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Preface 

Topology, for many years, has been one of the most exciting and influential fields of re
search in modern mathematics. Although its origins may be traced back several hundred 
years it was Poincare who, to borrow an expression used of Mobius, "gave topology wings" 
in a classic series of articles published around the turn of the century. While the earlier his
tory, sometimes called the prehistory, is also considered, this volume is mainly concerned 
with the more recent history of topology, from Poincare onwards. 

As will be seen from the list of contents the articles cover a wide range of topics. Some 
are more technical than others, but the reader without a great deal of technical knowledge 
should still find most of the articles accessible. Some are written by professional historians 
of mathematics, others by historically-minded mathematicians, who tend to have a different 
viewpoint. 

Most of the material has not been published before. Topology is a large subject, with 
many branches, and it proved quite impossible to cover everything. The emphasis is on 
what might be called classical topology rather than on general (or point-set) topology: 
a separate history of general topology is in the process of publication under a different 
aegis. 

However, I believe the articles will be found to cover most of the major topics. The order 
in which they are arranged is partly chronological and partly according to subject matter. 
The last part of the book is more concerned with the people who were important in the 
development of the subject. In particular short biographies of a number of them are given, 
based on material already in the literature, and rather longer biographies of some others, 
which contain material not previously published. 

This volume is one of the fruits of a research project on the history of topology, for 
which I was awarded a Fellowship by the Leverhulme Trust. As well as the forty scholars, 
from many countries, who contributed the articles I would like to thank many others who 
provided valuable advice, encouragement and information. Wherever possible, sources of 
quotations etc. are acknowledged in the text. I must thank the mathematical societies of 
Brazil and The Netherlands for permission to reprint material which originally appeared in 
their publications, and Oxford University Press for permission to reprint an article from the 
recent supplement to the Dictionary of National Biography. Finally I would like to thank 
Arjen Sevenster, of Elsevier Science, for persuading me to take this on. 

I.M. James 
Mathematical Institute, Oxford 

February 1998 
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CHAPTER 1 

The Emergence of Topological Dimension Theory 

Tony Crilly 
Middlesex University, UK 

E-mail: t.crilly@mdx.ac.uk 

With the Assistance of Dale Johnson'̂  

1. Introduction 

The concept of dimension, deriving from our understanding of the dimensions of physical 
space, is one of the most interesting from a mathematical point of view. During the nine
teenth and early twentieth century, mathematicians generalised the concept and probed its 
meaning. What had been a commonplace of experience became a focus for mathematical 
activity. 

One extension of the meaning of dimension was the consideration of a mathemat
ical space of n-dimensions. Although a revolutionary idea, the mathematical space of 
n-dimensions was regarded as an extrapolation from the "three dimensionality" of ordi
nary space. The idea of physical space being three-dimensional, an old and well accepted 
notion, was relatively uncontentious. While metaphysical questions concerning the mean
ing of four- and higher-dimensional geometry were raised, n-dimensional "hyperspace" 
was accepted and studied by such notable mathematicians as A.L. Cauchy (1789-1857), 
Arthur Cayley (1821-1895), and Hermann Grassmann (1809-1877). The principal appH-
cation of "n-dimensions" in the nineteenth century was to projective and non-Euclidean 
geometry. Geometers studying these subjects readily accepted the notion of dimension on 
an intuitive basis. There was Uttle impulse to probe the character of dimension itself. 

In 1877, Georg Cantor (1845-1918) looked at dimension in a different way. He showed 
that the points of geometrical figures like squares, "clearly 2-dimensional", could be 
put into one-to-one correspondence with the points of straight fine segments, "obviously 
1-dimensional". The "simple" idea of dimension was immediately rendered problematic. 
"Dimension" came under the spotlight and more sophisticated questions were asked. For 

*This article is primarily based on articles of Dale Johnson [16-19]. It also reflects information in the more recent 
articles of Miroslav Katetov and Petr Simon [21] and Teun Koetsier and Jan van Mill [24]. 
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2 T. Crilly with D. Johnson 

instance, in what sense was dimension a geometrical invariant? Could the dimension of a 
space and the dimension of its image under a mapping be different? 

Paradoxes and contradictions have often challenged mathematicians and led them to 
research many problems. The long-term result of Cantor's paradoxical result was the de
velopment of an entire branch of topology: dimension theory. By this we principally mean 
topological dimension theory, that is, dimension theory free of metrical considerations. 
This article surveys this history, but the reader who wishes to delve further will need to 
consult the Selected References, in particular [16-19]. Since the appearance of these pa
pers, other authors have considered its history and some of their works have been included 
in the Selected References.^ In particular, two biographies are important: of Georg Cantor 
by Joseph Dauben [6] and of LEJ. Brouwer by Walter van Stigt [36]. 

In essence, the three problems of defining, proving and explaining have been fundamen
tal to the growth of topological dimension theory: 
• The problem of defining the concept of dimension itself. 
• The problem of proving that the dimension of mathematical spaces is invariant under 

certain types of mapping. 
• The problem of explaining the number of dimensions of physical space. 
The first and second problems, mathematical in nature, have been the most important direct 
influence on the growth of the theory of dimension. The third, a problem of physics or 
cosmology, has provided an indirect but significant motivation for the development of the 
theory from outside the mathematical domain. 

2. Early history 

The definitional problem seeking to answer the question "what is dimension?" is detectable 
in the writings of the Greek philosophers and mathematicians. To indicate that "dimension" 
has ancient roots we mention two of the most prominent authors. 

According to Euclid, a point is that which has no part, a line is breadthless length, and 
a surface is that which has length and breadth only (Book I). A solid is that which has 
length, breadth and depth {Book XI). Euclid's definitions show a concern for a rudimentary 
"theory of dimension" by the recognition of a "dimension" hierarchy in the sequence of 
primary geometrical objects: point, line, surface, solid. A passage from Aristotle's On the 
Heavens shows a similar motivation. In it, Aristotle is more definite, even if its tone is more 
metaphysical: 

Of magnitude that which (extends) one way is a line, that which (extends) two ways a 
plane, and that which (extends) three ways a body. And there is no magnitude besides 
these, because the dimensions are all that there are, and thrice extended means extended 
all ways. For, as the Pythagoreans say, the All and all things in it are determined by three 
things; end, middle and beginning give the number of the All, and these give the number 
of the Triad [17, p. 104]. 

Other eminent philosophers and scientists considered questions about dimension including 
Galilei Galileo (1564-1642), Gottfried Wilhelm Leibnitz (1646-1716) and Immanuel Kant 
(1724-1804). While all of these touched on dimension in some form or other, there is 

* I would like to thank Teun Koetsier, Jan van Mill and Petr Simon for sending me copies of their recent work 
on the history of dimension theory [21, 24]. 



The emergence of topological dimension theory 3 

no suggestion that they sought to create anything Uke modern dimension theory or that 
they were working towards modern dimension theory as it stands today. Dimension theory 
is primarily a modem subject of mathematics; its main historical roots lie in the early 
nineteenth century when the Bohemian priest Bernard Bolzano (1781-1848) examined 
several facets of the definitional problem and proposed some interesting solutions. 

Bolzano sought precise definitions of geometrical objects. "At the present time", he 
wrote in 1810, "there is still lacking a precise definition of the most important concepts: 
line, surface, solid" [16, p. 271]. This dull essentiaUst problem of definitions, conceived 
within the limits of Euclidean geometry, led him to break from the bonds of traditional 
geometry. Bolzano stressed the theoretical role of mathematics and its "usefulness" in 
exercising and sharpening the mind. Rigour in pure mathematics was uppermost in his 
thoughts. For example, he regarded it a mistake to make any appeal to motion as it was 
foreign to pure geometry. This purge of motion from geometry is relevant to Bolzano's 
dimension-theoretic definitions of fine, surface, and solid. For instead of taking a Une as 
the path of a moving point, as for example was done by Abraham Kastner (1719-1800), 
Bolzano attempted to define the concept of line independently of any idea of motion. 

A basic feature of Bolzano's outlook on research in mathematics was his view that math
ematics stands in close relation to philosophy. "My special pleasure in mathematics rests 
only in its purely speculative part", admitted Bolzano in his autobiographical writings [16, 
p. 263]. His youthful Betrachtungen is heavily imbued with philosophy and this illustrated 
his deep concern for the logical and foundational issues in mathematics. Bolzano's con
cern over definitions required that he seek the "true" definitions for the objects of geome
try. Undoubtedly, this essentialist philosophy is to blame for the main shortcomings of his 
geometrical investigations. The end product of his research, a seemingly endless string of 
definitions with hardly a theorem, must be regarded as disappointing. Yet if one asks "what 
is" questions - What is a line?. What is a continuum? - then one must expect essentiaUst 
answers. But, while definitions have a certain value in mathematics, no fruitful mathemati
cal theory can consist entirely of them. Theorems and their proofs which relate definitions 
one to another, are much more important. Bolzano's theory is unquestionably lacking in 
these. 

Bolzano returned to geometrical studies in the 1830s and 1840s. In writings of 1843 
and 1844, though not published in his lifetime, he revised and improved his youthful find
ings. In these, Bolzano's topological basis, derived from his concept of "neighbour" and 
"isolated point", is very deep. The concept of neighbour, which in effect uses the mod
ern notion of the boundary of a spherical neighbourhood allowed Bolzano to put forward 
some very clear definitions of line, surface, and soHd. Later, when he discovered his no
tion of isolated point, he was able to arrive at an even deeper understanding of the basic 
figures of geometry. His geometrical insights were far more penetrating than those of his 
contemporaries. 

3. Cantor's "paradox" of dimension 

While Bolzano could be regarded as a precursor, there is little doubt that Georg Cantor 
is the true father of dimension theory. In 1877 Cantor discovered to his own amazement 
that the points of a unit line segment could be put into one-to-one correspondence with 
the points of a unit square or even more generally with the points of a ^-dimensional 
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Georg Cantor (1845-1918) 

cube. Cantor's probing led him to exclaim to his friend Richard Dedekind (1831-1916): 
"As much as you will not agree with me, I can only say: I see it but I do not beUeve it" 
[3, p. 44]. The strange result immediately called into question the very concept of dimen
sion. Was it well-defined or even meaningful? 

Cantor's work on set theory arose out of his investigations into the uniqueness of rep
resenting a function by a trigonometric series. In 1874 he published his first purely set-
theoretic paper, giving proofs that the set of real algebraic numbers could be conceived in 
the form of an infinite sequence: 

(0\,(02^ . <^y, 

This set is countable (abzdhlbar, to use Cantor's later term), while the set of all real num
bers is uncountable and cannot be listed in this way. Through these results on "linear sets" 
Cantor saw a clear distinction between two types of infinite sets of numbers on the real 
number line. 

As his correspondence with Dedekind shows. Cantor discovered these results in 1873. 
Cantor had met Dedekind by chance in Gersau during a trip to Switzerland in 1872 and 
their famous exchange of letters ensued [7, 8, 10, 23]. From his discoveries about Hnear 
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sets of points it was perfectly natural for Cantor to wonder whether there were different 
types of infinite sets in the plane or in higher-dimensional spaces. In a letter to Dedekind 
dated 5 January 1874 he posed a tantalising new research question, a question which is 
basic to the growth of dimension theory: 

Can a surface (perhaps a square including its boundary) be put into one-to-one corre
spondence with a line (perhaps a straight line segment including its endpoints) so that 
to each point of the surface there corresponds a point of the line and conversely to each 
point of the line there corresponds a point of the surface? [17, p. 132] 

From the start Cantor was convinced of the importance and difficulty of this question. He 
reahsed that most mathematicians would regard the impossibihty of such a correspondence 
as so obvious as not to require proof. When he discussed it with a friend in Berlin during 
the first part of 1874, the friend explained that the matter was absurd "since it is obvious 
that two independent variables cannot be reduced to one" [17, p. 132]. In relating this 
encounter to Dedekind in a letter of 18 May, the young Cantor sought reassurance that he 
was not chasing a delusion! In posing his question Cantor introduced something quite new 
and important into thinking about dimension: he related mappings and correspondences to 
the dimension of figures and spaces. For Cantor this was a natural relation because he was 
interested in cardinaUty. 

It is likely that Cantor only worked intermittently on this question from May 1874 until 
April 1877 and indeed without success. However, he persisted in regarding it as important. 
When he attended the Gaussjubildum in Gottingen on 30 April 1877, the centenary of 
Gauss' birth, he told various colleagues (among them Heinrich Weber and Rudolph Lip-
schitz) of his problem, which he felt was fundamental. Again most thought the answer was 
obvious; a one-to-one correspondence between geometrical figures of differing dimensions 
is impossible. Still Cantor felt that prao/was needed. 

Subsequent to the Gauss Jubilee Cantor switched his line of attack. Instead of trying 
to prove that a one-to-one mapping could not exist he tried to construct one. This proved 
the key and in a letter to Dedekind of 20 June 1877 he presented a startling geometrical 
conclusion: 

that surfaces, solids, even continuous figures of p dimensions can be put into one-to-one 
correspondence with confinuous lines, thus figures of only one dimension; therefore, 
that surfaces, solids, even figures of p dimensions have the same power as curves [17, 
p. 133]. 

Immediately Cantor saw his result on the equal power or cardinality of sets of various 
dimensions as a criticism of the assumptions about dimension commonly held by the ge
ometers of the time. Dimension was not a problem for them, and many were used to basing 
their investigations on intuition. They casually spoke of simply infinite, twofold, threefold, 
. . . , p-fold infinite figures; they even regarded the infinity of points of a surface as the 
square of the infinity of points of a line or the infinity of points of a solid as the cube of 
the infinite set of points of the line. Cantor's result amounted to an attack on these "foun
dations" of geometry, on the very concept of dimension they were using uncritically. 

In his letter to Dedekind of 20 June Cantor attempted an arithmetical demonstration of 
his results in which points of the p-cube an be put into one-to-one correspondence with 
values of a variable in the closed unit interval. The proof rested on his assertion that every 
number on the unit interval can be represented uniquely in the form of an infinite decimal 
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To a system (xi, X2,. . . , Xp), which represents a point of the p-cube, a corresponding 
point y can be obtained by "interlacing" decimals in the individual x/ 's, in blocks: 

y = 0.Qfi,iQf2,l •..Ofp,l-«l,20^2,2... Qfp,2.ai,3a2,3-..Ofp,3 

Conversely, any number y can be "unlaced" to give a system (jci, X2,. . . , Xp), a point of 
the unit p-cube. 

Dedekind immediately responded with an objection to Cantor's proof, since the "un
lacing" of a point on the interval might produce finite decimal expansions (such as 
X2 = 0.73000... from such a y value as }̂  = 0.478310507090...). Dedekind concluded: 
"I do not know whether my objection is of essential significance for your idea; however, 
I did not want to hold it back from you". Cantor's postcard reply was swift. He accepted 
Dedekind's objection as a criticism of the proof but not of the theorem itself. Cantor felt 
his result could be salvaged and his immediate reaction was to claim that he had proved 
more than he intended.^ In a letter sent two days after sending his postcard, he presented 
Dedekind with an entirely new proof. This overcame Dedekind's objection but was not 
nearly as simple as the earlier one. In his new proof Cantor used the fact that every irra
tional number between 0 and 1 can be represented by a unique infinite continued fraction, 
a representation he used in preference to the original decimal expansion. 

Having made his paradoxical discoveries Cantor was quick to draw out the mathematical 
and philosophical consequences. In the last paragraphs of his letter of 25 June 1877, he 
remarked on his interest in the efforts of Gauss, Riemann, Hetmholtz, and others directed 
towards understanding the foundations of geometry, but his result had now made him doubt 
the vahdity of their work: 

It strikes me that all investigations taken up in this field begin for their part from an 
unproved assumption which does not appear to me to be obvious, but rather seems 
to need a proof. I mean the assumption that a ^-fold extended continuous manifold 
requires q independent real coordinates for the determination of its element and that 
this number of coordinates can be neither increased nor decreased for one and the same 
manifold [17, p. 140]. 

Cantor ascribed his result of a ^-fold manifold being "coordinated" by a single coordinate 
to the "wonderful power in the usual real and irrational numbers" [17, p. 14]. Cantor's 
letter to Dedekind of 25 June ended: 

Now it seems to me that all philosophical or mathematical deductions which make use 
of this mistaken assumption [on the number of coordinates] are inadmissible. Rather the 
distinction which exists between figures of different dimension numbers must be sought 
in entirely different aspects than in the number of independent coordinates, which is 
normally held to be characteristic [17, p. 141]. 

^ Cantor did not immediately repair his proof, though for us it is quite easy to fix up the argument. We merely 
block O's with non-zero digits to eliminate the difficulty which Dedekind pointed out. Thus we block the value of 
y\ 0.47831105|07|09 We then treat blocks as single digits for interlacing and unlacing. 
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Prior to Cantor and Dedekind, Bernhard Riemann (1826-1866) and Hermann Helmholtz 
(1821-1894) among others, had put forward a very informal theory of continuous mani
folds which included an impUcit theory of dimension based on the number of coordinates. 
Riemann and Helmholtz merely intended their theory of manifolds as a general framework 
for their investigations into geometry. Objectively one can only regard their theory as vague 
in its mathematical details. As Cantor saw, his result was a direct and devastating blow to 
the "coordinate concept of dimension". Another concept of dimension was needed. 

Cantor approached the concept of dimension from a position outside geometry. His point 
of view derived from his work on one-to-one correspondences and cardinality, and hence, 
from the viewpoint of the set theory which he was in the midst of creating. Consequently, 
he brought an entirely new set-theoretic approach to problems of geometry. Moreover, he 
recognised his result could easily be extended from ^-dimensional manifolds to infinite-
dimensional manifolds, assuming that their infinitely many dimensions have the form of a 
simple infinite sequence (i.e. the dimension is countably infinite). Apparently the editors 
of Crelle's Journal found Cantor's results bizarre. They wished to ignore or even reject his 
paper; to use Imre Lakatos' term they were monster-barrers [25]. After a frustrating wait. 
Cantor heard his paper would be printed. 

Dedekind was not entirely persuaded by Cantor's claims of a revolution. While accepting 
Cantor's counterintuitive result whole-heartedly, he did not concur with Cantor's claims 
that the foundations of geometry were being undermined. He immediately saw a way out 
of the difficulty through continuity and gave credit to the older geometers for this means of 
escape from the consequences of Cantor's result. To a certain extent it is true that Riemann 
and Helmholtz included continuity (and differentiability) in their concept of dimension. 
However, Dedekind probably imputed a little too much to their informal theory in his 
desire to find "hidden lemmas" in the work of the great men of the past. 

A fresh examination of the vague informal concept of dimension was now an absolute 
necessity. Even Dedekind reahsed this and he quickly saw that a proof of some kind of 
theorem about dimensional invariance incorporating the idea of continuity was needed. 
Hence, he came to state very clearly the crucial problem of dimension which the paradoxi
cal correspondence result forced upon mathematicians. In a letter to Cantor of 2 July 1877, 
Dedekind arrived at the following statement, in effect a proposed invariance theorem: 

If one succeeds in setting up a one-to-one and complete correspondence between the 
points of a continuous manifold A oi a dimensions on the one hand and the points of 
a continuous manifold B of b dimensions on the other, then this correspondence itself 
must necessarily be discontinuous throughout if a and b are unequal [17, pp. 141-142]. 

At once Cantor accepted that Dedekind's reading of the problem situation was superior to 
his own. However, he also recognised possible difficulties lurking in the background of the 
proposed dimensional invariance theorem. In fact, the subsequent history of the search for 
a proof of invariance of dimension has shown that the theorem was far easier to state than 
to prove. Nevertheless the sensitive spot in the problematic notion of dimension had been 
pinpointed. 

4. The invariance of dimension 

The pubUcation of Cantor's "Contribution to the theory of manifolds" ("Ein Beitrag zur 
Mannigfaltigkeitslehre") towards the beginning of 1878 immediately caused a flurry of 
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mathematical activity. The objective now was to save the concept of dimension; the para
doxical correspondence between manifolds of different "dimensions" had to be explained 
(one is tempted to say, explained away). During the months July to October 1878, when 
Cantor's paper had barely left the presses, five mathematicians attempted to demonstrate 
the invariance of dimension through a consideration of continuity - just as Dedekind had 
suggested in his letter to Cantor. These were Jakob Liiroth (1844-1910), Johannes Thomae 
(1840-1921), Enno Jurgens (1849-1907), Eugen Netto (1848-1919), as well as Cantor 
himself. 

These early efforts towards showing dimensional invariance were only partially success
ful. The proofs, though interesting, are extremely complex. Liiroth and Jurgens (and also 
Cantor in his first work of 1878) only aimed at demonstrating invariance for low dimension 
numbers. Thomae, Netto, and Cantor also tried to prove dimensional invariance in the gen
eral case, but subsequent criticism revealed flaws in their proofs. Without doubt the greatest 
difficulty which faced all these mathematicians was the primitive state of "topology". The 
part of the subject which we now know to be most relevant, was virtually nonexistent. 
The offered proofs mainly used methods of real analysis (in particular, variations of the 
intermediate value theorem) and simple geometry. 

In 1878, Jakob Liiroth was a young professor at the Technische Hochschule in Karlsruhe. 
He had been taught by Otto Hesse and Alfred Clebsch and, in his initial research following 
his doctorate, had made a contribution to invariant theory. He was the first off the mark 
on the subject of dimensional invariance when he presented a paper to the Physikalisch-
Medizinische Sozietdt in Erlangen on 8 July 1878. 

At the same time Johannes Thomae, an ordenlicher Professor at Freiburg tried to prove 
the theorem in full generaUty. At a session of the 51st Versammlung Deutscher Natur-
forscher undAerzte, held in Kassel in September 1878, Luroth rightly criticised Thomae's 
"general proof" declaring that the separation property and invariance were in the same 
footing with respect to their importance and difficulty of proof. Though Thomae's proof 
was a failure, it is significant that he chose to place the problem firmly in the domain of 
analysis situs. At the same meeting, Enno Jiirgens sketched an alternative proof for the 
2-dimensional case. Jiirgens gave a complicated rigorous proof but unfortunately the 
method could not be extended to give more general results. 

Cantor was also at work. Several times he gently urged Dedekind to prove his conjecture 
on the invariance of dimension, but Dedekind did not respond. Cantor was not completely 
satisfied with the published proofs: "it seems to me, however", he wrote to Dedekind at the 
end of 1878, "that the situation is still not entirely resolved" [17, p. 157]. Eugen Netto's 
proof of dimensional invariance appeared last and interested Cantor most. It was published 
in Crelle's Journal at the end of 1878 and perhaps appealed because it was the only rea
sonably good attempt at a general proof. Netto, a student of Ernst Kummer, Leopold Kro-
necker, and Karl Weierstrass in Berlin, is best remembered for his contribution to group 
theory; his textbook Suhstitutionentheorie und ihre Anwendung aufdie Algebra (1882) is 
a minor classic. Netto put his inductive proof of invariance squarely in the province of 
topology. Nevertheless, even this did not make Cantor feel that the problem was solved, as 
he admitted in a letter to Dedekind in early January 1879: 

No matter how commendable this penetrating attempt at a proof appears to me. I sfill 
cannot banish certain doubts about it and I fear that it is only an attempt, which nonethe
less will certainly contribute to clarifying the situation [17, pp. 157-158]. 
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In view of Cantor's lingering doubts he presented his own proof of dimensional invariance 
to Dedekind in a letter dated 17 January 1879. Cantor expressed the invariance theorem in 
the following terms: 

A continuous [i.e. connected] M^ and a continuous My, in case /x < y, cannot be put 
into continuous correspondence with one another such that to each element of M^ there 
belongs a single element of My and to each element of My there belongs one or more 
elements of M^ [17, p. 158]. 

He claimed that he had a proof of this more than a year, but previously had serious doubts 
about its validity since it depended upon a multi-valued correspondence. Evidently he re
solved these doubts, and the inductive proof he published was based on showing a contra
diction to the intermediate value theorem. 

By the 1880's most mathematicians thought that Cantor's paradox about dimension had 
been resolved by either Netto's or Cantor's proof of dimensional invariance [5, 17]. Enno 
Jurgens was virtually the only one to voice dissent, but his immediate and acute criticism 
of Netto's general proof was ignored. Cantor's invariance "theorem" is actually falsified by 
Peano's space filling curve. However this was not published until eleven years later and by 
that time the situation in topology and dimension theory had changed considerably. Among 
mathematicians the generally held opinion during the last two decades of the nineteenth 
century was that the invariance of dimension had been rigorously established. 

5. The rise of point set topology 

The rise of the theory of sets and particularly the theory of sets of points (Punktmannig-
faltigkeitslehre) was due primarily to the creative work of Georg Cantor. His point set the
ory added an entirely new perspective to topological thinking. Cantor published his most 
important investigations into the theory of sets of points in a series of six papers entitled 
"liber unendliche, lineare Punktmannichfaltigkeiten" in the Mathematische Annalen dur
ing (1879-1883). These brilliant papers constitute the "quintessence of Cantor's lifework", 
as Ernst Zermelo (1871-1953) later declared [17, p. 163]. 

In Cantor's study of linear point sets and point sets in the n-dimensional arithmetic con
tinuum (Euclidean n-space), the fundamental concept is that of Hmit point. The underlying 
theorem is the so-called Bolzano-Weierstrass theorem (that every infinite set of points in 
a bounded region of n-space possesses at least one limit point). From this fundamental 
concept and theorem flow all of Cantor's deep point set-theoretic concepts: the notions of a 
derived set, an everywhere dense set, an isolated point set, nowhere dense set and the Can
tor "middle-third" discontinuum. By introducing these notions Cantor opened up a new 
field of study. Analysts were the first to see the usefulness of Cantor's imaginative ideas. 
Point set theory offered wonderful new instruments for a detailed study of the nature of 
functions, with the result that the growth of real and complex function theory was greatly 
accelerated in the years after the publication of Cantor's great papers. Applications of the 
Cantorian toolkit to the fundamental notions of geometry came a little later. 

Giuseppe Peano (1858-1932) and Camille Jordan (1838-1921) were among the first 
to take the Cantorian ideas into the domain of geometry, so their work became a vital 
background to the development of point set topology. Peano and Jordan separately attacked 
the problems of measure and integration, but their results were remarkably close. Frdm 
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the point of view of the development of topology both saw the importance of applying 
Cantorian set theory to intuitive geometrical ideas. 

Among topologists Camille Jordan is best known for his celebrated theorem on closed 
curves in the plane. His first enunciation of it appeared in a "Note" at the end of the first 
edition of his Cours d'Analyse. The second edition of the Cours was published between 
1893 and 1896. Jordan incorporated the material of the earlier "Note" into the main text 
of the first volume and included much research material. While previous mathematicians 
hardly saw the need to prove the obviously true statement that a simple closed curve di
vides the plane into an inside region and an outside region, Jordan required a proof. In 
a lengthy one, Jordan considered continuous closed curves without multiple points, i.e., 
simple closed curves, and so stated the theorem: 

Every continuous curve C divides the plane into two regions, the one exterior, the other 
interior; the latter cannot be reduced to zero, because it contains a circle of finite radius 
[17, p. 168]. 

Peano and Jordan were in many ways mathematical rivals. Peano's special contribu
tion to the rise of point set topology, published in 1890, was the spectacular example of a 
space-filling curve, a curve which covers all the points of a square [29]. The ingeniously 
constructed curve whereby the points (x(0, y{t)) trace out and fill the unit square has t 
varies along the unit interval, completely upset the geometrical intuitions of mathemati
cians. Curiously Peano's construction of the continuous functions x(0, y{t) was published 
without diagrams, as a guard against error [22]. 

It is not known precisely how Peano came to devise such a spectacular curve, but we 
can see that much of his earlier work of the 1880's was directed towards a critical ap
praisal of commonly-held mathematical notions. His analysis text Differential Calculus 
and fundamentals of integral calculus (Calcolo differenziale e principii di calcolo inte-
grale, 1884) abounds with examples demonstrating the need to revise the fundamentals 
of the subject then taken for granted. In his Geometrical applications of the infinitesi
mal calculus (Applicazioni geometriche del calcolo infinitesimale, 1887) Peano devoted 
a chapter to the study of geometrical magnitudes, giving definitions of the interior and 
exterior measure of linear sets, plane areas, and spatial volumes. He gave careful defini
tions of such conceptual ideas as interior points, exterior points, boundary points. Taking 
a set-theoretic viewpoint proved fruitful and led him to counterintuitive speculations and 
constructions. 

Given the wealth of results from the papers of Cantor, Jordan, Peano, and many others, 
certain mathematicians recognised the need for an entire programme of exploration in set-
theoretic topology. At the First International Congress of Mathematicians, held in Zurich 
from 9 to 11 August 1897, Adolf Hurwitz (1859-1919) sketched a plan of investigation 
[15]. In his lecture reviewing progress in analytic function theory Hurwitz attempted to 
determine the precise domain of validity of the Cauchy integral theorem. In so doing, he 
referred to the important work of Jordan who had scrutinized closed curves in the con
text of this analytic theorem. Hurwitz asked highly relevant general questions, questions 
reminiscent of Bolzano's essentialist forays: 

What is a simple closed line, what is a line, especially, a closed line in general, and are 
all or only some closed lines admissible in the enunciation of the Cauchy theorem? [17, 
p. 173]. 
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In attempting to grapple with these questions he put them into the general context of the 
topology of closed sets. In a way his treatment is similar to Cantor's definition of cardinals 
and ordinals. Closed point sets can be assigned to classes, each class containing those sets 
which can be mapped one-to-one continuously onto one another. The sets in each class 
were to be called "equivalent". Then Hurwitz set the goal for the subject: 

This distribution of point sets into classes forms ... the most general foundation of 
analysis situs. The task of analysis situs is to search for the invariants of the single 
classes of point sets [17, p. 173]. 

Hurwitz gave a specific example: Jordan's simple closed curve could be regarded as a pla
nar point set which belonged to the class containing the boundary of a square. In essence, 
Hurwitz stated FeHx Klein's famous Erlanger Programm for analysis situs in a sharp form 
by placing the central problem of finding topological invariants into the framework of point 
set theory. Hurwitz himself never contributed to the programme he outlined in Zurich. 

Arthur Schoenflies (1853-1928) embarked on the programme outUned by Hurwitz. 
Schoenflies studied at Berlin under Kummer in the period 1870-1875 and made his early 
mark in crystallography. Relying on the work of Cantor, Jordan, Peano, and others, Schoen
flies proposed and partly developed a special programme of set-theoretic topology. At the 
turn of the century Schoenflies, a briUiant lecturer, was the foremost propagandist for Can
tor's set theory. He wrote the article on "Mengenlehre" for the Encyklopddie der mathe-
matischen Wissenschaften (1898) and composed reports on point set theory in response to 
a commission by the Deutsche Mathematiker-Vereinigung. In several publications Schoen
flies intended to characterize the topology of the plane. Central to his planar topology was 
the Jordan curve theorem and its converse, and indeed, he was the first to state and prove a 
converse. This asserted that a closed curve dividing the plane into two domains, such that 
each of its points is accessible from both domains by simple paths, is homeomorphic to a 
circle. 

