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Singularities and exotic spheres

Séminaire Bourbaki, 1966/67, Exp. 314, Textes des conférences, 0.S., Paris:
Institut Henri Poincaré 1967

Brieskorn has proved [4] that the n-dimensional affine algebraic variety
234z} +...422=0 (n odd, n=1) is a topological manifold though the variety
has an isolated singular point (which is normal for » = 2). Such a phenomenon
cannot occur for normal singularities of 2-dimensional varieties, as was shown
by Mumford ([12], [6]). Brieskorn’s result stimulated further research on the
topology of isolated singularities (Brieskorn [5], Milnor [11] and the speaker
[6], [7]). Brieskorn [5] uses the paper of F.Pham [14], whereas the speaker
studied certain singularities from the point of view of transformation groups

using results of Bredon ([2],[3]), W.C.Hsiang and W.Y. Hsiang [8] and
Janich [9].

§ 1. The integral homology of some affine hypersurfaces

Pham [14] studies the non-singular subvariety V,=V(ao,ai,...,an) of
C"*! given by

zZe+zi 4. +Zr=1 ((n=z=0),
where a=(ay, ..., a,) consists of integers g; = 2.
Let G,, be the cyclic group of order g; multiplicatively written and generat-

ed by w;. Define the group G,=Ggx GyX...xG,, and put ¢=exp(2ni/a).

k k. s S
Then wkew® ... wk is an element of G, whereas &f°¢}"... &5 is a complex

number. G, operates on V, by

k k. k kn
Woo... W".(Zo,...,zn) = (80020,...,8,, Z,,) 5

Let GA,,A, be the group of ag-th roots of unity and x + £ the isomorphism
G,,— G, given by w; > g;=W;.
Pham considers the following subspace U, of V,

U,={z|z€V, and zJ real =0 for j=0,...,n}.

Lemma. The subspace U, is a deformation retract of V, by a deformation com-
patible with the operations of G,.

For the proof see Pham [14], p. 338.
U, can also be described by the conditions

z=uj|z| with y;€G, (j=0,....n).
Put |z;|%=1;. Then U, becomes the space of (n +1)-tuples of complex numbers
tollo@ Uy ®...0 Iy Uy

i
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with R i
weG,, =0, 2 4=1.
j=0
Thus U, can be identified with the join Gg,* Ga* ... * G,, of the finite sets G,
(see Milnor [10]).

Lemma 2.1 in [10] states in particular that the reduced integral homology
groups of the join 4 * B of two spaces A, B without torsion are given by a
canonical isomorphism

Hr+l (A*B) = Z ﬁI(A) ® ﬁJ(B) >
i+j=r
whereas Lemma 2.2 in [10] shows that 4 * B is simply connected provided Bis
arcwise connected and A is any non-vacuous space. These properties of the join
together with its associativity imply

Theorem. The subvariety V, of €' is (n— 1)-connected. Moreover
) H,(V,) = Hy(Ga) ® Ho(Ga) ®...® Hy(G,,) -

This is a free abelian group of rank r= 11 (@—D).
The isomorphism (1) is compatible with the operations of Gg.
All other reduced integral homology groups of Va vanish.

It can be shown that ¥, has the homotopy type of a connected union
S"v ...V S" of r spheres of dimension n. )
The identification of U, with a join was explained to the speaker by
Milnor.
U,= Goy* Ggy* ... * Gy, is an n-dimensional simplicial complex whigh has an
n-simplex for each element of G. The n-simplex belonging to the unit of G, 1s

denoted by e. All other n-simplices are obtained from e by operations of Ga.
Thus we have for the n-dimensional simplicial chain group

2) Co(Ug) =Jae

where J, is the group ring of G,. The homology group H,(U,) =H,(V,) is an
additive subgroup of J,e=C, (U) = J,. _

The face operator d; commutes with all operations of G, on C,(U,) and
furthermore satisfies d;=w; ;. Therefore

3) h=(1—wp) (1—wy)...(1—wp)e
is a cycle. Thus 1 € H, (U,). 1t follows easily that I-?,,(V,,) =J,h. This yields the

Theorem. The map w+— w h (w € G,) induces an isomorphism
J /I, = H, (Vo) =Jah
where I, < J, is the annihilator ideal of h which is generated by the elements
T+w+wi+ . +wf™ (=0,....n).

