Free involutions on manifolds and some elementary number theory

In: Symposia Mathematica Vol. V, Istituto Nazionale di Alta Matematica Roma, 1970, S. 411 – 419, London-New York: Academic Press 1971

1. – Let G be a finite group. We shall work in the category of G-manifolds. A G-manifold is a compact oriented differentiable manifold with or without boundary, on which G acts by orientation preserving diffeomorphisms.

Let Y be a G-manifold of even dimension. Then the equivariant signature of Y is an element of the representation ring R(G) of G; see [2], p. 578. Taking its character, for any $g \in G$ the complex number Sign (g, Y) is defined. It is a real number if dim $Y \equiv 0$ (4), it is purely imaginary if dim $Y \equiv 2$ (4). For g = 1, we have the ordinary signature which is 0 if dim $Y \equiv 2$ (4).

Let X be a free G-manifold without boundary and of odd dimension. « Free » means that no element of G except the identity has a fixed point in X. To a free G-manifold X there is associated a function

$$\alpha(g,\,X)\colon G-\{1\}\to C$$

which has been used by C.T.C. Wall and others for the classification of free G-manifolds. The definition of α is as follows ([2], p. 590).

According to equivariant cobordism theory some multiple NX bounds a $free\ G$ -manifold Y.

We define

(1)
$$\alpha(g, X) = \frac{1}{N} \operatorname{Sign}(g, Y) \qquad \text{for } g \neq 1.$$

(Observe $\alpha(g, X) = -\sigma(g, X)$ as defined in [2]).

By the equivariant G-signature theorem ([2], p. 582) we have Sign(g, Z) = 0 for an even-dimensional G-manifold Z without boundary and an element $g \in G$ acting without fixed points. This together with

the Novikov additivity of the equivariant signature ([2], p. 588) ensures that the definition of $\alpha(g, X)$ in (1) is independent of the choice of Y.

If G is of order 2, i.e. $G = \{1, T\}$ with $T^2 = 1$, then $\alpha(T, X)$ is the invariant for free involutions studied in [4] and [6]. It is zero for dim X = 1 (4). If dim X = 4k - 1, then $\alpha(T, X)$ is the Browder-Livesay invariant which is always an integer.

We wish to calculate $\alpha(T, X)$ in special cases. Let G_q be the group of q-th roots of unity and p a natural number prime to q.

Then

$$\zeta(z_1, z_2) = (\zeta z_1, \zeta^p z_2) , \qquad \qquad \zeta \in G_q$$

is a free action of G_{σ} on

$$S^3 = \{(z_1, z_2) \in C^2 | |z_1|^2 + |z_2|^2 = 1 \}$$
.

The orbit space S^3/G_q is the lens space L(q, p). Since $G_q \subset G_{2q}$ we have for p prime to 2q a natural map

$$L(q, p) \rightarrow L(2q, p)$$
.

This is a double covering whose covering translation is a free orientation preserving involution T on L(q, p). We define for p prime to 2q

(2)
$$c_{p,q} = \alpha(T, L(q, p)).$$

2. – The numbers $c_{p,q}$ were introduced by W. D. Neumann ([7], § 17.2) and used for his calculation of the Browder-Livesay invariant for free involutions on Seifert manifolds. We shall relate the $c_{p,q}$ to well-known numbers $N_{p,q}$ occurring in elementary number theory in connection with the quadratic reciprocity law.

DEFINITION: Let p, q be relatively prime natural numbers and q odd. $N_{\nu,q}$ is the number of integers x with

$$1 \leq x \leq \frac{q-1}{2} \,,$$

for which xp has modulo q a remainder of smallest absolute value which is negative.

LEMMA: If p, q are relatively prime and q odd, then for the quadratic reciprocity symbol (Jacobi-Legendre symbol)

$$\left(\frac{p}{q}\right) = (-1)^{N_{p,q}}$$

This is called «Lemma of Gauß» if q is a prime, and found in most books on elementary number theory. For the general case, see Frobenius, Gesammelte Abhandlungen, Springer Verlag, Band III, p. 630.