Set theory became the main breeding ground for pathological geometric examples. In 
addition to Peano's example, two other striking entries in this list of curves which run 
counter to "naive geometrical intuition" may be mentioned. At the beginning of the cen
tury, WilHam Osgood (1864-1943) and Henri Lebesgue (1875-1941) each published an 
example of a simple closed curve possessing a positive exterior measure - the bizarre re
sult that a curve could have a measurable area. This curve is even stranger than the one 
which Peano suggested, because, unlike Peano's, it has no multiple points. An early cata
logue of strange curves is contained in the first book on set theory in English, William H. 
and Grace Chisholm Young's Theory of Sets of Points (1906). For mathematicians well 
trained in Cantorian methods the topological monsters became manageable and quite fa-
miUar. They were repugnant to those who wished to pursue "normal mathematics", yet the 
pathological oddities were an important spur to growth in set-theoretic topology. 

6. New approaches to dimension and invariance 

During the first decade of the twentieth century some prominent mathematicians conceived 
a variety of new ideas about dimension. Among those contributing were Rene Baire (1874-
1932), Maurice Frechet (1878-1973) and the Hungarian Frigyes Riesz (1880-1956). These 
ideas were intended not just as suggestions for solving the invariance problem but more 
generally as novel ways of looking at the notion of dimension itself. 
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Among the new ideas the most interesting came from Henri Poincare (1854-1912). 
As one of the giants who founded modern algebraic topology it would seem natural for 
Poincare to have had an interest in the topological problem of dimension. Yet his concern 
with dimension did not arise from his mathematical work; rather it developed from his 
philosophical investigations into the origins and nature of our geometrical knowledge and 
into the relationship between geometry and space. He proposed a topological definition of 
dimension because he was grappling with cosmological or, more accurately, epistemolog-
ical questions, not mathematical ones. 

Poincare's philosophy of space and geometry grew out of an examination of three main 
problems: first, the problem of explaining the appHcability of the various geometries, Eu
clidean and non-Euclidean, to "our" space, second, the problem of explaining the origins 
of our fundamental ideas of space and geometry, and, third, the problem of explaining why 
we say our space has three dimensions. In the course of these investigations Poincare con
structed two theories of dimension. He developed the first theory in the 1890's based on 
group theory. Then in the first years of this century he proposed his second theory of dimen
sion which is specifically topological and is the one that influenced the later development 
of mathematical dimension theory. 

In a paper on the origins of our knowledge of space and its geometry, "L'Espace et la 
Geometric" (1895) [30], Poincare offered a brief explanation of the dimensionality of our 
space partly based on the theory of continuous groups due to Sophus Lie (1842-1899). This 
immediately drew criticism from the young Louis Couturat (1868-1914), once a student 
of his at the Ecole Normale Superieure. Couturat, who took a Kantian position opposed 
to Poincare, bluntly accused him of arguing in a circle. Naturally Poincare felt obHged 
to reply, at first briefly and then in more detail in a lengthy article published in English in 
1898. In "On the Foundations of Geometry", Poincare gave an exposition of his first theory 
of dimension [31]. 

The works of both Julius Plucker (1801-1868) and Sophus Lie strongly influenced 
Poincare. In his essay of 1898 Poincare whole-heartedly adopted the group-theoretic view 
of geometry. In this context he applied the Pluckerian equivalence principle (that it is pos
sible to construct an infinity of different but "equivalent" spaces by choosing different 
primary elements such as lines, planes, conies etc.), in order to develop a "relativistic" 
view of dimension in spatial geometry. If conies are taken to be elemental, for example, 
then the plane would be regarded as 5-dimensional. 

In his essay of 1898 Poincare was confident of the adequacy of his theory of dimension 
founded upon group theory for explaining the dimension of our space. From the mathe
matical standpoint his explanation is clever and also timely. Group theory at the turn of the 
twentieth century was increasingly seen as a unifying idea of various mathematical theo
ries. However, from the philosophical standpoint his explanation is not satisfactory, since 
it is compHcated and indirect. Explaining the 3-dimensionality of our space by means of 
a special representation of the Euclidean group of rigid motions acting on the conjugate 
space of rotation subgroups is surely a very roundabout way of explaining an apparently 
simple fact about physical space. Furthermore, though he explains the 3-dimensionality of 
space, he does not explain the concept of dimension itself. For these reasons we cannot 
regard Poincare's first theory of dimension as adequate. 

An event which altered Poincare's view of the foundations of geometry was the pub
lication of David Hilbert's Grundlagen der Geometrie (1899) [13]. Before this Poincare 
was seemingly unaware of the developments in the pure logic of the foundations of ge-
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ometry stemming from the investigations of Moritz Pasch (1843-1930), the Italian geome
ters, and David Hilbert (1862-1943). In his extended review of Hilbert's Grundlagen in 
1902, he gave clear evidence of surprise at discovering the new approach to geometry's 
foundations. He seemed amazed at the extremely wide variety of geometries which are 
conceivable by using the logical or axiomatic-deductive method. Poincare had grown up 
with the group-theoretic approach to geometry of Helmholtz, Klein, and above all Lie, but 
now the logical approach offered entirely new possibilities. He did not entirely give up 
the group-theoretic viewpoint but, nevertheless, in the last years of his career there was a 
discernible "retreat" from it. Yet in retreating from the group-theoretic approach, he did 
not thereby rush to adopt Hilbert's thoroughly logical approach, for he considered it to be 
too formal. Instead, he increasingly considered analysis situs or topology as the bedrock 
of geometry. 

Poincare described his theory of dimension based on group theory as a "dynamical the
ory". However, when investigating the notion of place as an empirical substitute for the 
mathematical concept of point, he put forward very tentatively a "statical theory" of di
mension. In accordance with this general psycho-physiological theory is the recognition 
that each place in space can only be perceived inexactly - a place thus corresponds to a 
fuzzy area in sensible space. Our sensations of a place form something like a "wafer". 
We can imagine sensible space as a series or collection of overlapping wafers in which 
contiguous wafers are associated with one another. 

Poincare continued to struggle with the difficulties of constructing a "statical theory" of 
dimension in the years after the publication of his 1898 essay. The result was a new paper: 
"L'Espace et ses trois Dimensions" (1903), containing a novel explanation of the concept 
of dimension. Several years later he published a modified and extended version of the new 
dimension theory in an article on "Pourquoi I'Espace a trois Dimensions" (1912). These 
papers of 1903 and 1912 contain a substantial revision of philosophical theory of the gene
sis of spatial geometry [32, 33]. The centrepiece of the revised theory is his second theory 
of dimension. He distinguishes very clearly between the mainly mathematical problem of 
defining the dimension concept and the cosmological or epistemological problem of ex
plaining why we attribute three dimensions to our space. The striking feature of the new 
theory for defining mathematical dimension is that it is a topological theory, based on a 
notion of a cut (coupure). This was outlined by Poincare around 1904: 

If to divide a continuum it suffices to consider as cuts a certain number of elements all 
distinguishable from one another, we say that this continuum is of one dimension; if, 
on the contrary, to divide a continuum it is necessary to consider as cuts a system of 
elements themselves forming one or several continua, we shall say that this continuum 
is of several dimensions. 

If to divide a continuum C, cuts which form one or several continua of one dimension 
suffice, we shall say that C is a continuum of two dimensions; if cuts which form one or 
several continua of at most two dimensions suffice, we shall say that C is a continuum 
of three dimensions; and so on [4, p. 3]. 

Poincare's thoughts on space occupy an unusual place in the modem history of dimension 
theory. His motive for attacking problems of dimension developed out of his philosophy 
rather than out of his mathematics and his two theories of dimension form integral parts of 
his philosophy of geometrical conventionalism. Poincare accepted the idea that our physi
cal space is or ought to be regarded as 3-dimensional. Unusual spaces under nonstandard 
interpretations are certainly possible, but they are not as convenient for our geometrical 
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deliberations as the usual one. Ultimately the 3-dimensionality of our space rests upon a 
reasonable convention in line with inheritance and experience. Unlike most of his con
temporaries who thought about dimension, Poincare took no interest in the fundamental 
mathematical problem of dimensional invariance. In this case he was far more concerned 
with epistemological issues in the foundations of science and mathematics. 

7. L.E.J. Brouwer 

Luitzen Egbertus Jan Brouwer (1881-1966) was a dominant influence in the emergence of 
the new topology in the first years of the twentieth century [6]. Brouwer viewed topology 
in quite a different way from Poincare. Operating within a framework of set theory and 
point set theory, Brouwer pushed topology to new Hmits with his theories of mappings, 
degree, and dimension. He produced his major papers between 1909 and 1913. 

When Brouwer was beginning his career as a mathematician, set-theoretic topology was 
in a primitive state. Controversy surrounded Cantor's general set theory because of the set-
theoretic paradoxes or contradictions. Point set theory was widely appHed in analysis and 
somewhat less widely applied in geometry, but it did not have the character of a unified 
theory. There were some perceived benchmarks. For example, the generally held view that 
dimension was invariant under one-to-one continuous mappings, a view which was was 
echoed in Arthur Schoenflies' Encyklopddie article, "Mengenlehre", of 1898 [34]. 

Though Brouwer had already pubUshed papers on classical geometry, his doctoral thesis 
of 1907, On the Foundations of Mathematics {Overde Grondslagen der Wiskunde), marked 
the real beginning of his mathematical career. The work revealed the twin interests in math
ematics that dominated his entire career: his fundamental concern with critically assessing 
the foundations of mathematics, which led to his creation of Intuitionism, and his deep in
terest in geometry, which led to his seminal work in topology [1,2]. Brouwer quickly found 
that his philosophical ideas sparked controversy. D.J. Korteweg (1848-1941), his thesis su
pervisor, had not been pleased with the more philosophical aspects of the thesis and had 
even demanded that several parts of the original draft be cut from the final presentation 
[35]. Korteweg urged Brouwer to concentrate on more "respectable" mathematics, so that 
the young man might enhance his mathematical reputation and thus secure an academic 
career. 

Brouwer was fiercely independent and did not follow in anybody's footsteps, but he ap
parently took his teacher's advice and set out to solve some really hard problems of mathe
matics. Brouwer put in a prodigious effort in these early years and rapidly produced a flood 
of papers on continuous group theory and topology - more than forty major papers in less 
than five years [36]. Brouwer's ambition can be judged by the problems he addressed, for 
example, a full-scale attack on Hilbert's fifth problem. This was one of twenty-three chal
lenging problems outlined by Hilbert at the International Congress of Mathematicians in 
1900. In the Fifth problem, Hilbert asked: "How far Lie's concept of continuous groups of 
transformations [of manifolds] is approachable in our investigations without the assump
tion of differentiability of the functions" [12, p. 12]. For Brouwer the problem was "to 
determine all finite continuous groups of an /^-dimensional manifold", a problem that nat
urally followed from work in his doctoral thesis [19, p. 66]. It led him to study Arthur 
Schoenflies' analysis situs. In 1908, the year following his doctorate, Brouwer made an 
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address to the International Congress of Mathematicians in Rome on the topological foun
dations of Lie groups. 

In the summer of 1909, Brouwer discovered serious flaws in Schoenflies' second Report 
on point set theory, which had been published in the previous year. He wrote to Hilbert of its 
inadequacy: "I discovered all of a sudden that the Schoenfliesian investigations concerning 
the analysis situs of the plane, on which I had relied in the fullest way, could not be taken 
as correct in all parts, so that my group-theoretic results also became doubtful" [19, p. 67]. 
The Report was composed of all Schoenflies' work of five years standing, and Schoenflies 
believed he had produced a "complete manual" of planar topology - a beautiful model of 
mathematical rigour. By the time Brouwer had finished with it, the work of Schoenflies 
on general closed curves was left in ruins. Nearly all the theory of these curves suffered 
demolition. Practically the only result left intact was Schoenflies' converse of the Jordan 
curve theorem. 

In particular, Brouwer brought his immense critical powers to bear on Schoenflies' def
inition of a closed curve as a bounded closed point set which divides the plane into two 
domains such that it is the common boundary of the two domains. In his ensuing paper "On 
analysis situs'' Brouwer produced an example of a curve that divided the plane into three 
domains and is the boundary of each of them. Brouwer's curve made an impression and 
enhanced his reputation in the mathematical community. Brouwer's letter to Korteweg, 
written on 18 June 1909, shows some satisfaction in his triumph: "At last some fish has 
taken the bait! . . . Schoenflies has gone into my paper in considerable detail, but I had to 
put the thumbscrews on rather hard" [19, p. 68]. Brouwer's paper exposed the weaknesses 
of Schoenflies' analysis, but from the point of view of the history of science, Schoenflies 
provided the raw material from which Brouwer could start. Brouwer was in a different 
mathematical situation from Cantor, who, thirty years before, worked from nothing. 

On 12 October 1909, the twenty-eight year old Brouwer delivered his inaugural lecture 
as privaat-docent in the University of Amsterdam. In the lecture Brouwer outlined his 
programme for his research in topology. His lecture, "The Nature of Geometry" ("Het 
Wezen der Meetkunde") was similar in style to Klein's Erlanger Programm. Brouwer study 
of groups of one-to-one continuous transformations and sets of points in the plane and in 
higher-dimensional spaces, led him to analysis situs - the fledgling topology. From the 
need to classify the groups of one-to-one continuous transformations, Brouwer was led 
to hard problems in topology. One of them, which he alluded to in his lecture was to see 
"how far spaces of different dimension are different for our group [of transformations]. 
Most probably this is always the case, but it seems extremely hard to prove, and probably 
it will remain an unsolved problem for a long time to come" [18]. Brouwer was fascinated 
by the problem of dimensional invariance. Schoenflies, who had declared the problem 
closed in the first Report on set theory (1900), had reversed his beUef and declared it 
open in his Second report (1908). Was it really possible for there to exist a one-to-one 
and continuous function from an m-dimensional domain to an n-dimensional domain with 
m ^nl Brouwer sought an answer. 

Brower spent the Christmas period 1909 in Paris. He stayed with his geologist brother, 
Aldert, at 6 rue de I'Abbe de I'Epee in the Latin Quarter. From this address he drafted a 
letter to Hilbert on "Neujahrsmorgen 1910" outlining the essential ideas of his pathbreak-
ing topology papers to be pubhshed between 1911 and 1913. Remarking on the wonderful 
array of mathematical techniques discovered by Brouwer, Hans Freudenthal (1905-1990), 
saw fit to describe the place as the "cradle of modem topology" [9]. During his Christmas 
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visit Brouwer made contact with Poincare, Jacques Hadamard (1865-1963), and Emile 
Borel (1871-1956). 

By 1910 the problem of dimensional invariance was a pressing one and Brouwer vig
orously attacked it. By March 1910 he was able to inform Hilbert that he had arrived at a 
partial solution, a solution directly related to the topological distinction between spheres 
of odd and spheres of even dimensions and their transformations: 

I am preparing an article for submission to the Annalen editorial board in which I solve 
the invariance problem of dimension insofar as I show that at least spaces of even and 
odd dimension number cannot be mapped one-to-one continuously onto one another 
[18, p. 147]. 

The article submitted in June was the momentous "Proof of the invariance of the dimen
sion number" ("Beweis der Invarianz der Dimensionenzahl"). It contained a more general 
proof of dimensional invariance. In the following month it was followed with a longer 
paper, also a masterpiece, "On the mapping of manifolds" ("Uber Abbildung von Mannig-
faltigkeiten"). Of these two revolutionary papers, the "Beweis" used his newly discovered 
"degree of a mapping" concept implicitly for the proof of dimensional invariance. Brouwer 
initially developed the concept of mapping degree for n-dimensional generalizations of the 
singularity theorem for vector fields on spheres and the fixed point theorem for mappings 
of spheres. The second paper spelled out the full details of the concept and included some 
important further consequences. 

The "Beweis" - a mere five printed pages - effectively swept away all previous attempts 
to prove dimensional invariance. Brouwer's approach to the invariance problem depended 
on a lemma. This stated that the image of the unit cube, under a continuous mapping into 
itself which has the property of displacing every point less than half a unit, has an interior 
point. The proof of this lemma is firmly based on the idea of mapping degree and also 
on the auxiliary ideas of simpUcial decomposition and the simplicial approximation of a 
mapping. Brouwer developed a proof full of geometrical insight. From the lemma it was 
relatively easy for him to prove the invariance of dimension from the two theorems [18]: 

THEOREM 1. An m-dimensional manifold cannot contain the one-to-one continuous im
age of a domain of higher dimension number. 

THEOREM 2. In an m-dimensional manifold the one-to-one continuous image of a domain 
of lower dimension number is a nowhere dense point set. 

Thus topological mappings of manifolds can neither lower nor raise the dimension num
bers. Looking back, Freudenthal concluded that the paper marked "the paradigm of an en
tirely new and highly promising method, now known as algebraic topology. It exhibits the 
ideas of simplicial mapping, barycentric extension, simplicial approximation, small mod
ification, and, impHcitly, the mapping degree and its invariance under homotopic change, 
and the concept of homotopy class" [2, p. 436]. It was simply "witchcraft" [2, p. xii]. 

Brouwer's landmark "Beweis" appeared in the same volume of the Mathematische An
nalen as a paper by Henri Lebesgue ostensibly proving the same theorem. On a visit to 
Paris in the summer of 1910, Otto Blumenthal (1876-1944), the managing editor of the 
Annalen had met Lebesgue, and informed him that Brouwer had proved the invariance the
orem. Lebesgue seemed unmoved and replied that he had several proofs. Blumenthal was 
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SO impressed with the sUck proof he received from the great French mathematician that he 
decided to publish it alongside Brouwer's more difficult proof. Lebesgue's justification of 
dimensional invariance was based on an unfounded tiUng principle: 

If an n-dimensional cube is covered by [sufficiently] small closed pieces, there is a 
system of n + 1 among them with a non-empty intersection and such that all systems 
of n -f- 2 members have empty intersection [9, p. 501]. 

The highly competitive Brouwer took exception to sharing the limelight with the French
man. To submit an unfounded proof was not Brouwer's way, and he repeatedly challenged 
Lebesgue to supply a rigorous proof of the tiling principle. A bitter dispute broke out 
between the two mathematicians of a kind which may occur when sensitive matters of pri
ority are involved. Brouwer broke off relations with Lebesgue but kept up pressure on the 
Frenchman in the pages of mathematical journals "encouraging" him to provide a proof, 
but to no avail. To add to his irritation, Brouwer recognised the value of the tiling principle 
and tried to prove it himself. While waiting for Lebesgue, and after a few failed attempts 
of his own, Brouwer achieved a proof. 

As a finale to his great period of research in topology Brouwer produced a second paper 
on the concept of dimension and dimensional invariance, the monumental "On the natural 
concept of dimension" ("Uber den naturlichen Dimensionsbegriff", 1913). In this he criti
cally examined a definition of the concept of dimension proposed by Poincare and offered 
one of his own, his "Dimensiongrad". Brouwer found Poincare's definition of dimension 
unsatisfactory. It assigned dimension numbers at variance with the "natural dimension", 
the dimension one would expect for fairly standard geometrical objects. According to 
Poincare's definition the double cone was of dimension 1 since it could be cut into two 
pieces by the removal of a single point, whereas, intuitively, the double cone "ought" to be 
of dimension 2. 

Brouwer's definition of dimension was more sophisticated than Poincare's. He made 
early use of Frechet's ideas on abstract spaces and, unlike Poincare, he gave a mathematical 
definition of what is meant by a continuum. In Brouwer's scheme this was a prerequisite 
for the definition of dimension. Brouwer's inductive definition was intrinsic, that is, based 
on the internal properties of the sets under consideration and not on their situations in 
larger spaces. In his 1913 paper, he then proved dimensional invariance on the basis of his 
definition and gave his rigorous demonstration of Lebesgue's tiUng principle. This paper 
was a highpoint in Brouwer's career as a topologist and he solved very difficult problems. 
He made no attempt to provide a formal theory which would serve to place his various 
results in relation to each other in a general setting. Formal theories were for others to 
create. It was an activity he came to view with contempt. Following the publication of this 
paper of 1913, Brouwer's interest shifted and he turned away from being a mainstream 
mathematician. He devoted more and more of his time to the exploration of the foundation 
of mathematics and intuitionism. 

8. The emergence of a theory 

Around the time of the publication of Brouwer's major papers and in the succeeding years 
point set theory and set-theoretic topology grew rapidly. Many were adding new ideas and 
results to the expanding field. A striking sign of these rapid developments was the publi
cation of the classic text Fundamentals of Set Theory (GrundzUge derMengenlehre, 1914) 
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by Felix Hausdorff (1868-1942). In this book Hausdorff offered a synthesis of the diverse 
results of point set theory through his theory of topological spaces. It joined together the 
fundamental geometrical ideas and abstract analytical concepts of David Hilbert, Maurice 
Frechet, and Hermann Weyl (1885-1955). 

In contrast to Brouwer's difficult papers, Hausdorff's text was eminently readable. Of 
particular significance to dimension theory was the fact that mathematicians still regarded 
the quest for definitions started by Bolzano as still relevant. But the appearance of the 
topological monsters, created to put putative definitions to the test, caused Hausdorff to 
remark pessimistically: "We give no definition of the concept of curve; the sets which 
carry this name by convention are of such a heterogeneous nature that they fall under no 
reasonable collective concept" [18, p. 225]. While everyone has a good intuitive idea of the 
curve concept, no one had been able to define the general concept adequately. For example, 
Jordan's notion of a continuous curve was too wide, because it includes the Peano space
filling curves. The notion of a continuous simple arc, due to Nels Lennes (1874-1954) and 
presented in 1906, was too narrow, since it excluded many curve-like figures [26]. 

In the period following the Great War (1914-1918), interest in topology became vig
orous. Brouwer concentrated his attention on Intuitionism but his reputation in the field 
of topology drew many visitors to Amsterdam. An American school of topologists pro
duced significant papers, notably those by J.W. Alexander (1888-1971) and the Russian-
born Solomon Lefschetz (1884-1972). A PoUsh school of set theory and topology was 
founded by Zygmunt Janiszewski (1888-1920), Waclaw Sierpinski (1882-1969), and 
Stefan Mazurkiewicz (1888-1945). These three, together with their students Bronislaw 
Knaster (1893-1980) and Casimir Kuratowski (1896-1980), made significant advances 
on topological problems which only later became relevant to dimension-theoretic ques
tions. Through the medium of the principal publishing organ of the school, Fundamenta 
Mathematicae, started in 1920, many research papers appeared connected with Brouwer's 
topological work. 

Hausdorff published a valuable definition of metric dimension in 1919 [11]. Starting 
from a generalisation of Lebesgue measure due to Constantin Caratheodory (1873-1950), 
Hausdorff offered a measure-theoretic characterisation of dimension for finite-dimensional 
EucHdean spaces. The Hausdorff theory of dimension is metrical rather than topological 
and its origins can be traced to Weierstrassian investigations into continuous curves without 
derivatives in the 1870s [4]. It assigns fractional as well as integral dimension numbers 
to point sets. The linear "middle-third" set, introduced by Cantor in 1883, has fractional 
dimension log 2/ log 3 = 0.6309. . . . Subsequent to the original work of Hausdorff many 
mathematicians have devoted extensive investigations to the metrical theory of dimension. 
Initially unaware of Hausdorff's earlier work Georges Bouligand (1889-1979) recreated 
the metrical theory of dimension during the 1920s. There is a provable connection between 
Hausdorff dimension and the topological theory of dimension of Urysohn and Menger [14]. 

In 1921 Henri Lebesgue finally pubHshed an adequate proof of the tiUng principle 
along with its immediate consequence, a proof of dimensional invariance. Thus some ten 
years after the dispute with Brouwer he at last put a satisfactory proof of the far-reaching 
principle into print. Lebesgue's efforts in topology were of Umited success and though 
they were no doubt brilliant, other mathematicians were needed to bring his insight to 
fruition. Later workers are often able to focus on pivotal concepts and achieve crisp for
mulations and polished proofs. Much better proofs of the tiling principle were produced 
by Emanuel Sperner (1905-1980) and Witold Hurewicz (1904-1956). The independent 
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From left to right: P. Alexandroff, L.E.J. Brouwer and P. Urysohn. 
(Courtesy of Alexandroff Archive.) 

proofs of Sperner (1928) and Hurewicz (1929) are extremely elegant and are probably 
the simplest conceivable, and practically reduce dimensional invariance to a topological 
triviality. 

In the years after the publication of Brouwer's papers only a few mathematicians showed 
any interest in the specific problems of topological dimension. Indeed Brouwer's second 
paper of 1913 was hardly noticed at all. Many regarded Brouwer's proofs as difficult, 
particularly as they depended upon his special concepts of combinatorial topology. 

In 1921 the topological theory of dimension again became a lively topic of research 
amongst the new generation of mathematicians. In that year two young mathematicians, 
unknown to one another, Pavel Urysohn (1898-1924) in Moscow and Karl Menger (1902-
1985) in Vienna, began investigating these problems. A vigorous growth of the theory of 
dimension began, and during the 1920s and 1930s many contributed to the subject. The 
prime impetus for the growth of dimension theory during the 1920s and 1930s was pro
vided by the definitions and results of Urysohn and Menger. They conceived their defini
tions independently, but soon others proved them to be equivalent. From their definitions 
sprang the full theory of dimension, which quickly attracted the attention of many topolo-
gists. 

Pavel Urysohn entered Moscow University in 1915 with the intention of studying 
physics. However, he was soon drawn to mathematics, because he was charmed by the 
lectures and personalities of Nikolai Nikolaievich Luzin (1883-1950) and Dimitrii Fe-
dorovich Egorov (1869-1931). Luzin was a dynamic mathematician and it was he who 
persuaded Urysohn to stay on in order to study for a doctorate during 1919-1921. Initially 
Urysohn's mathematical research was in analysis, but he switched to topology in 1921. In 
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June of that year he was awarded his doctorate and was then appointed as lecturer at the 
university. Egorov proposed two research problems for him. The first one was to give an 
intrinsic topological definition of line or curve in general which would be equivalent in the 
case of restriction to the plane to the known nonintrinsic definition of a Cantorian line, a 
continuum nowhere dense in the plane. The second one was to give an intrinsic topological 
definition encompassing a wide class of sets which could appropriately be regarded as sur
faces. They were well-known problems, but they immediately fixed the imagination of the 
young man. In essence they were the definitional problems which had motivated Bolzano 
a century previously, but now they were posed as questions in set theory. 

Without delay Urysohn started to think intensely about these definitional problems and 
his efforts soon led him to search for a "real" definition of the concept of dimension. During 
the summer of 1921 he proposed and then discarded one definition after another, giving 
examples and counterexamples to test his tentative proposals. Finally, on a morning near 
the end of August 1921, Urysohn woke up with a satisfactory definition in mind, one which 
he could finally accept after two months of concentrated thought. At the time he was on 
holiday with a group of young Moscow mathematicians in the village of Burkov (near 
Bolshev) on the banks of the Klyazmy. He immediately told his friend, Pavel Alexandroff 
(1896-1982), about his programme for transforming his conjectures into theorems. 

During the subsequent academic year 1921-1922 Urysohn successfully proved the theo
rems of his new dimension theory. He gave a course of lectures on the topology of continua 
and used this platform to announce his new results, often just after he had proved them. 
Simultaneously he announced his results in a series of notes to the Moscow Mathematical 
Society. By the spring of 1922 his dimension theory was more or less complete and in 
September, Lebesgue presented Urysohn's theory to the Academic des Sciences in Paris. 
It was not until the academic year 1922-1923 that Urysohn wrote a full version of his di
mension theory in his "Memoire sur les multiplicites Cantoriennes I". At the beginning of 
the "Memoire" Urysohn stated his main problem: "To indicate the most general sets that 
still merit being called "lines", "surfaces" " [18, p. 228]. 

Urysohn intended his theory to encompass more than the pair of problems which Egorov 
had set him originally. Not only did he seek definitions of curve and surface, but also defi
nitions of n-dimensional Cantorian manifold and hence of dimension itself. The dimension 
concept was, in fact, the centre of his attention. Urysohn laid down three methodological 
principles. Firstly, he desired that all his definitions be intrinsic. Secondly, he attempted to 
provide local definitions wherever possible rather than integral or global ones. Indeed the 
local character of Urysohn's dimension definition distinguished it from Brouwer's 1913 
definition of global dimension and it was this local character which made it particularly 
fruitful. Thirdly, Urysohn suggested that even though closed sets were his principal concern 
it should be possible to examine their nonclosed parts. Finally, and this gives Urysohn's 
work a modernity, he placed the theory in the framework of the compact metric space. 

Urysohn had noticed that compactness was the pivotal assumption in most of his ar
guments. Hence, it seemed natural to him to use the compact metric space as a base for 
his work rather than the more concrete Euclidean spaces. Indeed, he boldly proclaimed 
the compact metric space to be the "natural domain of existence" ("domaine naturel 
d'existence") for intrinsic topology, not reaHsing that even natural domains change in the 
course of history and are stretched to fit the current demands of mathematical research. In 
the case of dimension theory Urysohn's natural domain was soon expanded to the concept 
of the separable metric space by other dimension theorists of the 1920s. 
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Urysohn was highly successful in his enterprise. He did not work alone but often col
laborated with Alexandroff, and their joint work produced a great extension and deepening 
of the abstract theory of metric spaces. Tragically Urysohn died on 17 August 1924 while 
swimming in rough seas off the coast of Brittany. Considering that he only had three years 
to devote to topology, he made his mark in his chosen field with brilUance and passion. He 
transformed the subject into a rich domain of modern mathematics. How much more might 
there have been, had he not died so young? 

Karl Menger began thinking about the definitional problems for curves and dimension 
in the very same year as Urysohn: 1921. Menger, the son of the well-known Austrian 
economist, Carl Menger, had entered Vienna University as a student during the autumn of 
1920. Like Urysohn he planned to study physics. About this time Hans Hahn (1879-1934) 
was called to Vienna and arrived there near the beginning of 1921. His teaching began with 
the announcement of a seminar on the problems associated with curves: "Neueres liber den 
Kurvenbegriff". 

At the urging of his close friend Otto Schreier (1901-1929) Menger decided to attend the 
first session of the seminar. At this session Hahn formulated the basic definitional problem 
concerning curves and introduced the first concepts of point set theory. Before the War, 
Hausdorff had declared the definitional problem for curves to be important but unyielding. 
In his seminar, Hahn in effect elaborated this challenge and declared the importance of 
solving the open problem of defining the curve concept generally and adequately. Menger 
left the seminar "in a daze", but with mounting enthusiasm he started to think about this 
basic problem of geometry. With a freshness of vision he boldly attacked the problem 
using an intuitive approach, undeterred by his lack of experience in mathematical research. 
After a week of intense thought he found a solution which he presented to Hahn before the 
next session of the seminar. Hahn was encouraging, and Menger continued to work out his 
ideas. 

