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T
he English word “genus” hails from
biology, where it is used to connote
a grouping of organisms having com-
mon characteristics. In mathematics the
word is also used to group objects with

common characteristics. The concept of genus
arises in various mathematical contexts, such as
number theory, as well as in the areas we consider
in this article, topology and complex analysis. Even
within the latter two areas there are various no-
tions of genus that historically originated with the
genus of an oriented surface. We begin with these
origins and afterward treat generalizations and
modifications. We provide no detailed definitions
and proofs; rather, our goal is to give the reader
an intuitive feeling for the concept of genera.

The Genus of a Surface
In his paper “Theorie der Abel’schen Functionen”
[20] Riemann studied the topology of surfaces. He
classified a surface by looking for simple closed
curves along which to cut in order to obtain a
simple presentation of the surface. He called the
minimal number of such curves 2p and showed
that this invariant determines the surface. A few
years later, when Clebsch studied surfaces from
a more algebraic geometric viewpoint, he called p
“das Geschlecht (genus)” of the surface.

In more modern terms one can formulate Rie-
mann’s insight as follows: every connected, closed
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Figure 1.

(meaning compact without boundary), oriented
surface F is obtained from the 2-sphere S2 by
taking repeated connected sums with the torus,
T = S1 × S1. The number of tori added is a topo-
logical invariant called the genus of F , g(F), which
equals Clebsch’s p.

Riemann’s concept of surface is not easy to
summarize. It is something like a ramified cover-
ing of the plane, and he implicitly assumes that
a surface has a sort of differentiable structure,
which is a great technical help. But the genus is
actually a topological invariant. One can prove this
by using either the fundamental group or the first
homology group H1(F). Specifically, H1(S

2) = 0,
and the formula

H1(F♯T) ≅ H1(F)⊕ Z
2,

where ♯ stands for connected sum, implies that
a surface Fn obtained from S2 by connected sum
with n tori has

H1(Fn) ≅ Z
2n.

The rank of the k-th homology group is called the
k-th Betti number,

bk(X) := rank(Hk(X)),
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and so we obtain the formula

g(F) = b1(F)/2.

Instead of the Betti number one can use the
Euler characteristic,

e(X) :=
∑

i

(−1)ibi(X),

to determine the genus of F , namely, b0(F) =
b2(F) = 1, and so e(F) = 2 − b1(F) = 2 − 2g(F),
implying

g(F) = 1− e(F)/2.

The Euler number itself can be computed
combinatorially without referring to homology.
Every surface has a triangulation (see next sec-
tion), which we can visualize by putting a net of
triangles over F

Figure 2.

and then

e(F) = number of vertices − number of edges

+ number of tr iangles.

However, to show that the combinatorially defined
Euler characteristic is a topological invariant needs
a proof.

What Is the Topological Significance of the
Genus?
So far we have attached a topological invariant, a
certain characterization, to a surface: the genus.
How powerful is this invariant? What is its topo-
logical significance? One can interpret Riemann as
saying that a differentiable surface is determined
by its genus. A modern proof of this can be ob-
tained from elementary Morse theory [6], [7]. But a
stronger statement is true: the genus characterizes
the homeomorphism type. This result was proved
by Rado long after Riemann’s work:

Theorem [19]. Two connected closed oriented sur-
faces F and F ′ are homeomorphic if and only if

g(F) = g(F ′).

This is not an easy result. The central step in
Rado’s proof is to show that a topological surface

with countable basis has a triangulation, and then
a proof in the combinatorial world is not difficult.

What Is the Analytic Significance of the
Genus?
The main intention of Riemann’s topological
considerations was to study surfaces as objects
in complex analysis: in modern terms, as complex

manifolds of complex dimension 1, complex

curves. A complex manifold is a topological
manifold (meaning a topological Hausdorff space
with countable basis locally homeomorphic to Rn)
together with an atlas whose coordinate changes
are holomorphic maps. We note that in complex
dimension 1 a countable basis follows from the
existence of a complex structure [19]. On such
a complex curve Riemann considered divisors
D, which are finite formal linear combinations
of points in the surface with coefficients in Z.
Each meromorphic function on a closed surface
(in the following we assume that the surfaces
are closed) determines a divisor D by its zeroes
and poles (counted with multiplicity). To each
divisor we attach the sum of the coefficients called
deg(D). GivenD we can consider the vector space
of meromorphic functions characterized by the
property that its divisor plus the given divisor
does not have negative multiplicities. This vector
space is finite-dimensional, and its dimension is
denoted by l(D).

