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On Piecewise Regular n-Knots 
By MORRIS W. HIRSCH and LEE P. NEUWIRTH 

0. Introduction 

This paper is divided into two parts. In the first part, we define piecewise 
regular n-knots in S'+' in such a way as to include both smooth and piecewise 
linear knots. Various equivalence relations are defined. The main point is that 
two smooth knots are diffeomorphic if they are equivalent; see ? 3. Thus 
smooth homotopy n-spheres which are embeddable in SI'2 are distinguishable by 
their knot types. In particular, if A, B c S n+2 are smooth homotopy n-spheres 
which are not diffeomorphic, then S"+4 - A and S"+4 - B are not piecewise 
linearly homeomorphic. In ? 4 various groups involving knots are defined. 

In Part II, which is independent from Part I, certain algebraic invariants 
of n-knots are studied. One of these generalizes the Alexander polynomials. 
A particular smooth 7-knot is examined illustrating the technique. 

PART I 

1. Definition and background 

By a smooth manifold we mean a differential manifold of class Co. We 
shall assume the reader is familiar with the ideas of diffeomorphism, smooth 
triangulation, etc. A good reference is the book [3] of Munkres. In addition, 
the basic notions of piecewise linear theory are needed; see for example Zeeman 
[1, 2]. In order to combine smooth and piecewise linear (PL) theory, we use 
piecewise regular (PR) techniques. 

We indicate homotopy by -, diffeomorphism by R, and PL homeo- 
morphism by _. The identity map of X is 1,. 

By an embedding, we mean a map which is a homeomorphism onto its 
image. We define a PR embedding of a PL manifold K into a smooth manifold 
M to be an embedding f: K - M such that there exists a commuting diagram 

L 

( 1) //fit 
K /f> M 

where L is a PL manifold, t: L -M is a smooth triangulation, and g: K-AL is 
a PL embedding onto a subcomplex of L. Thus f (K) is closed. We also define 
a PR embedding of a smooth manifold J into a smooth manifold M to be an 
embedding h: J-+M such that there is a commuting diagram 
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PIECEWISE REGULAR f-KNOTS 595 

K 
S \f 

Ih\ 
J 

- 
M 

where K is a PL manifold, s: K--J is a smooth triangulation, and f: K-EM is 
a PR embedding as previously defined. A PR homeomorphism is therefore 
essentially the same as a smooth triangulation. 

By a PR submanifold A of a smooth manifold M we mean the image of 
a PR embedding into M. Observe that A is necessarily closed. 

Let K be a PL submanifold of codimension d of a PL manifold L. We say 
that K is locally flat (in L) if each point of K has a neighborhoood U in L 
such that putting Un K= V, we have (V x R4, V x 0) _ (U, V). Here Rd is 
euclidean d-space. 

Referring to diagram (1) above, we say that the PR submanifold f (K) is 
locally flat if g(K) is a locally flat PL submanifold of L. We also say, in this 
case, that the embeddings f and g are locally flat. 

Observe that, as a consequence of the invariance of domain, if K is locally 
flat in M then K n M = OK (where "a" denotes boundary). 

If K and L are topological manifolds, the definition of K being locally flat 
in L is just as in the PL case, except that the term "PL" is never mentioned. 

Let M be a smooth manifold. A subcomplex of M is the image t(K) where 
t: L-)M is a smooth triangulation, and K c L is a subcomplex. 

The following lemma can be proved by the theory of triangulating vector 
bundles; cf. Lashof-Rothenberg [8]. An equivalent theorem was stated by 
Cairns [6]. (For a dubious proof, see Hirsch [7].) 

LEMMA 1.1. A smooth compact unbounded submanifold in the interior 
of a smooth manifold M is a locally flat PR submanifold of M. 

Let M be a smooth manifold, K a PL manifold, and f: K-IM a smooth 
triangulation. A PR isotopy of f is a PR homeomorphism F: K x I - M x I 
such that, 

(a) F(Kxt)-Mxt 
(b) F (x , 0) = ( f (x) , 0). 

By (a), there are unique maps F,: K-EM such that F(x, t) = (Ft(x), t); it is 
easy to see that each F, is a PR homeomorphism. Two subcomplexes A, B of 
M are called isotopic if there is an F as above such that F1F;'(A) = B. A 
similar definition holds for two pairs of subcomplexes. The homotopy F1F-;': 
M--M is called a PR isotopy of M. 

EXAMPLE. In the plane, the boundary of a triangle and a circle are isotopic 
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596 HIRSCH AND NEUWIRTH 

subcomplexes. 
The following version of J. H. C. Whitehead's uniqueness theorem for 

smooth triangulations can be easily derived from his original paper [5], or 
Munkres' book [3]. 

THEOREM 1.2 (Whitehead). Let M be a smooth manifold, and s: K-y M, 
t: L - M smooth triangulations. There is a PR isotopy F: K x I - M x I 
of s such that t-1F1: K - L is a PL homeomorphism. 

2. Smooth regular neighborhoods 

In this section we develop the material needed for the diffeomorphism 
criteria for smooth knots of ? 3. 

We refer to Hirsch [7] for details on smooth regular neighborhoods 
(-SRN'S). See also Mazur [9]. 