Therefore wﬁ"w’,“...w’,‘,“h (where 0=k;=a;—2, j=0,...,n) is a basis of
H, (V).
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We recall that H,(V,) is the integral singular homology group (of course
with compact support). V, is a 2n-dimensional oriented manifold without
boundary (non-compact for n = 1). Therefore the bilinear intersection form S
is well defined over H,(V,). It is symmetric for n even, skew-symmetric for »
odd. It is compatible with the operations of G,. .

Pham ([14], p. 358) constructs an n-dimensional cycle # in ¥, which is
homologous to / and intersects U, exactly in two interior points of the
simplices e and wow ... w,e (sign questions have to be observed). In this way
he obtains (using the G,-invariance of S) the following result, reformulated
somewhat for our purposes.

Theorem. Put n=(1—wy)...(1—w,). The bilinear form S over J,n=H,(V,)
is given by
Sxmym=f(rxn (x,yel),

where f:J,— Z is the additive homomorphism with
. n(n—1)

SA) ==f(wo...wx)=(-1) 2
fw)=0 for weG,, w+1, w+Fwy...w,,

and where y v y is the ring automorphism of the group ring J, induced by
w wl(weG,).

§ 2. The quadratic form of V,

Let G be a finite abelian group, J(G) its group ring. The ring automor-
phism of J(G) induced by g - g7' (g € G) is denoted by x - ¥ (x € J(G)).
Give an element #€J(G) and a function f: G — Z. The additive homomor-
phism J(G) — Z induced by f is also called f. Put f= Y f(w)w. We assume

weG

a) f(Xn) =f(xn) forall x e J(G), [equivalently /7= f7]
or

b) f(Xn)=—f(xn) forall x e J(G), [equivalently f
The bilinear form S over the lattice J (G) 5 defined by
Snynm=f(xn ~ (x,yeJ(G)),

is symmetric in case a), skew symmetric in case b). Since S is a form with
integral coefficients, its determinant is well-defined. The signature

7(S)=1"(S) — v (S), casea),

is the number 7 (S) of positive minus the number 7 (S) of negative diagonal
entries in a diagonalisation of S over R. Let y run through the characters of G.

|
Il
|
\.
3,

Lemma. With the preceding assumptions

* detS =( 11 x (f)) - order of the torsion subgroup of J (G)/J (G)

x(m)#0

a9
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and in case a) - -
75 (S) = number of characters x with y (f7) >0

7~ (S) = number of characters y with  ( f7)<0.

The proof is an exercise as in [1], p. 444.
The lemma and the last theorem of § 1 imply for the affine hypersurface

V,=V(ao,...,a,) the

Theorem. Let S be the intersection form of V,. Then

(1) +dets= [ (1—gkoehr... &)

Iskj=a-—1
where &= exp (2mi/a;). For n even, we have

t(S) = number of (n+1)-tuples of integers (X0,---5Xn), 0< x;< a;,

with 0< Y, L <1mod2Z,
j=04

2

©(S) = number of (n+1)-tuples of integers (x0,---5Xn), 0< x;<gqj,

with —1< Y, 2 <0mod2Z.
j=0 4

See [5] for details.

Remark. The intersection form S of V(ao,...,a,) with n=0mod?2 is even,
i.e. S(x,x)=0mod2 for xe H,(Vs). Therefore, by a well-known theorem,
det S=+ 1 implies t*(S) — v (S) = 7(S) =0 mod 8.

Following Milnor we introduce for a= (ao, .-, @) the graph I"(a): o
I'(a) has the (n+1) vertices a,...,a,. TWO of them (say ai, a;) are joined
by an edge if and only if the greatest common divisor (a;, ;) is greater than 1.
Then we have [5]

Lemma. detS as given in the preceding theorem equals +1 if and only if T (a)

satisfies .
a) I'(a) has at least two isolated points, or, .
b) it has one isolated point and at least one connectedness component K with
an odd number of vertices such that (a;, a;) =2 for a;, a; € K (i #))-

Now suppose n even and a=(ag,...,a,)=(p,q,2,...,2) with p, q odd
and (p,q)=1. Thendet S==*1and

® o) =L 2 (4N

-1 .
where N, , is the number of g -x (l =x= 22—) whose remainder mod p of

smallest absolute value is negative. This follows from the preceding theorem.
Observe that by the above remark 7(S) is divisible by 4 (gven by 8) and that
this is related to one of the proofs of the quadratic reciprocity law ([11, p- 450).
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In particular, for n even and (ao,...,a,) = (3,6k—1,2,...,2) the signature
‘S) equals (—1)"?- 8 k.