For a divisor D Riemann [20] proved his in-
equality

l(D) ≥ deg(D)+ 1− g.

This is the starting point of the famous Riemann-
Roch theorem [21], which gives an equality using
the canonical divisor K:

l(D)− l(K −D) = deg(D)+ 1− g.

Why is this an important result? If we look at
the right-hand side of the equation, we see the sum
of a very simple invariant of a divisor, its degree,
and a topological invariant, 1 − g. However, the
left-hand side is a complicated analytic invariant:
the difference of dimensions of certain function
spaces, more precisely spaces of meromorphic
functions with restricted zeroes and poles.

The Arithmetic Genus of Algebraic
Varieties
It should be noted that the passage from dif-
ferentiable structures to complex structures is a
dramatic change, since there are in general many
different complex structures on a given surface.
One has a moduli space of complex structures
which for g ≥ 2 is itself a complex manifold of
complex dimension 3g − 3. For g = 0 the moduli
space is a point, and for g = 1 it has complex
dimension 1.
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One can proceed further and impose even more
refined structures on a surface, for example, com-
plex algebraic structures. Whereas topological and
smooth manifolds were intensively studied in the
first half of the last century, complex manifolds
of dimension greater than 1 were not investigated
very much by complex analytic methods (of course
the function theory of several complex variables
in open domains in Cn was a subject of great
interest). In contrast, algebraic varieties, the set of
zeroes of a family of polynomials, were the subject
of constant mathematical investigations, at least
by constructing interesting examples and studying
their geometry. Many formulae were found that
led to interesting questions and conjectures.

In this context another genus, the arithmetic

genus, played an important role. In the early
1950s four definitions of the arithmetic genus of
a projective smooth algebraic variety V of com-
plex dimension n were known. The first two are
denoted by pa(V) and Pa(V). Severi conjectured
that these numbers agree and can be computed in
terms of the dimension gi(V) of the vector space
of holomorphic differential forms of degree i:

pa(V) = Pa(V) = gn(V)− gn−1(V)

+· · · + (−1)n−1g1(V).

The expression on the right-hand side is the third
definition, which we recommend to the reader
(actually in a slightly modified form described
below). Using sheaf theory, Kodaira and Spencer
[14] proved that the three expressions agree.

The expression on the right looks like an Euler
characteristic, but in a strange form. The “correct”
Euler number is the holomorphic Euler number,

χ(V) :=
n∑

i=0

(−1)igi(V),

called the arithmetic genus. The number of com-
ponents ofV is g0(V). Thus for a connected variety
1+ (−1)npa(V) = χ(V). Often gn(V) is called the
geometric genus of V . For the case of a curve
(Riemannian surface) we have

g1(V) = g(V),

and so the geometric genus and Riemann’s genus
agree.

Both the arithmetic and geometric genus are
multiplicative:

χ(V × V ′) = χ(V)χ(V ′)

and

gn+m(V × V
′) = gn(V)gm(V

′),

where n = dim V and m = dim V ′.
The gi(V) are birational invariants [25], and so

the arithmetic genus is a birational invariant.

The Todd Genus
The fourth definition of the arithmetic genus
was given by J. A. Todd [24]. A canonical divi-
sor of a smooth projective algebraic variety of
dimension n is given as a divisor of a meromor-
phic n-form. It is an algebraic cycle of topological
codimension 2. Todd introduced geometric canon-
ical cycles for all even codimensions. He defined
polynomials in these cycles, where the product is
given by intersections. The n-th Todd polynomial
is of codimension 2n and represents for a variety
of dimension n a certain number called the Todd
genus. Todd believed that his genus was the same
as the arithmetic genus, but rigorous justification
of this fact came much later.