We need only the following facts from [7]. If M is a smooth manifold 
and K c M - OM is a subcomplex of M, in any neighborhood of K there is a 
smooth submanifold N of M such that: 

(a) N is a neighborhood of K; 
(b) let P be the second barycentric regular neighborhood of K (in a 

smooth triangulation of M making K a subcomplex). There is a PR isotopy of 
M taking (P, K) onto (N, K). The isotopy leaves a neighborhood of K fixed. 

(c) If K is a smooth submanifold of M, then Nis a tubular neighborhood 
of K. 

We call N an SRN of K. 
Now suppose K meets the boundary of M, a case not covered in [7]. By 

an SRN of K we shall mean a PR submanifold N of M such that: 
(a) N is a neighborhood of K; 
(b) N n AM is an SRN of K n AM, as previously defined; 
(c) the closure cl (ON - (N n AM)) is a smooth manifold; 
(d) if P is the second barycentric regular neighborhood of K in M, then 

(P, K) and (N, K) are PR isotopic in M. Thus N is smooth except for a corner 
along O(N n AM). 

Using the techniques of [7], it is easy to prove 

LEMMA 2.1. Let N' be an SRN of K n AM in OM. There is an SRN of K 
in M, say N, such that N n M -N'. 

In order to state the main results of this section we use the notation 
IQ.' M1a to indicate that smooth manifolds are h-cobordant. This means 

that there is a smooth manifold W whose boundary can be expressed as the 
disjoint union Mo U M such that M,' Mi, and M,' is a deformation retraction 
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PIECEWISE REGULAR f-KNOTS 597 

of W(i= 0,1). 

THEOREM 2.2. Let Ki (i=0, 1) be subcomplexes of compact unbounded 
smooth manifolds Mi. Let Ni c Mi be smooth regular neighborhoods of Ki. 
If M- K - M1-K1, then .N0 _ N1. 

PROOF. We may assume Ki and Mi are connected. Let f: M, - K0 
M- K1 be a diffeomorphism. From the compactness of M, it is easy to see that 
N C MO is a neighborhood of K. if and only if the closure cl (M1 -f (M, - N)) 
is a neighborhood of K1. Therefore if No is an SRN of K., there is an SRN N, of 
K1 such that N, - K1 c intf(N0 - K,), and similarly for f 1. Hence we can 
find SRN'S Xi, Yj, Zi of Ki such that: 

(a) Zi c int Yj and Yj c int Xi; 
(b) f(Xo - Ko) c int X1 - K1, and similarly for Yj and Zi. 
Let V be the connected submanifold of X1 bounded by 8 Y1 U f ( Yo). 

fi~~~ - L 

aZ1 f(aZo) 

ax, a~ax) w ffQYX' 

We shall show that f (O YO) is a deformation retract of V, and the reader will 
then be able to show that 8 YI is a deformation retract of V; together we shall 
have proved Theorem 2.2. 

Define A and B to be the connected submanifolds of X1 bounded respective- 
ly by f (OXo) U f (O YO) and OX, U 8 Y1. Since f (O YO) is a deformation retract of 
A, we obtain 

(2.3) There is a deformation of V in A onto f ( YO), leaving f ( YO) fixed. 
Clearly 0 Y1 is a retract of B, and hence also of cl (A - V). Since 

vn cl(A - V) = 0Y1, we have 
(2.4) A retracts onto V. 
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598 HIRSCH AND NEUWIRTH 

Combining 2.3 and 2.4 proves that 8 Y0 is a deformation retract of V. 
The Zi are used to show that F(O Y.) is a deformation retract of V, thus 

proving Theorem 2.2. 
Let K. and K, be locally flat PR submanifolds of a smooth submanifold M. 

We say that K. and K1 are weakly h-cobordant (as submanifolds of M) if there 
exists a subcomplex C c M x I such that: 

(a) C is a topological manifold; 
(b) C is topologically locally flat in M x I; 
(c) cnmMx i= Ki x i(i =0,1); 
(d) C admits K. x 0 and K1 x 1 as deformation retracts. We call C a 

weak h-cobordism. 

THEOREM 2.5. Let Ko and K1 be locally flat PR submanifolds of a smooth 
manifold M, and Ni smooth regular neighborhoods of Ki (i = 0, 1). If K, 
and K1 are weakly h-cobordant, then ON0 O AN1. 

The proof depends on E. Fadell's concept of normal fibre space [13], which 
we discuss first. 

Let G be a topological manifold and F c G a locally flat submanifold of codi- 
mension k. Let GI be the space of paths in G, with the compact open topology. 
Fadell defines the normal fibre space 't = >(G, F) of F in G to be the fibre 
space w: Q - F where Q = Q(G, F) = {o E GI I co-l(F) = 0} and w: Q - F is given 
by w(wj) = se(0). (What we call Q, Fadell calls No.) Fadell assumes OF= OG = A, 
and proves that >(G, P) is a fibre bundle whose fibre has the homotopy type 
of Sk-i. It is easily seen that this is also true if F has a boundary. 

LEMMA 2.6. The natural fibre map 

v(OG, OF) V (G. F) I OF 

is a fibre homotopy equivalence. 
PROOF. The details are left to the reader. The idea is to shrink each ele- 

ment se of Q(G, F) I OF 'until o)(I) lies in a neighborhood W of OF in G such 
that (W,WnF, OF) is homeomorphic to (OF x R2, OF x RK x 0, OF x 0 x 0), 
and then deform o)(I) into OG using the product representation, in such a way 
that se stays in Q(G, F) during the deformation. 

