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HILBERT MODULAR SURFACES 1

by Friedrich E. P. Hirzebruch
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§0. Introduction and preparatory material

O.L In my Tokyo IMU-lectures I began with a survey of the Hilbert
modular group G of a totally real field of degree n over the rationals, or

more generally of discontinuous groups F operating on $" where $ is the

upper half plane. Then I concentrated on the case n — 2 and studied the

non-singular algebraic surfaces (Hilbert modular surfaces) which arise by

passing from $
2

/G to the compactification $
2

/G and by resolving ail

singular points of the normal complex space §}
2

/G. I gave the proof for
the resolution of the cusp singularises, a resuit announced in my Bourbaki
lecture [39]. Then I talked about the calculation of numerical invariants
(arithmetic genus, signature) of the Hilbert modular surfaces and on the

problem of deciding which of thèse surfaces are rational. This problem is

studied in the présent paper with much more détail than in the lectures.
We construct certain curves on the Hilbert modular surfaces (arising from
imbeddings of §in §

2
). Properties of the configuration of such curves

x
) International Mathematical Union lectures, Tokyo, February-March 1972.



together with the curves coming from the resolution of the cusp singu
larities imply in some cases that the surfaces are rational. In particular we

take the field K=Q (y/p), where p is a prime =1 mod 4 and investigate
the corresponding compact non-singular Hilbert modular surface Y(p) and

the surface obtained by dividing Y (p) by the involution T coming from
the permutation of the factors of §

2
. The surface Y(p)/T is rational for

exactly 24 primes, a resuit which was not yet known completely when I

lectured in Tokyo.
Up to now rationality of the Hilbert modular surface or of its quotient

by the involution T was known only for the fields Q( N
/ 2), Q(-v/3),

Q (y/J), (H. Cohn, E. Freitag ([l4], part II), Gundlach [22], Hammond
[25], [26]).

In the following section I shall say a few words about further classifica

tionresults which were mostly proved only after the time of the Tokyo
lectures.

0.2. I hâve learnt a lot from van de Ven concerning the classification
of algebraic surfaces; in fact, the rationality for many of the 24 primes

was proved jointly using somewhat différent methods. The surfaces Y(jp)
and Y(p)/T are regular, i.e. their fîrst Betti number vanishes. Van de Ven

and I (see [41]) used the above mentioned curves to décide how the surfaces

Y(p) (P = 1 niod 4, p prime) fit into the rough classification of algebraic
surfaces (see Kodaira [46], part IV). The resuit is as follows: the surface

Y(p) is rational for p = 5, 13, 17, a blown-up K3-surface for p = 29, 37, 41,

a blown-up elliptic surface (not rational, not K3) for p = 53, 61, 73, and

of gênerai type for p > 73.

Also the surfaces Y(p)/T (p = 1 mod 4, p prime) can be studied by

the same methods, but hère some refined estimâtes about certain numerical

invariants are necessary.

A joint paper with D. Zagier [42] will show that the surfaces are blown
upiO-surfaces for the seven primes p - 193, 233, 257, 277, 349, 389, 397

and blown-up elliptic surfaces (not rational, not K3) for p = 241,281.
We do not know what happens for the eleven primes p = 353, 373, 421,

461, 509, 557, 653, 677, 701, 773, 797. As indicated before, there are

24 primes for which the surface is rational. Except for thèse 44 primes

(eleven of them undecided) the surface Y(p)/T is of gênerai type.

Unfortunately a report on thèse classification problems could not be

included in this paper. It is already too long. We must refer to [41], [42].



0.3. Our standard référence for the study of discontinuous groups

operating on £" is Shimizu's paper [71] where other références are given.

For the gênerai theory of compactification we refer to the paper of

Baily and Borel [4] and the literature listed there. They mention in par
ticularthe earlier work on spécial cases by Baily, Pyatetskii-Shapiro [63],

Satake and the Cartan seminar [67]. Compare also Christian [11], Gundlach

[20]. Borel and Baily refer to similar gênerai theorems found independently

by Pyatetskii-Shapiro.
We cite from the introduction of the paper by Baily and Borel :

"This paper is chiefly concerned with a bounded symmetric domain X

and an arithmetically defined discontinuous group F of automorphisms
of X. Its main goals are to construct a compactification F* of the

quotient space F= X/F 9
in which F is open and everywhere dense,

to show that F* may be endowed with a structure of normal analytic

space which extends the natural one on F, and to establish, using

automorphic forms, an isomorphism of F* onto a normally projective
variety, which maps F onto a Zariski-open subset of the latter."

Of course, it suffices if X is équivalent to a bounded symmetric domain.
We are concerned in this paper with the case X= §>

n
. We do not require

that F be arithmetically defined, but assume that it satisfies Shimizu's

condition (F), see 1.5 in the présent paper. Also under this assumption

the compactification of $$
n jF (which we call §>

n /F) is well-defined and is

a normally projective variety. The projective imbedding is given again by

automorphic forms in the usual manner. (Compare also Gundlach [20]

and H. Cartan ([9], [66] Exp. XV). For n = 2 we are able to résolve the

singularises and obtain from 9)
2

jF a non-singular (projective) algebraic
surface.

0.4. As far as I know, the resolution (which exists according to

Hironaka [34]) of the singularises of F* (see the above quotation from the

paper of Baily and Borel) has been explicitly constructed only in a very
few cases: by Hemperly [33], if X= {zeC2 :|zx |

2
+ |z2 |

2
< I}, in

the présent paper if X= §
2

(thus settling the only cases where the complex
dimension of F* equals 2) and by Igusa [43] for some groups F acting on
the Siegel upper half plane of degree g g 3. Two days before writing this

introduction (Jan. 27, 1973) I heard that Mumford is working on the

gênerai case (Lecture at the Tata Institute, January 1973).



0.5. It is assumed that the reader is familiar with some basic concepts
and results of algebraic number theory ([6], [30], [52]), the theory of dif
ferentiablemanifolds and characteristic classes [36], the theory of algebraic
surfaces ([4s], [46], [64]) and the resolution of singularities in the 2-dimen
sionalcase ([3s], [49]). The définitions and theorems needed can be found,
for example, in the literature as indicated.

0.6. The "adjunction formula" ([4s], Part I) will be used very often.

We therefore state it hère.

Let X be a (non-singular) complex surface, not necessarily compact.
By e •/ we dénote the intersection number of the intégral 2-dirnensional

homology classes e, f (one of them may hâve non-compact support). For

two divisors E, F (at least one of them compact), E • t dénotes the inter
sectionnumber of the homology classes represented by E and F. Let

c 1
eH2 (X, Z) be the first Chern class of X. The value of c

1 on every
2-dimensional intégral homology class of X (with compact support) is

well-defined, and for a compact curve D on Xwe let c 1 [D] be the value

of c
1 on the homology class represented by D. By D we dénote the non

singularmodel of D and by e (D) its Euler number.

Adjunction formula.

Let D be a compact curve (not necessarily irreducible) on the complex

surface X. Then

(1)

The sum extends over the singular points of D, and the summand episc

p
is

a positive even integer for every singular point p, depending only on the

germ of D in p.

If K is a canonical divisor on X, then its cohomology class equals

— cl.c
1 . We hâve

(2)

0.7. We shall use some basic facts on group actions [47].

Définition. A group G acts properly discontinuously on the locally compact

Hausdorjf space X if and only if for any x, y e X there exist neighborhoods U

of x and V of y such that the set of ail g e G with gU n V #= 0 is fini te. An



équivalent condition is that, for any compact subsets K u
K2K

2 of X, the set

of ail geG with g (K ±
) nK2 ois finite.

For a properly discontinuous action, the orbit space X/G is a Hausdorff

space. For any x e X, there exists a neighborhood U of x such that the

(finite) set of ail geG with gU n U#o equals the isotropy group
G

x = {g|ggG,g (x) = x}. If Xis a normal complex space and G acts

properly discontinuously by biholomorphic maps, then X/G is a normal

complex space.

Theorem. (H. Cartan [B], and [66] Exp. I). If Xisa bounded domain

in C n

,
then the group %of ail biholomorphic maps X->X with the topology

of compact convergence is a Lie group. For compact subsets K t ,
K2K

2 of X,

the set of ail ge% such that gK t nK2 oisa compact subset of 91. A

subgroup of % is discrète if and only if it acts properly discontinuously \

If X is a bounded symmetric domain, then a discrète subgroup Y of 21

opérâtes freely if and only if it has no éléments of finite order.

0.8. I wish to express my gratitude to M. Kreck and T. Yamazaki.
Their notes of my lectures in Bonn (Summer 1971) and Tokyo (February
March 1972) were very useful when writing this paper. I should like to

thank D. Zagier for mathematical and computational help. Conversations
and correspondence with H. Cohn, E. Freitag, K.-B. Gundlach, W. F.

Hammond, G. Harder, H. Helling, C. Meyer, W. Meyer, J.-P. Serre,

A. V. Sokolovski, A. J. H. M. van de Ven (see 0.2) and A. Vinogradov
were also of great help.

Last but not least, I hâve to thank Y. Kawada and K. Kodaira for

inviting me to Japan. I am grateful to them and ail the other Japanese

colleagues for making my stay most enjoyable, mathematically stimulating,
and profitable by many conversations and discussions.

§1. The Hilbert modular group
and the Euler number of its orbit space

1.1. Let 9) be the upper half plane of ail complex numbers with positive
imaginary part. §is embedded in the complex projective line P

X
C. A

complex matrix (" J) with ad - bc # 0 opérâtes on V^C by



The matrices with real coefficients and ad — bc > 0 carry § over into

itself and constitute a group GLj (R). The group

(1)

opérâtes effectively on §. As is well known, this is the group of ail biholo
morphicmaps of 9) to itself.

Writing z = x + iy (x, y e R, y > 0) we hâve on 9) the Riemannian
metric

which is invariant under the action of PLj (R). The volume élément

equals y~
2 dx a dy.

We introduce the Gauß-Bonnet form

1 dx ady
(2)

If r is a discrète subgroup of PL J (R) acting freely on 9) and such that

%/F is compact, then 9)/ F is a compact Riemann surface of a certain genus

p whose Euler number e (9>/F) = 2 — 2p is given by the formula

(3)

We recall that the discrète subgroup F acts freely if and only if r has

no éléments of finite order.

1.2. Consider the n-fo\d cartesian product §)n)
n =9) x ... x 9). Let 21

be the group of ail biholomorphic maps 9)
n

-» 9)
n

.
The connectedness

component of the identity of 31 equals the /7-fold direct product of PL^ (R)

with itself. We hâve an exact séquence

(4)

where S
n

is the group of permutations of n objects corresponding hère

to the permutations of the n factors of 9)
n

. The séquence (4) présents 31

as a semi-direct product. On 9>
n

we use coordinates zlsz

l5
z2,...,z

2 , ..., z
n

with

z k = x k + iy k and y k > 0. We hâve a metric invariant under 3t:



The corresponding Gauß-Bonnet form œ is obtained by multiplying
the forms belonging to the individual factors; see (2). Therefore

(5)

If F is a discrète subgroup of 51 acting freely on 9)
n and such that

§"/r is compact, then 9)
n jF is a compact complex manifold whose Euler

number is given by

(6)

e (§ n /r) is always divisible by 2": for a compact complex 7?-dimensional

manifold X we dénote by [X] the corresponding élément in the complex

cobordism group [58]. We hâve

(7)

This follows, because the Chern numbers of $
n /r are proportional

[37] to those of (PiC)". In particular, the Euler number and the arithmetic

genus (Todd genus) of (P^)" are 2n2
n and 1 respectively and thus 2~ n

• e(%
n /r)

is the arithmetic genus of §)n/F.)
n /F.

1.3. We shall study spécial subgroups of the group of biholomorphic
automorphisms of § n

. They are in fact discrète subgroups of (PLj (R))
n

.

Let K be an algebraic number field of degree n over the field Q of rational
numbers. We assume Kto be totally real, i.e.

?
there are n différent embed

dingsof i^into the reals. We dénote them by

We may assume x= x(1).x
(1)

. The élément xis called totally positive (in

symbols, x>o)if ail x U) are positive. The group

acts on 9)
n

as follows: for z = (z 1? ..., z
n

) e$$ n
we hâve



The corresponding projective group

acts effectively on $ n
. Thus PLj (K) c (PLj (R))

n
.

Let o K
be the ring of algebraic integers in K, then by considering only

matrices with a, b, c, de o K and ad —bc=l we get the subgroup
SL 2 (o K ) of GLÎ (X). The group SL 2 (o K ) /{l,-1} is the famous

Hilbert modular group. It is a discrète subgroup of (PLj (R))
B

.
We

shall dénote it by G (K) or simply by G, if no confusion can arise.

The Hilbert modular group was studied by Blumenthal [s]. An error
of Blumenthal concerning the number of cusps was corrected by Maaß [53].

The quotient space 9}
n jG is not compact, but it has a finite volume with

respect to the invariant metric. It is natural to use the Euler volume given
in (5). The quotient space §>

n /G is a complex space and not a manifold

(for n > 1). We shall return to this point later. But the volume of §>
n /G

is well-defined and was calculated by Siegel ([72], [74]). The C-function
of the field K enters. It is defined by

This sum extends over ail ideals in o K ,
and N (a) dénotes the norm of

a. The séries converges if the real part of the complex number s is greater
than 1. It converges absolutely uniformly on any compact set contained
in the half plane Re (s) > 1

.
The function Ç

K can be holomorphically
extended to C— {I}. It has a pôle of order 1 for s= 1. Let DKD

K dénote

the discriminant of the field K.

Then

(8)

is invariant under the substitution s -> 1 — s.

This is the well-known functional équation of K (s). It can be found

in most books on algebraic number theory. See, for example, [52].

Theorem (Siegel). The Euler volume of
'

$>
n /G relates to the zeta-function

as folio w s



(9)

dx
1 a dy x

The formula (19) of [72] uses the volume élément a ...

aXnAoy" and gives for the volume the value 2 n~ n
• DD

K
3j z Ç

K (2).

If we multiply this value with (-1)" . (2ti)~ m

? we get J œ.

Formula (9) follows from the functional équation. It was pointed out

by J. P. Serre [69] that such Euler volume formulas may be written more

conveniently using values of the zêta functions at négative odd integers.

2Ç K (— 1) is a rational number, a resuit going back to Hecke, see Siegel

([73] Ges. Abh. I, p. 546, [76]) and Klingen [44]. The rational number

2£ K (— 1) is in fact the rational Euler number of G in the sensé of Wall

[77], as we shall see later.

1.4. We shall write down explicit formulas for 2( x (— 1) in some cases.

For K = Q, the group G is the ordinary modular group acting on §. A

fundamental domain is described by the famous picture (see, for example,
[68] p. 128).

The volume of S&jG equals the volume of the shaded domain. By Siegel's
gênerai formula, the volume of the shaded domain with respect to
dx a dy

5—5 — equals
y



Therefore, we get for the Euler volume

(10)

We consider the real quadratic fields K = Q (y/d) where Jis a square
freenatural number > 1. We recall that the discriminant D of K is given

by

The ring o K has additively the following Z-bases.

Theorem. Let K = Q (Jd) be as above. Then for d = 1 mod 4

en)

and for d = 2,3 mod 4

(12)

where a 1a
1 (a) equals the sum of the divisors of a.

This theorem, though not exactly in this form, can be found in Siegel

[76]. Compare also Gundlach [22], Zagier [78]. The k2k
2 of Gundlach equals

4/C*(-l).

1.5. A référence for the following discussion is [71].

We always assume that F is a discrète subgroup of (PL +
(R))

n and

that 9)
n jr has finite volume.



ris irreducible if it contains no élément y= (y (1)
, ..., y(n))y

(n) ) such that

/') = l for some i and y
U) 1 for somey. See [71], p. 40 Corollary.

An élément of PL \ (R) is parabolic if and only if it has exactly one

fixed point in PiC. This point belongs to P t
R = Ruoo. An élément

y= ( y^\ ...,y
(n)

) of (PLj (R))
n is called parabolic if and only if ail y

(i)

are parabolic. The parabolic élément y has exactly one fixed point in

(PiQ". It belongs to O^R)". The parabolic points of T are by définition
fixed points of the parabolic éléments of F.

The above notation, hopefully, will not confuse the reader. The y(l)y

(l)

are simply the components of the élément yof (PL \ (R))
n

. If yePLJ (K)
ci (PL2 (R))" (compare 1.3), then, for y represented by ("*), the élément

y
{l) is represented by ("([)

b

d (h) where x\-+ x(l)x
(l) is the z-th embedding of K

in R. For any group F a (PLj (R))" we consider the orbits of parabolic
points under the action of F on (PxR)". They are called parabolic orbits.
Each such orbit consists only of parabolic points.

If F is irreducible, then there are only finitely many parabolic orbits

([7l], p. 46 Theorem 5).

Hereafter we shall assume in addition that F is irreducible.
If x g (P X R)" is a parabolic point of T, we transform it to 00 = (00, ..., 00)

by an élément pof (PLjR) M

,
not necessarily belonging to F, of course.

Thus px = 00.

Let F
x

be the isotropy group of x

Then any élément of pF x p lisof the form

(13)

Consider the following multiplicative group

(14)

It is isomorphic to R n x

by taking logarithms. Each élément of

pF xP
~ x

(see (13)) satisfies 1(1)1 (1) • A(2)...A (2)
...

• X {n) =1, (compare [71], p. 43,
Theorem 3). Therefore we hâve a natural homomorphism pF x p~

x

-> A

whose image is a discrète subgroup A
x

of A of rank n - 1. The kernel
consists of ail the translations



where \i = (^ (1)
, ..., fi

(n)
) belongs to a certain discrète subgroup M

x
of

R" of rank n. Thus we hâve an exact séquence

(15)

Using the inner automorphisms of pF x p
1

,
the group A

x
acts on M

x

by componentwise multiplication. However, in the gênerai case, (15) does

not présent pF x p~
1

as a semi-direct product. For n — 1, the group A
x

is trivial. For n = 2 it is infinité cyclic, pF x p~
1

is a semi-direct product,
and p can be chosen in such a way that pF x p~

1
is exactly the group of ail

éléments of the form (13) with XcA x
and /i e M x .