By June 1921 Menger had produced a short paper of three and one-half pages entitled 
"Der Begriff der Kurve". Although it contains only an informal attempt to define the con
cept of a curve embedded in Euclidean 3-space, and it was never published, the manuscript 
reveals the germ of Menger's later ideas on curve theory and implicitly on dimension the
ory. According to Menger the most important property of a curve is its 1-dimensionality. 
This view led him to call every closed connected 1-dimensional point set in 3-space a 
"curve in the wider sense" ("Kurve im weiteren Sinne"), where a set is 1-dimensional pro
vided each of its points has arbitrarily small neighbourhoods with boundaries, each one of 
which intersects the set in finitely many points (or perhaps "countably many") - a regular 
curve in Menger's later conceptual framework. Menger continued to pursue his investiga
tions but serious lung disease forced him to be away from Vienna for long periods and this 
inevitably slowed his progress. He returned to Vienna in April 1923 to prepare papers on 
dimension theory and complete his doctoral thesis. In June 1924 he completed his doctor
ate and, by the beginning of October 1924, he submitted his important paper "Uber die 
Dimension von Punktmengen 11" for publication. Brouwer and he were in correspondence 
by this time, and Menger's results were transmitted to the Dutch Academy in Amsterdam. 
Menger's paper "Uber die Dimension von Punktmengen 11" was eventually published in 
1926 and comprised a fairly complete exposition of his dimension theory. 

If we compare their principal early works on dimension, Urysohn's posthumous "Me-
moire" and Menger's "Uber die Dimension von Punktmengen 11", Urysohn's paper is more 
complete and more polished. However, Menger's work has its own distinctive merits. It is a 
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concise presentation of many significant results. Most importantly, Menger's fundamental 
inductive definition of dimension appeals more immediately to our geometrical intuition 
and leads more directly to an elegant theory than Urysohn's equivalent. Overall, the two 
mathematicians built a solid foundation for the subsequent development of the theory of 
dimension. 

9. In conclusion 

The twin problems of defining dimension and proving its invariance were the primary 
influences on the creation and growth of modern topological dimension theory. However, 
the cosmological problem of explaining the dimension number of physical space also was 
a secondary motive. 

The history of modern dimension theory reveals a wide variety of definitions and theo
ries. No single definition and theory can be regarded as uniquely correct and, contrary to 
the beliefs of the earliest workers, we cannot expect a single definition of dimension to re
veal the "true essence" of the concept. The search for the holy grail, the single, universally 
acceptable definition has proved illusory. No single theory of dimension is exclusively at 
the centre of the mathematical stage for all time. In modern times three definitions of topo
logical dimension are regarded as important, not counting the metrical dimension (Haus-
dorff/Besicovitch) which has been significant over the last twenty years in its connection 
with fractals. These are the "small inductive dimension" (Menger-Urysohn), the "large in
ductive dimension" (Brouwer-Cech) and the "covering dimension" (Cech-Lebesgue) [21]. 

Brouwer was perhaps the pivotal figure in the development of topology in the twentieth 
century. After 1913, Brouwer's contributions to topology were few but he still remained an 
authoritative presence. During the period 1925-1926, Alexandroff, Menger, and the Aus
trian Leopold Vietoris (b. 1891) visited Brouwer in Amsterdam (Vietoris is now the grand 
old man of Austrian mathematics). Through Menger, Witold Hurewicz became a mathe
matical assistant to Brouwer, and Hans Freudenthal, attracted by Brouwer's philosophical 
work, became another. Brouwer also influenced the American mathematician J.W. Alexan
der. In 1922 Alexander generalised the Jordan curve to higher dimensions, a result now 
known as Alexander duahty. Brouwer inspired Erhard Schmidt (1876-1959), and through 
Schmidt's lectures, Heinz Hopf (1894-1971) was drawn into the subject. With such strong 
personalities as Brouwer, Menger, and Alexandroff involved, the sweet reasonableness of 
the earlier Cantor-Dedekind dialogue proved a rarity in the history of dimension theory. 
In 1926, a dispute broke out between Menger and Alexandroff, the Russian mathematician 
acting as guardian of the intellectual estate of his recently deceased friend Pavel Urysohn. 
Two years later Brouwer took exception to a passage in Menger's influential book Dimen-
siontheorie (1928) and another furious row ensued. 

A history of dimension theory after the 1920s, after it became increasingly abstract and 
axiomatic, is outside the scope of this survey. Dimension theory as a collection of mathe
matical theories has grown rapidly during the twentieth century - a brief outline of tech
nical developments in the 1920s and 1930s is given in [21]. In many ways its growth 
illustrates the kinds of development which mathematical theories often follow. Principally 
it advanced through the efforts of mathematicians to solve significant problems. New direc
tions opened up, and the theories became more abstract. For instance, in 1932 Alexandroff 
extended the theory towards homology theory and algebraic topology in his paper "Di-
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Hurewicz and Brouwer 

mensionstheorie". Other mathematicians contributed to dimension theory, most notably 
L.A. Tumarkin (b. 1904), Lev Pontryagin (1908-1988), Georg Nobeling (b. 1907) and Ed-
uard Cech (1893-1960). In 1941 Witold Hurewicz and Henry Wallman (1915-1992), in 
dealing very succinctly with separable metric topological spaces set a standard for exposi
tion in their classic Dimension Theory [14]. 

At the beginning of this article it was noted that space was generally accepted as hav
ing three dimensions and this notion was relatively unproblematic. The opening lines of 
W. Hurewicz and H. Wallman's Dimension Theory suggests an appropriate note on which 
to end [14, p. 3]: 

Of all the theorems of analysis situs, the most important is that which we express by 
saying that space has three dimensions. It is this proposition that we are about to con
sider, and we shall put the question in these terms: when we say that space has three 
dimensions, what do we mean? 
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42097 Wuppertal, Germany 

1. Origin of the manifold concept 

1.1. n-dimensional systems geometrized 

In the early 19th century we find diverse steps towards a generalization of geometric lan
guage to higher dimensions. But they were still of a tentative and often merely metaphori
cal character. The analytical description of dynamical systems in classical mechanics was a 
field in which, from hindsight, one would expect a drive towards and a growing awareness 
of the usefulness of higher dimensional geometrical language.^ But the sources do not, with 
some minor exceptions, imply such expectations. Although already Lagrange had used the 
possibility to consider time as a kind of fourth dimension in addition to the three spatial 
coordinates of a point in his Mecanique analitique (1788) and applied a contact argument 
to function systems in 5 variables by transfer from the 3-dimensional geometrical case in 
his Theorie des fonctions analytiques (1797, Section 3.5.25), these early indications were 
not immediately followed by others. 

Not before the 1830-s and 1840-s do we find broader attempts to generalize geometri
cal language and geometrical ideas to higher dimensions: Jacobi (1834), e.g., calculated 
the volume of n-dimensional spheres and used orthogonal substitutions to diagonalize 
quadratic forms in n variables, but preferred to avoid explicit geometrical language in his 
investigations. Cayley's Chapters in the analytical geometry ofn dimensions (1843) did use 
such explicit geometrical language - but still only in the title, not in the text of the article. 
It was the following decade about the middle of the century which brought the change. In 
a short time interval we find a group of authors using and exploring conceptual generaliza
tions of geometrical thought to higher dimensions, without in general knowing about each 
other. Among them was Grassmann with his Lineale Ausdehnungslehre (1844) containing 
an expUcit program for a new conceptual foundation for geometry on n-dimensional (lin-

Such is suggested in some older historical literature, e.g., in R Klein's Vorlesungen iiber die Entwicklung der 
Mathematik im 19. Jahrhundert. This is discussed with reference to more recent investigations in Section 2.3 
below. 
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ear) extensional quantities,^ Pliicker with his System der Geometrie des Raumes (1846) and 
4-dimensional Hne geometry in classical 3-space, and, in a certain respect most elaborated 
among these attempts, Schlafli with his Theorie der vielfachen Kontinuitdt (1851/1901), 
which was published only posthumously.^ 

Also leading mathematicians like Cauchy and Gauss started to use geometrizing lan
guage in M" in publications (Cauchy, 1847) or lecture courses (GauB, 1851/1917). Gauss, 
in his lecture courses, even used the vocabulary of {n — kydimensional manifolds (Man-
nigfaltigkeiten), but still restricted in his context to affine subspaces of the ^-dimensional 
real space (GauB, 1851/1917, pp. 477ff.). There is no reason to doubt that Riemann got at 
least some vague suggestion of how to generalize the basic conceptual frame for geometry 
along these lines from Gauss and developed it in a highly independent way. 

1.2. Riemann's n-dimensional manifolds 

When Riemann presented his ideas on a geometry in manifolds the first time to a scientific 
audience in his famous Habilitationsvortrag (Riemann, 1854), he was completely aware 
that he was working in a border region between mathematics, physics, and philosophy, not 
only in the sense of the pragmatic reason that his audience was mixed, but by the very 
nature of his exposition.^ There was no linguistic or symboUcal frame inside mathematics, 
which he could refer to, even only to formulate a general concept of manifold. So he 
openly drew on the resources of contemporary idealist, dialectical philosophy, in his case 
oriented at J.F. Herbart, to generalize the classical concept of extended magnitude/quantity 
for geometry and to "construct" the latter as only one specification from a more general 
concept.^ Basic to such a construction was, so Riemann explained to his audience, the 
presupposition of any "general concept" which allows in a logical sense precise individual 
determinations. From the extensional point of view such a concept would form a manifold 
and the individual modes of determination were to be considered, as Riemann explicitly 
stated, as the elements or the points of the manifold with either "discrete" or "continuous" 
transition from one to the other. Thus Riemann sketched the draft for a conceptual starting 
point for what later was to become general set theory (discrete manifolds)^ and topology 
(continuous manifolds). 

Such concepts would gain mathematical value only if a sufficiently rich structure of 
(real or complex valued) functions on the manifold is available. Then it should be possible 
to describe the specification of points by the values of n properly chosen functions in a 
locally unique way (local coordinate system). That a change of coordinates would lead to 
locally invertible differentiable real functions, was not made explicit by him, but was to be 
understood from the context by careful listeners or readers. The distinction between local 
simplicity of manifolds, because of the presupposition of local coordinate systems, and 
globally involved behaviour was indicated by Riemann, but not particularly emphasized 
during the talk, although in other pubhcations and manuscripts it was.^ 

^ Hamilton's quaternions used 4-dimensionality for purely algebraic reasons, keeping geometry restricted to the 
3-dimensional subspace of purely imaginary quaternions. 
^ See [Kolmogorov and Yushkevitch, 1996]. 
^ For a detailed and very readable exposition of the width of Riemann's interests see [Laugwitz, 1996]. 
^ See [Scholz, 1982a]. 
^ For the line from Riemann via Dedekind and Cantor to general set theory see [Ferreiros, 1993, 1996]. 
^ Compare the next two sections of this article. 
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Of the utmost importance was Riemann's discussion of different conceptual levels -
we would say structures - which can be considered on a given manifold. During his talk 
he exempHfied these by the distinction between analysis situs (combinatorial topology of 
differential manifolds) and differential geometry. In his works on complex function the
ory he moreover pursued concrete investigations of complex and birational structure in 
the complex one-dimensional case (Riemann, 1851, 1857).^ And there are points in the 
latter pubhcations, where Riemann indicated that it might be useful to work with even 
more "general concepts" of a continuous character, which would transcend the limits of 
the specific postulates for continuous manifolds introduced or at least presupposed in his 
Habihtations lecture. Thus in his dissertation Riemann (1851, p. 36) had abready talked 
about infinite dimensional (real) function spaces and continuously varying conditions for 
functions in them, given by equations, which indicated nonlinear subsets in the dual of 
functions spaces. Moreover, Riemann had even already used the language of "continuous 
manifold" in this context without further specification what should be understood by that 
term.^ That was a drastic generahzation of Gauss's finite dimensional hnear submanifolds 
of R'̂  and even far more general than the manifold concept as developed by Riemann 
in 1854. 

That was three years before his Habihtations lecture. Three years after the latter, in his 
work on abelian functions, Riemann indicated how the complex/birational structure on a 
closed orientable surface of given genus p can be characterized by 3p — 3 independent 
complex parameters describing a normahzed branching behaviour over the complex plane. 
He thus started to explore the moduli space of Riemann surfaces of genus p and was 
cautious enough, not to talk about them as manifolds, but left it with a local description at 
generic points (Riemann, 1857, p. 122). 

Thus Riemann presented an outline of a visionary program of a family of geometrical 
theories, bound together by the manifold concept, diversified by different conceptual and 
technical levels like topology, differential geometry, complex geometry, algebraic geome
try of manifolds, and overarching the whole range from questions deep inside conceptual 
("pure") mathematics to the cognition of physical space and the nature of the constitution 
and interaction of matter. Here is not the place to follow all these branches; we rather con
centrate on the tools for a topological characterization of manifolds with some digressions 
into the broader context. 

1.3. Riemann on the topology of surfaces . . . 

Riemann used different approaches in his studies of surfaces. Already in his dissertation 
he dealt with the connectivity of compact bounded surfaces. His goal was to introduce 
complex analytic functions on (Riemann) surfaces over a bounded region of the complex 
plane. For simply connected surfaces he used his famous argumentation by the Dirichlet 
principle to determine real and imaginary parts of a complex function by the potential 
equation and boundary value conditions.^^ Here he characterized simple connectedness of 

^ Some more details in [Dieudonne, 1974, pp. 42ff.; Gray, 1986; Scholz, 1980, pp. 51ff.]. 
^ "These conditions, the totality of which form a continuous manifold and which can be expressed by equations 
between arbitrary functions . . . still have to be limited or supplemented by single conditions for arbitrary constants 
..."(Riemann, 1851, p. 36). 
'^ See, e.g., [Bottazzini, 1986, pp. 229f.]. 
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a surface F by the condition that F falls apart by any cross cut leading from one point of the 
boundary 9F to another. ̂ ^ For not simply connected surfaces he introduced a connectivity 
number by a cut and count procedure. 

If F can be dissected by m cuts along double-point free curves between the boundary of 
F or new boundary components arising from earlier cuts into n simply connected pieces, 
then, so Riemann argued, the difference n —m is independent of the cutting procedure and 
a topological invariant. In fact Riemann's counting procedure can be read as a character
ization of the Euler number x (^ ) of the surface with each cross-cut increasing the Euler 
number by 1 (adding 2 zero cells and 1 one-cell) and leaving n simply connected surfaces 
X(F) -\-m = n, thus x (^ ) = « — m. By a specific choice of the dissection it is possible 
to reach exactly one simply connected piece at the end of the process, n = 1, giving the 
lowest number of cross cuts necessary, mo = 1 — x(^)- In this case Riemann would call 
the surface (mo + l)-fold connected. 

In his later work on abehan integrals and functions (1857) Riemann considered surfaces 
over the whole (compactified) complex plane and thus closed orientable surfaces. In order 
to apply his early counting method for the connectivity number he showed that "recurrent 
cuts (Ruckkehrschnitte)" do not change the latter (adding 1 zero cell and 1 one-cell) thus 
allowing him to apply the old method also to this case. His interest was now directed to
wards a different type of question: the periods of abelian integrals of first (or higher) kind, 
i.e. the characterization of multivaluedness of integrals of a holomorphic (or meromor-
phic) differential form a; on a closed Riemann surface F -^ P\C Starting from a general 
2-dimensional version of the Gauss-Stokes theorem and the Cauchy-Riemann equations 
for the coefficients of the holomorphic form co, he realized that (in modernized notation) 
dct) = 0 and therefore for any set of closed (oriented) curves c/, 1 ^ / ^ /:, forming a 
complete boundary of a part F' of the surface, 

U Ci=dF\ 

the evaluation of the integral will give zero: 

Jc],...,Ck JF' C],...,Ck 

Therefore, so Riemann concluded, the multivaluedness of integrals of holomorphic 1-forms 
(abelian integrals of the first kind) depends only (and still to a high degree in the case of 
meromorphic 1-forms, the abelian integrals of second and third kind)^^ on the topology of 
the surface. So it was reasonable to characterize the topology of closed (orientable) surfaces 
in this context by a method of boundary relations between systems of curves, which from 
the later point of view reads as a first step towards a homology theory of 2-dimensional 
manifolds. 

^ ^ Riemann thus used a purely homological characterization of simple connectedness, in contrast to the modern 
post-Poincarean view. Compare the contribution by R. Vanden Eynde, this volume. 
^̂  (Riemann, 1857, pp. 91ff.), compare also the contribution of R. Vanden Eynde, this volume. 
^^ f CO is Sin abelian integral of second kind if a; is a meromorphic differential form only with poles of order 
m > 2 and abelian integral of third kind if a; is a meromorphic form with poles of order 1 but with sum of 
residues 0. 
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For the purely topological part of his investigation Riemann did not take into account 
the orientation of curves or surface parts, thus simplifying the calculations. He introduced 
an equivalence between systems of curves C and C' if both together form the complete 
boundary of part of the surface C ~\- C = dF\ as in this case C and C' "achieve the same 
with respect to forming complete boundaries" with other curves (Riemann, 1857, p. 124). 
In slightly modernized reading Riemann thus worked with a geometrical description of 
bordance homology of submanifolds in F modulo 2, or, in another translation, with sim-
plicial homology, if F is simplicially decomposed by cuts along the curves c/ such that the 
latter represent 2-cycles of the decomposition. Indeed Riemann showed that there is a well-
determined number n of homologically independent curves, independent of the choice of 
the specific realization of the curve system, and that in the case of his surfaces this number 
is even, n = 2p (Riemann's notation (Riemann, 1857, p. 136)). 

Of course, Riemann did not keep to the modulo 2 reduction of homology when working 
with integrals of differential forms. Once a complete set of generators of the homology 
c i , . . . , C2p and corresponding periods wi ~ J^ co {I < / < 2p) of a differential form were 
determined, he worked with integral linear combinations of the periods and thus (at least 
impUcitly) with unreduced integral combinations of cycles (Riemann, 1857, pp. 137ff.). So 
the modulo 2 reduction was for him nothing more than a method to simplify the calculation 
of the topological invariants and in fact a result of a context dependent abstraction from 
orientation. 

1.4. . . . and on the connectivity of higher dimensional manifolds 

In the edition from Riemann's Nachlass Weber edited three fragments about analysis si
tus (Riemann, 1876a) in which Riemann explored first thoughts on the topological char
acterization of higher dimensional manifolds. These fragments can be dated with great 
probability to the time of Riemann's work on his Habilitationsschrift, thus about the years 
1852/1853. '̂̂  Here Riemann described the introduction of higher connectivity numbers 
using a bordance homological approach similar to the one later published in his theory of 
abelian functions and discussed in the last section. He considered closed connected sub-
manifolds Ui, I ^ i ^ m, of dimension n in a manifold M of dimension k,^^ which "taken 
each once, neither individually nor jointly" form the complete boundary of an (n H- 1)-
dimensional submanifold, which means, expressed in more recent terminology, they form 
a set of homologically independent w-cycles.^^ 

Riemann explicitly defined homological equivalence of /i-cycles A and B, using the 
terminology of "transmutability" of A into B}^ Riemann then argued with an exchange 
argument which algebraically expressed would be the Steinitz lemma and the change of 
generators in the homology vector-space (take into consideration that Riemann worked 

"̂̂  For more details see [Scholz, 1982b]. 
^̂  Riemann used the terminology "innere zusammenhangende unbegrenzte n-Strecke" for the Ui, without further 
specification of the objects considered. From a recent mathematical perspective "n-Streck" should perhaps not 
be understood as submanifold, but as "subvariety" admitting certain controlled singularities like the topological 
varieties in (Kreck, 1998). 

°̂ As in the last section suppose there is a simplicial decomposition of M, in which the Ui represent n-cycles. 
^' "Ein /i-Streck A heisst in ein anderes B veranderlich, wenn durch A und durch Stticke von B ein inneres 
{n + 1)-Streck voUstandig begrenzt werden kann." (Riemann, 1876a, p. 479). 
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mod 2): If V/ (1 ^ / < m) is another set of n-submanifolds which fulfill the same bound
ary conditions as the Ui, each of which forms jointly with some of the Ui the complete 
boundary of an (n + l)-submanifold, then with respect to the formation of bounding re
lations the Vi can be substituted step by step for the Ui and in the end the Vi and the 
Ui (1 ^ / ^ m) can be considered equivalent in the context of forming boundary relations 
inside the manifold M. 

Riemann thus introduced the maximal number m of (mod 2) homologically indepen
dent n-cycles, i.e. the nth Betti number mod 2, and called the manifold M {m -\- l)-fold 
connected in dimension n (ibid.). In particular, he called M simply connected if all connec
tivity numbers (Betti numbers) mod 2 of M are zero, thus deviating from the modern, post 
Poincarean, terminology (or better the other way round).^^ He started to investigate the 
decomposition of a A:-dimensional manifold by dissection along lower dimensional sub-
manifolds, and tried to generalize his decomposition method from 1851 for surfaces to 
higher dimension, although he did not fully elaborate a symbolism to characterize types of 
such decompositions or topological invariants. The fragments leave no doubt, however, that 
already at the time of his Habilitationsvortrag he had a rather clear conceptual construction 
of Betti numbers modulo 2 in mind, taking into account the level of elaboration of symbol
ical characterization of manifolds. Enrico Betti seems to have been the only mathematician 
to whom he talked about these concepts in sufficient detail to transmit the essentials of his 
ideas. At least Betti was the only one in Riemann's lifetime, who understood what the latter 
was heading for. ̂ ^ 

2. Dissemination of manifold ideas 

2.1. The problem of how to characterize manifolds 

The reception and assimilation of Riemann's concept of manifold to the mathematics of the 
19th century was slow and inhibited by severe conceptual problems. Of course it was diffi
cult to understand what a manifold in general should be. The easiest way was to translate it 
as a "number manifold" in the 1870-s and later. At that time the former real quantities had 
been arithmetically reconstructed by Meray, Cantor, Dedekind, and Weierstrass, and it ap
peared as perfectly clear to talk about concretely given submanifolds of R'̂  or of projective 
spaces Pfn^ or P^C. Such submanifolds were in the easiest approach defined by inequah-
ties as m-dimensional (usually connected) subsets in the works of Beltrami (1868a, 1868b) 
Helmholtz (1868), and even of the young Klein during his investigations on non-Euclidean 
geometry and the Erlangen program (1871). 

That was of course a reduction of Riemann's intention and suppressed the distinction 
between local simplicity and global complexity of manifolds. That global behaviour was 
an essential ingredient for Riemann's concept, was most clearly understood in the 1860-s 
and 1870-s in the special context of geometric function theory and the dissemination of 
knowledge about the topology of Riemann surfaces (Liiroth, Clebsch, Neumann, Clifford 
et al.) An additional aspect was the problem of compactification of geometrical objects "in 
the infinite", which in a discussion between Schlafli and Klein was realized, when they 

^̂  Compare the contribution of R. Vanden Eynde and footnote 11. 
^̂  For the relationship between Riemann and Betti see [Bottazzini, 1977]. 
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debated the difference between one-point compactification of the plane Uke C to PiC and 
Hne compactification of E^ to P2R and its topological consequences (Schlafli, 1872; Klein, 
1873, 1874-1876). 

Only after discussions with Clifford on space forms during the 1873 meeting of the 
British Association for the Advancement of Science, Klein modified his earlier restricted 
concept of "manifold" and introduced the distinction between relative properties of a 
"number manifold", which depended on the embedding, and absolute ones which did not, 
orientability given as an example for the latter, without going into technical details of how 
to identify the "absolute" properties (Klein, 1874-1876). 

A more general characterization of "number manifolds" was the consideration of zero 
sets by equations (and inequalities), which usually were supposed to be nonsingular with
out further specification. This approach was taken by Betti (1871) in his paper on the 
topology of higher dimensional manifolds and by Lipschitz in his investigations of higher 
dimensional state spaces of mechanical systems (Lipschitz, 1872).^^ In Betti's case global 
complexity was, of course, part of his object of study. The local simphcity, however, re
mained unanalyzed before the proof of the implicit function theorem, including an explicit 
statement of the condition under which it holds, became generally known. The theorem 
and its proof was developed by U. Dini during his lecture courses in the late 1870-s and 
spread in analysis courses and monographs during the late 1880-s and early 1890-s.^^ 

Finally, a first, still clumsy and vaguely described, combinatorial approach to a charac
terization of n-dimensional manifolds was used by Klein's student W. Dyck in addition 
to the characterization as a "number manifold". Although starting as Klein had done from 
a submanifold M of R", Dyck gave a vague description of how to build M from an n-
ball En by cutting and pasting along submanifolds of type Ek isomorphic to k-bai\s (von 
Dyck, 1888, 1890). This process was not uniquely described in Dyck's symbohsm and 
presupposed sufficient intuition to be applied to a manifold defined by other means. It still 
sufficed for Dyck's purpose, as his procedure served only as an aid for the topological 
characterization of manifolds, not for their definition or construction. 

2.2. The changing concept of geometry 

During the 19th century the perception, structure and role of geometry was fundamentally 
transformed. Classically there existed but one, Euchdean geometry, and its unique role in 
the framework of knowledge at the turn from early modernity to "high" modernity was 
paradigmatically exemplified in Kant's philosophy of space. The breakthrough in the stud
ies of the foundations of geometry has been described by I. Toth as the shift from the 
"anti-Euclidean" hypothesis to the non-Euclidean point of view;^^ it was realized inde
pendently, as is well known, by Gauss, Lobachevsky, and J. Bolyai. Until the 1860-s this 
change of view was shared only by a small minority of mathematicians, and was moreover 
conceptually still rather fragile, as long as only the theoretical structure of non-Euclidean 

For Lipschitz compare [Liitzen, 1995] and the Section 2.3 below. 20 

Two important publications for the dissemination of the implicit function theorem were (Peano and Genocchi, 
1884) and Jordan 2nd edition of the Cours d'analyse (Jordan, 1893, pp. 80ff.). For Dini's broader contribution to 
the foundation of real analysis see [Bottazzini, 1985]. 
22 [Toth, 1972, 1980]. 
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geometries had been outlined, with no mathematical (or physical) interpretation in terms 
of accepted objects and relations being given.^^ 

Gauss was apparently well aware that his differential geometry of surfaces might carry 
the potential to open a route towards such a missing interpretation, but he could not (or 
at least did not) solve the dilemma from a foundational point of view, that his surfaces 
were constructed inside the framework of Euclidean geometry. His reaction to Riemann's 
Habilitations lecture shows how well Gauss understood that Riemann had given a beautiful 
outline and far reaching program for another and much deeper conceptual step towards a 
trans-Euclidean geometry, which would reduce non-Euclidean theory in the sense of Bolyai 
and Lobachevsky to nothing but a special case. Riemann even sketched such a reduction 
in the last section of his talk, although he apparently had no knowledge of Bolyai's or 
Lobachevsky's studies in the foundations of geometry.'̂ '̂  

But the concept of manifold became essential for the understanding of non-Euclidean 
geometries in the late 1860-s and early 1870-s when the latter became finally absorbed 
into the general knowledge of mathematics. All three main contributors to non-Euclidean 
geometry in this phase, Beltrami, Helmholtz, and Klein, did refer to Riemann, whose Ha
bilitations lecture became accessible to a wider scientific pubUc outside Gottingen in 1867 
after the publication in the Gottinger Abhandlungen (vol. 13). Here is not the place to dis
cuss the role of Riemannian ideas in the development of knowledge and the discourse on 
non-Euclidean geometry in detail. It has to be said, however, that among the just mentioned 
authors, involved in the development of non-EucHdean geometry in the 1860-s, only Klein 
had been in contact with Riemannian ideas before he started to work on non-Euclidean 
geometry, through his close cooperation with A. Clebsch from 1866 onward. Beltrami and 
Helmholtz, in contrast, started to develop their ideas independently and progressed con
siderably before they learned to know of Riemann's lecture and adapted their presentation 
according to the latter's outlook. The shift in Beltrami's argument due to the influence 
of Riemann's view was particularly clear and seems to be characteristic for the broader 
turn geometry went through in the 1860-s and 1870-s and in particular to the role of the 
manifold concept in it. 

E. Beltrami had started on his own in 1866 and 1867 to explore the possibilities inherent 
in the Gaussian theory of surfaces for an interpretation and understanding of non-Euclidean 
geometry. In early 1867 he realized that the geometry of the non-Euclidean plane can be 
gained in terms of a generalized Gaussian surface, i.e. the region 

A=: {jc I \x\^ <a^] CM^ 

with metric not induced by an embedding in Euclidean 3-space, but "formally" given by 

ds^ = — 5 T^{{^^ - xl)dx\-\-2xiX2dx\dx2 + ia^ - x f ) d x f ) . 
{a^ - xf - X2Y 

^^ The problematics of this type was addressed in Riemann's 1854 lecture by his opening remark, that earlier 
investigations on the foundations of geometry worked with purely "nominal" definitions. Although this remark 
was addressed at classical Euclidean definitions, Riemann hit a point which was even of higher importance for 
the contemporary status of non-Euclidean geometry, the discourse of which was apparently not known to him. 
'^^ Compare [Scholz, 1982a, pp. 220f.] and [Laugwitz, 1996]. 
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He derived all properties essential for what would later be called the "Beltrami model" of 
the non-Euclidean plane, but insisted on the necessity to find a real substrate {substrata 
reale) of this "purely formally given" system in order to understand its geometric mean
ing. He was glad to find such a "real substrate", by local isometric embeddings in classi
cal Gaussian surfaces of constant negative curvature K = —r~ ,̂ embedded in EucHdean 
3-space. So he sent a manuscript under the title Saggio di interpretazione della Geometria 
non Euclidea (published as (Beltrami, 1868a)) to Cremona as editor of the Giornale di 
Mathematiche. Cremona disagreed with Beltrami's narrow conception of "real substrate" 
of geometry, but nevertheless voted for pubUcation after some period of hesitation and ex
change with Beltrami about his views. Probably he doubted among others the mathematical 
value (not the correctness) of Beltrami's observation that, although a "real substrate" could 
be given for the non-Euclidean/?/a/i^ by local isometric embeddings in classical Euclidean 
space, nothing similar could be hoped for in the case of three-dimensional non-Euclidean 
geometry (Beltrami, 1868a, p. 284). 

After delivering the manuscript of his Saggio Beltrami got to know Riemann's Habil-
itations lecture (maybe through a hint by Cremona) and changed his mind with respect 
to the epistemological (or even "ontological") role of a classical interpretation for non-
Euclidean concepts. He immediately prepared a second publication in which the two-
dimensional case was generalized and an n-dimensional differential geometrical model for 
non-Euclidean geometry, using a simple Riemannian manifold representation, was given: 
M c W'^^ defined as a hemisphere, |xp = a^, X^M > 0, with metric induced by 

i = l 

on R""^^ Parametrization of M by the open ball \x\^ < a^ with x G M'̂  leads back to the 
case presented in the Saggio for the two-dimensional case. 

