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HILBERT MODULAR SURFACES!

by Friedrich E. P. HIRZEBRUCH
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§ 0. INTRODUCTION AND PREPARATORY MATERIAL

0.1. In my Tokyo IMU-lectures I began with a survey of the Hilbert
modular group G of a totally real field of degree n over the rationals, or
more generally of discontinuous groups I' operating on $" where § is the
upper half plane. Then I concentrated on the case n = 2 and studied the
non-singular algebraic surfaces (Hilbert modular surfaces) which arise by

passing from $?/G to the compactification $?/G and by resolving all

singular points of the normal complex space $%/G. I gave the proof for
the resolution of the cusp singularities, a result announced in my Bourbaki
lecture [39]. Then I talked about the calculation of numerical invariants
(arithmetic genus, signature) of the Hilbert modular surfaces and on the
problem of deciding which of these surfaces are rational. This problem is
studied in the present paper with much more detail than in the lectures.
We construct certain curves on the Hilbert modular surfaces (arising from
imbeddings of $ in $?). Properties of the configuration of such curves

1) International Mathematical Union lectures, Tokyo, February-March 1972.
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together with the curves coming from the resolution of the cusp singu-
larities imply in some cases that the surfaces are rational. In particular we

take the field K = Q (\/ E)_), where p is a prime = 1 mod 4 and investigate
the corresponding compact non-singular Hilbert modular surface Y (p) and
the surface obtained by dividing Y (p) by the involution 7' coming from
the permutation of the factors of $2. The surface Y (p)/T is rational for
exactly 24 primes, a result which was not yet known completely when I
lectured in Tokyo.

Up to now rationality of the Hilbert modular surface or of its quotient

by the involution 7" was known only for the fields Q (\/5), Q(\/ 5),

Q (\/ 5), (H. Cohn, E. Freitag ([14], part 1I), Gundlach [22], Hammond
[25], [26]).

In the following section I shall say a few words about further classifica-
tion results which were mostly proved only after the time of the Tokyo
lectures.

0.2. I have learnt a lot from van de Ven concerning the classification
of algebraic surfaces; in fact, the rationality for many of the 24 primes
was proved jointly using somewhat different methods. The surfaces Y (p)
and Y (p)/T are regular, i.e. their first Betti number vanishes. Van de Ven
and I (see [41]) used the above mentioned curves to decide how the surfaces
Y(p) (p =1 mod 4, p prime) fit into the rough classification of algebraic
surfaces (see Kodaira [46], part IV). The result is as follows: the surface
Y (p) is rational for p = 5, 13, 17, a blown-up K3-surface for p = 29, 37, 41,
a blown-up elliptic surface (not rational, not K3) for p = 53, 61, 73, and
of general type for p > 73.

Also the surfaces Y (p)/T (p = 1 mod 4, p prime) can be studied by
the same methods, but here some refined estimates about certain numerical
invariants are necessary.

A joint paper with D. Zagier [42] will show that the surfaces are blown-
up K3-surfaces for the seven primes p = 193, 233, 257, 277, 349, 389, 397
and blown-up elliptic surfaces (not rational, not K3) for p = 241, 281.
We do not know what happens for the eleven primes p = 353, 373, 421,
461, 509, 557, 653, 677,701, 773, 797. As indicated before, there are
24 primes for which the surface is rational. Except for these 44 primes
(eleven of them undecided) the surface Y (p)/T is of general type.
Unfortunately a report on these classification problems could not be
included in this paper. It is already too long. We must refer to [41], [42].
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0.3. Our standard reference for the study of discontinuous groups
operating on $" is Shimizu’s paper [71] where other references are given.

For the general theory of compactification we refer to the paper of
Baily and Borel [4] and the literature listed there. They mention in par-
ticular the earlier work on special cases by Baily, Pyatetskii-Shapiro [63],
Satake and the Cartan seminar [67]. Compare also Christian [11], Gundlach
[20]. Borel and Baily refer to similar general theorems found independently
by Pyatetskii-Shapiro.

We cite from the introduction of the paper by Baily and Borel:

“This paper is chiefly concerned with a bounded symmetric domain X
and an arithmetically defined discontinuous group I" of automorphisms
of X. Its main goals are to construct a compactification V* of the
quotient space V = X/I', in which V is open and everywhere dense,
to show that V* may be endowed with a structure of normal analytic
space which extends the natural one on ¥, and to establish, using
automorphic forms, an isomorphism of V' * onto a normally projective
variety, which maps ¥ onto a Zariski-open subset of the latter.”

Of course, it suffices if X is equivalent to a bounded symmetric domain.
We are concerned in this paper with the case X = $". We do not require
that I" be arithmetically defined, but assume that it satisfies Shimizu’s
condition (F), see 1.5 in the present paper. Also under this assumption

the compactification of $"/I' (which we call $"/I') i1s well-defined and is
a normally projective variety. The projective imbedding is given again by

automorphic forms in the usual manner. (Compare also Gundlach [20]
and H. Cartan ([9], [66] Exp. XV). For n = 2 we are able to resolve the

singularities and obtain from $?/I" a non-singular (projective) algebraic
surface.

0.4. As far as 1 know, the resolution (which exists according to
Hironaka [34]) of the singularities of V' * (see the above quotation from the
paper of Baily and Borel) has been explicitly constructed only in a very
few cases: by Hemperly [33], if X = {zeC?:|z, |> +|z,|* < 1}, in
the present paper if X = $? (thus settling the only cases where the complex
dimension of V'* equals 2) and by Igusa [43] for some groups I' acting on
the Siegel upper half plane of degree ¢ < 3. Two days before writing this
introduction (Jan. 27, 1973) I heard that Mumford is working on the
general case (Lecture at the Tata Institute, January 1973).
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0.5. 1t is assumed that the reader is familiar with some basic concepts
and results of algebraic number theory ([6], [30], [52]), the theory of dif-
ferentiable manifolds and characteristic classes [36], the theory of algebraic
surfaces ([45], [46], [64]) and the resolution of singularities in the 2-dimen-
sional case ([35], [49]). The definitions and theorems needed can be found,
for example, in the literature as indicated.

0.6. The “adjunction formula” ([45], Part I) will be used very often.
We therefore state it here.

Let X be a (non-singular) complex surface, not necessarily compact.
By e - f we denote the intersection number of the integral 2-dimensional
homology classes e, f (one of them may have non-compact support). For
two divisors E, F (at least one of them compact), E - / denotes the inter-
section number of the homology classes represenied by £ and F. Let
c, € H* (X, Z) be the first Chern class of X. The value of ¢, on every
2-dimensional integral homology class of X (with compact support) is
well-defined, and for a compact curve D on X we let ¢; [D] be the value

of ¢, on the homology class represented by D. By D we denote the non-
singular model of D and by e (13) its Euler number.

Adjunction formula.

Let D be a compact curve (not necessarily irreducible) on the complex
surface X. Then

(1) e(lND) =c1[D]—D-D+Zcp
p

The sum extends cver the singular points of D, and the summand c, is
a positive even integer for every singular point p, depending only on the
germ of D in p.

If K is a canonical divisor on X, then its cohomology class equals
— ¢;. We have

(2) Cl[D] == —K'D.
0.7. We shall use some basic facts on group actions [47].

Definition. A group G acts properly discontinuously on the locally compact
Hausdorff space X if and only if for any x, y € X there exist neighborhoods U
of x and V of y such that the set of all ge G with gU NV # @ is finite. An
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equivalent condition is that, for any compact subsets K, K, of X, the set
of all g€ G with g (K,) n K, # @ is finite.

For a properly discontinuous action, the orbit space X/G is a Hausdorff
space. For any x e X, there exists a neighborhood U of x such that the
(finite) set of all ge G with gUn U # ¢ equals the isotropy group
G, = {g\ geG,g(x) = x}. If X is a normal complex space and G acts
properly discontinuously by biholomorphic maps, then X/G is a normal
complex space.

TueoreM. (H. Cartan [8], and [66] Exp. I). If X is a bounded domain
in C", then the group N of all biholomorphic maps X — X with the topology
of compact convergence is a Lie group. For compact subsets K, K, of X,
the set of all g€ N such that gK, N K, # @ is a compact subset of W. A
subgroup of W is discrete if and only if it acts properly discontinuously.

If X is a bounded symmetric domain, then a discrete subgroup I of %
operates freely if and only if it has no elements of finite order.

0.8. T wish to express my gratitude to M. Kreck and T. Yamazaki.
Their notes of my lectures in Bonn (Summer 1971) and Tokyo (February-
March 1972) were very useful when writing this paper. I should like to
thank D. Zagier for mathematical and computational help. Conversations
and correspondence with H. Cohn, E. Freitag, K.-B. Gundlach, W. F.
Hammond, G. Harder, H. Helling, C. Meyer, W. Meyer, J.-P. Serre,
A. V. Sokolovski, A. J. H. M. van de Ven (see 0.2) and A. Vinogradov
were also of great help.

Last but not least, I have to thank Y. Kawada and K. Kodaira for
‘inviting me to Japan. I am grateful to them and all the other Japanese
colleagues for making my stay most enjoyable, mathematically stimulating,
and profitable by many conversations and discussions.

§ 1. 'THE HILBERT MODULAR GROUP
AND THE EULER NUMBER OF ITS ORBIT SPACE

I.1. Let H be the upper half plane of all complex numbers with positive
imaginary part. $ is embedded in the complex projective line P,C. A
complex matrix (G 3) with ad — bc # 0 operates on P,C by
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az + b
cz +d

Z M

The matrices with real coefficients and ad — bc > 0 carry § over into
itself and constitute a group GLj (R). The group

M PL; (R) = GL; R)/{(54) [a# 0}

operates effectively on §. As is well known, this is the group of all biholo-
morphic maps of § to itself.

Writing z = x + iy (x,ye R,y > 0) we have on § the Riemannian
metric

(dx)* + (dy)*

y2

which is invariant under the action of PLj (R). The volume element
equals y~2dx A dy.
We introduce the Gaul3-Bonnet form

1 .dx/\dy

2 W = —
(2 Ty

If I is a discrete subgroup of PLJ (R) acting freely on § and such that
$/I" is compact, then $/I" is a compact Riemann surface of a certain genus
p whose Euler number e ($H/I') = 2 — 2p is given by the formula
3) e/ = | o

HITr

We recall that the discrete subgroup I' acts freely if and only if I' has

no elements of finite order.

1.2. Consider the n-fold cartesian product " =& x ... x H. Let A
be the group of all biholomorphic maps " — $H". The connectedness
component of the identity of U equals the n-fold direct product of PL; (R)
with itself. We have an exact sequence

) 1 ->PLI(R) x ... x PL} R) > A S, - 1,

where S, 1s the group of permutations of n objects corresponding here
to the permutations of the »n factors of $". The sequence (4) presents A
as a semi-direct product. On $" we use coordinates z,, z,, ..., z, with
z, = X, + iy, and y, > 0. We have a metric invariant under U:
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i (dxj)z + (dyj)2

2
j=1 Vi

The corresponding GauB-Bonnet form o is obtained by multiplying
the forms belonging to the individual factors; see (2). Therefore

1 dx,; A dy, dx, A dy,
. - 3 A e N ———5——
(€2 L2 Vn

(5) o = (=1)

If I' is a discrete subgroup of A acting freely on $" and such that
$"/I" is compact, then $"/I" is a compact complex manifold whose Euler
number is given by
(6) e($"/N= | o

$» /T
e (9"/I') is always divisible by 2": for a compact complex n-dimensional

- manifold X we denote by [X] the corresponding element in the complex
cobordism group [58]. We have

(7) [9"/I1=2""e(®"/)-[(@,O)"]

This follows, because the Chern numbers of $”/I" are proportional
[37] to those of (P;C)". In particular, the Fuler number and the arithmetic
genus (Todd genus) of (P,C)" are 2" and 1 respectively and thus 27" - e(H"/I')
1s the arithmetic genus of $"/I".

1.3. 'We shall study special subgroups of the group of biholomorphic
automorphisms of $". They are in fact discrete subgroups of (PL;f (R))".
Let K be an algebraic number field of degree n over the field Q of rational
numbers. We assume K to be totally real, i.e., there are n different embed-
dings of K into the reals. We denote them by

K-R, x—»xY xekK

We may assume x = x). The element x is called totally positive (in
symbols, x > 0) if all x) are positive. The group

GL; (X) = {(‘;Z) |a,b,c,dekK, ad — be > 0}
acts on 9" as follows: for z = (z, ..., z,) € H" we have

a z, + pD
Z;= : = .

L’Enseignement mathém., t. XIX, fasc. 3-4. 13
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The corresponding projective group
PL; (K) = GL; (K)/{(52),acK*}

acts effectively on $". Thus PL; (K) = (PL3 (R))".

Let pg be the ring of algebraic integers in K, then by considering only
matrices with a,b,c,deoy and ad — bc =1 we get the subgroup
SL, (0g) of GL} (K). The group SL,(0g)/{1, —1} is the famous
Hilbert modular group. It is a discrete subgroup of (PL}ZF (R))". We
shall denote it by G (K) or simply by G, if no confusion can arise.

G = SL,(0g)/ {1, — 1} « PL} (K) = (PL} (R))”

The Hilbert modular group was studied by Blumenthal [5]. An error
of Blumenthal concerning the number of cusps was corrected by Maal [53].

The quotient space $"/G is not compact, but it has a finite volume with
respect to the invariant metric. It is natural to use the Euler volume given
in (5). The quotient space $"/G is a complex space and not a manifold
(for n > 1). We shall return to this point later. But the volume of $"/G
is well-defined and was calculated by Siegel ([72], [74]). The {-function
of the field K enters. It is defined by

1
(x (5) = :
" agK N (a)°
a an ideal

This sum extends over all ideals in oy, and N (a) denotes the norm of
a. The series converges if the real part of the complex number s is greater
than 1. It converges absolutely uniformly on any compact set contained
in the half plane Re (s) > 1. The function {; can be holomorphically
extended to C — {1}. It has a pole of order 1 for s = 1. Let Dy denote
the discriminant of the field K.

Then

N Sn

(8) D .m 2. I (s/2)" . Lk (s)

is invariant under the substitution s - 1 — s.
This is the well-known functional equation of (i (s). It can be found
in most books on algebraic number theory. See, for example, [52].

THEOREM (Siegel). The Euler volume of ©"/G relates to the zeta-function
as follows
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© o =20(-D.

H*/G
dx, N dy,
— " A

The formula (19) of [72] uses the volume element 2
1

dx, A dy,
/\ —

In®
~ If we multiply this value with (=1)".Q2n)7", we get | o.
n/G

Formula (9) follows from the functional equation. Isfc was pointed out
by J. P. Serre [69] that such Euler volume formulas may be written more
conveniently using values of the zeta functions at negative odd integers.
2{x (—1) is a rational number, a result going back to Hecke, see Siegel
([73] Ges. Abh. 1, p. 546, [76]) and Klingen [44]. The rational number
2{x (—1) 1s in fact the rational Euler number of G in the sense of Wall
[77], as we shall see later.

and gives for the volume the value 27" Dg>/2 (¢ (2).

1.4. We shall write down explicit formulas for 2{; (—1) in some cases.
For K = Q, the group G is the ordinary modular group acting on §. A
fundamental domain is described by the famous picture (see, for example,
[68] p. 128).

STS

5 -1 1 g
The volume of $/G equals the volume of the shaded domain. By Siegel’s

general formula, the volume of the shaded domain with respect to

dx A dy
>—— equals
Y




Therefore, we get for the Euler volume

1
10 = —— =2(_(-1.
(10) ,;,,IGCO s = 2o (Y

We consider the real quadratic fields K = Q (\/2 ) where d is a square-
free natural number > 1. We recall that the discriminant D of K is given
by

D = 4d ford = 2,3 mod 4
D d ford= 1 mod4.

The ring oy has additively the following Z-bases.

0K=Z+Z\/d for d = 2,3 mod 4

1+ /d
0K=Z+Z—2\/— ford= 1 mod 4

THEOREM. Let K = Q (JZZ) be as above. Then for d =1 mod 4

(11 (- = =y o (0
—_ —_— o
) " 15 1<b<Vd ' 4
b odd

and for d = 2,3 mod 4
1

(12) 20(=1) = —(o,(d) + 2+ ), o;(d—Db?)
30 1<b<Vd

where & (a) equals the sum of the divisors of a.

This theorem, though not exactly in this form, can be found in Siegel
[76]. Compare also Gundlach [22], Zagier [78]. The x, of Gundlach equals

4/ Lk (=1).

1.5. A reference for the following discussion is [71].

We always assume that T is a discrete subgroup of (PL* (R))" and
that S"/I" has finite volume.
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I is irreducible if it contains no element y = (y‘¥, ..., ™) such that
y() = 1 for some i and % # 1 for some j. See [71], p. 40 Corollary.

An element of PL} (R) is parabolic if and only if it has exactly one
fixed point in P,;C. This point belongs to P;R = RuU co. An element
y = (P, ..,9™) of (PL} (R))" is called parabolic if and only if all y”
are parabolic. The parabolic element y has exactly one fixed point in
(P,C)". It belongs to (P,;R)". The parabolic points of I' are by definition
fixed points of the parabolic elements of I

The above notation, hopefully, will not confuse the reader. The y?
are simply the components of the element y of (PLJZr (R))". If y e PL; (K)
- (PLJZr (R))" (compare 1.3), then, for y represented by (ﬁ Z), the element
- 9 is represented by (g§i§ 38;) where x — x(? is the i-th embedding of K
in R. For any group I' = (PL;L (R))"” we consider the orbits of parabolic
points under the action of I' on (P,R)". They are called parabolic orbits.
Each such orbit consists only of parabolic points.

If I' is irreducible, then there are only finitely many parabolic orbits.
([71], p. 46 Theorem 5).

Hereafter we shall assume in addition that I’ is irreducible.

If x € (PyR)"is a parabolic point of I', we transform it to co = (o0, ..., o)
by an element p of (PL;R)", not necessarily belonging to I', of course.
Thus px = oo.

Let I', be the isotropy group of x.

I'y ={ylyel,yx =x}.

1

Then any element of pI'.p~ ' is of the form

(13) z; 2Dz, 4 @49 > 0.

Consider the following multiplicative group
(14) A= {t|tPeR, 1D >0, [[t9 =1).
j=1 .

It is isomorphic to R""! by taking logarithms. Each element of
plp~ ' (see (13)) satisfies 2V~ 22 - 1 = 1 (compare [71], p. 43,
Theorem 3). Therefore we have a natural homomorphism pl' p~' - A
- whose image is a discrete subgroup A, of A of rank n — 1. The kernel
| consists of all the translations

z;= z; + u
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where u = (u'V, ..., u™) belongs to a certain discrete subgroup M, of
R" of rank n. Thus we have an exact sequence

(15) O0->M,—>pl.pt—-4,—1.

Using the inner automorphisms of pI",p~ !, the group 4, acts on M,
by componentwise multiplication. However, in the general case, (15) does
not present pI',p~ ' as a semi-direct product. For n = 1, the group A,
is trivial. For n = 2 it is infinite cyclic, pI'.p~ ' is a semi-direct product,
and p can be chosen in such a way that pI'.p~* is exactly the group of all
elements of the form (13) with Ae A, and pe M,.

1

For any positive number d, the group pI',p~ " acts freely on

(16) W = Lz]ze&ﬁ", []Im(z) = d}

j=1
where Im denotes the imaginary part. The orbit space W/pIl,.p~ 1! is a
(non-compact) manifold with compact boundary

N =0W/pIL.p .

Since 0 W is a principal homogeneous space for the semi-direct product
E = R" > A of all transformations

z;b 1tV z; +aY¥ted,aeR

we can consider N as the quotient space of the group E (homeomorphic
to R*"™1) by the discrete subgroup pI'.p~'. Thus N is an Eilenberg-
MacLane space. The (2n—1)-dimensional manifold N is a torus bundle
over the (n—1)-dimensional torus A/A4,. The fibre is the n-dimensional
torus R"/M,, and N is obtained by the action of A, on R"/M, which is
induced by the action x;> A9 x; + u¥ of pI',p™! on R* Since, in
general, u% is not necessarily an element of M,, the action of A4, on
R"/M, need not be the one given by componentwise multiplication.

Definition ([71], p. 48). Let I' be as before a discrete irreducible sub-
group of (PL3 (R))" such that $"/I" has finite volume. Let x, (1=v<t) be
a complete set of I'-inequivalent parabolic points of I'. Choose elements

e (PL; (R))" with p,x, = c© and put U, = p;* (W,) where W, is
defined as in (16) with some positive number d, instead of d. We say that
I' satisfies condition (F) if it admits (for some d,) a fundamental domain
F of the form
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F=F,uoV,u..uV, (disjoint union)

where F, is relatively compact in " and V, is a fundamental domain of
Iy in U,

The fundamental domain F < $" is by definition in one-to-one
correspondence with $"/I" and ¥V, is in one-to-one correspondence with
U,r,.