For any positive number d, the group pF x p
l acts freely on

(16)

where Im dénotes the imaginary part. The orbit space Wj pF x p
1 is a

(non-compact) manifold with compact boundary

Since d W is a principal homogeneous space for the semi-direct product
E = R" x A of ail transformations

we can consider N as the quotient space of the group E (homeomorphic
to R 2 "" 1

) by the discrète subgroup pF x p~
1

. Thus N is an Eilenberg
MacLane space. The (2n— l)- manifold JV is a torus bundle

over the (n — l)- torus A/A x .
The fibre is the

torus R n /M x ,
and Nis obtained by the action of A

x on ~R n /M x
which is

induced by the action Xj\-* 1U)1 U)
Xj + fi

U) of pF x p~
x

on R\ Since, in

gênerai, fi
U) is not necessarily an élément of M x ,

the action of A
x on

R n /M x
need not be the one given by componentwise multiplication.

Définition ([7l], p. 48). Let F be as before a discrète irreducible sub

groupof (PLj (R))
n such that §>

n /F has finit e volume. Let x v (l<*v^f) be

a complète set of F-inequivalent parabolic points of F. Choose éléments

p v e(PL2(R)) n with p v x v =oo and put U
v = p'

1

(W v
) where W

y
is

defined as in (16) with some positive number d
v

instead of d. We say that

F satisfies condition (F) if it admit s (for some d
v

) a fundamental domain

F of the form



(disjoint union)

where FoisF

o is relatively compact in 9)
n and V

y
is a fondamental domain of

F
x

in U
v .x v v

The fundamental domain Fc §" is by définition in one-to-one

correspondence with %n/r%
n /r and V

v
is in one-to-one correspondence with

ujr x .

The Hilbert modular group G of any totally real field K is a discrète

irreducible subgroup of (PLj (R))
n with finite volume of $"/<? which

satisfies condition (F). The existence of a fundamental domain with the

required properties was shown by Blumenthal [5] as corrected by Maaß

[53]. See Siegel [75] for a detailed exposition.
Two subgroups of (PLj (R))

w

are called commensurable if their inter
sectionis of finite index in both of them.

Any subgroup F (R))
M which is commensurable with the Hilbert

modular group G also satisfies (F).

We défi ne

(17)

Then we get for the Euler volume

(18)

Remark. It is not known whether every discrète irreducible subgroup
F of (PLj (R))

M such that $"/r has finite volume satisfies Shimizu's
condition (F).

Selberg has conjectured that any F satisfying (F) and having at least

one parabolic point (^ 1) is conjugate in the group 31 of ail automorphism
of §i

n to a group commensurable with the Hilbert modular group G of

some totally real field K with [K : Q] = n.

1.6. Harder [28] has proved a gênerai theorem on the Euler number
of not necessarily compact quotient spaces of finite volume. For the following
resuit a direct proof can be given by the method used in [40].

Theorem (Harder). Let Fa (PLj (R))
n be a discrète irreducible

group satisfying condition (F) of the définition in 1.5. Suppose moreover



that F opérâtes freely on $$
n

.
Then 9)

n jF is a complex manifold whose Euler

number is given by

(19)

If F is commensurable with the Hilbert modular group G of K, (where K is

a totally real field of degré e n over Q) then

(20)

Proof It follows from 1.5 that $>
n /F contains a compact manifold Y

with t boundary components B
v = dWJpF x p~

x

(which are rr n -bundles

over T"" 1
). We hâve to choose the numbers d

v sufficiently large. By the

Gauß-Bonnet theorem of Allendoerfer-Weil-Chern [10]

where J~J is a certain (2w — l)- By the argument explained in [40]

one can show easily that

Since the Hilbert modular group G always contains a subgroup F

of finite index which opérâtes freely and since §>
n /F can be replaced up

to homotopy by the compact manifold F with boundary, [G :F] - 2Ç K (— 1)

is the Euler number of F in the sensé of the rational cohomology theory
of groups and thus 2Ç K (— 1) is the Euler number of G in the sensé of

Wall [77].

Theorem. Let F<= (PLj (R))
n be a discrète irreducible group such

that §>
n /F has finite volume. Assume that F satisfies condition (F). The

isotropy groups F
z (ze§ n

) are finite cyclic and the set of those z with

|Fz|>l projects down to a finite set in %>
n /F. Thus §>

n /F is a complex

space with finitely many singularities. (For n — 1
,

thèse "branching points"
are actually not singularities.)

Let a
r {F) be the number of points in §>

n /F which corne from isotropy

groups of order r. The Euler number of the space 9)
n jF is well-defined, and

we hâve



(21)

The proof is an easy conséquence of the Allendoerfer-Weil-Chern

formula (compare [40], [65]).

The easiest example of (21) is of course the ordinary modular group
G = G(Q). We hâve a2a

2 (G) = a3a
3 (G) = 1 whereas the other a r (G) vanish.

Thus

This checks, since $/G and C are biholomorphically équivalent.

1.7. We shall apply (21) to the Hilbert modular group G and the

extended Hilbert modular G of a real quadratic field. G is defined for any

totally real field K. To deflne it we must say a few words about the units

of K. They are the units of the ring o K of algebraic integers. Let Übe the

group of thèse units. Its rank equals n — 1 by Dirichlet's theorem [6].

Let U + be the group of ail totally positive units (see 1.3). It also has rank

n— 1 because it contains U2U
2

= {s2s
2 Ise U}.

The extended Hilbert modular group is defined as follows

We hâve an exact séquence

obtained by associating to each élément of G its déterminant mod U 2
.

If K=Q (sfd) with dasin 1.4., then U + and U2U
2

are infinité cyclic

groups and U + /U 2 is of order 2 or 1. The first case happens if and only
if there is no unit in o K with négative norm. If dis a prime p, then

Compare [30], Satz 133.

To apply (21) to the groups G and G belonging to a real quadratic
field we must know the numbers a

r (G) and a
r (G). They were determined

by Gundlach [21] in some cases and in gênerai by Prestel [61] using the

idea that the isotropy groups G
z

and G
z respectively (z e <r>

2
) détermine

orders in imaginary extensions of X, which by an additional step relates



the a
r (G) and a r (G) to idéal class numbers of quadratic imaginary fields

over Q. To write down Prestel's resuit we fix the following notation. A

quadratic field k over Q (real or imaginary) is completely given by its

discriminant D. The class number of the field will be denoted by h (D)

or by h(k).
Prestel has very explicit results for the Hilbert modular group G of

any real quadratic field K and for the extended group G in case the class

number of K is odd. We shall indicate part of his resuit.

Theorem. (Prestel). Let dbe squarefree, d^.l and (d, 6) = 1. Let

K = Q (J~d). Then for the Hilbert modular group G (K) we hâve for

d = 1 mod 4

and for d = 3 mod 8

and for d == 7 mod 8

If d is a prime = 3 mod 4 and d i^ 3 we hâve for the extended group

G (K) the following resuit :

If d=3 mod 8, then

If d=l mod 8, then

Prestel gives the numbers a
r (G) and a

r (G) also for d = 2, 3, 5. For

d = 3 we hâve



ail other a r (G) = 0.

We apply (12), (20) and (21) for K= Q (V 3 ) as an example

We shall copy Prestel's table [61] of the a
r (G) and the a

r (G) (if

known) for K = Q (^/d) up to rf = 41. In [61] the table contains an error
which was corrected in [62].

We also tabulate the values of 2C X (-1), e(?>
2 /G\ and of e(?>

2
/G)

if known. In the columns before 2Ç K (— 1) we find the values of the a
r (G);

the values of the a
r (G) are written behind 2Ç K (—1). If there is no entry,

then the value is zéro.

If the a
r (G) and e (§

2/(j)2

/(j) are not given in the table, this means that

either there exists a unit of négative norm and thus G — G or that the values

are not known. This is indicated in the last column.

By Prestel a
r (G) =0 for r>3 and K=Q Q d) with d>s, and

we hâve for d > 5

(22)

Since the Euler number is an integer, we obtain by (11) and (12):

For d > 5, d=l mod 4, d square-free,

For d > 5, d=2,3 mod 4, d square-free



Problem. Prove thèse congruences in the framework of elementary
number theory.

§2. The cusps and their resolution
for the 2-dimensional case

2.1. Let Kbea totally real algebraic field of degree n over Q and M

an additive subgroup of K which is a free abelian group of rank n. Such a

group M is called a complète Z-module of K. Let C/J be the group of

those units s of K which are totally positive and satisfy eM = M. Any

aeK with aM = M is automatically an algebraic integer and a unit.

The group U^ is free of rank n — 1 (compare [6]).



Two modules M l9
M2M

2 are called (strictly) équivalent if there exists a

(totally positive) number XeK with XM 1 = M 2 . Of course, U^ = U^ 2

for équivalent modules.

According to [71] p. 45, Theorem 4, for any parabolic point x of an

irreducible discrète subgroup Fof (PL +
(R))

n with $"/F of finite volume

the élément pe (PL +
(R))

n with px -- oo can be chosen in such a way

that the group pF x p~
1

(see 1.5 (15)) is contained in PL + (K) c (PL +
(R))

n

where K is a suitable totally real field. Then we hâve an exact séquence

where M is a complète Z-module in K and F is a subgroup of U^ of rank

n — 1. The field K, the strict équivalence class of M and the group V are

completely determined by the parabolic orbit and do not dépend on the

choice of p.

It can be shown more generally ([7l] p. 45, footnote 3) that there exists

ape (PLt (R))
n such that pFp'

1

c PLj (X), provided there is at least

one parabolic orbit. Therefore, the field K is the same for ail parabolic
orbits. The conjecture of Selberg (1.5 Remark) remains unsettled, because,

if we represent the éléments of pF p
" 1

by matrices with coefficients in

o^, we hâve no information on the déterminants of thèse matrices.
A parabolic orbit will be called a cusp. We say that the cusp is of type

(M, V). If x is a point in the parabolic orbit, we often say that the cusp
is at x. Sometimes the cusp will be denoted by x.

For a given pair (M, V) with V a U^ (where V has rank n — 1) we

define

For n = 2, the élément pePLJ (R) n can be chosen in a such a way
that pF x p~

x

= G(M,V).
Let K be a totally real field of degree n over Q, let M be a complète

Z-module in K and V a subgroup of U^ of finite index. Suppose © is a

group of matrices ((
E

o 1) (with seV, fieK, and \i eM for s = 1) such that
the séquence

(1)

is exact.

The group © opérâtes freely and properly discontinuously on §". We
add one additional point 00 to the complex manifold §7®. A complète



System of open neighborhoods of oo in the new space §7© = -S 7© u °°

is given by the sets

(2)

where, for any positive d,

(3)

The local ring O (©) at oo is defined as the ring of functions holo
morphicin some neighborhood of oo (except oo) and continuous in 00.

For n > 1 the condition "continuous in oo" can be dropped ([7l], p. 50,

lemma 7).

If (S = G (M, V) we put £>(©) = £ (M, V). We shall only give the

structure of D (M, F) explicitly. For n = 2 this is no loss of generality.
The ring £) (M, F) has the folio wing structure :

Let M* be the complète module in K which is dual to M: An élément

xeK belongs to M* if and only if the trace tr (xa) is an integer for ail

a e M. We recall that

Let MM * + be the set of ail totally positive éléments of M. The local

ring £> (M, V) is the ring of ail Fourier séries

(4)

for which the coefficients a
x satisfy a

BX =ax for ail seV, and which
o

converge on W (d) for some positive d depending on /.

Proposition. The space $7® wîth the local ring £) (©) at oo is a

normal complex space.

This is known for n=l,of course. For « 2we hâve to check

H. Cartan's condition ([67] Exposé 11, Théorème 1) that there is some

neighbourhood U of oo such that for any two différent points p^p 2 e

U— { oo } there exists a holomorphic function /in U— { oo } with

/(/?!) ¥=f(P2)' If © occurs as group pF x p~
x for some cusp of a group F

satisfying condition (F) of 1.5, Cartan's condition is proved in the theory



of compactification (0.3) by the use of T-automorphic forms. The group

G (M, Um) occurs in such a way. Namely, M is strictly équivalent to an

idéal in some order o of K (see [6]) where o = {xeK\xMa M). There

fore,we may assume that M is such an idéal. The cusp at oo of the arith

meticgroup (commensurable with the Hilbert modular group)

has the isotropy group G (M, U^)
As W. Meyer pointed out to me, the group H2H

2
(V, M) — the set of ail

équivalence classes of extensions over V with kernel M and belonging to

the action of V on M — is finite. (It vanishes for n S 2.) This implies the

existence of a translation pe PL
2+2

+ (K) with pz =z+a such that

p©p~
1

a G (M, V) where M=-M and kis the order of the extension
k

© as élément of H2H
2

(V, M). Therefore p(sp~
x is commensurable with

G (M, Um), and it follows from gênerai results on ramifications of complex

spaces [18] that $7© * s a normal complex space. (See also 0.7 for quotients
of normal complex spaces).

Remark. It would be interesting to check Cartan's condition directly
using only the structure of the ring £) (©). It seems to be unknown if

every © occurs for a cusp of a group F of type (F). We shall call the

point oo of the normal complex space $7® a "cusp", even if it does not

occur for a group F.

The point oo (with the local ring £) (©)) is non-singular for n — 1.

Probably it is always singular for n 2. This was shown by Christian [11]

to be true for the cusps of the Hilbert modular group of a totally real field

of degree n 2. For n=2, see [21].

Our aim is to résolve the point oo of $
2

/G (M, V) in the sensé of the

theory of resolution of singularises in a normal complex space of dimen
sion2 (see, for example, [35], [49]). This will be done in 2.4 and 2.5. The

resolution process shows that oo is always a singular point.
It remains an open problem to give explicit resolutions also for n > 2.

If F is a discrète irreducible subgroup of (PLj (R))
71

satisfying the

condition (F) of the définition in 1.5, then 9)
n jF can be compactified by

adding t points (cusps) where t is the number of T-inequivalent parabolic
points of T. The resulting space is a compact normal complex space. It
is even a projective algebraic variety (0.3).



2.2. In the next sections we shall consider the case n=2, construct
certain normal singularises of complex surfaces and show that they are

cusps in the sensé of 2.1. The construction will be very much related to

continued fractions.
Consider a function k f-> b

k from the integers to the natural numbers

greater or equal 2. For each integer k take a copy R
k of C2C

2 with coordinates

u k9 v k- We define R
k

to be the complément of the line u k =0 and R'
k to be

the complément of v k = 0. The équations

(5)

give a biholomorphic map (p k
: RR

k -* R'u+i

In the disjoint union u R k we make ail the identifications (5). We get

a set Y. We may now consider each R k as a subset of Y. Each Rj is mapped

by (uj, Vj) bijectively onto C
2

. This defines an atlas of Y. A subset of Y

is open if and only if its intersection with each Rj is an open subset of Rj.

Lemma. The topological space Y defined by (5) satisfies the Hausdorjf
séparation axiom.

Proof. Dénote the map Rj - C2C
2

by \j/j. Let kbean integer. According
to Bourbaki [7] p. 36, we hâve to show that the graph of

(6)

is closed in xj/j (Rj) x xl/ j+k (R j+k ) =C2 x C 2
. Without loss of generality

we may assume j=o and k>o. The map \j/ k
° i/^" 1 is given by

(7)

where

and



p k , q k are coprime. We define p 0 = 1, q 0 = 0 and hâve

The intersection R
o nßkas subset of RoisR

o
is given by u 0 0, v 0

0

for fc 2 and by w 0
° f° r A: =1. The graph of ij/ k

• i/^q"
1

(see (6)) is

given by

But the inequalities folio w from the équations. Therefore the graph is

closed in C2C
2

x C 2
. This finishes the proof of the lemma. The négative

exponents in the second line of (7) were essential.

The argument would break down, for example, if k = 6 and b
t = 1

for 0 z 5, because (_J J)
6 =(J ?).

The topological space 7 obviously has a countable basis. For any

function k *-+ b
k

;> 2 we hâve constructed a complex manifold F of com
plexdimension 2. In Y we hâve a string of compact rational curves S

k

non-singularly embedded (keZ). The curve SkisS

k
is given by u k+x =oin

the (fc+l)-th coordinate System and by v fe = 0 in the k-th coordinate

System. S
k ,

Sk+lS

k+1 intersect in just one point transversally, namely in the

origin of the (7c+l)-th coordinate System. S
i9

S
k (i<k) do not intersect,

if k—i 1. The union of ail the SkisS

k
is a closed subset of Y.

Lemma. The self-intersection number of the curve S
k equals — b

k .

Proof The coordinate function uk+lu k+1 extends to a meromorphic
function on Y. Its divisor is an infinité intégral linear combination of the

Sj which because of (5) contains SS
k _ 1 with multiplicity b

k ,
the curve S

k

with multiplicity 1 and the curve Sk+lS

k+1 with multiplicity 0. The intersection
number of S

k with this divisor is zéro. Since it is also equal to b
k + S

k
- S

k ,

the resuit follows.

Remark. The construction of Yis analogous to the resolution of a

quotient singularity in [35], 3.4. For technical reasons we hâve changed



the notation by shifting the indices of S
k

and b
k by 1

. This should also be

taken into account when comparing with [39] , §4.

2.3. Let us assume that the function k (-> b
k

2 of 2.2 is periodic,
i.e. there exists a natural number r > 1 such that

Continued fractions of the form

shall be denoted by \[a 0 , ..., flj]; similarly, [[aO,a
0 ,

alsa

l5
a 2,a

2 , ...]] stands for

infinité continued fractions of this kind. For our given function k\->b k^2
we consider the numbers

(8)

The w k are ail equal to 1 if bj =2 for ail j. Therefore, we assume

bj 3 for at least one j. Then ail w k are quadratic irrationalités which

are greater than 1. They satisfy w k+r =wk and ail belong to the same real

quadratic field K. We consider the complète Z-module

Let ibx' be the non-trivial automorphism of K. Thus x= x(1)x
(1) and

x' = x (2) in the notation of 1.3. The module M acts freely on C2C
2

by

(z 1? z 2
) »-> (z

± +a,z2+ a') for ae M. For our function y' i-> Z?

