64. Überlagerungen der projektiven Ebene und Hilbertsche 65. (mit A. Van de Ven) Minimal Hilbert modular surfaces with $p_{\sigma} = 3$ 66. The canonical map for certain Hilbert modular sufaces 635 69. Arrangements of lines and algebraic surfaces 679 70. Mannigfaltigkeiten und algebraische Topologie 707 73. Algebraic surfaces with extreme Chern numbers 731 74. Singularities of algebraic surfaces and characteristic numbers 742 75. Some examples of threefolds with trivial canonical bundle 757 Schriftenverzeichnis

The topology of normal singularities of an algebraic surfac (d'après un article de D. Mumford)

Séminaire Bourbaki 1962/63, Exp. 250, Textes des conférences, o. S., Paris: Institut Henri Poincaré 1963

We shall study Mumford's results in the complex-analytic case.

1. Regular graphs of curves

Let X be a complex manifold of complex dimension 2. A regular graph of curves on X is defined as follows.

- i. $\Gamma = \{E_1, E_2, \dots, E_n\}.$
- ii. Each E_i is a compact connected complex submanifold of X of comdimension 1.
- iii. Each point of X lies on at most two of the E_i .
- iv. If $x \in E_i \cap E_j$ and $i \neq j$, then E_i , E_j intersect regularly in $x \in E_i \cap E_j = \{x\}$.

 Γ defines a graph Γ' in the usual sense (i.e. a one-dimensional finite plicial complex) by associating to each E_i a vertex e_i and by joining e_i and an edge if and only if E_i and E_j intersect. Γ' becomes a "weighted graph attaching to each e_i the self-intersection number $E_i \cdot E_i$, i.e. the Euler nur of the normal bundle of E_i in X. We have the symmetric matrix

$$S(\Gamma) = ((E_i \cdot E_j))$$

where $E_i \cdot E_j$ ($i \neq j$) equals 1 if $E_i \cap E_j \neq \emptyset$ and equals 0 if $E_i \cap E_j = \emptyset$. matrix is called the intersection matrix of Γ and defines a bilinear symm form S over the \mathbb{Z} -module $V = \mathbb{Z} \ e_1 + \mathbb{Z} \ e_2 + \ldots + \mathbb{Z} \ e_n$. The matrix $S(\Gamma)$ pends (up to the ordering of the e_i) only on the weighted graph and madenoted by $S(\Gamma)$. The subset A of X is called a tubular neighbourhood of

i.
$$A = \bigcup_{i=1}^n A_i$$
,

where A_i is a (compact) tubular neighbourhood of E_i ,

- ii. $E_i \cap E_j = \emptyset$ implies $A_i \cap A_j = \emptyset$,
- iii. $E_i \cap E_j = \{x\}$ implies the existence of a local coordinate system (z with center x and a positive number ε such that the open neight hood

$$U = \{ p \mid p \in X \land | z_1(p) | < 2\varepsilon \land | z_2(p) | < 2\varepsilon \}$$

is defined in this coordinate system and

$$A_i \cap U = \{ p \mid p \in U \cap | z_2(p) | \le \varepsilon \} ,$$

$$A_j \cap U = \{ p \mid p \in U \cap | z_1(p) | \le \varepsilon \} ,$$

$$A_i \cap A_j \subset U .$$

Such tubular neighbourhoods always exist.

A is a compact 4-dimensional manifold (differentiable except "corners") whose boundary M is a 3-dimensional manifold (without boundary). It is easy

to see that A has $E = \bigcup_{i=1}^{n} E_i$ as deformation retract. Thus $(1) H_i(A) \cong H_i(E) .$

(1)
$$H_i(A) \cong H_i(E) .$$

Suppose that the graph Γ' is connected. This is the case if M is connected. If, moreover, Γ' has no cycles, then E is homotopically equivalent to a wedge of n compact oriented topological surfaces with the genera $q_i = \text{genus}(E_i)$. If Γ' has p linearly independent cycles, then the homotopy type of E is the wedge of n surfaces as above and p one-dimensional spheres. The first Betti number of E is given by the formula

(2)
$$b_1(E) = 2\sum_{i=1}^n g_i + p.$$

We have the exact sequence (rational cohomology)

(3)
$$H^{1}(A, M) \rightarrow H^{1}(A) \rightarrow H^{1}(M)$$
.