We can also define $N_{p,q}$ by

(3)
$$N_{p,q} = \# \left\{ x | 1 \le x \le \frac{q-1}{2} \quad \text{and} \quad \frac{1}{2} < \frac{xp}{q} - \left[\frac{xp}{q}\right] \right\}.$$

For real numbers we shall use the function

$$((x)) = x - [x] - \frac{1}{2}$$
, if x is not an integer,
 $((x)) = 0$, if x is an integer.

Compare [8], p. 254. The function (()) has period 1 and is odd. It is convenient to introduce the function

$$f(x) = ((x + \frac{1}{2})) - ((x))$$
.

We have

$$f(x) = \frac{1}{2}$$
, if $0 < x - [x] < \frac{1}{2}$, $f(x) = -\frac{1}{2}$, if $\frac{1}{2} < x - [x] < 1$, $f(x) = 0$, otherwise.

Formula (3) implies

(4)
$$N_{p,q} = \frac{q-1}{4} - \sum_{\nu=1}^{(q-1)/2} f\left(\frac{\nu p}{q}\right).$$

LEMMA: If p, q are relatively prime and both odd, then

$$N_{p,q} = \frac{q-1}{4} + \sum_{\nu=1}^{q-1} \left(\left(\frac{\nu p}{2q} \right) \right).$$

PROOF: Since $pq \equiv -q \mod 2q$ we have by (4)

$$N_{p,q} = \frac{q-1}{4} + \sum_{\nu=1}^{(q-1)/2} \left(\left(\frac{(q-2\nu)p}{2q} \right) \right) + \left(\left(\frac{2\nu p}{2q} \right) \right), \text{ q.e.d.}$$

The expression $\sum_{\nu=1}^{q-1} ((\nu p/2q))$ will also be useful for p, 2q relatively

prime where q may be even or odd. We have

$$\sum_{r=1}^{q-1} \left(\left(\frac{rp}{2q} \right) \right) = S\left(\frac{p}{2q} \right)$$

where S is a function introduced by Dedekind ([3], formula (39)). Observe that (()) in [3] is our function (()) with a shift of $\frac{1}{2}$ in the independent variable. According to [3], formula (42), we have for p and 2q relatively prime

(6)
$$-4S\left(\frac{p}{2q}\right) =$$

$$\#\left\{1 \le \nu \le q - 1 \mid 0 < \frac{\nu p}{q} < 1 \mod 2\right\} -$$

$$\#\left\{1 \le \nu \le q - 1 \mid 1 < \frac{\nu p}{q} < 2 \mod 2\right\}.$$

For the proof of (6) we write the right side of (6) as

$$2\sum_{\nu=1}^{q-1} f\left(\frac{\nu p}{2q}\right) = 2\sum_{\nu=1}^{q-1} \left\{ \left(\left(\frac{\nu p + q}{2q}\right)\right) - \left(\left(\frac{\nu p}{2q}\right)\right) \right\} = -2\sum_{\nu=1}^{q-1} \left\{ \left(\left(\frac{p(q - \nu)}{2q}\right)\right) + \left(\left(\frac{\nu p}{2q}\right)\right) \right\}.$$

Now we state the relation between the Dedekind number S(p/2q), the Gauß number $N_{p,q}$ and the Browder-Livesay invariant of lens spaces.

THEOREM: Consider the lens space L(q, p) for p and 2q relatively prime. It admits a free involution T whose orbit space is L(2q, p). The Browder-Livesay invariant $c_{p,q}$ of T is given by

$$c_{p,q} = -4S\left(\frac{p}{2q}\right), \quad see (6).$$

If p and q are relatively prime and both odd, then

$$c_{p,q} = -4N_{p,q} + q - 1.$$

This will be proved in § 5 as a special case of a more general theorem.

We shall have to prove the first formula in the above theorem only, the second one being a consequence of (5).