7
- 2we hâve

constructed in 2.2 a complex manifold Y. We now define a biholomorphic
map

by

(9)

The logarithms are defîned modulo intégral multiples of 2ni, thus

(z u z 2 ) is well-defined modulo M. Observe that



Since the déterminant ™° "° #0, we can solve (9) for log u 0
and

log ï;0;
0

and obviously hâve a biholomorphic map. The map # can be written

down with respect to the fc-th coordinate System (k e Z). The resuit is as

follows.

Put A
o =1 and Ak+lA

k+1 = ww
k + ±

• A
k . This defines A

k inductively for

any integer k:

Formula (8) implies w k = b
k

and

(10)

For any integer k, the numbers A
k - l9 A

k are a basis for M. From the

coordinate transformations (5) we get the expression for the map $ in

the k-th coordinate System

en)

We had assumed that the bj are periodic with period r which implies
w k+r =wk for any k. Therefore, A~ 1

equals the product of any r conséc

utiveWj which gives

(12)

This implies that A
r
M =M. Therefore A

r
is an algebraic integer and

a unit # 1.

If we apply the non-trivial automorphism oîKto the équation
1

w k — bk an( i use the periodicity we get
Wk+l

(13)



Therefore,

(14)

Thus the w k and the A
k are totally positive. Let Vbe the (infinité cyclic)

subgroup of Um generated by A
r . Thus we hâve associated to our function

j \-^ bj 2 (at least one bj 3) and the given period r (which need not
be the smallest one) a pair (M, V) and a group G (M, V) (see 2.1) which
détermines a cusp singularity. We shall use the complex manifold Y

constructed in 2.2 for a resolution of this cusp singularity.
We restrict <P to the open subset # *

(§
2

/M) of Y. According to (11)

this set is given by

Since v k =oor uk+lu k+1 =0 for a point on S
k and the above inequalities

do not dépend on the coordinate System, it follows that

is an open subset of Y. The group

acts on Y +
as follows:

(A r
)

n sends a point with coordinates u k9 v k in the A>th coordinate System

to the point with the same coordinates in the (k + nr)-th. coordinate System.

Because of the periodicity b j+r = b
j9 this is compatible with the identi

fications(5). Therefore the action of the infinité cyclic group V on the

complex manifold Y + is well-defined. We hâve the exact séquence

Thus V acts on §
2
/M. On the other hand we hâve a biholomorphic

map

Lemma. The actions of Von Y + and 9)
2 jM are compatible with $

Proof. If a point p has coordinates u k ,
v k

in the /c-th System, its image

point (z l9 z 2 ) under $is given by (11). If we let A
r

act on^, its image point



is mapped under # (use formula (11) for the (k + r)-th coordinate System

and (12)) to (A
r z I9 A'

r z 2 ).

Lemma. The action of Von Y + is free and properly discontinuons.

Proof. In view of the preceding lemma the action is free on

Y + - u S
k . By A" (assume n#o)a point on SkisS

k
is mapped to a point

keZ

on S k+nr . If it is fixed, it will be an intersection point Sj^ t nSj of two

consécutive curves, but this point is carried to S j+nr^. 1 n S j+nr .

To prove that V is properly discontinuous we must show that for

points p, qon Y + there exist neighborhoods U
1

and U2U
2 oî p and q such

that gU 1 nU2 0 only for finitely many geF. Since V acts properly

discontinuously on 9)
2 jM and u >S

fc
is closed in 7+, this is clear if p and

/ceZ

g both do not belong to u S
k . If pe u S

k and #<£ u 5^ we use the func
keZkeZ keZ

tion 0.

For (z 1? z 2 )g§ 2

put p(z u z 2
) = ImZi *Imz 2 and set

and let £/2/
2

be the complément of in 7 +
.

Then U
1 n U2U

2 = 0 and gt/ x = for ge F.

Now suppose both points p and # lie on u S
k . It is sufficient to prove

keZ
the existence of neighborhoods U

1
and U2U

2 of /> and q such that

gt/i nU2 0 for only finitely many g= (^4,.)" with n<o. Recall that

r générâtes F. If q lies on and in the j-th coordinate System and p

on S
k and in the k-th System, then a neighborhood U2U

2 of q is given by

A neighborhood U
1 oî p is given by

Suppose that \n\ 1. Then a point (t/ fc ,
v k ) in the yt-th

System is mapped under (A r
)

n (n<o) to a point (w,., v
y

) in thej-th System
if and only if



(15)

where a, b, c, d are non-negative integers and c > d. In fact (_" _J) is a

matrix of type (7) depending on «, of course. If the points (u j9 Vj) and

(u k9 v k
) lie in the chosen neighborhoods of p and # we obtain from (15)

the inequality

which is not true for B^l. Therefore, the image of U
x under (A r

)
n does

not intersect U2U
2 for n<o and \n\ k—j+l.

Remark. The éléments of M= Zw 0 +Z can be written in the form

y— xw 0 with x,yeZ. The number y— xw 0
is totally positive if and

only if

Since w 0 > 1 > w'
o > 0, the totally positive éléments of M correspond

exactly to the intégral points in the (x, j)-plane which lie in the quadrant
(angle < 180°) bounded by y- xw 0 = 0 (x^O) and y - xWq = 0 (x^O).
If we write A

k =pk —qk wO,w
0 ,

then for k 0 thèse are the p k , q k of 2.2.

We hâve

More precisely, it can be shown [12] that the A
k are exactly the lattice

points of the support polygon, i.e. the polygon which bounds the convex
hull of the lattice points in the above quadrant. It follows [12] that every

totally positive number of M can be written uniquely as a linear combina
tionof one or of two consécutive numbers A

k with positive integers as

coefficients.

2.4. In section 2.3 we hâve constructed for a periodic function

k^, b
k

2 (with bj 3 for at least one j) a complex manifold Y +

together with a free properly discontinuous action of an infinité cyclic

group Fon Y +
. The orbit space Y+/ VisY

+
/V is a complex manifold. The curve

S
k

in Y +
was mapped by the generator A

r
of V onto the curve S k+r where

r was the period. Thus S
k and S k+r become the same curve in Y+/V.Y

+
/V. We

shall dénote the curves in Y + \V again by S
k (k eZ) with the understanding



that we hâve S
k = S k+r . We hâve in 7 + /Ffor r 3a cycle SO9S

09
S l9 ...,

S
r - ±

of non-singular rational curves such that S
k and Sk+lS

k+l intersect transversally

in exactly one point (fc g Z/rZ) and the selfintersection number S^ • S
k

equals - 6*. Otherwise there are no intersections. The configuration is

illustrated by the diagram:

(16)

For r — 2 the configuration looks as follows

(17)

There are two transversal intersections of S
o and S

±

If r = 1, there is a spécial situation because the curves S
o and S

±
of

Y + intersect transversally in one point and S
o and S

± become identified
under V. Thus under the map Y +

-> Y+/VY
+ /V the string of rational curves

SkisS

k
is mapped onto one rational curve S

o
in Y + jV with one ordinary

double point (which was previously also denoted by S
o ,

but must hère be

distinguished).

(18)

Lemma. For r = 1 we hâve in Y+/VY
+ /V

Proof. Let c
x

and c 1 dénote- the first Chern classes of Y + and Y+/VY
+ /V

respectively. Let n be the map Y +
-> Y+/V.Y

+ /V. Then n*c
± = c ± and



where we evaluated the first Chern classes on the cycles S
o and S

o . By

the adjunction formula (0.6)

The summand 2 on the left side of the second formula is the contribu

tionof the double point of S
o in the adjunction formula. We get

which complètes the proof.
By ((b 0 ,

b
u ...,

£
r -i)) we dénote a cycle of numbers. (A cycle is given

by an ordered set of r numbers. Two ordered sets are identified if they

can be obtained from each other by a cyclic permutation.)

For any cycle {{b
Q ,b u ...,b r -^j) of natural numbers (at least

one bj 3) we hâve constructed a complex manifold Y + jV which we

shall dénote now by Y((b 0 , ...,&,._!)).

In this complex manifold of complex dimension 2 (we shall often say

"complex surface") we hâve a configuration (16), (17) or (18) of rational

curves. The corresponding matrices of intersection numbers are

and

By the lemma we hâve for r=l the 1 x 1-matrix ( — 606

0 + 2). It is

easy to show that thèse matrices are négative definite in ail cases.



If ail the b
t

of a cycle equal 2, then the matrix is négative semi-definite

with a null-space of dimension 1. Thus to get négative definiteness we do

need the assumption bj 3 for at least one j.

The négative definiteness implies, according to Grauert [17], that the

configurations (16), (17) or (18) can be blown down to give an isolated

normal point P in a complex space F ((6 0 , ...,
ô

r _i). We hâve a holo

morphicmap

with

The map

is biholomorphic. The configurations (16), (17), (18) represent the unique

minimal resolution of the point P, because they do not contain exceptional

curves of the first kind, i.e. non-singular rational curves of selfintersection

number — 1. Thus the point P is singular.
The first lemma of 2.3 shows that we hâve a natural map

and a commutative diagram

where ~o is biholomorphic and à (P) = oo (in the notation of 2.1). The

map a is biholomorphic also in P because one can introduce at most one

normal complex structure in $>
2

/G(M, V) extending the complex structure
of §

2 /G(M,F).
We hâve established the existence of the normal complex space

§
2 /G(M, V) directly without using the Proposition given in 2.1. We need

only define a to be biholomorphic. Also we hâve given the resolution of
the singular point co which was added to Ç)

2 jG(M,V). We summarize
our results:



Theorejvl Let ((b o ,b 19 ... 9
b

rr _ i y) be a cycle of natural numbers 2

(at least one bj 3). Put

(infinité periodic continuée! fraction ). Then K=Q (w 0 ) is a real quadratic

field and M= Zw 0 +Z.l a complète Z-module of K. The cycle

((b 0 , ...,
&

r _i)) détermines a totally positive unit A
r of K with A

r M =M.
The unit Ar générâtes an infinité cyclic subgroup V of U^, the group of ail

totally positive units s of K with eM = M. The unique singular point oo

of §>
2 /G(M, V), where G (M, V) is the natural semi-direct product of M

and V, admit s a cyclic resolution by rational curves S
k (configuration (16),

(17) or (18) ) with selfinter section numbers S
k •Sk = —bk (for r= 1 we

hâve S
o . S

o = — b
0 + 2) . This resolution is given by the complex surface

Y((b 0 , ...,Z?
rr _ 1 )) which we canonically associated to a cycle.

Remark 1. Laufer [50] has shown that two normal singular points

(in complex dimension 2) which admit a resolution with a given cyclic

configuration of rational curves of type (16), (17) or (18) and given self

intersectionnumbers are isomorphic. Hence the singularity P of

Y((b 0 , ...,
&

r _i)) which we hâve constructed is up to isomorphism the

unique singularity with the given cyclic configuration of rational curves

and the given selfintersection numbers. (Thèse singularises are called

cyclic singularities.) Reversai of the cycle gives an isomorphic singularity.

Remark 2. The construction of Yin 2.2 applies also to the case where

ail b
k equal 2. Then we hâve Uj

• v
;

- = u k •vk (compare (5)) and hence obtain

a holomorphic function/: F-» C. As in 2.3, we hâve a properly discon
tinuousaction of an infinité cyclic group VonYs = {p|pe7, \f(p) \ <s},
for 8 positive and suificiently small, whose generator maps the curve S

k to

S k+r . The period r 1 can be choosen arbitrarily.
The function / is invariant under V; thus we get a holomorphic map

Ail fibres of / are non-singular elliptic curves except / 1

(0) which is

a configuration of rational curves of type (16), (17), (18) where now ail

b
k equal 2. The fibring we hâve constructed is of type llr1

I
r

in the sensé of

Kodaira [45], Part IL We hâve seen:



Cycles ((2, ..., 2)) give an infinité continuée! fraction of value 1 and

correspond to an elliptic fibring. Cycles ((ô 0 , ...,
ôr-i)),ô

r -i)), (A è2, a/ fea^

owe 6,. 3), give an infinité continuée! fraction whose value is a quadratic

irrationality. Thèse cycles détermine singular points.

2.5. The theorem in 2.4 actually provides a resolution of the singular

point of <r>
2 /G(M, V) (see 2.1 with n = 2) for any complète Z-module

Mofa real quadratic field and an infinité cyclic subgroup VofUmof
any given index a = [U^ : V]. We need a lemma.

Lemma. Consider the Z-module M defined by a periodic fonction

kh>bk 2 fwzï/z èj 3 /or a? feasf o^z^ 7J . Let r Ibe the smallest

period. Then A
r (see 2.3) is a gêner ator of U^.

Proof. We shall dénote ordinary continued fractions

by [aO,a
0 ,

a u a 2 , ...]. The relation between the two types of continued fractions
is as follows :

(19)

where zisan indeterminante and a 1 a natural number 1. Using (19)

the lemma can be derived from similar results for ordinary continued
fractions (compare [6], Kap. 11, § 7). A proof is also given in [12]. Another

proof was communicated to the author by J. Rohlfs.

Two complète Z-modules M u
M2M

2 of the same real quadratic field K

are strictly équivalent (2.1) if there exists a totally positive number aeK
with olM

1 = M 2 . We hâve U^ = U^ r
The actions of G(M U V) and G(M 2 , V) on §

2
are équivalent under

the automorphism (z l9 z 2 ) h> (ocz v az 2
) of §>

2
. Any module M 1

is strictly
équivalent to a module of the form M2M

2 = Zw
0 + Z•l where w o eK and

o<Wq < 1 < wO.w
0 . (This is easy to prove, as was shown to me by H. Cohn.)

Then the continued fraction w 0 = [\b 09
b

l9 ...]] is purely periodic, i.e.

periodicity starts with bO.b

0 . This can be proved in the same way as an analogous
resuit for ordinary continued fractions ([6o], §22). Let r be the smallest



period. We can résolve the singularity of §>
2

/G (M 2 , Um
2

) by the method
of 2.3 and 2.4, since by the preceding lemma Um

2
= { C^r)" \neZ}• The

resolution is described by the primitive cycle ((ô 0 , ..., b^^)) where primitive
means that the cycle cannot be written as an "unramified covering" of

degree >1. The cycle ((2, 3, 5, 2, 3, 5)) = ((2, 3, 5))
2 is not primitive, for

example.

For any primitive cycle ((b 0 , ..., r _i)) we obtain a module Zw 0 +Z•l
with w 0 = \_[b 0 ,

b
u ...]]. In the cycle we must allow cyclic permutations.

This changes the module to a module Zw k + Z• 1 (see 2.3). But Zw 0 + Z•l
= ZA kk _ x + ZA k and A k^ 1 /A k = w fcJ where v4

fc
is totally positive (see 2.3).

Therefore, the strict équivalence class of the module only dépends on the

cycle. If one reverses the order (orientation) of the cycle, the associated

équivalence class of modules is replaced by the conjugate one (see (13)).

If we start from a strict équivalence class of modules, it détermines,
as explained above, an isomorphism class of singularises (represented by

the singularity of %2/G(%

2 /G(M 2 ,
17£

2
)).

But isomorphic singularities must give the same unoriented cycle in

their canonical minimal resolutions. "Unoriented" means that we cannot

distinguish between ((ô 0 , ...,
&r-i))&

r -i)) and ((è
rr _ 1? ...,

60)).6

0 )). But, in fact, if we

represent the class of modules as above by M2M
2 = Zw 0 + Z• 1, then the

cycle of w 0
is uniquely determined including the orientation. If this were

not the case, it would follow that M2M
2 and M'2 are strictly équivalent. Then

the singularity and its resolution admit an involution showing that the

cycles ((Z? o , ...,
Z?

rr _ 1 )) and ((6
rr _ 1 , ...,

60))6

0 )) are equal. (Détails are left to

the reader. The relation between strict équivalence classes of modules and

primitive cycles can be derived, of course, also without using the resolution,

compare 2.6.)

We hâve established a bijective map between primitive admissible cycles

(ail b
k

2 and at least one bj 3) and the strict équivalence classes of

complète Z-modules (where the real quadratic field K varies).

The preceding discussion yields the folio wing theorem.

Theorem. Let Kbea real quadratic field and Ma complète Z-module

in K. Let ((6 0 ,
b

l9 ...,
6r-i))6

r -i)) be the primitive cycle belonging to M. Let V

be the subgroup of U^ of index a. Then the resolution of the singular point

of$ 2 /G{M 9 V) is given by the cycle ((b O9
b19..b

l9 ... 99

b
r . t ))

a
.



Remark. The structure of the local ring JD (M, V) at the point co of

§>
2

/G(M, V) was described in 2.1. For any admissible cycle ((ô 0 , ...,
ô

r _i)),
not necessarily primitive, the functions feD (M, V) can be written as

power séries' in u o ,v o where u o ,v o
is the coordinate System of 2.3 (11)

with A
o = 1 and A- t =w0 = [[ôO,ô

0 , ->*r-i]]- We could use also an y

other coordinate System u k ,
v k .

Let (u o ,v o )
n

= uu o
nl -v o

n2 for w = (n l 9n
2

) and

then £> (M, V) is the ring of ail power séries'

where the summation extends over ail pairs n= (n l9 n 2 ) of positive integers

with Wq nl/n
1 /n 2

wO,w

0 ,
the coefficients satisfy a Tn = a

n ,
and the power

séries converges for

(the positive constant c depending on/).
Observe that T (as fractional linear transformation) maps the intervall

[w^, wo]w
0 ] bijectively onto itself (Twq = Wq, Tw 0 = w0).w

0 ). We hâve Tx <x
for Wq <x<wo and therefore

Example. Consider the Fibonacci numbers

where F o =0, F
1 =1 and Fk+lF

k+1 =Fk+ FF
k _ 1 (keZ). The numbers

G
k = (keZ) are ail positive and satisfy Gk+lG

k+1 = 3G
k - G k^ ± .

The function



represents an élément of JD (M, U^) where

2.6. The primitive cycle associated to a module M can be found also

without using a base wO,w
0 ,

1 of M with o<Wq<l< w0:w
0

: Real numbers

x, >> are called strictly équivalent if there exists an élément (" J) e SL 2 (Z)
such that

Any irrational number x has a unique infinité continued fraction

development

where a i eZ and a
t

2 for / 1 and where # f
3 for infini tely many

indices i. Two irrational numbers are strictly équivalent if and only if

their continued fractions \_[a 0 ,
a l9 ...]] and [[«g, a'u ...]] coincide from

certain points on, i.e. a j+i = a k+i for somey and k and for ail i}±o. This

is analogous to a classical resuit on ordinary continued fractions ([6o],
Satz 2.24).