Thve Hilbert modular group G of any totally real field K is a discrete
irreducible subgroup of (PLj (R))" with finite volume of $"/G which
satisfies condition (F). The existence of a fundamental domain with the
required properties was shown by Blumenthal [5] as corrected by Maalf3
[53]. See Siegel [75] for a detailed exposition.

Two subgroups of (PL; (R))" are called commensurable if their inter-
- section is of finite index in both of them.

Any subgroup T of (PL3 (R))" which is commensurable with the Hilbert
modular group G also satisfies (F).

We define
(17) [G:T] =[G:(GnI)]/[T:(Gn ]
Then we get for the Euler volume
(18) g,nj/rwz[G:F]',gnj/r o =[G:T] 2 (-1)

Remark. It is not known whether every discrete irreducible subgroup
I of (PL; (R))” such that $"/I' has finite volume satisfies Shimizu’s
condition (F).

Selberg has conjectured that any I' satisfying (F) and having at least
one parabolic point (= 1) is conjugate in the group U of all automorphism
of $" to a group commensurable with the Hilbert modular group G of
some totally real field K with [K: Q] = n.

1.6. Harder [28] has proved a general theorem on the Euler number
of not necessarily compact quotient spaces of finite volume. For the following
result a direct proof can be given by the method used in [40].

Toeorem (Harder). Let I' < (PL; (R))" be a discrete irreducible
group satisfying condition (F) of the definition in 1.5. Suppose moreover
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that I' operates freely on $". Then $"[I" is a complex manifold whose Euler
number is given by

(19) e(®"/) = | o

$n/r
If I' is commensurable with the Hilbert modular group G of K, (where K is
a totally real field of degree n over Q) then

(20) e(®"/I) = [G:T7-2{x (=1).

Proof. 1t follows from 1.5 that $"/I" contains a compact manifold Y
with ¢ boundary components B, = dW,/pl.p~ ! (which are T"-bundles
over T"~1). We have to choose the numbers d, sufficiently large. By the
Gaul3-Bonnet theorem of Allendoerfer-Weil-Chern [10]

e@/) =] o+ ¥ |1l

where [] is a certain (2n—1)-form. By the argument explained in [40],
one can show easily that |

lim | ][] = 0.QE.D.

dy—> o By

Since the Hilbert modular group G always contains a subgroup I’
of finite index which operates freely and since $"/I" can be replaced up
to homotopy by the compact manifold Y with boundary, [G : I'] - 2{x (—1)
is the Euler number of I' in the sense of the rational cohomology theory
of groups and thus 2{yx (—1) is the Euler number of G in the sense of
Wall [77].

THEOREM. Let I’ (PLJZr (R))" be a discrete irreducible group such
that "/ has finite volume. Assume that I' satisfies condition (F). The
isotropy groups I, (ze®") are finite cyclic and the set of those z with
IFz[ > 1 projects down to a finite set in H"/I'. Thus H"/I" is a complex
space with finitely many singularities. (For n = 1, these “branching points”
are actually not singularities.)

Let a,(I') be the number of points in $"/I' which come from isotropy
groups of order r. The Euler number of the space $"[I" is well-defined, and
we have



r

(21) e®'/IN= | o+ ) aT)—.
sn/r r>2 r

The proof is an easy consequence of the Allendoerfer-Weil-Chern

formula (compare [40], [65]).
The easiest example of (21) is of course the ordinary modular group

. G = G(Q). We have a, (G) = a; (G) = 1 whereas the other a, (G) vanish.

Thus
e(9/6) = —F+1+%=1
This checks, since $/G and C are biholomorphically equivalent.

1.7. We shall apply (21) to the Hilbert modular group G and the

extended Hilbert modular G of a real quadratic field. G is defined for any
totally real field K. To define it we must say a few words about the units

- of K. They are the units of the ring oy of algebraic integers. Let U be the

group of these units. Its rank equals » — 1 by Dirichlet’s theorem [6].
Let U™ be the group of all totally positive units (see 1.3). It also has rank
n — 1 because it contains U? = {&*|ee U}.

The extended Hilbert modular group is defined as follows

G = {(“

We have an exact sequence

ad —bce U} {(52)]acU)

1—>G—~>(A;—>U+/U2—+I.

obtained by associating to each element of G its determinant mod U2,

IfK=Q (\/3 ) with d as in 1.4., then U™ and U? are infinite cyclic
groups and U™/U? is of order 2 or 1. The first case happens if and only
if there is no unit in oy with negative norm. If d is a prime p, then

Ut # U?<p =3mod4
Ut =U?<p=20rp=1mod4.
Compare [30], Satz 133.

To apply (21) to the groups G and G belonging to a real quadratic
field we must know the numbers a, (G) and a, (é). They were determined

- by Gundlach [21] in some cases and in general by Prestel [61] using the
~idea that the isotropy groups G, and G, respectively (z € $?) determine

orders in imaginary extensions of K, which by an additional step relates
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the a, (G) and a, (é) to ideal class numbers of quadratic imaginary fields
over Q. To write down Prestel’s result we fix the following notation. A
quadratic field k over Q (real or imaginary) is completely given by its |
discriminant D. The class number of the field will be denoted by 4 (D)
or by A (k).

Prestel has very explicit results for the Hilbert modular group G of

any real quadratic field K and for the extended group G in case the class
number of K is odd. We shall indicate part of his result.

THEOREM. (Prestel). Let d be squarefree, d = 7 and (d, 6) = 1. Let
K=0Q (\/E ). Then for the Hilbert modular group G (K) we have for

d=1mod4
a,(G) = h(—4d),a;(G) = h(—=3d), a,(G) = 0 forr # 2,3
and for d = 3 mod 8
a,(G) = 10-h(—d), a3 (G) = h(—12d),a,(G) = 0 forr # 2,3
and for d = 7 mod 8
a, (G) = 4h(—d), a3 (G) = h(—12d),a,(G) = 0 forr # 2,3

If d is a prime = 3 mod 4 and d # 3 we have for the extended group
é(K) the following result :

If d =3 mod 8, then

4, (G) = 3h(—d) + h (—8d), a5 (G) = h(—12d)/2,
a, (G) = 4h(—d),
a,(G) = 0 for r # 2,3, 4.

If d =7 mod 8, then

4, (G) = h(—d) + h (=8d), a3 (G) = h(—12d) /2,
a, (G) = 2h(—d),
a,(é) = 0 for r # 2, 3, 4.

Prestel gives the numbers a, (G) and a, (é) also for d = 2,3, 5. For
d = 3 we have
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a, (é) =3, a, (é) =1, a4 (é) =1, a;,(G) = 1,

all other ar(é) = 0.
We apply (12), (20) and (21) for K = Q (\/ 3) as an example

W]

| 10
2k (=1 = 554 +20,0) = 35 = 3

A 1
G:G| =-,
[G:G] =5

LA 11 2 3 11
e(EI/CD ==8 +‘3'§ +‘§ +‘Z +‘I§

Il

We shall copy Prestel’s table [61] of the a,(G) and the a, (é) Gf
known) for K = Q (\/2 )up to d = 41. In [61] the table contains an error
which was corrected in [62].

We also tabulate the values of 2{x (—1), e (H?/G), and of e ($%G)
if known. In the columns before 2{; (—1) we find the values of the a, (G);
the values of the a, (é) are written behind 2{; (—1). If there is no entry,
then the value is zero.

If the a, (é) and e (352/@) are not given in the table, this means that

either there exists a unit of negative norm and thus G = G or that the values
are not known. This is indicated in the last column.

By Prestel a,(G) =0 for r > 3 and K = Q(\/E) with d > 5, and
we have for d > 5

a, (G) 2

(22) e(9"/G) = 2{x (—1) + + a3 (G) . 3

Since the Euler number is an integer, we obtain by (11) and (12):
For d > 5, d =1 mod 4, d square-free,

d —b?
Y 01< )EOmodS

1§b<¢3 4
b odd

For d > 5, d = 2,3 mod 4, d square-free

1§b<¢z
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Problem. Prove these congruences in the framework of elementary
number theory.

d|l 231456 2k(-D| 2|3 ]4]|6]12|e®HYO|e(HYEC)
21 21 21 2 16 | — | — | —| —| — 4 G=G
3] 3] 2 1 1/3 30 1] 1 1 4 4
5021 2 2| 115 | — | — | — | — | — 4 G=G
6| 6| 3 1 50 1] 2| 1 6 6
70 4| 4 4/3 50 20 2 6 6
10| 6| 4 73 | —| — | —|—=|— 8 G=¢G
11|10 4 7/3 51 21 4 10 8
13 2| 4 13 | —|—|—]—|—= 4 G = ¢
1412 4 10/3 8| 2| 4 12 10
17 4] 2 23 | — | — | — | —| — 4 G=G
19|10 4 19/3 9| 2 14 12
201 4| 5 2/3 3| 2 1 6 4
2] 6| 8 233 |12] 4] 2 16 14
23112 8 20/3 71 4] 6 18 14
26 | 18 | 4 253 | — | — | — | —]—1] 20 G=0G
29| 6| 6 1 S N (PR | (- 8 G=G
30 | 12 | 10 34/3 | — | — | — | —| —| 24 ?
31|12 4 40/3 |11] 2| 6 22 18
33| 4| 3 2 71 1 1 6 6
34112 4 46/3 | — | — | — | —|—| 24 ?
35120 | 8 383 | — | — | — | —|—1] 28 ?
370 2] 8 53 | — | —| —| —|— 8 G=G
38| 18| 8 41/3 | 16| 4] 6 28 22
39 | 16 | 10 52/3 | —| — | —|—|—| 40 ?
41 8| 2 83 | —| —|—|—|— 8 G=G

§ 2. THE CUSPS AND THEIR RESOLUTION
FOR THE 2-DIMENSIONAL CASE

2.1. Let K be a totally real algebraic field of degree n over Q and M
an additive subgroup of K which is a free abelian group of rank ». Such a
group M is called a complete Z-module of K. Let U,; be the group of
those units ¢ of K which are totally positive and satisfy eM = M. Any
o e K with aM = M is automatically an algebraic integer and a unit.
The group U,; is free of rank n — 1 (compare [6]).
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Two modules M,, M, are called (strictly) equivalent if there exists a
(totally positive) number A€ K with AM,; = M,. Of course, Uy, = Uy,
for equivalent modules.

According to [71] p. 45, Theorem 4, for any parabolic point x of an
irreducible discrete subgroup I" of (PL™ (R))" with $"/I" of finite volume
the element p € (PL™ (R))" with px — co can be chosen in such a way
that the group pI'.p~ ! (see 1.5 (15)) is contained in PL* (K) = (PL™ (R))"
~where K is a suitable totally real field. Then we have an exact sequence

0O-M-opl ploV->1

where M is a complete Z-module in K and V is a subgroup of U,; of rank
n — 1. The field K, the strict equivalence class of M and the group V are
completely determined by the parabolic orbit and do not depend on the
choice of p.

It can be shown more generally ([71] p. 45, footnote 3) that there exists
a p e (PL3 (R))" such that pI'p~' < PLJ (K), provided there is at least
one parabolic orbit. Therefore, the field K is the same for all parabolic
orbits. The conjecture of Selberg (1.5 Remark) remains unsettled, because,
if we represent the elements of pI'p~! by matrices with coefficients in
Dg, we have no information on the determinants of these matrices.

A parabolic orbit will be called a cusp. We say that the cusp is of type
(M, V). If x is a point in the parabolic orbit, we often say that the cusp
1s at x. Sometimes the cusp will be denoted by x.

For a given pair (M, V) with ¥V < U,; (where V has rank n — 1) we
define

GM,V)={(G})|eeV,ueM} = M >V (semi-direct product)

For n = 2, the element p € PL} (R)" can be chosen in a such a way
that pl.p~' = G(M, V).

Let K be a totally real field of degree n over Q, let M be a complete
Z-module in K and V" a subgroup of U,; of finite index. Suppose & is a

group of matrices (§ ) (with ee V, pe K, and pe M for ¢ = 1) such that
the sequence

(D O-M->6G->V->1

1s exact.

The group & operates freely and properly discontinuously on §". We
add one additional point oo to the complex manifold $"/G. A complete
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system of open neighborhoods of co in the new space "/ = H"/G U ©
1s given by the sets

@) (W(d)] B) U

where, for any positive d,
(3) W)= {z|ze9", [] Im(z;) > d}
i=1

The local ring O (®) at oo is defined as the ring of functions holo-
morphic in some neighborhood of oo (except c0) and continuous in co.
For n > 1 the condition “continuous in o«” can be dropped ([71], p. 50,
lemma 7). ,

If ® =GWM, V) we put O(®) = O (M, V). We shall only give the
structure of O (M, V) explicitly. For n = 2 this is no loss of generality.
The ring O (M, V) has the following structure:

Let M* be the complete module in K which is dual to M: An element |
x € K belongs to M* if and only if the trace tr (xa) is an integer for all
ae M. We recall that

n
tr(xa) = ) x@Pg¥»
=1

Let M** be the set of all totally positive elements of M. The local
ring O (M, V) is the ring of all Fourier series

(4) f = dq¢ + Z a, -ezni(x(l)zl+...+x(n)zn),
xeM*t

for which the coefficients a, satisfy a,, = a, for all ee V, and which

converge on W (d) for some positive d depending on f.

Proposition. The space $H"/® with the local ring O (®) at o is a
normal complex space.

This is known for n = 1, of course. For n = 2 we have to check
H. Cartan’s condition ([67] Exposé 11, Théor¢me 1) that there is some
neighbourhood U of oo such that for any two different points p,, p, €
U— {0} there exists a holomorphic function f in U — { o0} with
f(py) # f(py). If ® occurs as group pl'yp~ ' for some cusp of a group I'
satisfying condition (F) of 1.5, Cartan’s condition is proved in the theory



— 203 —

of compactification (0.3) by the use of I'-automorphic forms. The group
G (M, U,y) occurs in such a way. Namely, M is strictly equivalent to an
ideal in some order o of K (see [6]) where 0 = {xeK|x M < M }. There-
fore, we may assume that M is such an ideal. The cusp at co of the arith-
metic group (commensurable with the Hilbert modular group)

{(;g)ld,ﬁ,?,éED,ﬁEM,O(é —:ByEUI\;}

has the isotropy group G (M, Ujp).

As W. Meyer pointed out to me, the group H” (V, M) —the set of all
equivalence classes of extensions over V with kernel M and belonging to
the action of ¥ on M—is finite. (It vanishes for n < 2.) This implies the
existence of a translation pePL,” (K) with pz = z + a such that

~ ~ 1 .
p0Gp~ !t = G(M, V) where M = p M and k is the order of the extension

' ® as element of H? (V, M). Therefore p®p~' is commensurable with
G (M, U,,), and it follows from general results on ramifications of complex
spaces [18] that $"/® is a normal complex space. (See also 0.7 for quotients
of normal complex spaces).

Remark. It would be interesting to check Cartan’s condition directly
using only the structure of the ring O (®). It seems to be unknown if
every ® occurs for a cusp of a group I' of type (F). We shall call the

point co of the normal complex space $"/® a “cusp”, even if it does not
occur for a group I.

The point oo (with the local ring O (®)) is non-singular for n = 1.
Probably it 1s always singular for n = 2. This was shown by Christian [11]
to be true for the cusps of the Hilbert modular group of a totally real field
of degree n = 2. For n = 2, see [21].

Our aim is to resolve the point co of /G (M, V) in the sense of the
theory of resolution of singularities in a normal complex space of dimen-
sion 2 (see, for example, [35], [49]). This will be done in 2.4 and 2.5. The
resolution process shows that oo is always a singular point.

It remains an open problem to give explicit resolutions also for n > 2.

If I' is a discrete irreducible subgroup of (PL“{ (R))" satisfying the
condition (F) of the definition in 1.5, then $”/I" can be compactified by
adding ¢ points (cusps) where # is the number of I'-inequivalent parabolic
points of I'. The resulting space is a compact normal complex space. It
is even a projective algebraic variety (0.3).
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2.2. In the next sections we shall consider the case n = 2, construct
certain normal singularities of complex surfaces and show that they are
cusps in the sense of 2.1. The construction will be very much related to
continued fractions.

Consider a function k> b, from the integers to the natural numbers
greater or equal 2. For each integer k take a copy R, of C? with coordinates
Uy, V. We define R, to be the complement of the line #, = 0 and R, to be
the complement of v, = 0. The equations

(5) Uprr = UM
Vg1 = iy
give a biholomorphic map ¢, : R, = Ry 44
In the disjoint union U R, we make all the identifications (5). We get
a set Y. We may now consider each R, as a subset of Y. Each R, is mapped

by (u;, v;) bijectively onto C>. This defines an atlas of Y. A subset of Y
is open if and only if its intersection with each R; is an open subset of R;.

Lemma. The topological space Y defined by (5) satisfies the Hausdorff
separation axiom.

Proof. Denote the map R; - C? by ;. Let k be an integer. According
to Bourbaki [7] p. 36, we have to show that the graph of

(6) ¢j+kol//j_1 ZF/fj(RjﬁRch) "”ﬁj+k(ijRj+k)

is closed in ¥, (R;) X ¥4, (R;+) = C? x C?. Without loss of generality
we may assume j = 0 and k > 0. The map v, ° ,” ' is given by

(7 U = Ut v™*

where
(s ) = (70 0) - (5% 0) - (Pr o)
and
P _ i .
o 7h 1
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Dw i are coprime., We define p, = 1, g, = 0 and have

Pr+1 = biDr — Pr-1 fork =z 1,
Ger1 = beDr — Pr+1 fork =1,
P> Golirt >0k = Lgrsr >q, 20, fork 20.
The intersection R, N R, as subset of R, is given by uy # 0, vy # 0

for k = 2 and by u, # 0 for k = 1. The graph of ¥, Y~ ' (see (6)) is
given by

U, = uopk . qukD vk . uopk-—l . vOQk—--l — 1
uO 75 Oa 7}0 # 0 . (k g 2)

But the inequalities follow from the equations. Therefore the graph is
iclosed in C* x C2. This finishes the proof of the lemma. The negative
exponents in the second line of (7) were essential.

The argument would break down, for example, if k = 6 and b; = 1
for 0 £ i <5, because (~10)° = (59)-

The topological space Y obviously has a countable basis. For any
function k — b, = 2 we have constructed a complex manifold Y of com-
plex dimension 2. In Y we have a string of compact rational curves S,
non-singularly embedded (k € Z). The curve S is given by u,,; = 0 in
‘the (k+1)-th coordinate system and by v, = 0 in the k-th coordinate
‘system. S, S;+; intersect in just one point transversally, namely in the
origin of the (k+1)-th coordinate system. S;, S; (i<k) do not intersect,
if kK — i 1. The union of all the S, is a closed subset of Y.

Lemma. The self-intersection number of the curve Sy equals — b,.

Proof. The coordinate function u,,,; extends to a meromorphic
function on Y. Its divisor is an infinite integral linear combination of the
S; which because of (5) contains S,_; with multiplicity b,, the curve S,
with multiplicity 1 and the curve S, ; with multiplicity 0. The intersection
number of S, with this divisor is zero. Since it is also equal to b, + S, - S|,
the result follows.

Remark. The construction of Y is analogous to the resolution of a
quotient singularity in [35], 3.4. For technical reasons we have changed

L’Enseignement mathém., t. XIX, fasc. 3-4. 14
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the notation by shifting the indices of S, and b, by 1. This should also be
taken into account when comparing with [39], § 4.

2.3. Let us assume that the function k+— b, = 2 of 2.2 is periodic,
1.e. there exists a natural number r = 1 such that

bk+r = bk‘

Continued fractions of the form

shall be denoted by [[ay, ..., a]]; similarly, [[ao, a4, a,, ...]] stands for
infinite continued fractions of this kind. For our given function k = b, = 2
we consider the numbers

(8) we = [[be besrs-- ], keZ.