By Poincaré duality $H^1(A, M) \cong H_3(A)$ which vanishes by (1).

Therefore $H^1(A)$ maps injectively into $H^1(M)$ which proves in virtue of (1) and (2):

Lemma. If the regular graph of curves $\Gamma = \{E_1, \dots, E_n\}$ has a tubular neighbourhood A whose boundary M is a rational homology sphere, then the graph Γ' is a tree (i.e. Γ' is connected and has no cycles). Furthermore, the genera of the curves are all 0, thus all the E; are 2-spheres.

2. The fundamental group of the "tree manifold" M

Suppose M is obtained as in Section 1, assume that Γ' is a tree and all the E_i are 2-spheres. By the lemma of Section 1 this is true if M is a rational homology sphere. The fundamental group $\pi_1(M)$ is presented by the following theorem.

Theorem. Put $S(\Gamma) = ((E_i \cdot E_i)) = (s_{ii})$. Then, with the above assumptions, $\pi_1(M)$ is isomorphic with the free group generated by the vertices e_1, \ldots, e_n of Γ' modulo the relations

$$e_i e_j^{s_{ij}} = e_j^{s_{ij}} e_i$$

$$1 = \prod_{1 \le j \le n} e_j^{s_{ij}},$$

the product in (b) being ordered from left to right by increasing j. Recall that t exponents s_{ij} are all 1 or 0 (for $i \neq j$).

Remark. Each weighted tree with a numbering of its vertices defines by the recipe a group. A change of the numbering gives an isomorphic group. This not difficult to prove. Thus it makes sense to speak (up to an isomorphism) $\pi_1(\Gamma')$ where Γ' is any weighted tree.

We sketch a proof of the theorem. The boundary of A_i , denoted by ∂A_i , is circle bundle over S^2 with Euler number s_{ii} . A generator e_i of $\pi_1(\partial A_i)$ represented by a fibre. The only relation is

$$e_i^{s_{ii}} = 1$$
.

Recall $M = \partial A$ and put $B_i = \partial A \cap A_i$ which is a 3-dimensional manifo obtained from ∂A_i by removing for each j with $j \neq i$ and $s_{ij} \neq 0$ a fib preserving neighbourhood of some fibre. This neighbourhood to be remove has in local coordinates (Section 1, (iii)) the description ($|z_1| < \varepsilon$, $|z_2| = \varepsilon$) at thus is of the type $D^2 \times S^1$. The boundary of B_i consists of a certain number 2-dimensional tori (one for each j with $j \neq i$ and $s_{ij} \neq 0$). The fundament group $\pi_1(B_i)$ has generators e_i $(j = i \text{ or } s_{ij} \neq 0)$ with the only relations

$$(a) e_i e_j = e_i e_i$$

$$e_i^{-s_{ii}} = \prod e_i,$$

the product is in increasing order of j (over those e_i with $j \neq i$ and $s_{ij} \neq t$ Here e_i is representable by any fibre, thus also by a fibre on the j^{th} torus. e_i represented on the i^{th} torus by $(z_1 = \varepsilon e^{2\pi i t}, z_2 = \text{constant of absolute value } \varepsilon)$. becomes a fibre in B_i . Since $M = \bigcup B_i$, we can use van Kampen's theorem present $\pi_1(M)$ as the free product of the $\pi_1(B_i)$ modulo amalgamation certain subgroups $\pi_1(S^1 \times S^1)$. This gives the theorem. Our notation takes aut matically care of the amalgamation because for $s_{ij} \neq 0$ and $i \neq j$ the symbols e_i denote elements of $\pi_1(B_i)$ and of $\pi_1(B_i)$. Of course, there is all the troul with the base point which we have neglected in this sketch. The trouble is r serious, mainly because Γ' is a tree. A further remark to visualize the rel tions: B_i , as a circle bundle over S^2 (disjoint union of small disks), is trivi Thus e_i lies in the center of $\pi_1(B_i)$. There is a section of ∂A_i over the orient S^2 with one singular point. This gives an "oriented disk-like 2-chain" in $\dot{\epsilon}$ with $e_i^{-s_{ij}}$ as boundary (characteristic class = negative transgression!). T small disks lift to disks in that 2-chain. They have to be removed and have t e_i $(j \neq i, s_{ij} \neq 0)$ as boundary. Knowledge of the fundamental group of a di with small disks removed gives (b).