A quadratic irrationality w admits a continued fraction which is periodic
from a certain point on. It is purely periodic if and only if 0 < w' < 1 < w

as mentioned before. The periodicity of the continued fraction of w déter
minesa primitive cycle ((Z? o , ...,

&
r _i)) which is admissible (ail b

t 2, at

least one bj 3). Thus two quadratic irrationalities are strictly équivalent
if and only if their cycles agrée, and we hâve a bijection between strict

équivalence classes of quadratic irrationalities and admissible primitive cycles.

The admissible primitive cycles are in one-to-one correspondence with the

strict équivalence classes of complète Z-modules in real quadratic fields K

where K varies (see 2.5).

A complète Z-module M of a, real quadratic field K will be oriented

by using the admissible bases (/? 1? fï 2
) of M with /^/^ — P

2 Pi >0-%
restricting the norm function (N (x) = xx' for x eK) to M we obtain an

indefinite quadratic form/on M with rational values. The exists a unique

positive rational number m such that m -fis intégral and with respect to

an admissible base of M can be written as



where a,b,ceZ and (a, b, c) =1. The pairs (u, v) are in Z©Z M.

The discriminant DMD
M =b2 - 4ac is positive and not a square number.

In this way, we get a bijection between strict équivalence classes of

complète Z-modules of real quadratic fields and the isomorphism classes

under SL 2 (Z) of intégral indefinite primitive binary quadratic forms of

non-square discriminant.

Remark. The discriminant Dof such a quadratic form can be written

uniquely as

where DKD
K

is the discriminant of the real quadratic field K= Q(^/D).
Then the corresponding strict équivalence class of modules can be repre
sentedby an idéal in the order (subring of oK)o

K ) which as an additive group
has index fin o K ,

and this is the smallest / such that the équivalence class

of M can be represented in this way.
The strict équivalence class of the "first root

dépends only on the équivalence class of the quadratic form.

We obtain a bijection between SL 2 (Z)-equivalence classes of intégral
indefinite primitive binary quadratic forms of non-square discriminant and

strict équivalence classes of quadratic irrationalities.

Ail the bijections are compatible with each other as can be checked

easily. Let us collect the bijections:

strict équivalence classes of complète Z-modules in real quadratic
fields <->

admissible primitive cycles of natural numbers <-»

strict équivalence classes of quadratic irrationalities <-»

SL 2 (Z)-equivalence classes of intégral indefinite primitive binary
quadratic forms of non-square discriminant <->

isomorphism classes of cyclic singularities with a primitive cycle
and as additional structure a prefered orientation of the cycle

(compare 2.4, Remark 1).



Example. Let dbea square-free number >1 and suppose d=2 mod 4

or d = 3 mod 4. The G/rf", 1) is an admissible Z-base of the idéal (1) in

o K for K=Q (J d). The quadratic form is given by

and has discriminant Ad. The first root equals — — — = — which
d Jd

is équivalent to +J d
. (Take always the positive square root). The admissible

cycle of natural numbers is obtained by developing yfd in a continued
fraction.

§3. NUMERICAL INVARIANTS OF SINGULARITIES

AND OF HILBERT MODULAR SURFACES

3.1. Let Xbea compact oriented manifold of dimension Ak with or

without boundary. Then H 2k (X, dX; R) is a finite dimensional real vector

space over which we hâve a bilinear symmetric form B with

where [X, dX] dénotes the generator of H 4k (X, dX; Z) defined by the

orientation. The signature of B, i.e., the number of positive entries minus

the number of négative entries in a diagonalized version, is called sign (X).
If X has no boundary and is differentiable, then according to the signature
theorem ([36], p. 86)

(1)

where L k
is a certain polynomial of weight k in the Pontrjagin classes of

X with rational coefficients (pjeH^ (X, Z)).
Let TV be a compact oriented differentiable manifold without boundary

of dimension Ak — 1 together with a given trivialization a of its stable

tangent bundle. (Such a trivialization need not exist). We shall associate

to the pair (N, a) a rational number <5 (N, a). Since N has a trivial stable

tangent bundle, ail its Pontrjagin and Stiefel-Whitney numbers vanish.

Therefore N bounds a 4/:-dimensional compact oriented differentiable

manifold X. By the parallelization a we get from the stable tangent bundle

of X an SO-bundle over X/N. We dénote its Pontrjagin classes by



Pj e H 4j (X/N, Z). Then the élément L k {p t , .-, À) e H 4k (X/N, Z)

= H* k (X, dX; Z) is well-defined.

The number ô (N, oc) is defined by the following formula

(2)

Thus ô (N, a) is the déviation from the validity of the signature theorem.

It follows from the Novikov additivity of the signature ([3], p. 588) that

ô (N, a) does not dépend on the choice of X. If N is of dimension 2n - 1

(n odd), then we put ô(N,cc) = 0.

Remark. The invariant ô (N, a) and similar invariants were studied

also by other authors (Atiyah [I], Kreck [48], W. Meyer [57], S. Morita

[59]). In [48] the invariant ô (TV, oc) was calculated in several cases.

3.2. We now go back to 2.1. For a cusp of type (M, V) with isotropy

group © (see 2.1. (1)) we hâve a (2n— l)- manifold N which

is a T^-bundle over TT n ~1~ 1

(see 1.5). We can write (for a fixed positive d)

Hère X is a (non-compact) complex manifold and is canonically paral
lelized.Namely, it inherits the standard parai lelization of § rt given by the

coordinates x u y19...,y l9 ..., x n , y n (with z k =xk + iy k ). This parallelization is

respected by © if we use unit vectors with respect to the invariant metric
of ?)

n
.

Thus the stable tangent bundle of N has a canonical parallelization
oc. We orient TV by the orientation induced by the orientation of X. The

rational number ô (N, a) is now defined. We associate it to the cusp and

call it ô (©) or ô (M, V) if © = G (M, V). Observe that X cannot be used

for the calculation of ô according to (2) because it is not compact. If one

compactifies X by adding the point 00, then one would get a compact

manifold X with dX = iV after resolving the singularity at 00. This mani
foldX could be used to calculate ô.

We hâve associated a rational number ô (©) to any "cusp" of type

(M, V) with isotropy group © where M is a complète Tv-module of a totally
real field K of degree n over Q and V a subgroup of finite index of U^. If
V = UÛ, we write ô (M) instead of ô {M, U£) = ô (G (M, £/£)).



By définition, ô (©) = 0 if n is odd

If we multiply M by yeK, then

where N(y) = y(1)y

(1)
-y

(2) •

... -y
(n)

. Namely, the map

with z/ y) =Zjif y
U) >0 and z/ y) =Zjif y

U) <0 induces a diffeo
morphismof W(d)/G (M, V) onto W(\N(y)\- d) /G(yM,V)of degree

sign N (y) which is compatible with the parallelizations, and it follows
from (2) that the invariant changes sign under orientation reversai.

In particular, ô (M, V) = 0 if there exist a unit e of K with sM = M
and N(e) = - 1.

Problem. Give a number-theoretical formula for Ô (M, V). This

problem can be solved for n = 2:

Theorem. Let M be a complète TL-module of a real quadratic field
and [U£ :V] = a, then

(3)

where ((6 0 , ...,
&r-i))&

r -i)) is the primitive cycle associated to M, (see 2.5).

Proof The torus bundle N bounds X which is obtained by resolving
the singularity oo of luoo where X — W(d)/G(M,V). The boundary
of W (d) is a principal homogeneous space (1.5). Therefore the normal
unit vector field of the boundary (defined using the orthogonal structure
of the tangent bundle of $

2
given by the invariant metric of §

2
) has constant

coefficients with respect to the parallelization of $
2

. The same holds for

the normal unit vector field of N = dX. By a classical resuit of H. Hopf

we can extend the normal field to a section of the tangent bundle of X

admitting finitely many singularises whose number counted with the

proper multiplicities equals the Euler number e (X). Because this section

is constant on the boundary with respect to the parallelization, it can be

pushed down to a section of the complex vector bundle Ç (fibre C 2
) over



X/N induced from the parallelization of the tangent bundle of X. There

fore,

(4)

where c t (Ç) e HH
2 1

(X/N, Z) are the Chern classes. The équation (4)

follows from the définition of c2c
2 (£) by obstruction theory.

We hâve ([36], Theorem 4.5.1)

and, since L 1 = pt/3p t /3

(5)

By the theorem at the end of 2.5, the manifold X is obtained from

lu oo by blowing up oo into a cycle of ar rational curves. Zhas the union

of thèse curves as déformation retract. Thus

(6)

The intersection matrix of the curves is negative-definite :

(7)

The cohomology class c
1 (£) eH2 (X, N; Z) corresponds by Poincaré

duality to an élément zeH2 (X, Z). Let us dénote the rational curves of

the cycle by Sj (je Z/arZ). Then z must be an intégral linear combination
of the Sj which satisfies

(8)

(8')

This follows from the adjunction formula and the information given
in 2.4. Since the intersection matrix of the curves of the resolution has

non-vanishing déterminant, the équations (8) are satisfied by exactly one

élément z. We obtain that the first Chern class c 1 (Ç) corresponds by

Poincaré duality to



(9)

r-l
Since c x (£)

2
[X, N] = z-z = -a £ bj + 2ar, formula (3) folio ws

from (5), (6), (7).

3.3. We shall define an invariant cp for certain isolated normal singu
laritiesof a complex space of dimension n. In my Tokyo lectures the

invariant cp was introduced for n = 2 and then generalized to arbitrary n

by Morita [59]. Let us first recall that the signature theorem (3.1 (1)) for

a compact complex manifold X can be written in terms of the Chern classes

(10)

where L
n

is a certain polynomical of weight n with rational coefficients

in the Chern classes of X, (c t e H 2i (X, Z)). It is identically zéro if nis
odd. Let f$

n
be the coefficient of c

n
in L

n . If nis even {n = 2k) 9
then

(11)

where B
k

is the fc-th Bernoulli number ([36], 1.3(7) and 1.5(11)). For

n odd, p
n = 0.

An isolated normal singularity P of a complex space of complex
dimension n is called rationally parallelizable if there exists a compact

neighborhood U of P containing no further singularises such that the

Chern classes of U — { P } are torsion classes, i.e. their images in the

rational cohomology groups of U — {P} vanish. We may assume that

dU is a (2n— l)- manifold and U the cône over dU with P as

center. According to Hironaka [34a] the point P can be "blown-up". We

obtain a compact complex manifold U which has a boundary as differen

tiablemanifold, namely dU = dU. The Chern classes c t
of C/have vanishing

images in the rational cohomology of dU, thus can be pulled back to

classes c
t e H 2i (U, dU; Q). The Chern numbers ~c

h
• cj2...c

j2 ... c js [U, dU]

where j\ + ... +js=n and s 2 are rational numbers not depending

on the pull-back. Therefore, the rational number L
n

Çc u ..., c
n

) [U, dU]

is well-defined if we replace in this expression c
n [U, dU] by the Euler

number of U. The invariant cp of the isolated normal singular point P

is now defined by



(12)

It can be shown (compare [59]) that <p (P) does not dépend on the

resolution. By définition q> (P) = 0 for n odd.

For a cusp singularity of type (M, V) the invariants ô and cp coincide.

This follows from (4) with 2 replaced by n. The proof of (4) remains

unchanged for arbitrary n. Of course, X and X in 3.2 play the rôle of U

and U hère.

How to calculate q> for a quotient singularity ? Let G be the group of

p-th roots of unity where pisa natural number. Let # 1? ..., q n
be integers

which are ail prime to p. Then G opérâtes on CMC
M by

(13)

and Cn/GC
n /G is a normal complex space with exactly one singular point coming

from the origin of C".

Theorem. Let P be the quotient singularity defined by (p; q l9 ..., q n
)

where (p, qj) = 1 for ail j, then

(14)

where

(15)

is the cotangent sum arising from the equivariant signature theorem of Atiyah
Bott-Singer ([2], [3]) and studied in [38], [79]. Recall that for n odd the

cotangent sum (15), the number /?
n

and the invariant cp (P) ail vanish.

The proof of (14) was given by Don Zagier and the author for n = 2

using the explicit resolution of the singularity ([3s], 3.4). For arbitrary n

see Morita [59] whose proof uses the equivariant signature theorem and

is similar to a proof in [1] concerning a related invariant. It would be

interesting to check (14) also for n > 2 by an explicit resolution. But,

unfortunately, thèse are not known.
For a quotient singularity P we put

(16)



Observe that the in the sensé of 3.1 (2) is not defined for a

quotient singularity because the boundary N of a neighborhood of such a

singularity is a lens space which in gênerai does not admit a parallelization
of its stable tangent bundle. However, Atiyah [1] has defined 5 (N, a)

by (2) if TV is an arbitrary compact oriented differentiable (4k— l)sionalmanifold without boundary and a an integrable connection of the

stable tangent bundle of N:

The connection a is extended to a connection a for the stable tangent
bundle of X (the extension being taken trivial in a collar of N). Then the

Pontrjagin differential forms p t of a vanish near N and in (2) the value
o

Lk(Pu —>PÙ îs an intégral over a form with compact support in X. Again
ô (N, oc) does not dépend on the choice of X. If one takes in the spécial

case of a quotient singularity for N the lens space and for a the connection

inherited from the flat connection on the Euclidean space R 4fc
z> SS

4 *"1" 1

(n = 2k) then 8 (N, a) equals the number 8 (P) in (16), (see [1]).

As an example, we calculate S (P) if P is the quotient singularity given

by (p; 1,/?— 1). Since p/(p—l) = [[2, ..., 2]] with p—l denominators 2

in the continued fraction, the resolution ([3s], 3.4) looks as follows:

where Sj •Sj = —2. The adjunction formula implies c 1 = 0.

Thus

Therefore

(17)



Let us recall

(18)

To check the first équation (18) choose the quotient singularity (p; 1, 1).

The resolution consists of one curve S
± with S

± •Sx = -p. Therefore by

the adjunction formula c 1
is représentée by a homology class a•Sx with

p-2 «, ~ ~ 0~2) 2

Thus a= and cc
±

2
[U, dU] =-— — . We get

P P

which checks with (17) and the first équation of (18).

3.4. If Fis a discrète irreducible subgroup of (PLj (R))
M satisfying

the condition (F) of the définition in 1.5, then Sjfjr has finitely many
quotient singularities and no other singularises. It is a rational homology
manifold, i.e. every point has a neighborhood which is a cône over a rational

homology sphère (in our case a lens space). For n = 2k the signature of
$)2k/r)

2k /r can be defined using the bilinear symmetric form over H 2k (§)
2k /r; R)

given by the intersection number of two éléments of this homology group.
In 9)

2k
we choose around each point z with |Tz |>1a closed disk

with radius e measured in the invariant metric and sufficiently small. Then

the image of thèse disks in %2k/r%
2k /r is a finite disjoint union uDz where

v=l
z1?...,z

1? ..., z
s are s points in §

2fc representing the s quotient singularities of
§>

2k /F, each D
Zv can be identified with the quotient of the chosen disk

around z
v by the isotropy group T

Zv .

Let x u ..., x t
be a complète set of T-inequivalent par abolie points.

Choose open sets U
v as in the définition of 1.5 and dénote their images

in $
2fc /r by D

Xv
= Ujr Xv . Then

(19)



is a compact manifold with boundary whose signature (as defined in 3.1)

equals the signature of $)
2k jF.

Theorem. Let Fbea group of type (F) acting on $>
2k

. Then

(20)

where z l9 ..., z
s are points of $$

2k
representing the quotient singularities of

§>
2k /F and x u ..., x t

is a complète set of F-inequivalent par abolie points.
For the invariants ô (z

v
) see (16). Recall that the structure of each cusp

is determined by a group © F
Xv

(see 2.1 (1)). The number ô (x v
) is defined

as the number ô (©) introduced in 3.2.

Proof We first remark that sign (§ 2k /O =oifF opérâtes freely and

%>
2k /F is compact. This is a spécial case of the proportionality of $t>

2k \F

and (PiC) 2^ see 1.2, and explains already why (20) does not involve a

volume contribution.
Let c t

be the Chern classes of X and c
t pull-backs to the rational coho

mologyof X/dX. Then the additivity of the signature and of the Euler

number and the validity of the signature theorem for the manifold obtained

by resolving ail the singularities of the compactification of 9)
2k \F imply

(21)

where ep is defined as in 3.3. In LL
2 k ( c v •••? C 2k) we hâve to interpret

c 2k [X/dX] as Euler number e (X). By §1 (21)

The coefficient of cc
2 k

i n L 2k equals p 2k . Therefore by (21), (16) and

because cp (x v
) =ô (x

v
), (see 3.3),

(22)

where co [X/dX] has to be interpreted as Jœ.

Let d
t

be the invariant differential form on $)2k)
2k representing the

z-th Chern class in terms of the invariant metric of §
2/c

. In fact d
t

is the



1 dxj a dy>j

z-th elementary symmetric function of the forms (Oj = —
2

ztl y j

(see 1.2). The form L 2k (d 19 ..., d
2k) is identically 0, because it is a symmetric

function in the coj
2 which vanish. Recall that d

2k =œ.By (22) it remains

to show that

(23)

for j\ + ... +j s =2k and s 2. In the neighborhood of a parabolic

point (transformed to 00) we write

The form <Xj is invariant under the isotropy group of the cusp. In the

neighborhood of z
v e§ 2fc

we introduce in each factor of §
27c

géodésie

polar coordinates r p cp- with

(24)

The form ocj is invariant under the isotropy group F
Zv

. Take compact
manifolds X'" c X" a X' a X ail defined as in (19) and each a compact
subset of the interior of the next larger one. We may assume that ail the

(Xj are defined in 9)
2k IF — X'" . Choose a COO-functionC

00 -function p which is oon
X" and 1 outside X' . Then poCj is a form on 9)

2k jF minus singular points.
The form (Oj — d(poCj) has compact support in X. Thus the elementary
symmetric functions in the coj — d(paj) represent the c

t
and the left side

of (23) becomes also an intégral over S)
2k IF. Recall that the d

t are the

elementary symmetric function in the cûj. By Stokes' theorem the différence
of the two sides of (23) is a sum of expressions

(25)

(26)

where the limit means that the neighborhoods D
x

and D
z

become smaller
and smaller, (the number d in 1.5 (16) converges to 00, the radii of the



dises converge to zéro). The form in (25) is invariant under the isotropy

group of x v
in the whole group (PLj (R))

2fc
. Therefore, the intégral equals

a constant factor times the (4/:-l)- volume of dD
Xv

.