The wy are all equal to 1 if b; = 2 for all j. Therefore, we assume
b; =z 3 for at least one j. Then all w, are quadratic irrationalities which
are greater than 1. They satisfy w,, , = w, and all belong to the same real
quadratic field K. We consider the complete Z-module

M=2Zw,+Z.1cK

Let x+— x’ be the non-trivial automorphism of K. Thus x = x‘*) and
x" = x® in the notation of 1.3. The module M acts freely on C? by
(z4,z,) = (z;+a,z,+a’") for ae M. For our function j— b; = 2 we have
constructed in 2.2 a complex manifold Y. We now define a biholomorphic
map

»:Y—- u S;->CM

jez
D : (ug, Vo) P> (24, 2,)
by
) 2nizy = wqylogu, + logv,
2niz, = wologu, + logv,

The logarithms are defined modulo integral multiples of 2xi, thus
(z4, z,) 1s well-defined modulo M. Observe that
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Y—‘ USJ-:{(Uo,vo)luo?éO,v()?éO}
: jez
Since the determinant ! "o ‘:6‘ # 0, we can solve (9) for logu, and

log v, and obviously have a biholomorphic map. The map & can be written
down with respect to the k-th coordinate system (k € Z). The result is as

follows.
Put A, = 1 and A4,,,; = wgsy - 4. This defines A4, inductively for

| any integer k:

Ak = (Wl W2 ...wk)_l fOI’ k z 1, A—'k - WO W_oq .. W’_k_l_l fOI‘ k Z 1,

0< A, <A, for keZ, A, # 1 for k #0.

and

Formula (8) implies w, = b, —
Wi +1

‘(1()) by A, = Ap—1 + Aty

For any integer k, the numbers A4,_,, A, are a basis for M. From the
coordinate transformations (5) we get the expression for the map & in
the k-th coordinate system

(11) 2nizy = A,_ logu, + A, -logy,
27[1.22 = A;{"l 'log uk + Al/( * log 'Z)k
We had assumed that the b; are periodic with period r which implies
Wi+, = w, for any k. Therefore, 4, ! equals the product of any r consec-
utive w; which gives
(12) Ak+r = ArAk fOI‘ any ke Z
4)" = A4,, for any ne Z.
This implies that A,.M = M. Therefore A, is an algebraic integer and

a unit # 1.
If we apply the non-trivial automorphism of K to the equation

1
W, = by, — and use the periodicity we get
Wi +1
/-1 1
(13) Wir1 = by — )
Wi

W]:;i - I:[bk, bk*l""]] > 1




— 208 —

Therefore,
(14) O<w,<l<w, forkeZ.

Thus the w, and the A4, are totally positive. Let ¥ be the (infinite cyclic)
subgroup of U,; generated by 4,. Thus we have associated to our function
Jb> b; = 2 (at least one b; = 3) and the given period r (which need not
be the smallest one) a pair (M, V) and a group G (M, V) (see 2.1) which
determines a cusp singularity. We shall use the complex manifold Y
constructed in 2.2 for a resolution of this cusp singularity.

We restrict ¢ to the open subset @71 (H?/M) of Y. According to (11)
this set is given by

Ak_l'logluk‘ +Ak'10glvk| <O
Ay log|u, | + 4 -log|v, | <0

Since v, = 0 or u,,; = 0 for a point on S, and the above inequalities
do not depend on the coordinate system, it follows that

Yt = o7 H(HYM)U U S,

keZ

1s an open subset of Y. The group
V = {(A,)"lneZ}

acts on Y as follows:

(A4,)" sends a point with coordinates u,, v, in the k-th coordinate system
to the point with the same coordinates in the (k4 nr)-th coordinate system.
Because of the periodicity b;,, = b;, this is compatible with the identi-
fications (5). Therefore the action of the infinite cyclic group V on the
complex manifold Y+ is well-defined. We have the exact sequence

O0-M->GM,V)->V —>1

Thus V acts on $H2/M. On the other hand we have a biholomorphic
map
:Y " — U S, > HHM

keZ

Lemma. The actions of V on Yt and $*/M are compatible with &.

Proof. If a point p has coordinates u, v, in the k-th system, its image
point (z;, z,) under & is given by (11). If we let 4, act on p, its image point
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is mapped under @ (use formula (11) for the (k+7)-th coordinate system
and (12)) to (4, z,, 4, z,).

Lemma. The action of V on Y™ is free and properly discontinuous.

Proof. In view of the preceding lemma the action is free on

Y* — U S,. By A4} (assume n # 0) a point on S, is mapped to a point
keZ
on Sy, If it is fixed, it will be an intersection point S;_; N S; of two

consecutive curves, but this point is carried to ;i1 O Sjip

To prove that V is properly discontinuous we must show that for
points p, g on Y there exist neighborhoods U, and U, of p and ¢ such
that gU; n U, # @ only for finitely many ge V. Since V acts properly

discontinuously on $2/M and U S, is closed in Y ¥, this is clear if p and
keZ

g both do not belong to U S,. If pe U S, and g ¢ U S, we use the func-
keZ keZ keZ

tion .
For (z,,2,)e $* put p(z;,2,) = Imz, -Imz, and set

U ={ulueY ', pdu) <pd(p) +1},

and let U, be the complement of U, in Y™ .
Then U,nU, = ¢ and gU, = U, for geV.

Now suppose both points p and g lie on U S,. It is sufficient to prove
keZ

the existence of neighborhoods U; and U, of p and g such that
gU;n U, # o for only finitely many g = (4,)" with # < 0. Recall that
A, generates V. If g lies on S; and in the j-th coordinate system and p
on S, and in the k-th system, then a neighborhood U, of ¢ is given by

1
0 < |u;| <=,|v;] <e (for e sufficiently small).
e
A neighborhood U, of p is given by

1
0= |ul< - |v,| <& (for ¢ sufficiently small).

Suppose that |n| >k —j+ 1. Then a point (4,v,) in the k-th
system is mapped under (4,)” (2<0) to a point (u ;»0;) in the j-th system
if and only if
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(15) u; = ul

where a, b, ¢, d are non-negative integers and ¢ > d. In fact (_g _Z) is a
matrix of type (7) depending on n, of course. If the points (u;, ;) and
(uy, v,) lie in the chosen neighborhoods of p and ¢ we obtain from (15)
the inequality

g7l <« 1

which is not true for ¢ < 1. Therefore, the image of U; under (4,)" does
not intersect U, for n <0 and |n| = k—j + 1.

Remark. The elements of M = Zw, + Z can be written in the form
y — xw, with x, ye Z. The number y — xw, is totally positive if and
only if

y—xwo >0 and y — xwy >0

Since w, > 1 > wy > 0, the totally positive elements of M correspond
exactly to the integral points in the (x, y)-plane which lie in the quadrant
(angle < 180°) bounded by y — xwy, = 0 (x=0) and y — xwy = 0 (x<0).
If we write 4, = p, — g, wo, then for k = 0 these are the p,, g, of 2.2.
We have

. pk . pk ’
lim — = wy, lim — = wy

k> i k—>—o0 (g
More precisely, it can be shown [12] that the A, are exactly the lattice
points of the support polygon, i.e. the polygon which bounds the convex
hull of the lattice points in the above quadrant. It follows [12] that every
totally positive number of M can be written uniquely as a linear combina-
tion of one or of two consecutive numbers A4, with positive integers as
coefficients.

2.4. In section 2.3 we have constructed for a periodic function
k— b, =2 (with b; 2 3 for at least one j) a complex manifold Y~
together with a free properly discontinuous action of an infinite cyclic
group ¥ on Y*. The orbit space Y */V is a complex manifold. The curve
S, in Y was mapped by the generator 4, of V onto the curve S, ., where
r was the period. Thus S, and S, , become the same curve in Y /V. We
shall denote the curves in ¥ */V again by S, (k € Z) with the understanding
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that we have S, = S, ,. We havein Y */V for r = 3 a cycle So, Sy, s Sr—1
of non-singular rational curves such that S, and S, intersect transversally
in exactly one point (ke Z/rZ) and the selfintersection number S - .S
equals — b,. Otherwise there are no intersections. The configuration is
illustrated by the diagram:

3,

r = 5 in this example

(16)

~
1\

There are two transversal intersections of S, and S,.

If r = 1, there is a special situation because the curves S, and §; of
Y* intersect transversally in one point and S, and S; become identified
under V. Thus under the map Y™ — Y /I the string of rational curves

S, is mapped onto one rational curve S, in Y /V with one ordinary
double point (which was previously also denoted by S, but must here be
distinguished).

0

(18)

Lemma. For r = 1 we have in Y™ |V

’—50‘5’0 =b0'—2

Proof. Let ¢; and c¢; denote the first Chern classes of Y* and Y /I
respectively. Let n be the map Y — Y */V. Then n*c, = ¢, and

61 (Sdo) = ¢; (So)
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where we evaluated the first Chern classes on the cycles S‘O and S,. By
the adjunction formula (0.6)

¢1(So) = Sp*So =2
¢1(S) = So-Sp +2 = 2.

The summand 2 on the left side of the second formula is the contribu-
tion of the double point of S, in the adjunction formula. We get

So So =Sy Se+2 = —bhy+2

which completes the proof.

By ((bo, by, .., b._1)) we denote a cycle of numbers. (A cycle is given |
by an ordered set of r numbers. Two ordered sets are identified if they
can be obtained from each other by a cyclic permutation.)

For any cycle ((by, by, vy 1)) of natural numbers =z 2 (at least
one b; = 3) we have constructed a complex manifold Y[V which we
shall denote now by Y (b, ...,b,_1)).

In this complex manifold of complex dimension 2 (we shall often say
“complex surface”) we have a configuration (16), (17) or (18) of rational
curves. The corresponding matrices of intersection numbers are

— by, 1 o ... O 1
0 1
forr > 3
O .« o 1""‘br_21
1 o ... O 1 —b,_,
and
(;bo 2_,,1) forr = 2

By the lemma we have for r = 1 the 1 x l-matrix (—b,+2). It is
easy to show that these matrices are negative definite in all cases.
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If all the &, of a cycle equal 2, then the matrix is negative semi-definite
with a null-space of dimension 1. Thus to get negative definiteness we do
need the assumption b; = 3 for at least one j.

The negative definiteness implies, according to Grauert [17], that the
configurations (16), (17) or (18) can be blown down to give an isolated
normal point P in a complex space Y ((bo, ..., b,—1). We have a holo-
morphic map

0. Y((bo: seeo br—l)) -Y ((b09 tees br-—l))

with
r—1
k=0
The map
r—1

7Y ((bos o brey)) = U S Y ((bgs - brey)) — {P}

is biholomorphic. The configurations (16), (17), (18) represent the unique
minimal resolution of the point P, because they do not contain exceptional
curves of the first kind, i.e. non-singular rational curves of selfintersection
number — 1. Thus the point P is singular.

The first lemma of 2.3 shows that we have a natural map

Y ((bos - » by—y)) = H3/G (M, V)

and a commutative diagram

Y (bos - by 1)) = H2/G (M, V)

lo /' o
Y ((bos 2 broy))

where ¢ is biholomorphic and ¢ (P) = oo (in the notation of 2.1). The
map o is biholomorphic also in P because one can introduce at most one
normal complex structure in $?/G (M, V') extending the complex structure
of $%/G (M, V).

We have established the existence of the normal complex space
$?/G (M, V) directly without using the Proposition given in 2.1. We need
only define o to be biholomorphic. Also we have given the resolution of

the singular point co which was added to $2%/G (M, V). We summarize
our results:
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TueoREM. Let ((bo, by, ..., b,_1)) be a cycle of natural numbers = 2
(at least one b; = 3). Put

wo = [[bo, .. by_1,bg, oes byey, ]| = [[bo,..., r—1]]

(infinite periodic continued fraction). Then K = Q (w,) is a real quadratic
field and M = Zwy, + Z..1 a complete Z-module of K. The cycle
((bo, -» b,—1)) determines a totally positive unit A, of K with A.M = M.
The unit A, generates an infinite cyclic subgroup V of Uy, the group of all
totally positive units ¢ of K with eM = M. The unique singular point o0

of /G (M, V), where G(M,V) is the natural semi-direct product of M
and V, admits a cyclic resolution by rational curves S, (configuration (16),

(17) or (18) ) with selfintersection numbers S, S, = — b, (for r =1 we
have SO So = — by + 2). This resolution is given by the complex surface
Y ((bo, - b,_1)) which we canonically associated to a cycle.

Remark 1. Laufer [50] has shown that two normal singular points
(in complex dimension 2) which admit a resolution with a given cyclic
configuration of rational curves of type (16), (17) or (18) and given self-
intersection numbers are isomorphic. Hence the singularity P of
Y ((bgs s by 1)) which we have constructed is up to isomorphism the
unique singularity with the given cyclic configuration of rational curves
and the given selfintersection numbers. (These singularities are called
cyclic singularities.) Reversal of the cycle gives an isomorphic singularity.

Remark 2. The construction of Y in 2.2 applies also to the case where
all b, equal 2. Then we have u; - v; = u; - v, (compare (5)) and hence obtain
a holomorphic function f: ¥ — C. As in 2.3, we have a properly discon-
tinuous action of an infinite cyclic group ¥ on Y* = {p|pe?,|f(p)| <&},
for ¢ positive and sufficiently small, whose generator maps the curve S, to
S+, The period r = 1 can be choosen arbitrarily.

The function f is invariant under V; thus we get a holomorphic map

f:Y |V -{z]|lz| <e}

All fibres of f are non-singular elliptic curves except f ' (0) which is
a configuration of rational curves of type (16), (17), (18) where now all
b, equal 2. The fibring we have constructed is of type ;/, in the sense of
Kodaira [45], Part II. We have seen:
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Cycles ((2, ..., 2)) give an infinite continued fraction of value 1 and
correspond to an elliptic fibring. Cycles ((bos s br—1))s (b = 2, at least
one b; = 3), give an infinite continued fraction whose value is a quadratic
irrationality. These cycles determine singular points.

2.5. The theorem in 2.4 actually provides a resolution of the singular

point of $*/G(M,V) (see 2.1 with n = 2) for any complete Z-module
M of a real quadratic field K and an infinite cychc subgroup ¥V of U,; of
any given index a = [Ujy : V]. We need a lemma.

Lemma. Consider the Z-module M defined by a periodic function
ks by, =2 (with b; =3 for at least one j). Let r 2 1 be the smallest
period. Then A, (see 2.3) is a generator of U -

Proof. We shall denote ordinary continued fractions

+1 1

a JR—

0 1+_
a, + .

by [ae, a;, a,, ...]. The relation between the two types of continued fractions
is as follows:

(19) [ag,as,z] = [[ao +1,2,...,2,2z + 1]]

N e, et

aj—1

where z is an indeterminante and @, a natural number > 1. Using (19)
the lemma can be derived from similar results for ordinary continued
fractions (compare [6], Kap. II, § 7). A proof is also given in [12]. Another
proof was communicated to the author by J. Rohlfs.

Two complete Z-modules M,, M, of the same real quadratic field K
are strictly equivalent (2.1) if there exists a totally positive number o € K
with oM, = M,. We have UM1 = UM2

The actions of G(M,,V) and G(M,,V) on H? are equlvalent under
the automorphism (zy, z,) = (xzy, az,) of $*. Any module M, is strictly
equivalent to a module of the form M, = Zw, + Z - 1 where w, € K and
0 < wy < 1 < wy. (This is easy to prove, as was shown to me by H. Cohn.)
Then the continued fraction wo = [[by, by, ...]] is purely periodic, i.e.
periodicity starts with b,. This can be proved in the same way as an analogous
result for ordinary continued fractions ([60], § 22). Let r be the smallest
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period. We can resolve the singularity of $?/G (M,, U j}2) by the method
of 2.3 and 2.4, since by the preceding lemma Uy, = {(4,)" | neZ}. The
resolution is described by the primitive cycle ((bo, ..., b, - 1)) where primitive
means that the cycle cannot be written as an “unramified covering” of
degree > 1. The cycle ((2,3,5,2,3,5)) = ((2, 3, 5))? is not primitive, for
example.

For any primitive cycle ((by, ..., b, — 1)) we obtain a module Zw, + Z - 1
with wy = [[bo, by, ...]]- In the cycle we must allow cyclic permutations.
This changes the module to a module Zw, + Z - 1 (see 2.3). But Zw, + Z - 1
= ZA, | + ZA, and A,_,/A, = w,, where A, is totally positive (see 2.3).
Therefore, the strict equivalence class of the module only depends on the |
cycle. If one reverses the order. (orientation) of the cycle, the associated
equivalence class of modules is replaced by the conjugate one (see (13)).

If we start from a strict equivalence class of modules, it determines,
as explained above, an isomorphism class of singularities (represented by
the singularity of $?%/G (M,, Uyy,)).

But isomorphic singularities must give the same unoriented cycle in
their canonical minimal resolutions. “Unoriented” means that we cannot
distinguish between ((by, ..., b,—;)) and ((b,_1, ..., by)). But, in fact, if we
represent the class of modules as above by M, = Zw, + Z - 1, then the
cycle of wy is uniquely determined including the orientation. If this were
not the case, it would follow that M, and M, are strictly equivalent. Then
the singularity and its resolution admit an involution showing that the
cycles ((bo, ..., b,—1)) and ((b,_y, ..., b)) are equal. (Details are left to
the reader. The relation between strict equivalence classes of modules and
primitive cycles can be derived, of course, also without using the resolution,
compare 2.6.)

We have established a bijective map between primitive admissible cycles
(all b, = 2 and at least one b; = 3) and the strict equivalence classes of
complete Z-modules (where the real quadratic field K varies).

The preceding discussion yields the following theorem.

THEOREM. Let K be a real quadratic field and M a complete Z-module
in K. Let ((bo, by, ..., b,_,)) be the primitive cycle belonging to M. Let V
be the subgroup of Uyy; of index a. Then the resolution of the singular point

of H*/G(M,V) is given by the cycle ((by, by, ..., b,—1))".
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Remark. The structure of the local ring O (M, V') at the point oo of

$2/G (M, V) was described in 2.1. For any admissible cycle ((b, ..., b,-1)),

not necessarily primitive, the functions fe O (M, V) can be written as

power series’ in u,, v, where ug, v, is the coordinate system of 2.3 (11)

with 4o =1 and A_; = wy = [[bo, ..., b,—4]]- We could use also any
other coordinate system 1, v;.

Let (ug,v0)" = up™ - v, for n = (ny,n,) and

Tn = <—q'“1p"1) <n1>, see 2.2 (7),
—4r Pr Ry

then O (M, V) is the ring of all power series’
f =ay+ Zan(uo,‘vo)"

' where the summation extends over all pairs n = (n,, n,) of positive integers
with wy < ny/n, £ w,, the coefficients satisfy a;, = a,, and the power
series converges for

wolog [uo | + log g | < 0, wglog [ uo | + log| 7| < 0
, 1
(wolog|uy | + log v, ) - (wolog lug | + log|v, ) >z,

- (the positive constant ¢ depending on f).

Observe that T (as fractional linear transformation) maps the intervall
[wo, wo] bijectively onto itself (Twy = wg, Twy = w,). We have Tx < x
for we < x < w, and therefore

lim T*x = wy (for wg < x < wp) and lim T*x = w, (for wy < x < w,)

k— o0 . k—— o

Example. Consider the Fibonacci numbers
v, —8,5,—3,2,—-1,1,0,1,1,2,3,5,8,13

where Fy =0, F; =1 and F,,, = F, + F,_;(keZ). The numbers
Gy = Fyrvq (ke Z) are all positive and satisfy Gy, = 3G, — G,_,.
The function




— 218 —
represents an element of O (M, U,;) where

M =Zw,+Z and w, = [[3]] = $+3+./5).

2.6. 'The primitive cycle associated to a module M can be found also
without using a base wy, 1 of M with 0 < wy < 1 < w,: Real numbers
x, y are called strictly equivalent if there exists an element (¢ ]) € SL, (Z)
such that

ax + b
cx +d

Any irrational number x has a unique infinite continued fraction
development

X = [[ao, al, az, ...:l]

where q; € Z and a; = 2 for i = 1 and where ¢; = 3 for infinitely many
indices i. Two irrational numbers are strictly equivalent if and only if
their continued fractions [[ay, g, ...]] and [[ag, a5, ...]] coincide from
certain points on, 1.e. @;;; = a, . ; for some j and k and for all i = 0. This
is analogous to a classical result on ordinary continued fractions ([60],
Satz 2.24).

A quadratic irrationality w admits a continued fraction which is periodic
from a certain point on. It is purely periodicif and only if 0 < w' < 1 < w
as mentioned before. The periodicity of the continued fraction of w deter-
mines a primitive cycle ((bo, ..., b,—;)) which is admissible (all b; = 2, at
least one b; = 3). Thus two quadratic irrationalities are strictly equivalent
if and only if their cycles agree, and we have a bijection between strict
equivalence classes of quadratic irrationalities and admissible primitive cycles.
The admissible primitive cycles are in one-to-one correspondence with the
strict equivalence classes of complete Z-modules in real quadratic fields K
where K varies (see 2.5).

A complete Z-module M of a real quadratic field K will be oriented
by using the admissible bases (B,, 8,) of M with B,, — B, > 0. By
restricting the norm function (N (x) = xx’ for x € K) to M we obtain an
indefinite quadratic form f on M with rational values. The exists a unique
positive rational number m such that m - f is integral and with respect to
an admissible base of M can be written as

au® + buv + cv?
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where a, b, ceZ and (a, b, c) = 1. The pairs (u,v) are in Z@® Z = M.
The discriminant D,, = b* — 4ac is positive and not a square number.