The Todd canonical classes represent homol-
ogy classes, and they are up to signs Poincaré
dual to the Chern classes of the tangent bundle of
the variety [18]. More generally, Chern classes are
defined for complex vector bundles. In contrast to
complex manifolds, where holomorphic maps play
a definitive role, complex vector bundles are pure-
ly topological objects; roughly speaking, they are
a family of complex k-dimensional vector spaces
parametrized by the points of a topological space
X. There is also a topology on the disjoint union of
these vector spaces, and the key property is that
locally this family of vector spaces is homeomor-
phic to a productU×Ck, whereU is an open subset
of X. The formal definition of Chern classes is too
complicated for an article such as this one, but
the basic idea behind them can be explained by
considering the case of a differentiable complex
vector bundle E over a closed differentiable man-
ifold X. Then the Chern class ci(E) ∈ H2i(X;Z) is
the first obstruction to the existence of k − i + 1
linearly independent sections on E. If one chooses,
for example, a single section on E and the choice is
generic, then the set of zeroes is a submanifold of
X of dimension dimX − 2 dimE. Thus we obtain a
homology class whose Poincaré dual sits inH2k(X)
and is the k-th Chern class ck(E) of E. If X is a
closed complex k-dimensional manifold and E its
complex tangent bundle, then ck(E) evaluated on
the fundamental cycle is the Euler characteristic
of X by the Poincaré-Hopf theorem.

The Todd genus in terms of the Chern classes of
the tangent bundle is the evaluation of a certain ra-
tional polynomial in the Chern classesT(c1, c2, . . . )
on the fundamental class. To motivate the con-
struction of these polynomials (which are rather
complicated expressions), we note that if the Todd
genus agrees with the arithmetic genus, then cer-
tainly for complex projective spaces (where the
arithmetic genus takes the value 1) they have to
agree. Furthermore, the Todd genus has to be
multiplicative in a way that reflects the multiplica-
tivity of the arithmetic genus, and so it should be
a multiplicative sequence in the sense of [8]. This
was the motivation for the first author to introduce
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the general concept of multiplicative sequences of
polynomials. He characterizes the Todd sequence
by a special multiplicative sequence with value 1
on each complex projective space.

The first four polynomials are

T1 :=
1

2
c1,

T2 =
1

12
(c2

1 + c2),

T3 =
1

24
c1c2,

T4 =
1

720
(−c4 + c3c1 + 3c2

2 + 4c2c
2
1 − c

4
1).

Theorem [8]. Let V be a nonsingular compact com-
plex algebraic variety of dimension n. Then

χ(V) = 〈Tn(V), [V]〉,

the evaluation of the Todd polynomial Tn on the
fundamental class.

We see that this result has a similar flavor to the
Riemann-Roch Theorem, since it relates analytic
information, the holomorphic Euler number, to a
topologically defined invariant, the Todd genus.

If the complex dimension of V is 1, the case
of a Riemannian surface, the theorem above is a
special case of the Riemann-Roch formula above,
namely, the case where D = 0. In the same sense,
the theorem above is the special case of the
Hirzebruch-Riemann-Roch formula for D = 0 [8].
In 1957 Grothendieck generalized this by consid-
ering a parametrized version of the Riemann-Roch
formula [2]. All this is a long story, and although
closely related to genera, it would lead us too far
away from our main themes.

Bordism and Generalized Genera
When we said that the Todd genus is topologically
defined, this was too brief. In addition to the
underlying differentiable manifold, one needs a
complex structure in a weaker sense: a complex
structure on the sum of the tangent bundle with a
trivial bundle. This structure is called a stable al-
most complex structure. A manifold with a stable
almost complex structure is called a stable almost
complex manifold. Note that with this definition,
even an odd-dimensional manifold can have a
stable almost complex structure.

Since the Chern classes are stable invariants,
which means that they are unchanged if we add a
trivial (complex) bundle, the structure one needs
for defining the Todd genus is a stable almost
complex structure. For such manifolds the Todd
genus has the following fundamental properties:

• it is additive (i.e., the Todd genus of a
disjoint union is the sum of the Todd
genera)

• it is multiplicative (i.e., the Todd genus
of a product is the product of the Todd
genera).