But this volume converges to zéro. In (26) for the limit process the

intégral can be extended over the boundary of a cartesian product of 2k

dises of radius r divided by F
Zv

. Let W
r

be this cartesian product
divided by T

Zy . Then

which converges to zéro for r -> 0.

3.5. Suppose a cusp is of type (M, V\ see 2.1. For n> 1 Shimizu

([7l], p. 63) associâtes to the cusp a number w (M, V) which dépends only

on the strict équivalence class M and the group V c U^ :

Let (jBi, ... 5
j8

n
) be a base of M. We define

Consider the function

(27)

where N(fi) = fi
{l) • /i

(2) •

... /^
(n)

. (The summand in (27) does not change

if fi is multiplied with a totally-positive unit. Therefore, it makes sensé to

sum over the éléments of M — { 0 } / V.) The function L (M, V, s) can

be extended to a holomorphic function in the whole s-plane C. Shimizu

defines

(28)

We conjecture that also the invariant ô (©) (see 3.2) dépends only

on the pair (M, V). This is clear for n = 2. In 3.2 we hâve deflned

5 (M, V) = ô (©) if © = G (M, V).

The two invariants ô (M, V) and w (M, V) hâve similar properties.
For example, both vanish if there exists a unit s of négative norm with

sM = M. Is there a relation between them? A guess would be, I hesitate

to say conjecture,

(?)



This would imply that w (M, V) is always rational. Even this is not

known in full generality. However, if M is an idéal in the ring of integers

of K, the number w (M, V) is rational. (As Gundlach told me this can be

deduced from his paper [24].)

The équation (?) is true for n = 2 as we shall see. This was the motivation

for Atiyah and Singer to try to relate the invariant ô to L-functions of

differential geometry (Lecture of Atiyah at the Arbeitstagung, Bonn 1972).

Compare the récent results of Atiyah, Patodi and Singer.

Theorem. Let Kbea real-quadratic field, Ma complète Z-module in

K and V c U^. Then

(29)

"Proof". Curt Meyer [55] has already studied w(M, V) in 1957. He

expressed it in elementary number-theoretical terms using Dedekind sums.

It turns out that ô (M, V) as given in (3) equals Meyer's expression. This

will be shown in [42]. Meyer's formula can be found explicitly in [56] (see

formulas (6) and (11)) and in Siegel [75] (see formula (120) on p. 183).

For more information on the number theory involved we must refer to

[42].

3.6. For a non-singular compact connected algebraic surface S the

arithmetic genus is defined:

where gj is the dimension of the space of holomorphic differential forms
of degree jonS.ln classical notation g ± =q and g2g 2 = p g . The first Betti
number of S equals 2g ± . The numbers gj are birational invariants. There
forewe can speak of the invariants gj and of the arithmetic genus of an

arbitrary surface possibly with singularises meaning always the corres
pondinginvariant of some non-singular model. We hâve ([36], 0.1, 0.3)

(30)

(31)



where e (S) is the Euler number and sign (S) the signature of S. Thus the

arithmetic genus is expressed in topological terms, a fact which does not

hold in dimensions > 2.

Let F be a discrète irreducible group of type (F) acting on §
2

(see

1.5). The compactification of $
2 /r is an algebraic surface. A non-singular

model S is obtained by resolving the quotient singularities and the cusp

singularities. Then S is a union (glueing along the boundaries) of a mani
foldX like (19) and of suitable neighborhoods of the configurations of

curves into which the singularities were blown up. For every manifold in

this union we consider the expression \ (Euler number + signature). A

quotient singularity has a linear resolution ([3s], 3.4) and therefore for
the neighborhood \ (e + sign) = \, a cusp singularity has a cyclic resolu
tionand therefore \ (e + sign) = 0 by (6) and (7). The signature and the

Euler number behave additively and thus in the notation of (19)

Since e(9)
2 jF) = e(X) + s, we get

(32)

Using the formulas for e (§>
2
/F) (see § 1 (21)) and sign (H

2 /r) (see 20))

we obtain

(33)

We hâve proved the following theorem.

Theorem. Let Fbea discrète irreducible group of type (F) acting on

jr)
2

.
Then the arithmetic genus of the compactification 9)

2
jF can be expressed

by topological invariants of $)2/F:)
2
/F: Four times the arithmetic genus equals

the sum of the Euler number and the signature of §>
2

/F. The arithmetic

genus is also given by (33) in terms of the Euler volume and contributions

coming from the quotient singularities and the cusps.



Instead of x (S) where Sisa non-singular model for £
2 /r we shall

write x (§>
2 /O or simply x (r). Shimizu ([7l], Theorem 11) calculated

the dimension of the space S r (r) of cusp forms of weight r. A cusp form

of weight r is defined on §
2

by a holomorphic form a{z) (dz l Adz 2
)

r

invariant under F which vanishes in the cusps. If r is a multiple of ail

|rr z j, then the Shimizu contributions of the quotient singularises are

independent of r and are exactly the contributions which enter in (33).

By (29) Shimizu's cusp contributions are exactly the — — — . Therefore,

we can rewrite a spécial case of Shimizu's resuit in the following way.

Theorem. The assumptions are as in the preceding theorem. Let r 2

be a multiple of ail the orders of the isotropy groups of the elliptic fixed
points (quotient singularities ) .

Then

(34)

Hence the arithmetic genus of §>
2

/F appears as constant term of the

Shimizu polynomial (compare [15], [26]).

Lemma. Let F be a discrète irreducible group of type (F) acting on

9)
2

. The invariant g 1 of the algebraic surface §>
2
/F vanishes. The number

g2g 2 (§>
2

/F) equals the dimension of the space 6r6
r (1) of cusp forms of weight 1.

"Proof". For g l9 see ([l4] Teil I, Satz 8) and [26]. For the resuit

on g 2 , we hâve to show that any cusp form of weight 1 can be extended
to a holomorphic form 9 of degree 2 on the non-singular model obtained

by resolving the singularities of 9)
2

jF. A priori, we hâve a holomorphic
form 9 of degree 2 only outside the singularities. It can be extended to the

resolution of the quotient singularities ([l4], Teil I, Satz 1).

du
k a dv

k
For a cusp smgularity the form does not dépend on the

u k v k

coordinate System (see 2.2 (5)). The form 9 is a holomorphic function

f(u k9 v k ) multiplied with
"* A V

\ This folio ws from 2.3 (9) and the
u k v k

remark in 2.5. It is a cusp form if and only if f(u k ,
v k ) is divisible by

u k v k . Therefore, 9 can be extended.

By the lemma we hâve



(35)

The group F opérâtes also on §x$ where $ is the lower half

plane of ail complex numbers with négative imaginary part. Since $
2 and

§ x $" are équivalent domains, our results are applicable for the action
of Fonsx .g". The map (z l9 z 2

) h» (z v z 2 ) induces a homeomorphism

(36)

It follows that F (as a group acting on $ x § ) is also of type (F).
Because k is a homeomorphism, the Euler numbers of (§xs")/f and

§)2/F)
2

/F are equal. Since kis orientation reversing, we hâve

(37)

We hâve denoted the arithmetic genus of §
2 /r by xCD an d shall

put x~ CO for the arithmetic genus of (sxs")/r. By (32), (35) and (37):

(38)

where S r (1) is the space of cusp forms of weight 1 for fon§ x § .

Remark. The quotient singularises of 9)
2
jF are of the form (r; 1, q).

Any such singularity corresponds under k to a singularity (r; 1, — q). A

cusp singularity of type (M, V) goes over into one of type (y M, F) where

jV (y) =—1. Therefore (37) agrées with (20): ail contributions coming
from the singularises change their sign.

3.7. Let G be the Hilbert modular group for a totally real field

K of degree « over Q. The parabolic points are exactly the points of

F
X K where V

X K is regarded as a subset of (PiR) n by the embedding

xh-> (x (1)
, x (2)

, ...,x
(w) ). The group G acts on P^. The orbits are in one

to-onecorrespondence with the wide idéal classes of o K (two ideals a, b

are équivalent if there exists an élément yei£(y^o) such that yct = b).

m
If —e F

±
K (with m, ne oK)o

K ) represents an orbit, then a= (m, n) represents
n

the corresponding idéal class. Thus the number of parabolic orbits (cusp s)

equals the class number h of K. As in ([7s], p. 244) we choose a matrix

(39)



A simple calculation shows that

(40)

where, for any idéal bc o K , we set (compare [31])

(41)

Instead of studying the cusp of G at —, we can consider the cusp of
n

SL 2 (o x , a
2 )/{l, -1} at 00. Its isotropy group is

Thus the cusp of G at — with rn,neo K and (m, n) = et is given by

the pair (a" 2
,

U 2
).

The extended Hilbert modular group G (see 1.7) has the same number

of cusps (we hâve (P^fiO/C? = (P^/G). They are given by (a" 2

,
U +

).

Let C be the ordinary idéal class group (i.e., the group of wide idéal

classes of oK)o

K ) and C + the group of narrow idéal classes of o K (with respect

to strict équivalence : a, b are strictly équivalent if there exists a totally
positive yeK with yct = b). Then ah» a~

2 induces a homomorphism

(42)

Both G and G hâve h cusps (h = \C\ = h(K)). The corresponding
modules are the squares in C +

,
each module occurs k times where kis

the order of the kernel of Sq and is a power of 2.

3.8. We consider the Hilbert modular group G and the extended

group G for K = Q (y/d) with d as in 1.4. The cusp singularities of §>
2

/G

and §)2/G)
2

/G are in one-to-one correspondence with the éléments of C. They
admit cyclic resolutions. To résolve the cusp belonging to a e C we take
the primitive cycle ((6 0 ,

b u ...,
6

r _i)) associated to Sq (a) eC+ (see 2.5).

This is already the cycle of the resolution if we consider the group G. For
G the cycle of the resolution is ((6 0 ,

6196

l9 ...,
Z?

rr _ t ))
c where c= \U + :U 2

\.

The cusp at oo =-eP^ has the module o K . For d=2or3 mod 4

the corresponding primitive cycle is the cycle of the continued fraction



for y/d (see 2.6). For d=l mod 4itis the cycle of — -. We list

thèse primitive cycles for those d in the table of 1.7 for which K does not
hâve a unit of négative norm. Also the values of ô (o K ) (see 3.2 (3)) and

of the class numbers h (K) are tabulated. If K has a unit of négative norm,
then ô(o K ) =0.



3.9. In the next sections we study the signatures of %2/G%

2
/G and §>

2
/G.

Because of (32) this gives also the arithmetic gênera x ( G ) and X (G)

Theorem. If K=Q (y/d) has a unit s of négative norm, then

(43)

Proof The actions of Gon§2 and $x§ are équivalent under

(z l9 z 2 )Y+(zz l9 z'z 2 \ (we choose s positive). The formula (43) follows

from (37) and (32).

The following lemma is a corollàry of the theorem in 3.4.

Lernma. If K does not hâve a unit of négative norm, then

(44)

(45)

Where the points z
y

and z
v represent the quotient singularities of $>

2
/G and

9)
2

jG respectively.

The contribution of the quotient singularities in (44) can be calculated

using [61], (see 1.7). In [61] not only the orders of the quotient singularities
of §>

2
/G are given, but also their types (r;q 1 ,q 2 ), see (13). Since

def (2; 1, 1) =0 (see (17)), we only hâve to consider the quotient singu
laritiesof order r 3. For dféo (3) the singularities of order 3 occur
in pairs, one of type (3; 1, 1) together with one of type (3; 1, —1). There
fore,their contributions cancel out.

If dis divisible by 3, but d 3, we hâve

(46)

4

In the first case - of the singularities are of type (3; 1, 1), the others

of type (3; 1, -1), in the second case ail are of type (3; 1, 1). Therefore,
in both cases their contribution in (44) equals (see (17)):



For d = 3 there are two singularities of type (3; 1, 1) and one of type

(6; 1,-1):

We hâve proved:

Theorem. If K=Q(Jd) does not hâve a unit of négative norm, then

(47)

The group C + of narrow idéal classes contains the idéal class 6

represented by the principal ideals (y) with N (y) < 0. If 6 is a square, then

(48)

6 is a square if and only if d is a sum of two squares [25] which happens

if and only if d does not contain a prime = 3 mod 4.

In the contrary case, £ ô (Sq(a)) <0, see [27].
aeC

Theorem. Let G be the Hilbert modular group for K=Q (^/d).
Then ûgn9)

2
jG = 0 if and only if d — 3 or d does not contain a prime

=3 mod 4. In ail other cases, signs) 2 /(j <0.

If the class number of K equals 1, then £(5 (£# (a)) =5 (o x ). If the
aeC

class number equals 2 and 9is not a square in C+, then C + is a product
of two cyclic groups of order 2 and £5 (S# (<z)) = 2<5 (o K ). Using the

fleC

tables in 1.7 and 3.8 we hâve now enough information to calculate the

arithmetic gênera x (G) for d 41. The class number sA(Q (y/ — d/3)) which

we need for rf = 3, 6, 15, 21, 30, 33, 39 are 1, 1. 2, 1, 2, 1, 2.



Estimâtes as in [40] and [42] show that % (G) = 1 only for finitely

many d. Are those in the table the only ones? If d is a prime p, then

X (G) = 1 if and only if p = 2, 3, 5, 7, 13, 17 (see 3.12).

The values for sign §
2
/G are also of interest because (see (38))

(49)

Thus dim 6G6
G (1) dim SGS

G (1), where the inequality is true if and

only if d is greater than 3 and divisible by a prime p = 3 mod 4.

3.10. In view of the preceding theorems it is interesting to calculate

Y, à (Sq {a)). This was done in [27] for any d using the relation to L-series
aeC

as explained in 3.5. If dis a prime = 3 mod 4 the resuit is especially simple.

Theorem. Let p be a prime = 3 mod 4 and p> 3. 7%^, for
X — Q (v/ 7 X we /?tfV£

(50)

Proo/. The formulas (27), (28) and (29) imply ([7l], p. 69)

(51)



Hère % is the unique character with values in { 1, —1 } which is

defined for ail ideals in o K , dépends only on the narrow idéal class and

satisfies % ((a)) = sign N (a) for principal ideals (a).

The function

can be written as a product

(52)

where L_ 4 and L_
p are the L-functions of Q (^/ —4) and QÇj—p)

over Q. The product décomposition (52) belongs to a décomposition of

the discrimant Ap of X, namely 4p = (—4)(— p), and / is the genus

character corresponding to it ([7s], p. 79-80). Evaluating (52) for s = 1

implies by a classical formula ([6], V § 4, p. 369)

and this gives (50).

The formula (50) establishes an amusing connection between continued

fractions and class numbers. Ordinary continued fractions

will be denoted by [aO,a
0 , a u

a29...].a

29 ...]. Let p be a prime = 3 mod 4. Then

([6o], §§24-26)

(53)

where a 0 = [y/p] and a 2s = 2a
0 . The bar over a l9 a 2 , ... 9

a 2s indicates

hère the primitive period. The continued fraction development for y/p

which we needed for the resolution is of the form



where the bar indicates again the primitive period. The primitive cycle

((6 0 , ...,
6

r _i)) looks as follows:

This is shown by an easy calculation (see 2.5 (19)). For K = Q (*Jp )

the signature déviation invariant ô (o K ) is defined (see 3.2 (3)). We hâve

(54)

By (50) and (53) we get:

Proposition. Let p be a prime = 3 mod 4 and p> 3. Suppose thaï

the class number of K = Q(dp) equals 1. Then

(55)

where (a u a 2 , ..., a 2s ), with a 2s =2 [>/^], is the primitive period for the

ordinary contained fraction development (53) of dp .

Example, p = 163, h(K) = 1

For further information on thèse and more gênerai number theoretical
facts see [42].

3.11. The theorem in 3.10 enables us to give very explicit formulas

for the signatures of ?>
2

/G and 9)
2

jG in terms of class numbers of imaginary

quadratic fields if K = Q (Jp ) and p a prime = 3 mod 4. (For the other

primes the signatures vanish).



Theorem. Let p be a prime = 3 mod 4 and G the Hilbert modular

group (G the extended one) for K = Q (Jp ). Then

(56)

Proof. The first two équations folio w from (47) and (50). For p>3
the quotient singularises of order 3in $>

2
/G occur again in pairs (3; 1, 1),

(3; 1, — 1) and cancel out in (45). For p > 3 and p = 3 mod 8, there are

h(—p) singularities of type (4; 1, 1) and 3h(—p) singularities of type

(4; 1, —1). For p = 1 mod 8 there are 2h(—p) singularities of type

(4,1,1), see [61].

The sum of their contributions in (45) equals (see (17))

By (45), sign$ 2
/G =± h(-p) - h(-p).

It remains to consider the case p = 3. We hâve 3 quotient singularities
of order 2, there are 3 others of type (4; 1, -1), (3; 1, 1), (12; 1, 5). By

Dedekind-Rademacher reciprocity ([3B], (36)) and because def (5; 1, 12) = 0

(see (18))

Therefore (see (17) and 3.8):

3.12. For any prime pwe know the Euler numbers and the signatures

of %2/G%

2
/G and §>

2
/G. Using 1.6 (21), 3.6 (32) and the theorem of 3.11 we

can write down explicit formulas for the arithmetic gênera x (&) an d



Theorem. Let pbea prime K=Q {Jp ). Let Gbe the Hilbert modular

group for K and G the extended one. Then

For p > 5 we hâve

The formulas at the end of 1.3 imply

It is easy to deduce from this estimate that % (G) = 1 if and only if

p = 2, 3, 5, 7, 13, 17 and (for p = 3 mod 4) x (à) = 1 if and only if

p = 3, 7. Because of (38) and (56) we also know the arithmetic gênera

of (§ x $)~)jG and (§ x §>~)/ (p = 3 mod 4). They are equal to 1 if

/? = 3, and both différent from 1 if /> > 3.