Both articles appeared in the same year, although in different journals; Beltrami only 
made small adaptations in the text of the first one with general references to the possibility 
of a more conceptual understanding of non-Euchdean geometry than looking for a "real 
substrate". The second article appeared as Teoria fondamentale degli spazii di curvatura 
costante (Beltrami, 1868b). The shift in interest and in outlook on the basic concepts of 
geometry between these two publications of Beltrami may serve as a concentrated expres
sion for what was at stake in the change from classical geometry to modern geometry of 
manifolds. Beltrami lived through such a change in a couple of months, because his own 
line of thought already had brought him to the point of a formal generahzation of Gauss's 
theory of surfaces, and the inherent movement was so well dynamized by Riemann's pre
sentation. 

Once Riemann's construction of manifolds was accepted, even if only in the concrete 
version of "number manifolds", the question of a "real substrate" for non-Euclidean ge
ometry changed its meaning completely. To use later terminology, a differential geometric 
model of the metrically well explored (although from the axiomatic point of view still not 
completely elaborated) theoretical structure of non-Euclidean geometry could be given in 
a drastically extended framework. For the modern reader this extended conceptual frame
work has become so common that she may tend to overlook the hard work necessary to 
achieve the state of discipHnary practice and knowledge she is used to. 
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2.3. First appearance of manifolds in mathematical physics 

Of course there are several semantical links of the manifold concept to physics, which 
could be pursued even in the 19th century. Riemann had already started to discuss such 
links on at least two levels. The final part and culmination of his Habilitations talk gave 
a sketch how in a subtle interplay between mathematical arguments and the evaluation 
of physical/empirical insights he proposed to come to a refined understanding of physical 
space. The essential bridge was an improved understanding of the miscrostructure of mat
ter and its binding forces that should be, according to Riemann, as directly translated into 
differential geometric structures on manifolds as possible. But he also left the possibility 
open for further consideration that perhaps some time even a discrete structure of matter 
has to be taken into account, as it might very well be that the concepts of rigid body and 
light ray use their meaning in the small. Still, so Riemann argued by reference to astro
nomical measurements, the acceptance of a Euclidean space structure was well adapted to 
the physical knowledge of the time. 

A second fink was indicated in his famous Paris prize essay (Riemann, 1861/1876). 
Riemann there had modelled a three-dimensional heat flow problem in an ex ante in-
homogeneous matter region and translated it into a differential geometric structure of a 
3-dimensional Riemannian metric. In the result the question of a homogeneity criterion 
for the underlying matter could be analyzed as a question of local flatness of the metric. 
As is well known, that was the context in which Riemann published his most advanced 
results characterizing the curvature of a Riemannian manifold.'̂ ^ There should be no seri
ous doubt, however, that Riemann was completely aware about the importance of such a 
connection between differential geometry and other parts of analysis or physics, although 
he did not, in the prize essay, elaborate explicitly on such a semantical connection, but 
motivated the interested reader to think along such lines by a highly interpretable reference 
to a Newton citation: "Et his principiis via sternitur ad majora." (Riemann, 1861/1876, 
p. 391)^^ 

Recent historical investigations have shown how deeply connected large parts of the ge
ometric discourse of the 19th century were to the semantics of physical space, even in parts 
of the discussion where, after the epistemological shift of mathematics brought about by 
the rise of set theory and the axiomatization movement at the turn of the century, a modern 
reader would not look for a direct semantical context in physical terms and would perhaps 
even tend to consider some parts of the debate at the end of the 19th century stricken by 
a surprisingly naive realism. This aspect has been discussed in detail by M. Epple in his 
[1997] and shall not be reproduced in this article.^^ Of long-ranging interest for the de
velopment of higher dimensional manifolds in physics were, on the other hand, the first 
moves for a geometrization of state spaces in mechanics. This aspect has recently studied 
by J. Liitzen, and my short report relies completely on his results.^^ 

25 Compare among others [Reich, 1994; Laugwitz, 1996; Farwell and Knee, 1990; Scholz, 1980]. 
2^ Superficial and textpositivistic reading might give another picture of Riemann's intention. There are contribu
tions to the historical literature like [Farwell and Knee, 1990] which deny the differential geometric content of 
Riemann's (1861/1876). 
2^ Compare also M. Epple's contribution in this volume for less "naive" attempts at physical semantics of topo
logical concepts. 
28 Cf. [Lutzen, 1988, 1995]. 
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Most important among the geometrization arguments in this problem field were the fol
lowing: 

(1) The subsumption of the least action principle for conservative systems under the 
form of a geodetical line. The state space was endowed with a physical metric of the 
form d^^ == 2(H — V) YlSij ^^i ^Qj^ ^^^ ^i coordinates in the state space, gij the 
metric induced on state space by the metric of the geometric coordinate space, H 
total energy, and V potential energy. That had been done analytically by Jacobi in 
the 1830-s and geometrized in low dimension (n = 2) by Minding, Liouville, and 
Serret about the middle of the century. Geometrization for higher dimensions was 
apparently discussed in the 1870-s and pubUshed, e.g., by Darboux in a particularly 
clear way in the year 1888. 

(2) Already a decade earlier Lipschitz developed a generalization of classical mechan
ics starting from a metric in the underlying geometrical space, which he allowed 
not only to be Riemannian but even Finsler (in modern terms) (Lipschitz, 1872). On 
that basis he developed a generalization of the term for the kinetic energy and the 
Hamilton-Jacobi form of mechanics. Moreover, in his discussion of conservative 
systems, he described the trajectories in the state space as (generaUzed) orthogo
nal to 1-codimensional submanifolds of the state space [Liitzen, 1995, Section 49]. 
Other authors, not all of them aware of Lipschitz' research, like Thomson/Tait and 
Darboux, pursued similar intentions.'^^ 

(3) The "Liouville theorem" on the volume preservation of the time flow in the phase 
space of Hamiltonian mechanics with canonically conjugate coordinates qi, pi, 1 < 
/ ^ n, and dynamical equations 

dqi _ dH dpi _ dH 

dt dpi ' dt dqi' 

which was presented by Liouville only in analytical formulation in a more gen
eral context (for the first time in 1838). Jacobi transferred it to mechanics by Jacobi 
about the middle of the century. Geometrization appeared in works on statistical me
chanics only in the late 1860-s early 1870-s by Maxwell and Boltzmann (apparently 
without knowing about Liouville's result).-^^ 

(4) Finally, Boltzmann's discussion of different types of dynamical systems to charac
terize his idea of entropy contains a broad range of high-dimensional arguments in 
configuration or phase space, although in a highly intuitive manner. These are inter
esting questions for a broader history of the use of advanced mathematical concepts 
inside late 19th century physics, which are impossible to report here. 

With respect to the claim made by Felix Klein in his famous historical lectures, that 
Gauss's and Riemann's differential geometry has supposedly "grown from up from the 
soil of the Lagrangian equations" [Klein, 1926/1927, p. 146], J. Liitzen has shown in his 
detailed historical studies of the sources that this remark distorts history highly. Klein ap
parently did not allow for sufficient distinction between the original historical development 
(as documented and accessible from the sources) and his own perception of Riemannian 

^^ Ltitzen considers Lipschitz' generalized orthogonal trajectory discussion as the most important geometrization 
approach in mechanics during the 19th century [Liitzen, 1995, Section 51]. 
^^ For more details see [Liitzen, 1990, pp. 657ff.]. 
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geometry that had formed in the late 1860-s early 1870-s, when he was a young mathe
matician and participated in the production of the events which he later told the history 
of. Explicit geometrization of configuration (state) and/or phase spaces of mechanical sys
tems was in fact undertaken only in that relatively later period in which Klein was actively 
involved, and only then the language of higher dimensional manifolds became part of the 
discourse of theoretical physics and vice versa. 

3. Steps towards a topological theory of manifolds 

3.1. The 2-dimensional case as an elementary paradigm . . . 

It was also in the 1860-s and early 1870-s that several fines of thought intertwined produc
tively and led to the first relatively well-explored segment of a theory with links to different 
fields of study in the mathematics of the 19th century, the combinatorial theory of poly-
hedra,^^ complex function theory, real projective algebraic geometry and the newly rising 
topological theory of manifolds. The main contributors to this subfield were A.F. Mobius 
(1863, 1865), C. Jordan with a series of publications through 1866, and Schlafli and Klein 
in their discussion on the orientability of real 2-dimensional subspaces of the projective 
space.^^ In geometric function theory divers authors contributed to a refined understand
ing of the role of topological concepts, in particular C. Neumann with his calculation of 
the connectivity of a Riemann surface from the winding orders of branch points,̂ -^ Liiroth, 
Clebsch and Clifford with their normalized representation during the 1870-s for branched 
coverings of PiC, which represent a Riemann surface with given number of leaves, given 
loci and winding numbers of branch points. 

Mobius and Jordan both discussed independently from each other, which "morphisms" 
they wanted to consider for their topological theory of surfaces. Mobius called them "el
ementary relationships (Elementarverwandtschaften)" and Jordan just talked about "map
pings", and both circumscribed a transformation of "infinitely small elements" of one into 
the other, respecting neighbouring relations. They indicated that this idea could in prin
ciple be made precise by infinite series of subdivisions of the surfaces into finite surface 
"elements" which are one-to-one correlated, respecting the neighbouring relations.̂ "^ 

Mobius gave in his article (1865) a detailed analysis of orientation procedures in sur
faces, which he decomposed in polygonal nets (a generalized representation of a trian-
gulation). He defined orientations of the boundaries of each polygon and coherence of 
neighbouring polygons, if the induced orientations in the common part of the boundaries 
are inverse to each other. As an application he gave the famous example of a non-orientable 
surface: a "Mobius band" complemented by a disc to form a closed non-orientable surface 
homeomorphic to ^ 2 ^ (which Mobius did not expHcitly remark) (Mobius, 1865, p. 483). 

His earlier pubfication on "elementary relationships" contained a topological classifica
tion of closed orientable surfaces embedded in R^ (without self-intersection). He classi
fied singular points of a "height" function geometrically into "elliptical" and "hyperboUc" 

^̂  See [Lakatos, 1976]. 
^^ For Schlafli-Klein compare Section 2.1. 

•̂̂  Genus p of the surface given by 2p — Yjiz=\ ("̂ / — 1) — 2« — 2 for a Riemann surface with n leaves over P\ C 
and k branch points of orders wi/ — 1 (Neumann, 1865). 
3"̂  More details in [Pont, 1974] or [Scholz, 1980, pp. 148ff.]. 
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points and developed what from a 20th century point of view reads as a geometric presen
tation of the Morse theory of differentiable closed orientable surfaces. He showed that each 
such surface F can be constructed from two homeomorphic ("elementary equivalent") sur
faces F\ and F2, each with exactly n boundary components, which are pasted together at 
the boundary components. Mobius called n the "class" of the surface and showed that it 
was a classifying invariant. He did not remark, however, that his "class" and Riemann's 
"genus"^^ p were essentially the same, with p = n — I. 

While there is no indication that Mobius knew the function theoretic work of Riemann 
and its topological aspects, he did connect his studies to the famous debate on Euler's 
polyhedral formula and proved it in the general case using his invariant, x (F) = 2(2 — n). 
In our eyes it reads of course more naturally if rewritten with Riemann's invariant, x (F) = 
2 - 2 / 7 . 

Jordan classified orientable surfaces, including those with boundary, independently from 
Mobius. He counted the maximal number k of recurrent cuts (cuts along double-point-free 
pairwise disjoint closed curves c/, 1 ^ / ^ k), which do not dissect the surface into 
disconnected pieces, and the number m of boundary components. He showed that the pair 
(m, k) classifies the orientable (compact) surfaces uniquely (Jordan, 1866, p. 85). For the 
proof he used dissection of the surfaces along the recurrent cuts and additional cross cuts 
and topological maps of the resulting simply connected pieces. 

Jordan, in contrast to Mobius, was aware of the connections between the topological 
theory of surfaces and complex function theory. Another aspect of his work on surfaces, 
the study of homotopy classes of closed paths, very likely was motivated by this context, 
although he did not remark so expHcidy and left it to the reader to realize it. Riemann had 
been inspired in his topological investigations of surfaces by the behaviour of the integrals 
of holomorphic differential forms and thus considered a homological equivalence concept 
between closed paths (cycles); but of course in complex function theory the question of 
analytic continuation and the resulting questions of multi-valuedness played an important 
role (including Riemann's work, as is well known). For analytic continuation the contin
uous deformation of paths, or in later terminology a homotopic concept of equivalence 
between cycles was the proper one to study. Jordan did not explain this, but he gave a com
plete description of the homotopy theory of his bounded orientable surfaces, including def
inition of the equivalence concept, generators and relations of the fundamental group. This 
beautiful and surprising aspect of Jordan's work is discussed in detail in Vanden Eynde's 
contribution in this volume and therefore not documented in more detail here. 

Here I only what to repeat that Jordan did not use explicit group terminology, as the 
group concept was in the middle of the 1860-s still essentially confined to substitutions. 
He nevertheless must have been aware of a conceptual relationship between what he did 
with the deformation classes of closed paths and groups, as he had been actively involved 
in Galois theory in the time immediately before. 

Taken Riemann's, Mobius', and Jordan's work together, and perhaps adding Schlafli 
and Klein, it becomes clear that at the transition from the 1860-s to the 1870-s a complete 
topological theory, including classification, homology and homotopy aspects for compact 
orientable surfaces was at hand and widely accessible, and a first elaboration of questions 
of non-orientability had been started. Betti, moreover, had indicated how a generalization 

^̂  The terminology "genus" is due to Clebsch (1864). 
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of the homological part of the theory to higher dimensions might work; although the route 
he had indicated was still unexplored. 

3.2. . . . and first attempts to understand higher dimensions 

In 1871 Betti pubHshed his presentation of higher numbers of connectivity. The objects 
of his study were «-dimensional submanifolds Sn of an K"\ spazi, as he called them, in 
general supposed to be closed and connected.^^ The method of characterizing connectivity 
numbers ("Betti numbers") pk {I ^ k ^ n) was to consider maximal systems of closed 
/:-dimensional submanifolds, f// (1 ^ / ^ /?), which "cannot form the border of a path wise 
connected (sic!) {m + 1)-dimensional part of the space" (Betti, 1871, p. 278). 

Like Riemann in his (not yet pubUshed) fragment Betti argued that the maximal number 
p is independent of the choice of the system of submanifolds, using step-by-step substi
tution of the cycles. His verbal description of the boundary relation was, however, not 
precise enough to exclude counterarguments, which were given by Tonelli (1875) show
ing that a more refined symbolism for the representation of the cycles and their homology 
relations was needed. Moreover, Tonelli corrected the unnecessary and for the argument 
detrimental specification of pathwise connectedness for the bounding part of the surface. 
These necessary criticisms did not lessen Betti's achievement of a pubhc presentation of 
the first step towards a homological theory of manifolds, which until then had lain latent 
in the thought and manuscripts of Riemann and some (provably at least one) of the latter's 
closest correspondents. 

There remained the lacuna, however, that although the method was presented for 
«-dimensional (closed) manifolds in general, no new insights were immediately accessible 
by this method for higher dimensions with the exception of the simplest three-dimensional 
examples. Betti, e.g., discussed the connectivity of the "thickened" two-sphere and the 
massive and the "thickened" torus in B? in letters to R Tardy written in 1863, although 
published only in 1915 (Betti, 1915). It nearly remained so until Poincare's great series on 
analysis situs at the turn of the century. There was, however, at least one other intermediate 
step of long standing significance, E. Picard's investigation of the topology of complex 
algebraic surfaces at the end of the 1880-s and in the early 1890-s. 

Picard combined with great imagination ideas from algebraic geometry, complex analy
sis, early homology and homotopy to analyze the topological structure of algebraic curves. 
He noticed in the early 1880-s, as M. Noether had done already a decade earlier-̂ ^ that in al
gebraic surfaces integrals /^ co of meromorphic differential forms without first order poles 
(forms of first or second kind) over 1-dimensional cycles c are 0 "in general" (i.e. for most 
algebraic surfaces). Picard gave a detailed explanation of this phenomenon by an analysis 
of the first Betti number of a generic algebraic surface F. Starting from a singularity-free 
birational model of F in P5C he derived a representation in projective three-space such 
that the resulting equation for F, f{x, j , z) = 0 (in inhomogeneous coordinates), leads 
to a 1-parameter family Fy of algebraic curves, which, with the exception of a finite set 
of values Y — {y i , . . . , }̂ jt}, are of the same genus p. From the topological point of view 
Picard thus studied a fibration F -^ P\C with a closed oriented surface of genus p as 

^^ Compare Section 2.1. 
'̂7 (Noether, 1870, 1875) and (Picard, 1885, p. 282; 1886, p. 330). 
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generic fibre and a finite set of exceptional fibres with genus < /?. By a beautiful blend of 
complex analytic and topological arguments, combining homotopy classes of closed paths 
in PiC \ Y, homology classes of 1-cycles in a generic fibre Fy, abelian integrals and the 
monodromy of the "Picard-Fuchs" differential equation describing the change of values 
of abelian integrals under change of y, he showed that in the generic case (for "most" 
F) all 1-cycles reduce homologically to only one already by monodromy constructions 
of boundary relations. Then by the observation that in each singular fibre Fy. at least one 
cycle degenerates to a point, he argued convincingly that such a "vanishing cycle" is ho
mologically trivial in F, and thus all 1-cycles are homologically zero. Picard started to use 
the same arsenal of methods to calculate the second Betti number of F, but did not get far 
in this attempt. Apparently the symbolical methods were not sufficiently elaborate to deal 
with this more involved situation before Poincare entered the arena. 

4. Passage to the theoretical stage 

4.1. Poincare entering the field 

During the 1880-s Poincare came across "manifolds" in several analytical or geometrical 
contexts, although he personally understood them at that time still in a rather vague way. 
One of these contexts arose from his work in the theory of automorphic functions that made 
him famous (and Klein nervous) at the beginning of the decade. The culminating problem 
of Poincare's and Klein's research was the uniformization "theorem". Poincare's points of 
departure were complex differential equations over algebraic curves 

— = v(x)0(x, j ) , 

(f) being a meromorphic function on an algebraic curve C given by f(x,y) = 0, which 
leads only to (finitely many) regular singularities.^^ If it could be solved by means of 
a pair of Fuchsian functions^^ x(^), y(^) taking as fundamental system the functions 
vi = ^/dxjd^ and V2 = ^^/dxjd^ (pushed down to C), Poincare called the equation 
a Fuchsian differential equation.^^ The quotient V2/v\ = ^ was then the inverse of a 
universal covering map of the algebraic curve C, branched in the (regular) singularities of 
0 on C Poincare called two Fuchsian equations of the same type if there is a birational 
transformation between the underlying algebraic curves C and C' which transforms the 
singularities one into another such that the monodromy characteristics remain identical.^^ 

For the sketch of a proof Poincare (1884) collected all types of differential equations 
on an algebraic curve of given genus p and with given number k of branch points and 

p is regular singular point of the differential equation if a fundamental system of solutions can be chosen such 
that the quotient is a multivalued function branching over p of order ^ (A; e N) or oo. 
^̂  That is, ^ varies in the Poincare half plane Im(^) > 0 and jc, 3̂  are invariant under a properly discontinuous 
subgroup G cPSLiiR). 
^^ For Fuchs's studies of the monodromy of regular singular differential equations compare [Gray, 1984; 1986, 
pp. 60ff.]. 
^̂  That means, the difference of the characteristic exponents of two fundamental solutions of the equation is 
identical and of the form 1//: or 0 with k e Z \ {0}. In that case the quotient ^ is the inverse of a branched 
covering of branching order |/:| or 00. 



40 E. Scholz 

branching orders // (1 ^ / ^ k) in a "multiplicite" M which in generic points could be 
characterized by 6/? — 6 + 2/: (real) parameters. Analogously he parametrized the Fuchsian 
groups which lead to the proper genus p and given branching behaviour in another "mul-
tiplicite" M' (of the same dimension). Poincare's version of the uniformization theorem 
then claimed that each type contains at least one Fuchsian differential equation."^^ To argue 
for the correctness of this claim he considered the map g:M' ^^ M and showed that it 
is continuous and injective. The main point of the famous "continuity" proof was then to 
conclude the surjectivity of g from this information. 

Poincare gave a discussion which in fact spoke in favour of the surjectivity and was 
already sharper than Klein's, but still used highly intuitive ideas about continuous vari
ation of images in higher dimensional spaces in a symbohcally uncontrollable manner. 
Even the spaces themselves were not shown to be manifolds but taken as such, without 
further ado. For any critical reader (perhaps even including Poincare himself) the "conti
nuity proof" could thus be taken at least as much as an indicator for the necessity of an 
improved understanding of higher dimensional geometry as it was an indicator for the truth 
of the uniformization theorem. And in fact a clarification of the topological proof strategy 
was given only later by Brouwer (191 la, 191 lb) who used enlarged (necessarily no longer 
uniquely) parametrizing spaces which indeed were manifolds and to which he could apply 
his domain invariance theorem for continuous injective mappings.'*^ 

Another context in which Poincare gathered early experiences with higher dimensional 
manifolds arose from his investigation into the qualitative theory of differential equations. 
One of his questions was the topological classification of the singular points of a vector-
field (node, saddle point, focus, centre) and the introduction of the index as a numerical 
invariant. After having done so in the plane, he modelled nonlinear ordinary differential 
equations by the flow of a vectorfield v on (real) algebraic surfaces F and realized that 
the global index of the vectorfield ind(i;) (i.e. the sum of the local or pointwise defined in
dexes) is equal to the Euler characteristic of the surface: ind(i;) = 2 — 2/7 (Poincare index 
theorem) (Poincare, 1885)."̂ ^ 

In an attempt to generalize the result to nonlinear differential equations of higher order 
he transformed that problem to a high dimensional system of first order equations. Then he 
started with a geometrization of the n-dimensional situation, although at the outset he con
sidered geometrization as nothing more than a "useful language" (Poincare, 1886, p. 168). 

Fortunately he could build upon results of Kronecker (1869) about an analytically de
fined concept of index of functions systems on hypersurfaces of R", which about the same 
time was being given a topological content by W. Dyck.^^ Dyck had shown that the Kro
necker characteristic could be expressed in terms of his own purely topologically defined 
characteristic, which in fact was equivalent to the Euler characteristic and even equal up 
to sign."̂ ^ Working with the Kronecker characteristic as a symbolical tool,^^ Poincare was 

^^ In Poincare's terminology: Each type is a "Fuchsian" type. 
^^ On the other hand, Brouwer made it clear that the moduli spaces used by Klein and Poincare had singular 
points in curves with a nontrivial birational automorphism group, so that the argument of Poincare and Klein 
turned out in fact to be unreliable in its original form. 
^ Cf. [Gilain, 1991; Gray, 1992; Dahan, 1997]. 

Dyck published his first results on topological characteristics in the years 1885-1887 in the Mitteilungen 
Sdchsische Gesellschaft der Wissenschaften. 
"^^ [Scholz, 1980, pp. 249ff.]. 
^'^ Poincare did not cite Dyck, whose publication he apparently did not know. 
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able to sketch the idea of a high dimensional version of the index theorem for vector fields, 
the later Poincare-Hopf index theorem,"^^ for the case of open submanifolds or hypersur-
faces in R'̂ . In this context Poincare explicitly expressed the need for further elaboration of 
the methods to determine the higher orders of connectivity of Riemann and Betti (Poincare, 
1886,p.448).'^9 

Of course, there were other contexts in which Poincare found an opportunity to come 
back to manifold ideas, for example in his studies of complex integration in two variables 
/ /(?»^7) d^ dr] with (^, /?) e C^. Poincare showed that (in modern notation) dco = 0 for 
0) = f d^ A dr] and therefore the Cauchy theorem holds for two-dimensional integrals. 
Interestingly enough he still used the traditional language of "deformation" of one surface 
S into another S' through a region A C C"̂ , in which the 2-form is analytic, although 
from the context it must have been clear to him that a homological concept of boundary 
relations was closer to the situation (Poincare, 1887, p. 456). In his earlier experiences with 
high dimensional geometry Poincare had been skeptical with regard to its usefulness, as 
he argued that spatial intuition would no longer be directly applicable. By the late 1880-s 
however, he had gathered sufficient material in different fields of his studies for him to 
accept that such "hypergeometrical" language of "multiplicites" are useful and perhaps 
even necessary for proceeding further with some of his analytical investigations. 

4.2. A constructive approach to manifolds 

The exclusion of a direct application of spatial intuitions would not exclude indirect appli
cation, mediated by a proper symbolical framework, which had been only roughly sketched 
by Riemann and Betti. That is what Poincare started to pursue in the early 1890-s and con
tinued to work on for the rest of his life, best expressed in his ground breaking series of 
articles on "analysis situs" (Poincare, 1895,1899,1900,1902a, 1902b, 1904). In this series 
Poincare set the stage for a theoretical exploration and characterization of manifolds of any 
(finite) dimension which expanded so fruitfully and vastly in our century. Moreover, in the 
elaboration of the tools of analysis situs to make the "hypergeometry" of manifolds sym
bolically accessible, he brought combinatorial topology to the point where it could easily 
transcend the limits of manifolds and become a field of study of its own. Some traits of the 
theoretical and methodological achievements are outlined in the next section. 

Poincare, in accordance with his general philosophy of mathematics, did not use a for
mal, perhaps even axiomatic, definition of manifolds (which would moreover have been 
rather difficult to formulate in the 1890-s), but preferred to outline constructive procedures 
for the generation of manifolds. He used two main procedures to define a manifold M. 

(1) In his first definition he described M as zero set / " ^ O ) of a differentiable function 
/ : A -^ M ,̂ with A open subset in R'̂ +^, defined by inequalities, and the Jacobian 
df(x) of maximal rank for all x e A. He admitted that M might have a boundary. 
More clearly than his predecessors Poincare explicitly used the rank condition to 
derive local parametrizations of M. In addition he explained the morphisms under 
which two such representations M and M' should be considered as equivalent, as 

^° (Hopf, 1926). An intermediate step was taken by Brouwer in his work on the index of vectorfields on 
/I-dimensional spheres (Brouwer, 1911b, pp. 107ff.); cf. [Johnson, 1987, p. 82]. 
^^ Ironically Poincare got the name wrong speaking about "Brioschi" where he obviously referred to Betti's work 
(Poincare, 1886, p. 448), showing that he just started to assimilate the subject. 
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diffeomorphisms of open neighborhoods of M, respectively M\ in their embedding 
real space, which map M onto M' or vice versa. In his terminology he did not even 
indicate the possibility of a distinction between a general topological and a differen
tial topological structure, although he used the terminology of "homeomorphismes" 
(Poincare, 1895, pp. 196ff.). In fact Poincare alluded to Klein's Erlanger program 
and called the groupoid of his diffeomorphisms a "group", which should define the 
branch of geometry called "analysis situs", as he saw it (ibid., p. 198). 

(2) The second main definition allowed for a finite set (we would say adas) of differen-
tiable regular parametrizations of M by domains V,- in W\ Poincare considered M 
as covered by sets Ui which all were subsets of M"̂  (m ^ n), without considering M 
as a subset of M"': M = [Ji^j Ui with parametrizations ©t: V/ -^ Ui (l ^ i ^ I) 
and regular change of parametrization in /i-dimensional components of overlaps of 
the Ui-s (and with a similar definition in the complex case).^^ Poincare concen
trated attention in this definition on the analytic case and used the terminology of 
"analytic continuation" for the description of change of parameters in overlapping 
regions (Poincare, 1895, p. 200). In this case he introduced the orientability of M 
by the condition of positive functional determinant for changes of parametrization. 

Of course, Poincare did not exclusively consider these main definitions, but explained how 
to derive local parametrizations from the first definition, discussed diverse examples of 
mixed constructions, e.g., by restriction of the parameter sets V/ to lower dimensional sub-
manifolds of the parameter space W, defined by method (1). Even the operation of a finite 
group leaving the parametrizing submanifold invariant was included, as in his description 
of an image of the real projective plane Pi^ in R^. ^̂  

Depending on the context of investigation, Poincare later introduced additional con
struction procedures, which presupposed that the resulting object satisfied definitions (1) 
or (2). 

(3) The most important of these additional constructs was the cell subdivision and 
the representation of M as a finite geometric cell complex a "polyedre", which 
by definition satisfies the local manifold condition (Poincare, 1895, pp. 270ff.). 
He used it inter alia for constructing manifolds with prescribed fundamental group 
by boundary identification rules, although restricted to the three-dimensional case, 
where the local manifold conditions about identified 0-cells could be controlled by 
a combination of symbolic representation and basic space intuition (Poincare, 1895, 
pp. 229ff.).^2 

(30 In the fifth complement (1904) Poincare introduced even more construction pro
cedures, a "skeleton" representation of 3-dimensional manifolds, containing some 
ideas of three-dimensional Morse theory (Poincare, 1904, pp. 475ff.), and an adap
tation of an idea of P. Heegard to form a closed 3-manifold M by boundary identifi
cation of two homeomorphic handle bodies V and V'P He used these procedures 

^^ Poincare would not read M as literal union of the Vi. In lower dimensional components of intersection Ui Pi Uj 
he thought in terms of a disjoint union, only in /i-dimensional components he would identify the respective points 
of Ui and Uj; therefore he did not treat M globally as subset of R'". In more recent terminology, M is a mani
fold, while the immersion used in Poincare's construction is not necessarily injective, and thus the image M no 
(sub-) manifold of R'". 
^̂  Poincare used a parametrization of ^ 2 ^ by S'^ C R^ with antipodal identification. 
^•^ These examples are discussed in detail in [Volkert, 1994, pp. 87ff.]; compai'e also [Volkert, 1997]. 
^^ Compare [Volkert, 1994, pp. 137ff.]. 
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to present the famous Poincai'e "dodecahedral space" M with trivial homology but 
fundamental group isomorphic to the (extended) dodecahedral/icosahedral group 
/* (Poincare, 1904, pp. 478ff.). 

Poincare was convinced that each manifold given by definitions (1) or (2) can be repre
sented as a (finite) "polyedre" as in definition (3). His arguments in favour of that convic
tion were, however, more founded on intuitive "optimism" than on critical evaluation of 
the question (Poincare, 1899, pp. 332ff.). So Poincare claimed to have a positive solution 
for what later was considered to be a basic problem for the clarification of the conceptual 
structure of the topological theory of manifolds, the existence of triangulations for differ-
entiable or topological manifolds.̂ "^ A similar evaluation can be given for his use of the 
principle that it is always possible to find a common subdivision of two given finite cell 
subdivisions of a manifold (Poincare, 1895, p. 271), which later became the Hauptvermu-
tung in the terminology introduced by Kneser.^^ 

Already from this short presentation it may become apparent that Poincare's construc
tive concept of manifold contained an arsenal of methods to build examples to enrich the 
understanding of the world of new geometric objects. Although he did not even attempt to 
give a formal analysis and unified delimitation of the concept, Poincare's work was thus 
highly effective and gave a tremendous push towards a more refined understanding of the 
general concept outlined by Riemann and so difficult to understand in the second half of 
the 19th century. 