Let (X, A) be a topological pair. A neighborhood U of A in X is clean if 
there is a strong deformation retraction of U onto A given by a homotopy 
ft: U - U(O ? t ? 1) such that fr-'(A) = A for 0 _ t < 1. We call such a 
deformation f a clean deformation retraction. If X is a complex, A a sub- 
complex, and U the second barycentric regular neighborhood, then U is clean. 
If X is a smooth manifold, A a smooth unbounded submanifold, and U a 
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PIECEWISE REGULAR f-KNOTS 599 

tubular neighborhood, then again U is clean. More generally, a mapping 
cylinder neighborhood [14] is clean. 

LEMMA 2.7. Let G be a topological manifold, F a locally flat submani- 
fold, and U a clean neighborhood of F in G. Let v = (sc, Q, F) be the normal 
fibre space of F in U. Let f: Q U- F be the "exponential" map [(W)= 
w(1). There is a map X: U- F- Q such that 

1t O X = IJ-F and \o -IQ. 

PROOF. Let ft: U - U be a clean deformation retraction of U onto F. 
For each x C U let X(x) be the path \(x)(t) = f1-t(x). From the cleanliness of 
f we see that for all x C U-F, X(x) e Q. It is clear that p1 o X = 1-F. To 
prove that X o p = 1,, we define a homotopy gt: Q - Q such that go = X o [A 

and g, = 1 , as follows. For s > 0, let hs: R-- R be the linear map such that 
hK(O) = 1 and h1(s) = 0. Now define g8(co)) = ws: I U by 

(@(t) if s = 0. 

oJ.(t) = - (w(s))(h8(t)) if 0 ? t ? s and s > 0 
io(t) if s ? t < 1. 

It is easy to prove the continuity of )o, and of the map s ios. It is clear that 
WS C Q, that wo0 = a) and (o, = Xp(o)), completing the proof of Lemma 2.7. 

PROOF OF THEOREM 2.5. The notation being that of 2.4, let C c M x I be 
a weak h-cobordism between Ko and K1. Let W be a smooth regular neighbor- 
hood of C in M x I, such that Wn (M xi) = Ni x i (i = 0, 1). (See Lemma 
2.1.) Put V cl(&W - w n a(M x I)), so that V is a smooth submanifold 
of M x I, and &V = ONO x 0 U ON1 x 1. We shall prove that V is an 
h-cobordism. 

Let Q be the normal fibre space of C in M x I, and Qi that of Ki x i in 
M x i. According to Lemma 2.6, the injection Qi Q I Ki x i is a homotopy 
equivalence. 

Since No, N1, W are clean neighborhoods of Ko x 0, K1 x 1, and C, re- 
spectively, there are homotopy equivalences 

fo: (No- Ko) x 0 - Qo, 
f1: (N1 -K1) x 1-oQ1, 
g: W-C - Q 

by Lemma 2.7. 
Moreover, we can choose the three clean deformation retractions so that 

the following diagram commutes: 
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600 HIRSCH AND NEUWIRTH 

QO yQ IK, x 0 yQ Q Xl < Q, 

Tfo ___f__ 

(No-Ko)xO> W-C < (N1-K1) x 1. 

The unlabelled maps are injections. 
Now observe that since Ki is a deformation retract of C, it follows that 

the injections Q I Ki x i - Q are homotopy equivalences. Therefore the injec- 
tions (Ni - K) x i W - C are homotopy equivalences. It is clear that the 
injections 

-Ni > (NiM-K) and V > W-C 

are homotopy equivalences (since Ni and W are regular neighborhoods Ki and 
C). Therefore, from the commuting diagram 

&Ni x i - (Ni - K) x i 

V > W-C 

we infer that the injections &Ni x i - V are homotopy equivalences. There- 
fore ONO h &N1, q.e.d. 

We end this section with a well known fact about h-cobordism. 

LEMMA 2.8. Assume n > 5. Let A and B be compact, connected, smooth, 
unbounded, oriented n-manifolds, such that ri(A)- 0. If A x S1 h B x S1, 
then A B. 

PROOF. From the theorems of Whitehead [15, 16] and Higman [23] we 
see that every homotopy equivalence between complexes whose fundamental 
groups are either trivial or infinite cyclic is simple. Therefore A x S1 and 
B x S1 are s-cobordant. Applying the s-cobordism theorem of Mazur [9] or 

Stallings, we conclude that A x S1 B x S1. Therefore A x R1 B x R1, 
and it is easy to see that this means A h B. Another application of the s- 
cobordism theorem (or the h-cobordism theorem of Smale [17]) proves A B. 
One can verify that orientations are preserved. 

3. n-knots 

Let Sk denote the unit sphere in euclidean k + 1 space, with its usual 
differential structure. An n-knot is the image A-f (Sn) of a locally flat PR 

embedding f: Sn - Sn+2. If A happens to be a smooth submanifold, we say 
that A is a smooth n-knot. 

A natural way of defining equivalence between n-knots A and B is to 

require the existence of a PR homeomorphism of Sn+2 carrying A onto B. That 
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PIECEWISE REGULAR n-KNOTS 601 

the relation so defined actually is transitive depends on the uniqueness Theo- 
rem 1.2 for smooth triangulations. We call this relation simply equivalence. 
If A and B are oriented n-knots, we require the homeomorphism to carry the 
orientation of A into that of B. 

