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1. Introduction. Let X be a compact oriented differentiable
manifold without boundary of dimension 4k—1withk > 1. Let
T: X - X be an orientation preserving fixed point free differenti-
able involution. In [7] an invariant «(X, T') was defined using a
special case of the Atiyah-Bott-Singer fixed point theorem, If the
disjoint union mX of m copies of X bounds a 4k-dimensional
compact oriented differentiable manifold N in such a way that
T' can be extended to an orientation preserving involution 7', on
N which may have fixed points, then

(X, T) = % (+(N, T3) — =(Fix T, o Fix T). (1)

Here 7(N, T,) is the signature of the quadratic form Jr, defined
over Hy (N, Q) by

Jr, (@, y) =0 Ty
where “o” denotes the intersection number. =(Fix 7', o Fix 7)) is
the signature of the “oriented self-intersection cobordism class”

Fix T,0oFix T,. According to Burdick [4] there exist N and T,
with m = 2.

In §2 we shall study a compact oriented manifold 2 whose bound-
ary is X—2(X/T). This manifold 2 was first constructed by Dold
[5]; we give a different description of it. Namely, @ is a branched
covering of degree 2 of (X/7') x I, where I is the unit interval, The
covering transformation is an orientation preserving involution 7',
of 2 which restricted to the boundary is 7 on X and the trivial
involution on 2(X/T), and Fix T is the branching locus.

We show that

100



220 F. HIRZEBRUCH and K. JANICH

(X, T) =2, T,) = — 1(2),
where (2) is the signature of the 4k-dimensional manifold .
Thus «(X, T) is always an integer. The construction of 2 is closely
related to Burdick’s result on the oriented bordism group of Bz,
and can in fact be used to prove it.

In [7] it was claimed that if X*~* is an integral homology sphere
then 7(2) = % B(X,T), where B(X,T) is the Browder-Livesay
invariant [3]. The proof was not carried through. It turns out that
the definition of Browder-Livesay is also meaningful without
assumptions on the homology of X. In §3 we shall prove

BX, T) = — (D). (3)
By (2), we obtain
wl X, T ==X, d). (4)
Looking at & as a branched covering of (X/7') X I has thus simplified
considerably the proof of (4) envisaged in [7].
Ifa = (ag, @y, .- » Ag) € ZF+1 with ¢; > 2, then the affine algebraic
variety
2+ 20 2 = (5)
has an isolated singularity at the origin whose “neighborhood
boundary” is the Brieskorn manifold [1]

Z;k—-wl I O2k+1

given by the equation (5) and

2k

> an=1. (6)

i=0

If all the a; are odd, then 7'z = — zinduces an orientation preserving
fixed point free involution 7, on Z,. The calculation of w(Z,, T,) is
an open problem (compare [7]). This problem on isolated singula-
rities is the justification for presenting our paper to a colloquium
on algebraic geometry. In §4¢ we give the recipe for calculating
w(Z,, T,) for k=1 in the case where the exponents a,, a;, a; are
pairwise prime and odd.
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INVOLUTIONS AND SINGULARITIES 221

2. The Dold construction. Let ¥ be a compact differentiable
manifold without boundary and W a 1-codimensional compact
submanifold with boundary dW. Then, as it is well known, one can
construct a double covering of ¥, branched at W, by taking two
copies of ¥, “cutting” them along W and then identifying each
boundary point of the cut in copy one with its opposite point in
copy two.The same can be done if ¥is a manifold with boundary and
W intersects 9Y transversally in a union of connected compo-
nents of 9W. The covering will then be branched at W — W na¥l.

We are interested in a very special case of this general situation.
Let M be a compact differentiable manifold without boundary and V
a closed submanifold without boundary of codimension 1 in M. Then
we define ¥ =M X [0, 1]and W = ¥V X [0, 1.

