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The topology of normal singularities of an algebraic surfac
(d’aprés un article de D. Mumford)

Séminaire Bourbaki 1962/63, Exp. 250, Textes des conférences, o.S., Paris:
Institut Henri Poincaré 1963

We shall study Mumford’s results in the complex-analytic case.

1. Regular graphs of curves

Let X be a complex manifold of complex dimension 2. A regular grag
of curves on X is defined as follows.

i. I'=AEj, EssscvsEn}.
ii. Each E; is a compact connected complex submanifold of X of com
dimension 1.
iii. Each point of X lies on at most two of the E;.
iv. If xeE;nE; and i#j, then E;, E; intersect regularly in x
EinE;={x}.

I" defines a graph I’ in the usual sense (i.e. a one-dimensional finite
plicial complex) by associating to each E; a vertex e; and by joining ¢; and .
an edge if and only if E; and E; intersect. * becomes a “weighted graph
attaching to each e¢; the self-intersection number E; - E;, i.e. the Euler nur
of the normal bundle of E; in X. We have the symmetric matrix

S(I') = ((Ei" Ej))

where E;-E; (i #j) equals 1 if E;n E;# @ and equals 0 if E.nE;=0.
matrix is called the intersection matrix of I” and defines a bilinear symm
form S over the Z-module V=Ze,+Ze,+...+ Ze,. The matrix S(I",
pends (up to the ordering of the ¢;) only on the weighted graph and ma
denoted by S (I”"). The subset 4 of X is called a tubular neighbourhood of

i A= 4,

i=1
where 4; is a (compact) tubular neighbourhood of E;,
ii. E;nE;=0 implies 4, nA4;=0,
iii. E; n E;={x} implies the existence of a local coordinate system (z
with center x and a positive number ¢ such that the open neight
hood

={plpeXnlzi(p)|<2en|z(p)|<2¢
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is defined in this coordinate system and
AinU=plpeUn]z(p|=e,
A4nU={plpeUn]|z(p]|=e,

AinA;cU.

Such tubular neighbourhoods always exist.

A4 is a compact 4-dimensional manifold (differentiable except “corners™)
whose boundary M is a 3-dimensional manifold (without boundary). It is easy

n

to see that 4 has E = [ ] E; as deformation retract. Thus

i=1

(1) Hi(4) = H:(E) .

Suppose that the graph 7’ is connected. This is the case if M is connected. If,
moreover, /" has no cycles, then E is homotopically equivalent to a wedge of n
compact oriented topological surfaces with the genera g;= genus(E;). If I’
has p linearly independent cycles, then the homotopy type of E is the wedge of
n surfaces as above and p one-dimensional spheres. The first Betti number of
E is given by the formula

(2) bi(E)=22 gi+p.
i=1

We have the exact sequence (rational cohomology)
(3) H'"(A.M) - H'(4) - H'(M).

By Poincaré duality H'(4, M) = H;(A) which vanishes by (1).
Therefore H'(A) maps injectively into H'(M) which proves in virtue of
(1) and (2):

Lemma. If the regular graph of curves I'={E, ..., E,} has a tubular neighbour-
hood A whose boundary M is a rational homology sphere, then the graph I'" is a
tree (i.e. I'" is connected and has no cycles). Furthermore, the genera of the curves
are all 0, thus all the E; are 2-spheres.

2. The fundamental group of the “tree manifold” M

Suppose M is obtained as in Section 1, assume that /™ is a tree and all the
E; are 2-spheres. By the lemma of Section | this is true if M is a rational

homology sphere. The fundamental group 7, (M) is presented by the following
theorem.

Theorel.n.. Pur S (f )= ((Ei" E)) = (sij). Then, with the above assumptions,
m, (M) is isomorphic with the free group generated by the vertices ey, ..., e, of I'’
modulo the relations ‘

(a) eie'=¢j'e;
(b) 1= I ¢,
I=j=n
2
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the product in (b) being ordered from left to right by increasing j. Recall that t
exponents s;; are all 1 or 0 (for i # j).

Remark. Each weighted tree with a numbering of its vertices defines by tt
recipe a group. A change of the numbering gives an isomorphic group. This
not difficult to prove. Thus it makes sense to speak (up to an isomorphism)
m (I"') where I'" is any weighted tree.

We sketch a proof of the theorem. The boundary of 4;, denoted by d4;, is
circle bundle over S? with Euler number s;;. A generator e; of m (d4;)
represented by a fibre. The only relation is

eit=1.