§4. Curves on the Hilbert modular surfaces
AND PROOFS OF RATIONALITY

We shall construct curves in the Hilbert modular surfaces. They can

be used to show that thèse surfaces are rational in some cases and also

for further investigations of the surfaces ([4l], [42]). Such curves were
studied earlier by Gundlach [23] and Hammond [25]. We need information



about the décomposition of numbers into prime ideals in quadratic fields.

(See [6], [30].)

4.1. Let Kbe a real quadratic field and o K its ring of integers. We

often write o instead of o K . Let bbean idéal in o which is not divisible by

any natural number > 1. We consider the group SL 2 (o, b), see §3 (41).

Let T
b

be the subgroup of those éléments of SL 2 (o, b) which when acting

on Ç)2)
2

carry the diagonal z 1 =z2 over into itself. An élément (" 1) of

SL 2 (o, b) belongs to F
h

if and only if

(1)

The matrices satisfying the first condition of (1) are in SL 2 (Q) with

oc, ô e o, /? e b~ \ y e b. Thus a, ô, y are integers. The idéal b is not divisible

by any natural number > 1. Therefore /? is also an integer. A rational

integer y is contained in b if and only if y = 0 mod N (b) where N (b)

is the norm of the idéal b.

For any natural number Nwe let F
o (N) be the group of those éléments

("
p
ô ) e SL 2 (Z) for which y = 0 mod N. This group was studied by Klein

and Fricke ([l6], p. 349; see [70], p. 24).

We hâve proved the folio wing lemma :

Lemma. Let b be an idéal in o which is not divisible by any natural

number > 1. Then F o (iV(b)) is the subgroup of those éléments of F
h

which satisfy the first condition of (1). The group T
b equals F

o (N (h)) or

is an extension of index 2 of F o (N(h)).

If K = Q (sjd ) where dis square free, then a matrix of F
h satisfying

the second condition of (1) is of the form yj d ("{J where aO,a

0 ,
yO9y 09

ô
0 are

rational integers, /? 0
is a rational number, y 0 *J de h, and p o *J deb~ 1

.

If b is not divisible by Çjd\ then the fractional idéal (fioy/d) has

in its numerator a prime idéal dividing the idéal Çjd ) and the déterminant
of our matrix would be divisible by this prime idéal, this is a contradiction.
Thus a matrix satisfying the second condition of (1) does not exist in this

case. If b is divisible by Ç/d), then [F h
: F

o (N(b))~] = 2.

In fact, b is divisible by (yjd ) if and only if N (b) is divisible by d and

the matrices satisfying the second condition of (1) are of the form



where a o ,P l9 y O9
ô

o are rational integers and y 0 = 0 mod N (b)/d. Such

matrices exist, because (d,N(b)/d) = 1. If b = (^5), then F
h

is the

extension of index 2 of T o (d) by the matrix

This group will be denoted by T* (d), see Fricke ([l6], p. 357). We

hâve proved:

Proposition : Let K = Q G/rf) 6e tf retf/ quadratic field (d square free).
Let bbean idéal in o K which is not divisible by any natural number > 1. If
N(b) is not divisible by d, then the group F

h of those éléments o/SL 2 (o K ,
b)

which carry the diagonal ofÇ)
2 into itself equals F

o (7V(b)). If N (b) is

divisible by d, then F
h

is an extension of index 2 ofF Q (7V(b)). In particular,

ifb = (Jd)
9

then F
h = r*(d).

We also consider the group SL 2 (o X , b) of matrices (" with a, Se o K ,

j^eb" 1

, yeb and aô — fiy a totally positive unit.

The groups SL 2 (o K , b) and SL 2 (o X , b) do not act effectively on §
2

.

If we divide them by their subgroups of diagonal matrices, we get the groups
G (o K ,

b) and G (o x , b) which act effectively and generalize the Hilbert

modular groups G and G (see 1.7). As in 1.7 we hâve an exact séquence

(2)

The subgroup of those éléments of G (o K , b) which carry the diagonal
over into itself is Fh/{F

h /{ 1, —1} which acts effectively on §. The subgroup

of the éléments of G (o X , b) which keep the diagonal invariant is an exten

sionof index lor2of FJ{ 1, - 1 } . We can write it in the form fj{ 1, - 1 }

where F
h c SL 2 (R) is an extension of index 1 or 2 of F

h .

The embedding of the diagonal in §
2 induces maps n and n of §>/F

h

and %/f
h

in §
2
/G(o x , b) and %2/G(%

2

/G(o K , b) respectively. The maps n and

n need not be injective. We hâve a commutative diagram



(3)

The maps n and n map $/r b
and §/JH b with degree 1 onto their images.

If K has a unit of négative norm, then the two lines of diagram (3)

can be identified. If there does not exist a unit of négative norm in X,

then p has degree 2 and g is bijective or has degree 2, depending on whether

If we compactify $>
2

/G (o K , b) and §>
2

/G (o K , b) and résolve ail quotient
and cusp singularises by their minimal resolutions, then we get non

singular algebraic surfaces Y(o K , b) and Y(o K ,b). On Y(o K ,h) we hâve

an involution a induced by (q ?) where sis a generator of U+. We hâve

a rational map p: Y (o x , b) — > F (o x , b) compatible with a. The map p

is regular outside the isolated fixed points of a. The maps n and te induce

maps of the compactiflcations §>/F h
and §>/F h

into the non-singular algebraic
surfaces. We hâve a commutative diagram

(4)

If K has a unit of négative norm, then the two lines of (4) can be identified,
the vertical maps are bijective.

We dénote the irreducible curve n (§>/r h
) by C (b). It may hâve singu

larities.§>/r h
is its non-singular model which is mapped by n with degree 1

on C(b).
We put D (b) = p

x C (b). If degree (p) = 2 and degree (a) = 1 then

D (b) is the union of two irreducible curves D
x (b), D2D

2 (b). If degree (a) = 2,

then D (b) is irreducible. The involution a carries D (b) into itself mapping

D
x (b) to D2D

2 (b) if D (b) is reducible.



The resolution of the cusp at oo of §>
2

/G(o K9 b) is described by the

primitive cycle ((ô 0 , ... 9

b
r -ù) of &"

1

( see 2
-
6 ) l1: détermines a (narrow)

idéal class with respect to strict équivalence whose inverse we dénote by

23. A quadratic irrationality w is called reduced if 0 < w' < 1 < w. The

quadratic irrationality w is reduced if and only if its continued fraction
is purely periodic. There are exactly r reduced quadratic irrationalités

belonging to the cycle, namely the numbers

(5)

After calling one of them wO,w
0 ,

the notation for the others is fixed. Then

they correspond bijectively to Z/rZ.
If we speak of the curve S

k of the resolution (where ke Z/rZ), this

has an invariant meaning. It is the curve associated to the quadratic

irrationality w k .

The fractional ideals {)
J (where bcoK and b is not divisible

by any natural number > 1) are exactly the Z-modules Zw + Z • 1 where

w is a quadratic irrationality having the given primitive cycle in its continued
fraction. (If we require that 0 < w' < 1 and w

f

< w, then w is uniquely
determined by b" 1

.)

Since the module b
* =Zw+Z•l is strictly équivalent to

M = Zw 0 + Z•l (see 2.3), there exists a totally positive number X in M

(uniquely determined up to multiplication by a totally positive unit) such

that

(6)

where we defined the idéal boeBb

o e8 by bb
o

x =M.We hâve

(7)

Instead of looking at the diagonal and at the action of SL 2 (o x , b)

/\
on §, we can consider the action of SL 2 (%, b0)b

0 ) on §
2 and the curve

z 1 = ÀÇ, z2z
2 = À'C in §

2

,
where £g£. Any totally positive number le M

can be written uniquely as a linear combination of two consécutive numbers
AA

k _ l9 A
k with non-negative integers p and q as coefficients (see 2.3,

Remark) :

(8)



If we multiply X by a totally positive unit, then p, q do not change
and k only changes modulo r. See the lemma in 2.5 and 2.3 (12). The

équation 2.3 (11) shows that the curve C (b) has in the k-th coordinate

System (u k ,
v k

) of the resolved cusp the équation

(9)

where t can be restricted to some neighborhood of 0. Namely, we just

want to study locally the intersection of our curve with the curves of the

resolution. Observe, that /?, q are relatively prime because X is an élément

of a Z-base of M. The fractional ideals b'^S" 1 which satisfy our con
ditions(b coK and b not divisible by any natural number > 1) are in

one-to-one correspondence with the triples (k\p,q) where keZ/rZ and

p, q are relatively prime natural numbers and where (k | 0, 1) is to be

identifled with (k+l | 1,0).
We call (k | p, q) the characteristic of the idéal b e S. Actually, k does

not stand for an élément keZ/rZ, but rather for the corresponding
quadratic irrationality w k which has an invariant meaning. If as in (6)

(10)

then (see (8))

(H)

where ((
p

p
*) g SL 2 (Z) and p 0, q 0. Therefore, we can détermine the

characteristic of b by writing w in the form (11).

In view of (7) the algebraic surface Y (o X ,
b) dépends only on the idéal

class S. The identification of Y(o K ,h) and Y(o K ,

b0)b

0
) is uniquely defined

by (7). We shall dénote the surface by Y(p K , S). In a similar way the

algebraic surface Y(o K , S) is defined. The preceding discussions (see in

particular (9)) yields the following theorem.

Theorem. Let Kbea real quadratic field and S a narrow idéal class

of o K . For every idéal bcox with beS such that bis not divisible by any

natural number > 1
, we hâve defined an irreducible curve C (b) = n (§)/r h

)

in the non-singular algebraic surface Y(p K , S). The cusp at oo of fy/F^ is

mapped by ntoa point on the union of the curves S
o , ...,

S
r^ 1

in Y(o K , S)

which were obtained by the resolution of the cusp at oo of §
2
/G(o X ,

b).



If b has the characteristic (k |0, 1), then b
1

= Zw k + Z• 1 w/œre w fc

/s ?/ze reduced quadratic irrationality belonging to k, and the curve C (b)

intersects S
k transversally in P which is not a double point of u Sj. The

curve SkisS

k
is given in the local coordinate System (u k ,

v k
) by v k —0 and C (b)

by u k = 1. If b has the characteristic {k \p 9
q) where p > 0 and q > 0,

f/zeft P is given in the k-th coordinate System by u k =vk =0, fAe curve S
k

by v k =0, the curve SS
kk _ 1 by u k =0, and C (b) has the local équation

If K has a unit of négative norm, then Y(o K , S) = Y(o K , S). If K does

not hâve such a unit, then in the non-singular algebraic surface Y(o K , S)

we hâve a curve D (b) which in the neighborhood of the resolved cusp at oo

is just the inverse image of C (b), the resolution of the cusp at oo being an

unbranched double cover of the cycle of curves S
o , ..., SV-i* (The fonda

mentalgroup of a neighborhood of S
o u ... u 66

t

rr _ 1
is infinité cyclic and

we hâve to take the corresponding covering of degree 2.) The curve D (b)

is irreducïble or the union of two irreducible curves D x (b), D2D
2 (b).

Remark. For différent b,b e 8the curves C (b), C (b) may coincide.

The curve C (b) =n (§/ T
h

) may intersect uSjin other points than P

which correspond to other cusps of §>/f h .

42. In view of the preceding proposition and the theorem it is important
to hâve a simple method to calculate N (b) if b" 1 =Zw+Z•l. Let D

be the discriminant of K (see 1.4), then w can be written uniquely in the

form

(12)

where N> 0 and M2M
2 - D = 0 mod 4N. Then we hâve

(13)

To prove (13), one checks

If we start with a reduced quadratic irrationality w 0 of the form (12),
then the formula



where b
k eZ and wk+lw k+1 >1, détermines inductively for k 0 the b

k
and

the w k . We put

(14)

This is the process of calculating the continued fraction for wO.w
0 . If b

is the idéal of characteristic (k \p, q), see (11), then

(15)

as follows from (11), (13) and (14).

We shall tabulate the values of b
k9 M k9 N k for some wO,w

0 , namely for

those quadratic irrationalities which are needed later to show that the

Hilbert modular surfaces 9)
2

jG are rational for d=2,3,5,6,7, 13, 15, 17,

3 + J~3
21, 33 (compare the table in 3.9). We also include w 0 = — which

is needed for (£> x §>~)/ in the case d = 3 (see 3.12).

If r is the length of the cycle of the quadratic irrationality, we tabulate
b

k , M k ,
N k only for 0 k r— 1, because they are periodic with period r.



4.3. We consider the situation of the theorem in 4.1. Let Fbe one of

the irreducible curves C (b), D (b), D
± (b) or D2D

2 (b). The curve F has

§/r as non-singular model where F acts effectively on § and equals

rr
b /{ 1, —I}or rr

b /{ 1, —I}. The curve F lies in a non-singular algebraic

surface Y, namely Y(o K , 23) or Y(o K , 23). We shall calculate the value

of the flrst Chern class c ± of YonF which is up to sign the intersection
number of a canonical divisor K of Y with F:

(16)

The surface F is a disjoint union of a complex surface (4-dimensional
manifold) X with boundary as in 3.4 (19) and open neighborhoods
N

v (l^vSs + t) of the configurations of curves into which the s quotient
singularises and the t cusp singularises were blown up (minimal resolu
tions).The first Chern class of X can be represented as in 3.4 by a, dif
ferentialform y ± with compact support in the interior of X and it folio ws

as in 3.4 (25), (26) that

(17)

where coj = ——y^
2

dxj a dy-. Since F cornes from the diagonal
Z7T



z 1 =z2 of §
2

, we obtain that J^ equals twice the Euler volume of §/r.

Thus by 1.4 (10)

(18)

where G = SL 2 (Z)/{l, -I}.
We hâve denoted the open neighborhoods of the resolved quotient

singularities and cusps singularities by N
v (l^v^s + t) where s is the number

of quotient singularities and t the number of cusp singularities in the surface

§
2 /G(o X ,

23) or §>
2 /G(o K ,

33) which has Y as non-singular model. The

first Chern class of N
v can be represented by a differential form yy 1

(v) with

compact support in N
v

in such a way that ~y
1 + (v) represents the first

Chern class of Y. By Poincaré duality in N
v

each yy 1

(v) corresponds to a

linear combination with rational coefficients of the curves into which the

singularity was blown up. This linear combination will be called the Chern

divisor of the singularity and denoted by cc
x

(v)
. It follows that

(19)

We dénote the curves of the minimal resolution of a singularity by Sj.

For a quotient singularity the Chern divisor equals £ ajSj where the

rational numbers cij are determined by the linear équations

(20)

This follows by the adjunction formula, since ail the S
t are rational

and non-singular. In some cases we hâve calculated the numbers aj at the

end of 3.3. For any quotient singularity of type (p;l,q) the matrix

(S t
- Sj) equals



where p/q = \{b u ...,b r ]\, (see [35], 3.4).

The inverse of this matrix has only non-positive entries. Since 2 + S
t

• S
t

=2-bt 0, we hâve a- 0.

For a cusp singularity the Chern divisor equals £Sp ( see 3
-
2 (9))

Therefore, in (19) ail the terms c[ v) •F are non-negative.

Every cusp of |>/r, the non-singular model of F, maps under 9)jF -» F

to a point on some curve in the Chern divisor of a cusp singularity. This

intersection point gives at least the contribution 1 in (19).

Let a
r (F) be defined as in 1.6. If an élément y of F has order r, then

(since FcG (o X , h) or FaG (o K , b)) we hâve a quotient singularity of

type (r; 1, 1) whose Chern divisor intersects F in a point coming by

$) -> §/r ~> i7i 7 from a point z of 9) whose isotropy group is generated by

y. The Chern divisor contains in this case just one curve S and equals
r - 2

S, (see the end of 3.3).
r

If we dénote by a (F) the number of cusps of $/r we get by (19) the

estimate

(20)

The Euler number of the non-singular model 9)jF of F is given by the

classical formula

(21)

which follows from 1.6 (21), because g (F) points are attached to $/r by

the compactification. By (20) and (21)

(22)

The right side of (20) is defined for any discrète subgroup of type (F) which
is équivalent in this case to Jr>/r having a finite volume.

Définition :



If r is the Klein-Fricke group F
o (N) divided by { 1, -1 } we shall

write c ± (N) for c t (/") and also a
r (N) for a r

ÇT) and ao(N)a

o (N) for a(r).
The numbers a r (N) vanish for r > 3. There are well-known formulas for

[SL 2 (Z) : rr
o (N)], for a

r (N) and a o (N\ (see, for example, [70], p. 24).

The Euler number e (§/r 0 (N)) will be written as 2 - 2g 0 (N). By (21)

there is a formula for g 0g 0 (N) which implies (as Helling has shown recently
[32])

(23)

Compare [13] where the values of g 0 (N), a
r (N) and a 0 (N) are tabulated

for N 1 000. Therefore, we can write down easily a list of c t (N) for the

rational and elliptic curves §/r 0 (N) (see (23)) :

(24)

4.4. We want to prove that the Hilbert modular surfaces are rational
in some cases. An algebraic surface is rational if and only if it is birationally
équivalent to the complex projective plane, or equivalently if the field of

meromorphic functions on the surface is a purely transcendental extension

of the field of complex numbers of degree 2.

Let S be a non-singular algebraic surface and K a canonical divisor of

S. The "complète linear System" | mK | of ail non-negative divisors D

which are linearly équivalent to mK is a complex projective space whose

dimension is denoted by P
m

— 1. The numbers P
m (m^l) are the pluri

generaof the surface S (see, for example, [64] and [36], p. 151).

We hâve P
1 =g2 (see 3.6). The equality P

m =0 means, that |mK\
is empty. The numbers P

m (m^l) are birational invariants. They vanish

for rational surfaces.



Castelnuovo's criterion ([46], Part IV):

A non-singular connectée algebraic surface S is rational if and only if

Remark. Clearly, P2P
2 =0 implies g2g 2 =0. There are algebraic surfaces

with g x =g2 = 0 which are not rational (Enriques' surfaces with

gl =g2 = 0 and P2P
2 = 1, see [64]). The condition g ± =g2 = ois équivalent

to g x = 0 and # (S) = 1 (see 3.6). For Hilbert modular surfaces g x = Q

(see the lemma in 3.6). Up to now ail Hilbert modular surfaces and similar

surfaces (see § 5) with %(S) = 1 hâve turned out to be rational. The number

P
m

of a non-singular model of §)2/F)
2
/F equals the dimension of the vector

space of those cusp forms of weight m which can be extended holomorphically
to the non-singular model. Therefore P

m
dim S r (m). The calculation

of P
m seems to be a very difficult problem.