These properties of the Todd genus motivated
the first author to introduce the general concept
of genus. This is an invariant Φ for certain classes
of manifolds in terms of characteristic classes
of the tangent bundle (perhaps equipped with a
stable almost complex structure) with values in a
ring Λ fulfilling the two properties above. We note
that for a Riemannian surface F the Todd genus
is c1(F)/2, which is half the Euler characteristic
of F , namely, 1 − g(F). Thus the Todd genus is
in this case essentially the genus of a Riemannian
surface.

An important invariant of oriented manifolds
is the signature (b+−b−), which is the signature in
the sense of linear algebra of the intersection form
of a 4k-dimensional closed oriented manifoldM (if
the dimension is not divisible by 4, the signature
is defined as zero). It is denoted by

sign(M) ∈ Z.

The first author was looking for a formula
that, in analogy to the formula for the arithmetic
genus, computes the signature in terms of char-
acteristic classes. This was done at a time when
the Riemann-Roch formula was only conjectured.
In fact, the signature theorem became an impor-
tant ingredient in the proof of the Riemann-Roch
formula. Since there is no complex structure on
the tangent bundle, one has to use the Pontrjagin
classespi(M) ∈ H4i(M) instead of the Chern class-
es. These are (up to sign) the Chern classes of the
complexification of the tangent bundle. In analogy
to the Todd genus, the first author used his for-
malism of multiplicative sequences to construct
polynomials in Pontrjagin classes that take for
each even-dimensional complex projective space
the value 1, the signature of M . These are the
L-polynomials. The first three L-polynomials are

L1 =
1

3
p1,

L2 =
1

45
(7p2 − p

2
1),

L3 =
1

945
(62p3 − 13p2p1 + 2p3

1).

If, as for the arithmetic genus, one knew that the
values on the even-dimensional projective spaces
characterize the signature, one would obtain the
desired formula. This would follow if, after pass-
ing to a multiple if necessary, each manifold were
bordant to a linear combination of products of
projective spaces. The reason is that both the
signature and the L-polynomials are bordism in-
variants. Here two oriented manifoldsM andN are
bordant if there is a compact oriented manifoldW
with boundary being the disjoint union of M and
−N, the manifold N with the opposite orientation.

The bordism classes of closed oriented
n-dimensional manifolds form a group un-
der disjoint union, denoted by Ωn. The sum
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Ω∗ :=
∑
nΩn is a ring with respect to the

product of two manifolds. Thom [23] computed
Ω∗ ⊗Q. It is the polynomial ring with generators,
the even-dimensional projective spaces. These
considerations lead to:

Theorem (Signature Theorem) [8]. Let M be a
closed smooth oriented manifold. Then

sign(M) = 〈L(M), [M]〉.

Returning to the Todd genus, we noted that
it is defined for closed manifolds with stable al-
most complex structure. In analogy to the bordism
groups of oriented manifolds, Milnor [16] defined
and computed bordism groups of stable almost
complex manifolds. The answer is simpler than
for oriented bordism groups: the bordism ring of
stable almost complex manifolds is a polynomial
ring over Z in variables xi corresponding to stable
almost complex manifolds of real dimension 2i,
which Milnor explicitly describes. If one takes the
tensor product with Q, generators are given by
the projective spaces CPi .

The Relevance of the Signature
Here we can only indicate some aspects (in a
nonhistorical order). The classical genus of a
Riemannian surface completely characterizes the
homeomorphism type (which for surfaces agrees
with the diffeomorphism type). In a certain sense
one has an analogous result for closed smooth
simply connected 4-manifolds.

Theorem [5], [3]. Two closed differentiable simply
connected 4-manifolds are homeomorphic if and
only if the Euler characteristic, the signature, and
the type (even or odd) agree.

Here the type is even if and only if all self-
intersection numbers are even. This is a very deep
result based on independent difficult theorems
by Freedman and Donaldson. Freedman classified
simply connected topological 4-manifolds in
terms of the intersection form and a Z/2-valued
invariant, the Kirby-Siebenmann invariant. This
vanishes for smooth manifolds as well as for
manifolds homotopy equivalent to S4. Thus, as
a special case, Freedman proves the topological
4-dimensionalPoincaré conjecture:A 4-dimensional
manifold homotopy equivalent to S4 is home-
omorphic to S4. Every unimodular symmetric
bilinear form is the intersection form of a closed
simply connected topological 4-manifold, and the
classification of such forms is unknown. But for
smooth manifolds Donaldson used gauge theory
to show that the intersection forms are very
special and, because of some classical results,
are classified by the rank (equivalent to the Euler
characteristic), the signature, and the type.