For the following we will need a detailed description of the double
covering correspondingto (M x [0,1],V X [0, %]). The normal bundle
of V in M defines a Z, -principal bundle ¥ over V. If we “cut” M
along V, we obtain a compact differentiable manifold C with
boundary 9C = V. As a set, C'is the disjoint union of M — ¥ and 7,
and there is an obvious canonical way to introduce topology and
differentiable structure in (M — V)u 7. Similarly, let ¢’ be the
disjoint union of M x[0,1] — V x [0,%) and ¥ x o, 1), topolo-
gized in the canonical way. Then we consider two copies O] and C;
of " and identify in their disjoint union each 2 € ¥ x {3} c O] with
the corresponding point & € ¥ X {4} cC; and for 0 < ¢ < % each point
veV x {t} c O] with the opposite point — we ¥ x {t} cC;. Let 9@
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denote the resulting topological space and =: & — M X [0, 1] the
projection. Then Cj, Cy and V X {}} are subspaces, and D —V x{}}
has a canonical structure as a differentiable manifold with boundary.

To introduce a differentiable structure on all of 2, we use a
tubular neighbourhood of ¥ in 3. This may be given as a diffeo-
morphism

ki V % Fdd® el

onto a closed neighbourhood of ¥ in M, such that the restriction of «
to ¥ x 2,{0} = V is the inclusion V' c M. Let Z, act on D% cC by
complex conjugation. Then we get a tubular neighbourhood of

V x {3} in M x[0, 1]
XV xg, DP— M x [0,1] by
[v, « + iy]— ([v, ¥], & + 1 ).

(1)

Let the ‘“projection” p: 7 x glP ¥ 7 % z,D? be given on each fibre
by z ->22[|z|. Then XAp can be lifted to &, which means that we can
choose a map A;: V Xz D* - D such that

" A
Vx,DP—> 9

lp lfr (2)

5 A

V Xz, D*— M % [0,1]
is commutative. Then there is exactly one differentiable structure
on @ for which A, is a diffeomorphism onto a neighborhood of
¥V x {4} in 2 and which coincides on 2 — V' X {3} with the canonical
structure. Up to diffeomorphism, of course, this structure does
not depend on «.

9, then, is a double covering of M x [0, 1], branched at V X {3}.
The covering transformation on & shall be denoted by T';. Note
that on ¥ X 2, D? (identified by A; with a subset of @) the trans-
formation 7', is given by [v, z] - [v, — 2].

As a differentiable manifold, @ is the same as the manifold
constructed by Dold in his note [5].

103




INVOLUTIONS AND SINGULARITIES 223

Now consider once more the differentiable manifold ¢ with

boundary 9C =V, which we obtained from M by cutting along V.
Let C; u C, be the disjoint union of two copies of C. If we identify
ze I71 cC; with —ze Vl cC;and z 6172 with —z e ?2, we obtain
from €, U C, the disjoint union of two copies of M :

If we identify a € T}; cC, with —ze f/"'2 c 0y, we get a differentiable
manifold which we denote by M :

If we identify z e 171 cC; with z e F, cC,, then €, U C, becomes a
closed manifold B (the usual “double” of C), and we use x to
introduce the differentiable structure on B:

If we, finally, identify for each x € ¥ all four points x € [71, —ze€ 171,
z€e ﬁ,, —2z€ 173 to one, then we obtain a topological space 4 :

N “ -

-9,
‘”\——-—-__...___,_ C]

-
-~
-~

Now obviously we have 2M =7"YM X {1}), 4 =YY x {3}
and M =7"YM X {0}), and by our choice of the differentiable
structures of B and 2 (p in (2) is given by z — 2%/ |z| instead of
z - 2%), the canonical map B —+ A defines an immersion

fiB—>9.

It should be mentioned, perhaps, that for the same reason s :
D - M x [0, 1] is not differentiable at V X {3}
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Up to this point, we did not make any orientability assumptions.
Considering now the “orientable case ™, we shall use the following
convention : for orientable manifolds with boundary, we will
always choose the orientations of the manifold and its boundary in
such a way, that the orientation of the boundary, followed by the
inwards pointing normal vector, gives the orientation of the manifold.