In this way, we get a bijection between strict equivalence classes of
- complete Z-modules of real quadratic fields and the isomorphism classes
under SL, (Z) of integral indefinite primitive binary quadratic forms of
non-square discriminant.

Remark. The discriminant D of such a quadratic form can be written
uniquely as

D:DK..fza fgla

where Dy is the discriminant of the real quadratic field K = Q (\/B ).
Then the corresponding strict equivalence class of modules can be repre-
sented by an ideal in the order (subring of oy) which as an additive group
has index f'in png, and this is the smallest f such that the equivalence class
of M can be represented in this way.

The strict equivalence class of the “first root”

~ b+ /b* — dac
2a

, where \/bz —4ac >0

depends only on the equivalence class of the quadratic form.

We obtain a bijection between SL, (Z)-equivalence classes of integral
indefinite primitive binary quadratic forms of non-square discriminant and
strict equivalence classes of quadratic irrationalities.

All the bijections are compatible with each other as can be checked
easily. Let us collect the bijections:

strict equivalence classes of complete Z-modules in real quadratic
fields

>
admissible primitive cycles of natural numbers >
strict equivalence classes of quadratic irrationalities Y
SL, (Z)-equivalence classes of integral indefinite primitive binary
quadratic forms of non-square discriminant —

isomorphism classes of cyclic singularities with a primitive cycle
and as additional structure a prefered orientation of the cycle
(compare 2.4, Remark 1).
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Example. Let d be a square-free number > 1 and suppose d = 2 mod 4
or d = 3 mod 4. The (\/ZZ— , 1) is an admissible Z-base of the ideal (1) in
og for K = Q (\/E ). The quadratic form is given by

— u*d + v?

—Jd 1
and has discriminant 4d. The first root equals = — —— which

< Ja

1s equivalent to \/67 . (Take always the positive square root). The admissible
cycle of natural numbers is obtained by developing \/c? in a continued
fraction.

§ 3. NUMERICAL INVARIANTS OF SINGULARITIES
AND OF HILBERT MODULAR SURFACES

3.1. Let X be a compact oriented manifold of dimension 4k with or
without boundary. Then H** (X, 8X; R) is a finite dimensional real vector
space over which we have a bilinear symmetric form B with

B(x,y) = (xUy)[X,0X], for x,ye H*(X,0X;R),

where [X, 0X] denotes the generator of H,, (X, 0X; Z) defined by the
orientation. The signature of B, i.e., the number of positive entries minus
the number of negative entries in a diagonalized version, is called sign (X).
If X has no boundary and is differentiable, then according to the signature

theorem ([36], p. 86)
(D sign (X) = L (py, -, pi) [X],

where L, is a certain polynomial of weight k£ in the Pontrjagin classes of
X with rational coefficients (p; e H*/ (X, Z)).

Let N be a compact oriented differentiable manifold without boundary
of dimension 4k — 1 together with a given trivialization « of its stable
tangent bundle. (Such a trivialization need not exist). We shall associate
to the pair (N, «) a rational number J (N, o). Since N has a trivial stable
tangent bundle, all its Pontrjagin and Stiefel-Whitney numbers vanish.
Therefore N bounds a 4k-dimensional compact oriented differentiable
manifold X. By the parallelization a we get from the stable tangent bundle
of X an SO-bundle over X/N. We denote its Pontrjagin classes by
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p;e H¥Y (X/N, Z). Then the element Ly (py, ..., P e H¥ (X/N, Z)
= H* (X, 0X; Z) is well-defined.
The number § (N, «) is defined by the following formula

(2) (N, ) = L (P15 o pw) [X, 0X] — sign (X)

Thus & (N, «) is the deviation from the validity of the signature theorem.
It follows from the Novikov additivity of the signature ([3], p. 588) that
8 (N, o) does not depend on the choice of X. If N is of dimension 2n — 1
(n odd), then we put 6 (N,a) = 0.

Remark. The invariant & (N, «) and similar invariants were studied
also by other authors (Atiyah [1], Kreck [48], W. Meyer [57], S. Morita
[59]). In [48] the invariant & (N, ) was calculated in several cases.

3.2. We now go back to 2.1. For a cusp of type (M, V') with isotropy
group ® (see 2.1. (1)) we have a (2n—1)-dimensional manifold N which
is a T"-bundle over 7" ! (see 1.5). We can write (for a fixed positive d)

N = 0X, where X = W)/ 6, and
W(d) = {z|ze§3", lﬁ Im(z;) = d}.

Here X is a (non-compact) complex manifold and is canonically paral-
lelized. Namely, it inherits the standard parallelization of £” given by the
coordinates x,, ¥y, ..., X,, ¥, (with z, = x, + iy,). This parallelization is
respected by ® if we use unit vectors with respect to the invariant metric
of H". Thus the stable tangent bundle of N has a canonical parallelization
o. We orient N by the orientation induced by the orientation of X. The
rational number 6 (W, o) is now defined. We associate it to the cusp and

callit 6(®) or o (M, V) if ® = G(M, V). Observe that X cannot be used

for the calculation of 6 according to (2) because it is not compact. If one
compactifies X by adding the point co, then one would get a compact
manifold X with O}\; = N after resolving the singularity at co. This mani-
fold X could be used to calculate .

We have associated a rational number 6 (®) to any “cusp” of type
(M, V') with isotropy group ® where M is a complete Z-module of a totally
real field K of degree n over Q and V a subgroup of finite index of Uyy. If
V= Uy, we write (M) instead of (M, Uyp) = §(G (M, Uyy).

L’Enseignement mathém., t. XIX, fasc. 3-4. 15
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By definition, 6 (®) = 0 if n is odd
If we multiply M by yeK, then

o(yM,V) = sign N(y)-6 (M, V)

where N(y) = yP -y . -9™ Namely, the map
Z;1 9@ 2,0

with z;" = z; if y¥) >0 and z;” = z; if y¥? < 0 induces a diffeo-
morphism of W (d)/G(M,V) onto W (| N(y)|-d)/G M, V) of degree
sign N (y) which is compatible with the parallelizations, and it follows
from (2) that the invariant changes sign under orientation reversal.

In particular, 6 (M, V) = 0 if there exist a unit ¢ of K with eM = M
and N(e) = — 1.

Problem. Give a number-theoretical formula for o6 (A, V). This
problem can be solved for n = 2:

THEOREM. Let M be a complete Z-module of a real quadratic field
and [U;p : V] = a, then

a
(3) 5(M, V) =§["‘"(b0+b1+..+br.—1) +3r]
where ((bo, ..., b,_1)) is the primitive cycle associated to M, (see 2.5).

Proof. The torus bundle N bounds X which is obtained by resolving
the singularity co of XU oo where X = W(d)/G (M, V). The boundary
of W (d) is a principal homogeneous space (1.5). Therefore the normal
unit vector field of the boundary (defined using the orthogonal structure
of the tangent bundle of $? given by the invariant metric of $?) has constant
coefficients with respect to the parallelization of $2. The same holds for

the normal unit vector field of N = 0X. By a classical result of H. Hopf

we can extend the normal field to a section of the tangent bundle of X
admitting finitely many singularities whose number counted with the

proper multiplicities equals the Euler number e ()f ). Because this section
is constant on the boundary with respect to the parallelization, it can be
pushed down to a section of the complex vector bundle ¢ (fibre C?) over
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X /N induced from the parallelization of the tangent bundle of X. There-
fore,

O e(X) = ¢, (O[X, N]

where c¢; (&) e H*® (A-’ /N, Z) are the Chern classes. The equation (4)
follows from the definition of ¢, (&) by obstruction theory.
We have ([36], Theorem 4.5.1)

p1(8) = ¢ (5)2 — 2¢,(8)

and, since L; = p4/3,
1 - -
& oM, V) = ;p (LY, N] = sign (X)
1 - . )
= ~3~(C1 (&)* [X, N] — 2e (X)) — sign (X)

By the theorem at the end of 2.5, the manifold X is obtained from
X U oo by blowing up oo into a cycle of ar rational curves. X has the union

of these curves as deformation retract. Thus
(6) e(X) = by(X) — by (X) + b, (X)

=1—14ar = ar.

The intersection matrix of the curves is negative-definite:
@) sign (i’ ) = — ar.

The cohomology class ¢; (¢) e H? ()~(, N; Z) corresponds by Poincaré

duality to an element z € H, (X, Z). Let us denote the rational curves of

the cycle by S; (j€ Z/arZ). Then z must be an integral linear combination
of the §; which satisfies

(8) 280 =S Sp+2=2 (ar = 1).

This follows from the adjunction formula and the information given
in 2.4. Since the intersection matrix of the curves of the resolution has
non-vanishing determinant, the equations (8) are satisfied by exactly one

element z. We obtain that the first Chern class c, (&) corresponds by
Poincaré duality to




(9) ‘ z = S.

r—1
Since ¢; ()*’[X,N] =z z= —a b; + 2ar, formula (3) follows
0

from (5), (6), (7). a

3.3. We shall define an invariant ¢ for certain isolated normal singu-
larities of a complex space of dimension n. In my Tokyo lectures the
invariant ¢ was introduced for » = 2 and then generalized to arbitrary n
by Morita [59]. Let us first recall that the signature theorem (3.1 (1)) for
a compact complex manifold X can be written in terms of the Chern classes

(10) sign (X) = L, (cy, ..., ¢,) [X]

where L, is a certain polynomical of weight n with rational coefficients
in the Chern classes of X, (c;e H*' (X, Z)). It is identically zero if n is
odd. Let B, be the coefficient of ¢, in L,. If n is even (n = 2k), then

22k+1 22k—1 _1 B
(11) B = (1 e 11

(2k)!
where B, is the k-th Bernoulli number ([36], 1.3 (7) and 1.5(11)). For
n odd, B, = 0.

An isolated normal singularity P of a complex space of complex
dimension 7n is called rationally parallelizable if there exists a compact
neighborhood U of P containing no further singularities such that the
Chern classes of U — { P} are torsion classes, i.e. their images in the
rational cohomology groups of U — { P} vanish. We may assume that
0U is a (2n—1)-dimensional manifold and U the cone over 0U with P as
center. According to Hironaka [34a] the point P can be “blown-up”. We

obtain a compact complex manifold U which has a boundary as differen-
tiable manifold, namely oU = oU. The Chern classes c; of U have vanishing
images in the rational cohomology of aif, thus can be pulled back to
classes c; e H*' (U, 8U; Q). The Chern numbers Ciy * Cjy - [U, oU]
where j; + ... + j, =n and s = 2 are rational numbers not depending
on the pull-back. Therefore, the rational number L, (cy, ..., C,) [U, U]
is well-defined if we replace in this expression ¢, [(}, 8l~/] by the Euler

number of U. The invariant ¢@ of the isolated normal singular point P
is now defined by
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(12) ¢ (P) = L, (1, .., &) [U, 0U] — sign (U)

It can be shown (compare [59]) that ¢ (P) does not depend on the
resolution. By definition ¢ (P) = 0 for »n odd.

For a cusp singularity of type (M, V) the invariants 6 and ¢ coincide.
This follows from (4) with 2 replaced by n. The proof of (4) remains

unchanged for arbitrary n. Of course, X and X in 3.2 play the role of U

“and U here.

How to calculate ¢ for a quotient singularity? Let G be the group of
p-th roots of unity where p is a natural number. Let ¢, ..., g, be integers
which are all prime to p. Then G operates on C" by

(13) (zyyeer Z) > (P 2y, .., 0" 2), [P =1,
and C"/G is a normal complex space with exactly one singular point coming
from the origin of C".

THEOREM. Let P be the quotient singularity defined by (p; qy, ..., qn)
where (p, q;) = 1 for all j, then

def(p;q4, ..., q, ,
(P; 414 P

(14) @ (P) =
p
where
p___l n . .
(15) def (p; gy, s qn) = " ), cot N ot/
ji=1 y4 p

is the cotangent sum arising from the equivariant signature theorem of Atiyah-
Bott-Singer ([2], [3]) and studied in [38], [79]. Recall that for » odd the
cotangent sum (15), the number £, and the invariant ¢ (P) all vanish.

The proof of (14) was given by Don Zagier and the author for n = 2
using the explicit resolution of the singularity ([35], 3.4). For arbitrary n
see Morita [59] whose proof uses the equivariant signature theorem and
is similar to a proof in [1] concerning a related invariant. It would be
interesting to check (14) also for n > 2 by an explicit resolution. But,
unfortunately, these are not known.

For a quotient singularity P we put

(16) 5(p) = op) = Pr = 41, q)
p P
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Observe that the d-invariant in the sense of 3.1 (2) is not defined for a
quotient singularity because the boundary N of a neighborhood of such a
singularity is a lens space which in general does not admit a parallelization
of its stable tangent bundle. However, Atiyah [1] has defined ¢ (N, «)
by (2) if N is an arbitrary compact oriented differentiable (4k— 1)-dimen-
sional manifold without boundary and o an integrable connection of the
stable tangent bundle of N:

The connection « is extended to a connection o for the stable tangent
bundle of X (the extension being taken trivial in a collar of N). Then the
Pontrjagin differential forms p; of a vanish near N and in (2) the value

L, (py, ..., py) is an integral over a form with compact support in X. Again
0 (N, o) does not depend on the choice of X. If one takes in the special
case of a quotient singularity for N the lens space and for « the connection
inherited from the flat connection on the Euclidean space R* o S#*~1
(n = 2k) then 6 (N, a) equals the number 6 (P) in (16), (see [1]).

As an example, we calculate 6 (P) if P is the quotient singularity given
by (p; 1, p—1). Since p/(p—1) = [[2, ..., 2]] with p — 1 denominators 2
in the continued fraction, the resolution ([35], 3.4) looks as follows:

where S;-S; = — 2. The adjunction formula implies ¢; = 0.
Thus
6.2 [U,0U] — 2e (U
<P(P)=c1 [ ?]) ( )——signU
—2p
= Z4p—1
3 p

2/3 —D-(p-=2
5(P) = o(P) + / =(p ) (p—2)
D 3p

Therefore

def(p; 1,p—1) _ (p—1)-(p-2)
p | 3p

(17)
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Let us recall

(18) def(p; 1, q) = — def(p;1, —q)
def (p;1,9) = def(p; 1,4’ if q¢' = 1 mod p
To check the first equation (18) choose the quotient singularity (p; 1, 1).

The resolution consists of one curve S; with Sy - S; = — p. Therefore by
the adjunction formula ¢, is represented by a homology class a - S; with

aS1‘51 _-SI.SI = 2

- ~ - - —2)2
Thus a 7 and ¢,*[U, 0U] = _(p ) . We get
p .
1 1 —2)? 2/3
—def(p;1,1)=—(——(p ) —4>+1+—/—
p 3 p p

- (=D (-2
D

which checks with (17) and the first equation of (18).

3.4. If I 1s a discrete irreducible subgroup of (PL; (R))" satisfying
- the condition (F) of the definition in 1.5, then $"/I" has finitely many
quotient singularities and no other singularities. It is a rational homology
manifold, i.e. every point has a neighborhood which is a cone over a rational
homology sphere (in our case a lens space). For n = 2k the signature of
$2*/I" can be defined using the bilinear symmetric form over H,, ($%*/I"; R)
given by the intersection number of two elements of this homology group.

In $** we choose around each point z with |I',| > 1 a closed disk
with radius ¢ measured in the invariant metric and sufficiently small. Then

the image of these disks in $?*/I" is a finite disjoint union O D, where
v=1

Zq, ..., Zg are s points in $** representing the s quotient singularities of
$**I', each D, can be identified with the quotient of the chosen disk
around z, by the isotropy group I',..

Let x,,..,x, be a complete set of I'-inequivalent parabolic points.
Choose open sets U, as in the definition of 1.5 and denote their images
in $**/I by D, = U,I', . Then

(19) X=9*r— 4D, -4 D
= =1

X
v
v=1 v
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is a compact manifold with boundary whose signature (as defined in 3.1)
equals the signature of $3*/I.

THEOREM. Let I' be a group of type (F) acting on $**. Then

20) sign (S#1) = T 5() + % 3(x)

where zi, ..., z; are points of $H** representing the quotient singularities of
9% and x,, ..., x, is a complete set of I'-inequivalent parabolic points.
For the invariants 6 (z,) see (16). Recall that the structure of each cusp
is determined by a group & = I', (see 2.1 (1)). The number 6 (x,) is defined
as the number 6 (®) introduced in 3.2.

Proof. We first remark that sign ($2*/I') = 0 if I" operates freely and
92" is compact. This is a special case of the proportionality of $*/I"
and (P,C)%, see 1.2, and explains already why (20) does not involve a
volume contribution.

Let ¢; be the Chern classes of X and c; pull-backs to the rational coho-
mology of X/0X. Then the additivity of the signature and of the Euler
number and the validity of the signature theorem for the manifold obtained
by resolving all the singularities of the compactification of $?*/I" imply

21) Ly (cy, oo €2 [X/0X] — sign X + ; ¢ (z,) + ; @(x,) =0

where ¢ is defined as in 3.3. In L,, (¢cq, ..., ¢5,) we have to interpret
¢, [X/0X] as Euler number e (X). By §1 (21)

e(X) = [o— Y a.(D)]r

$2k/r rz2
The coefficient of ¢,, in L,, equals f,,. Therefore by (21), (16) and
because ¢ (x,) = d(x,), (see 3.3),

(22) sign X = sign H**/I"
= Ly (C15 ovr Cop—1, @) [X/OX] + Zlé (z,) + Zlé (x,)

where o [X/0X] has to be interpreted as [w.
552k/1"
Let d; be the invariant differential form on $?* representing the

i-th Chern class in terms of the invariant metric of $?*. In fact d, is the
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) 1 dx; A dy,
i-th elementary symmetric function of the forms w; = — 7 T
j
(see 1.2). The form L, (dy, ..., d5;) is identically 0, because it is a symmetric
function in the w;* which vanish. Recall that d,; = . By (22) it remains
to show that
(23) E”..E’JSI:X/(?X] = j d]l ...djs
552k/1‘
for ji + .. +j, =2k and s = 2. In the neighborhood of a parabolic
point (transformed to oo0) we write
1 dx;

J

The form «; is invariant under the isotropy group of the cusp. In the
neighborhood of z, € $?* we introduce in each factor of $** geodesic
polar coordinates r;, ¢; with

1
(24) w; = — > sinh (r;) dr; A do;
1
w; = do;, where o = — 7 (cosh (r;) — 1) do;

The form «; is invariant under the isotropy group I', . Take compact
manifolds X' <« X' <« X’ < X all defined as in (19) and each a compact
subset of the interior of the next larger one. We may assume that all the
o; are defined in H**/I' — X'"’. Choose a C*-function p which is 0 on
X' and 1 outside X’. Then pa; is a form on $**/I" minus singular points.
The form w; — d(pa;) has compact support in X. Thus the elementary
- symmetric functions in the w; — d (pa;) represent the ¢; and the left side
of (23) becomes also an integral over $H?*/I". Recall that the d; are the
elementary symmetric function in the w;. By Stokes’ theorem the difference
of the two sides of (23) is a sum of expressions

(25) Hm | o A @y A e A@; Al A oy
oD,

(26) lim ag 0 A @y A e AD; A et A Wy
2y

where the limit means that the neighborhoods D, and D, become smaller
and smaller, (the number d in 1.5 (16) converges to oo, the radii of the
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discs converge to zero). The form in (25) is invariant under the isotropy
group of x, in the whole group (PL} (R))**. Therefore, the integral equals
a constant factor times the (4k —1)-dimensional volume of 0D, .

But this volume converges to zero. In (26) for the limit process the
integral can be extended over the boundary of a cartesian product of 2k
discs of radius r divided by I',. Let W, be this cartesian product
divided by I', . Then

S - PN PR NN/

' sz J

A . A @y = (cosh(r) — 1)%

which converges to zero for r — 0.

3.5. Suppose a cusp is of type (M, V), see 2.1. For n > 1 Shimizu
([71], p. 63) associates to the cusp a number w (M, V') which depends only
on the strict equivalence class M and the group V < Ujy:

- Let (B4, ..., 8,) be a base of M. We define

d(M) = |det (,Bi(j))\.
Consider the function

sign N (w)

27 LM,V,s) =
7 ( ! wem=toyv | N () |°

where N (u) = p - u® - .. u™. (The summand in (27) does not change
if u is multiplied with a totally-positive unit. Therefore, it makes sense to
sum over the elements of M — {0} /V.) The function L (M, V,s) can
be extended to a holomorphic function in the whole s-plane C. Shimizu
defines

(— 12
(2n)'

(28) w(M,V) = d(M)-L(M,V,1)

We conjecture that also the invariant 6 (®) (see 3.2) depends only
on the pair (M, V). This is clear for n = 2. In 3.2 we have defined
OM,V)=0(B)if & =GWM,V).