Recall M=04 and put B,=d4 nA4; which is a 3-dimensional manifo
obtained from 64, by removing for each j with j#i and s;#0 a fib
preserving neighbourhood of some fibre. This neighbourhood to be remov:
has in local coordinates (Section 1, (iii)) the description (|z;| < &, |z:| =¢) ai
thus is of the type D?xS'. The boundary of B; consists of a certain number
2-dimensional tori (one for each j with j#1i and s; + 0). The fundament
group 7, (B;) has generators e; (j =i or 5;; ¥ 0) with the only relations

(a) €€ =6;€

(b) e =1lg,

the product is in increasing order of j (over those ¢; with j ¥/ and s;;%# (
Here e¢; is representable by any fibre, thus also by a fibre on the J™ torus. ¢;
represented on the j% torus by (z;=¢e?™", z; = constant of absolute value &).
becomes a fibre in B;. Since M = U B;, we can use van Kampen’s theorem
present 7 (M) as the free product of the =z, (B;) modulo amalgamation
certain subgroups 7, (S'x S'). This gives the theorem. Our notation takes aut
matically care of the amalgamation because for s;;# 0 and i # j the symbols
¢; denote elements of 7, (B;) and of 7 (B;). Of course, there is all the troul
with the base point which we have neglected in this sketch. The trouble is r
serious, mainly because I’ is a tree. A further remark to visualize the rel
tions: B, as a circle bundle over S?— (disjoint union of small disks), is trivi
Thus ¢; lies in the center of 7, (B;). There is a section of 04; over the orient
S? with one singular point. This gives an “oriented disk-like 2-chain” in ¢
with ¢;* as boundary (characteristic class = negative transgression!). T
small disks lift to disks in that 2-chain. They have to be removed and have t
¢; (j#1, s;; # 0) as boundary. Knowledge of the fundamental group of a di
with small disks removed gives (b).

Corollary. The determinant of the matrix (s;j) is different from 0 if and only
H, (M.Z) is finite. If this is so, then |det (i) | equals the order of Hy (M. Z).

Proof. Recall that H,(M:Z) is the abelianized 7, (M). The corollary follo
from relation (b) of the theorem. The result can also be obtained directly frc
the exact homology sequence of the pair (4,M) which identifies H (M

3
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with the cokernel of the homomorphism V — V* defined by the quadratic
form S (for the notation see Section 1). H,(4;Z) may be identified with ¥ and
H>{A, M;Z) by Poincaré duality with V*=Hom (V, Z).

3. Elementary trees

In this section we shall prove a purely algebraic result.

A weighted tree is a finite tree with an integer associated to each vertex.

An elementary transformation (of the first kind) of a weighted tree adds a
new vertex x, joins it to an old vertex y by a new edge, gives x the weight —1
and y the old weight diminished by 1. Everything else remains unchanged.

An elementary transformation (of the second kind) adds a new vertex x,
joins it to the two vertices y;, y, of an edge k by edges k,, k., removes k, gives
x the weight —1 and y; (i=1,2) the old weight of y; diminished by 1. The
following proposition is easy to prove.

Proposition. If I is a weighted tree and I'"" obtainable from I'" by an elementary
transformation, then S (I'") is negative definite if and only if S(I'’) is. Further-
more m (I'") = = (I"”’") (for the notation see Section 1 and the Remark in Sec-
tion 2). :

An elementary tree is a weighted tree obtainable from the one-vertex-tree
with weight —1 by a finite number of elementary transformations.

Theorem. Let I’ be a weighted tree. Suppose that m (I'') is trivial and that the
matrix (integral quadratic form) S (I"") is negative definite. Then I'’ is an elemen-
tary tree.

For the proof a group theoretical lemma is essential whose proof we omit.

Lemma. Let G, Gy, G3 be non-trivial groups, and a; € G;. Then the free product
G, * G»* Gy modulo the relation ay a; a3 =1 is a non-trivial group.

Inductive proof of the theorem. Suppose it is proved if the number of
vertices in the weighted tree is less than n. Let " have n vertices ey, ..., e,.

First case. There is no vertex in I'' which is joined by edges with at least three
vertices.
Then I is linear
ay as an
where «; is the associated weight. It follows that one of the a; must be —1,
if not det S (/") would be up to sign the numerator of the continued fraction

=y (@=-2)
|a2| )

B 1

lanl
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which is not 1. This contradicts the corollary in Section2. Thus I is a
elementary transform of a tree /I with n—1 vertices. By the proposition an
the induction assumption /™’ is elementary.

Second case. There is a vertex ey, say, joined with e,, ..., e, (m=4).

We may choose this notation since the numbering plays no role for th
fundamental group (see the Remark in Section 2).

Take I”. remove ¢, and the edges joining it to e, ..., e,. The remainin
one-dimensional complex is a union of m—1 trees T3, ..., T,» where T; has
as vertex. The free product of the (7)), i=2, ..., m, modulo the relatic
ese3...em=1 gives obviously (see Section 2) the group 7; (/') modulo e;=
By assumption 7, (I"') is trivial. By the lemma at least one of the groups m; (7;
say 7 (T3), is trivial. By induction assumption 7 is elementary and thus ca
be reduced by removing a vertex x with weight —1 to give a weighted tree |
of which T is an elementary transform of first or second kind. If x # e, or
x=e, and joined only with one vertex in T, then I'’ is an elementary transfor
of the tree consisting of the T; (i=3,....m), T3, and e; (with the weigl
unchanged or increased by 1 respectively). By induction and the propositio
I" would be elementary. In the remaining case x=e; and e, is joined wil
exactly three vertices in 7/, namely e; and, say, €m+1, €m+2 of T,. Again, eith
I would be an elementary transform of a smaller tree, or the weight of
OF €pms+1 OF €msz would be —1. But the latter case cannot occur, since tl
quadratic form takes on e, +e;€ V (see Section 1) the value 0, if e,, e; ha
weight —1 and are joined by an edge, and this would be true for r=2 ar
s=1,m+1or m+2 and contradict the negative definiteness of S (/™).