Now if X is any compact differentiable manifold without boundary
and T a fixed point free involution on X with X/T'= M, then
(X, T) is equivariantly diffeomorphic to (IE' ; T1|JJ} ) for a suitably
chosen Vc M, and in fact our (JJE w @'yl M ) plays the role of the
(X, T) in §1. Therefore we will assume from now on, that IIZ" is

oriented and Tllﬂ?[ is orientation preserving. Let us also write
T for Tﬂﬂ? :

Then the orientation of M defines an orientation of M and hence
of ¢, and since V= 2C, an orientation of V is thus determined.

Furthermore, the orientation of M c 89 induces an orientation of
9, relative to which

09 = M — 2M. (4)
Clearly 7', on @ is orientation preserving. ¥ may not be orientable,
and V- V is the orientation covering of V, because M is orientable.

The relation of the construction of & to the result of Burdick
is the following. Let Q,(Z,) denote the bordism group of oriented
manifolds with fixed point free orientation preserving involutions.
Then we have homomorphisms

¢

Qn@ 92ﬁ—-l -(—'—_—_—). Qn(zz)

7
as follows: if [M] € Q, is represented by an oriented m-dimensional
manifold M, the i[M] € Q,(Z,) is simply given by 2M with the
trivial involution. Now let [W], €R,_, be represented by an (n — 1)-
dimensional manifold W, let W — W denote the orientation covering,
and let ¥ be the sphere bundle of the Whitney sum of the real line
bundle over W associated to W and the trivial line bundle W x R:
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W x {1}

L,
k Y
The manifold ¥ is orientable, and we may orient ¥ at W by the
canonical orientation of ¥ followed by the normal vector pointing
toward W x {l}. Then we denote by (W) the oriented double
covering of ¥ corresponding to (¥, W x {1}), and we define i[W]
€ Q,(Z,) to be represented by #(W).

As already mentioned, any element of Q,(Z,) can be represented
by the (unbranched) double covering M corresponding tosome (M, V),
and we define j[.d? , T]=[M]® [V],. Then 5 and J are well defined
homomorphisms and clearly jo4 =1d, so 7 is injective. To show that
¢ Is also surjective, we have to construct for given (M, V) an (n+ 1)-
dimensional oriented manifold & with boundary and with an
orientation preserving fixed point free involution, such that equi-
variantly 8% = M — oM — (V). But such a manifold is given by
B ==a"YM x [0, 11— U),

where U is the interior of the tubular neighborhood (1) of ¥ x {}}in
M x[0,1]:

0% = "M X {0}) v =1 (Y X {1}) U m}(T))
=M —2M — (V).
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Thus i: Q, @ RNu_, > Q,(Z,) is an isomorphism. Burdick uses in [4]
essentially the same manifold & to prove the surjectivity of 1.

We will now consider the invariant « and therefore assume that
dim M = 4k — 1 with k> 1. First we remark, that for the trivial
involution 7 on 2M the invariant o« vanishes: since the nontrivial
elements of Q,;_, are all of order two, there is an oriented X with
89X — 2M. Let T" be the trivial involution on 2X. Then 2«(2M,T) =
72X, T") = 0, because it is the signature of a quadratic form which
can be given by a matrix of the form

0 E

B 0

wharefi‘ is a symmetric matrix. Hence it follows, that «(2, T,02)
= o(M, T) and therefore by (1) of §1 we have

«(M, T) = (@D, Ty) — ~(Fix T, o Fix T,), (5)
Notice that here we apply the definition (1) of §1 of o in a case,
where Fix 7', is not necessarily orientable, so that we have to use

the Atiyah-Bott-Singer fixed point theorem also for the case of non-
orientable fixed point sets.

PROPOSITION. oc(lff , ) =72, T))=— 7(2).

Proor. Fix T,oFixT,=0eQ,, since the normal bundle of
Fix T,=V x {}} in 2 has a one-dimensional trivial subbundle.
Therefore by(5), «(3, T) = (@, T,). To show that 7(@, T)=— (D),
let again U denote our open tubular neighbourhood of ¥V X {3}
in M x [0,1], U its closure in M X [0, 1] and correspondingly U,
— 2~ Y(U), U, = 7~ (T). Then +(T)=1(T;)=r(Uy, T1)=0, because
U and U, are disc bundles of vector bundles with a trivial summand
and hence the zero section, which carries all the homology, can be
deformed into a section which is everywhere different from zero.
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Because of the additivity of the signature (compare (8) of [7]), we
therefore have

2, T)=+2-U, T,).
But T, is fixed point free on @ — U,, and hence we can apply
formula (7) of [7], which is easy to prove and which relates the
signature 7(M*, T') of a fixed point free involution with the signatures
of M* and M*|T and we obtain
D, Ty) =@ — Uy, Ty) = 2r(M x[0, 1] — U) — (@ — U,)
= 27(M X[0, 1]) — 7(2).