Another possibility is to insist that A and B be PR isotopic. This is the 
same as asking for an orientation preserving homeomorphism of S n+2 carrying 
A onto B, by virtue of V. K. A. M. Gugenheim's theorem [22] that an orien- 
tation preserving PL homeomorphism of a combinatorial sphere is PL isotopic 
to the identity. 

In many of the theorems in this section we conclude that two homotopy 
n-spheres are diffeomorphic for n > 5. In fact, any two homeomorphic 3- 
manifolds are diffeomorphic [20, 21] and it has been announced by Cerf that 
there is only one compatible differential structure on a combinatorial 4-sphere. 
Nevertheless we prefer to state our theorems for n > 5, since the proofs given 
are only valid under that restriction. 

THEOREM 3.1. Assume n ? 5. Let A and B be oriented smooth n-knots. 

If A and B are equivalent, then A B. 
PROOF. If A and B are equivalent, then obviously Sn+2 - A and Sn 2 - B 

are PR homeomorphic. The Munkres obstruction [4] to smoothing a PR homeo- 
morphism lies in 

H,(Sn+2 -A; rF,+2-i) O < i < n + 2 

based on infinite chains. Since A is a homology n-sphere, this group vanishes 
for homology reasons except possibly for i = n + 1, when it vanishes anyhow 
because F1 -0. Therefore A and B have diffeomorphic complements. If U, V 
are smooth regular neighborhoods of A, B respectively, then by Theorem 2.2, 
AU 8 V. Since A and B are smooth, U and V are tubular neighborhoods. 
Because A and B have trivial normal bundles, &U- A x S1 and &V- B x S1. 
Lemma 2.8 now shows that A B. It can be shown that orientations are 
preserved if A and B are oriented. 

Observe that in the proof, the application of Theorem 2.2 depends only on 
the hypothesis that Sn+2 - A and Sn+2 - B are PR homeomorphic. Hence we 
obtain 

THEOREM 3.2. Assume n ? 5. Let A and B be smooth (unoriented) n- 
knots such that Sn+2 - A and S4-2 - B are PR homeomorphic. Then A - B. 

In the same vein we have 

THEOREM 3.3. Assume n ? 5. Let A be a smooth n-knot such that Sn+2-A 

has the homotopy type of the circle S1. Then A Sni. 
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602 HIRSCH AND NEUWIRTH 

PROOF. We refer the reader to Kervaire [18], where the proof is outlined. 
Problem. Is the diffeomorphism type of a smooth n-knot A determined 

by the homotopy type of Sn+2 - A? Perhaps one should first consider the case 
where 7wi(Sn+2 - A) 0 0 for i > 1. 

The set of equivalence classes of ordinary knots forms a semi-group under 
the connected sum operation, but not a group. Fox and Milnor [19] introduced 
a weaker equivalence relation which does lead to a group. We now describe a 
generalization of Fox-Milnor equivalence. 

Two n-knots A, B are concordant if there is a locally flat PR embedding 
if: SnXIS+2 x Isuch that f(SnX 0)=A x 0andf(SnX 1) = Bx I. If 
A and B are oriented, there must be an orientation of Sn such that the maps 
g0: S -n A and g,: SX - B given respectively by gi(x) = f (x, i) are orientation 
preserving. We refer to f (Sn x I) as a concordance from A to B. 

Warning. If A and B are smooth, we do not assume that f (Sn x I) is 
smooth! 

It is easy to prove that concordance is indeed an equivalence relation. 
We have seen in Theorem 3.1 that the diffeomorphism type of a smooth 

n-knot is determined by its equivalence class for n _ 5. The analogous result 
is true for its concordance class. 

THEOREM 3.4. Assume n ? 5. Let A and B be smooth oriented n-knots 
which are concordant (or more generally, weakly h-cobordant, as defined in 
?2). Then A' B. 

PROOF. By Theorem 2.5, the boundaries of smooth regular neighborhoods 
of A and B are h-cobordant. Since A and B have trivial normal bundles, this 
means that A x S1 h B x S1. Now apply Lemma 2.8. The reader can verify 
that orientations are preserved if A and B are oriented. 

Observe that every n-knot A bounds an (n + 1)-disk E in the n + 3 disk 
D , simply by taking the cone on A from the center 0 of D .. However, E 
might not be locally flat at 0. The last theorem shows that there are smooth 
n-knots not concordant to the trivial one (Sn), since there exist exotic n-spheres 
smoothly embeddable in Sn+2. In Part II we shall study such embeddings in 
more detail. Here we merely state a well known fact. 

THEOREM 3.5. Let M be a smooth homotopy n-spheres. 
(a) If M bounds a smooth compact parallelizable manifold, then M is 

smoothly embeddable in Sn+1. 
(b) If M is a smooth submanifold of S+2, then M bounds a smooth, 

compact parallelizable submanifold of SIn+2. 
PROOF. See Kervaire [18]; cf. also Hirsch [12]. 
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PIECEWISE REGULAR f-KNOTS 603 

For part (b), it is unnecessary to assume that M is a homotopy sphere; 
H1(M) = 0 suffices. 

Problem. Does there exist an n-knot A which does not bound a locally 
flat contractible topological manifold in Dn+3? From Theorem 3.4 we deduce 
that there exists a smooth n-knot A not bounding a contractible PR subcomplex 
of D n3 which is locally euclidean and locally flat. One can of course replace 
A by a flat PL n-knot with the same property. 