REMARK: The formula

$$-48\left(\frac{p}{2q}\right) = -4N_{p,q} + q - 1 \qquad \text{for } p, q \text{ odd}$$

(see (5) and (6)) is easily seen to be equivalent to: «Von den absolut kleinsten Resten der Zahlen $p, 2p, ..., \frac{1}{2}(q-1)p \pmod{q}$ sind ebenso viele negativ, wie von ihren absolut kleinsten Resten (mod 2q)». (Frobenius, Gesammelte Abhandlungen, Springer Verlag, Band III, S. 646).

3. – The invariant α of free G-actions has the following property

PROPOSITION: Let X be a free G-manifold without boundary of odd dimension. Let U be a normal subgroup of G. Then X/U is a free G/U-manifold. If $p: G \to G/U$ is the natural homomorphism, then for $\xi \in G/U$ $(\xi \neq 1)$

(7)
$$\alpha(\xi, X/U) = \frac{1}{|U|} \sum_{g \in p^{-1}(\xi)} \alpha(g, X)$$

PROOF: Let W be a finite-dimensional vector space over R or C which is a representation space of G.

The group G/U acts on

$$W^{\sigma} = \{x \in W | ux = x \text{ for all } u \in U\}$$
.

We obtain in this way a linear map

$$\varrho \colon R(G) \to R(G/U)$$

where R denotes the representation ring.

The endomorphism $1/|U| \sum_{u \in \sigma} gu$ of W has W^{σ} as image and equals g when restricted to W^{σ} . Therefore, its trace equals the trace of the restriction of g to W^{σ} and, for $h \in R(G)$, the character of h and gh satisfy $(\xi \in G/U)$

(8)
$$\chi_{\varrho h}(\xi) = \frac{1}{|U|} \sum_{g \in p^{-1} \xi} \chi_h(g) .$$

If $NX = \partial Y$ where Y is a free G-manifold, then $N(X/U) = \partial (Y/U)$ where Y/U is a free G/U-manifold. The cohomology of Y/U with

real (or complex) coefficients can be identified with the U-invariant part of the cohomology of Y. It follows easily that ϱ of the equivariant signature of Y is the equivariant signature of Y/U. Formula (8) implies (7).

4. – Suppose the free G-manifold X (without boundary and of odd dimension) bounds a G-manifold Y not necessarily free, then for any $g \in G(g \neq 1)$

(9)
$$\alpha(g, X) = \operatorname{Sign}(g, Y) - L(g, Y).$$

L(g, Y) is a number associated to the fixed-point set $Y^{\mathfrak{o}}$ of g and to the action of g in the neighbourhood of $Y^{\mathfrak{o}}$. For $g \neq 1$ we have $Y^{\mathfrak{o}} \cap X = \emptyset$ and $Y^{\mathfrak{o}}$ is a submanifold of Y without boundary. L(g, Y) is defined in [2], p. 582. For the proof of (9) we have to use again the equivariant G-signature theorem

$$Sign(g, Z) = L(g, Z)$$

for an even-dimensional G-manifold Z without boundary, see [2], p. 582 and p. 589.

Let G_q be as before the group of q-th roots of unity. Consider natural numbers p_1, \ldots, p_n , each p_j prime to q. Then G_q acts freely on

$$S^{2n-1} = \{(z_1, ..., z_n) \in C^n | |z_1|^2 + ... + |z_n|^2 = 1\}$$

bу

$$\zeta(z_1, \ldots, z_n) = (\zeta^{p_1} z_1, \ldots, \zeta^{p_n} z_n), \qquad \zeta \in G_q.$$

The orbit space is the (2n-1)-dimensional lens space $\mathfrak{L}(q; p_1, ..., p_n)$. For n=2

$$\mathfrak{L}(q; 1, p) = L(q, p)$$

as introduced in § 1.

The invariant α of the above G_q -manifolds S^{2n-1} can be calculated using (9), since S^{2n-1} bounds the disk D^{2n} on which G_q operates. Any $\zeta \neq 1$ has only the origin as fixed point, Sign (ζ, D^{2n}) vanishes and

(10)
$$L(\zeta, \mathbf{D}^{2n}) = \prod_{j=1}^{n} \frac{\zeta^{p_j} + 1}{\zeta^{p_j} - 1} = -\alpha(\zeta, \mathbf{S}^{2n-1})$$

(see for example, [1], Theorem 6.27).