3. The Browder-Livesay invariant. The involution on ¥ which
is given by x— — z shall also be denoted by 7', because it is the
restriction of 7' on M to V if we regard V via V cl,c M as a
submanifold of M. T is orientation reversmg on V and since the
intersection form (z,y) >z oy on H,,_,( V, Q) is skew-symmetric,

the quadratic form (z,y) -2 7 is symmetric on sz_l(f;, Q).
Now we restrict this form to

L = kernel of Hy, _,(V, Q) Hy_,(C, Q), (1)

where the homomorphism is induced by the inclusion ¥ = aC c C,
and we denote by B(.ﬁ 3 17, T) the signature of this quadratic form on

L. (If M = $%-1 is a homotopy sphere, then B(H, ¥, T) is by
definition the Browder-Livesay tnvariant [3] o(Z*-1, T) of the
involution 7' on 2#-1))

THEOREM. a(MN ;D) = ﬁ(ﬁ’, f;, 1.
Thus ﬁ(.ﬂ}, T) = B(ﬁ, f/;, T) is a well defined invariant of the
oriented equivariant diffeomorphism class of (ﬁ /e

Proor or THE THEOREM. First notice, that the canonical defor-
mation retraction of M X [0, 1]to M X {}} induces a deformation
retraction of & ==»"'(M X [0,1])to A ==Y (M X {}}). To study
Hy (4, @), we consider the following part of a Mayer-Vietoris
sequence for 4 (all homology with coefficients in Q):
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Hy(7)® Hy(Cy U Cp) — > Hyp(d) =

~ o~ @
Hy (V0 Vy) — Hy (V)@ Hy,_1(C1 0 Cy)

where FI}I U ﬁz and C; v O, denote the disjoint unions, see figure (3)
of §2.

In H,(A) we have to consider the quadratic forms given by
(x,y) > woy and (v,y) - xo Ty, where odenotes the intersection
number in 2. Now, the maps V=V X {}}c4 and C;uC, > 4,
which induce the homomorphism ¢, are homotopic in & to maps
into @2 — A. Therefore if x e Im¢ c Hy(A4) and y is any element
of Hy(A), then & oy = 0. Thus if we denote

L' = Hy(4)/Im ¢, (2)
then the quadratic forms (z, y)—woy and (z,y) - wo Ty are well

defined on L', and their signatures as forms on L' are 7(2) and
(2, T,) respectively.

L' is isomorphic to the kernel of 4, and hence we shall now take
a closer look at ker i. For this purpose we consider the Mayer-

Vietoris sequences for M and B:

~

X ~ o~ o
Hop (M) — Hy, (Vv Vy) —> Hy (V)@ Hy,_1(C10 C)
B B

X ~ ~
Hy(B) —— Hy, (V10 Vo) —> Hy (V)@ Hy ,(C00y).

In the sequence for B, the homomorphism H2k_](ﬁ1u 172)_,,
sz_l(ffl) is induced by the identity I::l—>§ on T71 and by the
involution 7': ﬁ2—> V on ﬁl}a, in the sequence for B however by the
identity on both components. If we write I-I.Z,,_l(f}'1 U 172) as
Hy (V)@ Hy,_y(V), the kernel of Hy, (VU V3) > Hy_1(C, 0 C))
is L ® L, and so we get:

ker$= {(a,b)e L® L|a+ Tb =0},

ker ¥ ={(a,b) e L® L|a + b =0}
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Let a be an element of H, ( ?, Q). Then @ + T'a vanishes if and only if
a is in the kernel of H*(ﬁ, Q) H,(V,Q). Thus the kernel of i is

kery={(a,b)e L@ L|a-+ Ta+ b+ Th= 0}

ker % and ker $ are subspaces of ker ¢, and if we write (a,b)