4. Groups of n-knots 

If A is an oriented n-knot, we denote by [A] the concordance class of A; 
i.e., the set of all oriented n-knots concordant to A. Let (En be the set of all 
concordance classes of n-knots. We make C(a into an abelian group in the usual 
way, using the connected sum. To define the sum [AO] + [A1], first replace A, 
and A, by n-knots Bo, B1 concordant respectively to AO, A1, and contained in 
opposite hemispheres of Sn+2. Let Di c Bi (i 0, 1) be a small n-disk, PR 

embedded in S . 2. Let f: S-1 X I-> S-2 be a PR locally flat embedding such 

that, putting f(Sn-1 x I) -C, we have C B. =D, = f (Snl- x i), and in 
such a way that the homeomorphism f: Snl1 X i - &Di preserves orientation, 

where S"-1 x i inherits its orientation from Sn-1 x I, while SD, inherits its 
orientation from Bi via Di. (We assume S-1 x I is given an orientation first.) 

It is easy to verify that with this definition {AO} + {AJ} is well defined, 
and for n > 1 makes Cn into an abelian group. The standard Sn represents 
o C (Cn and the inverse of [A] is [-A], where -A is the reflection of A in a 

hyperplane. 
Now let Sn c C,, be the subset made up of concordance classes of smooth 

n-knots. It is easy to see that (5J, is a subgroup, since the construction of 
{A0} + {AJ} can be carried out smoothly if A. and A, are smooth. 

THEOREM 4.1. For n > 3 there is a homomorphism of 5, onto 0n(817), 
the group of diffeomorphisn classes of oriented smooth homotopy n-spheres 
bounding compact parallelizable manifolds. 

PROOF. For each smooth n-knot A, let (1)(A) be the diffeomorphism class 
of A in O,, (the group of diffeomorphism classes of oriented smooth homotopy 
n-spheres). Then @~(A) c On(iw) by Theorem 3.5. From Theorem 3.4, we see 
that (1) is constant on concordance classes. Denoting the induced map And 
fO(8j) also by q@, Theorem 3.5 proves that 4 is onto. Since the group opera- 
tion in On is defined by connected sum, <4 is the desired group homomorphism 
of an onto O,(0;). 

REMARKS. 1. If n is even or n -5, then n(817) =0 (Milnor-Kervaire [11]). 
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604 HIRSCH AND NEUWIRTH 

If n = 3 or 4, it is more reasonable to map ton into Fn, and P13 = 0 by Smale [20] 
and Munkres [21], while Cerf has announced that P4 = 0. Moreover, 04 = 0. 
On the other hand, for n _ 7 and odd, 0n(J8) is frequently non-trivial. For 
instance, 07(ari) = 07 = Z28- 

2. From Theorem 4.1, one can get some vague information about the 
group a.n For example, it follows that if x C n, has finite order v, then v is 
divisible by the order of (1)(x) in Oe. One can draw conclusions such as: if 
[A] G I7 has order 3, then A S7. 

Kervaire and Milnor have proved that for n > 3, 0n(J8) is finite [11]. 
Combining this fact with Theorem 4.1 yields 

THEOREM 4.2. Let Ha c ,n be the subgroup whose elements are repre- 
sented by smooth embeddings of S n. If n > 3, then SW has finite index. 

This theorem is also true for n = 3. In this case S3 = S3 because there is 
only one diffeomorphism class of differential structures on S3 [20, 21]. 

Problem. Is Sn = Cn? Equivalently, is every locally flat combinatorial 
n-sphere in Rn-I-2 actually flat? 

Problem. If two smooth n-knots are concordant, are they smoothly con- 
cordant? That is, can one find a concordance which is a smooth submanifold 
of Sn+2 X I? 

PART II 

5. Preliminaries to some computations 

In the usual theory of knotted S1 in S3 a significant object of study is the 
Alexander matrix (see for example [24]). Fox showed in his classical paper 
[25], how the group of the knot (i.e., 1 (S3 - S1)) determines the equivalence 
class1 of this matrix. One may, however, look upon the Alexander matrix as 
presenting a certain module. More specifically, if G denotes w1(S3- S), and 
G' the commutator subgroup of G, then H1 of the covering of S3- S corre- 
sponding to G' is presented as a module over the integral group ring of G/G' 
(the group of covering translations) by the Alexander matrix. See for example 
[26] the forthcoming [27], or various papers of Reidemeister on homotopy 
chains. 

If now one has a PR Sn C Sn+2 then as in the classical case the homology 
groups of the universal abelian covering of Sn+2 - Sn are modules over the 
group ring of the abelianized fundamental group G/G'. These might be called 
the Alexander modules of the knotted Sn in Sn+2. Since the G/G'-free modules 
of the chains in the universal abelian covering are finitely generated, (qua 

1 The particular definition of equivalence used may be found in [25]. 
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PIECEWISE REGULAR n-KNOTS 605 

modules) it follows that the Alexander modules may be presented by matrices 
(see [28]) whose elementary ideals are invariants of these modules, and hence 
of the knot type of Sn in Sn+2. These Alexander matrices and Alexander 
ideals generalize the ideals described in [24] and [25]. 

Seifert showed in [29] how the Alexander matrix for an S' in S3 may be 
computed by means of an orientable surface whose boundary is the S1 in 
question. We will show how this process may frequently be generalized. 

Applying the method to a particular sort of Sn C Sn+2, we find a higher 
dimensional counterpart to the Alexander polynomial. 