If all p_i are prime to 2q we have the map

$$\mathfrak{L}(q; p_1, \ldots, p_n) \rightarrow \mathfrak{L}(2q; p_1, \ldots, p_n)$$

417

which is a covering of degree 2. The covering translation is an involution T of $\mathfrak{L}(q; p_1, ..., p_n)$.

PROPOSITION: The Browder-Livesay invariant of the involution T on $\mathfrak{L}(q;\,p_1,\,...,\,p_n)$ where all p_j are prime to 2q is given by the formula

(11)
$$\alpha(T, \mathfrak{L}(q; p_1, ..., p_n)) = \frac{-1}{q} \sum_{\substack{\xi^{n_0} = 1 \\ \xi^{n_0} \neq 1}} \prod_{j=1}^{n} \frac{\zeta^{n_j} + 1}{\zeta^{n_j} - 1}.$$

If q is odd, then the involution T is induced by the antipodal map on S^{2n-1} and

(12)
$$\alpha(T, \mathfrak{L}(q; p_1, ..., p_n)) = \frac{-1}{q} \sum_{\zeta^{\mathfrak{p}_1}} \prod_{j=1}^n \frac{\zeta^{\mathfrak{p}_j} - 1}{\zeta^{\mathfrak{p}_j} + 1}.$$

Proof: (11) is a consequence of (7) and (10). Formula (12) holds because $\{-\zeta|\zeta^q=1\}=G_{2q}-G_q$ for q odd. For n even we rewrite (11)

(13)
$$\alpha(T, \mathfrak{Q}(q, p_1, \dots, p_n)) = \frac{(-1)^{(n/2)+1} \sum_{\substack{j=1 \ j \text{ odd}}}^{2p-1} \cot\left(\frac{jp_1}{2q}\pi\right) \cdot \cot\left(\frac{jp_2}{2q}\pi\right) \dots \cot\left(\frac{jp_n}{2q}\pi\right)}{1} \cdot \cot\left(\frac{jp_n}{2q}\pi\right) \dots \cot\left(\frac{jp_n}{2q}\pi\right) \dots$$

5. – Using (13) we shall derive a different expression for $\alpha(T, \mathfrak{L}(q; p_1, ..., p_n))$.

For any 2m-row of natural numbers

$$(a_1, \ldots, a_m; b_1, \ldots, b_m)$$
 with b_j and $2a_j$

relatively prime, we introduce the integer

(14)
$$t(a_1, ..., a_m; b_1, ..., b_m) =$$

$$\# \left\{ x \in \mathbf{Z}^m | 0 < x_k < a_k \text{ and } 0 < \sum_{k=1}^m \frac{x_k b_k}{a_k} < 1 \mod 2 \right\}$$

$$- \# \left\{ x \in \mathbf{Z}^m | 0 < x_k < a_k \text{ and } 1 < \sum_{k=1}^m \frac{x_k b_k}{a_k} < 2 \mod 2 \right\}.$$

This number is always 0 if m is even. For m odd we have the following proposition due to Zagier (who stated and proved it for $b_i = 1$).

PROPOSITION (Zagier): Let m be odd and $(a_1, ..., a_m; b_1, ..., b_m)$ as above. Let N be any common multiple of $a_1, ..., a_m$, then

(15)
$$t(a., ..., a_m; b_1, ..., b_m) = \frac{(-1)^{(m-1)/2}}{N} \sum_{\substack{j=1 \ j \text{ odd}}}^{2N-1} \cot\left(\frac{j}{2N}\pi\right) \cot\left(\frac{jb_1}{2a_1}\pi\right) ... \cot\left(\frac{jb_m}{2a_m}\pi\right).$$

PROOF: For any positive rational number r=a/b where $a,\ b$ are natural numbers not necessarily relatively prime we have the formula of Eisenstein

(16)
$$((r)) = \frac{i}{2b} \sum_{i=1}^{b-1} \cot\left(\frac{j}{b}\pi\right) \exp\left[2\pi i \cdot jr\right]$$

