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The Work of Stephen Smale in
Differential Topology

Morris W. HIrRsCH

Background

The theme of this conference is “Unity and Diversity in Mathematics.” The
diversity is evident in the many topics covered. Reviewing Smale’s work
in differential topology will reveal important themes that pervade much of
his work in other topics, and thus exhibit an unexpected unity in seemingly
diverse subjects.

Before discussing his work, it is interesting to review the status of differen-
tial topology in the middle 1950s, when Smale began his graduate study.

The full history of topology has yet to be written (see, however, Pont [52],
Dieudonné [8]). Whereas differentiable manifolds can be traced back to the
smooth curves and surfaces studied in ancient Greece, the modern theory of
both manifolds and algebraic topology begins with Betti’s 1871 paper [4].
Betti defines “spaces” as subsets of Euclidean spaces define by equalities
and inequalities on smooth functions.! Important improvements in Betti’s
treatment were made by Poincaré in 1895. His definition of manifold de-
scribes what we call a real analytic submanifold of Euclidean space; but
it is clear from his examples, such as manifolds obtained by identifying faces
of polyhedra, that he had in mind abstract manifolds.? Curiously, Poincaré’s
“homéomorphisme” means a C! diffeomorphism. Abstract smooth manifolds
in the modern sense—described in terms of coordinate systems—were de-
fined (for the two-dimensional case) by Weyl [73] in his 1913 book on Rie-
mann surfaces.

Despite these well-known works, at mid-century there were few studies
of the global geometrical structure of smooth manifolds. The subject had

! This is the paper defining, rather imprecisely, what are now called Betti numbers.
Pont [52] points out that the same definition is given in unpublished notes of Rie-
mann, who had visited Betti.

2 It is not obvious that such manifolds imbed in Euclidean space!
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not yet been named.? Most topologists were not at all interested in smooth
maps. The “topology of manifolds” was a central topic, and the name of an
important book by Ray Wilder, but it dealt only with algebraic and point-set
topology. Steenrod’s important book The Topology of Fibre Bundles was
published in 1956. The de Rham theorems were of more interest to differen-
tial geometers than to topologists, and Morse theory was considered part of
analysis.

A great deal was known about algebraic topology. Many useful tools had
been invented for studying homotopy invariants of CW complexes and their
mappings (Eilenberg—MacLane spaces, Serre’s spectral sequences, Postnikov
invariants, Steenrod’s algebras of cohomology operations, etc.) Moreover,
there was considerable knowledge of nonsmooth manifolds—or more accu-
rately, manifolds that were not assumed to be smooth, such as combina-
torial manifolds, homology manifolds, and so forth. Important results in-
clude Moise’s theory of triangulations of 3-manifolds, Reidemeister’s torsion
classification of lens spaces, Bing's work on wild and tame embeddings and
decompositions, and “pathology” such as the Alexander horned sphere and
Antoine’s Necklace (a Cantor set in R? whose complement is not simply
connected). The deeper significance of many of these theories emerged later,
in the light of the h-cobordism theorem and its implications.

A great deal was known about 3.dimensional manifolds, beginning with
Poincaré’s examples and Heegard’s decomposition theory of 1898. The latter
is especially important for understanding Smale’s work, because it is the
origin of the theory of handlebody decompositions.

The deepest results known about manifolds were the duality theorems of
Poincaré, Alexander, and Lefschetz; H. Hopf’s theorem that the indices of
singularities of a vector field on a manifold add up to the Euler characteristic;
de Rham’s isomorphism between singular real cohomology and the coho-
mology of exterior differential forms; Chern’s generalized Gauss—Bonnet for-
mula; the foliation theories of Reeb and Haefliger; theories of fiber bundles
and characteristic classes due to Pontryagin, Stiefel, Whitney, and Chern,
with further developments by Steenrod, Weil, Spanier, Hirzebruch, Wu,
Thom, and others; Rohlin’s index theorem for 4-dimensional manifolds;
Henry Whitehead’s little-known theory of simple homotopy types; Wilder’s
work on generalized manifolds; P.A. Smith’s theory of fixed points of cyclic
group actions. Most relevant to Smale’s work was M. Morse’s calculus of
variations in the large, Thom’s theory of cobordism and transversality, and
Whitney’s studies of immersions, embeddings, and other kinds of smooth
maps.

3 The term “differential topology” seems to have been coined by John Milnor in the
late 1950s, but did not become current for some years. The word “diffeomorphism”
did not yet exist—it may be due to W. Ambrose. While Smale was at the Institute for
Advanced Study, he showed me a letter from an editor objecting to “diffeomorphism,”
claiming that “differomorphism” was etymologically better!
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No. one yet knew of any examples of homeomorphic manifolds that were
not diffeomorphic, or of topological manifolds not admitting a differentiable
structure—Milnor’s invention of an exotic 7-sphere was published in 1956
.\NOI"k on the classification of manifolds, and many other problems, was stuck-
in dimension 2 by Poincaré’s conjecture in dimension 3 (still unsoived).

.The transversality methods developed by Pontryagin and Thom were not
w1dely known. The use of manifolds and dynamical systems in mechanics.
electrical circuit theory, economics, biology, and other applications is nov\:
common*; but in the fifties it was quite rare.

Conversely, few topologists had any interest in applications. The spirit
of Bourbaki dominated pure mathematics. Applications were rarely taught
or even mentioned; computation was despised; classification of structure was
the. be-all and end-all. Hardly anyone, pure or applied, used computers (of
which there were very few). The term “fractals” had not yet been coined b
Mandelprot; “chaos” was a biblical rather than a mathematical term ¢

In this milieu., Smale began his graduate studies at Michigan in- 19523
The great man in topology at Michigan being Ray Wilder, most topoloéy
students chose to work with him. Smale, however, for some reason became
the first doctoral student of a young topologist named Raoul Bott. In view
of Smale’s later work in applications, it is interesting that Bott had a degree

in elgctrical engineering; and the “Bott—Duffin Theorem” in circuit theory is
still important.

Immersions

Smale’s work in differential topology was preceded by two short papers on
the topology of maps [56, 57]. His theorems are still interesting, but not
closely related to his later work. Nevertheless, the theme of much st;bsequent
work by Smale, in many fields, is found in these papers: fibrations, and more
gene_rally, the topology of spaces of paths. ’

Given a (continuous) map p: E — B, a lift of a map f: X — B is a map
g: X — E such that the following diagram commutes:

That is, p o g = f. We say (p, E, B) is a fibration if every path f:— B can be

* Thanks largely to Smale’s pioneering efforts in these fields.

s 5 . . s
male’s autobiographical memoir in this volum i i i
Sma e recounts some of his experi
Michigan. perienessn
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lifted, the lift depending continuously on specified initial values in E.® Fibra-
tions, the subject of intense research in the fifties, are the maps for which the
tools of algebraic topology are best suited.