6. Computational methods 

Suppose we have an orientable PR manifold Mn+1 c Sn+2, and &Mn+l =Sn. 
We shall construct the universal abelian covering of Sn+2 - Sn. 

First split2 Sn+2 along the interior of M"2+. This creates a manifold yn+2 

whose boundary Wn+1 contains Sn. Notice that since Mn+l is orientable 
Wn+1- Sn consists of two components 1 W and 2 W. Each i W is homeomorphic 
to Mn+l - Sn by a natural map le, and Sn+2 - Mn+l is homeomorphic by a 
natural map p-r to the interior of yn+2.3 

Now form the union of 8t disjoint copies of yn+l _ Sn, indexed by the 
integers. Denote these copies Yjn+2 (j ? 1, -+-2, .) and the corresponding 
maps of the copies i Wj of i W to be found in the boundary of each Yjn2 by icoj. 
Denote by gj the map qp on the copy j. 

Finally, form the quotient space, X, of Uj Yjn+2 by the identification 
mappings (1wyX)(2w3) for all I. The following picture is provided as a visual aid. 

1 jl l2 l?i+2 1 y- 2 2 

_1 Yj~~~- -1 1 1 Wj-1 2 Wj-1 1 Wj 2 Wj I Wi+1 2 Wj+1 

2o) 1< /0 j%- 
\ 1/ 1 O @ 

M n+1 _ Sn Mn+l _ Sn 

There is clearly a regular covering map from X to Sn+2 - Sn defined by 

j on points in the interior of the Yjn2 and Ads on points in i Wj. Thus X is a 
regular covering of Sn+2 - Sn, and admits an infinite cyclic group of covering 
translations. It follows that X is the universal abelian covering of Sn+2 - Sn. 

This construction is described for the case n = 1 in [30]. 
2 This may be done for example by triangulating (Sn 2, Mn-I-i) and then forming a sim- 

plicial complex with the same n + 2 simplices as Sn+2, and the same incidence relations be- 
tween them except for those incidences arising from n + 1 simplices in Mn-l - Sn, these 
incidences become zero; alternatively one may remove a regular neighborhood of the interior 
of Mn !-' although this complicates matters a bit. 

3 These natural homeomorphisms arise from the construction described in footnote 2. 
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606 HIRSCH AND NEUWIRTH 

In the next section frequent use will be made of this covering; for the 
present we give the following theorem as an application. Unless otherwise 
indicated s denotes a PL n-sphere. 

THEOREM 6.1. A. w1(Sn 2 - Jn) Z if and only if n bounds a simply 
connected n + 1 manifold in S7+2. 

B. If n bounds an orientable n + 1 manifold in S72 whose complement 
is simply connected, then wl(Sn'2-fi ) Z. 

PROOF OF PART A. Denote w1T(S-2 - -) by G. If Yn bounds a simply 
connected n + 1 manifold, then this manifold must be orientable, and the 
construction of X, the universal abelian covering of S2- may be used 
to compute w1T(X) = G'. 

Applying the van Kampen theorem to the manifolds Y7'2 yields G'- 

j*1T( Yjy--2), and the action of a generator of G/G' pulled back to G on G' sends 
w1( Yj-2) to w1( Yl). Thus G may be presented as follows: (x1, X2 ... xj, t 

* , r, txzt1 x=J1), j c Z where (xJ, xj ... X': rl. *, o r") is a presentation 
of wl( Yjn-'-2). But this implies G -w1( Yn+2) * (t:) which is impossible if wU1( Yn+2) 
is non-trivial since the smallest normal subgroup of G containing t must be 
G itself [18]. Thus w11(Yn' =2) 0, and so 711(X) is trivial which means G' is 
trivial which means G Z. 

We now prove the other half of part A. According to Theorem 3.5, %n 

bounds some orientable manifold Mn-i I c Sn+2. By the construction of X any 
loop in Mn+1 represents an element of G', but since G' is trivial by assumption 
every loop in M4+1 is contractible in Sn2- n Since n > 2 and w1l(Mn+l) is 
finitely generated, we may find non-singular disjoint 2-discs DI, *.., D, such 
that ODi c + Di n n 0, and w1(Mn+l U Di) = 0. Starting with an inner- 
most component Di (which is a disc) in some D- (Di n Mu1l) we add handles 
to Mn-11 to kill 71u by thickening this disc component Di to some Dn x Di so 
that (Do x D,) n Mn-1 is a regular neighborhood of the loop Di F Mn- Then 
Mn+' U (ODn x D,)-interior (Dn x Di n Mul1) is a new orientable manifold, 
Mn+l, with boundary Sn, and Di bounds a disc in Sn+2 _ Mn+l thus reducing 
the number of intersections of Di with an orientable manifold bounded by n 

Furthermore 71u(Mn+l) is a homomorph of w1T(Mn+l). Continuing in this fashion 
we eventually will kill off 71u of Mn+1 and obtain some other simply connected 
orientable manifold bounded by Jn. 

This completes the proof of part A. 
Part B follows trivially from an application of van Kampen's theorem to 

the construction of X. One sees immediately that w1(x) = 0, so that 1(Sn+2- E) 
is abelian. 
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PIECEWISE REGULAR f-KNOTS 607 

We are grateful to the referee for pointing out the following result which 
answers a question raised by J. Stallings in his 1963 Annals paper On topo- 
logically unknotted spheres. Similar theorems have been obtained by J. 
Levine, and by C. T. C. Wall. 