(see [8], p. 276). This implies for the function f introduced in § 2

(17)
$$f(r) = \left(\left(r + \frac{1}{2}\right)\right) - \left(\left(r\right)\right)$$
$$= \frac{-i}{b} \sum_{j=1}^{b-1} \cot\left(\frac{j}{b}\pi\right) \cdot \exp\left[2\pi i \cdot jr\right], \text{ for } b \text{ even.}$$

Therefore

$$\begin{split} t(a_1, \dots, a_m; b_1, \dots, b_m) &= \\ 2 \sum_{0 < x_k < a_k} f\left(\frac{x_1 b_1}{2a_1} + \frac{x_2 b_2}{2a_2} + \dots + \frac{x_m b_m}{2a_m}\right) &= \\ \frac{-i}{N} \sum_{\substack{j=1 \ \text{odd}}}^{2N-1} \cot\left(\frac{j}{2N}\pi\right) \sum_{0 < x_k < a_k} \exp\left(2\pi i \cdot j\left(\frac{x_1 b_1}{2a_1} + \dots + \frac{x_m b_m}{2a_m}\right)\right). \end{split}$$

Since for b and 2a relatively prime and j odd,

$$\sum_{\nu=1}^{a-1} \exp \left[2\pi i j \, \frac{\nu b}{2a} \right] = i \, \cot \left(\frac{jb}{2a} \, \pi \right),$$

formula (15) follows.

The number $t(a_1, ..., a_m; 1, ..., 1)$ is the signature of the Brieskorn variety $z_1^{a_1} + ... + z_m^{a_m} = 1$. (Compare [5]). This is the reason why Zagier studied formulas like (15). We can also express the Browder-Livesay invariant of the involution on the lens space $\mathfrak{L}(q; p_1, ..., p_n)$ in terms of t as defined in (14). We may assume $p_1 = 1$ without loss of generality.

THEOREM: Consider the lens space $\mathfrak{L}(q;1,p_2,...,p_n)$ for p, and 2q relatively prime and n even. It admits a free involution T whose orbit space is $\mathfrak{L}(2q;1,p_2,...,p_n)$. The Browder-Livesay invariant of T is given by

(18)
$$\alpha(T, \mathfrak{L}(q; 1, p_2, ..., p_n)) = t(q, ..., q; p_2, ..., p_n),$$

as defined in (14) for m = n - 1.

Formula (18) is a consequence of (13) and (15). The theorem in $\S 2$ is the above theorem for n=2.

Testo pervenuto il 21 settembro 1970. Bozze licenziate l'11 novembre 1970.

REFERENCES

- [1] M. F. ATIYAH and R. BOTT, A Lefschetz fixed point formula for elliptic complexes: II. Applications, Ann. of Math., 88 (1968), 451-491.
- [2] M. F. Atiyah and I. M. Singer, The index of elliptic operators: III., Ann. of Math., 87 (1968), 546-604.
- [3] R. Dedekind, Erläuterungen zu zwei Fragmenten von Riemann, Dedekind Gesammelte mathematische Werke, Erster Band, Friedrich Vieweg Braunschweig (1930), 159-173.
- [3] R. Dedekind, Erläuterungen zu zwei Fragmenten von Riemann, Dedekind Gesammelte mathematische Werke, Erster Band, Friedrich Vieweg Braunschweig (1930), 159-173.
- [4] F. Hirzebruch, Involutionen auf Mannigfaltigkeiten, Proceedings of the Conference on Transformation Groups, New Orleans (1967), Springer-Verlag Berlin-Heidelberg-New York (1968), 148-166.
- [5] ———, Pontrjagin classes of rational homology manifolds and the signature of some affine hypersurfaces (to appear).
- [6] F. HIRZEBRUCH and K. JÄNICH, Involutions and Singularities, Algebraic Geometry Bombay Colloquium (1968), Oxford University Press (1969), 219-240.
- [7] W. D. NEUMANN, S¹-actions and the α-invariant of their involutions, Dissertation Mathematisches Institut Bonn (1969).
- [8] H. Rademacher, Lectures on Analytic Number Theory, Notes, Tata Institute Bombay (1954-55).