Corollary. The determinant of the matrix (s_{ij}) is different from 0 if and only $H_1(M; \mathbb{Z})$ is finite. If this is so, then $|\det(s_{ij})|$ equals the order of $H_1(M; \mathbb{Z})$.

Proof. Recall that $H_1(M; \mathbb{Z})$ is the abelianized $\pi_1(M)$. The corollary follo from relation (b) of the theorem. The result can also be obtained directly from the exact homology sequence of the pair (A, M) which identifies $H_1(M;$

with the cokernel of the homomorphism $V \rightarrow V^*$ defined by the quadratic form S (for the notation see Section 1). $H_2(A; \mathbb{Z})$ may be identified with V and $H_2(A, M; \mathbb{Z})$ by Poincaré duality with $V^* = \text{Hom}(V, \mathbb{Z})$.

3. Elementary trees

In this section we shall prove a purely algebraic result.

A weighted tree is a finite tree with an integer associated to each vertex.

An elementary transformation (of the first kind) of a weighted tree adds a new vertex x, joins it to an old vertex y by a new edge, gives x the weight -1and y the old weight diminished by 1. Everything else remains unchanged.

An elementary transformation (of the second kind) adds a new vertex x, ioins it to the two vertices v_1 , v_2 of an edge k by edges k_1 , k_2 , removes k, gives x the weight -1 and v_i (i = 1, 2) the old weight of v_i diminished by 1. The following proposition is easy to prove.

Proposition. If Γ' is a weighted tree and Γ'' obtainable from Γ' by an elementary transformation, then $S(\Gamma'')$ is negative definite if and only if $S(\Gamma')$ is. Furthermore $\pi_1(\Gamma') \cong \pi_1(\Gamma'')$ (for the notation see Section 1 and the Remark in Section 2).

An elementary tree is a weighted tree obtainable from the one-vertex-tree with weight -1 by a finite number of elementary transformations.

Theorem. Let Γ' be a weighted tree. Suppose that $\pi_1(\Gamma')$ is trivial and that the matrix (integral quadratic form) $S(\Gamma')$ is negative definite. Then Γ' is an elementary tree.

For the proof a group theoretical lemma is essential whose proof we omit.

Lemma. Let G_1 , G_2 , G_3 be non-trivial groups, and $a_i \in G_i$. Then the free product $G_1 * G_2 * G_3$ modulo the relation $a_1 a_2 a_3 = 1$ is a non-trivial group.

Inductive proof of the theorem. Suppose it is proved if the number of vertices in the weighted tree is less than n. Let Γ' have n vertices e_1, \ldots, e_n .

First case. There is no vertex in Γ' which is joined by edges with at least three vertices.

Then
$$\Gamma'$$
 is linear

$$a_1$$
 a_2 \cdots a_n

where a_i is the associated weight. It follows that one of the a_i must be -1, if not det $S(\Gamma)$ would be up to sign the numerator of the continued fraction

$$|a_1| - \frac{1}{|a_2|} - \frac{1}{|a_n|}$$
 $(a_i \le -2)$

which is not 1. This contradicts the corollary in Section 2. Thus Γ' is a elementary transform of a tree Γ'' with n-1 vertices. By the proposition an the induction assumption Γ' is elementary.

Second case. There is a vertex e_1 , say, joined with e_2, \ldots, e_m $(m \ge 4)$.

We may choose this notation since the numbering plays no role for th

fundamental group (see the Remark in Section 2).