THEOREM 6.2. Let M be a smooth homotopy n-sphere which bounds a 
compact parallelizable manifold, and which is not diffeomorphic to Sn. 
There exists a smooth embedding f: M S n+2 such that 

(a) w1(S-I-2-f (M)) = Z. 
(b) S4-2 -f (M) does not have the homotopy type of S'. 
PROOF. Let f: W > Sn+2 be a smooth embedding of a compact simply 

connected parallelizable n + 1 manifold bounded by M. Such an embedding 
exists, by Hirsch [12], or the classification [33] of homotopy spheres of the 
type of M. Theorems 6.1 and 3.3 imply that f 'M has the required properties. 

7. Some applications 

Let us compute some invariants of a certain knotted c C S9 and see where 
we are led. 

The particular 7 C S9 we pick is described4 in [32] as the boundary of a 
thickened wedge of eight 4-spheres. Each Sl is thickened so as to be imbedded 
in its thickening just as S4 is imbedded in a closed neighborhood of the diagonal 
of S4 x S4. Thus we are given 8 copies of a 4-disc bundle over S4. Call the 
total space of these bundles b1, ** , b,. Now these copies are plumbed together 
schematically as follows: 

1 2 3 4 5 6 7 

8 
Two copies say 1 and 2 are plumbed together according to the following process. 
The pre-image of a small disc neighborhood; B4 of a point of one copy of S4 in 
the space b, is diffeomorphic to D' x B4, in b2 take a similar subset D 4 x Bj 
and identify D' with B2 and D' with B4 by some diffeomorphism. Schematically 

/D 

4 The 7 here is very slightly different from that in [32], and was described to us by 
Milnor and Kervaire. 
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608 HIRSCH AND NEUWIRTH 

The pairs (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) and (5, 8) are hooked up in this 
manner. This entire process may of course take place in S9. We denote the 
resulting 8-manifold imbedded in S9 by M'. 

As we will be interested in certain linking numbers we find it convenient 
to describe the situation for one of the thickened S4's as follows. 

Consider S9 as the union of D` x S' with S24 x D25 with the boundaries 
identified so that iDf is identified with S4 and S4 is identified with OD' (all the 
identifications being performed by diffeomorphisms). 

Denote the diagonal in (D 5 x S 4) n (S 4 x D 5) = T by Sd and let N denote 
a regular neighborhood of Sd in T S4 x S4. Now one of the two normal 
vector fields to T in S9 defines a map of Sd into Df x S4 by pushing Sd a small 
distance along this field (or its negative) into D' x S14, and there is a similar 
map pushing Sd into S4 x D5. Denote the image of Sd under the first map by 
S,, and the image under the second map by S2. We wish to know the linking 
number of Si with Sd, !(S1, Sd). Similarly we wish to know ?S(S2, Sd). In the 
first case we may orient Sd and assign the linking number as plus or minus 1 
according to the orientation of S9. Suppose we orient S9 so that 2(S1, Sd) + 1, 
then t'(S2, Sd) -1. (This follows since 2(S1, Sd) = 2(SI, S2) -t(S2, S1) 
-3 (S92 Sd).) 

Now S2 lies in S2' x D2, and is homologous (even isotopic) in S.4 x DI to a 
4-spbere a lying on T homologous to 0 in D-' x Si and having intersection 
number 1 with Sd. Thus we may consider the wedge of two 4-spheres a U Sd 

as lying on T and compute the linking numbers of Sd with a when Sd is pushed 
off T in each of two ways. From the previous remarks 2(u, S2) =0, O(, S1) = 

t'(S2, S1) -1. This permits the construction of the following table which 
describes the linking numbers we will need. As it is necessary to push a 4- 
cycle represented by a 4-sphere off the 8-manifold, M8, in two distinct ways, 
(represented by each of the two normal vector fields) we distinguish these 
directions by + and -, and the image of the 4-sphere in question by a super- 
script + or -. Consider two contiguous 4-spheres in M8, and let them with- 
out loss of generality be a and Sd, and suppose, again without loss of gener- 
ality, Nis a neighborhood of Sd in M8, then our computations yield the follow- 
ing table: 

t?(S1, Sd) = (Sd, Sd) = + 1 2(S2, Sd) 2(Sd', Sd) -1 

2(S2, S2) =2(Sd, a) = ? (S ) =(Sd, ) +1 . 

The information in this table is sufficient to compute a presentation of 
H4(X) as a module over w1(S9 - ). 

Recalling the construction of X, we may apply a Mayer-Vietoris sequence 
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PIECEWISE REGULAR f-KNOTS 609 

to compute H4(X): 

* >H4(Yj9 n Yj) , H4Yff H4( Y9+1) HH4 Y9 Y9+ ) 

~ H4(Y8n > H3( Y n Y~?1) * 

H3(M8) 0 

Thus r(H4(Y19) eH4(Y9+1)) generates H4(Y9 U Yj9+). Since any copy of 
S9 - M8 is a translate of Y.9, we conclude that H4(X) is generated as a module 
over the integral group ring of G/G' (t:) by H4(Ye9). 

By Alexander duality, H4( Y,) is isomorphic to H4(M8) which is free abelian 
of rank 8, and is generated by the fundamental cycles of each of eight 4- 
spheres wedged in M8. The relations in the JZ-module5 H4(X) arise from the 
Mayer-Vietoris sequence for (Y19, YI9, M3), and clearly any relation is a conse- 
quence of some collection of covering translates of these relations (compare 
[291). 