In his doctoral thesis [65], Smale introduced the use of fibrations of spaces
of differentiable maps as a tool for classifying immersions. This novel tech-
nique proved to be of great importance in many fields of geometric topology,
as will be discussed below.

Smale’s first work in differential topology was about immersions. An
immersion f: M — N is a smooth map between manifolds M, N such that
at every x € M, the tangent map T.f: T.M - T, N is injective. Here TM
denotes the tangent vector bundle of M, with fiber Tf, over x € M. A re-
gular homotopy is a homotopy £,,0 <t <1 of immersions such that Tf, is a
homotopy of bundle maps.” An immersion is an embedding if it is a homeo-
morphism onto its image, which is necessarily a locally closed smooth sub-
manifold. A regular homotopy of embeddings is an isotopy-

Here is virtually everything known about immersions in the early fifties:
In a tour de force of differential and algebraic topology and geometric intu-
ition in 1944, Hassler Whitney [77, 78] had proved that every (smooth)
n-dimensional manifold could be embedded in R*" for n > 1, and immersed
in R2"1 for n > 2. On the other hand, it was known that the projective plane
and other nonorientable surfaces could not be embedded in R3, and Whitney
had proved other impossibility results using characteristic classes. Steenrod
had a typewritten proof that the Klein bottle does not embed in real projec-
tive 3-space. The Whitney—Graustein theorem [76] showed that immersions
of the circle in the plane are classified by their winding numbers. As a student
working with Ed Spanier I proved the complex projective plane, which could
be embedded in R”, could not be immersed in R®.®

Immersions of Circles

The problem Smale solved in his thesis is that of classifying regular homo-
topy classes of immersions of the circle into an arbitrary manifold N. More
generally, he classified immersions f: I — N of the closed unit interval I =

6 Precisely: Given a compact polyhedron P and maps F:P x I - B, g: P x0— E
such that po g = F|P x 0 - E, thereisan extensionofgtoamap G: P x I - E such
thatpoG=F.

7 What is important and subtle here is joint continuity in (¢, x) of 8f;(x)/dx. Without
it, “regular homotopy” would be the same as “homotopy of immersions.” In the plane,
for example, the identity immersion of the unit circle is not regularly homotopic to its
reflection in a line, but these two immersions are homotopic through immersions, as
can be seen by deforming a figure-eight immersion into each of them.

8 The proof consisted of computing the secondary obstruction to a normal vector
field on an embedding in R, using a formula of S.D. Liao [38], another student of
Spanier. This calculation was immediately made trivial by a general result of W.S.
Massey [40].
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IO, 1 I havmg ﬁxed bouﬂdal y data 1.C. hxed initial aﬂd termina allgent vec-
Y > 1t
tors f (0) and f (l)'
Smale S apploach was to Study the map p: E > B, whele

e E is the space of immersions® f: I - N having fixed initi
he s : al val
fixed initial tangent f'(0); ® velue J0) and
e Bis t.he space of nonzero tangent vectors to N;
® p assigns to f the terminal tangent vector f'(1).

The classification problem is equivalent to enumerating the path components
of the fibers because it can be seen that such a path component is a regular
homotopy class for fixed boundary data.

Bott asked Smale an extraordinarily fruitful question: Is (p, E, B) a fibra-
tion? This amounts to asking for a Regular Homotopy Extension Theorem
In his thesis [65], Smale proved the following: '

Theorem. Let {u,,0 <t < 1} be a deformation of f'(1) in B, i.e., a path of
nonzlero tangent vectors beginning with f’(1). Then there is a regular homotopy
F:8" x I = N, F(x,t) = f/(x) such that f, = f, all f, have the same initial tan-
gent, and the terminal tangent of f, is u,. Moreover, F can be chosen to depend
continuously on the data f and the deformation {u,}.

This result is nontrivial, as can be seen by observing that it is false if N is
1-dimensional (exercise!).

It is not hard to see that the total space E is contractible. Therefore the
homotqpy theory of fibrations implies that the kth homotopy group of any
fiber F is naturally isomorphic to the (k + 1)st homotopy group of the base
space B. Now B has a deformation retraction onto the space T; N of unit
tangeqt vectors. By unwinding the homotopies involved, Smale proved the
following result theorem for Riemannian manifolds N of dimension B > 2:

Theorem. Assume N is a manifold of dimension n > 2. Fix a base point x, in
the circle, and a nonzero “base vector” vy of length 1 tangent to N. Let F de:ote
the space of immersions f: S — N having tangent v, at x,. To f assign the loop
f4:S* = TN, where f, sends x € S* to the normalized tangent vector to f at
x, namely f'(x)/||f'(x)|. Then f, induces a bijection between the set of path
components of F and the fundamental group n,(T,; N, v,).

For. the special case where N is the plane, this result specializes to the
Whitney—Graustein theorem [76] stated above.

9 - L
A slpace. of immersions is given the C! topology. This means that two immersions
are close if at each point their values are close and their tangents are close. It turns

out that the homotopy t i i : .
l<r<oo. py type of a space of immersions is the same for all C" topologies,
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Immersions of Spheres in Euclidean Spaces

Smale soon generalized the classification to immersions of the k-sphere S* in
Euclidean n-space R". Again the key was a fibration theorem. Let E now
denote the space of immersions of the closed unit k-disk D* into R, and B the
space of immersions of S ! into R". The map p: E— B assigns to an immer-
sion f: D* = R"its restriction to the boundary. Smale proved that (p, E, B) is
a fibration provided k < n. Geometrically, this says regular homotopies of
f15*7* can be extended over D* to get a regular homotopy of f, and similarly
for k-parameter families of immersions.

Using this and similar fibration theorems, Smale obtained the following
result [58, 59]:

Theorem. The set of regular homotopy classes of immersions Sk — R"corre-
sponds bijectively to 1, (V, x)» the kth homotopy group of the Stiefel manifold of
k-frames in R", provided k<n.