We shall base everything on Castelnuovo's criterion, not worrying
whether in a systematic exposition of the theory of algebraic surfaces

some results would hâve to be presented before this criterion. The following
theorem is an immédiate conséquence of Castelnuovo's criterion.

Theorem. Let S be a non-singular connected algebraic surface with

g t = 0. Let c x
be the first Chern class of S and Ka canonical divisor of

S. If D is an irreducible curve in S with c x [D] = — K•D > 0 an d

D•D 0, then Sis rational.

Proof We show that P
m =0 for m 1.

If Ae\mKl then

Therefore,

which is a contradiction. Thus mK is empty.

Corollary I. Let S be a non-singular connected algebraic surface
with g 1 = 0. Let c 1

be the first Chern class of S and Ka canonical divisor
of S. If Disan irreducible curve on S with c

1 [D] 2, then Sis rational.
If Disan irreducible curve on S with c 1 [D] 1 which has at least one

singular point or which is not a rational curve, then S is rational.



Proof. By the adjunction formula (0.6)

equals the Euler number e (D) of the non-singular model D of D minus

contributions coming from the singular points of D which are positive
and even for each singular point. Thus

and

if D has a singular point or is not rational. Therefore, the assumptions
in the corollary imply D•D 0.

Corollary IL Let Sbe a non-singular connectée algebraic surface with

g t = 0. Let c 1
be thefirst Chern class of S. Suppose that Sis not a rational

surface. If D is an irreducible curve on S with c x [D] = — K• D = 1, then

D is rational and does not hâve a singular point. Furthermore, D • D = — 1.

A non-singular rational curve £ona non-singular surface S which

satisfies E•E = — 1 (or equivalently c 1 [E] = 1) is called an exceptional

curve (of the first kind). It can be blown down to a point:
In a natural way, S JE is again an algebraic surface ([64], p. 32). The

surfaces S and S/E are birationally équivalent.
If c ±

is the first Chern class of S and c x
the first Chern class of S/E,

then for any irreducible curve D in S and the image curve D in S/E we

hâve

(25 a)

This is true because c t = n^c
1

— e, where n :S-> SIE is the natural

map and eeH2 (S, Z) the cohomology class corresponding to E under

Poincaré duality.

If D is non-singular and D •E = 1, then D is also non-singular and

by (25 a) and the adjunction formula

(25 b)



Corollary 111. Let Sbea non-singular algebraic surface with g x =0
which is not rational. If E u

E2E
2 are two différent exceptional curves of the

first kind, then E u
E2E

2
do not intersect.

Proof We hâve c ± [£ x ] = 1. If we blow down E 2 ,
then in S/E 2 (first

Chern class c^)

Therefore, by Corollary I, E 1 •E2 = 0 and thus Elr^E
1 r^E 2 = 0.

4.5. Let Gbe the Hilbert modular group for K=Q L/d), d square

free. If we résolve ail singularises in 9)
2

jG (minimal resolutions) we get

a non-singular algebraic surface Y{d) which in 4.1 was denoted by

Y (o x , ®) where $ is hère the idéal class of principal ideals(X) c o K with
X > 0, X' > 0. If X is not divisible by a natural number > 1, we can

consider the curve

(26)

which according to (7) gives one of the (one or two) irreducible components
of the curve D ((X)) in Y(d). If we replace X by X' we get the same curve.

Namely, our curve can also be written as

(27)

1

because £ ;- ——— is an automorphism of §.
XX Ç

If we apply the élément Zj k> of G to (27) we get
z j

(28)

We consider the involution (z l9 z 2
) h> (z 2 ,

z x ) on $
2 which induces

an involution Ton ?>
2

/G and hence on Y(d), because the minimal resolu
tionsare canonical. (26) and (28) show that our curve is carried over to

itself by T.

The cusp at oo of §
2

/G admits a resolution:
We hâve to take the primitive cycle or twice the primitive cycle of the

reduced quadratic irrationality w 0 such that Zw 0 + Z•l = oK:o

K
:



(29)

where { «J d } dénotes the smallest odd number greater than y] d
. We

hâve (w^
1

)' = wO,w
0 , (see 4.2) and therefore (2.3 (13)) for the continued

fraction of w0:w
0

:

(30)

If r is the length of the cycle, then for w k9
b

k ,
M k ,

N k
the index h can

be taken mod r. However, for the curves S
k we hâve to consider k modulo

r or modulo 2r.

We note

(31)

(32)

For any characteristic (k |p, q) we hâve one or two curves (26) in

the Hilbert modular surface Y(d). Compare the theorem in 4.1. Let D

be such a curve. Suppose

(33)

then the non-singular model of D is §>/r o (N). Suppose also TV > 1.

Then the curve D intersects the Chern divisor u Sj of the resolution at

least twice, the intersection points correspond to the cusp at co and at 0

of §/r 0 (N) which are différent cusps for N > 1. By applying the theorem

in 4.1 to the curves (26) and (28) which both represent D we see by (11)

that the two intersection points are of characteristic (k \p,q) and

(— k+l | q,p). The involution T maps S
k to *S_

fc
and interchanges the

two intersection points. If the characteristic is (k 1 0, 1), then the

symmetric one is (-k+l | 1, 0) = (-k | 0, 1). If (33) is satisfied, then

because the non-singular model of D is §/r 0 (N).



Since the intersection number of u
q -vp = 0 and uv == 0 equals

p + q, the intersection number of D and the Chern divisor £ S,- is

p + q in each of the two intersection points and therefore

(34)

Because of 4.4 (Corollary I) we hâve the following theorem.

Theorem. Let K= Q (yfd), d square free, and G the Hilbert modular

group. Consider the continued fraction for w 0 (see (29) j and the corres

pondingnumber s M k ,
N k (see 42). We look at the following représentations

of natural number s N:

(35)

(for some k and for relative prime natural number s p, q).

If N is represented as in (35), ifN^éO mod d and N > 1, then

or the Hilbert modular suface 9fjG is rational.

7V_! + M o + No equals 7 for d = 2,21, it equals 8 for d = 17, it

equals 9 for d= 7,13 (see 4.2 or recall that N- ± = N t and use (31),

(32)). For d=3,we hâve 13 =4^ + 2M 0 + N o . For d= 5, we hâve

H= 4N t + 2M 0 + N o . For thèse rf we get c 1 (N) + 2(p + q-\) =2
(see (24)). Thus the Hilbert modular surface is rational in thèse cases.

For d = 6, 15, 33 a more refined argument is needed. Actually, the

theorem throws away some information, because we hâve only used two

cusps of §/r 0 (N), (N> 1). If N is not a prime, then §/r 0 (N) has more

cusps. This is relevant for d = 15: There are two cusps of the Hilbert
modular surface which are of equal type (3.9). We hâve 10 = JV_

X +Mo
+ N o . The curve §/r 0 (10) has 4 cusps. One can prove that the intersection
of D with the Chern cycles of the two cusps of the Hilbert modular surface
looks as follows (in this case the curve D (b) of theorem 4.1 is irreducible)

(35)

Therefore



For J=6we hâve a diagram

(37)

Again the curve D = D (b) of the theorem in 4.1 is irreducible.
For the curve D we hâve c 1 [D] _ c 1 (N) = 1. Thus the surface 7(6)

is rational or D is an exceptional curve of the flrst kind. If D is exceptional,
then we blow it down. The images of S

1
and *S_

X
become exceptional

curves which intersect each other. Thus 7(6) is rational by Corollary 111

in 4.4. We could hâve also used N = 10. The corresponding curve goes

through the 4 corners of diagram (37).

For d = 33, the same argument works using N = 4.

We hâve proved

Theorem. Let K=Q (y/d), d square free, and G the Hilbert modular

group, then $
2
/G is rational for d = 2, 3, 5, 6, 7, 13, 15, 17, 21, 33.

For d = 3 we consider also (§ x § )jG. The non-singular model is

Y(o K , S) where S is now the idéal class of ail ideals (X) with XX' <0.
The resolution of the cusp at inflnity is

We hâve one curve with N= 2 (non-singular model §/r 0 (2)) and

two curves with N = 3 (non-singular model $/r* (3)).

If T=T* (3)/{ 1, - 1 }, then e (§
2 /r) =2,a2 (r) =a6(D=l, ail

other a r
ÇT) = 0, <x (r) = 1. Thus



Either the surface is rational, or the three curves with N = 2, 3 can

be blown down. Then S
o can be blowndown and StandS

t and S_
x give two

exceptional curves which intersect in two points. Thus the surface is rational.

Observe that in gênerai the rationality of Y(o K ,
33 )implies the ration

alityof Y (o Ki 23) (Lûroth's theorem [64], Chap. 111, § 2). We could show

this directly by using our curves in Y(o K , 23).

Exercise. Let K=Q (^69 ). Calculate the arithmetic gênera of &2/G&

2
/G

and §
2

/G. Prove that the surface §
2 /ë is rational !

In ail cases where we know that the arithmetic genus equals 1 we hâve

proved rationality.

§5. The symmetric Hilbert modular group
for primes p 1 mod 4

5.1. Let S be a compact connected non-singular algebraic surface.

The fixed point set D of a holomorphic involution T of S (différent from
the identity) consist of finitely many isolated fixed points P u ...,P r

and

a disjoint union of connected non-singular curves D u ..., D
s .

If there are no isolated fixed points P
j9 then S/T is non-singular and

the arithmetic gênera of S and S/T are related by the formula

(1)

where D = J]D t and c 1
is the first Chern class of S (see [40], § 3).

Furthermore, if F is a curve on S (not necessarily irreducible) with

T(F) — F and F not contained in D and if F is the image curve on S/T,
then

(2)

Proof. If n:S-> S/T is the natural projection, then c x = n^ i
c

1 -d
where de H2H

2
(S, Z) is the Poincaré dual of the branching divisor D. Thus



5.2. Let pbea prime = 1 mod 4. We consider the field K=Q(vZ7)
and its Hilbert modular group G. We make thèse restrictions throughout
§ 5 though some of our results are valid more generally.

The involution (z l9 z 2
) *-+ (z 2 ,

z x
) induces an involution Tof $

2
/G and

of 9)
2

jG. As mentioned before (4.5), it can be lifted to an involution T

of our non-singular model Y(p) because this was obtained by the canonical

minimal resolution of ail singularises in $))
2
jG.

We shall study the algebraic surface Y(p)/T (the isolated fixed points
of T give rise to quotient singularises of type (2; 1, 1) of this surface),
calculate its arithmetic genus and détermine for which p the surface is

rational (see [39], [40]).

Equivalently we can consider the symmetric Hilbert modular group GTG

T

which is an extension of index 2ofGby the involution (z l9 z 2
) H- (z 2 ,

z x
)

and study §
2

/G r :

The surface Y (p)/T (with the quotient singularities resolved) is a non
singularmodel of the compactification of §

2
/G r .

5.3. The field K has a unit of négative norm. Therefore, the groups G

and G coincide (1.7) .The class number of Kis odd. The idéal class groups
C and C +

are equal and the homomorphism Sq in 3.7 (42) is an iso

morphism.Therefore for any idéal b c o^we can find a matrix À e GL^ (K)

(see 1.3) such that

(3)

(see 3.7 (40) and 4.1 (7)). If A l9
A2A

2 are matrices satisfying (3), then, for

B= A^A %

~ X =Ç S), we hâve BS^ip^B' 1

= SL 2 (o K ).

Proposition.

If BeGLtiK) and SL 2 (o^) 5"1 = SL 2 (o x ), then

(4)

Proof (compare Maaß [54]). Put h2h
2

= det^. We may assume that

B is an intégral matrix. Since



and a similar formula holds for B(}?)£ Swe see that -B has coefficients

which are algebraic integers. Thus the idéal (a, c) of o x consists exactly of

those éléments xinoK such that x//z is an algebraic integer. This implies

that (a, c)
2

equals the principal idéal (deti?). In our case, the idéal class

group has odd order. Thus (a, c) is principal and det B multiplied with a

totally positive unit is a square in o K . But every totally positive unit is a

square of a unit. Therefore he o K . For the algebraic number theory needed,

see [30], §37.

An idéal is called admissible if it is not divisible by any natural number

> 1. For any admissible idéal bcox we hâve (4.1) a curve C (b) on

= Y(o K ,h). In view of (3) we hâve a curve (which we also call

C(b)) on our Hilbert modular surface Y(p). The curve is given in %>
2

/G

by

(5)

Because of (4) it does not dépend on the choice of A. (Multiplication of

A from the left by an élément of SL 2 (o K ) does not change the curve.)
We can also say that the surfaces §

2
/SL 2 (o K , b) are canonically

identified and the curves C (b) are the diagonals in the différent représenta
tionsof $)

2
jG as §

2
/SL 2 (p K9 b). If we change Aby multiplying from the

right by a rational matrix with positive déterminant, we get the same

curve, because we make just a change of the parameter C e §. This implies
that CÇbi) = C(b 2

) if there exists a matrix A
o e GL 2 (Q) such that

1

= SL 2 (o x ,b 2 ).

Lemma I. If bl,b
1 ,b 2 are admissible ideals in o K ,

then the curves

CibJ, C(b 2 ) coïncide if and only if 7V(b x
) = JV(b 2 ).

Proof If JV(bi) = N(b 2 ) =N, then put d= N/N(Qb l9
h

2 )). We

hâve (d,N/d) = 1, because the ideals are admissible. Thus there exists a

rational matrix of déterminant d of the form

(6)

where aO,a

0 ,
ft l9 yO,y 0 ,

ô
0 are integers. (Such a matrix occurred in a related

context in 4.1). Then, for any A
o with thèse properties,



which shows that the curves coincide. If the curves coincide, then the norms

are equal. (We leave the proof to the reader.)
A natural number N lis called admissible (with respect to p) if it

is the norm of an admissible idéal. The prime idéal theory of quadratic
fields which we always hâve used tacitly yields the following lemma.

Lemma IL The natural number N lis admissible with respect to

pif and only if Nis not divisible by p2p
2 and not by any prime q p with

Définition.

In view of Lemma I we hâve a well-defined curve for any admissible

natural number N. This curve on the surface Y {p) will be called FN .

Lemma 111. For the involution Tof Y(p) and any admissible N we

hâve T(F N ) = F N .

Proof If N= JV(b), then FNF
N = C(b) is given in §>

2
/G by (5) where

Aisasin (3). Therefore T(F N ) is the curve z x = A'Ç, z2z
2 = AÇ. But his

is C(b') which equals C (b) by lemma I.

Remark. If N 0 mod p, then N((b,h')) =1 and the involution

TonFN can be given by the matrix A
o = (!v ô1)ô

1

) ( see (6)) if we lift Tto
the non-singular model §/r 0 (N) of F N . Thus §)/F%(N) is the non-singular
model of FN/T.F

N /T. (see 4.1). In particular, T is not the identity on FNF
N if

N 0 mod p and N>l.

5.4. The curves F
±

and F
p

(considered as curves in $)2/G))

2
/G) are the only

curves which are fixed pointwise under T9T
9

(see [14] Part 11, [62]). The

curve F
p

belongs to the idéal {^J p e0)e

0 ) where e 0
is a unit of négative norm

and can be given by z 1 =Jp eOÇ,e

0
Ç, z2z

2 =—Jp <?o£ or by z 1 =e\ z 2 .

The involution Tacts on the quotient singularities of §>
2

/G. The descrip
tionof this action [62] dépends on the residue class of p mod 24. There
forewe define

(7)



In §>
2

/G the following holds [62] :Of the h(-4p) quotient singularities
of order 2, half of them lie on F

p
and not on F l9 and one of them lies on

F t and F
p

and is the only intersection point of F l and F
p

in 9)
2

jG. There

are in addition ô quotient singularities of order 2 which are fixed under T.

"They" lie neither on F t nor on F
p . The remaining order 2 singularities

are interchanged pairwise under T. Of the h( — 3p) quotient singularities
of order 3, exactly half of them are of type (3; 1, 2). They lie on F

p . There

is one singularity of type (3; 1, 1) which lies on F
1

whereas e such singu
laritieslie on F

p
. The remaining singularities of type (3; 1, 1) are inter

changedpairwise. For p = 5, the two singularities of order 5 are inter
changedunder T. The involution T acts freely outside F u F

p
and the

quotient singularities. If we pass to the non-singular model Y(p) of $)2/G,)

2
/G,

we get the following configuration of curves. We omit the curves coming
from the quotient singularities which are pairwise interchanged and only
show the intersection behaviour outside of the resolved cusp singularities.

(8)

The curves F l9 F
p

are pointwise fixed under the involution Tof Y(j>) 9

therefore they are non-singular curves on Y(p). Ail curves in the diagram
are non-singular and (except F

p
) rational. F

p
is rational if and only if

p= 5, 13, 17, 29, 41 (see 5.7). The points P l9 and P2P
2 if e= 1, and P

3 ,
P4P

4



if ô = 1 are the only isolated fixed points of Ton Y(p) outside the resolved

cusp singularises.
The following lemma is easy to prove and very useful for deducing from

Prestel's results [62] that the configuration on Y(p) is as indicated in (8).

Lemma. If Sisa compact complex manifold of dimension 2 and Tan
involution on S which carries the non-singular rational curve C over into

itself then T is the identity on C or T has exactly two fixed points P and

Q on C. In the latter case the following holds :

IfC-C is odd, then one of the points P, Q is an isolated fixed point
of T, the other one is a transversal intersection point of C with one of the

(non-singular) curves which are pointwise fixed under T. If C - C is even,

then P and Q both are isolated fixed points ofT or both are such transversal

intersection points with a curve pointwise fixed under T.