The two invariants 6 (M, V) and w (M, V) have similar properties.
For example, both vanish if there exists a unit ¢ of negative norm with
eM = M. Is there a relation between them? A guess would be, I hesitate
to say conjecture,

(?7) Mw(M,V) = 5(M,V)
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This would imply that w (M, V') is always rational. Even this is not
known in full generality. However, if M is an ideal in the ring of integers
of K, the number w (M, V) is rational. (As Gundlach told me this can be
deduced from his paper [24].)

The equation (?) is true for n = 2 as we shall see. This was the motivation
for Atiyah and Singer to try to relate the invariant § to L-functions of
differential geometry (Lecture of Atiyah at the Arbeitstagung, Bonn 1972).
Compare the recent results of Atiyah, Patodi and Singer.

THEOREM. Let K be a real-quadratic field, M a complete Z-module in
K and V < U,;. Then

(29) 4w(M,V) = 5(M,V).

“Proof”. Curt Meyer [55] has already studied w (M, V') in 1957. He
expressed it in elementary number-theoretical terms using Dedekind sums.
It turns out that 6 (M, V') as given in (3) equals Meyer’s expression. This
will be shown in [42]. Meyer’s formula can be found explicitly in [56] (see
formulas (6) and (11)) and in Siegel [75] (see formula (120) on p. 183).
For more information on the number theory involved we must refer to
[42].

3.6. For a non-singular compact connected algebraic surface S the
arithmetic genus is defined:

X(S) = 1 — d1 +92>

where g; is the dimension of the space of holomorphic differential forms
of degree j on S. In classical notation g, = ¢g and g, = p,. The first Betti
number of S equals 2g,. The numbers g; are birational invariants. There-
fore we can speak of the invariants g; and of the arithmetic genus of an
arbitrary surface possibly with singularities meaning always the corres-
ponding invariant of some non-singular model. We have ([36], 0.1, 0.3)

I
(30) 2 (S) = E(Cf + ¢) [S]

= (Cz [ST + %(C%“zcz) [S]),

NG

(1) 1 (8) = — (e(S) + sign(S)),

1
4
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where e (S) 1s .the Euler number and sign (S) the signature of S. Thus the
arithmetic genus is expressed in topological terms, a fact which does not
hold in dimensions > 2.

Let I' be a discrete irreducible group of type (F) acting on $? (see
1.5). The compactification of $?/I" is an algebraic surface. A non-singular
model S is obtained by resolving the quotient singularities and the cusp
singularities. Then S is a union (glueing along the boundaries) of a mani-
fold X like (19) and of suitable neighborhoods of the configurations of
curves into which the singularities were blown up. For every manifold in
this union we consider the expression 1 (Euler number + signature). A
quotient singularity has a linear resolution ([35], 3.4) and therefore for
the neighborhood % (e + sign) = 1, a cusp singularity has a cyclic resolu-
tion and therefore 1 (e + sign) = 0 by (6) and (7). The signature and the
Euler number behave additively and thus in the notation of (19)

2 (S) = = (e(X) + sign(X)) + 2

o=

Since e (H?/I') = e(X) + s, we get

1
(32) r (8) =7 (e (9%/I) + sign (H2/I)

Using the formulas for e ($2/I') (see § 1 (21)) and sign (H?/I") (see 20))
we obtain

(0]
92T

B -

(33) xS =

+

v

1
(5(Zv) +(I szl -‘1)|sz|) + ;14_15(36\))

1=
o=

1

We have proved the following theorem.

THEOREM. Let I' be a discrete irreducible group of type (F) acting on

$2. Then the arithmetic genus of the compactification $*|I" can be expressed
by topological invariants of $*/I': Four times the arithmetic genus equals
the sum of the Euler number and the signature of $*/I'. The arithmetic
genus is also given by (33) in terms of the Euler volume and contributions
coming from the quotient singularities and the cusps.
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Instead of x (S) where S is a non-singular model for $2/I" we shall

write y ($%/I) or simply y (I'). Shimizu ([71], Theorem 11) calculated
the dimension of the space S, () of cusp forms of weight r. A cusp form
of weight r is defined on $? by a holomorphic form a (z) (dz; A dz,)"
invariant under I" which vanishes in the cusps. If r is a multiple of all
IF ., |» then the Shimizu contributions of the quotient singularities are
independent of r and are exactly the contributions which enter in (33).

0 (x,)
4

. Therefore,

By (29) Shimizu’s cusp contributions are exactly the

we can rewrite a special case of Shimizu’s result in the following way.

THEOREM. The assumptions are as in the preceding theorem. Let r = 2
be a multiple of all the orders of the isotropy groups of the elliptic fixed
points (quotient singularities). Then

(34) dim S, () = *=r- [ o+ x(D)
$2/T

Hence the arithmetic genus of $?/I" appears as constant term of the
Shimizu polynomial (compare [15], [26]).

Lemma. Let I' be a discrete irreducible group of type (F) acting on

$2. The invariant g, of the algebraic surface $H*/I" vanishes. The number

g, (92/T") equals the dimension of the space Sy (1) of cusp forms of weight 1.

“Proof”. For gy, see ([14] Teil I, Satz 8) and [26]. For the result
on g,, we have to show that any cusp form of weight 1 can be extended
to a holomorphic form 0 of degree 2 on the non-singular model obtained

by resolving the singularities of $*/I'. A priori, we have a holomorphic
- form 0 of degree 2 only outside the singularities. It can be extended to the
- resolution of the quotient singularities ([14], Teil I, Satz 1).

X ) du, N dv
For a cusp singularity the form —~— ¥ does not depend on the
U, vy,
coordinate system (see 2.2 (5)). The form 0 is a holomorphic function

du, A dv

f(u, v) multiplied with t. This follows from 2.3 (9) and the

U Vi
remark in 2.5. It is a cusp form if and only if f (i, v,) is divisible by
u,v,. Therefore, 8 can be extended.
By the lemma we have
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(35) | () =1+g ) =1+ dim&r(1)

The group I' operates also on § x $~ where $~ is the lower half
plane of all complex numbers with negative imaginary part. Since $? and
$H x 9~ are equivalent domains, our results are applicable for the action
of I' on § x $~. The map (zy, z,) = (z, z,) induces a homeomorphism

(36) ©:HC > (HxH7)/T

It follows that I' (as a group acting on § x $7) is also of type (F).
Because x is a homeomorphism, the Euler numbers of (Hx$H~)/I" and
$?%/I' are equal. Since x is orientation reversing, we have

(37) sign(HxH7) /I = —sign$*/T

We have denoted the arithmetic genus of $H?/I" by y (I) and shall
put = (I') for the arithmetic genus of (H x $H~)/I'. By (32), (35) and (37):

(8  xM)—z () =dm&Sp(1) — dim Sr (1) = $sign /T,

where S (1) is the space of cusp forms of weight 1 for I’ on $ X ™.

Remark. The quotient singularities of $2/I" are of the form (7; 1, q).
Any such singularity corresponds under x to a singularity (r; 1, —g). A
cusp singularity of type (M, V') goes over into one of type (yM, V') where
N (y) = — 1. Therefore (37) agrees with (20): all contributions coming
from the singularities change their sign.

3.7. Let G be the Hilbert modular group for a totally real field
K of degree n over Q. The parabolic points are exactly the points of
P,K where P,K is regarded as a subset of (P;R)" by the embedding
x> (xD, x2 . x™), The group G acts on P,K. The orbits are in one-
to-one correspondence with the wide ideal classes of oy (two ideals a, b
are equivalent if there exists an element y € K (y#0) such that ya = b).

m :
If — e P,K (with m, n € ng) represents an orbit, then a = (m, n) represents
n

the corresponding ideal class. Thus the number of parabolic orbits (cusps)
equals the class number h of K. As in ([75], p. 244) we choose a matrix

(39) A= (33, mv—nu=1luvea .




— 235 —

A simple calculation shows that
- (40) A1 SL, (0g) 4 = SL; (0, a”),
- where, for any ideal b = pg, we set (compare [31])

41)  SL,(0gb) = {(35)| a6 —by = l,acog 6€0g, Beb™ ', yeD]

m .
Instead of studying the cusp of G at —, we can consider the cusp of
n
SL, (0g, a®)/{1, —1} at co. Its isotropy group is

{(G ) |eeUwea™2} /{1, -1} =
82w)|seU wea 2} = G(a"? U?, see2.l.

m .
Thus the cusp of G at — with m, ne og and (m,n) = a is given by
n

the pair (a”™2, U?).
The extended Hilbert modular group G (see 1.7) has the same number
of cusps (we have (P,K)/G = (P,K)/G). They are given by (a~2, U™).
Let C be the ordinary ideal class group (i.e., the group of wide ideal
classes of og) and C™ the group of narrow ideal classes of oy (with respect
to strict equivalence: a, b are strictly equivalent if there exists a totally
positive y € K with ya = b). Then a+ a~? induces a homomorphism

(42) Sq:C — C*.

Both G and G have h cusps (h =|C| = h(K)). The corresponding
modules are the squares in C*, each module occurs k£ times where k is
the order of the kernel of Sq and is a power of 2.

3.8. We consider the Hilbert modular group G and the extended
group G for K = Q (\/E ) with d as in 1.4. The cusp singularities of 52/(§

and 552/é are in one-to-one correspondence with the elements of C. They
admit cyclic resolutions. To resolve the cusp belonging to a € C we take

the primitive cycle ((bo, by, ..., b,_,)) associated to Sg(a)e C* (see 2.5).
- This is already the cycle of the resolution if we consider the group G. For
G the cycle of the resolution is ((bo, by, ..., b,—1))° Where ¢ = |U* : U? |,

1
The cusp at o0 = 6€P1K has the module oy. For d = 2 or 3 mod 4

the corresponding primitive cycle is the cycle of the continued fraction
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- 1 +./d
for \/d (see 2.6). For d = 1 mod 4 it is the cycle of —2\/* We list

these primitive cycles for those d in the table of 1.7 for which K does not
have a unit of negative norm. Also the values of § (og) (see 3.2 (3)) and
of the class numbers 4 (K) are tabulated. If X has a unit of negative norm,
then 0 (og) = 0.

d cycle of Dy S(0g) | AK)

3 (@) -3 1

6 (2, 6)) -2 1

7 (3, 6) -1 1

11 (2,2, 8) -1 1

14 (“,8) ~ 2 1

15 (@) -3 2

19 (2,3,2,2,3,2,10)) — 1 1

21 (5) -3 1

22 ((4,2,2,2,4,10)) ~- 2 1

23 ((5, 10)) -3 1

30 (2, 12)) -3 2
31 ((3,2,2,7,2,2,3,12) -3 1
33 (2,3,2,7) -2 1

34 (6, 12) ~ 4 2 s}'
35 ((12)) — 3 2
38 (2,2,2,2,2, 14)) -2 1

39 (2,2, 2,14)) -3 2
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3.9. In the next sections we study the signatures of $?/G and $?/G.
Because of (32) this gives also the arithmetic genera x (G) and x (G).

THEOREM. If K = Q (\/ d ) has a unit ¢ of negative norm, then

1
(43) sign $%/G = 0, x(G) = Ze(ﬁiz/G)-

Proof. The actions of G on $H* and § x $~ are equivalent under
(z4, z,) > (624, €'2,), (we choose & positive). The formula (43) follows
from (37) and (32).

The following lemma is a corollary of the theorem in 3.4.

Lemma. If K does not have a unit of negative norm, then

9 g §7/G = ¥ 0() +2 Y 5(50@),
@) g 76 = Y 6G) + ¥ 8 (S1(a)

Where the points z, and z, represent the quotient singularities of $*/G and
$H2%/G respectively.

The contribution of the quotient singularities in (44) can be calculated
using [61], (see 1.7). In [61] not only the orders of the quotient singularities
of $%/G are given, but also their types (r;q;,q,), see (13). Since
- def(2;1,1) = 0 (see (17)), we only have to consider the quotient singu-
larities of order r = 3. For d = 0 (3) the singularities of order 3 occur
in pairs, one of type (3; 1, 1) together with one of type (3; 1, —1). There-
fore, their contributions cancel out.
~ If d is divisible by 3, but d # 3, we have

(46) a3 (G) = 5h(Q(/ — d/3)) ford = 3 mod 9
a3 (G) = 3h(Q(/ — d/3)) ford=6mod9

4
In the first case r of the singularities are of type (3; 1, 1), the others

of type (3; 1, —1), in the second case all are of type (3; 1, 1). Therefore,
in both cases their contribution in (44) equals (see (17)):

L’Enseignement mathém,. t. XIX, fasc. 3-4, 16
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S | _
31(Q (/= d3)) S def (i 1,1) = — gh (Q(/— d/3))

For d = 3 there are two singularities of type (3; 1, 1) and one of type
(6; 19 - 1):
2 10

d=3=signH*G = —2. -+ ——2

1
==0
9 9 3

We have proved:

THEOREM. If K = Q (\/ ZZ_) does not have a unit of negative norm, then
(47)  sign$*/G =2 ), 6(Sq(a)) for d £ 0 mod 3
acC

sign H2/G = 0 ford =3

2
sign H2%/G = — §h(Q (/ —d/3)) + 2 zcé (Sq (@)
for d = O mod 3, d > 3.

The group C™ of narrow ideal classes contains the ideal class 0
represented by the principal ideals (y) with N (y) < 0. If 6 is a square, then

(48) 2 ZC 5(Sq (a)) = zc 5(Sq (@) + an(sq (@) 6) =0

@ is a square if and only if d is a sum of two squares [25] which happens
if and only if d does not contain a prime = 3 mod 4.
In the contrary case, Y, 6 (Sq(a)) <0, see [27].

acC

THEOREM. Let G be the Hilbert modular group for K = Q(\/-c;).
Then sign $%/G = 0 if and only if d = 3 or d does not contain a prime
= 3 mod 4. In all other cases, sign $*/G < 0.

If the class number of K equals 1, then Y 6 (Sg(a)) = 6 (0g). If the

aeC

class number equals 2 and 0 is not a square in C*, then C* is a product
of two cyclic groups of order 2 and } & (Sq(a)) = 26 (vg). Using the

aecC
tables in 1.7 and 3.8 we have now enough information to calculate the

arithmetic genera y (G) for d < 41. The class numbers / (Q (/ —d/3)) which
we need for d = 3, 6, 15, 21, 30, 33,39 are 1, 1. 2, 1, 2, 1, 2.
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d e ($%/G) | sign 92/G | x (G) d e (92/G) | sign (9%/G) | x (G)
2 4 0 1 22 16 —4 3
3 4 0 1 23 18 —6 3
5 4 0 1 26 20 0 5
6 6 -2 1 29 8 0 2
7 6 -2 1 30 24 —-12 3
10 8 0 2 31 22 —6 4
11 10 -2 2 33 6 -2 1
13 4 0 1 34 24 0 6
14 12 —4 2 35 28 —12 4
15 12 -8 1 37 8 0 2
17 4 0 1 38 28 —4 6
19 14 —2 3 39 40 —12 7
21 6 -2 | 41 8 0 - 2

Estimates as in [40] and [42] show that y (G) = 1 only for finitely
many d. Are those in the table the only ones? If d is a prime p, then
¥(G) =1 if and only if p = 2,3,5,7, 13,17 (see 3.12).

The values for sign $2/G are also of interest because (see (38))

(49) dim &5 (1) — dim G4 (1) = — %Signsﬁz/G

Thus dim S; (1) = dim S; (1), where the inequality is true if and
only if d is greater than 3 and divisible by a prime p = 3 mod 4.

3.10. In view of the preceding theorems it is interesting to calculate
Y. 0 (Sq(a)). This was done in [27] for any d using the relation to L-series

aecC

as explained in 3.5. If dis a prime = 3 mod 4 the result is especially simple.

THEOREM. Let p be a prime =3 mod4 and p > 3. Then, for
K=Q(/p), we have

(50) ZC 6(Sq(a)) = —h(—p)
Proof. The formulas (27), (28) and (29) imply ([71], p. 69)

-2
(51) Zc 5(Sq (a)) = — J 4p L, p).
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Here y is the unique character with values in {1, —1} which is 1

defined for all ideals in pg, depends only on the narrow ideal class and
satisfies y ((«)) = sign N (o) for principal ideals ().
The function

% (@)
Lsp = Y o
a gr;deal l N(C() |s
in oK
can be written as a product
(52) L(Sa X) = L-—4(S)L~—p(s)a

where L_, and L_, are the L-functions of Q (\/ j71) and Q (\/ _————E)
over Q. The product decomposition (52) belongs to a decomposition of
the discrimant 4p of K, namely 4p = (—4)(—p), and y is the genus
character corresponding to it ([75], p. 79-80). Evaluating (52) for s = 1
implies by a classical formula ([6], V' §4, p. 369)

2 2n
L(L,7) = 547 2h(=4). 2 p™ 2 h(~p),

and this gives (50).
The formula (50) establishes an amusing connection between continued
fractions and class numbers. Ordinary continued fractions

1
ag + — 1
a, +—
a, + .

will be denoted by [ay, a4, a,, ...]. Let p be a prime = 3 mod 4. Then
([60], § §24-26)

(53) \/;2 [aOaabaZ:“'aZs]’ aiéla

where a, = [\/ p ] and a,, = 2a,. The bar over ay, a,, ..., a,, indicates

here the primitive period. The continued fraction development for \/E
which we needed for the resolution is of the form
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— 1
\/p — aO + 1 -_ b_ 1 =] [[ao + 1,b0, "'Dbr—‘l]]i

where the bar indicates again the primitive period. The primitive cycle
((bos ..., b,—4)) looks as follows:

(2,002, a3 +2, 2,..,2, ag+2,..,2,..,2, a5, + 2))
Nt o e/ Y e N o’
a;j—1 ag—1 agg_1—1

This is shown by an easy calculation (see 2.5 (19)). For K = Q (ﬁ )
the signature deviation invariant & (og) is defined (see 3.2 (3)). We have

(549) ~3%) = ¥ -9 = T (~Da,
- By (50) and (53) we get:

Proposition. Let p be a prime = 3 mod 4 and p > 3. Suppose that
the class number of K = Q(\/; ) equals 1. Then

(55) Zlv(—l)j a; = 3h(—p)

where (ay, ay, ..., Ay,), With a,, = 2 [\/;], is the primitive period for the
ordinary contained fraction development (53) of \/17 :

Example. p = 163, h(K) =1

< 163 =1[12,1,3,3,2,1,1,7,1,11,1,7,1, 1,2, 3,3, 1, 24]

3h(—163) = 3-1 =
—14+3-3+2—14+1=T7+1—=114+1=7+1—1+4+2-3+3—1+24

For further information on these and more general number theoretical
facts see [42].

‘ 3.11. The theorem in 3.10 enables us to give very explicit formulas
- for the signatures of $?%/G and $?/G in terms of class numbers of imaginary

- quadratic fields if K = Q (\/1_;) and p a prime = 3 mod 4. (For the other
 primes the signatures vanish).




242 —

THEOREM. Let p be a prime = 3 mod 4 and G the Hilbert modular \
group (G the extended one) for K = Q (\/ p). Then

sign $%/G = 0 forp =3

(56) sign $%/G = — 2h(—p) forp > 3
sign $2/G = 0 for p = 3 mod 8
sigh $%/G = — 2h(—p) forp = 7 mod 8

Proof. The first two equations follow from (47) and (50). For p > 3

the quotient singularities of order 3 in 552/G occur again in pairs (3; 1, 1),
(3; 1, —1) and cancel out in (45). For p > 3 and p = 3 mod 8, there are
h (—p) singularities of type (4;1,1) and 3k (—p) singularities of type
(4;1, —1). For p =7 mod 8 there are 2h(—p) singularities of type
4,1,1), see [61].

The sum of their contributions in (45) equals (see (17))

def(4:1, — 1

o (—p) S ; ) h=p) for p = 3 mod 8
def(4;1,1

Zh(—p)—i—(T—)= — h(—p) for p = 7 mod 8

By (45), sign $°/G = + h(~p) — h(=p).