To an immersion f: S* — R" Smale assigned the homotopy class of a map
9: Sk -V, as follows. By a regular homotopy, we can assume f coincides
with the standard inclusion S* - R" on a small open k-disk in Sk, whose
complement is a closed k-disk B. Let e(x) denote a field of k-frames tangent
to B. Form a k-sphere T by gluing two copies B, and B of B along the
boundary. Define a map o(f): £ v, , by mapping x to f,e(x) if x € Bo, and
to e(x) if x € B,. Here f, denotes the map of frames induced by Tf. The
homotopy class of a(f) is called the Smale invariant of the immersion f.

The calculation of homotopy groups is a standard task for algebraic to-
pology. While it is by no means trivial, in any particular case a lot can usual-
ly be calculated. The Stiefel manifold V,, has the homotopy type of the
homogeneous space O(n)/O(n — k), where O(m) denotes the Lie group of real
orthogonal m x m matrices. Therefore explicit classifications of immersions
were possible for particular values of k and n, thanks to Smale’s theorem.*®

A surprising application of Smale’s classification is his theorem that all
immersions of the 2-sphere in 3-sphere are regularly homotopic, the reason
being that 7,(0(3)) =0."' In particular the identity map of S2, considered as
an immersion into R3, is regularly homotopic to the antipodal map. The analo-
gous statement is false for immersions of the circle in the plane.

When Smale submitted his paper on immersions of spheres for publica-
tion, one reviewer claimed it could not be correct, since the identity and

10 Even where the homotopy group (V) has been calculated, there still remains
the largely unsolved geometric problem of finding an explicit immersion f: S* - R"
representing a given homotopy class. Some results for k = 3, n = 4 were obtained by
J. Hass and J. Hughes [18].

11 Always remember: 7, of any Lie group is 0.
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antipodal maps of S2 have Gauss maps of different degrees!'? Exercise: Find
the reviewer’s mistake!

It is not easy to visualize such a regular homotopy, now called an eversion
of th«; 2-sphere. After Smale announced his result, verbal descriptions of the
eversion were made by Arnold Shapiro (whom I could pot understand), and
later by Bernard Morin (whom I could).!?

One way to construct an eversion is to first regularly homotop the identity
map of the sphere into the composition of the double covering of the projec-
tive plane followed by Boy’s surface, an immersion of the projective plane
into 3-space pictured in Geometry and the Imagination [24]. Since this iden-
tifies antipodal points, the antipodal can also be regularly homotoped to
this same composition.

Tony Phillips’ Scientific American article [49] presents pictures of an ever-
sion. Charles Pugh made prizewinning wire models of the eversion through
Boy's surface, unfortunately stolen from Evans Hall on the Berkeley campus.
There is also an interesting film by Nelson Max giving many visualizations of
eversions. Even with such visual aids, it is a challenging task to understand
Fhe deformation of the identity map of S? to the antipodal map through
immersions.

Smale’s proof of the Regular Homotopy Extension Theorem (for spheres
and disks of all dimensions) is based on integration of certain vector fields
foreshadowing his later work in dynamics. |

There is no problem in extending a regular homotopy of the boundary
restriction of f to a smooth homotopy of f; the difficulty is to make the
extension a regular homotopy. Smale proceeded as follows.

_ Since D* is contractible, the normal bundle to an immersion f: D* —»R"
is trivial. Therefore, to each x € D¥, we can continuously assign a nonzero
vector w(x) normal to the tangent plane to f (D*) at f(x).!* (Note the use of
the hypothesis k < n.) Now f(D*) is not an embedded submanifold, and w
is not a well-defined vector field on f(D*), but f is locally an embedding, and
w extends locally to a vector field in R". This is good enough to use integral
curves of w to push most of f(D*) along these integral curves, out of the way
of the given deformation of f along Sk~1_ Because of the extra dimension,
Smale was able to use this device to achieve regularity of the extension. Of
course, the details, containing the heart of the proof, are formidable. But the
concept is basically simple.

In his theory of immersions of spheres in Euclidean spaces, Smale
introduced two powerful new methods for attacking geometrical problems:

'2 The Gauss map, of an embedding f of a closed surface S into 3-space, maps the
surface to the unit 2-sphere by sending each point x € S to the unit vector outwardly
normal to f(S) at f(x).

13 Morin is blind.
14 More precisely, w(x) is normal to the image of D /(x), the derivative of f at x.
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Dynamical systems theory (i.e., integration of vector fields) was used to con-
struct deformations in order to prove that certain restriction maps on func-
tion spaces are fibrations; and then algebraic topology was used to obtain
isomorphisms between homotopy groups. These techniques were soon used
in successful attacks on a variety of problems.

Further Development of Immersion Theory

I first learned of Smale’s thesis at the 1956 Symposium on Algebraic Topol-
ogy in Mexico City. I was a rather ignorant graduate student at the Univer-
sity of Chicago; Smale was a new Ph.D. from Michigan.'® While I under-
stood very little of the talks on Pontryagin classes, Postnikov invariants and
other arcane subjects, I thought I could understand the deceptively simple
geometric problem Smale addressed: Classify immersed curves in a Rieman-
nian manifold.

In the fall of 1956, Smale was appointed Instructor at the Universtiy of
Chicago. Having learned of Smale’s work in Mexico City, I began talking
with him about it, and reading his immersion papers. 1 soon found much
simpler proofs of his results. Every day I would present them to Smale, who
would patiently explain to me why my proofs were so simple as to be wrong.
By this process I gradually learned the real difficulties, and eventually T un-
derstood Smale’s proofs.

In my own thesis [25] directed by Ed Spanier, I extended Smale’s theory
to the classification of immersions f: M — N between arbitrary manifolds,
provided dim N > dim M. In this I received a great deal of help from both
Smale and Spanier. The main tool was again a fibration theorem: the restric-
tion map, going from immersions of M to germs of immersions of neighbor-
hoods of a subcomplex of a smooth triangulation of M, is a fibration.

The proof of this fibration theorem used Smale’s fibration theorem for
disks as a local result; the globalization was accomplished by means of a
smooth triangulation of M, the simplices of which are approximately disks.

The classification took the following form. Consider the assignment to
f of its tangent map TF: TM — TN between tangent vector bundles. This
defines a map ® going from the space of immersions of M in N to the space

- of (linear) bundle maps from TM to TN that are injective on each fiber. The

homotopy class of this map (among such bundle maps) generalizes the Smale
invariant. Using the fibration theorem and Smale’s theorems, I showed ®
induces isomorphisms on homotopy groups. By results of Milnor and J.H.C.
Whitehead, this implies @ is a homotopy equivalence. The proof of the classi-
fication is a bootstrapping induction on the dimension of M; the inductive
step uses the fibration theorem.