4. A blowing-down theorem

Theorem. Let X be a complex manifold of complex dimension 2 ai
['=1E,,E,,....E,} a regular graph of curves on X. Suppose the boundary
some tubular neighbourhood of I be simply-connected and the matrix S
negative-definite. Then the topological space X. /E (i.e. X with E = _Ul E; collaps
10 a point) is a complex manifold in a natural way: The projection X — X/E
holomorphic and the bijection X —E — X/E—E/E is biholomorphic.

Proof. By the lemma in Section 1 and the theorem in Section 3 all curves E; &
2-spheres and I is an elementary tree. If I'” has only one vertex, then t
above theorem is due to Grauert or, in the classical algebraic geometric ca
to Castelnuovo-Enriques. By the very definition of an elementary tree a
easy properties of “quadratic transformations” the result follows.

5. Resolution of singularities

Let Y be a complex space of complex dimension 2 in which all points ¢
non-singular except possibly the point yo which is supposed to be normal. T

5
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theorem on desingularization states that there exist a complex manifold X,
a regular (see Section 1) graph I" of curves E,,..., E, on X, a holomorphic
map 7 X — Y with

n(E)={y), where E=JE:,

i=1

nx-g: X—E — Y —{yo} biholomorphic.

Thus the topological investigation of 4 and M (Section 1) which we have
carried through so far contains as special case the investigation of singularities.

A theorem, which we do not prove here, states thar S (I") is negative-definite if

I” comes from desingularizing a singularity.

6. The Main theorem of Mumford

Theorem. Let Y, yo be as in Section 5. Suppose that yo has in Y a neighbourhood
U homeomorphic to R* by local coordinates t,, ..., ts. Then yo is non-singular.

“Desingularize” y, as in Section 5. Take a tubular neighbourhood 4 of I
We can find a positive number d such that K=7"{p|pe UAD 1} (p) <} A.
There exists a tubular neighbourhood 4" with

A cKcA

and such that 4’ is obtained from A just be multiplying the “normal distances™
by a fixed positive number r < 1. Any path in 4 — E is homotopic to a path in
A’— E which is nullhomotopic in 4—E because m;(K—E) = (R*—{0}) is
trivial. The theorem in Section 4 together with the theorem mentioned at the
end of Section 5 completes the proof.

7. Further remarks

For any weighted tree /™ the construction in Section I can be topologized
(assume genus g (E;) =0). In this way we may attach to each weighted tree /'’
a 3-dimensional manifold M(I"") (see von Randow [5]) which, as can be
shown, depends only on I"* (up to a homeomorphism).

We have 7, (M (")) = m; (I'’) (see Section 2). Von Randow [5] has investi-
gated the tree manifold M (I’) and shown in analogy to Mumford’s theorem
(Section 6) that M (I"’) is homeomorphic to S3 if =;(I™) is trivial. Thus there
is no counter-example to Poincaré’s conjecture in the class of tree manifolds
M(I"”). Von Randow’s investigations and also the topological part of Mum-
ford’s paper are in close connection to the classical paper of Seifert [6]. The
oriented Seifert manifolds (fibred in circles over S? with a finite number of
exceptional fibres) are special tree manifolds [5].

6
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Interesting trees (always with genus g (E;) =0) occur when desingular
the singularities

@G+zD)? (nz2), (@ @B+ (=),
R+D2, (@@, @+

Each of these algebroid function elements generates a complex space w
singular point at the origin.

These singularities give rise to the well known trees A,,_;, D,+2, E¢, E
of Lie group theory (all vertices weighted by —2). The corresponding n
folds M are homeomorphic to S*/G where G is a finite subgroup of S* (c;
binary dihedral, binary tetrahedral, binary octahedral, binary pentagc
decahedral). Up to inner automorphisms these are the only finite subgrou
S>3 The manifold M (Es) is specially interesting. Since detS (Eg) =1, it
the corollary in Section 2 a Poincaré manifold, i.e. a 3-dimensional man
with non-trivial fundamental group and trivial abelianized fundamental g
M (Eg) was constructed by “plumbing” 8-copies of the circle bundle ov
with Euler number —2. By replacing this basic constituent by the tai
bundle of S one obtains a manifold M**~!(Es) of dimension 4k —1.
carries a natural differentiable structure. For k=2 it is homeomorph
S*=1_put not diffeomorphic (Milnor sphere).

The above mentioned singularities are classical (e.g. Du Val [1]). Fo
preceding remarks see also [3]. .

For quadratic transformations, desingularization, etc. see the pape
Zariski and also [2]. We have only been able to sketch some aspec
Mumford’s paper, leaving others aside, e.g. the local Picard variety, etc.
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