Take Γ' , remove e_1 and the edges joining it to e_2, \ldots, e_m . The remaining one-dimensional complex is a union of m-1 trees T_2, \ldots, T_m where T_i has as vertex. The free product of the $\pi_1(T_i)$, $i=2,\ldots,m$, modulo the relation $e_2 e_3 \dots e_m = 1$ gives obviously (see Section 2) the group $\pi_1(\Gamma')$ modulo $e_1 =$ By assumption $\pi_1(\Gamma')$ is trivial. By the lemma at least one of the groups $\pi_1(T_i)$ say $\pi_1(T_2)$, is trivial. By induction assumption T_2 is elementary and thus ca be reduced by removing a vertex x with weight -1 to give a weighted tree 1of which T_2 is an elementary transform of first or second kind. If $x \neq e_2$ or $x = e_2$ and joined only with one vertex in T_2 , then Γ' is an elementary transform of the tree consisting of the T_i (i=3,...,m), T_2' , and e_1 (with the weight unchanged or increased by 1 respectively). By induction and the propositio Γ' would be elementary. In the remaining case $x = e_2$ and e_2 is joined with exactly three vertices in Γ' , namely e_1 and, say, e_{m+1} , e_{m+2} of T_2 . Again, eith Γ' would be an elementary transform of a smaller tree, or the weight of or e_{m+1} or e_{m+2} would be -1. But the latter case cannot occur, since the quadratic form takes on $e_r + e_s \in V$ (see Section 1) the value 0, if e_r , e_s have weight -1 and are joined by an edge, and this would be true for r=2 ar s=1, m+1 or m+2 and contradict the negative definiteness of $S(\Gamma')$.

4. A blowing-down theorem

Theorem. Let X be a complex manifold of complex dimension 2 as $\Gamma = \{E_1, E_2, \dots, E_n\}$ a regular graph of curves on X. Suppose the boundary some tubular neighbourhood of Γ be simply-connected and the matrix S(I)negative-definite. Then the topological space X/E (i.e. X with $E = \bigcup_{i=1}^{n} E_i$ collaps to a point) is a complex manifold in a natural way: The projection $X \to X/E$ holomorphic and the bijection $X - E \rightarrow X/E - E/E$ is biholomorphic.

Proof. By the lemma in Section 1 and the theorem in Section 3 all curves E_i a 2-spheres and Γ' is an elementary tree. If Γ' has only one vertex, then t above theorem is due to Grauert or, in the classical algebraic geometric car to Castelnuovo-Enriques. By the very definition of an elementary tree a easy properties of "quadratic transformations" the result follows.

5. Resolution of singularities

Let Y be a complex space of complex dimension 2 in which all points ϵ non-singular except possibly the point y_0 which is supposed to be normal. T theorem on desingularization states that there exist a complex manifold X, a regular (see Section 1) graph Γ of curves E_1, \ldots, E_n on X, a holomorphic map $\pi: X \to Y$ with

$$\pi(E) = \{y_0\}, \text{ where } E = \bigcup_{i=1}^{n} E_i,$$

$$\pi_{|X-E}$$
: $X-E \to Y-\{y_0\}$ biholomorphic.

Thus the topological investigation of A and M (Section 1) which we have carried through so far contains as special case the investigation of singularities. A theorem, which we do not prove here, states that $S(\Gamma)$ is negative-definite if Γ comes from desingularizing a singularity.

6. The Main theorem of Mumford

Theorem. Let Y, y_0 be as in Section 5. Suppose that y_0 has in Y a neighbourhood U homeomorphic to \mathbb{R}^4 by local coordinates t_1, \ldots, t_4 . Then y_0 is non-singular.

"Desingularize" y_0 as in Section 5. Take a tubular neighbourhood A of Γ . We can find a positive number δ such that $K = \pi^{-1} \{ p \mid p \in U \land \sum t_i^2(p) < \delta \} \subset A$. There exists a tubular neighbourhood A' with

$$A' \subset K \subset A$$

and such that A' is obtained from A just be multiplying the "normal distances" by a fixed positive number r < 1. Any path in A - E is homotopic to a path in A' - E which is nullhomotopic in A - E because $\pi_1(K - E) = \pi_1(\mathbb{R}^4 - \{0\})$ is trivial. The theorem in Section 4 together with the theorem mentioned at the end of Section 5 completes the proof.