It remains to consider the case p = 3. We have 3 quotient singularities
of order 2, there are 3 others of type (4;1, —1), (3;1, 1), (12;1, 5). By
Dedekind-Rademacher reciprocity ([38], (36)) and because def (5; 1, 12) = 0

(see (18))

def(12;1,5) | 144 + 1425 1
12 B 180 18

Therefore (see (17) and 3.8):
1
18

p=3=>sign5§2/é= ——+—==—2=0

Ol

N i
W =

3.12. For any prime p we know the Euler numbers and the signatures
of $2/G and 532/(3. Using 1.6 (21), 3.6 (32) and the theorem of 3.11 we
can write down explicit formulas for the arithmetic genera y (G) and

1 (G).
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THEOREM. Let p be a prime K = Q (\/;). Let G be the Hilbert modular
group for K and G the extended one. Then

¥ (G) =1 forp = 2,3,5

X(é)=l forp =3
For p > 5 we have

1 h(—4 1

X(G)=§CK(—1)+ ( p)—l—gh(——?ap) for p = 1 mod 4
1 3 I

X(G)=§CK(—1)+Zh(——p)+8h(—12p) for p = 3 mod 8
1 1

X(G)=§CK(——1)+811(——12p) for p = 7 mod 8

A 1 9 1 1
¥ (G) = ZCK(—I) +§h(—p) +§Iz(—8p) + Eh(—12p) for p = 3 mod 8§

A 1 1 1
X(G):ZCK(_1)+§h(_8p)+1_§h(_12p) for p = 7 mod 8

The formulas at the end of 1.3 imply

1 1 X’
2Up(—1) = 5.7z—41)?<"”~c,<<2) > “D¥2r(4) = 1§0.

It is easy to deduce from this estimate that y (G) = 1 if and only if
p=23,57,13,17 and (for p =3 mod4) y(G) =1 if and only if
p = 3,7. Because of (38) and (56) we also know the arithmetic genera
of (H x H7)/G and (H X 55")/6} (p = 3 mod 4). They are equal to 1 if
p = 3, and both different from 1 if p > 3.

§4. CURVES ON THE HILBERT MODULAR SURFACES
AND PROOFS OF RATIONALITY

We shall construct curves in the Hilbert modular surfaces. They can
be used to show that these surfaces are rational in some cases and also
for further investigations of the surfaces ([41], [42]). Such curves were

studied earlier by Gundlach [23] and Hammond [25]. We need information
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about the decomposition of numbers into prime ideals in quadratic fields.
(See [6], [30].)

4.1. Let K be a real quadratic field and oy its ring of integers. We
often write p instead of og. Let b be an ideal in o which is not divisible by
any natural number > 1. We consider the group SL, (o, b), see §3 (41).
Let I'y be the subgroup of those elements of SL, (o, b) which when acting
on $* carry the diagonal z; = z, over into itself. An element (}5) of
SL, (0, b) belongs to I'y if and only if

Ol (=G5 or (=

The matrices satisfying the first condition of (1) are in SL, (Q) with
a, €0, feb 1, yeb. Thus «, §, y are integers. The ideal b is not divisible
by any natural number > 1. Therefore [ is also an integer. A rational
integer y is contained in b if and only if y = 0 mod N (b) where N (b)
is the norm of the ideal b.

For any natural number N we let I'y (V) be the group of those elements
(4%) € SL, (Z) for which y = 0 mod N. This group was studied by Klein
and Fricke ([16], p. 349; see [70], p. 24).

We have proved the following lemma:

Lemma. Let b be an ideal in o which is not divisible by any natural
number > 1. Then I'y (N (b)) is the subgroup of those elements of I
which satisfy the first condition of (1). The group I'y equals I'q (N (b)) or
is an extension of index 2 of I'y (N (b)).

IfK=0Q (ﬁ ) where d is square free, then a matrix of I'y satisfying
the second condition of (1) is of the form \/ d (iy‘&’;g where oy, 7o, 0, are
rational integers, f, is a rational number, 7y, \/ deb, and B,/ deb™ 1.

If b is not divisible by (\/c? ), then the fractional ideal (f,, \/ d) has

in its numerator a prime ideal dividing the ideal (ﬁ ) and the determinant
of our matrix would be divisible by this prime ideal, this is a contradiction.
Thus a matrix satisfying the second condition of (1) does not exist in this

case. If b is divisible by (/d), then [I'y : Ty (N ()] = 2.

In fact, b is divisible by (\/g ) if and only if N (b) is divisible by d and
the matrices satisfying the second condition of (1) are of the form
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(V8 BV

where oy, By, Vo, 0, are rational integers and y, = 0 mod N (b)/d. Such

matrices exist, because (4, N (0)/d) = 1. If b = (\/ d), then I, is the
extension of index 2 of I’y (d) by the matrix

(2 %)

This group will be denoted by I'* (d), see Fricke ([16], p. 357). We
have proved: -

Proposition: Let K = Q (\/3 ) be a real quadratic field (d square free).
. Let b be an ideal in vy which is not divisible by any natural number > 1. If
N (b) is not divisible by d, then the group I'y of those elements of SL, (0, b)
which carry the diagonal of $?* into itself equals I'q (N (9)). If N (b) is
divisible by d, then I'y is an extension of index 2 of I'y (N (b)). In particular,

ifb = (\/d), then Ty = I'*(d).

N
We also consider the group SL, (og, b) of matrices (5 ﬁ) with «, 0 € 0,

Beb ™, yeb and ad — By a totally positive unit.
N
The groups SL, (0g, b) and SL, (0g, b) do not act effectively on $2.
If we divide them by their subgroups of diagonal matrices, we get the groups
G (0g, b) and G (og, b) which act effectively and generalize the Hilbert
modular groups G and G (see 1.7). As in 1.7 we have an exact sequence

) 0 G(og,b) > G0, b) > UT/U2 -0

The subgroup of those elements of G (og, b) which carry the diagonal
over into itself is I';/{ 1, —1} which acts effectively on $. The subgroup

of the elements of G (og, b) which keep the diagonal invariant is an exten-
sion ofifldex lLor2of I'y/{ 1, —1}. We can write it in the form fb/{ 1, -1}
where I'y = SL, (R) is an extension of index 1 or 2 of I7.

The embedding of the diagonal in $? induces maps n and 7 of §/I’ 6

and $/I; in $*/G (vg, b) and 52/é (o, b) respectively. The maps n and
n need not be injective. We have a commutative diagram
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9/Ty > $%/G (og, b)
(3) Gl lp
« T ' R
ST —> 9%/G (0, b)

The maps n and 7 map /I, and 5/1: » with degree 1 onto their images.
If K has a unit of negative norm, then the two lines of diagram (3)
can be identified. If there does not exist a unit of negative norm in K,
then p has degree 2 and o is bijective or has degree 2, depending on whether

Iy=T, or [fb:Fb]=2.

If we compactify $?/G (og, b) and 552/GA (0g, b) and resolve all quotient
and cusp singularities by their minimal resolutions, then we get non-

singular algebraic surfaces Y (og, b) and I}(DK, b). On Y (og, b) we have
an involution « induced by (8(1’ where ¢ is a generator of U*. We have

a rational map p : Y (0g, b) = Y (0g, b) compatible with «. The map p
is regular outside the isolated fixed points of «. The maps = and n induce

maps of the compactifications $/I'y and g/fb into the non-singular algebraic
surfaces. We have a commutative diagram

— T
55/Fb > Y(DK, b)
4) o l l p
S/ i » ¥ (05, 1)

If KX has a unit of negative norm, then the two lines of (4) can be identified,
the vertical maps are bijective.

We denote the irreducible curve %(.6/1: p) by C(b). It may have singu-

larities. Sj/f o I8 its non-singular model which is mapped by n with degree 1
on C(b). |

We put D (b) = p~ ' C(b). If degree (p) = 2 and degree (o) = 1 then
D (b) is the union of two irreducible curves D, (b), D, (b). If degree (¢) = 2,
then D (b) is irreducible. The involution o carries D (b) into itself, mapping
D, (b) to D, (b) if D (b) is reducible.
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The resolution of the cusp at oo of 532/@ (og, b) is described by the
primitive cycle ((bg, ..., b,—;)) of b~ (see 2.6) It determines a (narrow)
ideal class with respect to strict equivalence whose inverse we denote by
B. A quadratic irrationality w is called reduced if 0 < w’ < 1 < w. The
quadratic irrationality w is reduced if and only if its continued fraction
is purely periodic. There are exactly r reduced quadratic irrationalities
belonging to the cycle, namely the numbers

(5) we = [[bes brs1s ... 1], (see 2.3 (8)).

After calling one of them w,, the notation for the others is fixed. Then
they correspond bijectively to Z/r Z.

If we speak of the curve S, of ‘the resolution (where k € Z/rZ), this

has an invariant meaning. It is the curve associated to the quadratic
~irrationality wy.
The fractional ideals b~ ' e B8~ ! (where b < oy and b is not divisible
- by any natural number > 1) are exactly the Z-modules Zw + Z -+ 1 where
- wis a quadratic irrationality having the given primitive cycle in its continued
fraction. (If we require that 0 < w’ <1 and w’ < w, then w is uniquely
determined by b~ 1)

Since the module b ! = Zw + Z -1 is strictly equivalent to
M = Zwy, + Z -1 (see 2.3), there exists a totally positive number A in M
(uniquely determined up to multiplication by a totally positive unit) such
that
(6) b l=Zw+Z-1=

M = —p3t

o -

1

A

where we defined the ideal by e B by b, ' = M. We have
o Loy &y 40

(7) SL, (vg, b) = (0 1) SL, (0g, bo) (o 1)

VS
Instead of looking at the diagonal and at the action of SL, (vg, b)

N
on $>, we can consider the action of SL, (g, by) on $2 and the curve
zy = A, z, = A'{ in $?, where { € H. Any totally positive number 1 e M
can be written uniquely as a linear combination of two consecutive numbers

A1, A, with non-negative integers p and ¢ as coefficients (see 2.3,
Remark):

(8) A=p Ay +4q- A4
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If we multiply 4 by a totally positive unit, then p, ¢ do not change
and k only changes modulo r. See the lemma in 2.5 and 2.3 (12). The
equation 2.3 (11) shows that the curve C (b) has in the k-th coordinate
system (u, v,) of the resolved cusp the equation

(9) uk == tp, ‘Z)k = tq,

where ¢ can be restricted to some neighborhood of 0. Namely, we just
want to study locally the intersection of our curve with the curves of the
resolution. Observe, that p, g are relatively prime because 4 is an element
of a Z-base of M. The fractional ideals b~! e B8~ * which satisfy our con-
ditions (b < pg and b not divisible by any natural number > 1) are in
one-to-one correspondence with the triples (k | P, q) where keZ/rZ and |
D, q are relatively prime natural numbers and where (k | 0,1) is to be
identified with (k+1] 1, 0).

We call (k| p, q) the characteristic of the ideal b e B. Actually, k does
not stand for an element keZ/rZ, but rather for the corresponding
quadratic irrationality w, which has an invariant meaning. If as in (6)

(10) bl =Zw+Z-1,
then (see (8))

_____pAk—l +qA,  pwet+g

(11) w =
PA-1 +qA4 pwet+q

where (gf; eSL, (Z) and p = 0, ¢ = 0. Therefore, we can determine the
characteristic of b by writing w in the form (11).

In view of (7) the algebraic surface Y (0, b) depends only on the ideal
class B. The identification of Y(DK, b) and Y(DK, bo) is uniquely defined
by (7). We shall denote the surface by };(DK, B). In a similar way the
algebraic surface Y (og, B) is defined. The preceding discussions (see in

particular (9)) yields the following theorem.

THEOREM. Let K be a real quadratic field and B a narrow ideal class
of vg. For every ideal b < oy with b € B such that b is not divisible by any

natural number > 1, we have defined an irreducible curve C (b) = = (5/1%)

in the non-singular algebraic surface i’(DK, B). The cusp at o of 35/}“ b IS
mapped by T to a point on the union of the curves Sy, ..., S,_1 in Y (0g, B)

which were obtained by the resolution of the cusp at oo of 552/é (0g, D).
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If b has the characteristic (k | 0,1), then b~' = Zw, + Z -1 where w;
is the reduced quadratic irrationality belonging to k, and the curve C (b)
intersects S, transversally in P which is not a double point of U S;. The
curve S, is given in the local coordinate system (uy, v)) by v, = 0 and C (b)
by u, = 1. If b has the characteristic (k | p, q) where p > 0 and g > 0,
then P is given in the k-th coordinate system by u, = v, = 0, the curve S,
- by v, =0, the curve S,_; by u, =0, and C(b) has the local equation
ufl = vy. )

If K has a unit of negative norm, then Y (0g, B) = Y (0g, B). If K does
not have such a unit, then in the non-singular algebraic surface Y (0, B)
we have a curve D (b) which in the neighborhood of the resolved cusp at o
is just the inverse image of C (b), the resolution of the cusp at oo being an
unbranched double cover of the cycle of curves Sy, ..., S,_1. (The funda-
mental group of a neighborhood of Sy, v ...u S,_; is infinite cyclic and
- we have to take the corresponding covering of degree 2.) The curve D (b)
~is irreducible or the union of two irreducible curves Dy (b), D, (b).

Remark. For different b, be B the curves C (b)), C (%) may coincide.
The curve C(b) = = (ﬁ/f ,) may intersect U §; in other points than P

which correspond to other cusps of 55/1:5-

4.2. Inview of the preceding proposition and the theorem it is important
to have a simple method to calculate N(b) if b™! = Zw + Z - 1. Let D
be the discriminant of K (see 1.4), then w can be written uniquely in the
form

M+ D

(12) w N

(see 2.6)
where N > 0 and M? — D = 0 mod 4N. Then we have
(13) N®) =N
To prove (13), one checks
NBT7Y = (1)

If we start with a reduced quadratic irrationality w, of the form (12),
then the formula
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1
W = bk -

Wrst ‘

where b, € Z and w, ., > 1, determines inductively for k£ = 0 the b, and
the w,. We put

_ M +D

14
( ) Wi 2Nk 1

This 1s the process of calculating the continued fraction for wy. If b
is the ideal of characteristic (k | D, q), see (11), then

(150  N(®) = p>N,_; + pgM, + ¢*N,, where M; — 4N,_ N, = D, |

as follows from (11), (13) and (14).
We shall tabulate the values of b,, M, N, for some w,, namely for
those quadratic irrationalities which are needed later to show that the

Hilbert modular surfaces $H2/G are rational for d = 2, 3, 5,6, 7,13, 15, 17,
343
——‘/— which

21, 33 (compare the table in 3.9). We also include w, =

is needed for ($ x $7)/G in the case d = 3 (see 3.12).
If r is the length of the cycle of the quadratic irrationality, we tabulate
b, M, N, only for 0 < k < r—1, because they are periodic with period r.

_ — 5+4/21
wo = 2+4/2 wo =3+4/7 wo = ;/
D=3 ‘ D = 28 D =21
k 0 1 k 0 1 k 0
by 4 2 by 6 3 by 5
M, 4 4 M, 6 6 My 5
Ny 1 2 N 1 2 N 1
_ 5+4/13 7+4/33
wo =2+4/3 wo = ;/ wo = ;/
D =12 D =13 D =33
k 0 k 0 1 2 k 0 1 2 3
by 4 by 5 2 2 by 7 2 3 2
M 4 M, 5 5 7 My, 7 7 9 9
Ny 1 N 1 3 3 N 4 3 4




34+4/5 — _3+4/3
Wo = ;/ Wo = 4 +'\/ 15 Wo = "'—3“"
k 0 k 0 k 0 1
bk 3 bk 8 bk 2 3
My 3 M, 8 M, 6 6
N, 1 Ny 1 Ny 3 2

_ 5+4/17

wo =3 +4/6 wo = ;/
D =24 D =17
k 0 1 k 0 1 2 3 4
by, 6 2 by 5 3 2 2 3
M, 6 6 M, 5 5 7 9 7
Ny, 1 3 Ny, 1 2 4 4 2

| 4.3. We consider the situation of the theorem in 4.1. Let F be one of
the irreducible curves C (b), D (b), D, (b) or D, (b). The curve F has

5/—1: as non-singular model where I' acts effectively on $ and equals
r o/{1, —1} or I' /{1, —1}. The curve F lies in a non-singular algebraic
surface Y, namely f’(nK, B) or Y (og, B). We shall calculate the value

of the first Chern class ¢; of Y on F which is up to sign the intersection
number of a canonical divisor K of Y with F:

(16) ¢;[F] = — K-F.

The surface Y is a disjoint union of a complex surface (4-dimensional
manifold) X with boundary as in 3.4 (19) and open neighborhoods
N,(1=v=<s+1) of the configurations of curves into which the s quotient
singularities and the ¢ cusp singularities were blown up (minimal resolu-
tions). The first Chern class of X can be represented as in 3.4 by « dif-
ferential form y, with compact support in the interior of X and it follows
as in 3.4 (25), (26) that

(17) [ = [(@+0)

1

where o; = -5 y;~%dx; A dy;. Since F comes from the diagonal
n
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z; = z, of $?, we obtain that |y, equals twice the Euler volume of $/I.

F
Thus by 1.4 (10)
. 1
(18) {9 =2fo = —=[G:TI7,
F §/T 3

where G = SL,(Z)/{1, —1}.

We have denoted the open neighborhoods of the resolved quotient
singularities and cusps singularities by N, (1 £v<s+¢) where s is the number
of quotient singularities and # the number of cusp singularities in the surface

$2/G (0, B) or $2/G (0g, B) which has ¥ as non-singular model. The
first Chern class of N, can be represented by a differential form y, " with .
compact support in N, in such a way that y; + > 7, represents the first
Chern class of Y. By Poincaré duality in N, each 7, corresponds to a
linear combination with rational coefficients of the curves into which the
singularity was blown up. This linear combination will be called the Chern
divisor of the singularity and denoted by c¢,™. It follows that

s+t
(19) ¢ [Fl=2fo+ Y ¢ F
9/T v=1
We denote the curves of the minimal resolution of a singularity by S;.
For a quotient singularity the Chern divisor equals ) a;S; where the
rational numbers g; are determined by the linear equations

J

This follows by the adjunction formula, since all the S; are rational
and non-singular. In some cases we have calculated the numbers a; at the
end of 3.3. For any quotient singularity of type (p;1,q) the matrix
(S;-S;) equals )

o
&
1\

Y
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where p/q = [[by, ..., b,]], (see [35], 3.4).
The inverse of this matrix has only non-positive entries. Since 2 + S - ]
= 2—5b;<0, we have q; 2 0.
For a cusp singularity the Chern divisor equals ) S;, (see 3.2 (9)).
Therefore, in (19) all the terms c{” - F are non- negatlve

Every cusp of $/I', the non-singular model of F, maps under $/I' - Y
to a point on some curve in the Chern divisor of a cusp singularity. This
- intersection point gives at least the contribution 1 in (19).

Let a, (I') be defined as in 1.6. If an element y of I' has order r, then

(since I' = G (0g, b) or I' < G (og, b)) we have a quotient singularity of
type (r; 1,1) whose Chern divisor intersects F in a point coming by
$ — H/I' - F from a point z of § whose isotropy group is generated by
7. The Chern divisor contains in this case just one curve S and equals
r—2

S, (see the end of 3.3).

r

If we denote by o (I') the number of cusps of 55/—F we get by (19) the
estimate

(20) o [Flz2fow + Z 2a,(F)+J(F)

H/T r=2

The Euler number of the non-singular model 53/_1“ of F is given by the
classical formula

ar(F)+0(F),

(21) e($/0) = [o+ Z

HIT rx2

which follows from 1.6 (21), because o (I') points are attached to $/I’ by
the compactification. By (20) and (21)

(22) ¢ [F] 2 2¢(S/T) = ¥ a,(I) — o(I)

r=2

The right side of (20) is defined for any discrete subgroup of type (F) which
is equivalent in this case to $/I" having a finite volume.

Definition :
S/r - rz2

2e (H/I) — Zzar(F)— o (I).

a L)+ o (D)

I

L’Enseignement mathém., t. XIX, fasc. 3-4. 17
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If I is the Klein-Fricke group I'y (N) divided by {1, —1} we shall
write ¢y (N) for ¢, (I') and also a,(N) for a,(I') and ¢, (N) for o (I).
The numbers a, (N) vanish for r > 3. There are well-known formulas for
[SL;(Z) : I'y (N)], for a,(N) and o, (N), (see, for example, [70], p. 24).

The Euler number e ($/I', (N)) will be written as 2 — 2g, (N). By (21)
there is a formula for g, (N) which implies (as Helling has shown recently

[32])
(23) g8o(N) =0<N=1,2,3,4,56,7,8,9,10,12,13, 16, 18, 25
g (N)=1<N=11,14,15,17,19, 20, 21, 24, 27, 32, 36, 49
Compare [13] where the values of g, (N), a,(N) and o, (N) are tabulated -

for N = 1000. Therefore, we can write down easily a list of ¢; (¥) for the
rational and elliptic curves /Iy (N) (see (23)):

go(N) =0 _
N ”123456789101213161825
cy (N) 1111111010} 0]0|0]|—2|—-2|-2|-2|-4-4
|
(24)
go(N) =1
N ‘11 14 |15 | 17 {19 | 20 | 21 | 24 | 27 32136 49
cy (N)

~2|—4|—-4|—-4|-4|-6|—-6|—-8|—6 —8’—12 -10

4.4. We want to prove that the Hilbert modular surfaces are rational
in some cases. An algebraic surface is rational if and only if it is birationally
equivalent to the complex projective plane, or equivalently if the field of
meromorphic functions on the surface is a purely transcendental extension
of the field of complex numbers of degree 2.