4.3. Giving a theoretical status to the topology of manifolds 

These examples of manifolds constructed and considered by Poincare served as material 
for the exploration and development of methods to analyze their intrinsic analysis situs na
ture. Poincare's work is, of course, much better known by its contribution to these methods 
than by the elaboration of the basic material of manifolds.^^ In fact, Poincare presented 
two approaches to analyze the homology of manifolds, the first followed Riemann and 
Betti rather directly and was introduced in the opening work of the series (Poincare, 1895). 
The second one with a presentation and elaboration of the homology of cell complexes was 
the subject of the first two complements (Poincare, 1899, 1900). Moreover he introduced 
the fundamental group of manifolds already in (Poincare, 1895) and constructed diverse 
examples of 3-dimensional manifolds with prescribed fundamental group. These more el
ementary examples were superseded by the elaborate case of the "dodecahedral" space in 
the fifth complement (Poincare, 1904). In the two intermediate supplements he developed 
methods to calculate the homology of algebraic surfaces (Poincare, 1902a, 1902b). Diverse 
detailed historical studies deal with different aspects in Poincare's topological work;^^ here 
I only want to outline the homological part of the profile of the theory which Poincare pro-

^^ Compare [Kuiper, 1979]. 
^̂  Compare [Volkert, 1994, p. 164] and other contributions in this volume. 
^^ For the latter aspect see [Volkert, 1994]. 
^̂  For the homological aspects of Poincare's work consult primarily [Bollinger, 1972] and in addition 
[Dieudonne, 1989, 1994] and from a semiotic point of view [Herrmann, 1996], for the homotopic aspects [Vanden 
Eynde, 1992], for specific construction methods of low 3-dimensional manifolds [Volkert, 1994], for a discussion 
of the contiibution to the manifold concept and an outline of Poincare's topological study of algebraic surfaces 
[Scholz, 1980]. Compare also diverse other contributions to this volume. 
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posed in order to make the "hypergeometry" of manifolds accessible. Poincare's introduc
tion of the fundamental group is discussed in the article of Vanden Eynde (this volume). 

In his first approach to homology in a n-dimensional manifold M Poincare followed Rie-
mann's proposal to study bordance relations of oriented submanifolds V\,... ,Vkof given 
dimensional m ^n. His procedure was conceptually still highly intuitive and vague, as the 
underlying idea supposed the study of equivalence relations on the set of all m-dimensional 
submanifolds and was too complicated to get hold of, with the methods available at the 
time. Moreover, to make the approach feasible, the "submanifolds" should admit certain 
"nicely behaving" singular subsets, like the topological (or smooth) "varieties" recently 
proposed by (Kreck, 1998). Poincare, however, went a step further than his predecessors 
in the symbolical description of his objects and relations. In particular, he introduced an 
algebraic representation, 

Vi + V2 + . •. + y^ - 0, 

for the condition that all the V, form a complete boundary of an (m + l)-dimensional sub-
manifold and transformed such homology relations by addition and multiplication of the 
terms with integer coefficients. In this approach the terms were of a peculiarly ambivalent 
semiotic nature. Basically, Poincare interpreted terms like XVi (X G Z) as a collection of 
X "slightly varied" copies of the (oriented) submanifold V,; but he accepted and used a 
formal division of homologies,^^ as a result of which the homologies no longer directly 
had to express boundary relations.^^ In the result Poincare got an interesting symbolical 
system for homologies and the calculation of Betti numbers pi ,̂ ^ which allowed him to 
explore basic features of the homology of manifolds much deeper than his predecessors, 
in particular duahty for the Betti numbers, pi = pn-i for orientable closed manifolds, and 
the Euler-Poincare theorem x (^) = X]/Lo(~ 1)' Pi • 

None of these could be proven indubitably in Poincare's approach. For the duality the
orem his calculation of the intersection numbers remained highly intuitive, as the differ
ential topology of general transversal intersections was too involved to be clarified by his 
means. For the generalized Euler theorem Poincare used his principle of the existence 
of a common refinement of two finite cell decompositions of the manifold M (the later 
Hauptvermutung). So, from a critical point of view, both principles (Poincare duality and 
Euler-Poincare) had rather the status of well motivated conjectures than of "theorems", 
even in the eyes of critical contemporaries like Heegard, Dehn, Tietze et al. 

After Heegard's criticism of the discussion of duality in manifolds, Poincare estabUshed 
his second, much better algebraicized combinatorial method to define and calculate con
nectivity numbers, adding torsion numbers and coefficients to the Betti numbers (Poincare, 
1899,1900).^^ He started from a representation of the manifold M as a geometric cell com
plex constituted by ^-cells a^^ (1 ^ / ^ aq for all dimensions 0 ^ q ^ n), and described 

^^ He made the "division rule" explicit in the first complement answering P. Heegard's criticism of having sup
pressed torsion elements. In (Poincare, 1895) it was subsumed under a sort of "metarule" for homologies: "Les 
homologies peuvent se combiner comme des equations ordinaires" (Poincare, 1895, p. 207). 
^^ Compare the often discussed example of the line / in ^ 2 ^ with 2/ ~ 0 having a direct geometric interpretation 
as a small angular segment U between two lines, dU = 2/; whereas the result of division / ~ 0 had no longer 
direct geometric interpretation, as criticized by Heegard. 
^^ To be precise, Poincare used a slightly changed definition of Betti numbers P/ := p/ + 1, if /?/ is the maximal 
number of homologically independent /-cycles ("with division", i.e. calculating with integer coefficients in Q). 
6̂  Compare [Bollinger, 1972]. 
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boundary identifications as "congruences", of = J^j ^tf^j \ codified by the matri
ces E^^^ = (s^j) , and reduced the consideration of cycles and their boundary relations 
to those expressible in Hnear combinations of cells. That allowed him, of course, to avoid 
the difficult problems arising from investigation of all submanifolds and led to the well-
known approach of combinatorial topology. Poincare could thus very well show that the 
most evident difficulties arising from his first approach resulted geometrically from nonori-
entability of the manifold M and algebraically from the ambivalence between homology 
"with division" (we would say calculating the homology over Q) and "without division" 
(over Z). 

Poincare (1900) presented a new definition and a calculus for the calculation of Betti 
numbers and torsion from the incidence matrices E^^^ of a cell decomposition of M. The 
method used diagonalization of incidence matrices by elementary transformations to ma
trices T^^\ Expressed in sHghtly more structural terms Poincare developed a calculus to 
choose generators of the Z-module Cq of cellular ^-chains such that all boundary opera
tors dq \Cq -^ Cq-\ are diagonahzed. That allowed him to read off immediately the Betti 
numbers and torsion coefficients and the distinction between manifolds "with" or "with
out" torsion from the diagonahzed matrices 7^^^ (Poincare, 1900, p. 369). 

Poincare was sure that his second, the combinatorial, method led to the same homolog-
ical invariants (Betti numbers and torsion coefficients) as the first, bordance of submani
folds, method. He first showed that a subdivision of the "polyedre" does not change the 
combinatorial invariants (1899, pp. 303ff.). Considering now a set of submanifolds, aris
ing in the representation of cycles and homologies of the first method from the "principle" 
of the existence of cell subdivision for each of them and the assumed possibility of con
structing a common subdivision ("Hauptvermutung"), he concluded without any hesitation 
that the "old" and the new (combinatorially defined) homological invariants are identical. 
This part of the "proof" needed only six lines in his presentation (Poincare, 1899, p. 309). 
Although he thus got new problems he could not solve or even realize, he achieved on the 
other hand a proof of duality for orientable manifolds and the generalized Euler theorem 
in the symbohcally clear framework of the new approach (1899, pp. 302f.; 313ff.). 

In the end Poincare had achieved a lot for a homological theory of (differentiable com
pact) manifolds about the turn of the century. He had introduced the old invariants (Betti 
numbers) in a new, much clearer symbolical framework, had introduced new ones (torsion 
coefficients), developed a well algebraicized calculus to compute them, calculated them in 
a great variety of cases, and proven two basic theorems (duality, Euler-Poincare). More
over he had introduced and given a basic analysis of the topological importance of the 
fundamental group, which is put into the context of the development of homotopy ideas 
in the contribution of R. Vanden Eynde in this volume. Thus, even taken into considera
tion that Poincare took basic principles to be valid without any hesitation (triangulabihty, 
Hauptvermutung), that turned out to contain serious problem potential for the future clari
fication of basic structures of the topology of manifolds during the century to come, there 
can be no doubt that he was the main initiator of a topological theory of manifolds of wide 
range.^^ Moreover, the elaboration of his second (combinatorial) approach to homology 
opened the path towards a homological theory of more general topological spaces. 

^^ This advancement tends to be suppressed in Dieudonne's discussions of Poincare, as he looks at the latter 
rather with the eyes of a "modern" mathematician in the sense of the 20th century than with those of a historian. 
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5. Elaboration of a logical frame for the modern manifold concept 

5.1. Early axiomatic attempts for two-dimensional manifolds 

Topological spaces on different levels of generalization were analyzed in different ap
proaches and with varying degrees of precision in the rise of modern mathematics in the 
early 20th century. During the last three decades of the 19th century Cantor had devel
oped his theory of point sets in R" in the framework of general set theory. He himself was 
shocked to realize that bijective maps between real continua of different dimensions can be 
conceived, and even Dedekind's comforting conviction that more specific maps, in this case 
bijective and (bi-)continuous ones, would respect the invariance of dimension left the prob
lem to prove (or disprove) such a conjectured invariance. Naive assumptions from space 
intuition were particularly deceptive in this field; that became even clearer about 1890 
when Peano published his example of a "spacefilling" curve with the surprising effect, that 
the lack of injectivity would even for continuous maps not necessarily lead to a decrease 
of dimension (or keep it at most invariant), but could as well increase it. Early attempts 
by Liiroth, Thomae, Netto, and Cantor himself, to prove the invariance of dimension under 
bijective continuous maps, turned out to contain unclosable gaps and again (as in the case 
of the continuity proof for uniformization) it was only Brouwer who surmounted the dif
ficulties and indeed proved the correctness of Dedekind's suggestion (Brouwer, 191 la).^^ 
About the turn of the century two methodological strategies for clarifying the concept of 
manifold were formed and sketched, an axiomatic one proposed by Hilbert, taken up by 
Weyl (about 1913), Hausdorff, H. Kneser, and VeblenAVhitehead, and a constructive one 
proposed by Poincare, taken up by Dehn/Heegard, Tietze, Steinitz, Brouwer, Weyl (after 
1920), Vietoris, van Kampen and others. 

The first attempts at an axiomatic formulation of manifolds by Hilbert and by Weyl 
(1913) were limited to dimension 2 by contextual considerations. They contained a blend 
of early ideas of general topology and postulates for regular coordinate systems as specific 
manifold structures. Hilbert's approach (1902a, 1902b) arose from the context of the foun
dations of geometry and had as its main goal the erection of an axiomatic framework for 
the concept of a (simply connected) two-dimensional continuous manifold which should 
serve as a starting point for a group theoretic characterization of the principles of Euclidean 
geometry. 

Hilbert supposed the plane E to be topologized by a sufficiently rich system of neigh
bourhoods ("Umgebungen") Up of each point p e E, formed by sets U C E containing 
p and each complemented by at least one coordinate bijection i/r :U -^ V onto a Jordan 
domain V C M?, such that the four following conditions hold: 

(1) For each Jordan domain V^ C V containing \lr(p) the counterimage V̂ ""̂  (V') is also 
a neighbourhood of p. 

(2) For two coordinate bijections -ij/ and ^^ of the same neighbourhood U onto V and 
V^ the coordinate change i/r̂ i/r""̂  : V -> VMs bijective and continuous. 

(3) A neighbourhood V of p e E, containing a point q, is also a neighbourhood of ^. 
(4) Each two neighbourhoods V, V^ of p contain another one V C V H V. 
(5) To any two points p,q e E there exists a common neighbourhood V. 

^^ For the history of invariance of dimension see [Johnson, 1979/1981, 1987] and for an outline of Brouwer's 
proof [Koetsier and van Mill, 1997]. 
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Hilbert commented that his postulates contain, as he thought, the "precise definition of 
the concept, which was called multiply extended manifold by Riemann and Helmholtz and 
number manifold by Lie" (Hilbert, 1902a, p. 233). This remark of Hilbert was, like so 
many others in the foundations of mathematics, a bit rash but showed a promising way to 
proceed. 

In fact, Hubert's sketch of an axiom system for two-dimensional manifolds containing 
all the conceptual components for the later refinement of both, the characterization of gen
eral topological spaces, by what would later be called a neighbourhood basis as formulated 
by Hausdorff (1914)^^ and the axiomatic definition of manifolds by coordinate systems and 
a regular atlas as elaborated by Veblen and Whitehead (1931). Hilbert dealt, however, with 
both aspects in a simplified form justified by his restricted context. The later Hausdorff 
separability was indirectly implied by his last axiom of "big" coordinate neighbourhoods 
to any two points p,q £ E and their separability in the coordinate plane by Jordan regions 
(in addition to axiom (1)). 

Weyl, in his Idee der Riemannschen Fldche, could already build upon Brouwer's result 
of the invariance of dimension under bijective continuous maps between open sets in M". 
That may have given him the confidence that a slightly more "intrinsic" characterization 
(than Hubert's) of a two-dimensional manifold was possible. 

Like Hilbert he characterized the structure of a two-dimensional manifold F by a system 
of neighbourhoods Up, each of which, U C F would contain p and be supplemented by 
a bijective map \lr :U -^ V e C, with V an open disk with center irip). The totality of 
neighbourhoods was used by Weyl as a neighbourhood basis for the topology of F in the 
modern sense. He demanded that they satisfy two conditions. The first one amounted to 
what would be expressed in more recent terminology as (i) the open map condition for the 
coordinate map i/̂  with respect to the topology on F induced by the neighbourhood basis. 
The second one was: (ii) for any neighbourhood L̂  of a point p e F with coordinate map 
\l/ :U ^^ V and a small disk V' C V of center \lf{q) (q e U), there is a neighbourhood U^ 
of^ such that TA([/0 C V^ 

The second postulate had a double function in Weyl's argument; it made sure that co
ordinate maps were continuous and it secured the existence of sufficiently many "neigh
bourhoods" to constitute a neighbourhood basis (from our point of view). Essentially Weyl 
characterized a manifold F as a topological space by the assignment of a neighbourhood 
basis U in F, postulating that all assigned neighbourhoods U e U art homeomorphic to 
open balls in R^. That was, of course, a remarkable contribution to the clarification of 
what is essential for an axiomatic characterization of manifolds. Weyl left, however, a gap, 
which was not surprising for the time. He dropped Hilbert's axiom (5) to achieve stronger 
locaHzation than his former teacher; but he did not realize that separability of points by 
neighbourhoods was thus lost. So it was left to Hausdorff, the more acute thinker with 
respect to logical clarification of concepts, to pinpoint the necessity of such an additional 
postulate in his axiomatization of topological spaces (Hausdorff, 1914, p. 213).^^ 

Compare [Scholz, 1996; Aull and Lowen, 1997]. 64 

^̂  Weyl was relatively slow to accept the necessity of a separability axiom for manifolds. He did not supplement 
or change his axiomatics of two-dimensional manifold in the second edition of (Weyl, 1913) in 1923 and did so 
only for the third edition in 1955. In the middle of the 1920-s he had accepted the importance of this Hausdorffian 
specification (Weyl, 1925/1988, p. 3). I owe R. Remmert the hint at the this gap and the relatively late correction 
in Weyl's approach. 
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At the end of his book on the foundation of analysis Das Kontinuum Weyl experimented 
with a modified axiomatization of the concept of two-dimensional manifolds from a con
structive perspective. Now he worked with a restricted real continuum, the Weylian reals 
W, constructed by only those Dedekind cuts in Q that are definable in a semiformalized 
arithmetical language (essentially using first order predicate logic and recursive definitions 
over N) (Weyl, 1918, pp. 80ff.).^^ He postulated a "somehow" constructively given count
able base of nested neighbourhoods Up^n ('̂  ^ N) with Up^i-^i C Upji for a countable 
"dense" net of points p e X C F, each Up^n bijectively bicontinuous with an open disk 
in the Weylian number plane W^. But for philosophical reasons he was discontented with 
his new approach just from the beginning.^^ A little later he turned towards Brouwer's ap
proach in the foundation of mathematics, even if only for a while, and essentially became 
an adherent of a constructive (combinatorial) approach to manifolds. 

5.2. The rise of the combinatorial and piecewise linear approach 

Other mathematicians had already started to pursue such another, more constructive ap
proach to a modern formulation of the manifold concept, following Poincare's decomposi
tion of manifolds into geometric cell complexes ("polyedres"). Already Dehn and Heegard 
in their article on Analysis Situs for the Encylopddie der Mathematischen Wissenschaften 
emphasized the combinatorial construction of manifolds, which was intended as a defini
tion, not as a reconstruction of an object that had already been given in another way. In 
consequence they explicitly introduced the idea that morphisms of these objects should 
be defined by combinatorial equivalence^^ rather than by (bicontinuous) homeomoi*phism. 
Such an approach was also chosen by H. Tietze in his Habihtationsschrift in which he 
studied manifolds as n-dimensional cell complexes up to combinatorial equivalence. To 
specify manifolds among more general cell complexes he postulated that the star of each 
m-dimensional cell C", i.e. the union of all higher dimensional cells that intersect the 
boundary of C" be simply connected, by which he understood that it is combinatorially 
equivalent to a sphere S"~"^~^ (Tietze, 1908, p. 24).^^ He left open, however, how such an 
equivalence could be identified. 

As a great advantage of this approach Tietze observed that it would lead to a founda
tion of analysis situs independent of the consideration of infinite sets and their inherent 
logical difficulties and methodological subtleties (1908, p. 2)P^ As a contribution to such 
subtleties (at least from the point of view of Poincare) he discussed cell decompositions of 
the same manifold M with infinitely many components of the intersection of cells. Thus he 
showed that Poincare's conviction that each two (finite) cell decompositions have a com
mon subdivision was too rash to be accepted. He admitted that a proof of the existence of 

^^ [Feferman, 1988; Coleman and Korte, 1998]. 
6*7 Compare [Scholz, 1998]. 
^^ Dehn and Heegard used Mobius' terminology of "elementary relationship (Elementarverwandtschaften)" 
(Dehn and Heegard, 1907, pp. 159f.). 
^^ Tietze used the terminology of "homeomorphism" to s'^~'"~K but made it clear that he understood in this 
context "homeomorphism" in the sense of combinatorial equivalence (Tietze, 1908, p. 13). 
^^ At the time of pubHcation of Tietze's studies the principle of choice, which had been used by Zermelo (1904) 
a little earlier and explicidy introduced as an axiom of set theory the same year (Zermelo, 1908a, 1908b), led 
to intense debate and controversian reactions among mathematicians in France and Germany. Cf. [Moore, 1978, 
1982]. 
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such a common subdivision "might be relatively simple in the case of two dimensions", 
but that it "waits for a deeper investigation (harrt einer eingehenderen Erledigung) in the 
general case of higher dimensions (Tietze, 1908, p. 14). So he openly posed the question, 
whether two homeomorphic manifolds M and M' are in fact combinatorially equivalent, 
as an important problem of the theory. In the 1920-s H. Kneser emphasized the method
ologically central role of this conjecture even more strongly and gave it the famous name 
of Hauptvermutung for the combinatorial theory of manifolds (Kneser, 1926, p. 6). 

In another publication of the same year E. Steinitz attempted an axiomatic foundation 
of combinatorial topology by a set of postulates for the incidence structure of abstract 
finite cell complexes constituted by a finite set of "elements" a graded by "dimension" 
dim a = [a] (0 ^ [a] ^ n) and with prescribed incidence relations. After the introduc
tion of six axioms to regulate the concept of an abstract combinatorial polyhedron Steinitz 
added three more to specify what he considered as "combinatorial manifolds". Strangely 
enough he only postulated connectedness (axiom 7), existence of bounding cells for cells 
of intermediate dimension (2 ^ [a] ^ n — 2) and connectness of the boundary set (ax
iom 8) and existence of incident cells [c] of each intermediate dimension [a] < [c] < [b] 
to each two incident cells a and b of dimensional difference at least 3 (axiom 9) (Steinitz, 
1908, pp. 31f.)J^ Of course, Steinitz also introduced a combinatorial concept of equiva
lence for his abstract cell complexes (and "manifolds"); but although his axiomatization 
broke new ground for an abstract approach towards combinatorial topology in general, his 
characterization of manifolds was much too weak to be accepted or of broader influence 
for future research. So it was in fact Brouwer's highly influential introduction of a "mized 
approach" of combinatorial and continuity methods, in which manifolds were defined by 
simplicial methods, that marked the next remarkable leap for a constructive underpinning 
of the manifold concept. It also pointed out in which direction one had to go if manifolds 
should be selected among the more general objects of abstract combinatorial complexes.^^ 

Brouwer seems to have detected the importance of simplicial decomposition of man
ifolds, of simplicial approximation, and of mapping degree for the investigation of long 
standing problems in the topology of manifolds early in 1910.^^ He introduced his 
new tools of simplicial approximations and the mapping degree of continuous maps be
tween manifolds in his famous pubhcation (Brouwer, 1911b). There he defined mani
folds in a manner adapted to his context of the simplicial methodology. He explained an 
n-dimensional manifold M to be a (possibly) infinite^^ geometric simplicial complex of 
dimension n such that: 

(1) two intersecting n-simplexes share a p-dimensional face {I ^ p ^ n — I) and with 
it all lower dimensional faces of the latter, 

(2) for each vertex the collection of incident simplexes is homeomorphic to an /i-ball 
(Brouwer, 1911b, p. 97). 

"7̂  Compare [Volkert, 1994, pp. 173ff.]. 
^^ For an outline of how Brouwer's intuitionism and his topological constructivism went in hand see [Koetsier 
and van Mill, 1997]. 
^^ See Freudenthal's evaluation of an unpublished notebook of Brouwer in (Brouwer, 1976, pp. 422-425); com
pare also [Johnson, 1987, pp. 8Iff.]. 
"̂̂  In the case of a finite simplicial decomposition he called the manifold "closed" (in our terminology compact), 

in the infinite case "open". 
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If all «-simplexes of an n-dimensional manifold M are represented by « + 1 homoge
neous coordinates of a standard simplex in the (n -\- 1)-dimensional "number space"7^ 
such that lower dimensional simplexes carry identical coordinates from each w-simplex to 
which they belong, Brouwer called the manifold "measured", in more recent terminology 
M carries a piecewise linear (abbreviated PL-) structure. By a recursion procedure over 
the dimension he showed that a manifold in his sense can always be "measured" (given 
a PL-structure). That allowed him to characterize orientability and orientation of his PL-
manifolds, barycentric subdivisions, simplicial approximation of continuous maps, and the 
mapping degree of continuous maps between manifolds. That served as the basis for his 
investigation of the index of vectorfields on spheres, his fixedpoint theorem, the proof of 
the invariance of dimension, etc.^^ Thus he introduced a new approach for a constructive 
characterization of manifolds besides the less standardized representations as geometric 
cell complexes in the sense of Poincare, Tietze et al. 

Brouwer's approach to manifolds combined a constructive representation of the global 
structure by "measured" simplicial complexes with a criterion of local simplicity, which 
still referred to pointset topological properties of "numberspaces" and did not even attempt 
to transform the latter to combinatorial criteria. In this respect Tietze (and Steinitz) had 
been more consequential in their attempt to avoid the fallacies of pointset topology. They 
had successors to elaborate more in detail, what Tietze had left open in his all-inclusive 
characterization of "simple connectedness" of neighbourhoods of /:-cells. In the early 
1920-s Veblen and Weyl pushed this characterization a step further, although they were 
not completely successful in their search for a convincing and operative characterization. 

5.3. Manifolds in the methodological ''battles'' of the 1920-s 

Veblen followed in his Analysis Situs (1922) the combinatorial approach to manifolds and 
complemented it by ingredients from Brouwer's simplicial constructs. Like Tietze he ex
plicitly tried to avoid pointset topological considerations as far as possible.^^ He modified 
Tietze's combinatorial definition by a rather pragmatic reduction of the combinatorial prob
lem to characterize "simply connected" stars of ^-cells in an n-dimensional complex.^^ Af
ter giving three procedures to build an n-complex combinatorially equivalent to an n-cell,^^ 

^̂  I deliberately use Brouwer's original terminology and do not write R", as Brouwer's terminology leaves 
the interpretation of the number continuum open. It can be interpreted by classical real numbers, Brouwer's 
inituitionistic real continuum, or even (later) by Weylian reals W of 1918. 
'^^ Cf. [Johnson, 1987; Koetsier and van Mill, 1997]. 
^^ " . . . we leave out of consideration all the work that has been done on the point-set problems of analysis situs 
and on its foundation in terms of axioms or definitions other than those actually used in the text." (Veblen, 1922, 
p. vii). In consequence Hausdorff did not start to read Veblen's and other mathematicians' work on combinato
rial topology before the late 1920-s when Alexandroff's approach to homology via "nerves" of open coverings 
allowed an algebraization of homology which was directly applicable to topological spaces independent of a 
combinatorial structure. 
^^ In addition Veblen choose to give the explanation of a "neighbourhood" of a A;-cell a^^"^ in an ^-dimensional 
complex Cn a surprising shift towards pointset theoretic criteria. He characterized such a "neighbourhood" as 
any set S of nonsingular cells of C„ such that all point sets M C Cn with a limit point on a^^^ have points in S 
(Veblen, 1922, Chapter III.4). 

^^ The simplest of these three procedures was of course the following: Two nonintersection «-cells A, , ^2 

incident with exacdy one {n — l)-cell a^"~^^ constitute an /i-cell. 
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Veblen defined an n-dimensional manifold to be a closed (finite) regular cell complex of 
dimension n, in which each k-ct\\ has a "simply connected" star, where "simple connect
edness" was defined by a combination of the three construction procedures of/c-cells given 
before.^^ 

H. Weyl was at that time highly impressed by Brouwer's ideas of "free choice se
quences" to characterize continuum ideas mathematically without reference to the concep
tual framework of transfinite sets. So he experimented at the end of his polemical article 
on the new foundational crisis of mathematics with a characterization of point localization 
in a two-dimensional continuum by "free choice sequences" of nested stars in an infi
nite series of barycentric subdivisions of a two-dimensional Brouwerian manifold (Weyl, 
1921, p. 177f.). He tried to come to a genetic definition of points in a two-dimensional 
combinatorial continuum and rejected the idea that "points" might be presupposed as ideal 
"atomistic" local determinations in advance.^ ̂  In that respect the "purely" combinatorial 
approach to manifolds appeared to him of high importance for the foundations of mathe
matics, the more so as he could not be sure that Brouwer's intuitionistic continuum (which 
in the early 1920-s was not yet well elaborated in technical details) and his own ideas on 
an "infinitesimal continuum" would conceptually coincide after sufficient symbolical elab
oration. In any case, it would be logically preferable to free the combinatorial approach to 
continuum concepts from the direct link to number concepts, which was presupposed in 
Brouwer's "mixed" approach to manifolds. 

Thus Weyl took the opportunity of his visit to Madrid and Barcelona in early 1922 not 
only to elaborate his ideas on the "analysis of the space problem" from the new view
point of his infinitesimal geometric approach but also to give an exposition of his view 
of combinatorial topology for the Revista Matematica Hispano-Americana (Weyl, 1923, 
1924). He developed his own approach to a characterization of a combinatorial ^-sphere 
(a "Zyklus" as Weyl said) by two groups of axioms. As there was neither a semantically 
complete axiomatic characterization of combinatorial spheres, nor a complete set of con
struction procedures for the latter in sight, Weyl proposed for the time being a provisional 
axiomatic characterization of structural properties of combinatorial spheres "from above" 
in a first group of axioms, and in addition a second group of axioms, which gave a collec
tion of genetic procedures for the construction of combinatorial /:-spheres "from below". 
He hoped for a step by step completion of the axiom system in future research, which in 
the end might lead to a coextensive characterization of combinatorial /c-spheres by any of 
the (extended) two groups of axioms, and thus of manifolds.^^ 

The first group of axioms for a Weylian combinatorial n-sphere Z" were the postulates 
that Z" be connected (axiom 1), that to each /:-cell a^^^ in Z" {0 ^k < n) the collection of 
all higher dimensional cells b^^^ bounding directly or indirectly (k < j ^ n, a^^^ C b^^"^) 
carries the combinatorial structure of a Weylian combinatorial sphere Z^"^'^ (axiom 2),^^ 
that it be orientable (axiom 3), and homologically trivial in dimensions less than n {diX-
iom4).84 

80 (Veblen, 1922, Chapter m.24). 
8̂  For more details on Weyl's philosophical motivation and the context of his rejection of transfinite set theory 
as a background in which to model "continuum" ideas, compare [Scholz, 1998]. 
82 Cf. (Weyl, 1924, pp. 416f., 419) and also (Weyl, 1925/1988, p. 10). 
8̂  Weyl called this (modified) Tietzean property of a cell complex to be "unbranched". 
^^ Weyl called this a "plain (schlicht-de una hoja)" complex (Weyl, 1923, p. 403). 
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For the "genetic" characterization of combinatorial n-spheres Weyl characterized the 
0-sphere as two points (axiom 0), generation of /i-spheres from w-spheres by subdivision 
of a rather general kind^^ up and down (axioms A, B) and two constructions of higher 
dimensional spheres from lower dimensional (axioms C, D). Weyl proved several results 
for combinatorial manifolds, in particular Poincare duahty for closed orientable manifolds. 
But his approach was probably too involved in foundational considerations and technically 
too sophisticated to be taken up as a convincing strategy for the elaboration of a more 
broadly accepted genetic concept of manifold, which stood up to the standards of mod
ern mathematics.^^ So the research strategy proposed by Weyl was not taken up by other 
mathematicians, but at the best selectively adapted to other methodological views. 

About the middle of the 1920-s all ingredients for a satisfying formulation of the man
ifold concept, taking up the knowhow on axiomatization and on genetic characterizations 
of manifolds were at hand. There is no point in repeating here the interesting history of 
the preparation and elaboration of the general concept of topological space.̂ '̂  After Haus-
dorff, Frechet, and Riesz opened this new field of investigation, it found particularly active 
supporters in the newly rising mathematical groups in Poland, the Soviet Union, and the 
United States, and it also left its imprint on the modern reframing of mathematics in Ger
many and Austria. The first attempt for balance between the different approaches to the 
manifold concept was given by the young Hellmuth Kneser, who had written his disserta
tion with Hilbert in 1921 and got a professorship in Greifswald in 1925, in an article for 
the Jahresbericht der DMV (Kneser, 1926). 