- (a—b,b—a) & (a,-|-b’c_&i_b), we see that in fact
D) 2 2 2

ker i = ker 4% + ker . (3)

By the isomorphism L’ = ker, which is induced by x, (3)
becomes

L= LB L~,
where L® denotes the subspace of L’ corresponding to ker e

under this isomorphism, and L corresponds to ker ;b“

Let us first consider L. Any element in I can be represented

by an element f;(x), where = € Hy(#) and f: M > 4 is the
canonical map:

~

Ho (M) ——> Hy (Vv Vy) ——— Hy 1(V)® Hy,_,(C, v C,)

e

¥ 5~ &
Hy(4) ——— Hy (Vv Vy) —— Hy, (V)@ Hy,_,(C, v C,).

But f is homotopic in P to the inclusion M ==~ (M x {0}) c2,
hence we have L®o I/ =0. Therefore the quadratic forms on L’
given by (z,y) >z oy and (x,y) - o Ty can be restricted to L? and
their signatures will still be 7(2) and +(2, ).

Now, any element in L? c Hy(4)[Im ¢ can be represented
by an element f3(z), where « € Hy,(B) and f2: B - A is the
canonical map. Furthermore, y induces an isomorphism between
L? and the “Browder-Livesay Module” I, because

L? > ker y# ={(a,—a)|a e L}~ L.
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Hence in view of the proposition in §2, our theorem would be proved
if we can show that the following lemma is true.

LemMa. Let, y € Hy(B) andz = fy (z), y = f« (y) the correspond-
ing elements under the homomorphism fy : Hoy(B) — Hyy (D) induced
by the canonical map f: B —~A c@. By (3), we have x®(x) = x(®) =
(@, — a) and xB(y) = x(y) = (b, — b) for some a, b € L. We claim:

— oy =aoTh (4)

Proor or THE Lemma. First we note that we can make some
simplifying assumptions on # and y. By a theorem of Thom ([9],
p. 55), up to multiplication by an integer # 0, any integral homology
class of a differentiable manifold can be realized by an oriented
submanifold, and hence we may assume that x and y are given by
oriented 2k-dimensional submanifolds of B, which we will again
denote by zand y. Of course x and y may be assumed to be transversal
8tV cB. Then Vazand Vo y are differentiable (2k — 1)-dimen-
sional orientable submanifolds of V. We orient ¥ n 2 (and similarly
Vn y) as the boundary of the oriented manifold C; n 2. Then Voz
and ¥V n y represent @ and b in sz_l(i}),f and we shall now denote
ﬁnxbyaand f/:nybyb.

Since in a meighborhood of V, B is simply ¥ xR and z is
a X R, it is clear that any isotopy of a in ¥V can be extended to an
isotopy of 2 in B which is the identity outside a given neighborhood
of ¥ in B, such that z remains transversal to 17 during the isotopy.

Therefore we may assume that the submanifold a of ¥ istransversal
to b and 1.

These are all the preparations we have to make in B. Now let
us immerse B into @ and thus get immersions of  and y into 2
which will represent z and y € Hy(2). To obtain transversality of
these immersions however, we immerse z into 2 by the standard

+Or — @ and — b, but we may replace x and xB in the Mayer-Vietoris
sequences for A and B by —x and —xB, 8o let us assume that they represent o
end b.
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immersion f: B > 4 c 9 and Y by an immersion f’: B - @, which
is different, but isotopio to f.