Let S be a non-singular algebraic surface and K a canonical divisor of
S. The “complete linear system” lmK | of all non-negative divisors D
which are linearly equivalent to mK is a complex projective space whose
dimension is denoted by P, — 1. The numbers P, (m=1) are the pluri-
genera of the surface .S (see, for example, [64] and [36], p. 151).

We have P; = g, (see 3.6). The equality P,, = O means, that | mK |
is empty. The numbers P,, (m=1) are birational invariants. They vanish
for rational surfaces.
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Castelnuovo’s criterion ([46], Part IV):

A non-singular connected algebraic surface S is rational if and only if
gl = P2 = 0

Remark. Clearly, P, = 0 implies g, = 0. There are algebraic surfaces
with g, = g, = 0 which are not rational (Enriques’ surfaces with
g, = g, = 0and P, = 1, see [64]). The condition g, = g, = 01is equivalent
to g, = 0 and y(S) = 1 (see 3.6). For Hilbert modular surfaces g, = 0
(see the lemma in 3.6). Up to now all Hilbert modular surfaces and similar
surfaces (see § 5) with ¥ (S) = 1 have turned out to be rational. The number

P, of a non-singular model of $%/I" equals the dimension of the vector
space of those cusp forms of weight m which can be extended holomorphically
to the non-singular model. Therefore P,, < dim S (m). The calculation
of P,, seems to be a very difficult problem.

We shall base everything on Castelnuovo’s criterion, not worrying
whether in a systematic exposition of the theory of algebraic surfaces
some results would have to be presented before this criterion. The following
theorem is an immediate consequence of Castelnuovo’s criterion.

THEOREM. Let S be a non-singular comnected algebraic surface with
g1 = 0. Let ¢y be the first Chern class of S and K a canonical divisor of
S. If D is an irreducible curve in S with ¢,[D] = — K-D >0 and
D-D =0, then S is rational.

Proof. We show that P,, = 0 for m = 1.
If 4e|mK]|, then

A=aD+ R, where a>0,R-D = 0.
Therefore,
mK:-D =aD-D +R-D =0

which is a contradiction. Thus mK is empty.

CorROLLARY 1. Let S be a non-singular connected algebraic surface
with g, = 0. Let ¢, be the first Chern class of S and K a canonical divisor
of S. If D is an irreducible curve on S with ¢, [D] = 2, then S is rational.
If D is an irreducible curve on S with ¢, [D] = 1 which has at least one
singular point or which is not a rational curve, then S is rational.
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Proof.. By the adjunction formula (0.6)
¢ [D]—-DD = ~K-D—-D-D

equals the Euler number e (l~)) of the non-singular model D of D minus
contributions coming from the singular points of D which are positive
and even for each singular point. Thus

¢;[D]=D'D < e(D) < 2
and |

¢y [D] ';D'D

lIA

0,

if D has a singular point or is not rational. Therefore, the assumptions
in the corollary imply D- D = 0.

COROLLARY II. Let S be a non-singular connected algebraic surface with
g, = 0. Let ¢, be the first Chern class of S. Suppose that S is not a rational
surface. If D is an irreducible curve on S with ¢y [D] = — K- D = 1, then
D is rational and does not have a singular point. Furthermore, D - D = — 1.

A non-singular rational curve E on a non-singular surface S which
satisfies E-E = — 1 (or equivalently ¢; [E] = 1) is called an exceptional
curve (of the first kind). It can be blown down to a point:

In a natural way, S/E is again an algebraic surface ([64], p. 32). The
surfaces S and S/E are birationally equivalent. |

If ¢, is the first Chern class of S and ¢, the first Chern class of S/E,
then for any irreducible curve D in S and the image curve D in S/E we
have

(25 a) & [Dl=c¢,[D]+ D-E

This is true because ¢; = n*c; — e, where n : S — S/E is the natural
map and e e H? (S, Z) the cohomology class corresponding to E under
Poincaré duality.

If D is non-singular and D - E = 1, then D is also non-singular and
by (25a) and the adjunction formula

(25 b) D-D=D-D—1
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CorROLLARY III. Let S be a non-singular algebraic surface with g4 = 0
which is not rational. If E,, E, are two different exceptional curves of the
first kind, then E,, E, do not intersect.

Proof. We have ¢, [E;] = 1. If we blow down E,, then in S/E, (first
Chern class c,)

¢y(Ey) = 1 +E, - E,
Therefore, by Corollary I, E; - E, = 0 and thus £, n E, = @.

4.5. Let G be the Hilbert modular group for K = Q (\/c? ), d square
free. If we resolve all singularities in $?/G (minimal resolutions) we get
a non-singular algebraic surface Y (d) which in 4.1 was denoted by
Y (0g, B) where B is here the ideal class of principal ideals(1) = g with
A>0, A>0. If 1 is not divisible by a natural number > 1, we can
consider the curve

(26) zy = A, z, = 20 ((€9)

which according to (7) gives one of the (one or two) irreducible components
of the curve D ((/1)) in Y (d). If we replace 4 by A’ we get the same curve.
Namely, our curve can also be written as

1 1
27) 21=z<—m), zz=/1<-—/u,€),éje$,

1
because {—» — m 1S an automorphism of $§.

1
If we apply the element z;» — — of G to (27) we get
Zj

(28) zy = A0, oz, = A, [eH.

We consider the involution (z,, z,) = (z,, z;) on $? which induces

an involution 7" on $?/G and hence on Y (d), because the minimal resolu-
tions are canonical. (26) and (28) show that our curve is carried over to
itself by 7.

The cusp at oo of $?/G admits a resolution:

We have to take the primitive cycle or twice the primitive cycle of the
reduced quadratic irrationality w, such that Zw, + Z -1 = Dg:
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29 wo = [/ d] +1+./d for d = 2,3 mod 4
w0=%({\/g}+\/g) for d = 1 mod 4

where {\/ E} denotes the smallest odd number greater than \/ d. We

have (wy 1Y = w,, (see 4.2) and therefore (2.3 (13)) for the continued

fraction of wy:
(30) W__,k = Wk, bk = b_k, Mk - M—-kﬂ Nk = N—_k, (W;l)l = W—k+1

If r 1s the length of the cycle, then for wy, b, M,, N, the index k can
be taken mod r. However, for the curves .S, we have to consider £ modulo
r or modulo 2r.

We note

(31) by = My =2([/d]+1), No =1, Ny = ([/d] +1)* -
’ ford = 2,3 mod 4

- 1 _
(32) bo = M, ={\/D}, Ny =1, Ny =Z({\/d}2“
ford = 1mod4

For any characteristic (k [ p,q) we have one or two curves (26) in
the Hilbert modular surface Y (d). Compare the theorem in 4.1. Let D
be such a curve. Suppose

(33) N =N() = p°Ny—y + pg M, + ¢> N, %20 mod d,

then the non-singular model of D is /I, (N). Suppose also N > 1.
Then the curve D intersects the Chern divisor U §; of the resolution at
least twice, the intersection points correspond to the cusp at oo and at 0
of $/I'y (N) which are different cusps for N > 1. By applying the theorem
in 4.1 to the curves (26) and (28) which both represent D we see by (11)
that the two intersection points are of characteristic (k ] p,q) and
(—k+1 I g, p). The involution 7" maps S, to S_; and interchanges the
two intersection points. If the characteristic is (k | 0, 1), then the
symmetric one is (—k+1|1,0) = (=k|0,1). If (33) is satisfied, then

¢; [D] 2 ¢; (N), see (24),

because the non-singular model of D is /Iy (N).
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Since the intersection number of u? —v? = 0 and uwv = 0 equals
p + g, the intersection number of D and the Chern divisor Y S; is
> p + g in each of the two intersection points and therefore

(34) ¢;[D] 2 ¢t (N) +2(p+q-1

Because of 4.4 (Corollary I) we have the following theorem.

THEOREM. Let K = Q (\/E ), d square free, and G the Hilbert modular
group. Consider the continued fraction for w, (see (29)) and the corres-
ponding numbers M,, N, (see 4.2). We look at the following representations
of natural numbers N:

(3%) N = pNi_y + paM; + ¢°N,
(for some k and for relative prime natural numbers p, gq).
If N is represented as in (35), if N % 0modd and N > 1, then
ci(N) +2(p+q—-1) <2

or the Hilbert modular suface $H*/G is rational.

N_;+ M, + N, equals 7 for d = 2,21, it equals 8 for d = 17, it
equals 9 for d = 7,13 (see 4.2 or recall that N_; = N; and use (31),
(32)). For d = 3, we have 13 = 4N, + 2M, + N,. For d = 5, we have
11 = 4N; + 2M,+ N,. For these d we get ¢, (N) + 2(p+q—1) =2
(see (24)). Thus the Hilbert modular surface is rational in these cases.

For d = 6, 15,33 a more refined argument is needed. Actually, the
theorem throws away some information, because we have only used two

cusps of H/I'y (N), (N>1). If N is not a prime, then /I, (N) has more
cusps. This is relevant for d = 15: There are two cusps of the Hilbert
modular surface which are of equal type (3.9). We have 10 = N_, + M,

+ Ny. The curve $/I', (10) has 4 cusps. One can prove that the intersection
of D with the Chern cycles of the two cusps of the Hilbert modular surface
looks as follows (in this case the curve D (b) of theorem 4.1 is irreducible)

@ IS X

Therefore

¢y [D] =2 ¢, (10) + 4 = 2.
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For d = 6 we have a diagram

-6
D N =73

(37) -2 -2

-6

Again the curve D = D (b) of the theorem in 4.1 is irreducible.

For the curve D we have ¢, [D] = ¢; (N) = 1. Thus the surface Y (6)
1s rational or D is an exceptional curve of the first kind. If D is exceptional,
then we blow it down. The images of S; and S_,; become exceptional
curves which intersect each other. Thus Y (6) is rational by Corollary III
in 4.4. We could have also used N = 10. The corresponding curve goes
through the 4 corners of diagram (37).

For d = 33, the same argument works using N = 4.

We have proved

THEOREM. Let K = Q (ﬂ ), d square free, and G the Hilbert modular
group, then $?/G is rational for d = 2,3,5,6,7,13, 15,17, 21, 33.

For d = 3 we consider also ($ x $7)/G. The non-singular model is
Y (og, B) where B is now the ideal class of all ideals (4) with 11" < 0.
The resolution of the cusp at infinity is

N=3

We have one curve with N = 2 (non-singular model $/I'y (2)) and
two curves with N = 3 (non-singular model $/I'* (3)).

If ' = I*3)/{1, =1}, then e(H*/I') = 2, a, (I') = ag(I') = 1, all
other a,(I') = 0, o (I') = 1. Thus

e (T*(3) =4—-2-1=1
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Either the surface is rational, or the three curves with N = 2,3 can
be blown down. Then S, can be blown.down and S; and S_; give two
exceptional curves which intersect in two points. Thus the surface is rational.

Observe that in general the rationality of Y (og, B )implies the ration-

ality of Y (og, B) (Liiroth’s theorem [64], Chap. III, § 2). We could show
this directly by using our curves in Y (og, B).

Exercise. Let K = Q (\/@ ). Calculate the arithmetic genera of $2/G
and $2/G. Prove that the surface $2/G is rational !

In all cases where we know that the arithmetic genus equals 1 we have
proved rationality.

§ 5. THE SYMMETRIC HILBERT MODULAR GROUP
FOR PRIMES p = 1 mod 4

5.1. Let S be a compact connected non-singular algebraic surface.
The fixed point set D of a holomorphic involution T of S (different from
the identity) consist of finitely many isolated fixed points Py, ..., P, and
a disjoint union of connected non-singular curves Dy, ..., D..

If there are no isolated fixed points P;, then S/T is non-singular and
the arithmetic genera of S and S/T are related by the formula

1 1
(1 x(S/T) = 5(%(5) ke [D]>

where D = ) D; and ¢, is the first Chern class of S (see [40], § 3).
Furthermore, if F is a curve on S (not necessarily irreducible) with

T(F) = F and F not contained in D and if F is the image curve on S/T,
then

() ¢ [F] = %(c;[F] + F-D), where ¢; = first Chern class of S/T"

Proof. If m :S — S/T is the natural projection, then ¢; = n*El —d
where d € H? (S, Z) is the Poincaré dual of the branching divisor D. Thus

(e +d)[F] = ¢, [2F].
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5.2. Let p be a prime = 1 mod 4. We consider the field K = Q (\/_p_)
and its Hilbert modular group G. We make these restrictions throughout
§ 5 though some of our results are valid more generally.

The involution (z,, z,) = (z,, z;) induces an involution 7" of $?/G and

of $*/G. As mentioned before (4.5), it can be lifted to an involution T

of our non-singular model Y (p) because this was obtained by the canonical |

minimal resolution of all singularities in $?/G.

We shall study the algebraic surface Y (p)/T (the isolated fixed points
of T give rise to quotient singularities of type (2; 1, 1) of this surface),
calculate its arithmetic genus and determine for which p the surface is
rational (see [39], [40]).

Equivalently we can consider the symmetric Hilbert modular group G,
which is an extension of index 2 of G by the involution (z,, z,) > (z,, z;)
and study $2%/G,:

The surface Y (p)/T (with the quotient singularities resolved) is a non-
singular model of the compactification of $2/G.

5.3. The field K has a unit of negative norm. Therefore, the groups G

and G coincide (1.7) .The class number of K is odd. The ideal class groups
C and C* are equal and the homomorphism Sg in 3.7 (42) is an iso-
morphism. Therefore for any ideal b = oy we can find a matrix 4 € GL; (K)
(see 1.3) such that

(3) : A™'SL, (o) A = SL, (0g, b)

(see 3.7 (40) and 4.1 (7)). If 4,, A, are matrices satisfying (3), then, for
B - Al A2~1 = (lcl Z), weE haVC BSLz (DK)B—I = SL2 (DK).

Proposition.
If BeGL; (K) and BSL, (0ox) B~! = SL, (0g), then

(&) Jdet BeK, BeSL, (0g)

/ det B

Proof (compare MaaB [54]). Put h? = det B. We may assume that
B is an integral matrix. Since

1 — ac/h* a?/h* )

B 11 B—l —
SL, (o) 2 B (o 1) ( — c%/h?* 1 + aclh?

|
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1 :
and a similar formula holds for B (} (1’) B!, we see thatz B has coefficients

which are algebraic integers. Thus the ideal (a, ¢) of pg consists exactly of
those elements x in oy such that x/4 is an algebraic integer. This implies
that (@, ¢)® equals the principal ideal (det B). In our case, the ideal class
group has odd order. Thus («, ¢) is principal and det B multiplied with a
“ totally positive unit is a square in pg. But every totally positive unit is a
square of a unit. Therefore /1 € og. For the algebraic number theory needed,
see [30], § 37.

An 1deal is called admissible if it is not divisible by any natural number
> 1. For any admissible ideal b = oy we have (4.1) a curve C(b) on

Y (0g, b) = )}(DK, b). In view of (3) we have a curve (which we also call
C (b)) on our Hilbert modular surface Y (p). The curve is given in $2/G
by

(5) Z = Ag, 2y = A,Ca Ceg

Because of (4) it does not depend on the choice of 4. (Multiplication of
A from the left by an element of SL, (0g) does not change the curve.)

We can also say that the surfaces $?/SL, (og, b) are canonically
identified and the curves C (b) are the diagonals in the different representa-
tions of $%/G as H?/SL, (v, b). If we change 4 by multiplying from the
right by a rational matrix with positive determinant, we get the same
curve, because we make just a change of the parameter { € §. This implies
that C(by) = C(b,) if there exists a matrix 4, e GL; (Q) such that
Ao SL; (g, b1) 49 * = SL, (o, b,).

Lemma 1. If by, b, are admissible ideals in vy, then the curves
C(by), C(by) coincide if and only if N(b,) = N (b,).

Proof. If N (b)) = N(b,) = N, then put d = N/N ((bl,bz)). We
have (d, N/d) = 1, because the ideals are admissible. Thus there exists a
rational matrix of determinant d of the form

d B
(6) Ay = (ao 1 >, = Omod N
0 Yo 5od Yo

‘where «y, 1,70, 5o are integers. (Such a matrix occurred in a related
context in 4.1). Then, for any 4, with these properties,

Ao SL, (0g, by) 4y l= SL; (ok, b,)




— 264 —

which shows that the curves coincide. If the curves c01nc1de then the norms |
are equal. (We leave the proof to the reader.)

A natural number N = 1 is called admissible (with respect to p) if it
is the norm of an admissible ideal. The prime ideal theory of quadratic
fields which we always have used tacitly yields the following lemma.

Lemma II. The natural number N = 1 is admissible with respect to
p if and only if N is not divisible by p?> and not by any prime q # p with

5=

Definition.

In view of Lemma I we have a well-defined curve for any admissible
natural number N. This curve on the surface Y (p) will be called Fy.

Lemma III. For the involution T of Y (p) and any admissible N we
have T(Fy) = Fy

Proof. If N = N (b), then Fy = C (b) is given in $H?/G by (5) where
A 1s as in (3). Therefore T (Fy) is the curve z; = A’(, z, = A{. But his
is C (b") which equals C (b) by lemma I.

Remark. If N =0 mod p, then N ((b,b’)) = 1 and the involution
T on Fy can be given by the matrix 4, = (g 0"1) (see (6)) if we lift T to

the non-singular model $/I', (N) of Fy. Thus $/I',,(N) is the non-singular
model of Fy/T. (see 4.1). In particular, T is not the identity on Fy if
N %0 mod p and N > 1.

5.4. The curves F; and F, (considered as curves in $2/G) are the only
curves which are fixed pointwise under 7, (see [14] Part II, [62]). The

curve F, belongs to the ideal (\/ ;eo) where e, is a unit of negative norm

and can be given by z, = \/;eoﬁ, Z, = — \/;e(;é’ or by z, = e z,.
The involution T acts on the quotient singularities of $?/G. The descrip-
tion of this action [62] depends on the residue class of p mod 24. There-

fore we define

(7N e =1for p=1mod3, e =0 for p =2 mod 3
0 =1for p=1mod8, 6 =0 for p = Smod 8
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In $?%/G the following holds [62]: Of the & (—4p) quotient singularities
of order 2, half of them lie on F, and not on Fy, and one of them lies on
F, and F, and is the only intersection point of F; and F, in $?%/G. There
are in addition ¢ quotient singularities of order 2 which are fixed under 7.
“They” lie neither on Fy nor on F,. The remaining order 2 singularities
are interchanged pairwise under 7. Of the A (—3p) quotient singularities
of order 3, exactly half of them are of type (3; 1, 2). They lie on F,. There
is one singularity of type (3; 1, 1) which lies on F, whereas ¢ such singu-
larities lie on F,. The remaining singularities of type (3; 1, 1) are inter-
changed pairwise. For p = 5, the two singularities of order 5 are inter-
changed under 7. The involution T acts freely outside Fy, F, and the

quotient singularities. If we pass to the non-singular model Y (p) of W?,
we get the following configuration of curves. We omit the curves coming
from the quotient singularities which are pairwise interchanged and only
- show the intersection behaviour outside of the resolved cusp singularities.

f
l
|
l

such a “‘cross’’ occurs
% h(— 3p) times

1,‘1 =2
this occurs
(8) L h(—4p) times

The curves Fy, F, are pointwise fixed under the involution T of Y (p),
therefore they are non-singular curves on Y (p). All curves in the diagram
are non-singular and (except F,) rational. F, is rational if and only if
p = 5,13,17,29,41 (see 5.7). The points P,, and P,ife=1,and P;, P,
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if & = 1 are the only isolated fixed points of T'on Y (p) outside the resolved
cusp singularities.

The following lemma is easy to prove and very useful for deducing from ‘
Prestel’s results [62] that the configuration on Y (p) is as indicated in (8).

Lemma. If S is a compact complex manifold of dimension 2 and T an
involution on S which carries the non-singular rational curve C over into
itself, then T is the identity on C or T has exactly two fixed points P and
Q on C. In the latter case the following holds :

If C-C is odd, then one of the points P, Q is an isolated fixed point
of T, the other one is a transversal intersection point of C with one of the -
(nonm-singular) curves which are pointwise fixed under T. If C- C is even,
then P and Q both are isolated fixed points of T or both are such transversal
intersection points with a curve pointwise fixed under T.