15 For an account of the atmosphere in Chicago in the fifties, see my memoir [28].
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Thps 1rpmersions are classified by certain kinds of bundle maps, whose
classification is a standard task for algebraic topology. A striking cc’)rollar
of th_e classification is that every parallelizable manifold is immersibl i
Euclidean space of one dimension higher.¢ o
St?veral topologists'” reformulated the classification of immersions of an
m-dimensional manifold M into a Euclidean space R"** as follows. Let ¥,,:
M — BO be the classifying map (unique up to homotopy) for the stable nobrl-.
mal bundle of M. An immersion f: M — R"** determines a lift of ¥, over the
natural map BO(k) — BO. Using homotopy theory, it can be dedgced from
the classification theorem that regular homotopy classes of immersions cor-
respond bijectively in this way to homotopy classes of lifts of ¥
Subsequently many other classification problems were solve(;u By showin,
Fhem to be equivalent to the homotopy classification of certain lifts, or wha%
is .the same thing, crosssections of a certain fibration. The starting ,point for
this approach to geometric topology was the extraordinarily illuminatin,
tz:ll: ;)ft tlll Thom at the International Congress of 1958 [70], in which hi
s a C . . . - . ?
saved o :i:‘ s;‘:tl,(;::ih;:,gli of a piecewise linear manifold correspond to sections
_Other proofs of the general immersion classification the -
tained by R. Thom [69], A. Phillips [48], V. Poenaru [50], a:::lexl::i vg:gr::v
and Ja. Eliasberg [14, 15] (see also A. Haefliger [16]). Each of .these dif-
ferent approaches gave new insights into the geometry of immersions.
ﬁbI:;l:x.ny %ﬁometrical(lly minded topologists were struck by the power of the
ion theorem and attac| i i
fibration theorem and 2 ked a variety of mapping and structure problems
The method of fibrations of function spaces was applied to submersions
(smooth maps f: M — N of rank equal to dim N) by A. Phillips [48]. Again
the key was a fibration theorem, and the classification was by induced maps
betwegn tangent bundles. This was generalized to k-mersions (maps of rank
k > dim N) by S. Feit [10]. General immersion theory was made applicable
to immersions between manifolds of the same dimension, provided the do-
r[r;ag]n manifold has no closed component, by V. Poenaru [50] and myself
" Fxﬂb'ration ;n;thods were used to classify piecewise linear immersions by
aefliger and Poenaru [17]. Topological i i i
o St LaShOtI; [3]6]' ‘opological immersions were classified by J.A.
M. Gromov [11-13] made a profound study of mapping problems amena-
ble to fibration methods, and successfully attacked many geometric problems
of the most diverse types. The article by D. Spring in this volume discusses

16 Exerci : . S .
Ro1 rcise (unsolved): Describe an explicit immersion of real projective 7-space in

17 The first may have been M. Atiyah [2].

18 Thi ;
This may have been only a conjecture—Thom was not guilty of excessive clarity.
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Gromov’s far-reaching extensions of immersion theory to other mapping
problems such as immersions which are symplectic, holomorphic, or isomet-
ric; see Chapters 2 and 3 of Gromov’s book [13].

R. Thom [69] gave a new, more conceptual proof of Smale’s theorem. R.S.
Palais [47] proved an isotopy extension theorem, showing that the restric-
tion map for embeddings is not merely a fibration, it is a locally trivial fiber
bundle (see also E. Lima [39]). R. Edwards and R. Kirby [9] proved an
isotopy extension theorem for topological manifolds.

The 1977 book [35] by R. Kirby and L. Siebenmann contains a unified
treatment of many classification theories for structures on topological, piece-
wise linear, and smooth manifolds. Besides many new ideas, it presents devel-
opments and analogues of Smale’s fibration theories, Gromov’s ideas, and
Smale’s later theory of handlebodies. See in particular, Siebenmann’s articles
[54] and [55], a reprinting of [53].

Diffeomorphisms of Spheres

In 1956 Milnor astounded topologists with his construction of an exotic
differentiable structure on the 7-sphere, that is, a smooth manifold homeomor-
phic but not diffeomorphic to $7. This wholly unexpected phenomenon trig-
gered intense research into the classification of differentiable structures, and
the relation between smooth, piecewise linear, and topological manifolds.

Milnor’s construction was based on a diffeomorphism of the 6-sphere
which, he proved, could not be extended to a diffeomorphism of the 7-ball;
it was, therefore, not isotopic to any element of the orthogonal group O(7)
considered as acting on the 6-sphere. His exotic 7-sphere was constructed
by gluing together two 7-balls by this diffeomorphism of their boundaries.
These ideas stimulated investigation into diffeomorphism groups.

Two-spheres
In 1958 Smale [59] published the following result:

Theorem. The space Diff(S?) of diffeomorphism of the 2-sphere admits the
orthogonal group O(3) as a deformation retract.*®

Again a key role in the proof was played by dynamical systems. I recall
Smale discussing his proof of this at Chicago. At one stage he did not see

19 Around this time an outline of a proof attributed to Kneser was circulating by
word of mouth; it was based on an alleged version of the Riemann mapping theorem
which gives smoothness at the boundary of smooth Jordan domains, and smooth
dependence on parameters. I do not know if such a proof was ever published.
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why the proof did not go through for spheres of all dimensions, except that
he knew that the analogous result for the 6-sphere would contradict Milnor’s
constructions of an exotic differentiable structure on the 7-sphere! It turned
out that the Poincaré—Bendixson Theorem, which is valid only in dimension
2, played a key role in his proof.

In 1958 Smale went to the Institute for Advanced Study. This was a very
fertile period for topology, and a remarkable group of geometers and topolo-
gists were assembled in Princeton. These included Shiing—Shen Chern, Ed
Spanier, Armand Borel, Ed Floyd, Dean Montgomery, Lester Dubins, Andy
Gleason, John Moore, Ralph Fox, Glenn Bredon, John Milnor, Richard
Palais, Jim Munkres, André Weil, Henry Whitehead, Norman Steenrod, Bob
Williams, Frank Raymond, S. Kinoshita, Lee Neuwirth, Stewart Cairns,
John Stallings, Barry Mazur, Papakyriakopoulos, and many others.