In contrast to Riemann surfaces, the analogous
result for a diffeomorphism classification is
completely different in dimension 4. There are

many simply connected 4-manifolds M that have
an exotic smooth structure, which means there
exists another manifold homeomorphic but not
diffeomorphic to M . The first example was found
by Donaldson [4]. Later on, his techniques were
applied to show that many simply connected
4-manifolds have infinitely many smooth struc-
tures, forexample, theK3-surface{x ∈ CP3

|
∑
x4
i =

0} (a complex surface, so the real dimension is 4).
The following is one of the big open prob-

lems in differential topology: Is there any closed
4-manifold with no exotic structure? The most
interesting examples would be the complex pro-
jective plane CP2 or the 4-sphere S4. If S4 has
a unique smooth structure, this is the smooth
4-dimensional Poincaré conjecture, which one can
formulate as follows: A closed smooth simply con-
nected 4-manifold with Euler characteristic 2 is
diffeomorphic to S4 (it has automatically second
Betti number 0 and so signature 0; thus by the
theorem above it is homeomorphic to S4).

The existence of infinitely many smooth struc-
tures on a closed manifold is something that
happens exclusively in dimension 4. In all oth-
er dimensions this number is finite. This result
is closely related to the Hauptvermutung, which
says that if a topological manifold can be trian-
gulated, then this triangulation is unique up to
refinement. This is not true (the first counterexam-
ples were given by Milnor [17]), but in dimension
> 4 the work of Kirby and Siebenmann about
the Hauptvermutung [13] shows that a topological
manifold of dimension > 4 has at most finitely
many piecewise linear structures. Using surgery
theory, one can show that a piecewise linear man-
ifold of dimension > 4 has at most finitely many
smooth structures. Combining these two results,
one sees that a topological manifold of dimension
> 4 has at most finitely many smooth structures.

In this last result the classification of smooth
structures on spheres plays an essential role (for
the first examples by Milnor, see [15]; for the gener-
al classification in dimension > 4 by Kervaire and
Milnor, see [12]). The signature and in particular
the signature theorem are as much central tools
for the existence of exotic structures on spheres
as tools for the classification of such structures.
We indicate this for existence. Milnor constructs
certain compact smooth manifoldsW with bound-
ary homeomorphic to S4n−1. Then he considers
the union ofW with the cone over its boundary. If
the boundary is diffeomorphic to S4n−1, then this
is a smooth manifold, and thus one can compute
its signature by the signature theorem in terms
of the L-polynomials. Except for the expression
in the top Pontrjagin class pn, all other terms in
the L-polynomial can be computed in terms of
the Pontrjagin classes of W . Thus one can use
the signature formula to compute the term in pn
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in the L-polynomial. The coefficient of pn in the
L-polynomial is a rational number,

22n(22n−1 − 1)

2n!
(−1)n−1b2n,

where b2n is the Bernoulli number. If the boundary
of W is diffeomorphic to S4n−1, the fact that pn
is an integer gives a certain congruence between
the difference of the signature of the union of W
with the cone over the boundary and the other
expressions in the L-polynomial (we will carry
out an especially simple example). If this congru-
ence does not hold, the boundary of W is not
diffeomorphic to the sphere. This way one can
produce examples of exotic structures on spheres
of dimension 4n− 1 for n > 1 (see also [17]).

We want to use plumbing [9] similar to a
construction used by Milnor to give explicit ex-
amples of exotic spheres and at the same time
the construction of a topological manifold without
smooth structure (the existence of such manifolds
was first shown by Kervaire [11]). We consider the
E8-graph

Using E8, we construct a manifold with bound-
ary of dimension 12 by gluing together for each
edge a copy of the disc bundle of the tangent bun-
dle of S6 using the following recipe. If two vertices
are joined by an edge, we take a trivialization of
the disc bundle over a disc D6 in S6 to obtain an
embedding of D6×D6 into the disc bundle, where
the first component maps to S6 and the second
to the fibres. Then we identify (x, y) in the first
product with (y, x) in the second:

Figure 3.