Kneser discussed both approaches, an axiomatic one based on Hausdorff's set theoretic 
foundations for topology, and a combinatorial one referring to, but deviating from Weyl's 
approach. For the axiomatic characterization of manifolds he limited himself to the topo
logical case, without any discussion of differentiable structures. He thus characterized a 
topological manifold M by Hausdorff's axioms for a neighbourhood basis (of a Hausdorff 
space) including the second countability axiom for a neighbourhood base of all points in M 
(thus of all open sets in M) and added just one postulate: Each point p e M has a neigh
bourhood which is topologically equivalent to an open ball in the "w-dimensional num-
berspace", by which he obviously referred to the R" (Kneser, 1926, pp. 1-3). A "closed" 
(in our terminology compact) manifold was characterized by the Heine-Borel criterion for 
open coverings of M. 

After the introduction of a combinatorial decomposition of a "closed" manifold as a 
finite cell complex Kneser introduced the Hauptvermutung as fundamental for the combi
natorial theory of manifolds and proposed a characterization of a combinatorial manifold 
by the simultaneously inductive definition of the concepts of «-dimensional cell complex 
C", n-dimensional combinatorial sphere 5", n-dimensional cell £", the boundary of E^, 
and internal transformations (allowed subdivisions of cells of 5"-s). He first defined by 

^̂  For subdivision of an w-cell £" Weyl used any combinatorial n-sphere Z" punctuated it and substituted it for 
the£" . 
^^ H. Kneser (1926) referred to Weyl, and gave a little later van Kampen the hint that the latter's cell complexes 
satisfy Weyl's axioms (van Kampen, 1929, p. 3). On the other hand Kneser criticized Weyl's axioms as too 
complicated, as the consistency and completeness of the axioms were left open (1926, pp. 12f.). The former 
aspect (consistency) had in fact been discussed by Weyl (1924, pp. 416ff.), while completeness had been marked 
as a severe problem by the latter (1924, p. 419). 
^̂  See diverse articles in the recent Handbook [Aull and Lowen, 1997] and the announced next volume(s) with 
several contributions on the history of set theoretic ("general") topology. 
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induction over dimension n, what might be called a regular cell complex^^ C", where 
essentially each n-cell Z" in C" has a combinatorial sphere 5"~^ as boundary, and the 
{n — l)-subcomplex is also regular. Moreover for all /c-cells Z^ in C" (1 ^ ^ ^ ^) internal 
transformations by elementary cell subdivisions (or the inverse operation) are defined.^^ 
Starting from standard combinatorial w-spheres^^ S^^ Kneser allowed all those combinato
rial schemes of spheres, which can be constructed by internal transformations in his sense. 
Thus he was proud to achieve a simpler characterization of combinatorial manifolds M" 
than Weyl, by the condition that the neighbourhood complex of each 0-cell Z^ has an 5""^ 
as boundary.^ ̂  But his approach was not only built on the unproven (and unprovable as we 
know) Hauptvermutung, but did even not allow the proof of Poincare duality for orientable 
manifolds by combinatorial means. So it was in the end doubtful whether his approach 
had a real advantage in comparison with Weyl's, although he had achieved a much simpler 
framework of postulates. 

In the late 1920-s several mathematicians in different international groups, relatively 
independent from each other, turned towards a more pragmatic approach with respect to 
combinatorial manifolds. They turned the question upside down^^ and looked for combi-
natorially accessible conditions that an orientable cell complex satisfies "Poincare" duahty. 
J.W. Alexander, L.S. Pontrjagin,^^ L.F. Vietoris (1928), and E.R. van Kampen in his Leiden 
dissertation (1929) chose similar strategies to get rid of the unanswerable question under 
which conditions a combinatorial complex is a "real" (i.e. topological) manifold. The es
sential common point of their approaches was the idea of weakening the sphere condition 
for the boundaries of neighbourhood complexes from combinatorial to purely homological 
ones. In this sense Vietoris took up Brouwer's constructive definition of a manifold and 
modified it by a homology criterion for the local simplicity property, defined inductively 
over dimension. More precisely, he defined an h-manifold as a simphcial complex M in 
which the star of each vertex e^ is bounded by an "/t-sphere". An {n — 1)-dimensional 
h-sphere, on the other hand, is defined as an orientable /z-manifold of dimension n — 1 
with the same Betti numbers as a sphere: po = P/i-i = 1» A = 0 for 1 < i < n — I; with 
the inductive definition anchored in the obvious stipulation that a 0-dimensional /i-sphere 
is a pair of points (Vietoris, 1928, p. 170). That allowed him to estabhsh Poincare dual
ity for orientable closed /z-manifolds by the construction of dual complexes and the use 
of Poincare's argument. In fact, in the introduction of his paper he stated frankly that his 
proposal of a modified concept of /z-manifolds arose from a proof analysis as a result of 
which he did not try to fill the gap in the original argumentation, but preferred to adapt the 
conceptual frame to Poincare's original proof structure.^^ 

^̂  Kneser used the terminology "cell building (Zellgebaude)". 
^ More precisely the boundary of each Z^ which is a S ^^ is divided into two standard {k — l)-cells with 
common boundary S^~^. Then the substitution of Z^ by two /c-cells Z p Z2, and a (k — l)-cell Z^~^ which are 

bounded by the subdivided parts of the S^~^ and inherit the boundary relations of the large cell Z^ is an internal 
transformation in the sense of Kneser (1926, p. 8). 
^ S'^ is defined by two cells in each dimension 0 , . . , , /i, each of which is bounded by all cells of less dimension. 
^̂  Kneser claimed that by use of the internal transformations the same holds for "all the other points". 

From the point of view of the manifold concept one should perhaps say that they turned the question "downside 
up". 

Alexander and Pontrjagin's in unpublished notes, as was reported by van der Waerden (1930, p. 125); compare 
also [Dieudonne, 1989, p. 50]. 
^^ "We shall not fill this gap (of the original proof referring to manifolds, ES) but define a manifold concept for 
which we can fill it, while the remaining proof of Poincare can be transferred without change." (Vietoris, 1928, 
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Lefschetz generalized this approach in terms of relative homology with respect to a 
subcomplex, thus documenting that the combinatorial strategy to work out the manifold 
concept was deeply influenced and even transformed by the advent of algebraic topology 
(Lefschetz, 1920, pp. 119ff.). 

Van Kampen followed an approach closer to Veblen's and Weyl's recursive definition 
of manifolds. During his doctoral research he was in contact with B.L. van der Waerden 
and informed by the latter about the different strategies for coming to a formally satisfying 
definition of the concept. Van Kampen choose to add to the basic structure of a Brouwerian 
simplicial complex the structure of what he called a star-complex, where the concept of star 
and star complex had a common recursive definition.^^ Equality of star-complexes STC^ 
and STC"^ was defined by him as a combinatorial equivalence of the underlying simplicial 
complexes, which leads to a bijection of the stars. Thus the incidence structure of the stars 
(of all dimensions) gives complete information about the structure of a star-complex,^^ 
and allowed him to define a dual star-complex ^TC"* to a given star-complex STC^ with 
the same underlying simplicial complex and dualization k' = n — k of the dimensions 
k, k' of dual stars.^^ Then the incidence matrices of a star-complex and its dual arise from 
interchanging order of the columns and transposition and behave like Poincare's incidence 
matrices in the proof of Poincare duality. 

Van Kampen had thus won a recursively defined normalization of simplicial complexes 
to which he added a postulate with a dual combinatorial criterion of local simplicity for 
defining a combinatorial manifold: (1) Each /c-star is homologically trivial in dimensions 
1 < j < k; and (10 the same holds for the stars of the dual star-complex (van Kampen, 
1929, p. 13). The approach was chosen to derive different duality theorems (Poincare-, 
Alexander-, etc.) in a purely combinatorial and thus finite manner. Moreover the com
binatorial manifolds satisfy Weyl's axioms, as van Kampen remarked with reference to 
H. Kneser, but without any discussion of Weyl's original goal to sharpen increasingly the 
combinatorial postulates until they are coextensive with an axiomatic characterization of 
continuous manifolds.^^ 

The next year B.L. van der Waerden gave a talk at the annual meeting of the Deutsche 
Mathematiker-Vereinigung, in which he presented and discussed the different proposals for 
the definition of a topological manifold on what he called the "battlefield of different meth
ods" in combinatorial topology (van der Waerden, 1930, p. 121). He counted 5 different 
possibilities, an axiomatic one (Kneser, 1926), two purely combinatorial ones, of which he 
presented one as methodologically unsatisfying (Dehn and Heegard, 1907, Tietze, 1908) 
and the other, homologically oriented one, as more sophisticated (Vietoris, 1928; van Kam
pen, 1929), and "two" mixed approaches (Poincare, 1899,1900; Brouwer, 191 lb). Van der 

p. 165). Here we have, to put it in Lakatos' terminology, a beautiful case of a completely conscious concept 
modification generated by proof analysis. 
^̂  A star of dimension 0 is a point; a 0-dimensional star-complex is a finite set of stars. An n-dimensional star 
is a (simplicial) projection of an {n — 1)-dimensional star-complex from a point (the centre of the star). An 
n-dimensional star-complex STC" is produced from an (n — 1)-dimensional star-complex STC^~^ by adding 
i2-stars, generated by projection of star-subcomplexes of STC'^~^, such that each star from the latter is part of 
the border of at least one of the n-stars (van Kampen, 1929, pp. 6f.). 
9̂  (van Kampen, 1929, Theorem 2a,b). 
^^ A A;-dimensional star af of STC" is dualized by collecting all (n — /:)-dimensional stars b"-' which meet the 

centre of af, but no other vertex. 
9̂  (van Kampen, 1929, p. 3). 
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Waerden discussed the relative merits and disadvantages of all these approaches.^^ The 
phase of open exploration for the topological manifold concept had more or less come to 
a conclusion; the axiomatic characterization and a constructive (purely combinatorial) one 
were the outcome of differing methodological approaches, Brouwer's "mixed" approach 
gave the most promising bridge, and Weyl's original intentions were close to forgotten. ̂ ^̂  

5.4. Finally the ''modern " axiomatic concept 

There was, of course, still another line of research, more closely linked to differential 
geometry, where manifolds played an essential role, and purely topological aspects (in
dependently of whether continuous, combinatorial, or homological ones) did not suffice 
and still needed elaboration. In North America Oswald Veblen and his students formed 
an active center in both fields of topology and modern geometry. Veblen and his student 
J.H.C. Whitehead, coming from (and going back to) Oxford, brought the axiomatization 
of the manifold concept to a stage which stood up to the standards of modern mathemat
ics in the sense of the 20th century (Veblen and Whitehead, 1931, 1932). Veblen was an 
admirer of the Gottingen tradition of mathematics, in particular, F. Klein and D. Hilbert, 
and cooperated closely with H. Weyl, the broadest representative of his own generation 
from the Klein and Hilbert tradition. Veblen and J.H.C. Whitehead combined a view of the 
central importance of structure groups for geometry (generaUzing the Erlanger program) 
with Hubert's embryonic characterization of manifolds by coordinate systems; and they 
took care that the topologization of the underlying set would satisfy Hausdorff's axioms 
for a topological space. 

They characterized the structure of a manifold by the specification of a regular groupoid 
G C'pseudogroup") of transformations of open sets ("regions") in M", allowing as main 
examples C-transformations of open sets (/ = 0 , . . . , oo, or / = co). The n-dimensional 
manifold of structure G in the sense of Veblen and Whitehead consists in a set M and a 
system of admissible coordinate systems (p:U -^ V with bijective maps cp onto regions 
V C M", defined fovU eU C V(M), such that three groups of axioms hold: 
(A) Basic axioms for admissible coordinate systems: 

Changes of coordinates are given by maps from the structure groupoid G and each 
coordinate map may be changed by a transformation from G (axioms A\, A2). More
over, to each coordinate map (p:U -^ V 3. restriction ioU' C V such that (p(U') = V 
is an n-cell V' in R" is also an admissible coordinate system (A3). U^ is called an n-
cell in the manifold. 

(B) Union of compatible coordinate systems: 
If for a collection of admissible coordinate systems (p:Ui -> V/ (/ G / ) , with n-cells 
as coordinate images V,-, the coordinate maps coincide on overlaps (f// H Uj ^ 0), then 
the "union" of coordinate systems defined in the obvious way, cp: (J • Ui -^ |Ĵ - V/, is 

^^ The references between the 5 approaches to authors were not all made explicit by van der Waerden but pre
sented on a purely methodological level. 

Weyl's contribution appeared in van der Waerden's bibliography, but was not discussed by him. He thus 
indirectly took part in the methodological "battle" of combinatorial topology, although he probably did not realize 
it. 
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also admissible (axiom B\). Each admissible coordinate system can be represented as 
such a union (^2)-^^^ 

(C) Topological axioms: 
For intersecting «-cells U, U' in M with p e U nU' there is an w-cell U'' C U r\ 
U' containing p (axiom C\). For each two different points p,q e M there exist 
nonintersecting coordinate neighbourhoods Up, Uq of p and q, respectively (C2). 
Finally, M contains at least two different points (C3). 

Taking «-cells in M, containing p, as neighbourhoods of p the axioms of Veblen and 
Whitehead give a structure of a Hausdorff space on M (without second countability axiom) 
(Veblen and Whitehead, 1931, p. 95; 1932, p. 79). 

Whitehead and Veblen presented their axiomatic characterization of manifolds of class 
G first in a research article in the Annals of Mathematics (Veblen and Whitehead, 1931) 
and in the final form in their tract on the Foundations of Differential Geometry (Veblen 
and Whitehead, 1932). Their book contributed effectively to a conceptual standardization 
of modern differential geometry, including not only the basic concepts of continuous and 
differentiable manifolds of different classes, but also the "modern" reconstruction of the 
differentials dx = {Ax\,..., dxn) as objects in tangent spaces to M}^^ Basic concepts like 
Riemannian metric, affine connection, holonomy group, covering manifolds, etc. followed 
in a formal and symboUc precision that even from the strict logical standards of the 1930-s 
there remained no doubt about the wellfoundedness of differential geometry in manifolds. 
Moreover they made the whole subject conceptually accessible to anybody acquainted with 
the language and symbolic practices of modern mathematics. 

5.5. And first successes in unification 

The clear definition and mutual delimitation of continuous, differentiable and analytic 
structure of manifolds by Whitehead and Veblen improved the framework for a more de
tailed study of the basic questions of triangulation, Hauptvermutung and thus the questions 
which were at stake with the competing strategies of a genetic/constructive characteriza
tion of manifolds versus an axiomatic one. They had been posed at first for topological 
manifolds, but could as well be fruitfully transferred to the differentiable case. 

Already at the turn of the thirties, i.e. before the Veblen and Whitehead axioms had been 
formulated, first positive results on the connection between the two large strategies had 
been achieved. In 1925 T. Rado had shown that two-dimensional manifolds can be trian
gulated and thus that in this respect Tietze had been right. During the following decade the 
higher dimensional case could only be dealt with under structurally specifying conditions. 
Several authors contributed to the proof that a real analytical manifold admits triangulation: 
Van der Waerden (1929) clarified the triangulabihty for algebraic manifolds, Lefschetz 
(1920, Chapter VIII) sketched the outhne for a general proof in the case of a general ana
lytic manifolds, and Koopman and Brown (1932) elaborated a complete proof. Only a few 
years later S.S. Cairns, a former student of M. Morse, proved the existence of triangula-
tions for ^-dimensional differentiable manifolds (Cairns, 1934). In 1940 J.H.C. Whitehead 
considered and showed the existence of differentiable triangulations of a C^-manifold of 

^̂ ^ Neither here nor elsewhere did Veblen and Whitehead postulate a countability restriction for the coordinate 
neighbourhoods. 
^̂ ^ They still used the pre-Bourbakian terminology of "contravariant" vector for the objects in the tangent space. 
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any dimension and proved that in this structure even the (differentiable) Hauptvermutung 
is true.̂ -̂̂  Thus the combinatorial and the axiomatic approach had turned out by 1940 to 
be complementary aspects of completely coextensive characterizations for differentiable 
manifolds. 

So far Poincare's intuition had been vindicated and put on a solid logical basis, although 
the elaboration of "purely" (continuity) topological structure had shifted the question to a 
deeper conceptual level than Poincare ever would have considered. ̂ "̂̂  And even the topo
logical case seemed at first rather promising, at least in low dimensions. Rado's success 
for dimension 2 was extended in the early 1950-s, when E.E. Moise proved that each 
3-dimensional continuous manifold admits a triangulation (Moise, 1952). At the turn of the 
1950-s one might thus have hoped that the different specifications of the manifold concept 
had led to difficult and challenging technical problems for modern mathematics, but that 
they could perhaps be solved positively by increasingly sophisticated methods and an inter
play between the different structural level and methods. Why should they not lead to a uni
fied frame for the topology and geometry of manifolds in a rather straightforward manner? 

6. Outlook on more recent developments 

6.1. Growing diversity... 

Even the conceptual unity one might have hoped for in the early 1950-s was, however, not 
at all a narrow one. Already Riemann had indicated the possibility of investigating man
ifolds from different methodological views and had considered this differentiation as an 
important feature for adapting the general concept to diverse scientific contexts. Such a 
differentiation had developed on a technically much more refined level during the first half 
of the 20th century in a broader range. Besides the distinction between the combinatorial 
or PL- and axiomatic approaches to the topological manifold concept and its differenti
ation according to smoothness levels ( C , 0 < / < oo or / = a;), other contexts had 
given reasons for developing the concepts of a complex analytic manifold and of algebraic 
birational variety. These, as well as the diverse differential geometric structural specifica
tions on differentiable manifolds, would have to be considered for a broader picture of the 
growing diversity of manifolds in our century, but remain outside the range of this article. 

To keep closer to the core of our subject, we have to face the surprising diversity in the 
topological and differential structures on manifolds of dimension n > 4, which became 
apparent by and by starting in the late 1950-s. After J. Milnor detected nonstandard dif
ferentiable structures on the 7-sphere (Milnor, 1956), an increasing number of unexpected 
insights into the differentiable structure of higher dimensional manifolds came to the fore. 
Among them were E. Brieskorn's and others' study of exotic spheres, which arose rela
tively "naturally" in investigations of singularities of algebraic geometry, and in the 1960-s 
M.H. Freedman's and S.K. Donaldson's broad investigations of differentiable structures 
on 4-manifolds. During the 1980-s the tremendous range of effects, from a number of 
unexpected differentiable structures on supposedly well known manifolds, like higher di
mensional spheres and the R^, to the fact that certain topological 4-manifolds do not admit 

^̂ 3 (Whitehead, 1940, Theorem 8, p. 822). 
^̂ ^ Poincare considered his manifolds always as differentiable, in times even as analytic, which he defined by an 
approximation argument of analytic maps by differentiable ones. 
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a differentiable structure at all, became known. They would have given sufficient reason 
for a Poincare to deplore again, and now on another much more sophisticated level, the 
turn of mathematics towards an "artificiaUty which aUenates the whole world", as he had 
proclaimed in his talk to the second International Congress of Mathematicians with re
spect to the rise of modern mathematics (Poincare, 1902c). He was particularly struck by 
the results of the logical analysis of continuous nondifferentiable functions. ̂ ^̂  The prepa
ration of such unexpected symbolical phenomena was nevertheless an important part of 
the achievements of the high phase of modern mathematics and characteristic for its spirit. 
They are discussed more in detail and with much more expertise in other contributions to 
this volume. 

Similar evaluations might be drawn on the fate of the triangulation problem and the 
Hauptvermutung for topological manifolds of dimension n ^ 5.5. Milnor's early example 
of manifolds in dimension 8, with different combinatorial structures (Milnor, 1961) paid 
tribute to but finished the hope for a too simply conceived positive end of the program 
outlined in the first third of the century. The work by R.C. Kirby and L.C. Siebenmann 
(1969) with the characterization of exact obstruction criteria, given by cohomology classes 
of the manifold in question, allowed their successors to determine manifolds for all dimen
sions n ^ 5, in which the Hauptvermutung does not hold, and to characterize topological 
manifolds without any PL-structure. 

Thus from the late 1960-s onward the hope for a conceptually unified framework for all 
of modern mathematics has undergone a deep transformation, ^̂ ^ forced upon the research 
community by the growing complexity of material, methods and results.^^^ There is a 
growing and perhaps ever increasing trend towards diversification, and differentiation even, 
to a certain degree, between different subbranches or aspects in the mathematics of such a 
relatively well delimited field as the topology and differential topology of manifolds. 

6.2. .. . but still a unifying perspective on mathematical practice by overarching 
concepts 

Some observers even tend to see a loss of connection between different branches of math
ematics as a whole and identify such a loss of unity, growing pluralism of methods, struc
tures, and approaches from a specific cultural perspective as a "postmodernist" dynamics of 
mathematics, which has speeded up from the late 1960-s onward. No doubt, modern math
ematics, and maybe with it, modern culture has reached a mature, probably even "late" 
stage, at least in comparison with its expansionary "high" phase from the late 19th to the 
middle of the 20th century. ̂ ^̂  But history has always been an open process, and Riemann's 
and other persons' vision of the cognitive strength and productivity of conceptual unifica
tion has neither lost its fruitfulness nor its convincing power. 

The vision of a strictly unified and structurally predetermined symbolical universe of 
mathematics, which seems to have been the dream of many of the protagonists of the high 

^̂ ^ The famous citation of the monster functions which he abhorred is in (Poincare, 1908); H. Mehrtens describes 
this as Poincare's "antimodernist" view of mathematics [Mehrtens, 1990, Chapter 3.3]. 
106 pjj-g|. glances of such an ongoing shift could probably be seen already in the late 1950-s by very sensitive 
observers. 
^̂ ^ Compare also [Corry, 1996] with respect to the fate of the structural "image" in recent algebra. 
^̂ ^ I. James has called this phase of modernity as the "classical" one in his Nice talk. 
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phase of mathematical modernity,^^^ has become obsolete through the progress of math
ematical work itself. But we are not at all obliged to understand mathematical concepts 
in a rigid, mainly technical sense; we may also conceive them as organizing centers of 
cognition, which act in a "dialectical" interplay between their role of cognitive orientation 
and the symbolical and technical specification they impart on the practice of mathematics. 
There is no good argument to reduce, or even to proclaim the end for, the unifying role 
of concepts in today's and future mathematics and human knowledge more general. We 
could just as well draw the opposite conclusion and insist on an increasing importance of 
their unificatory role as a counterbalance to cultural and cognitive diversification. Thus the 
history of the manifold concept may be taken as paradigmatic for a symbolical world of 
increasing diversity and richness in which we live, work, and orient ourselves. 

Bibliography 

Historical literature 

Aull, C.E. and Lowen, R. (1997), Handbook of the Histoiy of General Topology, Vol. 1, Kluwer, Dordrecht. 
Bollinger, M. (1972), Geschichtliche Entwicklung des Homologiebegriffs, Archive for History of Exact Sciences 

9, 94-170. 
Bottazzini, U. (1977), Riemanns Einfluss auf Betti und Casorati, Archive for the History of Exact Sciences 18, 

27-37. 
Bottazzini, U. (1985), Dinis Arbeiten auf dem Gebiet der Analysis, Mathemata. Festschrift ftir Helmuth Gericke, 

M. Folkerts and U. Lindgren, eds, Franz Steiner Verlag, Stuttgart, 591-605, 
Bottazzini, U. (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, 

Springer, Berlin/Heidelberg/New York/Tokyo. 
Coleman, R.A. and Korte, H. (1998), The scientific achievements of Hermann Weyl, Manuscript, to appear in 

Hermann Weyl's Space-Time-Matter . . . , Proceedings DMV-Seminar 1992, Birkhauser, Basel. 
Corry, L. (1996), Modern Algebra and the Rise of Mathematical Structures, Birkhauser, Basel. 
Dahan, A. (1997), Le difficile heritage de Henri Poincare en systemes dynamiques, Henri Poincare. Science et 

Philosophic . . . , J.-L. Greffe, G. Heinzmann and K. Lorenz, eds, Congress International Nancy, France 1994, 
Akademie Verlag, Berlin; Blanchard, Paris, 13-34. 

Dieudonne, J. (1974), Cours de Geometric Algebrique, Vol. 1, Presses Universitaires de France, Paris. 
Dieudonne, J. (1989), A History of Algebraic and Differential Topology, 1900-1960, Birkhauser, Basel. 
Dieudonne, J. (1994), Une breve histoire de la topologie. Development of Mathematics, 1900-1950, J.-P. Pier, 

ed., Birkhauser, Basel, 35-156. 
Epple, M. (1997), Topology, space, and matter Topological notions in 19-th century natural philosophy. 

Manuscript, Mainz, to appear in Archive for History of Exact Sciences. 
Farwell, R. and Knee, C. (1990), The missing link: Riemann's "Commentatio", differential geometry} and topol

ogy Historia Mathematica 17, 223-255. 
Feferman, S. (1988), Weyl vindicated: "Das Kontinuum" 70 years later, Atti del Congresso Temi e Prospettive 

della Logica e dela Filosofia delta Scienza Contemporanee, Vol. 1, Cesena 7-10 gennaio 1987, CLUEB, 
Bologna, 59-93. 

Ferreiros, J. (1993), El Nacimiento de la Teoria de Conjuntos en Alemania, 1854-1908, Publicaciones de la 
Universidad Autonoma, Madrid. 

Ferreiros, J. (1996), Traditional logic and the early history of sets, 1854-J908, Archive for History of Exact 
Sciences 50, 5-71. 

Ferreiros, J. (1999), Labyrinth of Reason. A History of Set Theory and its Role in Modern Mathematics, 
Birkhauser, Basel. 

^̂ ^ Such protagonists were, among others, D. Hilbert and N. Bourbaki. Deviating visions existed, like Haus-
dorff's or, from a completely different philosophical background, Brouwer's and Weyl's, but were of a much 
more restricted influence in the scientific world during the phase of "high" modernity. 



60 E. Scholz 

Gilain, C. (1991), La theorie qualitative de Poincare et le pwbleme de Vintegration des equation differentielles, 
Cahiers d'Histoire de Philosophic des Sciences 34, 215-242. 

Gilain, C. (o.D), La theorie geometrique des equations differentielles de Poincare etl'histoire de Vanalyse, These 
de Doctoral 3eme cycle, Universite Paris I. 

Gray, J.J. (1979), Ideas of Space. Euclidean, Non-Euclidean and Relativistic, Clarendon, Oxford; 2nd ed. 1989. 
Gray, J.J. (1984), Fuchs and the theory of differential equations. Bull, of Amer. Math. Soc. 10, 1-26. 
Gray, J.J. (1986), Linear Differential Equations and Group Theotyfrom Riemann to Poincare, Birkhauser, Basel. 
Gray, J.J. (1992), Poincare, topological dynamics, and the stability of the solar system. An Investigation of Dif

ficult Things. Essays on Newton and the History of Exact Sciences, P.M. Harman and A.E. Shapiro, eds, 
503-524. 

Greffe, J.-L., Heinzmann, G. and Lorenz, K. (1997), Henri Poincare Science et Philosophic . . . , Congres Inter
national Nancy, France, 1994, Akademie-Verlag, Berlin; Blanchard, Paris. 

Herrmann, A. (1996), Elements d'histoire semiotique de I'homologie, These de Doctorat, Universite Paris VII. 
Johnson, D. (1979/1981), The problem of the invariance of dimension in the growth of modern topology, I, II, 

Archive for History of Exact Sciences 20 (1979), 97-188; 25 (1981), 85-167. 
Johnson, D. (1987), LEJ. Brouwer's coming of age as a topologist. Studies in the History of Mathematics, 

E.R. Phillips, ed., 61-97. 
Klein, F. (1926/1927), Vorlesungen iiber die Entwicklung der Mathematik im 19. Jahrhundert, 2 Bde: 1 (1926), 2 

(1927), Springer, Berlin. Nachdruck: Chelsea, New York, 1967; Springer, Berlin, 1979. 
Koetsier, T. and van Mill, J. (1997), General topology, in particular dimension theory, in the Netherlands: The 

decisive influence of Brouwer's intuitionism. Handbook of the History of General Topology, Vol. 1, C.E. Aull 
and R. Lowen, eds, Kluwer, Dordrecht, 135-180. 

Kolmogorov, A.N. and Yushkevitch, A.P. (eds) (1996), Mathematics of the 19th Centuij. Geometry, Analytic 
Function Theory, Birkhauser, Basel. 

Kuiper, N. (1979), A short history of triangulation and related matters. Mathematical Centre Tracts 100, 61-79. 
Lakatos, I. (1976), Proofs and Refutations, The Logic of Mathematical Discovery, Cambridge Univ. Press, Lon

don. 
Laugwitz, D. (1996), Bernhard Riemann 1826-1866. Wendepunkte in der Auffassung der Mathematik, 

Birkhauser, Basel. 
Liitzen, J. (1988), The geometrization of analytical mechanics. A pioneering contribution by J. Liouville (ca. 

1850), Preprint 28, Kcebenhavns Universitet Matematisk Institut. 
Liitzen, J. (1990), Joseph Liouville, 1809-1882. Master of Pure and Applied Mathematics, Studies in the History 

of Mathematics and Physical Sciences, Springer, New York. 
Liitzen, J. (1995), Interactions between mechanics and differential geometry in the 19th century^ Archive for 

History of Exact Sciences 49, 1-72. 
Mehrtens, H. (1990), Mathematik - Modern - Sprache. Die mathematische Moderne und ihre Gegner, Suhrkamp, 

Frankfurt/Main. 
Moore, G. (1978), The origins ofZermelo's axiomatization of set theoiy. Journal of Philosophical Logic 7, 307-

329. 
Moore, G. (1982), Zermelo's Axiom of Choice. Its Origins, Development, and Influence, Studies in the History of 

Mathematics and Physical Sciences, Vol. 8, Springer, New York. 
Pont, J.-C. (1974), La Topologie Algebrique des Origines a Poincare, Presses Universitaires de France, Paris. 
Reich, K. (1994), Die Entwicklung des Tensorkalkiils. Vom Absoluten Differentialkalkiil zur Relativitdtstheorie, 

Birkhauser, Basel. 
Scholz, E. (1980), Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poinccwe, Birkhauser, 

Basel/Boston/Stuttgart. 
Scholz, E. (1982a), Herbart's influence on Bernhard Riemann, Historia Mathematica 9, 423-440. 
Scholz, E. (1982b), Riemanns friihe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der Geometric, 

Archive for History of Exact Science 27, 213-282. 
Scholz, E. (1995), Hermann Weyl's purely "infinitesimal geometry". Proceedings International Congress of Math

ematicians, Zurich 1994, Birkhauser, Basel, 1592-1603. 
Scholz, E. (1996), Logische Ordnungen im Chaos: Hausdotffs friihe Beitrdge zur Mengenlehre, FeUx Hausdorff 

zum Gedachtnis, Vol. 1, Aspekte seines Werkes, E. Brieskorn, ed., Vieweg, Wiesbaden, 107-134. 
Scholz, E. (1998), Hermann Weyls Differentialgeometrie in Kritik und Fortsetzung der Riemannschen Tradition, 

Manuskript, Wuppertal, to appear in: Hermann Weyl's Space-Time-Matter . . . , Proceedings DMV-Seminar 
1992, Birkhauser, Basel. 