I shared an office. with Smale and benefited by discussing many of his
ideas at an early stage in their development. Among the many questions
that interested him was a famous problem of P.A. Smith: Can an involution
(a map of period 2) of S* have a knotted circle of fixed points? He did not
solve it, but we published a joint paper [29] on smooth involutions having
only two fixed points. Unfortunately it contains an elementary blunder, and
is totally wrong.?°

Three-spheres

Smale worked on showing that the space Diff(S*) of diffcomorphism of the
3-sphere admits the orthogonal group O(4) as a deformation retract. Using
several fibrations, such as the restriction map going from diffeomorphisms
of §3 to embeddigs of D? in $2, and from the latter to embeddings of S in
$3, and so forth, he reduced this to the same problem for the space of em-
beddings of S2 in R>. Although it failed, his approach was important, and
stimulated much further research. Hatcher [20] proved Smale’s conjecture in
1975.

In a manuscript for this work Smale analyzed an embedding in Euclidean
space by considering a height function, i.e., the composition of the embedding
with a nonzero linear function.?!

Smale tried to find a height function which, for a given compact set
of embeddings of S? in R3, would look like a Morse function for each
embedding, exhibiting it as obtained from the unit sphere by extruding
pseudopods in a manageable way. These could then all be pushed back,
following the height function, until they all became diffeomorphisms of S2.

20 | am glad to report that other people have also made mistakes in this problem.

2 This idea goes back to Mbius [45], who used it in an attempt to classify surfaces;
see Hirsch [27] for a discussion. J. Alexander [1] had used a similar method to study
piecewise linear embeddings of surfaces.
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At that point, appeal to his theorem on diffeomorphisms of S* would finish
the proof.

He had a complicated inductive proof; but Robert Williams, Henry White-
head and I (all at the Institute then) found that the induction failed at the
first step! )

Nevertheless the idea was fruitful. J. Cerf [6] succeeded in proving that
Diff(S?) has just two path components. Cerf used a more subtle development
of Smale’s height function: He showed that for a one-parameter family of
embeddings, there is a function having at worst cubic singularities, but be-
having topologically like a Morse function for each embedding in the family.
Cerf’s ideas were to prove useful in other deformation problems in topology
and dynamics, and surprisingly, in algebraic K-theory. See Hatcher [19],
Hatcher and Wagoner [21], and Cerf [5, 7].

Smale would return to the use of height functions as tools for dissecting
manifolds in his spectacular attack on the generalized Poincaré conjecture.

In using height functions to analyze embedded 2-spheres, Smale was grap-
pling with a basic problem peculiar to the topology of manifolds: There is no
easy way to decompose a manifold. Unlike a simplicial complex, which come
equipped with a decomposition into the simplest spaces, a smooth manifold
—without any additional structure such as a Riemannian metric—is a ho-
mogeneous global object. If it is “closed”—compact, connected and without
boundary—it contains no proper closed submanifold of the same dimen-
sion, is not a union of a countable family of closed submanifolds of lower
dimension. This is a serious problem if we need to analyze a closed manifold
because it means we cannot decompose it into simpler objects of the same kind.

Before 1960 the traditional tool for studying the geometric topology of
manifolds was a smooth triangulation. Cairns and Whitehead had shown
such triangulations exist and are unique up to isomorphic subdivisions. Thus
to every smooth manifold there is associated a combinatorial manifold. In
this way simplicial complexes, for which combinatorial techniques and in-
duction on dimension are convenient tools, are introduced into differential
topology. But useful as they are for algebraic purposes, they are not well-
suited for studying differentiable maps.??

Smale would shortly return to the use of Morse functions to analyze mani-
folds. His theory of theory of handlebodies was soon to supply topologists
with a highly succussful technique for decomposing smooth manifolds.

22 Simplicial complexes were introduced, as were so many other topological ideas, by
Poincaré. Using them he gave a new and much more satisfactory definition of Betti
numbers, which had originally been defined in terms of boundaries of smooth sub-
manifolds. It is interesting that while the old definition was obviously invariant under
Poincaré’s equivalence relation of “homéomorphisme,” which meant what we call “C!
diffeomorphism,” invariance of simplicially defined Betti numbers is not at all obvi-
ous. (It was later proved by J. Alexander.) Thus the gap between simplicial and
differentiable techniques has plagued topology from its beginnings.
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The Generalized Poincaré Conjecture and the
h-Cobordism Theorem

In January of 1960 Smale arrived in Rio de Janeiro to spend six months
at the Instituto de Matematica Pura e Aplicada (IMPA). Early in 1960, he
submitted a research announcement: The generalized Poincaré conjecture in
higher dimensions [60], along with a handwritten manuscript outlining the
proof. The editors of the Bulletin of the American M athematical Society asked
topologists in Princeton to look over the manuscript. I remember Henry
Whitehead, who had once published his own (incorrect) proof, struggling
with Smale’s new techniques.??
The theorem Smale announced in his 1960 Bulletin paper is, verbatim:

Theorem (Theorem A). If M" is a closed differentiable (C*) manifold which is
a homotopy sphere, and if n # 3, 4, then M" is homeomorphic to S".

The notation implies M" has dimension n. “Closed” means compact with-
out boundary. Such a manifold is a homotopy sphere if it is simply connected
and has the same homology groups as the n-sphere (which implies it has the
same homotopy type as the n-sphere).

Poincaré [51] had raised the question of whether a simply connected
3-manifold having the homology of the 3-sphere is homeomorphic to the
3-sphere $2.2* Some form of the generalized conjecture (ie., the result
proved by Smale without any dimension restriction) had been known for
many years; it may be have been due originally to Henry Whitehead.

Very little progress had been made since Poincaré on his conjecture.?®
Because natural approaches to the generalized conjecture seemed to require
knowledge of manifolds of lower dimension, Smale’s announcement was

23 Whitehead was very good about what he called “doing his homework,” that is,
reading other people’s papers. “I would no more use someone’s theorem without
reading the proof,” he once remarked, “than I would use his wallet without permis-
sion.” He once published a paper relying on an announcent by Pontryagin, without
proof, of the formula n4(S2) = 0, which was later shown (also by Pontryagin) to have
order 2. Whitehead was quite proud of his footnote stating that he had not seen the

proof. Smale, on the other hand, told me that if he respected the author, he would take
a theorem on trust.

24 A5 Smale points out in his Mathematical Intelligencer article [67], Poincaré does
not hazard a guess as the the answer. He had earlier mistakenly announced that a
3-manifold is a 3-sphere provided it has the same homology. In correcting his mis-
take, by constructing the dodecahedral counterexample, he invented the fundamental
group. Thus we should really call it Poincaré’s question, not conjecture.