§ 3. Exotic spheres

A k-dimensional compact oriented differentiable manifold is called a
-sphere if it is homeomorphic to the k-dimensional standard sphere.
. k-sphere not diffeomorphic to the standard k-sphere is said to be exotic. The
rst exotic sphere was discovered by Milnor in 1956. Two k-spheres are
alled equivalent if there exists an orientation preserving diffeomorphism
etween them. The equivalence classes of k-spheres constitute for k=5 a
nite abelian group @, under the connected sum operation. &, contains the
1bgroup bP., of those k-spheres which bound a parallelizable manifold.
Py, (m = 2) is cyclic of order

4B,,,)
m L |

‘here B,, is the m-th Bernoulli number. Let g,, be the Milnor generator of
f’,;,,,, see §5. If a (4m—'1)—sphere X bounds a parallelizable manifold B of
imension 4 m, then the signature 7(B) of the intersection form of B is divis-
>le by 8 and

22m=2(22m=1_ 1) numerator (

7(B)
g Im

) =+

7m should be chosen in such a way that we have always the plus-sign in (1)).
orm=2 and 4 we have
bPy=0;=1Zx, bP;=0y=Zy.

Il these results are due to Milnor-Kervaire. The group bP,, (n odd, n= 3)
. either 0 or Z,. It contains only the standard sphere and the Kervaire sphere
obtained by plumbing two copies of the tangent bundle of S”). It is known
1at bP,, is Z, (equivalently that the Kervaire sphere is exotic) if
=1 mod4 and n= 5 (E. Brown-F. Peterson).

Let 2= V°(ay,a,...,a,) = C"*' (where a; = 2) be defined by
z+zP+ .+ =0.

‘his affine variety has exactly one singular point, namely the origin of €"*'.
et

n
S2n+l — ZIZGC"+I,ZZj§j=] ]
j=0

hen X,=X(ap,..., a,) =VinS?"*! is a compact oriented differentiable
1anifold (without boundary) of dimension 2n —1.

'hem"em. Let n=3. Then X, is (n—2)-connected. It is a (2n—1)-sphere if and
nly if the graph I' (a) defined in § 2 satisfies the condition a) or b). If X, is a

A
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(2n—1)-sphere, then it belongs to bP;,. If, moreover, n=2m, then
T
Za =73 Ym-
g g
where 1=1"— 1 and t*, T are as in § 2 (2). In particular,
2m
> zizi=1, B+ 1423+ +23.=0
i=0

is a (4m—1)-sphere embedded in Sé4m+l = €2m+1 which represents the element
(—D)"k-gm€bPsm. Example: For m=2 and k=1, ..., 28 we get the 28 classes
of 7-spheres, for m=3 and k=1, ..., 992 the 992 classes of 11 -spheres.

Corollary. The affine variety V(ag,...,an), =3, is a topological manifold if
and only if the graph I (a) satisfies a) or b) of § 2.
For this theorem and for the case n odd see Brieskorn [5].

Proof. 1If we remove from 72 the points with z,=0, we get a space v, whose
fundamental group has m; (V2—{0}) = m (Z.) as homomorphic image. V, is
fibered over €* with V(ao,...,a,—1) as fibre which is simply-connected. Thus
(V) =Z and m (Z,) is commutative. Because of this and by Smale-Poin-
caré we have to study only the homology of 2.

Let Vi< €"*! be the affine variety

204 P+ . tZn=¢

(V,=V}). Let D*"** be the full ball in C"*! with center 0 and radius 1 and
§27+1 a5 before, its boundary. X, is diffeomorphic to yi=8§2"*1n VE for
£>0 and small. It is the boundary of B: = D2"+2 A V& whose interior (for &
small) is diffeomorphic to ¥V and V,. The exact homology sequence of the pair
(BZ, V&) shows that X, is (n—2)-connected. Using Poincaré duality we get the
exact sequence

0 - H,(X,) — H.(Vo) > Hom(H,(VJ),Z) — 1(Z) 2 0

where the homomorphism ¢ is given by the bilinear intersection form S of V,
(see §2). This determines H*(Z,) completely: H,(Z;) =0 if and only if
det S # 0. If det S + 0, then | det S | equals the order of H,—1 (Z2)-

The manifold B¢ is parallelizable since its normal bundle is trivial. This
finishes the proof in view of § 2.