The concept of manifold, 1850-1950 61 

Toth, I. (1972), Die nichteuklidische Geometrie in der Phdnomenologie des Geistes, Wissenschaftstheoretische 
Betrachtungen zur Entwicklungsgeschichte der Mathematik, Horst Heiderhoff Verlag, Frankfurt. 

Toth, I. (1980), Wann und von went wurde die nichteuklidische Geometrie begriindetl Archive Internationales 
d'Histoires des Sciences 30, 192-205. 

Vanden Eynde, R. (1992), Historical evolution of the concept ofhomotopic paths, Archive for History of Exact 
Sciences 29, 127-188. 

Volkert, K. (1994), Das Homoomorphieproblem insbesondere der 3-Mannigfaltigkeiten in der Topologie 1892-
1935, Habilitationsschrift, Heidelberg. 

Volkert, K. (1997), The early history of the Poincare conjecture, Henri Poincare. Science et Philosophic . . . , J.-L. 
Greffe, G. Heinzmann and K. Lorenz, eds, Congress International Nancy, France 1994, Akademie-Verlag, 
Berlin; Blanchard, Paris, 241-250. 

Sources 

Beltrami, E. (1868a), Saggio di interpretazione della geometria non-euclidea, Giornale di Matematiche 6, 284-
312. Opere Matematiche, Vol. 1, Milano, 1902, 262-280. 

Beltrami, E. (1868b), Teoria fundamentale degli spazii di curvatura costante, Annali di Matematica (2) 2, 232-
255. Opere Matematiche, Vol. 1, Milano, 1902, 262-280. 

Betti, E. (1871), Sopra gli spazi di un nuniero qualunque di dimensioni, Annali di Matematica (2) 4, 140-158. 
Opere Mathematiche, Vol. 2, Milano, 1913, 273-290. 

Betti, E. (1913), Opere Matematiche, Vol. 2, Milano. 
Betti, E. (1915), Correspondence with Placido Tardy, Atti Accademia dei Lincei (5) 24, 517-519. 
Brouwer, L.E.J. (1911a), Beweis der Invarianz der Dimensionszahl, Mathematische Annalen 69, 169-175. 
Brouwer, L.E.J. (1911b), Uber Abbildung von Mannigfaltigkeiten, Mathematische Annalen 71, 97-115. 
Brouwer, L.E.J. (1976), Collected Works, Vol. 2, Amsterdam. 
Brown, A.R. and Koopman, B.O. (1932), On the covering of analytic loci by complexes. Transactions AMS 34, 

231-251. 
Cairns, S. (1934), On the triangulation of regular loci. Annals of Mathematics 35, 379-587. 
Cauchy, A. (1847), Memoire sur les lieux analytiques, Comptes Rendus 24, 885. (Euvres (1) 10 (1891), 292-295. 
Cayley, A. (1843), Chapters in the analytical geometiy of n dimensions, Cambridge Mathematical Journal 4, 

119-127. Collected Mathematical Papers 1, 317-326. 
Clebsch, A. (1864), Uber die Anwendung der Abelschen Funktionen in der Geometrie, Journal fiir Mathematik 

63, 189-243. 
Dehn, M. and Heegard, P. (1907), Analysis Situs, Enzyklopadie der Mathematischen Wissenschaften, Teil III, Bd. 

1.1, 153-220. 
von Dyck, W. (1888), Beitrdge zur Analysis Situs I, Mathematische Annalen 32, 457-512. 
von Dyck, W. (1890), Beitrdge zur Analysis Situs II, Mathematische Annalen 37, 273-316. 
GauB, C.F. i\S5l/\9\l), Bestimmung des kleinsten Werts der Summe x^-{-x -\ |-JC„ = R fiir m gegebene Un-

gleichungen M > 0. Aus der Vorlesung: Uber die Methode der kleinsten Quadrate, WS 1850/81, Mitschrift 
A. Ritter. Werke 10.1, Leipzig 1917, 473-481. Reprint Hildesheim etc. 1973. 

Grassmann, H.G. (1844), Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, dargestellt und durch 
neue Anwendungen auf die ilbrigen Zweige der Mathematik, die Lehre vom Magnetismus und die Kiystal-
lonomie erldutert, Leipzig. Werke 1.1, Leipzig 1894. 

Hausdorif, F. (1914), Grundziige der Mengenlehre, Veit, Leipzig. Reprint: Chelsea, New York, 1949, 1965, 1978. 
von Helmholtz, H. (1868), Uber die Tatsachen, die der Geometrie zu Grunde liegen, Gottinger Nachrichten 1868. 

Wissenschafdiche Abhandlungen 2, Leipzig 1883, 618-639. 
Hilbert, D. (1902a), Uber die Grundlagen der Geometrie, Nachrichten Gesellschaft der Wissenschaften Got-

tingen, 233-241. Also in Anhang IV of Grundlagen der Geometrie, 2nd ed., 1903, 121ff.; 7th ed. 1930, 
178-230. 

Hilbert, D. (1902b), Uber die Grundlagen der Geometrie, Mathematische Annalen 56, 381-^22. [Abbreviated 
version of (1902a).] 

Hopf, H. (1926), Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Mathematische Annalen 96, 225-250. 
Jacobi, C.G.J. (1834), De binis quibuslibet fimctionibus homogeneis secundi ordinis per substitutiones lineares in 

alias binas transformandis quae solis quadratis variabilium constant; . . . Journal fiir die Reine und Ange-
wandte Mathematik 12, 1-69. Gesammelte Werke 3, Berlin 1884, 191-268. 



62 E. Scholz 

Jordan, C. (1866), Sur la deformation des surfaces, Journal de Mathematique (2) 11, 105-109. (Euvres 4, 85-90. 
Jordan, C. (1893), Cours d'Analyse, 2nd ed., Paris. 
van Kampen, E.R. (1929), Die kombinatorische Topologie und die Dualtitdtssatze, Dissertation, Leiden, Pub-

liziert: Den Haag: van Stockum. 
Kirby, R.C. and Siebenman, L.C. (1969), On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. 

Math. Soc. 75, 742-749. 
Klein, F. (1871), Uber die sogenannte Nicht-Euklidische Geometrie, Mathematische Annalen 4, 573-625. [GMA 

1,244-253]. 
Klein, F. (1872), Vergleichende Betrachtungen iiberneuere geometrische Forschungen. Erlangen, Mathematische 

Annalen 43 (1893). [GMA 1 (1921), 460-497]. 
Klein, F. (1873), Uber die Fldchen dritter Ordnung, Mathematische Annalen 6. [GMA 2, 11-^4]. 
Klein, F. (1874-1876), Bemerkungen ilber den Zusammenhang der Fldchen (zwei Aufsatze aus den Jahren 1874 

und 1875/76), Mathematische Annalen 7, 9. [GMA 2, 63-77]. 
Klein, F. (1921-1923), Gesammelte Mathematische Abhandlungen, 3 Bde, Springer, Berlin. Reprint: Springer, 

Berlin, 1973. 
Kneser, H. (1926), Die Topologie der Mannigfaltigkeiten, Jahresbericht DMV 34, 1-14. 
Kreck, M. (1998), (Co-)Homology via Topological Varieties, following Riemann and Poincare I, Preprint Univer

sity Mainz. 
Kronecker, L. (1869), Ueber Systeme von Functionen mehrer Variablen, Monatsberichte Berliner Akademie der 

Wissenschaften, 159-193. Werke 1, 175-212. 
Lagrange, J.-L. (1788), Mecanique Analitique, 2 vols, Paris. (Euvres 11, 12, Paris 1888. 
Lagrange, J.-L. (1797), Theorie des Fonctions Analytiques, Paris; 2nd ed. 1813. 
Lefschetz, S. (1920), Topology, American Mathematical Society, New York. 
Lipschitz, R. (1872), Untersuchung eines Problems der Variationsrechnung, in welchem das Problem der 

Mechanik enthalten ist. Journal fiir Reine und Angewandte Mathematik 74, 116-149. 
Milnor, J. (1956), On manifolds homeomorphic to the 7-sphere. Annals of Mathematics (2) 64, 399^05. 
Milnor, J. (1961), Two complexes which are homeomorphic but combinatorially distinct. Annals of Mathematics 

(2) 74, 575-590. 
Mobius, A.F. (1863), Theorie der elementaren Vei-wandtschaften, Abhandlungen Sachsische Gesellschaft der 

Wissenschaften 15. [GW 2, 433-471]. 
Mobius, A.F. (1865), Uber die Bestimmung des Inhalts eines Polyeders, Abhandlungen Sachsische Gesellschaft 

der Wissenschaften 17. [GW 2, 473-512]. 
Mobius, A.F. (1886), Gesammelte Werke, Bd. 2, Leipzig. 
Moise, E.E. (1952), Affine structures on 3-manifolds. Annals of Mathematics (2) 56, 96-114. 
Neumann, C. (1865), Vorlesungen uber Riemanns Theorie der Abelschen Integrale, Leipzig; 2nd ed. 1884. 
Noether, M. (1870), Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde von beliebig vielen Dimen-

sionen, Mathematische Annalen 2, 293-321. 
Noether, M. (1875), Zur Theorie den eindeutigen Entsprechens algebraischer Gebilde, 2. Aufsatz, Mathematische 

Annalen 8, 495-533. 
Peano, G. and Genocchi (1884), Calcolo Differenziale, Torino. 
Picard, E. (1885), Sur les integrales de differentielles totales algebriques de premiere espece, Journal de Mathe

matique (4) 1, 281-346. 
Picard, E. (1886), Sur les integrales des differentielles totales de seconde espece. Journal de Mathematique (2) 2, 

329-346. 
Pliicker, J. (1846), System der Geometrie des Raumes in Neuer Analytischer Behandlungsweise, Insbesondere die 

Fldchen Zweiter Ordnung und Klasse Enthaltend, Diisseldorf; 2nd ed. 1852. 
Poincare, H. (1884), Sur les groupes des equations lineaires. Acta Mathematica 4, 201-311. [(Euvres 2, 300-

401]. 
Poincare, H. (1885), Sur les courbes definies par les equations differentielles. Journal de Mathematique (4) 1, 

167-244. [(Euvres 1, 90-161]. 
Poincare, H. (1886), Sur les courbes definies par les equations differentielles. Journal de Mathematique (4) 2, 

151-217. [(Euvres \, 167-221]. 
Poincare, H. (1887), Sur les residus des integrales doubles, Acta Mathematica 9, 321-380. [(Euvres 3,493-539]. 
Poincare, H. (1895), Analysis situs. Journal Ecole Polytechnique 1, 1-121. [(Euvres 6, 193-288]. 
Poincare, H. (1899), Complement a VAnalysis situs, Rendiconti del Circolo Matematico Palermo 13, 285-343. 

[(Euvres 6, 290-3311 



The concept of manifold, 1850-1950 63 

Poincare, H. (1900), Second complement a I'Analysis situs, Proceedings London Mathematical Society 32, 277-
388. [CEuvres 6, 338-370]. 

Poincare, H. (1902a), Sur certaines surfaces algebriques, troisieme complement a VAnalysis situs. Bulletin Soci-
ete Mathematique de France 30. [CEuvres 6, 373-392]. 

Poincare, H. (1902b), Sur les cycles des surfaces algebriques, quatrieme complement a VAnalysis situs, Journal 
de Mathematique 8. [CEuvres 6, 397^34]. 

Poincare, H. (1902c), Du role de Vintuition et de la logique en mathematiques, Compte Rendu du Deuxieme 
Congres International de Mathematique, Gauthier-Villars, Paris, 115-130. Reprinted as first chapter in: La 
Valeur de la Science, Flammarion, Paris, 1905. 

Poincare, H. (1904), Cinquieme complement a VAnalysis situs, Rendiconti del Circolo Matematico Palermo 18, 
45-110. [CEuvres 6, 435-498]. 

Poincare, H. (1908), Science et Methode, Flammarion, Paris. 
Poincare, H. (1928-1956), CEuvres, 11 Vols, Paris. 
Rado, T. (1925), Uber den Begrijf der Riemannschen Fldche, Acta Literarum Scientarum Universitas Szeged 2, 

101-121. 
Riemann, B. (1851), Grundlagen fur eine allgemeine Theorie der Functionen einer verdnderlichen complexen 

Grosse, Inauguraldissertation, Gottingen. [GMW 3-45]. 
Riemann, B. (1854), Uber die Hypothesen, welche der Geometric zu Grunde liegen, Habilitationsvortrag, Got

tingen, Gottinger Abhandlungen 13 (1867). [GMW 272-287]. 
Riemann, B. (1857), Theorie der AbeTschen Functionen, Journal ftir Mathematik 54. [GMW 86-144]. 
Riemann, B. (1857/1876), Zwei allgemeine Lehrsdtze Uber lineare Differentialgleichungen mit algebraischen 

Koeffizienten [NachlaB, datiert 30. 2. 1857]. [GMW 379-390]. 
Riemann, B. (1861/1876), Commentatio mathematica, qua respondere tentatur quaestioni ab illustrissima 

Academia Par is iens i propo sitae: "Trouver quel doit etre Vetat calorifique d'un corps solide homogene in-
defini.. r [Gym 391-404]. 

Riemann, B. (1876a), Fragment aus der Analysis Situs, H. Weber, ed., Gesammelte Mathematische Werke und 
Wissenschaftlicher NachlaB, B. Riemann, Leipzig, 1876, 479-482. 

Riemann, B. (1876b), Gesammelte Mathematische Werke und Wissenschaftlicher Nachlafi, Leipzig; 2nd ed. 1892. 
Reprinted: Dover, New York, 1995; Sandig, Nendein, 1978; R. Narasimhan, ed.. Springer, Berlin, 1990. 

Schlafli, L. (1851/1901), Theorie der vielfachen Kontinuitcit, Neue Denkschrift d. Allgemeinen Schweizer 
Gesellschaft Naturwissenschaften 38. [GMA 1, 167-387]. 

Schlafli, L. (1872), Quand'e che dalla superficie generale di terzo ordine si stacca una parte che non sia realmente 
segata da ogni piano realel Annali di Matematica (2) 5. [GMA 3, 229-237]. 

Schlafli, L. (1902/1909), Gesammelte Mathematische Abhandlungen, 2 Bde, BerUn. 
Steinitz, E. (1908), Beitrdge zur Analysis situs, Sitzungsberichte Berliner Mathematische Gesellschaft 7, 28^9 . 
Tietze, H. (1908), Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatshefte ftir 

Mathematik und Physik 19, 1-118. 
Tonelli (1875), Osservazioni sulla teoria delta connessione, Atti della Reale Accademia d. Lincei (2) 2, 594-601. 
Veblen, O. and Whitehead, J.H.C. (1931), A set of axioms for differential geometry. Proceedings National 

Academy of Sciences 17, 551-561. Whitehead Mathematical Works 1, 93-104. 
Veblen, O. and Whitehead, J.H.C. (1932), The Foundations of Differential Geometry, Cambridge University Press, 

London. 
Veblen, O. (1922), Analysis Situs, American Mathematical Society, New York; 2nd ed. 1931. 
Vietoris, L. (1928), Uber die Symmetrie in den Zusammenhangszahlen kombinatorischer Mannigfaltigkeiten, 

Monatshefte fiir Mathematik und Physik 35, 165-174. 
van der Waerden, B.L. (1929), Topologische Begriindung des Kalkiils der abzdhlenden Geometric, Anhang I, 

Mathematische Annalen 102, 360-361. 
van der Waerden, B.L. (1930), Kombinatorische Topologie, Jahresbericht DMV 39, 121-139. 
Weyl, H. (1913), Die Idee der Riemannschen Fldche, Teubner, Leipzig/Berlin; 2nd ed. 1923. Also: Chelsea, New 

York; 3rd ed., 1955. 
Weyl, H. (1918), Das Kontinuum, Kritische Untersuchungen Uber die Grundlagen der Analysis, Leipzig. Reprint: 

New York, 1960. 
Weyl, H. (1921), Uber die neuere Grundlagenkrise der Mathematik, Math. Zeitschrift 10, 39-79. Selecta, 211-

247 (Nachtrag Juni 1955, pp. 247f.). [GA 2, 143-180]. 
Weyl, H. (1923), Analysis situs combinatorio, Revista Matematica Hispano-Americana 5, 43. [GA 2, 390-415]. 



64 E. Scholz 

Weyl, H. (1924), Analysis situs combinatorio (continuacidn), Revista Matematica Hispano-Americana 6, 1-9, 
33-41. [GA 2, 416-432]. 

Weyl, H. (1925/1988), Riemanns Geometrische Ideen, ihre Auswirkungen und ihre Verkniipfiing niit der Grup-
pentheorie, K. Chandrasekharan, ed.. Springer, Berlin. 

Whitehead, J.H.C. (1940), On C^-complexes. Annals of Mathematics 41, 809-824. Mathematical Works 2, Ox
ford, 1962, 207-222. 

Zermelo, E. (1904), Beweis, dafijede Menge wohlgeordnet werden kann. (Aiis einem an Herrn Hilbert gerichteten 
Briefe.) Mathematische Annalen 65, 514-516. 

Zermelo, E. (1908a), Untersiichungen liber die Gmndlagen der Mengenlehre /, Mathematische Annalen 65, 261-
281. 

Zermelo, E. (1908b), Neuer Beweis fUr die Moglichkeit einer Wolilordnung, Mathematische Annalen 65, 107-
128. 



CHAPTER 3 

Development of the Concept of Homotopy 

Ria Vanden Eynde 
Prinses Lydialaan 46, B-3001 Heverlee, Belgium 

1. Introduction 

Homotopy is concerned with the identification of geometric objects (at first, paths) which 
can be continuously deformed into each other, these are then considered equivalent. The 
formal expression of this type of intuitive equivalence concept in terms of reflexivity, sym
metry and transitivity was given in the late 1920's ([81, pp. 233, 234]) after a century-long 
history. 

The origins of the homotopy concept for paths can be found within analysis where it was 
used as a visual tool to decide whether two paths with the same endpoints would lead to the 
same result for integration, or analytic continuation of a multi-valued function. The math-
ematization of the intuitive equivalence concept thus depended upon the objectives of the 
mathematicians who used it. We will see how this caused an ambiguity around the homo
topy concept practically from the moment it originated: it got confused with other kinds of 
equivalences which were not immediately recognized as being different. Gradually, certain 
descriptions of the homotopy concept came to the front: constrained deformation (in which 
one or both endpoints are fixed) became favoured compared to free deformation. Although 
the latter is a more intuitive concept, the former will prove to be more interesting: it will 
allow for the introduction of a group structure. 

This paper describes the history of the concept of homotopy of paths and its after-effects 
in, e.g., higher homotopy groups. 

2. Implicit occurrences 

2.1. Implicit homotopy in the calculus of variations 

To tackle questions about the calculus of variations in the plane, the problem was of
ten reduced to the determination of a curve represented by y = (p{x) going from the 
point (xi, yi) to the point (x2, yi) which maximizes or minimizes an integral of the form 
Ix^ /(•^, }̂ , >^0dx- Usually authors replaced the curve by a polygon QiQi- - - Qn- For 
three consecutive points Qk-i QkQk-\-i they varied the ordinate yk of the point Qk such 
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that the new polygon satisfies the requirements. This provided them with equations in the 
increments Ay. By introducing new points such that the difference Ax approaches zero, 
they ultimately obtained a differential equation to determine the solution (pix). 

Lagrange's [56, 57] method for the solution of the problem was to allow the whole 
curve y = (p(x) to vary, which he described by introducing a function y = (p{x,i) such 
that y = (p{x) when / = 0. The variation of y, by then corresponds to d(p/di(x, 0) and 
the problem is solved by substituting y = (p(x,i) in the integral and demanding that the 
resulting function of / has derivative zero for / = 0. Of course, Lagrange assumed that 
the function y = (p(x,i) could be represented by a power series in both x and / so that 
the function (p has derivatives of higher order with respect to /. Two intermediate curves, 
corresponding to two values of /, are continuously deformable into one another. So, when 
Dieudonne [27] treats Lagrange's method he was right to call it a first occurrence (albeit 
imphcit and not in the most general form) of what was later to be homotopy of paths ("une 
premiere idee de ce qui sera plus tard I'homotopie"), see [27]. 

Jacobi and Weierstrass also handled the variation of curves with fixed endpoints. Jacobi 
refers to the curves of a family as "unendlich nahe Curven". Weierstrass uses the term 
"benachbarte Curven" (see [44, 90]). 

2.2. Integration of a complex function of a complex variable 

Since the integration of analytic functions along homotopic paths in the complex plane 
from which the singularities are removed gives the same value for the integral, one would 
expect this subject to provide the appropriate ground for the concept of homotopy to appear 
in, but these appearances often remained implicit. Most authors failed to recognize that 
there was a new concept worth mentioning and used continuous deformation of paths as a 
means to an end, a tool to describe certain situations. 

2.2.1. Cauchy's work on integration. Before Cauchy introduced mobility of paths in 
1825, an important step was made by Gauss [33] and Poisson [70]. Using the identifi
cation of complex numbers with points in the plane, both men noted that in an integral 
fjc +i; / (^) d^ different paths of integration may lead to different values. In [12], Cauchy 
fixes the meaning of the expression 

1= f(z)dz 
Jxo+iyo 

and examines how the value of the integral depends on the choice of the curve joining 
XQ + iyoto X-\-iY. Combining the identification of complex numbers to points in the plane 
and variational techniques he borrowed from Lagrange, Cauchy was able to formulate his 
results in a visual way using a "mobile" curve. He sets x = (pit), y = x(0 where 0 and x 
are monotone functions of the real variable t. He rewrites the integral as 

A+iB= I f((l>(t)-hix(t))[(l>\t)^ix\t)]dt 
Jto 

and shows that the result is independent of the choice of 0 and x if the function remains 
finite and continuous for XQ ^ x ^ X, yo ^ y ^ Y. In fact, as J. Grabiner, M. Kline, 
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E.B. Jourdain and U. Bottazzini have already pointed out, he uses not only the existence 
but also the continuity of f\x). He also assumes (/>, x to be continuously differentiable. 
He says: 

If one wants to pass from one curve to another, which is not infinitely near the first, one 
can imagine a third mobile curve, which is variable in its shape, and have it coincide 
successively and at different instances with both fixed curves. 

In his later work [13], we recognize what we now call a contractible loop and a contractible 
domain. Compared to 1825, the papers of 1846 and 1851 illustrate an evolution in Cauchy's 
formulations. Whereas in 1825 Cauchy starts with two curves joining two given points and 
expounds his results in terms of a third curve varying from the first to the second, in 1846 
and 1851 he starts with closed curves enclosing a domain and considers variations of those 
curves. Moreover this domain may be on a curved surface. 

Although it is obvious that a new concept enters the picture, Cauchy's approach remains 
phenomenological: though a certain property introduces itself, Cauchy does not think it 
is necessary to precisely define this property. He only describes an obvious situation. His 
purpose is only to define rigorously the meaning of the integral f^V^ f{z) dz in order 
to apply this theory to questions which are of interest to him. He calculates the value of 
definite integrals and integrates differential equations, he develops a function in a series 
assuming the coefficients can be represented by definite integrals evaluated over circles. 
These can be extended or contracted without changing the value of these coefficients. Here, 
also implicitly, the winding number occurs. This last aspect proved to be of special interest 
in astronomy where he used this method to develop the perturbating function. 

2.2.2. Riemann's doctoral thesis. In his doctoral thesis of 1851 [74], Riemann intro
duces surfaces which cover a domain A in the complex plane. Where more than one 
layer ("Flachenteil") lies over A, Riemann defines a branch point of order m — 1 ("Win-
dungspunkt (m — l)-ter Ordnung") as a point where m layers of the surface are connected 
in such a way that after having made m circuits around the point, passing continuously 
from one layer to the next, one returns to the initial point. In 1857 [75], these surfaces 
are more explicitly constructed as a representation of multi-valued functions. In [74], Rie
mann defines the connectivity number of such surfaces as follows: A surface is called 
simply connected if every cross-cut (a cross-cut is a line which runs through the interior 
of the surface without selfintersections and joins one boundary point to another) divides 
the surface. A surface has connectivity number n if n — I cross-cuts turn it into a simply 
connected surface. These definitions assume the existence of a boundary. Closed surfaces 
are first provided with a boundary through a perforation and then treated as above. This 
way, the torus has connectivity number 3, a sphere with g handles has connectivity number 
2g -h 1. A function defined on such a surface and continuous (Riemann assumes analyticity) 
except perhaps in isolated points or lines can then be seen as a function of the variables 
x,y in the underlying complex plane. Riemann then considers two functions X, Y defined 
on a surface T with boundary, covering the domain A in the plane and proves that 

JT V 9X dy J JdT 

where x is the angle between the interior normal to the boundary and the positive x-axis, 
rj is the angle between the interior normal and the positive 3;-axis and s is the arc length 
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Fig. 1. C is null homologous but not null homotopic. 

measured along the boundary of T. Here, Riemann implicitly assumes that the interior 
normal to the boundary can indeed be drawn, a result associated with the orientability of 
the surface he considers. If the integrand dX/dx + dY/dy vanishes, Riemann obtains the 
following results, p. 15: 

II. The value of the integral f (X {dx / dp)-\~Y (dy / dp)) ds calculated along the boundary 
curve of a surface covering A, remains constant as this surface is expanded or reduced, 
as long as no parts of the surface are included or removed by this operation, for which 
the assumpdons of the previous theorem cease to hold. 

His discussion here also shows a resemblance to Cauchy's paper of 1846 [14] (About 
the origins of Riemann's work see [5, pp. 221, 222]). If by expansion or reduction ("Er-
weiterung oder Verengerung"), Riemann means that one can omit parts of the surface with 
chosen boundaries (as is suggested in Satz I, p. 15), then the first part of Satz II refers to 
homology [77]. Cauchy however, varies the domain T by homotopic deformation of the 
boundary. If Riemann had seen Cauchy's work, it is possible he knew of this difference. 
In any case he does not mention this aspect and we cannot say anything about it. Later 
work shows that this attitude is at least confusing. An example of a closed curve which is 
null homologous but not null homotopic (see Figure 1) can be found in F. Klein's papers 
[48] as G. Hirsch [27] already pointed out. Klein however did not take up the opportunity 
to distinguish between null homologous and null homotopic closed curves. The difference 
between both concepts will expHcitly be shown by H. Poincare. 

If a surface T contains singularities ("Unstetigkeitsstellen"), they are removed from T 
and the remaining surface is reduced, by making cuts, to a simply connected one. The 
integral JQ {Y{dx/ds) — X{dy/ds))ds is then a function on T which changes its value 
along a curve corresponding to a cut which joins two branch points. At the end of his thesis, 
Riemann uses the Dirichlet principle to prove that every simply connected plane region 
with a boundary which contains more than one point (he also includes simply connected 
regions on a surface) can be mapped in a one-to-one conformal way onto the unit disk. 
Later this will lead authors to describe a contractible loop as a loop which can be "spanned" 
by a singular disk [82]. 

2.3. Algebraic functions 

2.3.1. Abel and Jacobi about elliptic functions, Cauchy's work on multi-valued functions. 
Both Abel [1,2] and Jacobi [43] considered the elliptic functions associated with the equa
tion up" = (1 — x^)(\ — k^x^). The Riemann surface which belongs to this algebraic 
function is a torus. The integration of a rational function / of (x, w) on the torus from a 
point Po to a point P can give different values if carried out along different paths. Let the 
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fundamental group of the torus from which the singularities of / are removed have base 
point O and generators a, b, {r/}"^^; a is a parallel loop, b a meridian loop and each of 
the Vi a loop which goes once round one of the singularities of / . Let c be a path from O 
to /7o. For the different paths y, y' joining FQ to P the loop c yy'~^c~^ is homotopic to a 
combination of the generators a, b and {r/ }"^j. Since the integration of closed differentials 
along homotopic paths give the same result, 

Jcyy'~^c~^ Ja Jb ._. Jrj 

where k, /, pi e Z. From this 

I f= I f + k I f + l f f + J2pi If. 
Jy Jy' Ja Jb • j Ji'i 

The integrals /^ / , /^ / , /^. / are called periods of the integral / / and this shows where 
they come from. In this way homotopy can play a decisive role in the integration of multi
valued functions. On the other hand, so can homology, since the integral /^ o) (where co 
is a closed differential on a Riemann surface and C is a closed curve), depends only upon 
the homology class of C. We shall see below that Puiseux uses continuous deformation, 
while Riemann reasons in terms of homology. Neither Jacobi nor Abel were able to explain 
the double periodicity of the elliptic functions or the occurrence of the genus p basically 
because they did not have a method to handle multi-valued functions and their integrals. 
For the case of elliptic functions Cauchy and Puiseux clarified matters. For the general 
case, the solution was given by Riemann. 

2.3.2. Puiseux's paper on algebraic functions. At the beginning of his paper of 1850 
[72], Puiseux emphasizes that if a function u is given by an algebraic equation /(w, z) = 0, 
it may be multi-valued. If in the algebraic equation f{u,z) = 0 a value for z is chosen, the 
corresponding value for u is not always uniquely determined. To each value of z = x -\-iy, 
Puiseux associates a point Z with rectangular coordinates x and y. Then in order to avoid 
the ambiguity mentioned above Puiseux takes an initial value c for z and chooses one of the 
roots Ui of f{u, c) — 0. Then the value of this root will change continuously as the point 
Z varies along a certain path from the point C, corresponding to z = c, to the point K, 
corresponding to z = k, as long as values of z are avoided for which equation f{u,z) = 0 
has multiple roots for w, or in which u is infinite. Under these conditions, all the values of u 
which satisfy f{u,c) = 0 are continuous functions of z; Puiseux calls these solutions for u\ 
u\,U2, • • .,Un throughout the paper. The final value of ui at the point K will be determined 
by the path followed. Puiseux explicitly emphasizes that this path may be a straight line, a 
curved line or a polygonal line. The only condition he imposes on the path is that it must 
form an uninterrupted line ("un trait non interrompu") between the points C and K. His 
description of a path thus remains intuitive. If z varies from the point C to the point K 
along a line CMK which does not pass through a point where u becomes infinite or equal 
to another root of /(w, z) — 0, then as z reaches /c, u will attain a value h which is a root 
of /(w, k) = 0. Puiseux proves that this value h will be the same if the line CMK changes 
into a line CM'K infinitely near CMK ("si la hgne CMK vient a se changer dans la 
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ligne infiniment voisine CM'K"). He emphasizes: "c'est la une proposition fondamentale 
dans notre theorie". He then proposes to gradually alter ("alterer graduellement") the line 
CMK and formulates the following proposition (deformation always means continuous 
deformation), p. 370: 

If the point Z varies from C to AT, along the path CMK, or along the path CNK, 
the function wj, which in c equalled Z?i, will yield the same value hi in both cases, 
assuming one can let the path CMK coincide with the path CNK after a deformation 
of the first without crossing a point for which the function u j becomes infinite or equal 
to another root of the equadon f{u,z) = 0. 