25 There is still no good reason to believe in it, except a lack of counterexamples;

and some topologists think the opposite conjecture is more likely. Maybe it is
undecidable!
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astonishing. Up to then, no one had dreamed of proving things only for
manifolds of higher dimension, three dimensions already being too many to
handle.

Nice Functions, Handles, and Cell Structures

Smale’s approach is intimately tied to his work, both later and earlier, on
dynamical systems. At the beginning of his stay in Princeton, he had been
introduced to Mauricio Peixoto, who got Smale interested in dynamical
systems.26

Smale’s proof of Theorem A begins by decomposing the manifold M
(dropping the superscript) by a special kind of Morse function f: M - R,
which he called by the rather dull name of “nice function.” He wrote:

The first step in the proof is the construction of a nice cellular type structure on any
closed C® manifold M. More precisely, define a real-valued f on M to bc a nice
function if it possesses only nondegenerate critical points and for each critical point

B, f(B) = A(P), the index of B.

It had long been known (due to M. Morse) that any Morse function gives
a homotopical reconstruction of M as a union of cells, with one s-cell for
each critical point of index s. )

Smale observed that the s-cell can be “thickened” in M to a set which
is diffeomorphic to D* x D"*. Such a set he calls a handle of type s; the
type of a handle is the dimension of its core D* x 0. Thus from a I.\ri.o;se
function he derived a description of M as a union of handles with disjoint
interiors.

But Smale wanted the handles to be successively adjoined in the orQer of
their types: First O-handles (n-disks), then 1-handles, and so on. For this, .he
needed a “nice” Morse function: The value of the function at a critical point
equals the index of the critical point. A little experimentation shows that
most Morse functions are not nice. Smale stated:

Theorem (Theorem B). On every closed C* manifold there exist nice functions.

To get a nice function, Smale had to rearrange the k-cell handlf: cores,
and to do this he first needed to make the stable and unstable manifolds of
all the critical points to meet each other transversely.?’

26 §ee Peixoto’s article on Smale’s early work, in this volume; and also Smale’s auto-
biographical article [66].

27 If p is a singular point of a vector field, its stable manifold is the set of points whose
trajectories approach p as t — co. The unstable manifold is the stable manifold for —f,
comprising trajectories going to p in negative time.
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Smale referred to his article “Morse Inequalities for a Dynamical System”
[61] for the proof that a gradient vector field on a Riemannian manifold can
be C! approximated by a gradient vector field for which the stable and
unstable manifolds of singular points meet each other transversely. From this
he was able to construct a nice function. The usefulness of this will be seen
shortly.

In his Bulletin announcement [60] Smale then made a prescient observation:

The stable manifolds of the critical points of a nice function can be thought of as the
cells of a complex while the unstable manifolds are the dual cells. This structure has
the advantage over previous structures that both the cells and the duals are differ-
entiably imbedded in M. We believe that nice functions will replace much of the use
of C! triangulations and combinatorial methods in differential topology.

With nice functions at his disposal, Smale could decompose any closed
manifold into a union of handles, successively adjoined in the same order
as their type. This is a far-reaching generalization of the work of Mobius
[45], who used what we call Morse functions in a similar way to decomposed
surfaces.

Eliminating Superfluous Handles

The results about nice functions stated so far apply to all manifolds. To prove
Theorem A required use of the hypothesis that M is a homotopy sphere of
dimension at least five. What Smale proved was that in this case there is
a Morse function with exactly two critical points—necessarily a maximum
and a minimum. It then follows easily, using the grid of level surfaces and
gradient lines, that M is the union of two smooth n-dimensional submani-
folds with boundary, meeting along their common boundary, such that each
is diffeomorphic to D".

From this it is simple to show that M is homeomorphic to S".28 Actually
more is true. In the first place, it is not hard to show from the decomposition
of M into two n-balls that the complement of point in M is diffeomorphic
to R". Second, it follows from the theory of smooth triangulations that the
piecewise linear (PL) manifold®® which smoothly triangulates M is PL isomor-
phic to the standard PL n-sphere.

How did Smale get a Morse function with only two critical points? He
used the homotopical hypothesis to eliminate all other critical points. To

28 In fact, it takes some thought to see why one cannot immediately deduce that M
is diffeomorphic to S"; but recall Milnor’s celebrated 7-dimensional counterexample
[42].

29 A piecewise linear manifold has a triangulation in which the closed star of every
vertex is isomorphic to a rectilinear subdivision of a simplex.
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visualize the idea behind his proof, imagine a sphere embedded in 3-space
in the form of a U-shaped surface. Letting the height be the nice Morse
function, we see that there are two maxima, one minimum, and one saddle.
The stable manifold of the saddle is a curve, the two ends of which limit at
the two maxima. Now change the embedding by pushing down on one of the
maxima until the part of the U capped by that maximum has been mashed
down to just below the level of the saddle. This can be done so that on the
final surface the saddle point has become noncritical, and no new saddle has
been introduced. Thus on the new surface, which is diffeomorphic to the
original, there is a Morse function with only two critical points. If we had not
known that the original surface is diffeomorphic to the 2-sphere, we would
realize it now.

The point to observe in this process is that we canceled the extra maximum
against the saddle point; both disappeared at the same time.

Smale’s task was to do thisina general way. Because M is connected, there
is no topological reason for the existence of more than one maximum and
one minimum. If there are two maxima, the Morse inequalities, plus some
topology, require the existence of a saddle whose stable manifold is one-
dimensional and limits at two maxima, just as in the U-shaped example
earlier. Smale redefined the Morse function on the level surfaces above this
saddle, and just below it, to obtain a new nice function having one fewer
saddle and one fewer maximum. In this way, he proved [62] there exists, on
any connected manifold, a nice function with only one maximum and one
minimum (and possibly other critical points).

The foregoing had already been proved by M. Morse [46]. Smale went
further. Assuming that M is simply connected and of dimension at least five,
he used a similar cancellation of critical points to eliminate all critical points
ofindex 1 and n — 1.

Each handle corresponds both to a critical point and to a generator ina
certain relative singular chain group. Under the assumptions that homology
groups vanish, it follows that these generators must cancel algebraically in
a certain sense. The essence of Smale’s proof of Poincaré’s conjecture was
to show how to imitate this algebraic calculation vith a geometric one: By
isotopically rearranging the handles, he showed that a pair of handles of
successive dimensions fit together to form an n-disk. By absorbing this disk
into previously added handles, he produced a new handle decompostion with
two fewer handles, together with a new Morse function having two fewer
critical points. To make the algebra work and to perform the isotopies, Smale
had to assume the manifold is simply connected and of dimension at least
five.