The relations arising from the maps of M8 into Y19 and Y19 may be com- 
puted from our earlier calculations of linking numbers. Let us denote by 
xl, * * , x8 the previously described free generators of H4(Y6), then tx,, * * *, tx8 
will denote the covering translates of these generators which freely generate 
H4( Ye). Identifying the direction + with the location of the translate t YO9 = 

Y,' with respect to Y1', recalling the arrangement of the 4-spheres in M8, and 
our linking number calculations, we may write the relation for each generator 
of H4(M8) as it is pushed into Y.' and Y2, viz., 

x- = t(-x1) 4- t(x2), 
x -x, = t(-x2) + t(x3) etc. 

Arranging these data in matrix form we arrive at a presentation for 114(X) 
as a module over the group of covering translations of X. 

X, X2 X3 x4 X5 X6 X7 X8 

1 +t - t\ 

-- 1+t 

-t 
-- l+t -t 

9t = - 1 ~~~~1+ + t -t-t 

- 1 t - 

-1~ ~~~~ l+t 

With the help of W. H. Mills, the determinant of this matrix was computed 
and the result, which we may look upon as a generalized Alexander polynomial 
for 2 C S9 is 1 + t-t-t-t5 + t7 + t8. This polynomial is an invariant 

5 JZ denotes the integral group ring of the infinite cyclic group generated by t. 
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610 HIRSCH AND NEUWIRTH 

of the Jw11(S9 - 17) module H4(X) [30] and so is an invariant of the knot type 
of 7 E S9. 

The 17 C S9 described above bounds no PR 3-connected 8-manifold in S9 
whose four dimensional homology has rank < 8. 

PROOF. The construction of X can be applied with any orientable 8-mani- 
fold bounded by 7, and if the rank of H4 of such a manifold is less than 8, 
then the computation described above may be made since HL is torsion free, 
and the Alexander polynomial for H4(X) must have degree less than 8. 

Any homology sphere Fn c Sn+2 has an Alexander polynomial in dimen- 
sion [n + 1/2] if E bounds an orientable manifold Mn+1 c Sn+2 such that 
H[f+1/2](Mnll) is torsion free. 

PROOF. Suppose n + 1 is even. By assumption, Hn+ll2(Mn+l) is torsion 
free. By Alexander and Poincare duality Hn+112(Sn+2 - Mn+l) Hn+/2(Mn+l) 
Hn+?12(M n-1), so that the computation leading to a square matrix a may be 
made in this case.6 

If n + 1 is odd then our assumption means Hn72(Mn+l) is torsion free. 
Again applying Alexander and Poincard6 duality Hn/2(Sn2 - d - 

Hn+22(Mn+l)Sze Hn/2(Mn+1), and a square matrix of the form of a will result 
when Hn/2(X) is computed in the manner indicated. 

We remark that setting t = 1 in X, we obtain a presentation for 

Hrn+l/,27~s+ _n) 0. Thus the polynomial p(t) we have defined shares the 
property p(l) 1 with the classical polynomial. 

Returning to the example we have worked out, the matrix { may be used 
to compute H4(X). As a group H4(X) we4(X) since X is 3-connected. Since 
X is a covering of S9 - r4(X) w4(S9- 7). Thus we state and prove: 

THEOREM 6.3. wc4(S9- 7) is free abelian of rank 8. 
PROOF. H4(X) Fke 79-4 7) by the lines above. H4(X) may be computed 

from [, since a describes the maps in the Mayer-Vietoris sequence we have 
displayed. First notice that H4(jYr nY I') is mapped onto both H4(Y,9) and 
H4(Y19) by the inclusion maps since the image of H4(rY9 n Y,,) in H4( Yo) is 
generated by 

Xi 

-Xi + X2 

-X2 + X3 

-X3 + X4 

-X4 + X5 
- X5 + X6 

- X6 + X7 

-X5 + X8 

6 If there is torsion in H[n+l/2](Mn+l) then the construction may not lead to a square 
matrix, and we must define an Alexander ideal [23] rather than a polynomial. 

This content downloaded from 129.215.149.96 on Mon, 07 Sep 2015 09:05:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


PIECEWISE REGULAR f-KNOTS 611 

and the image of H4(r nY fl) in H4(Y2) is generated by 

tX1 - tX2 
tX2 - tX3 

- tX3 - tX4 

tX4 - tX5 
tX5 - tX6 - tX8 

tX6 - tX7 
tX7 

tX8 

and these sets of generators are easily seen to generate H4( Y,) and H4( Y,) re- 
spectively. 

Since H3( Y. n rY2) = 0, C is onto, and we see H4(Y9) e H4(Y29)/im v 
H4( Yo U Yi2) is free of rank 8. Adding copies Y$9 we obtain the desired result. 

8. Some questions 

A. When n is odd, is the generalized Alexander polynomial always defined, 
that is, does every 2n+1 C S2ff3 bound an orientable manifold without torsion 
in H[2lTl,2,]? (When n = 2, one can find S2 C S4 such that S2 C M3 c S4IZ H1(M3) 
has torsion.) 

B. When the generalized Alexander polynomial is defined, is it always 
symmetric? 

C. If an n-knot Fn and an unknotted Sn are concordant, then is there a 
polynomial for HE+Tl,2] of s, and is this polynomial of the form P(t)P(t-h)? 
(Compare [19].) 
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