To define f', let 0 < ¢ < z and choose a real-valued C' - function A
on the interval [0, 1] with h(t) =tfort < }e, h(t) = efor t > } and

0 < A(t) < e for all other ¢ Using «: 'F;xz. D' - M, we get a
function on x(ﬁxstl) C M by [v,t] - h(|t]), which we now extend
to a function % on M by defining A(p) == e for allp ¢ K(Fx z, D).
Then M - M x[0, 1], given by p — (p, } + h(p))

is obviously covered by an immersion f': B - @ which is isotopic
to f.
Then in fact the immersions fia > and f': y - P are transver-
sal to each other, and for p € 2, q € y we have
J@) =f(g)<=>p =g€anborp=Tgea n Tb
Looking now very carefully at all orientations involved, we obtain
~Zoy =aoTh + gob. (5)
Recall that T is the boundary 8¢ of the oriented manifold €' and
that @ and b are in the kernel of Hy, ,(2C) - 2t—1(C). Then the
intersection homology class s(a,b) € Hy(3C) is in the kernel of
Hy(3C) - H,(C) (see Thom [8], Corollaire V. 6, P. 173), and therefore

the intersection number ao b is zero, hence (5) becomes— 7o Y=aoTh,
and the lemma is proved.

4. Resolution of some singularities. ¥or atripel a = (ay, a,, a,) of
pairwise prime integers with @ > 2 consider the variety V, ¢ C?
given by
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20+ g =0. (1)

The origin is the only singularity of V,. We shall describe a resolu-
tion of this singularity.

TarorEM. There exist a complex surface (complex manifold of
complex dimension 2) and a proper holomorphic map

M, >V,

such that the following s true:

(i) ¢: M,—¢~1(0) =V, — {0} 1s biholomorphic.

(i) ¢~1(0) is a union of finitely many rational curves which are
non-singularly imbedded in M,.

(iii) The intersection of three of these curves is always empty,
Two of these curves do not tintersect or intersect transversally in
exactly one point.

(iv) Weintroduce a finite graph g, in which the vertices correspond
to the curves and in which two vertices are joined by an edge if and
only if the corresponding curves intersect. Q, is star-shaped with
three rays.

(v) The graph g, will be weighted by attaching to each vertex the
self-intersection number of the corresponding curve. This number is
always negative. Thus @, looks as follows.

—b —b) b —b —b —b) -5 -8 -

e @@ == n e s e m L W —
I — b2

—b2
—b2

—8
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(vi) b =1orb=2;b}> 2. Let q, be determined by
0 <gy < ayand gy = — a,a, mod g,
and define qy, q, correspondingly. Let q; be given by
0<g; <gandgq; =1 mod a;.

Then the numbers bj in the graph @, are obtained from the continued
Jractions

2R
I
o
—_,
|

e
o) -
|
Q*' o

“os,

(vii) If the exponents ay, ay, a, are all odd, then
b=1<= ¢+ ¢ +g; =0mod 2,
b=2<=q4+¢/ +¢ =1mod2.
Before proving (i)- (vii) we study as an example
2+ AT+ g1z, (2)
We have Qo=10qp =2
¢r=4forj=1andq, =6)j—Tforj> 2
=28 -—1
% =2,¢ = 9.
By (vii) we get b = 2. The continued fractions for —g , _g resp.

6j—1 185 —1
6 —7" 2

lead then to the graph

114




234 F. HIRZEBRUCH and K. JANICH

-]

-2 —2

._.9:7 -2 —
- - .
~2
-2
e 3
-2 theend forj=1
(3)
—3 theend forj= 2
s —2
: -2
1o

L

Jj — 2 vertices

PROOY OF THE PRECEDING THEOREM, Wae use the methods of [6].

The algebroid function
f — (_ xlala, — xzala,) e,
defines a branched covering V& of C? (coordinates z,, x, in C2).
Blowing up the origin of C? {compare {6}, §1.3) gives a complex
surface W with a non-singular rational curve K c W of self-
intersection number —1 and an algebroid function fon W branched
along K and along a,a, lines which intersect K in the a,a, points
of K satisfying
e 0108 g 1 = ) {4)

where x,, z, are now regarded as homogeneous coordinates of XK.
The algebroid function f defines a complex space Vi lying branched
over W with a,a, singular poinfs lying over the points of K defined
by (4). In a neighborhood of such a point we have

.Fm (§y Lty (5)
where {, =0 is a suitable local equation for K and {, == 0 for the
line passing through the point and along which V& is branched over
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W. The singularity of type (5) can be resolved according to [6],
§3.4, where

