fine
that for any simplex ¢, f(e) and g{s) are contained in the same coordinate
neighborhood. Using the correspondence between regular homotopies and
homotopies of cross-sections, we can alter f, so that the obstruction cochain
is any given element of its cohomalogy class. Thus we can assume that there
is a k-disk D diffeomorphically embedded in S such that fi and g agree on
S—D. Picking a transversal field ¢ on the closure of fi(S—D)=g(S—D), and
observing that £1(D) and g{D) are contained in the same coordinate neighbor-
hood, we have reduced the first part of the theorem to 8.1, which has been
proved. The second part follows from the fact that m;_1( Vs x) =0. This means
that the map &: H¥(S; m(TW(N))>HYS; m(N))), induced by the map
Tw(N}—N, is onta. Therefore given 2 map f: S— N, to produce an immersion
homotopic to f, take any immersion g: S—N (e.g., an immersion of Sin a
coordinate neighborhood of AN) and choose an immersion h: S—N that
agrees with g on Sio and such that 8(Q(g, k)) =d(f, k), the difference cochain.
This can be done by 5.9 and the fact that equivariant maps Th{S)— Tw(N)
are classified by H*¥S; r.(T{(N))). It is clear that d(g, k) =8((g, &)) and
therefore d(f, g) =0, so that g is in the homotopy class of f, The rest of the
theorem now follows from the analogous part of 8.2,

TueoreM 8.4. Two immersions of M in E¥! are vegularly homotopic.

Proof. The obstruction to a regular homotopy has values in ol Var g 2) =0.
9. The normal degree. Let f he an immersion of the arientable k-manifold
M in E*t', The normal degree of f, as defined in §7, is denoted by D,.

THEOREM 9.1. If M is parallelizable, there is an immersion f1 M—E* with
3); ={.

Proof. Let ¢: Te(M)— Vi be an equivariant map, which exists because
M is parallelizable. Let f: M—FE#1! bhe an immersion such that fe: TW(M)
— Vi1 4 1s equivariantly homotopic to the composite

@
To(My > Vin C Vigan

(see 6.1). Let 1 M—T (M) be the cross-section corresponding to ¢ (see 5.1).
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Let p: Viprs—S* be the map assigning to { X, - - -, X} the vector ¥ of
unit length such that [Xl, s, Xy, Y} is a k+1 frame inducing the stand-
ard orientation on E*tL It is easy to see that 2y is the degree of the map
pfsf: M—.S%, which (s homatopic to pgb. Since p| Vix 18 constant, pfad is
homotopic to a constant and therefore D,=0.
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