The class number ~ of K = Q (\/ ; ) is odd. There are A cusp singu-
larities corresponding to the % ideal classes (see 3.7). The involution 7 on |

$?%/G leaves one cusp fixed and interchanges the others pairwise. 7 maps.
the cusp of type (M, U?) where M is a fractional ideal representing an
ideal class to the cusp of type (M’, U?). If M is the Z-module Z - w + Z- 1

1
(with 0 < w’ <1 <w), then M’ is strictly equivalent to Z — + Z 1.
w

The resolution of (M, U?) is given by the primitive cycle of the purely
periodic) continued fraction of w, the resolution of (M’, U?) by the

1
primitive cycle of — which is the same cycle in opposite order. The involu-
1%
tion on Y (p) maps the cycle of curves in the resolution of (M, U?) onto
the cycle of curves in the resolution of (M’, U?). The fixed cusp is of type

(M, U?) where M = Zw, + Z -1 and where wo = % ({/p) + \/;),
see 4.5 (29). It is the cusp at oo.

1 _
THEOREM. The length r of the cycle of w, = -?:({\/; b+ \/ p) is

an odd number r = 2t + 1. The involution T on Y (p) maps the curve S,
to the curve S_, (see 4.5). The curve F, intersects S, transversally. It has
the characteristic (0| 0, 1). The curve F, intersects S_, and S,, it has the

characteristic (—t|1,1). We put {\/ ;} = 2a + 1. The intersection
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behaviour of the cycle of curves with F, and F, is illustrated by the following
diagram.

--b2
S L] L] . b
-b 2 -
f‘—’ Sy k
)

/

2a+1) =8 .S Fp

\\\b\ A
St4q

[2a+1 bl"‘ bt, bt:"' 1]]

The point P, indicates an isolated fixed point of T. The points Py, Py,
and P, (if e = 1), and P5, P, (if 6 = 1) are all the isolated fixed points
of T. The curves Fy, F, are the only one-dimensional components of the
fixed point set.

Proof. As in 2.5 and 3.10 we denote ordinary continued fractions by

1+ p
[ao, a1, a3, ...]- Then, since a = {——-——ZL/E] ,

2a+1+.Jp
(10) W = 5 \/p = [2a,a4, ..., 0, apy ..., a1, 2a — 1]
(See [60], § 30. Because there exists a unit of negative norm, the length
of the primitive period in (10) is odd.)
If one applies the formula which transforms the continued fraction (10)
into a continued fraction of our type (see 2.5 (19)) one has to go twice

over the period in (10). We have

(1) we =[[2a4+1, 2,002, 08,42, 2,002, 4342, .0, 2, .0, 2]]
N et R

g
a;j—1 2a—-2 ai—1

Thus the length r of the primitive cycle of w, is odd (r = 2¢+1). In
fact, t = a; + ... + a,, + a — 1. Under the involution T only S, (self-
intersection number — (2a+1)) is carried over into itself. The only
symmetric characteristics are (0] 0, 1) and (—t| 1, 1). The existence of the
isolated fixed point P, follows from the preceding lemma. Q.E.D.

For the number w, in (11) we wish to calculate w, ., (where k = 1, ..., a),
see 4.2. The continued fraction [[...]] of w,,, begins with a — k two’s.
Using again formula 2.5 (19) we obtain
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0 — =[—-1l,a—k+1,a,,a,,...]

Witk
1

which yields

VP (k=3 My +/p
Jp = Q2k=1) 2Ny

Witk =
where
(12) th+k = le(p — (2k—1)*), M,y = 2N,1; + (2k—1)
F, has the characteristic (—¢|1,1) = (t+1] 1, 1) which was obtained in

the above proof by a symmetry argument.
It follows also from the theorem in 4.1, because

Nivy + Ne+ M, = Niwy + Ny + Myyy = 4Ny +1 = p.

In view of (12) and the theorem in 4.1 we have the following proposition.

Proposition. On the Hilbert modular surface Y (p) the cusp at oo gives

1+p
the following configuration of curves <a = [#])

F F F F
Hp-(2a-1)%)  $(p-(2a-3)%) ... 3(p-9) © gfp-1)
] S_(t+a) -(t+a-1) \S:ﬁ
(13)
S_(t+k) T Stk




We have S,ip*Siirx = S_q+ry S—q+ny = — 2 for 1k<a—-1
and S,1q S_giqy = — @ +2).If p = Qa—1)* + 4, then S_10 = Si+a
= So, the curve Fy(,_(2q—-1)2 equals Fy and the diagram has to be changed
accordingly. In this case we have '

wo = [2a,2a—1] = [[2a+1,2,...,2]]
e

2a—-2
and
St+a ) St-l-a = SO ) SO = - (261 + 1)'

We do not claim that the Fy are non-singular and do not indicate
their mutual intersections nor their intersections with F,. The intersections
indicated are transversal.

5.5. The curve F; on Y (p) is non-singular. It follows from (8) and
4.3 that it is exceptional. In general, we do not know whether Fy is non-
singular. In view of 4.3 (24) the curves F,, F5, F, are candidates for excep-
tional curves. In fact, it follows from Corollaries I, II in 4.4 that they are
exceptional if Y (p) is not rational. Y (p) is rational if and only if p = 5,
13, 17. Thus we have

Lemma. If p is a prime = 1 mod 4 and > 17, then the curves Fy on
the Hilbert modular surface Y(p) are exceptional for N =1, 2, 3, 4 provided
N is admissible (see 5.3):

We always have the curve Fy. The curves F,, F, exist for p = 1 mod 8.

The curve Fj exists for p = 1 mod 3.
| For the following discussion we assume p > 17. The curves Fy, E, B,
in diagram (8) can be blown down successively. In view of corollary III
in 4.4, the curves F,, F;, F, are disjoint and do not intersect any of the
“ curves Fy, E, B;. According to the lemma in 5.4 the curves F,, F;, F,
" pass through exactly one of the isolated fixed points of the involution 7.

For F; the value ¢, [F3] equals 1, therefore by 4.3 it meets in $2/G
exactly one quotient singularity of type (3; 1, 1), thus it must be the one
which is fixed under T. It intersects B, (see (8)) only in P, and transversally
because otherwise we would have ¢, [F5] > 1. The curve F, has the model

9/T'y (4) which has three cusps. Therefore F, must intersect the curves of

the resolved cusps of $?/G in three points. One of them is fixed under T.
Thus F, passes through P,.

L’Enseignement mathém., t. XIX, fasc. 3-4, 18
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The curve F, passes through P; or P, in diagram (8), say P5. It intersects
L transversally in P; and does not intersect L in any other point, because

otherwise L would give in the surface with F, blown down a curve L with

Cq [I:] = 2. The curves F,, L can be blown down successively. Therefore L
is disjoint to any exceptional curve different from F,.

We have found an exceptional curve passing through P, only for
p = 1 mod 8. But there exists such a curve F for any p > 17.

For the cusp at oo we put as before w, = % ({\/;} + \/;)
=1Q2a+1 + \/ p). The involution T is given in the coordinate system
(4o, Vo) by

(14) (g, Vo) = (ub'l, “5(2a+1) " Vo),

as follows from 2.3 (9). The isolated fixed point P, of T has the coordinates
(—1,0). Thus it lies on the curve F < Y (p) given by u, = — 1 which
can be presented in $H x H by

(15) z1=C+%, 22=C+%, CeD).

Let I' be the subgroup of those matrices (} " of

1 —wp/2 1 wo/2
( > SL, (ox) ( )
0 1 0 1

which, when acting on $? carry the diagonal into itself. The curve 5/?
is a non-singular model of F. The group I is characterized by 4.1 (1), but
the second condition is impossible. Thus I' is the subgroup of SL, (Q)
of matrices (%) for which

(oc + ywe/2 — awo/2 + B — ywyi/4 + 5w0/2>
Y 0 — ywo/2

is integral. Since w, 1 is a Z-base of pg, we get that o, 6 are integers and y
is an even integer. We have

(16) — awo/2 + B — w4 + Swe/2 =
(— /2 —y2a+1)/4 + 8[2) wo + B +7((2a+1)> — p)/16
If p = 1 mod 8, then f is an integer and adé — fy = 1 implies o« = 0

mod 2 and y = 0 mod 4, because the coefficient of w, in (16) must be
integral. Thus I' = I'y (4) in this case.
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It p=5mod8, then I'y(4) = I'. We put y =2y* and f = p%/2.
Then y*, f* are integers which are congruent modulo 2. We have
o+ 0 = y* mod 2.

The matrix (; _01/2), whose third power is (7 fl)), satisfies these con-
ditions. I" is a normal extension of index 3 of Iy (4). The three cusp of

/Ty (4) are identified. 57 is a rational curve. Put I = r/{1, —1j.
We have a, (f’) =2 (ar(f‘) = 0 otherwise) and o (1:) = 1.

Therefore ¢, (l: ) = 1 (see the definition in 4.3), and the curve F is
exceptional. It passes through the isolated fixed point P, of 7. For p = 1
mod 8, the curve F equals F, because two different exceptional curves do

not intersect. We have T (F) = F.
We can now state the following proposition.

Proposition. If we blow down the curves Fy, E, B, F, and F,, L (for
0 =1),and F;5 (for e = 1) on the surface Y (p) for p > 17, then we obtain
a non-singular algebraic surface Y° (p). The involution T is also defined on
Y° (p). It does not have any isolated fixed point. The curve F, has a non-
singular image F 2 in Y° (p) which is the complete fixed point set of T.

5.6. If ¢, is again the first Chern class of Y (p), then

+ 1 g
P + -+ 2

(17) i [Fp] = — ; 3

This follows from 4.3 (19), because [SL,(Z):I4(p)] =p + 1 and
[I'*(p) : Ty (p)] = 2. We further use (8) and (9).

Let us now assume that Y (p) is not rational which is the case for
p>17. In Y(p) we have blown down 3 + 1 + 25 + & curves and
obtained the surface Y° (p) on which T has the fixed point set F 2. Let
¢} be the first Chern class of Y° (p). Then

+1 ¢
(18) c?[F§]=—3—6——+§+2+2+1+25+e.
This follows from 4.4 (25a) using that F, F,, F, intersect F » transversally
in exactly one point (see the lemma in 5.4). By 5.1 (1) the number ! [F g]
must be divisible by 4. We have

1 o —29
(19) ZC? [Fp] = *[2”2—4—:'»
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1 /¢
since 4—1(5 + 26 + 8) < 1. The surface Y° (p)/T is a non singular model

for the compactification of $2/Gy (see 5.2). The arithmetic genus of
Y° (p)/T will be denoted by y,(p). In 3.12 we have given a formula for
the arithmetic genus of Y (p) which we shall call here y (p). Then

h(—4p) 1

1
(20) x(p) = 5l (=1) +

where K = Q (\/; ). By 5.1 (1) and (19) the arithmetic genera y (p) and
xr (p) are related by the formula [40]

1 — 29
1) v2(p) = 5(x(p) —[p - D

(compare [14], Part II, Satz 2).

This formula is also valid for p = 5, 13, 17. In these cases the surface
Y (p) and therefore also Y©° (p)/T are rational and (21) reduces to
1 = 3({+1). It was shown in [40] that

P’ pyd
1440 48

xr (p) > (compare 3.12),

and explicit calculations gave the result that y,(p) = 1 for exactly
24 primes, namely for all primes (=1 mod 4) smaller than the prime 193
and for p = 197, 229, 269, 293, 317.

We wish to show in the next sections that the surfaces Y ° (p)/T are rational
for these primes. Since the rationality is already known for p = 5,13, 17 it
remains to consider 21 primes. Since the first Betti number of Y (p) vanishes
(3.6), the same holds for Y°(p)/T. Thus the rationality criteria of 4.4
(Corollaries I, II, III) can be applied.

5.7. The curve Fy in Y (p) (for an admissible natural number N > 4)
projects down to a curve Fy in Y°(p) and to a curve Fy = Fy/T in

Y° (p)/T. If N is not divisible by p, then Fy has $/I'* (N) as non-singular
model (see the remark in 5.3). We have a commutative diagram:

H | TIo(N) = Fy < Y, (p)
l l !
H|Tw(N)>Fy<Yo()/T
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There is an involution t on $/I, (N) compatible with 7" and having

9/T', (N) as orbit space. Recall that F g is the fixed point set of 7 on Y° (p).
Thus the intersection number Fy : F g is greater or equal to the number

fix (1) of fixed points of 7 on m:
(22) 9 F% = fix(r) = 2¢ (H/Tx (V) — e (H/To (N))
Let ¢* be the first Chern class of Y° (p)/T. By 5.1 (2) we get
i [Fy] = 2(c[Fx] + Fy Fy)

Since ¢ [Fa] = ¢, [Fy] = ¢; (N), see 4.3 and 4.4 (25a), the following
estimate is obtained: '

(23) ci[Fx] 23y (N) +e(H/ Iy (N)) —%e(H/ILo(N))

The right side of (23) only depends on N. We shall denote it by ¢} (N)
and have

(24) SRz W,
There are explicit formulas for the Euler numbers or equivalently the

genera of the curves 9/, (N), see [16], p. 357, and [13]. Helling [32] has

shown that there are exactly 37 values N = 2 for which $/I",, () is rational.
(In [16], p. 367, Fricke omits the value N = 59). We shall give a list of
the ¢] (N) for the 34 values = 5.

: By the definition of ¢, (N) we get:

If 9/T', (N) is rational, then (for N = 5)
(25) ci(N) =3 —go(N) —3(a,(N) + a5 (N) + 0, (N)).
Using [13] we obtain the following list:

e (HITy (N)) =2

N 5106|7819 (1011 |12|13]14]15|16|17|18]19]20]21

cig(N) 1|11 1j1j0]1|0|l0]lO0|O|O]|O]|—=1|0]|—1]|—-1

(26)

f(N) |0 |=2[—1/—2|—1|=1|-1|-2|-2|-4-3|-2|—2|—3|—6|—3| -4
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5.8. The curves Fy will be used for rationality proofs. Consider the
diagram (13) for p > 17. We have % (p— (2a—3)?) = 5. It follows from
4.2 (15) that the exceptional curves F,, F, F,, F; do not intersect .S, , and
S_+r for 1 =k < a — 1. These exceptional curves also do not meet
Sivq and S_( ., if § (p— (2(1—1)2) = 5. In this case, the configuration
(13) is not changed by passing to Y°(p). If we apply the involution T we
get the following configuration on Y°(p)/T.

(27)
Fx F ... Fz F*
l 2\ 1 2, 1
4(13”(23") ) Z(?—(28—3) ) Z(p—?) %(p-ﬂ
g S*
[e]
S;+a /. SN Q t+1
\\/\'4_-2/ Steac —2 -1
—(a1+1)
F*
P

If £ (p— Qa— 1)2) < 5, the diagram has to be changed. But the sub-
diagram of (27) obtained by not showing F¥ ,_.-1)2, and S/, exists
on the surface Y° (p)/T for any p > 17.

We do not know whether the curves F_f(p_(zk_l)g) are non-singular
and do not claim anything about their mutual intersection behaviour.
The S}, are the image of S,;, and S_.,,. They are non-singular. The
equation S-S5, = — 1 or equivalently ¢} [S7,] = 1 follows from
5.1 (2). The curves S, (1<k<a—1) can be blown down successively.
Then F?},_(z,\._l)g)/4 gives 1n the resulting surface a curve for which the
value of the first Chern class of the new surface on this curve is greater

or equal to ¢ (p— Qk—1?)/4) + a — k.

Proposition. Let p be a prime =1 mod4 (and p > 17). The non-
singular model Y° (p)/T for the symmetric Hilbert modular group is rational

— 1
if there exists a natural number k with 1 =k <a—-1 = [[7—] such

that

i ((p—(2lc——1)2)/4) +a—-—k =2
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This is a consequence of corollary I in 4.4. For the above proposi-
tion one does not need any assumption about the genus of Fy where
N=12%(p —(2k—1)2). However, we shall try to get through using the N
listed in 5.7 for which the curves Fy are rational.

The tables in 5.7 give immediately

—1
cf<p4 )—l—a—ng

for p = 29,37,41,53,61,73,97, 101, 109, 197.
We find

for p = 89,137,293.
For p = 173 we have

. — 81 .
c}“(p 1 >+a—5 =ci 2 +7-5=2

For the remaining 7 primes 113, 149, 157, 181, 229, 269, 317 we shall
try to use the following lemma.

Lemma. We keep the notations of the preceding proposition. Suppose
there exist two natural numbers ki, k, with 1 < k; <k, <a —1 such
that

i 1
Then Y° (p)/T is rational.

v —2]i"‘12
*(p (2K )>+a—ki=1 fori = 1,2

Proof. Blowing down S}, ,, ..., S¥ ,_; in Y° (p)/T gives a surface in
which the images of Fy, (N; = (p —(2k;—1)?)/4, i = 1, 2) are exceptional
curves or the surface is rational (4.4, Corollary II). If we have the two
exceptional curves, then they intersect and the surface is rational by
Corollary III 1n 4.4,

The assumptions of the lemma are true for p = 113 and k; = 2,
k, =4, for p =149 and k, = 4, k, = 5, for p = 157 and k,; = 4 and
ky,=15forp=181and ky = 5,k, = 6,forp =229 and k; = 6, k, = 7,
for p = 317 and k, = 5, k, = 8.
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For p =269 we have a = 8. The curve S}, has self-intersection

, . . 269 — 152 ,

number — 3. It intersects F7;, since 11 = ——————, Fither the surfaceis
rational or F7{ is exceptional. If F{ is exceptional, then we blow down
Fi, 8", ..., SF ¢ The curve Fj5 (k = 5) gives in the resulting surface ¥

a curve D with ¢, [D] = 2 where ¢, is the first Chern class of Y.
We have proved the desired result.

THEOREM. Let p be a prime = amod4. Let Gy be the symmetric

Hilbert modular group for K = Q (\/]; ). Then the surface $*|G is rational,
(or equivalently the field of meromorphic automorphic functions with respect

to Gp is a purely transcendental extension of C), if and only if p < 193
or p = 197,229,269, 293, 317.

5.9. Example. 1If the prime p = 1 mod 4 is of the form
p=(Qa—17 +4,

_2a+1+\/_;

then Wo 5

= [[2a+1,2,...,2]]

2472 ,
and we have in diagram (13) that S,., = S_44s = So. Since
(p —(a—3)*)/4 = 2a — 1, the smallest admissible N > 1 which can be
written in the form x* N, + xy M, + y* N,_, (with integers x, y > 0) equals
2a — 1 (see 4.2 and 5.4 (12)). Any divisor d of 2a — 1 is admissible. If d
is a prime dividing 2a — 1 and 1 < d < 2a — 1, then the curve F; has

two cusps and does not pass through the cusp at co of $?/G. Thus there

must be other cusps of $?/G. We have proved

Proposition. If p = 2a—1)* + 4 (p prime) and if 2a — 1 is not a
prime, then h(p) > 1. (See [29], [51]).

The first example is p = 229 = 15% + 4. We have i (p) = 3. The
number 229 is the only one of our 24 primes in the preceding theorem
with class number greater than one. (If (2a—1) = + 2 mod 7, then 7
is admissible for p. Thus, also in this case 4 (p) > 1 provided 2a — 1 > 7.
Example: p = 1373 = 37> + 4, h(p) = 3.)

The cycles for the 2 cusps not at oo of Y (229) look as follows



(28)

We also have drawn some curves. The curve F;s has $/I((15) as
non-singular model. This has 4 cusps corresponding to the fact that Fy;
also passes through the cusp at oo of Y (p), namely through the curves
S, and S_; of this cusp. One can show that F, passes through S, of the

cusp at co in two points (/I (9) has 4 cusps).
If N is admissible and is a product of k different primes (s p), then

/Ty (N) has 2% cusps. The 2* intersections of Fy with the resolved cusps
in Y (p) correspond to 2% admissible ideals b with N (b) = N (see 5.3).

In general, it is possible to give a complete description of the inter-
section of Fy with the resolved cusps of Y (p). The corresponding theory
can be developed for any Hilbert modular surface.

ADDED IN PROOF:

A. Selberg has informed me that he has proved the following result.

If I' is a discrete irreducible subgroup of (PL2+ (R))" such that $"/I" has
finite volume, but is not compact, then I' is conjugate in (PL;r (R))” to a
group commensurable with the Hilbert modular group of some totally real
field K with [K: Q] = n.

Thus Selberg’s conjecture mentioned in the remark at the end of 1.5 is
true. Actually, Selberg’s results are more general. The proof has not been
published yet. There is a sketch (still involving additional assumptions
which could be eliminated later) in the Proceedings of the 15th Scandinavian
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congress, Oslo 1968, Lecture Notes in Mathematics, Springer Verlag,
vol. 118, in particular pp. 106-113.
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