The result is a compact 12-dimensional manifold
W(E8) with boundary and corners, which one can
smooth. By construction it is homotopy equiva-
lent to a wedge of eight copies of S6. By general
position the fundamental group is trivial. Using
the unimodularity (meaning that the intersection

form has determinant ±1) of the E8-form, we find
that the Mayer-Vietoris sequence implies that the
boundary of W(E8) is a homotopy sphere. Appli-
cation of the Poincaré conjecture proved by Smale
[22] shows that the boundary is homeomorphic
to S11. We now apply the signature theorem to
show that it is not diffeomorphic to S11 follow-
ing the principle explained above. If there were a
diffeomorphism f : ∂W(E8) → S11, then we could
consider M := W(E8)∪f D

12 and obtain a smooth
manifold whose homology is trivial except in de-
gree 0, 6, and 12. The intersection form of this
manifold is by construction the E8-form, whose
signature is 8. Now we apply the signature theorem
and obtain

8 =
62

945
〈p3(M), [M]〉,

a contradiction (note that the only potentially
nontrivial Pontrjagin class is p3(M), an integral co-
homology class). Thus ∂W(E8) is an exotic sphere.
If instead of a diffeomorphism we use a homeo-
morphism, we obtain a topological manifold M ,
which by the same argument as above cannot
admit a smooth structure.

The use of the E8-graph is motivated by the fact
that the resolution of the singularity in (0,0,0) of
z2

1+z
3
2+z

5
3 = 0 consists of eight nonsingular ratio-

nal curves of self-intersection number −2 whose
intersection behavior is given by E8.

The Atiyah-Singer Index Theorem and
Other Genera
Except for the signature, the left-hand sides of our
formulas related to the genus were of an analytic
nature, being given by dimensions of certain vec-
tor spaces of functions or differential forms. In
fact the signature can also be interpreted as an
analytic invariant via Hodge theory. It is the index
of a differential operator, the signature operator.
Thus the signature theorem is an index theorem
expressing the index of an elliptic differential
operator in topological terms.

During the 1960s Atiyah and Singer [1] proved
a general index theorem for elliptic differential
operators on smooth manifolds extending for
example the signature theorem. Besides the signa-
ture the most important operators are the Laplace
operator whose index is the Euler characteris-
tic and the Dirac operator on a manifold with
spin-structure. The topological side of the index
formula for the Dirac operator, the Â-genus, was
studied in [8]. In the 1980s Ochanine and Witten
defined very interesting genera for spin, respec-
tively string, manifolds, the Ochanine, respectively
Witten, genus. The remarkable property of these
genera is that they take values in rings of mod-
ular forms (compare, for example, [10]). One can
conjecture that these genera are only a shadow of
interesting new (co)homology theories associated
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with the term elliptic cohomology. In the end one

expects that elliptic cohomology will play a cen-

tral role in index theory on the loop space of a
manifold in analogy with the role that K-theory

plays in index theory on smooth manifolds.
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Medicine and Mathematical Humor

Citations to Notices articles crop up in many 
places—but in a medical journal? In 2006, Best 
Practice & Research Clinical Obstetrics and Gyn-
aecology carried an article called “Assessing new
interventions in women’s health”. Written by 
University of Birmingham biostatistician Robert 
K. Hills and research fellow Jane Daniels, the ar-
ticle discusses principles for running or assessing
clinical trials of medical treatments for women, 
with an emphasis on how to evaluate the treat-
ments’ efficacy in the face of unclear or conflict-
ing trial results. “[I]t is not acceptable to rely on 
proof by anecdotal evidence, eminent authority, 
or vigorous handwaving,” the authors write, cit-
ing the widely read Notices article “Foolproof: A 
sampling of mathematical folk humor”, by Alan 
Dundes and Paul Renteln (January 2005). As he 
later explained to Notices Editor Andy Magid, 
Hills was an undergraduate mathematics student 
at the University of California, Los Angeles, and 
heard jokes about the various methods of proof 
(such as “proof by intimidation”), many of which 
are listed in the Dundes-Renteln piece. Hills 
and Daniels also quote Bertrand Russell: “The 
fact that an opinion has been widely held is no 
evidence whatever that it is not utterly absurd.”
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