In this way he proved the following important result. Recall that M is
r-connected if every map of an i-sphere into M is contractible to a point for
0 < i < r. The ith type number p; of a Morse function is the number of critical
points of index i.

T
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T!leorem (Theorem D). Let M" be a closed (m — 1)-connected C* manifold,
withn > 2m' and (n,m) # (4,2). Then there is a nice function on M whose type
numbers satisfy po = gy = land p; =0 for0 <i<mn—m<i<n

This is a kind of converse to the theorem on Morse inequalities.

Smale applied Theorem D to obtain structure theorems for certain simply
connected manifolds manifold having no homology except in the bottom,
top, and middle dimensions. To state them, we need Smale’s definition of a;
handlebody of type (n,k,s): This is an n-dimensional manifold H obtained
“by attaching s-disks, k in number, to the n-disk and ‘thickening’ them.”3°
The ‘class‘of such handlebodies Smale denoted by #(n,k,s). Notice th;lt a
manifold in #(n,0, s) is a homotopy n-sphere that is the union of two n-disks
glued along their boundaries.

For odd-dimensional manifolds, Smale generalized the classical Heegard
decomposition of a closed 3-manifold [22, 23]

Theorem (Theorem E). Let M be a closed (m — 1)-connected C* manifold of

dimension 2m + 1, m # 2. Then M is the union of two ha dlebodi '
o e, f ndlebodies H, H' €

Ff)r highly cor.mected even-dimensional manifolds, Smale proved the fol-
lowing result which generalizes the classification of closed surfaces:

Theorem (Theorem F). Let M be a closed (m — 1)-connected C* 2m-manifold,

m 2. Then there is a nice function on M whose type numbers equal the Betti
numbers of M.

For a syrface m = 1, and one should additionally assume M is orientable
(otherwise the projective plane is a counterexample). Suppose M is a con-
nected c_ompact orientable surface of genus g. If g = 0 then the first Betti
mfrflber is zero, and Theorem F says there is a Morse function with only two
critical points, which implies M is a sphere. For higher genus, one can derive
from Theorem F the usual picture of sphere with g hollow handles.?!

30 « »
N Handlebody” is from the German “henkelkérper,” a term common in the fifties
(but J. Eells always said “Besselhagen”). Although it sounds innocuous today, at

the time “handlebody” struck many people as a cl ism—whi
e e e, y people as a clumsy neologism—which only made

31 Both Jordan [31] and Mé&bius [45] published ificati

A proofs of the classification -
pact surfaces in the 1860s. From a modern standpoint these are failures. T?le gfxfl?::s
laqkqd even the language to define what we mean by homeomorphic spaces. It is
sml'(mg tha_t the following “definition” was used by -both of them: Two surfao;:s are
egulvalent if each can be decomposed into infinitely small pieces so that contiguous
pieces of one cor.wspond to contiguous pieces of the other. While we find it hard to
make sense of this, apparently none of their readers was disturbed by it!
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Theorem (Theorem H). There exists a triangulated manifold with no differ-
entiable structure.

In fact he proved a significantly stronger result: There is a closed PL mani-
fold which does not have the homotopy type of any smooth manifold.

Smale started with a certain 12-dimensional handlebody H € #(12,8,6)
previously constructed by Milnor in 1959 [43]. Milnor had shown that the
boundary is a homotopy sphere which could not be diffeomorphic to a stan-
dard sphere because H has the wrong index. Smale’s results showed that
the boundary homeomorphic to S'! and a smooth triangulation makes the
boundary PL homeomorphic to S!!. By gluing a 12-disk to H along the
boundary, Smale constructed a closed PL 12-manifold M. Milnor’s index
argument implied that M did not have the homotopy type of any smooth
closed manifold.

An entirely different example of this kind was independently constructed
by M. Kervaire [33].3?

The h-Cobordism Theorem

In his address to the Mexico City symposium in 1956 [71], Thom introduced
a new equivalence relation between manifolds, which he called “J-equiva-
lence.” This was renamed “h-cobordism” by Kervaire and Milnor [34]. Two
closed smooth n-manifolds Mg, M, are h-cobordant if there is a smooth com-
pact manifold W of dimension n + 1 whose boundary is diffeomorphic to the
disjoint union of submanifolds V;,i = 0, 1, such that M; and N; are diffeomor-
phic, and each N; is a deformation retract of W. Such a W is an h-cobordism
between Mgand M — 1.

This is a very convenient relation, linking differential and algebraic topol-
ogy. It defines an equivalence relation between manifolds in terms of another
manifold, just as a homotopy between maps is defined as another map, thus
allowing knowledge about manifolds to be used in studying the equivalence
relation. Whereas the geometric implications of two manifolds being
h-cobordant is not clear, nevertheless it is often an easy task to verify that
a given manifold W is a cobordism: It suffices to prove that all the relative
homotopy groups of (W, N;) vanish, and for this the machinery of algebraic
topology is available. In contrast, there are very few methods available for
proving that two manifolds are diffeomorphic; and a diffeomorphism is a
very different object from a manifold.

32 Kervaire’s example is constructed by a similar strategy from a 10-dimensional
handlebody in #(10,2,5). It has an elegant description: Take two copies of the unit
disk bundle of $* and “plumb” them together, interchanging fiber disks and base disks
in a product representation over the upper hemisphere. In place of the index, Kervaire
used an Arf invariant.
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For these reasons there was great excitement when, shortly after the an-

nouncement of the generalized Poincaré conjecture, Smale proved the follow-
ing result [64]:

Theorem (The h-Cobordism Theorem). Let W be an h-cobordism between M,
arud M,. If W is simply connected and has dimension at least 6, then W is
diffeomorphic to My x I. Therefore, M, and M, are diffeomorphic.

So important is the h-cobordism theorem that it deserves to be called
The Fundamental Theorem of Differential Topology.

Kervaire and Milnor studied oriented homotopy n-spheres under the rela-
tion of h-cobordism. Using the operation of connected sum, they made the
set of h-cobordism classes of homotopy n-spheres into an Abelian group ©,,
[34]. They proved these groups to be finite for all n # 3 (the case n = 3 is still
open), and computed their orders for 1 <n <17, n # 3. For example, the
orderis 1 forn = 1,2,4,5,612;itis 2 for n = 8, 14, 16; and it is 992 forn = 11.
In this work, they did not use the h-cobordism theorem. Use of that theorem,
however, sharpens their results, as they remark: “For n # 3, 4, ©, can be
described as the set of all diffeomorphism classes of differentiable structures
on the topological n-sphere,” where it should be understood that the diffeo-
morphisms preserve orientation.