§4. Manifolds with actions of the orthogonal group

O (n) denotes the real orthogonal group with O (m) = O (n), m <n, by

1
A (0 3) ., (4€O0O(m), 1=unitof O(n—m)).
Let X be a compact differentiable manifold of dimension 2n—1 on which
O (n) acts differentiably (n = 2). Suppose each isotropy group is conjugate to

O(n—2) or O(n—1). Then the orbits are either Stiefel manifolds O (n)/0(n—2)
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f dimension 27— 3) or spheres O(n)/0(n—1) (of dimension n—1). Sup-
»se that the 2-dimensional representation of an isotropy group of type
(n—2) npnnal to the orbit is trivial, whereas the n-dimensional representa-
n of an isotropy group of type O (n—1) normal to the orbit is the 1-dimen-
onal trivial representation plus the standard representation of O(n—1)
pdqr these assumptions the orbit space is a compact 2-dimensional mahifold

with boundary, the interior points of X’ corresponding to orbits of type
(n)/0 (n—2), the boundary points of X’ to the orbits of type O (n)/0 (n—1)
ippose finally that X” is the 2-dimensional disk. -

IF follows from the classification theorems of [8] and [9] that the classes of
anifolds X with the above properties under equivariant diffeomorphisms are
one-to-one correspondence with the non-negative integers. We let W?2"~!(d)

the (2n—1)-dimensional O (n)-manifold corresponding to the integer
;Q. The fixed point set of O(n—2) in W?"~!(d) is a 3-dimensional O (2)-
(amfold, narpely W3(d), which by ([9], § 5, Korollar 6) is the lens space
(d,1). Thus in order to determine the d associated to a given O (n)-manifold
our type we just have to look at the integral homology group H, of the fixed
1;2 se‘t o£0(n——2). The manifold W2"~1(0) is S"x S"~!, whereas W2"~1(1)

"=, the actions of O(n) are i i

A S 2 q:'('+)l - :z:)s;ly constructed. Consider for d =2 the

) 423+ +22=0, Y zz=1
i=0

€ §3)_. It is easy to check that this is an O (n)-manifold satisfying all our
sumptions. The operation of 4 € O (n) on (zo,zy,...,2,) is, of course, given
applying tl}e real orthogonal matrix 4 € O(n) on the complex ,vector
,_...zz,,) leaving z, untouched. The fixed point set of O (n—2) is X (d,2,2)
uch is L (d, 1), see [6]. o

eorem. The O2 S?)l—manifold 2 (d,2,...,2) given by (1) is equivariantly diffeo-
wphic wnjh W (d), n=2. It can also be obtained by equivariant plumbing
d—1 copies of the tangent bundle of S™ along the graph A4,

[ S —— _ :
® d— 1 vertices.

Fpr the proof it suffices to establish the O(n)-action on the manifold
.tamed by plumbing and check all properties: O (n) acts on S” and on the
it tangent bundle of S”. Since the action of O(n) on S™ has two fixed points
2 plumbmg can be done equivariantly. The fixed point set of O (n—2) is the
ifold obtained by plumbing d—1 tangent bundles of S which is well-
own to be L(d, 1) (see [6], resolution of the singularity of z§+ z} +z3=0).

The above theorem gives another method to calculate the homology of
‘d: 2,‘...,2) and to prove that X (d,2,...,2) for 4 odd and an odd number
2 sis a sphere. In particular, X (3,2,2,2,2,2) is the exotic 9-dimensional
rvaire sphere (see § 3). The calculation of the Arf invariant of the 4,_;-
imbing shows more generally that B

2(d,2,...,2) (dodd, an odd number of 2’s)

TA
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is the standard sphere for d=*1mod8 and the Kervaire sphere for
d =+ 3 mod8, in agreement with a more general result in [5]-

Remarks. The O(n)-manifold W2"~!(d) coincides with Bredon’s manifolds
M"! for d=2k+1, see Bredon [3]. £(3,2,2,2) is the standard 5-sphere
(since @s=0). Therefore S5 admits a differentiable involution a with the lens
space L(3,1) as fixed point set and a diffeomorphism g of period 3 with the
real projective 3-space as fixed point set. Compare [3]. o and S are defined on
2 (3,2,2,2) given by (1) as follows

« (20,21, 22, 23) = (20, 21,22, —23)
ﬁ(20,21,22,23)=(£ZQ,Z|,22,Z3), where £=exp(2ni/3)'

Many more such examples of “exotic” involutions etc. which are not differen-
tiably equivalent to orthogonal involutions etc. can be constructed.