W= (22" (0 <g <, (g,n)=1) (6)
was studied. In our case, we have
n=ayand g = ¢, see (vi) above,

for all the a,a, singular points of V. The resolution gives a
complex surface V{® with the following property. The singularity
of Vi was blown up in a system of rational curves satisfying (iii)
and represented by a star-shaped graph with a,a, rays of the same
kind. The following diagram shows only one ray where the un-
weighted vertex represents the central curve & which under the
natural projection V- W has K as bijective image

._.bo - b[) _ b(]
*— :to :2 -1 (7)

ViV is of course just the affine variety
Zoh + "% 4 0% — ()
which can be mapped onto ¥, (see (1)) by
(@0s 1, 3) = (20, 24, 24) = (2o, 21, 2,%M).

Denote by @ the finite group of linear transformations

(%1, Z) > (€37y, €,,) With efr = €™ =1. (8)
V, = Viq.

Then the group G operates also on V. There are two fixed points,
namely the points 0 = (0, 1) and oo = (L,O)of K=K (with respect
to the homogeneous coordinates %3, xyon K). The a,a, points of K
in which the curves with self-intersection number — by of the a,a,
rays intersect K are an orbit under G. The a,a, rays are all identified
in V|G Thus V)G is a complex space with two singular points
Py, P, corresponding to the fixed points. V@ is thus obtained
from V¥, by blowing up the singular point in a system of to+ 1
rational curves showing the following intersection behaviour:
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—-b ~b3 - (9)

L, » & -

but where the vertex without weight represents a rational curve
passing through the singular points Py, P,

We must find the representation of @ in the tangent spaces of the
fixed points 0 =={0, 1) and co = (1, 0). In the neighborhood of 0 we
have local coordinates such that

%
y, == and xz,=yp. (10
Ty

We consider & as the multiplicative group of all pairs (8,, ;) with
83t = 8% =1 and put 8P = ¢ and §, = ¢, (see (8)). Then G operates
in the neighborhood of the fixed point 0 as follows:

(19> ¥o) = (3287 oy, 8537)- (11)
Thus P, is the quotient singularity with respect to the action (11).
If we first take the guotient with respect to the subgroup G, of G
given by §; =1 we obtain a non-singular point which admits local
coordinates (¢, t;) with
ty=ypr and  fy =y, (12)
Thus P, is the quotient singularity with respect to the action of
@@, which is the group of a;-th roots of unity. By (11} and (12) for
8 = 1 the action is
(b1, o) —> (87 %%y, 81ty) == (8184, Osts)- (13)
Looking at the invariants {; =1, {, = 5 and w = £;#3~% for which
wh = {{HTh
we see that P is a singulariby of type (6). We use [6], §3.4 {or {2],
Satz 2.10) for P, and in the same way for P, and have finished
the proof except for the statements onbin (vi)and {vii). The surface
M, of the theorem is V{ |G with Py and P, resolved. The function
f we started from gives riseto a holomorphic function on M,. Using
the formulas of [6], § 3.4, we see that fhas on the central curve of M,
the multiplicity a,@,, and on the three curves intersecting the
central curve the multiplicities
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(@109, + D)/ay, aq, @195
By [6], §1.4 (1), we obtain

@o@q2b = Q(;alaz + 91,%‘12 + (12'%“1 + I
Therefore
@y a3b < 3aya,a, and b = 1 or 2.

The congruence in (vii) also follows. This completes the proof.

1 REMARK. Originally the theorem was proved by using the C*-
action on the singularity (1) and deducing abstractly from this that
the resolution must look as described. Brieskorn constructed the
resolution explicitly by starting from af + 2% + a2 (n = o, 0y)
and then passing to a quotient. This is more symmetric. The
method used in this paper has the advantage to give the theorem
also for some other equations 20° + (21, 2;) =0 as was pointed out
by Abhyankar in Bombay.

Now suppose moreover that the exponents a, a,, a, are all odd.
The explicit resolution shows that the involution 7%z = —z of C3
can be lifted to M,. The lifted involution is also called 7'. Tt has
no fixed points outside ¢=1(0). It carries all the rational curves of
the graph g, over into themselves [7]. Thus 7T has the intersection
points of two curves as fixed points. Let Fix 7' be the union of
those curves which are pointwise fixed. Then Fix 7 is given by
the following recipe.