From Milnor and Kervaire’s work Smale proved, as a corollary to the

h-cosbordism theorem, that every smooth homotopy 6-sphere is diffeomorphic
to S°.

The Structure of Manifolds

In this paper “On the Structure of 5-Manifolds” [63], Smale puts handle
theory to work in classifying certain manifolds more complicated than ho-
motopy spheres, namely, boundaries of handlebodies of type (2m, k, m).

Using Milnor’s surgery methods he is able to show, for example, that a
smooth, closed 2-connected 5-manifold, whose second Stiefel-Whitney class
vanishes, is the boundary of a handlebody of type (6,k,3). He then shows
that such a 5-manifold is completely determined up to diffeomorphism by its
second homology group, and he constructs examples in every diffeomor-
phism class.

Another result Smale states in this paper is that every smooth, closed 2-
connected 6-manifold is homeomorphic either to S° or to a connected sum of
§3 x §3 with copies of itself.

In the same issue of the Annals, C.T.C. Wall has a paper [72] called
“Classification of (n — 1)-connected 2n-manifolds” containing a detailed study
of the smooth, combinatorial and homotopical structure of such manifolds.
The h-cobordism theorem is the main tool (in addition to results of Milnor
and Kervaire, plus a lot of algebra). Wall proves:



48

102 M.W. Hirsch

Theorem. Let n > 3 be congruent modulo 8 to 3, 5, 6 or 733 Let M, N be
smooth, closed (n — 1)-connected 2n-manifolds of the same homotopy type. Then
M is diffeomorphic to the connected sum of N with a homotopy 2n-sphere. If
n = 3 or 6 then they are diffeomorphic.

Milnor had shown in 1956 that there are smooth manifolds homeomor-
phic but not diffeomorphic to §”. Kervaire and Milnor’s work- [34]3 plus the
h-cobordism theorem, showed that up to orientation-preserving dlffeoglpr-
phism there are exactly 28 such manifolds. Wall [72] proved a surprising
result about the product of such manifolds:

Theorem. The product of two smooth manifolds, each homeomorphic to S, is
diffeomorphic to §7 x s7.

The s-Cobordism Theorem

There is no room to chronicle the all consequences, geperglizations, and
applications of the h-cobordism theorem and its underlying 1'dca of hanc!le
cancellation. But one—the s-cobordism theorem—is worth cgtmg here for its
remarkable blend of homotopy theory, algebra and differential topology.

As with much of topology, this story starts with J.H.C.. ‘Whltehead. In
1939, he published a paper with the mysterious title “Simplicial Spaces, Nu;
clei and m-Groups” [74], followed a year later by “Simple Homotopy Ty[?es
[75]. In these works, he introduced the notion of a simple homotqpy equiva-
lence between simplicial (or CW) complexes. Very roughly, this means a
homotopy equivalence which does not overly distort the natm:al bases for the
cellular chain groups. He answered the question of when a given hpmotopy
equivalence is homotopic to a simple one, by inventing an obstruction, lying
in what is now called the Whitehead group of the fundamental group, whose
vanishing is necessary and sufficient for the existence of such a hon_\otopy.
Whitehead proved that his invariant vanishes——'beca\}se the Whitehead
group is trivial—whenever the fundamental group is cyclic of order 1,2, 3,4,
5 or c0. See Milnor’s excellent exposition [44]. - )

Several people independently realized that Whiteheadjs invariant was the
key to extending Smale’s h-cobordism theorem to manifolds whose fuqda-
mental groups are nontrivial: D. Barden [3], B. Mazur [41], and J. Stallings
[68). The result is this:

Theorem (The s-Cobordism Theorem). Let W be an h-cobordism betfveen M,
and M,. If W has dimension at least 6, and the inclusion of Mo (c?r equwale.ntl Y,
of M,) into Wisa simple homotopy equivalence, then W is diffeomorphic to
M, x I. Therefore, M, and M, are diffeomorphic.

33 These are the dimensions for which 7,_,(S0) = 0.

.

‘
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Using Whitehead’s calculation we immediately obtain:

Corollary. The conclusion of the h-cobordism theorem is true even if W is not

simply connected, provided its fundamental group is infinite cyclic or cyclic of
order <5.

The s-cobordism theorem has been expounded by J. Hudson [30] and M.
Kervaire [32].
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A NOTE ON OPEN MAPS
STEPHEN SMALE

In [1] E. E. Floyd proved that if X and Y are Peano continua and
f: X— Y is light, open, and onto, then the covering homotopy prop-
erty for a point holds. Here we will prove (Theorem 1) that under
different (roughly speaking, more general) conditions the covering
homotopy property for a point holds up to a homotopy. This has cer-
tain implications on the induced homomorphism of the fundamental
groups (Theorem 2).

1. Definitions. We consider a triple (X, p, Y) to consist of two
topological spaces X and Y and a map p from X into Y. We denote
by I the closed unit interval.

y A triple (X, p, Y) has the covering homotopy property for a point
if given a map f: I>Y and a point gEp7Yf(0), there exists a map
f: I-X with FL0) =¢ and pf=f. The covering homotopy property for
a point yolds up to homotopy if given (X, p, ¥), f and ¢ as above
there exists a map J: I-X with f(0) =g, pf(1) =f(1) and pf is homo-
topic to f with the homotopy fixed on the end points of I.

A map is called proper if the inverse images of compact sets are
compact. If A is a subset of a space X, then m(4/X) will denote the
it'nage of m(A4) in m(X) under the homomorphism induced by inclu-
sion. A space S will be called semilocally 1-connected if for each
point x €S, there exists a neighborhood U of x such that m(U/S)=1.
) zt\r triple (X, , ¥) will be said to have Property A if the following
is true:

Property A. The space X is locally arcwise connected and Haus-
dorff; Y is semilocally 1-connected and metric. The map p is open
proper, and onto. '
The main theorem of this note is the following.

THEOREM 1. A4 triple (X, p, Y) having Property A has the covering
homotopy property for a point up to homotopy.

2. Proof of Theorem 1.

LEMMA 1. Let Y be a metric space and f: X—Y be proper and onto.
Su.ppose y.E Y and U is an open set of X containing f~'(y). Then there
exists a neighborhood V of y such that f~X(V)CU.
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