§ 5. Manifolds associated to knots

Let X be a compact differentiable manifold of dimension 27 —1 on which
O (n—1) acts differentiably (7= 3). Suppose each isotropy group is conjugate
to O(n—3) or O(n—2) oris O(n—1). Then the orbits are either Stiefel mani-
folds O (n—1)/0 (n—3) (of dimerision 2n—>5) or spheres O (n—1)/0(n—2)
(of dimension n—2) or points (fixed points of the whole action). The
representations of the isotropy groups O(n—3), 0(n—2) and O (n—1) re-
spectively normal to the orbit are supposed to be the 4-dimensional trivial
representation, the 3-dimensional trivial plus the standard representation of
O (n—2), the 1-dimensional trivial plus the sum of two copies of the standard
representation of O (n—1). The orbit space X’ is then a 4-dimensional mani-
fold with boundary. We suppose that X” is the 4-dimensional disk D*.

Then the points of the interior of D* correspond to Stiefel-manifold-orbits,
the points of dD*=S? to the other orbits. The set F of fixed points corre-
sponds to a 1-dimensional submanifold of S3, also called F.

We suppose F non-empty and connected, it is then a knot in S°. We shall
call an O (n—1)-manifold of dimension 2n—1 a “knot manifold” if all the
above conditions are satisfied.

Let K be the set of isomorphism classes of differentiable knots (i.e.
isomorphism classes of pairs (S 3 F) — F a compact connected 1-dimensional
submanifold — under diffeomorphisms of S°). For the following theorem see
Janich ([9], § 6), compare also W.C. Hsiang and W.Y. Hsiang [8].

Theorem. For any n = 3 there is a one-to-one correspondence
1. K = Pan-1,

where @,,_, is the set of isomorphism classes of 2n— 1)-dimensional knot mani-
folds under equivariant diffeomorphisms. %' associates to a knot manifold the
knot F considered above.

lelal
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Remark. The 2-fold branched covering of S* along a knot F is an O(1)-mani-
fold which will be denoted by 3, (F).
If we plumb 8 copies of the tangent bundles of S” (n= 1) according to the

tree Ey

we get a (2nm—1)-dimensional manifold M?"~!(Eg). For n=2 this is
S3/G, where G is the binary pentagondodecahedral group [6]. For n odd,
M?"~'(Eg) is the standard sphere, as the Arf invariant shows. For
n=2mz=4, the manifold M*"~!(Ey) is an exotic sphere, it is the famous
Milnor sphere which represents the generator * g,, of bPy,, (see § 3).

M?*"~1(Eg) admits an action of O (n—1) as follows: O (n—1) operates as
subgroup of O(n+1) on S" and thus on the unit tangent bundle of S”. The
action on S" leaves a great circle fixed.

When plumbing the eight copies of the tangent bundle, we put the center
of the plumbing operation always on this great circle (for one copy, corre-
sponding to the central vertex of the Eg-tree, we need three such centers, there-
fore, we cannot have an action of O (n) which has only 2 fixed points on S”).
Then the action of O (n—1) on each copy of the tangent bundle is compatible
with the plumbing and extends to an action of O (n—1) on M?"~!(Eg) which,
for n= 3, becomes a knot manifold as can be checked. The resulting knot can
be seen on a picture attached at the end of this lecture. The speaker had
convinced himself that this is the torus knot 7 (3,5), but Zieschang and Vogt
showed him a better proof. This implies the

Thzetlrlem. Suppose nz=3. Then x,(t(3,5)) is equivariantly diffeomorphic to
M "=1(Es) with the O (n—1)-action defined by equivariant plumbing. (This is
still true for n =2, see Remark above.)

We now consider the manifold X (p,q,2,2,...,2) = C**! given by the
equations (see § 3)

This is an O (n—1)-manifold, the action being defined similarly as in §4.
Suppose (p,q) =1. Then it can be shown that X (p,q,2,2,...,2) is a knot
manifold: It is x,(t(p,q)) where (p,q) is the torus knot. Therefore, by the
preceding theorem we have an equivariant diffeomorphism

M (E) 2 X(3,5,2,...,2).
n—1

This gives a different proof (based on the classification of knot manifolds) that
2 (3,5,2,...,2) represents for m = 2 a generator of bP,,, (compare § 3).

e S
2m—1

a9
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§ 6. A theorem on knot manifolds

Let F be a knot in S3. Then the signature 7(F) can be defined in the fol-
lowing way which Milnor explained to the speaker in a letter. Milnor also
considers higher dimensional cases. We cite from his letter, but restrict to
classical knots:

Let X be the complement of an open tubular neighbourhood of Fin S°.