THEOREM. For the involution T on M, (ay, ay,ay odd) we have:
The central curve belongs to Fix T. I | a curve is in Fix T, then the
curves intersecting it are not in Fix T'. T f the curve C is not in Fix T
and not an end curve of one of the three rays, then the Jollowing
holds: If the self-intersection number CoC s even, then the two
curves intersecting C are both in Fix T or both not. I f C<C is odd,
then one of the two curves intersecting C is in Fix T and one not.
If C is an end curve of one of the three rays and ¢f C is not in Fix T,
then CoC ts odd if and only if the curve intersecting C belongs
to Fix T.

118




238 F. HIRZEBRUCH and K. JANICH

ProoF. The involution can be followed through the whole resolu-
tion. Tt is the identity on the curve K. On the three singularities of
type (6) the involution is given by (zq, zg) = (21, — 2,). Here z;
and z, are not coordinate functions of C® as used in (1), but havethe
same meaning as in [6], § 3.4. The theorem now follows from formula
(8) in [6], § 3.4. Compare also the lemma at the end of §6 of [7].

For a,, a,, a, pairwise prime and odd, we can now calculate the
invariant « of the involution 7}, on X¢, , ., (see the Introduction).
The quadratic form of the graph g, is negative-definite. Therefore
([71, §6)

(B a0 Ta) = — o+t + 1o + 1) — Fix ToFixT. (14)

Here t,+ t; + ¢, + 1 is the number of vertices of Gs whereas
Fix ToFix T is of course the sum of the self-intersection numbers
of the curves belonging to Fix 7'. The calculation of « is a purely
mechanical process by the two theorems of this §. The number « in
(14) is always divisible by 8 (compare [7]) and for (a,, ay, a,) =
(3, 6§ — 1, 18 — 1) we get for « the value 8j (see (3)).

Observe that
Fix ToC =Co Cmod 2 (18)

for all curves in the graph g,, a fact which is almost equivalent to
our above recipe for Fix 7'. The quadratic form of g, has determinant
+ 1 because X¢, , 4, is for pairwise prime g; an integral homology
sphere ([1], [2], [7]). The divisibility of « by 8 is then a consequence
of a well known theorem on quadratic forms.

The manifold 32*~! (see the Introduction) is diffeomorphic to the
manifold 22*~1(e) given by

Aot . . = (16)
ZZ‘-Z‘- = 1,

where e is sufficiently small and not zero. XZ"~!(e) bounds the
manifold N,(¢) given by

2o+ . .. Fygr=c¢ (17)
Tzz < L

119



R ———————————

INVOLUTIONS AND SINGULARITIES 239

This fact apparently cannot be used to investigate the involution T,
in the case of odd exponents because then (17) is not invariant under
T,. If, however, the exponents are all even, then (17) is invariant
under 7, and for n = 2k the number «(Zg¥1, T,) can be calculated
using like Brieskorn [1] the results of Pham on N,(e). We get in
this way

TaEoREM. Let a = (a,, @y, -y Qgp) With a; = 0 mod 2. Then
@ (T Ty) = > e(j)(— 1+, (18)

3
The sum is over all §j = (j,, 4, ... s Jox) € ZP*+1 with 0 < j, < @, and

€(j)is 1, — 1 or 0 depending upon whether the sum 70 4 ... + Jo

@y G
lies strictly between 0 and 1 mod 2, or strictly between 1 and 2
mod 2, or is integral.

REMARE. For simplicity the resolution was only constructed
for the exponents a,, a,, @, being pairwise relatively prime. The
resolution of the singularity

B+ g =0

can also be done in a similar way for arbitrary exponents and
gives the following information.

TaEOREM. Ifay =a, = aymod 2 and d is any integer > 1, then
“(E(sdaa,dal,da,)y Tda) = da(Z?ao’avaz), Ta) + d — 1.
For ay, @y, ayall odd and d = 2 we get
a( (sao,ax,a,)) Ta) = %(“(E(szao,‘.’al,%,)’ T2a) - 1)

and therefore a method to calculate « also for odd exponents by
formula (18).
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