The class number h of K = Q {^Jp ) is odd. There are h cusp singu
laritiescorresponding to the h idéal classes (see 3.7). The involution T on

§
2

/G leaves one cusp fixed and interchanges the others pairwise. T maps
the cusp of type (M, U 2

) where Misa fractional idéal representing an

idéal class to the cusp of type (M' 9
U 2

). If Mis the Z-module Z•w+Z•l
(with o<w'<l< w), then M' is strictly équivalent to Z hZ•l.

w
r

The resolution of (M, U 2
) is given by the primitive cycle of the purely

periodic) continued fraction of w, the resolution of (M', U 2
) by the

primitive cycle of —, which is the same cycle in opposite order. The involu
w

tion on Y(p) maps the cycle of curves in the resolution of (M, U 2
) onto

the cycle of curves in the resolution of (M f

,
U 2

). The fixed cusp is of type

(M, U 2
) where M= Zw 0 +Z•l and where w 0 =\({ + J~p),

see 4.5 (29). It is the cusp at 00.

Theorem. The length rof the cycle of w 0 =-({ yf~p} + y/ p) is

an odd number r = 2t + 1. The involution T on Y(p) maps the curve S
k

to the curve S_
k (see 4.5). The curve F t intersects S

o transversally. It has

the characteristic (0| 0, 1). The curve F
p

intersects s_
(

and S
t ,

it has the

characteristic (~t\ 1, 1). We put {*J p} —2a+l. The intersection



behaviour of the cycle of curves with F t and F
p

is illustrated by thefollowing

diagram.

(9)

The point P
o indicates an isolated fixed point of T. The points P o ,

P l9

and P2P
2 (if s= l), and P

3 ,
P4P

4 (if ô= l) are ail the isolated fixed points

of T. The curves F u F
p are the only one-dimensional components of the

fixed point set.

Proof. As in 2.5 and 3.10 we dénote ordinary continued fractions by

itu r i +
[aO,a

0 , a u
a2,...].a

2 , ...]. Then, since a = ,

(10)

(See [60] ,
§ 30. Because there exists a unit of négative norm, the length

of the primitive period in (10) is odd.)

If one applies the formula which transforms the continuée fraction (10)

into a continuée fraction of our type (see 2.5 (19)) one has to go twice

over the period in (10). We hâve

(11)

Thus the length r of the primitive cycle of w 0
is odd (r = 2t+l). In

fact, t=al + ... +am +a~ 1. Under the involution T only S
o (self

intersectionnumber — (2a +l)) is carried over into itself. The only

symmetric characteristics are (0| 0, 1) and (— t\ 1, 1). The existence of the

isolated fixed point P
o follows from the preceding lemma. Q.E.D.

For the number w 0
in (1 1) we wish to calculate w t+k (where fc =1, ..., a),

see 4.2. The continued fraction [[...]] of wt+lcw

t+1c begins with a—h two's.
Using again formula 2.5 (19) we obtain



which yields

where

(12)

F
p

has the characteristic (—t\ 1, 1) = (£+l| 1, 1) which was obtained in

the above proof by a symmetry argument.
It follows also from the theorem in 4.1, because

In view of (12) and the theorem in 4.1 we hâve the following proposition.

Proposition. On the Hilbert modular surface Y(p) the cusp at oo gives

the following configuration of curves l a = 1

(13)



We hâve S t+k
• S t+k = S_ (t+k)

• S_ (t+k) =-2 for l^k^a-l
and S t+a

• 5_ (f+fl) =- (fli+2). //> = (2a- 1)
2 +4, fAe/i S- (t+a) = S+,

= 50,5
0 ,

f/ze cwve i*i and the diagram has to be changed

accordingly. In this case we hâve

and

We do not claim that the FNF
N are non-singular and do not indicate

their mutual intersections nor their intersections with F
p

.
The intersections

indicated are transversal.

5.5. The curve F 1 on Y(p) is non-singular. It follows from (8) and

4.3 that it is exceptional. In gênerai, we do not know whether FNF
N

is non
singular.In view of 4.3 (24) the curves F29F

29 F
3 ,

F4F
4 are candidates for excep

tionalcurves. In fact, it follows from Corollaries I, II in 4.4 that they are

exceptional if Y(p) is not rational. Y(p) is rational if and only if p = 5,

13, 17. Thus we hâve

Lemma. If p is a prime = 1 mod 4 and > 17, then the curves FNF
N on

the Hilbert modular surface Y(p) are exceptional for N = 1, 2, 3, 4 provided
N is admissible (see 53) :

We always hâve the curve F
x .

The curves F 2 ,
F4F

4 exist for p= 1 mod 8.

The curve F3F
3 exist s for p = 1 mod 3.

For the following discussion we assume p > 17. The curves F U E, B1B
1

in diagram (8) can be blown down successively. In view of corollary 111

in 4.4, the curves F 2 ,
F

3 ,
F4F

4 are disjoint and do not intersect any of the

curves F U E,B 1 . According to the lemma in 5.4 the curves F29F

29 F
2 ,

FAF
A

pass through exactly one of the isolated fixed points of the involution T.

For F3F
3

the value c t [F 3 ] equals 1, therefore by 4.3 it meets in $
2

/G

exactly one quotient singularity of type (3; 1, 1), thus it must be the one

which is fixed under T. It intersects B2B
2 (see (8)) only in P2P

2 and transversally
because otherwise we would hâve c 1 [F 3

~\ > 1. The curve F 4F
4 has the model

S/^o (4) which has three cusps. Therefore F± must intersect the curves of

the resolved cusps of 9)
2

jG in three points. One of theni is fixed under T.

Thus F4F
4 passes through P

o .



The curve F2F
2 passes through P3P

3 or P4P
4 in diagram (8), say P

3 . It intersects

L transversally in P3P
3 and does not intersect L in any other point, because

otherwise L would give in the surface with F2F
2 blown down a curve L with

c 1 [L] 2. The curves F 2 ,
L can be blown down successively. Therefore L

is disjoint to any exceptional curve différent from F 2 .

We hâve found an exceptional curve passing through P o only for

p = 1 mod 8. But there exists such a curve F for any p > 17.

For the cusp at oo we put as before w 0 — i({y/p} + \/ p)

= + y/ p). The involution Tis given in the coordinate System

(u 0 ,
v0)v

0 ) by

(14)

as follows from 2.3 (9). The isolated fixed point P
o

of Thas the coordinates

(—1,0). Thus it lies on the curve Fc Y (p) given by w 0 = — 1 which

can be presented in $ x § by

(15)

Let Fbe the subgroup of those matrices (" of

/l -wO/2\w O /2\ /l wo/2\
SL 2 (o K )

\0 1 / \0 1 /

which, when acting on $
2

carry the diagonal into itself. The curve 9)jF
is a non-singular model of F. The group F is characterized by 4.1 (1), but

the second condition is impossible. Thus F is the subgroup of SL 2 (Q)

of matrices ("
p

ô ) for which

is intégral. Since wO,w
0 , lisa Z-base of o K , we get that a, ô are integers and y

is an even integer. We hâve

(16)

If p = 1 mod 8, then /? is an integer and aÔ — fiy = l implies a = ô

mod 2 and y =0 mod 4, because the coefficient of w 0
in (16) must be

intégral. Thus F = F o (4) in this case.



If p=s mod 858

5
then F o (4) cr. We put y= 2y* and fi = jB*/2.

Then 7*, jB* are integers which are congruent modulo 2. We hâve

a + 5 = y* mod 2.

The matrix (| J 4),J
4

), whose third power is (J _?), satisfies thèse con
ditions.T is a normal extension of index 3 of T o (4). The three cusp of

$/r 0 (4) are identified. §/T is a rational curve. Put T = T/{ 1, -1 }.

We hâve a3a
3 (f) = 2 (tf r (T) = 0 otherwise) and a (F) = 1.

Therefore c x (r) = 1 (see the définition in 4.3), and the curve F is

exceptional. It passes through the isolated fixed point P
o

of T. For p = 1

mod 8, the curve i 7i 7 equals jP
4 because two différent exceptional curves do

not intersect. We hâve T(F) = F.

We can now state the following proposition.

Proposition. If we blow down the curves FI9E,F

l9 E,B u F, and F 2 ,
L (for

ô = l), and F3F
3 (for s= l) on the surface Y(p) for p> 17, then we obtain

a non-singular algebraic surface Y 0
(p). The involution T is also defined on

Y 0
(p). It does not hâve any isolated fixed point. The curve F

p
has a non

singularimage F°
p

in Y 0
(p) which is the complète fixed point set of T.

5.6. If c
1

is again the first Chern class of Y(p) 9
then

(17)

This follows from 4.3 (19), because [SL 2 (Z) : rr
o (p)~] = p + 1 and

[r* (p) : F o (p)] = 2. We further use (8) and (9).

Let us now assume that Y(p) is not rational which is the case for

p > 17. In Y(p) we hâve blown down 3 + 1 + 2ô + e curves and

obtained the surface Y 0 (p) on which T has the fixed point set F°
p

. Let
c\ be the first Chern class of 7° (p). Then

(18)

This follows from 4.4 (25a) using that F, F 2 ,
F3F

3 intersect F
p transversally

in exactly one point (see the lemma in 5.4). By 5.1 (1) the number c\ [FF
o

p
]

must be divisible by 4. We hâve

(19)



1 /s \
since -l- + 2ô + a\<l. The surface 7° (p)/T is a non singular model

for the compactification of $)
2
/G T (see 5.2). The arithmetic genus of

7° (p)/T will be denoted by Xt (p)- I* 1 3.12 we hâve given a formula for

the arithmetic genus of Y(p) which we shall call hère x(p)- Then

(20)

where K = QG//0- By 5.1 (1) and (19) the arithmetic gênera x(p) and

XTX T (p) are related by the formula [40]

(21)

(compare [14], Part 11, Satz 2).

This formula is also valid for p = 5, 13, 17. In thèse cases the surface

Y(p) and therefore also Y 0 (p)/T are rational and (21) reduces to

1 = + 1). It was shown in [40] that

(compare 3.12),

and explicit calculations gave the resuit that Xt(p) — 1 f° r exactly
24 primes, namely for ail primes (=1 mod4) smaller than the prime 193

and for p = 197, 229, 269, 293, 317.

We wish to show in the next sections that the surfaces 7° (p)jT are rational

for thèse primes. Since the rationality is already known for p = 5, 13, 17 it

remains to consider 21 primes. Since the first Betti number of Y(p) vanishes

(3.6), the same holds for 7° (p)/T. Thus the rationality criteria of 4.4

(Corollaries I, 11, III) can be applied.

5.7. The curve FNF
N in Y(p) (for an admissible natural number N>4)

projects down to a curve F^ in 7° (p) and to a curve F* = F^/T in

7° (p)/T. If N is not divisible by p, then F* has §/r* (A0 as non-singular
model (see the remark in 5.3). We hâve a commutative diagram:



There is an involution t on %/F 0 (N) compatible with T and having

%ir* (N) as orbit space. Recall that F°
p

is the fixed point set of T on 7° (p).

Thus the intersection number F% ' F°
p

is greater or equal to the number

fix (t) of fixed points of t on §/r 0 (N):

(22)

Let c\ be the first Chern class of Y 0 (p)/T. By 5.1 (2) we get

Since c°
x [F#] etc

t [F w ] c x (N), see 4.3 and 4.4 (25a), the following
estimate is obtained:

(23)

The right side of (23) only dépends on N. We shall dénote it by c\ (N)
and hâve

(24)

There are explicit formulas for the Euler numbers or equivalently the

gênera of the curves S/F^ (N), see [16], p. 357, and [13]. Helling [32] has

shown that there are exactly 37 values N 2 for which §/r Hî
(TV) is rational.

(In [16], p. 367, Fricke omits the value N = 59). We shall give a list of

the c\ (N) for the 34 values 5.

By the définition of c x (N) we get:

If £/r* (N) is rational, then (for N 5)

(25)

Using [13] we obtain the following list:

(26)



5.8. The curves FNF
N will be used for rationality proofs. Consider the

diagram (13) for p > 17. We hâve i (/?- (2a-3) 2
) 5. It follows from

4.2 (15) that the exceptional curves F u F, F
2 ,

F3F
3

do not intersect S t+k and

S_
(t +k) for 1 k a—l. Thèse exceptional curves also do not meet

S
t +a and S_

(t +a) if £ (p— (2a — l)
2

) 5. In this case, the configuration
(13) is not changed by passing to Y

0

(p). If we apply the involution Twe
get the following configuration on Y 0

(p)/T.

(27)

If i (p— (2a — l)
2

) <5, the diagram has to be changed. But the sub

diagramof (27) obtained by not showing FÎ (p -( 2a -i)î) an d S*+
a

exists

on the surface y 0 (p)/T for any p > 17.

We do not know whether the curves
P -(2fc-i)2) are non-singular

and do not claim anything about their mutual intersection behaviour.
The S*

+k are the image of S t+k and S_
(t + k) . They are non-singular. The

équation 5/+! • S*+i = —1 or equivalently c'{ \_S*+Ï\ = 1 follows from
5.1 (2). The curves S? +k (l^k^a—l) can be blown down successively.

Then F*
p - (2 k-i)Z)/4. ë IVQS i n tne resulting surface a curve for which the

value of the first Chern class of the new surface on this curve is greater

or equal to c* (p- (2/c-l) 2

)/4) + a - k.

Proposition. Let pbea prime =1 mod 4 (and p> 17 ). The non
singularmodel Y 0 (p)IT for the symmetric Hubert modular group is rational

if there exists a natural number k with \ < k < a — 1 = such~~L2jthat



This is a conséquence of corollary I in 4.4. For the above proposi

tionone does not need any assumption about the genus of FNF
N where

N=i(p -(2/c-l) 2
). However, we shall try to get through using the N

listed in 5.7 for which the curves FNF
N are rational.

The tables in 5.7 give immediately

for p= 29, 37, 41, 53, 61, 73, 97, 101, 109, 197.

We find

for p = 89,137,293.
For p = 173 we hâve

For the remaining 7 primes 113, 149, 157, 181, 229, 269, 317 we shall

try to use the following lemma.

Lemma. We keep the notations of the preceding proposition. Suppose

there exist two natural numbers k u
k2k

2 with I^k I <k 2^a— l such

that

Then Y 0 (p)/T is rational.

Proof. Blowing down S* +l9 ..., S*+a^ ±
in 7° (p)/T gives a surface in

which the images of F%. (N t = (p -(2k t - 1)
2

)/4, i = 1, 2) are exceptional
curves or the surface is rational (4.4, Corollary II). If we hâve the two

exceptional curves, then they intersect and the surface is rational by

Corollary 111 in 4.4.

The assumptions of the lemma are true for p = 113 and k
1 = 2,

k2k
2 = 4, for p = 149 and k

± = 4, k2k
2 = 5, for p = 157 and k

± = 4 and
k2k

2 = 5, for;? = 181 and k
± - 5, k2k

2 = 6, for;? = 229 and k
x = 6, k2k

2 = 7,

for p = 317 and k t = 5, k2k
2 = 8.



For p= 269 we hâve a=B. The curve S* +8 has self-intersection
269 - 15 2

number —3. It intersects F* u since 11 = . Either the surface i s

rational or F*
±

is exceptional. If F*
±

is exceptional, then we blow down

F* l9 Sf +U ..., Sf +S . The curve F* 7 (k =5) gives in the resulting surface Y

a curve D with c ± [D] 2 where c x
is the first Chern class of Y.

We hâve proved the desired resuit.

Theorem. Let p be a prime =a mod 4. Let GTG

T
be the symmetric

Hilbert modutar group for K=Q (*J~p). Then the surface 9)
2

jG T
is rational,

(or equivaîently the field of meromorphic automorphic fonctions with respect
to GTG

T is a purely transcendental extension of C), if and only if p< 193

or p = 197,229,269,293,317.

5.9. Example. If the prime p= 1 mod 4 is of the form

then

and we hâve in diagram (13) that S t+a = S_ (t+a) = S
o . Since

(p —(2a— 3)
2

)/4 = 2a - 1, the smallest admissible iV > 1 which can be

written in the form x2x
2 N k +xyMk+y2 N k - 1 (with integers x, j>o) equals

2a — 1 (see 4.2 and 5.4 (12)). Any divisor d of 2a — 1 is admissible. If d

is a prime dividing 2a — 1 and 1 < d < 2a — 1, then the curve Fd
has

two cusps and does not pass through the cusp at oo of 9) jG. Thus there

must be other cusps of §
2 /6 !

. We hâve proved

Proposition. Ifp = (2a—l) 2 +4 (p prime) and if 2a — 1 is not a

prime, then h(p) > 1. (See [29], [51]).

The first example is p= 229 = 15
2 +4. We hâve h{p) = 3. The

number 229 is the only one of our 24 primes in the preceding theorem

with class number greater than one. (If (2a— 1) = ±2 mod 7, then 7

is admissible for p. Thus, also in this case h(p) > 1 provided 2a — 1 > 7.

Example: p = 1373 = 37 2
+ 4, h(jp) = 3.)

The cycles for the 2 cusps not at oo of 7(229) look as follows



(28)

We also hâve drawn some curves. The curve Fl5F
15

has $/r o (15) as

non-singular model. This has 4 cusps corresponding to the fact that Fl5F
15

also passes through the cusp at oo of Y(p\ namely through the curves

S
1

and S- x
of this cusp. One can show that F9F

9 passes through S
o of the

cusp at oo in two points (§/r 0 (9) has 4 cusps).

If Nis admissible and îs a product of k différent primes ( p), then

§/r o (N) has 2k2
k

cusps. The 2k2
k intersections of FNF

N with the resolved cusps
in Y(p) correspond to 2k2

k admissible ideals b with N(b) = N (see 5.3).

In gênerai, it is possible to give a complète description of the inter
sectionof FNF

N with the resolved cusps of Y {p). The corresponding theory

can be developed for any Hilbert modular surface.

Added in proof:

A. Selberg has informed me that he has proved the folio wing resuit.

If Fisa discrète irreducible subgroup of (PL^ (R))" such that 9)
n jF has

imite volume, but is not compact, then F is conjugate in (PLJ (R))" to a

group commensurable with the Hilbert modular group of some totally real

field K with [K: Q] = n.

Thus Selberg's conjecture mentioned in the remark at the end of 1.5 is

true. Actually, Selberg's results are more gênerai. The proof has not been

published yet. There is a sketch (still involving additional assumptions
which could be eliminated later) in the Proceedings of the 15th Scandinavian



congress, Oslo 1968, Lecture Notes in Mathematics, Springer Verlag,
vol. 118, in particular pp. 106-113.
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