Then the cohomology

H*=H*(X,0X;R)

where X is the infinite cyclic covering of X, satisfies Poincaré duality just as if
X were a 2-dimensional manifold bounded by F.
In particular, the pairing

u: H'®H' - H*=R

is non-degenerate. Let 7 denote a generator for the group of covering trans-
formations of X. Then for a, b € H' the pairing

{a,by=avut*b+bui*a

is symmetric and non-degenerate. Hence, the signature T (F) — 17 (F)=1(F)
is defined.

There exist earlier definitions of the signature by Murasugi [13] and
Trotter [17]. The signature is a cobordism invariant of the knot. A cobordism
invariant mod?2 was introduced by Robertello [15] inspired by an earlier
paper of Kervaire-Milnor. Let F be a knot and 4 its Alexander polynomial,
then the Robertello invariant ¢ (F) is an integer mod 2, namely

c(F)=0, if A(-1)=*1mod8,
c(F)=1, if A4(-1)=x3mod8.

We recall that the first integral homology group of », (F), the 2-fold branched
covering of the knot F (see a remark in §5), is always finite, its order is odd,
and equals up to sign the determinant of F. We have tdetF=4(—1).

Theorem. Let F be a knot, then »,(F), n=2, is the boundary of a parallelizable
manifold. For n odd, x,(F) is homeomorphic to S27~' and thus represents an
element of bP,,, it is the standard sphere if c(F)=0, the Kervaire sphere if
c(F)=1.If n=2m, then iy, (F) is 2m —2)-connected and Hym—1 (%2m (F), Z)
~ H, (% (F),Z). For m=2 it is homeomorphic to S4m=1 if and only if
det F=+ 1. Then »ym(F) represents (up to sign) an element of bPam which is

(F)
+

8

“gm (see § 3).

The proof uses an equivariant handlebody construction starting out from a
Seifert surface [16] spanned in the knot F. For simplicity, not out of necessity,
we have disregarded orientation questions in § 5 and § 6.

Remark. §2(3) gives up to sign a formula for the signature of the torus knot
t(p,q) (p,q odd with (p,q) =1).

-
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Involutionen auf Mannigfaltigkeiten

In: Proceedings of the Conference on Transformation groups, New Orleans 1967,
S. 148 — 166, Berlin-Heidelberg-New York: Springer 1968

HeNRICH BEHNKE zum 70. Geburtstag gewidmet

An der Konferenz iiber Transformationsgruppen (Tulane University,
New Orleans) konnte ich leider wider Erwarten nicht teilnehmen. Der
Aufforderung der Veranstalter, trotzdem einen Bericht fiir die Pfo-
ceedings zu schreiben, komme ich gern nach. In New Orleans “_lollte ich
iiber equivariant plumbing, equivariant handle body constructions und
knot manifolds im Sinne von W. C. HsiaNG, W. Y. HSIANG und JANICH
vortragen. Der vorliegende Bericht hdngt zwar hiermit sehr zusammen,
legt jedoch das Schwergewicht auf Untersuchungen, mit denen ich mich
in Berkeley (August und September 1967) beschaftigt habe. In Berkeley
hatte ich zahlreiche Anregungen durch Gespriche mit D. SULLIVAN
und C.T.C. WALL. Da es schwierig ist, diesen beiden Mathematikern
stets an den in Frage kommenden Stellen des Berichtes zu danken,
méchte ich dies hier in der Eiileitung ganz herzlich tun. Die urspriing-
lich fiir New Orleans vorgesehenen Dinge kann man in den Lecture
Notes von K. H. MAYER und dem Verf. [18] und in der Bonner Disser-
tation von D. ERLE nachlesen. Der vorliegende Bericht entspricht im
wesentlichen Kolloquiumsvortrigen, die der Verfasser im Oktober 1967
in Haverford, Princeton, New York und Boston gehalten hat; der Be-
richt ist manchmal ausfiihrlicher als die Vortrige, muB sich aber an
manchen Stellen trotzdem auf Beweisandeutungen beschranken.

Viele Dinge dieser Arbeit kdnnen verallgemeinert werden auf G-Man-
nigfaltigkeiten, wo G eine kompakte Liesche Gruppe ist (vgl. ATIYAH
and SINGER [3]).

1. Beispiele von Involutionen
Wir betrachten die Gleichung
(1) 280428 - 4200 =0 (n=1).

Die Exponenten a; sollen ganze Zahlen 22 sein. Wir setzen a=(a,, = ,y)-
Nach A. WewL [31] ist die Anzahl der Losungen von (1) iber jedem
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