7. Further remarks

For any weighted tree Γ' the construction in Section 1 can be topologized (assume genus $g(E_i) = 0$). In this way we may attach to each weighted tree Γ' a 3-dimensional manifold $M(\Gamma')$ (see von Randow [5]) which, as can be shown, depends only on Γ' (up to a homeomorphism).

We have $\pi_1(M(\Gamma')) = \pi_1(\Gamma')$ (see Section 2). Von Randow [5] has investigated the tree manifold $M(\Gamma')$ and shown in analogy to Mumford's theorem (Section 6) that $M(\Gamma')$ is homeomorphic to S^3 if $\pi_1(\Gamma')$ is trivial. Thus there is no counter-example to Poincaré's conjecture in the class of tree manifolds $M(\Gamma')$. Von Randow's investigations and also the topological part of Mumford's paper are in close connection to the classical paper of Seifert [6]. The oriented Seifert manifolds (fibred in circles over S^2 with a finite number of exceptional fibres) are special tree manifolds [5].

Interesting trees (always with genus $g(E_i) = 0$) occur when desingular the singularities

$$(z_1^2 + z_2^n)^{1/2} \quad (n \ge 2), \qquad (z_1 (z_2^2 + z_1^n))^{1/2} \quad (n \ge 2),$$

$$(z_1^3 + z_2^4)^{1/2}, \qquad (z_1 (z_1^2 + z_2^3))^{1/2}, \qquad (z_1^3 + z_2^5)^{1/2}.$$

Each of these algebroid function elements generates a complex space w singular point at the origin.

These singularities give rise to the well known trees A_{n-1} , D_{n+2} , E_6 , E of Lie group theory (all vertices weighted by -2). The corresponding n folds M are homeomorphic to S^3/G where G is a finite subgroup of S^3 (c) binary dihedral, binary tetrahedral, binary octahedral, binary pentage decahedral). Up to inner automorphisms these are the only finite subgroup S^3 . The manifold $M(E_8)$ is specially interesting. Since $\det S(E_8) = 1$, it the corollary in Section 2 a Poincaré manifold, i.e. a 3-dimensional man with non-trivial fundamental group and trivial abelianized fundamental group and trivial abelianized fundamental group with Euler number -2. By replacing this basic constituent by the tail bundle of S^{2k} one obtains a manifold $M^{4k-1}(E_8)$ of dimension 4k-1. carries a natural differentiable structure. For $k \ge 2$ it is homeomorph S^{4k-1} , but not diffeomorphic (Milnor sphere).

The above mentioned singularities are classical (e.g. Du Val [1]). Fo preceding remarks see also [3].

For quadratic transformations, desingularization, etc. see the pape Zariski and also [2]. We have only been able to sketch some aspec Mumford's paper, leaving others aside, e.g. the local Picard variety, etc.

Bibliography

- [1] Du Val. (P.). On isolated singularities of surfaces which do not affect the conditi adjunction, Proc. Cambr. phil. Soc., t. 30, 1934, p. 453–459.
- [2] HIRZEBRUCH (Friedrich). Über vierdimensionale Riemannsche Flächen mehrde analytischer Funktionen von zwei komplexen Veränderlichen, Math. Annalen, 1 1953, p. 1–22.
- [3] HIRZEBRUCH (Friedrich). Differentiable manifolds and quadratic forms, Le delivered at the University of California. Notes by Sebastian S. Koh. – Ber University of California, 1962.
- [4] MUMFORD (D.). The topology of normal singularities of an algebraic surface criterion for simplicity. – Paris, Presses universitaires de France, 1961 (Institut des I Etudes Scientifiques, Publications mathématiques, 9).
- [5] RANDOW (R. von). Zur Topologie von dreidimensionalen Baummannigfaltigke Bonn, 1962 (Bonner Mathematische Schriften, 14).
- [6] SEIFERT (H.). Topologie dreidimensionaler gefaserter Räume, Acta Mathematica 1933, p. 147-238.
- ZARISKI (Oscar). Algebraic surfaces. Berlin, J. Springer, 1935 (Ergebnisse der I matik. Band 3, n° 5).