After explaining a process that we now call analytic continuation, Puiseux explains how 
to develop the functions u satisfying f(u,z) = 0 in the neighbourhood of a branch point. 
He also describes the behaviour of these solutions when z describes a contour going round 
a branch point; they form circular systems ("des systemes circulaires") within which they 
permute. Puiseux then considers the following situation. He chooses a point z = c where 
the equation f{u,c) = 0 does not have equal roots and joins this point to the points 
A, A\ A", etc., where the equation has multiple roots for the corresponding values 
a, a', a",... for z. He assumes /(w, a) = 0io have p roots equal to b. He joins C to A by 
a line which does not pass through any of the points A', A", A'", etc. He then chooses a 
point D infinitely near A and draws an infinitely small closed contour DNPD enclosing 
A and going round A once. Puiseux calls elementary contour ("contour elementaire", see 
Figure 2) a contour consisting of the line CD, the contour DNPD and the line DC, such 
that z running through this contour follows twice the line CD but in opposite directions. 
Poincare will later call such a contour "un lacet". On this "contour elementaire" the solu
tions u\,U2, ..' ,Up which become equal to ^ as Z goes from C to A behave in the same 
way as they did on the contour DNPD. They form a circular system. The other solutions 
Mp-|_i,... ,Un return to their original values. If Z starting from C describes a closed path 
around A which can be "reduced" to the elementary contour CDNPDC without passing 
through any of the points A, A^ A'^ etc. the solutions will behave in exactly the same 
way as on the elementary contour. Puiseux's terminology remains intuitive: he uses the 
term "reduce to" without giving a more rigorous definition. Puiseux now draws elementary 
contours around every point A, A^ A'^ etc. where the equation has multiple roots. He 
then asserts that every closed curve which runs through C can be reduced to a sequence of 
"contours elementaires" by deformation such that successive positions of the curve do not 
pass through any of the points A, A\ A'^ etc. and such that C remains fixed; p. 413: 

Join the point C to the different points A, A\ A'\ etc., by way of lines CDA, CD'A', 
CD"A", etc., Figure 12 which can be drawn arbitrarily except for the condition that 
none of these lines intersect; let Z), D^ D", etc., be points on these lines which are 
chosen infinitely near the points A, A^ A", etc.; surround the latter points by infinitely 
small closed contours DNPD, D'N'P'D', D"N"P"D", etc., and consider the ele
mentary contours CDNPDC, CD'N'P'D'C, CD"N"P"D"C, etc., which we will 
denote by (A), {A'), {A"), etc. Now, given any closed contour passing through the 
point C, it will always be possible to reduce this contour to a sequence of elementary 
contours, without passing through any of the points A, A', A", etc., and such that the 
point C remains fixed during the deformation. This assertion does not need to be proved 
and a little attention is sufficient in order to perceive its exactness. 
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N" 

Fig. 2. Puiseux's elementary contours. 

Puiseux emphasizes that it is important to specify the orientation of the curve, by intro
ducing the notation (+A), (—A). He gives a method to find the corresponding sequence 
of elementary contours for a curve CLMC if the reduction of the curve is given when 
it is run through in the opposite direction. From then on, he assumes that every contour 
can be represented by its corresponding sequence of elementary contours, which he calls 
"la caracteristique du contour". For closed contours reducible to the single point C he 
introduces the notation (o) for its "caracteristique", which can be added or omitted as of
ten as one wants. Puiseux then states that, to every closed contour corresponds just one 
"caracteristique". Two contours, having the same "caracteristique" can be reduced to one 
another and conversely if two contours have different "caracteristiques" they cannot be re
duced to one another. He implicitly assumes that a sequence (+A)(—A) is reducible to the 
point C, otherwise the representation of a closed contour would not be unique. Although 
Puiseux's description is very near our understanding of the fundamental group of the com
plex plane from which A, A' etc. are removed, it would be wrong to interpret Puiseux's 
results in terms of implicit group theoretic thinking. Though Galois' paper [32] of January 
16th 1831, which contains the germ of group theory had been published by Liouville in 
1846, the group concept still had a long evolution to go through before reaching the ab
stract level needed here [93]. For a long time after Galois' paper, the group concept was 
restricted to the case of a set of permutations with the composition of these permutations 
as the law of composition. That is why Cayley's [15, 16] first attempt in 1854 (pubUshed 
again in 1878 [17]) to generahze the group concept to a set of symbols closed under a 
product found no response. Permutation groups were the only groups under investigation 
and so no generahzation was needed. So it is obvious that Puiseux couldn't recognize the 
underlying group structure because there is no interpretation of the elements of the group 
(the closed curves based in C) as permutations working on something. It is exactly this as
sociation of a permutation to a closed curve based in C which will be used by Poincare in 
1895 to define the fundamental group. Even long after Puiseux's time groups were thought 
of as sets of permutations, and later more general transformations, closed under composi
tion. Therefore it would be premature to interpret Puiseux's results, (-|-A)(-A) = 0 and 
- ( - A ) ( + A 0 ( - A ^ 0 = ( 4 - A ' 0 ( - A 0 ( + A ) in terms of a law of composition. What is more, 
Puiseux does not consider the "caracteristique" of the sequence of two curves. Puiseux only 
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associates a "symbol" to a given curve and his symbolic notation allows him to integrate 
functions along this curve in a simple way. His notation may even be inspired by this aspect 
as we shall see below. In this sense, using Wussing's terminology, Puiseux's paper has not 
made a causal contribution to the evolution towards the abstract group concept. Puiseux's 
paper is also typical of the way authors worked with homotopy and more generally with 
notions that now belong to topology. They reasoned intuitively, e.g., in terms of continuous 
deformations, also they did not give rigorous definitions of curves. Hues, contours. 

Although Puiseux's treatment of the behaviour of an algebraic function in the neigh
bourhood of a branch point is well-known [55, p. 641], no mention is made of his exphcit 
attention to the continuous deformation of curves through a given point. Still, Puiseux's at
tention to the concept is meant to be an introduction to the use of continuous deformation 
in analysis. It is a means to reduce curves to a canonical decomposition along which the 
value of an algebraic function is calculated or along which integration is stepwise carried 
out. The homotopy concept is still linked to questions in analysis. First, Puiseux shows 
how the characteristic of a closed curve can help to obtain the final value of an algebraic 
function when the point Z runs through that curve. He substitutes the characteristic for the 
curve and follows the changes in the function as Z successively describes the elementary 
contours of the characteristic. Then he illustrates how the value of the function changes if 
the point Z follows a given path from a point C to a point K. In modern notation, Puiseux 
finds it intuitively clear that a :^ (a^~^)^, which refers to his underlying assumption that 
a path followed by the same path in opposite direction is reducible to a point. This is anal
ogous to the same imphcit assumption for elementary contours; (H-A)(—A) = (0). Finally 
in the last part of his paper, Puiseux apphes his results to the integration of algebraic func-
tions. He considers the integral j ^ u\ dz, where wi is a root of /(w, z) = 0 and emphasizes 
that the value is determined only if besides the values c and k, the path between the corre
sponding points C to Â  is given. Moreover, as long as the path is continuously deformed 
without crossing any of the points A, A^ A", etc., where the equation has equal or infi
nite roots for w, the value of the integral does not change. (Weierstrass [89] also treats this 
question for polygonal paths. He does not use deformation terminology.) After introduc
ing the notation A^)p A_;̂  (elementary integrals, "integrales elementaires") for the values 
of the integral / Un dz taken along the paths (-hA '̂̂ ), (—A '̂̂ ) he calculates the value of 
the integral taken along an arbitrary closed path CLMC. He substitutes for the contour 
the corresponding characteristic and adds the values of the integrals along the elementary 
contours appearing in it, taking into account the changes of the algebraic function. 

Puiseux then investigates whether relations exist between the elementary integrals, 
which brings him to questions referring to linear independent periods. Thereby he redis
covers the double periodicity of elHptic functions, first discovered by Abel and Jacobi. 

2.3.3. Riemann 's paper of 1857 on Abelian functions and his ''Fragment aus der Analysis 
Situs" [75, 76]. At the beginning of his paper "Theorie der Abel'schen Functionen", 
Riemann explains how to construct a surface that can represent a multi-valued function. 
He had already used such surfaces in his thesis of 1851 but at that time he introduced them 
in terms of covering surfaces. In his paper of 1857, Riemann considers a function w of 
a complex variable z = x -\-iy which is given in a part of the z-plane ("in einem Theile 
der (x, j)-Ebene") and which satisfies the equation i{dw/dx) = dw/dy. He states that 
the function w can be continued continuously outside the given domain in a unique way 
(if such a continuation is possible). According to the nature of the function w, he then 
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distinguishes between two possibilities. Either the continuation of the function w will lead 
to the same value for it; at a given value for z whichever the path may be along which the 
function is continued, or, different paths may lead to different values for if. In the first case, 
Riemann calls the function single-valued ("einwerthig") in the second case the function is 
called multi-valued ("mehrwerthig"). If the function is multi-valued, certain points exist in 
the (x, }^)-plane such that if the function is continued around them, it will assume another 
set of values. (It is possible that Riemann knew Puiseux's work, but he does not mention 
it [5].) The different continuations ("Fortsetzungen") of one function for the same part 
of the z-plane are called branches of the function ("Zweige dieser Function"). A point 
around which one branch of a function goes over into another is called a branch point 
("Verzweigungstelle dieser Function"). Where no ramification takes place the function is 
called "Einandrig" or "monodrom". Finally he shows how a function with branch points 
can be visualized geometrically by what we now call a Riemann surface. 

For functions X, F on a Riemann surface T which satisfy the equations dX/dy = 
dY/dx in local coordinates, he repeats his previous results, p. 92: 

The integral f{Xdx+Y d>'), evaluated along different paths joining the same endpoints, 
takes on the same value, if these both paths taken together form the boundaiy curve of 
a part of the surface T. If every closed curve situated in the interior of T forms the 
boundary of a part of T, then the value of the integral evaluated from a fixed initial 
point to a fixed endpoint remains constant and defines a confinuous function of the 
upper limit of the integral, a funcfion which is independent of the path of integration. 

This means that, in modern terminology, for such functions X, F the integral depends 
only upon the homology class of the path of integration. As mentioned earlier, Riemann 
had not noted the difference between null homologous and null homotopic closed curves. 
The above mentioned result leads Riemann (as in 1851) to distinguish between simply 
connected and multiply connected surfaces, p. 92: 

This leads to a distinction between simply connected surfaces, in which any closed 
curve is the boundary of a part of the surface - like for instance a circle - and multiply 
connected surfaces, for which this property is not valid, - like for instance the surface 
bounded by two concentric circles. 

Riemann's definition of simple connectivity is in terms of homology, while our modern 
definition uses homotopy. For surfaces, both definitions are equivalent but not for higher 
dimensional manifolds. This was first shown by Poincare [65] (see 3.1.2 below). The def
inition of the connectivity number of a surface Riemann gave in 1857 is not the same as 
the one he gave in 1851. The new definition perhaps derives from Riemann's interest in 
the integration of functions on a Riemann surface; the integrals of closed differentials on a 
Riemann surface depend only upon the homology class of the paths of integration, p. 92: 

If in a surface F closed curves ^ i , (32,..., <3n can be drawn, which neither separately, 
nor taken together form the boundary of a part of the surface F, but which, if taken 
together with any other closed curve do form the boundary of a part of the surface 
F, then this surface is called {n -h l)-fold connected. This number associated to the 
surface is independent of the choice of the system of closed curves a\,a2,... ,an, 
since any other system of n closed curves b\,h2,... ,bn, which can not bound a part 
of the surface, will, taken together with any other closed curve, form the boundary of a 
part of F. 
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As Maja Bollinger [4] points out, the curves ai can be considered to be singular one-cycles 
without orientation. The system of those curves then forms a basis for the first homology 
group modulo 2 of the surface. 

In order to repeat his results of 1851, used to integrate functions on a Riemann surface, 
Riemann describes how a surface of connectivity number n + 1 can be cut into a sur
face of connectivity number n. Here Riemann first thought of (orientable) surfaces with a 
boundary. If such a surface has, in modern terminology, genus g and r boundary curves, its 
connectivity number is 2g -i- r. For (orientable) surfaces with no boundary, Riemann first 
punctures the surface. It is not always clear whether Riemann works with the punctured 
surface or with the closed surface. Riemann never specifies this, probably because the con
nectivity number as defined by him does not change if one punctures a closed surface. In 
this context, for closed surfaces, the cutting of the surface into a simply connected one 
has to be modified in such a way that the first cross-cut is a closed curve. Riemann then 
considers integrals of a function / on a closed surface T which has isolated singularities 
in points £:i, 6:2,. • • on T. He reduces the surface T to a simply connected surface T^ by 
making 2n cross-cuts. (These cuts correspond to what we now call generators of the fun
damental group of r .) Then from a boundary point of T' Riemann makes cuts along lines 
// to each of the singularities Sj such that no two Unes // and /;• cut each other. On the new 
surface T^' the integral of the function / , P / is single-valued. The values of the integral 
of the function / taken along the cross-cuts are called "Periodicitatsmoduln". Each time a 
curve on T crosses a cross-cut or one of the lines // the value of the integral changes by 
a constant which can be calculated as ib /^ / or ± /^. / , where «/, bj represent the cross
cuts, or as d= /̂ . / . The value of the integral J^fonT is then determined up to the 2n 
constants associated with the cross-cuts and as many constants as there are lines /,. 

We can say that Riemann's work is directed towards homology theory (rather than ho-
motopy theory): his definitions and his reasoning clearly refer to curves which form the 
boundary of a domain on the surface he considers. Also, to study integration on the sur
face r , Riemann reduces T to a simply connected surface ^^ Then, he uses his result that 
the integral of an analytic function / taken along the boundary of a domain on T^ is zero. 
Here, Riemann thinks of a simply connected surface as a surface on which every closed 
contour bounds a domain. So, the integral f^ f considered on T^ is single-valued but be
comes multi-valued on T. Because Riemann reasons along these lines and concentrates 
on the simply connected surface T^ derived from the original surface T, we cannot decide 
at this point whether Riemann ever distinguishes between curves which are continuously 
deformable into one another and curves which bound a domain. In other words, we cannot 
say whether he was unaware of the difference between null homotopic closed curves and 
null homologous closed curves, or just neglected it. 

In modern terminology, Riemann thinks of a simply connected surface as a surface with 
trivial first homology group mod 2. For orientable 2-dimensional surfaces, the triviality of 
the first homology group implies that its genus is zero, so that the surface is either a sphere 
or, if there is one boundary curve or one boundary point, the surface is a disk (as Riemann 
proved in 1851 using the Dirichlet principle), or the whole plane. These surfaces have 
trivial fundamental groups and all closed curves on them are both null homotopic and null 
homologous. This can explain why we did not find a difference between null homotopic 
and null homologous closed curves on surfaces in Riemann's papers. 

At any rate, if we consider his "Fragment aus der Analysis Situs" (which we cannot 
date precisely) where Riemann aims to generahze the connectivity numbers of surfaces 
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to higher dimensional manifolds ("Mannigfaltigkeiten"), it is obvious that he did not see 
the difference between null homotopic and null homologous closed curves. He defines the 
connectivity numbers for higher dimensional manifolds as follows, pp. 479,480: 

If in the interior of a manifold each closed n-dimensional pait of this manifold ("n-
Streck"), taken together with m fixed of these "n-Strecke", which on their own do not 
form the boundary of a pait of the manifold, forms a boundary , then this manifold has 
connectivity (m + 1) of dimension n. A connected manifold is called simply connected, 
if the connectivity number of each dimension equals 1. 

The terminology seems to show that Riemann intends to use homology. Riemann's defi
nition of simple connectivity does not correspond to the one used today. These definitions 
follow some statements about "Einstrecke". (The term "Einstrecke" is not clearly defined 
here. From the context it is clear that it can be interpreted as a one-dimensional complex. 
It is not clear whether such an "Einstreck" is homeomorphic to a line segment or whether 
it can have multiple points). From p. 479: 

Two "Einstrecke" ai'e considered to belong to the same group or to distinct groups as 
they can be condnuously deformed into one another or not. 

The definition clearly suggests homotopy and even a partition into homotopy classes. But 
Riemann continues as follows, p. 479: 

Each pair of "Einstrecke", bounded by the same pair of points, together form a con
nected, closed "Einstreck" which bounds a "Zweistreck" or not, according to whether 
they belong to the same group or not. An interior connected closed "Einstreck" can , or 
cannot, form the boundary of an interior "Zweistreck". 

(Here the term "Zweistreck" is to be interpreted as a 2-dimensional "part" of the manifold 
under consideration. On p. 481 Riemann says that "A connected "/t-Streck" can or cannot 
be divided into separate pieces by cutting along any (n — 1)-dimensional part of it." (... 
along any {n — 1)-Streckigen Querschnitt".) This means that the "Zweistrecke" need not 
be simply connected). This shows that at that time Riemann overlooked the difference be
tween null homotopic and null homologous closed curves. In [87] we can see that Listing 
knew that a closed curve can also be the boundary of a surface which is not simply con
nected. F. Klein was aware of this difference as can be seen in his work of 1882 [48]. In his 
work of 1905, as we shall see below, Poincare proves that the two ways to partition closed 
curves do not correspond. Riemann's confusing attitude is again obvious in his definition 
on p. 479: 

An "n-Streck" A is deformable into another "n-Streck" B,'\i A and parts of B form the 
boundary of an interior "(n -j- 1)-Streck". 

The definition we first quoted immediately follows this. There Riemann appears to be using 
homology, while the above definition suggests he could be thinking of continuous defor
mation if we interpret the term deformable ("veranderlich") as "continuously deformable 
in". But if we interpret "veranderlich" in that way, then Riemann's definition is not correct. 
M. Bollinger [4] shows that the term "in einander veranderlich" is not synonymous with 
homologous. The same example shows that the term does not mean the same as "continu
ously deformable into" either. 

From this we can conclude that at this time the distinction between homotopy and ho
mology was still quite vague and remained so until Poincare's work of 1905. Looking back 
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we can say that in V. Puiseux's work the homotopy concept became a more expHcit and 
clear-cut notion. But, in his description of "Riemann surfaces", Riemann introduced an
other new concept, the homology concept, without making exphcit that this is not the same 
as the homotopy concept. Since Riemann was interested in the behaviour of functions on 
simply connected surfaces this ambiguity did not have much consequence for his results in 
that context. (On simply connected surfaces every closed curve is both null homotopic and 
null homologous.) It might even explain why he did not make note of the difference. But, 
Riemann's attitude, in view of his reputation, probably contributed to a confusion between 
homotopy and homology that lasted until Poincare's work clearly distinguished between 
null homotopic and null homologous closed curves in 1905. In this way, Riemann's work 
means a regression in the development of the rigorous definition of the homotopy concept. 

Riemann's ideas are continued by Betti in a paper of 1871 [3] (see [6]). Probably, Betti 
adopted Riemann's ideas through their conversations when Riemann stayed in Italy. His 
results also refer to homology rather than homotopy. Betti uses them to generalize results 
of the theory of integration to n-dimensional manifolds. He also considers manifolds we 
would now describe as having the same homotopy type. 

2.3.4. Jordan's work on the integration of algebraic functions [47]. We cannot interpret 
Jordan's work on the integration of algebraic functions correctly, without referring to a 
paper [45] he published in 1866 on closed curves on surfaces. This paper does not refer to 
any problem in analysis and can thus be considered as a paper in topology. In his paper of 
1866, Jordan starts off with the following definition, p. 91: 

Any two closed contours, drawn on a given surface, are called reducible into one an
other, if one can pass from one to the other by a progressive deformation. 

And he remarks that, p. 91: 

Any two contours drawn in the plane are reducible to one another; however this is not 
true on any surface: for instance, on a torus a meridian and a parallel are two irreducible 
contours. 

Jordan never mentions that all the surfaces (with or without a boundary or boundaries) 
he considers are orientable. Jordan then takes such a surface S with m boundary curves 
A, Ai, . . . , A,„_i. He lets n be the maximum number of non-intersecting closed curves 
without multiple points on the surface which do not divide the surface into discon-

Fig. 3. Jordan's elementary contours. 
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nected pieces (n is now called the genus of the surface). He denotes these curves by 
C, Ci, . . . , Cn-\ and cuts the surface along them. The resulting surface stays arcwise 
connected ("d'une seule piece"). The two "sides" of the same cut C/ are denotes by C- and 
C- . For every cut Q , Jordan draws a closed curve Fi through a point at on Q. These curves 
Pi are drawn without multiple points and so that they do not intersect each other. The curve 
Fi meets Ci in the unique point a/. Jordan then cuts the surface along these curves as well. 
See Figure 3 which illustrates Jordan's way of thinking. The points a, a/, . . . , a^-i are 
joined to a point p on the surface S by Unes pa, pa\, ..., pa^-i which do not intersect. 
He also joins p to points a\ a[, . . . , fl^„_i chosen on the boundary curves A, A\, . . . , 
A,n-i. The Hues pa\ . . . , p(i[^^_i are also drawn so that they do not intersect. All the lines 
are drawn without multiple points. Jordan denotes the closed curves paiCtaip, pa'-Aia'.p 
and paiFiaip with the symbols [C/], [A/] and [Ft]. (Jordan does not specify the orienta
tion of the curves C/, A/, Ft.) The curves [C, ], [A/] and [F/] are called elementary contours 
("contours elementaires"; Jordan may have borrowed this terminology from V. Puiseux). 
Jordan also introduces the notation C"^ for the curve C traversed in the opposite direction. 

Jordan's aim is to prove that every closed contour on 5* is reducible to a unique sequence 
of elementary contours. (In fact, since Jordan considers free deformations, the sequence is 
unique up to cyclic permutations of the elementary contours in the sequence.) In Jordan's 
paper, the difference between (constrained) homotopy and free homotopy is not considered. 
In general Jordan uses free homotopy. Therefore, when he says that two contours S and 
S' are irreducible to one another if their corresponding sequences of elementary contours 
are not identical, he should allow cyclic permutations of the elementary contours in the 
sequences. If he cannot pass from one sequence to the other by cyclic permutations of the 
elementary contours in the sequences, then the contours S and S' are not reducible to one 
another. 

Interpreted with hindsight, Jordan obtains a set of generators for the fundamental group 
of an orientable surface of genus n and with m boundary curves, satisfying the relation 

[A][Ai].. • [A,„-i][C][r][C]-i[r]-i . •. [Cn-i][Fn-i][Cn-ir\rn-xV^ - 1. 

In fact, in this paper, Jordan is very near to the abstract group concept. He had material at 
hand to describe an abstract group. Moreover, his notation is entirely adequate: he writes 
C • r for the contour determined by traversing C first and then F (although he uses the 
term sum ("somme") to denote such a product); he uses the notation [FY to denote that 
the contour [F] is traversed x times, [F]^ means that [F] is not traversed and [F]~^ de
notes the elementary contour [T] traversed in the opposite direction. Throughout the paper 
Jordan appHes the rule which says that two contours [F] and [FY^ neutralize each other 
("[F] et [F]~^ se detruisent"), such a product [/"] • [ r ]~ l can be added or omitted as often 
as needed. He also implicitly assumes associativity. What is still missing to define the fun
damental group is continuous deformation of based loops leaving the base point fixed and 
identification of homotopic loops. Jordan does not require that the contours pass through 
the point p, except for the elementary contours, nor does he emphasize the constrained 
deformation. But this is not the essential reason why Jordan does not recognize the under
lying group structure. At this time groups were still thought of as permutation groups. The 
groups Jordan worked with were groups of permutations (which he called groups derived 
from a set of generators [46]) and later groups of motions. He used the product notation 
for the composition law. But in Jordan's paper of 1866, the contours he considered cannot 
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be interpreted as operations working on objects; there is no set of permutations at hand 
and therefore Jordan could not interpret the material as belonging to a group structure 
[93,71,77]. 

We will now discuss Jordan's work on algebraic functions. In the second edition of the 
first volume of the Cours d'analyse, Jordan investigates the behaviour of a given algebraic 
function along different paths which join two arbitrary different points zo and ^ in the 
complex plane and defines the term equivalent ("equivalent"); pp. 224, 225. A "hgne" 
(or "chemin") is defined by the equations x = (p(t) and y = yjf{t) where cp and \lf are 
continuous. 

Suppose that z, instead of following the line L, follows another line L', also joining 
ZO to f. The roots of the equation f{u,z) = 0, will vary continuously from the initial 
values Wp . . . , ŵ  to the final values y j , . . . , y/̂ . These new values are, as y j , . . . , Vn, 
roots of the equation /(w, z) = 0. They will thus coincide with these last roots except 
perhaps for their order of succession. If this order is the same, the two paths L and L^ 
are called equivalent. 

With this definition of Jordan, the equivalence of paths depends on the given equa
tion f(u,z) = 0 and depends on the permutations of the n roots for u of the equation 
/(w, z) = 0. Saying that two paths are equivalent is not the same as saying that they are 
reducible to one another in Jordan's own terminology of 1866. Since the permutation of 
the roots ui .. .Un does not change under continuous deformation, two paths which are 
reducible to one another are equivalent but not vice versa. 

Jordan uses this concept of equivalence to reduce an arbitrary path joining the points 
zo and § to a "standard path" which is equivalent to it. The imphcit assumption of the 
uniqueness of this "combinaison de lacets" is not correct because a closed contour can be 
equivalent to more than one sequence of elementary contours. Jordan's conviction that the 
reduction gives a unique sequence probably is the result of a confusion between the terms 
"equivalent a" and "reducible to" (as he uses this term in 1866) [87]. 

The concept of a Riemann surface as introduced by Riemann in 1851 was not easy 
to understand for mathematicians at that time. Riemann was aware of this himself. Later 
authors tried to clarify the concept and tried to fill up gaps left open by Riemann (often 
because he felt things were intuitively clear) [21, 58, 19, 42]. In [19] and [58], the authors 
both implicitly use the fact that homotopic loops around the branch points do not change 
the Riemann surface if it is constructed according to those loops. Then an efficient choice 
of these loops will simplify the construction of the surface. The above mentioned papers 
also provide us with more material to show how homotopy was implicitly used in analysis 
for integration and analytic continuation of functions. 

2.3.5. F. Klein's discussion of Riemann surfaces in connection with homotopy [48]. 
Klein's discussion lies in the context of the study of flows of electric currents on surface 
of genus p where p > 0. Klein feels that Riemann might have been inspired by the same 
context when he treated complex functions on surfaces [5]. 

Klein's discussion can be represented as follows: u represents a non-constant every
where regular potential function associated with a flow on the surface (regular means here 
that u is the real part of a complex potential function u -\-iv which is finite and differen-
tiable at each point). The function u must be multi-valued since a single-valued everywhere 
regular potential function on a closed surface is a constant. The change in potential along 
a closed curve C (streamline) is denoted by /^ du and is called the period of w on C. Two 
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Fig. 4. Klein's "Querschnitte". 

Fig.l9 Fig.20 

Fig. 5. Klein's Figures 19 and 20; a null homologous curve which is not null homotopic. 

curves C and C are considered equivalent if /^ dw = f^, du. Klein introduces a con
cept of equivalence which seems to be sufficient for studying flows on surfaces. It seems 
likely that the term equivalent ("aquivalent") should be interpreted as follows: two closed 
curves C and C^ on the surface s are equivalent if and only if f^ du = f^, du, where u is 
an arbitrary everywhere regular potential function on s. Hence, the term refers to homol
ogy. Klein, however, does not define this term precisely. From his paper it is clear that a 
sufficient condition for the equivalence of closed curves is that they are continuously de-
formable into one another. Klein also says that closed curves which go round ("volhg um-
schliessen" see Figure 19) one or more handles of the surface are "equivalent to zero" thus 
making it clear to us that homotopy is not a necessary condition for equivalence. In modern 
terminology, Klein finds that null homologous and null homotopic closed curves have zero 
periods (are equivalent to zero). For the curve in Figure 20 he says: "... this curve, like 
one which can be shrunk into a point, divides the surface into two separate pieces." Klein 
reahzed that null homology implied equivalence to zero and that null homotopic closed 
curves are null homologous. Indeed, application of a continuous deformation to a curve C 
does not affect the homology class of C even if the deformation is not constrained. This 
can easily be explained if we use the fact that the homology group of dimension 1 is the 
quotient group of the fundamental group by its commutator subgroup (see [83]). However, 
the exact relation between these two concepts (null homologous and null homotopic closed 
curves) is not made clear by Klein: both are considered as the boundary of a part of the 
surface. If we consider the Figures 19, 20 he draws, it seems likely that Klein "saw" the 
difference but had no way of turning it into a rigorous theory. (In 1905 Poincare showed 
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that the two ways to partition closed curves, homology and homotopy, are not the same.) 
As in the case of integration of complex functions in the plane, the subject of Riemann 

surfaces as it is treated in works [37], reflects how homotopy remained implicit and in
tuitive. In these works, the concept is used in the context of continuation of algebraic 
functions along paths in the plane as described by Puiseux. For integration on Riemann 
surfaces, the authors follow Riemann's lines of thought and are, as we know now, directed 
to homology theory. In [37], we find the equivalence relation defined by homology exphc-
itly emphasized and proved! Weyl [91] eschews the use of the homotopy concept by using 
covering surfaces in his definition of simply connected surfaces. Generally, the authors 
themselves however were not really aware that they in fact handled two different concepts, 
homotopy and homology. This mostly unconscious confusion can be seen in Klein's and 
Riemann's work as discussed above. Continuous deformation was a handy tool to decide 
whether two paths lead to the same value for an integral and since this theory provided 
mathematicians with an abelian structure (see [51, p. 675]), the unconscious confusion 
with homology becomes apparent to us. This situation resulted in an ambiguous "spUt" 
between mathematical methods used in the integration of functions on Riemann surfaces 
(continuous deformation) and the theoretically exact concept (homology) which is needed 
to discuss the theory of integration. The behaviour of algebraic or more general multi
valued functions themselves indeed requires homotopy since for instance, the group of 
permutations of the roots of an algebraic equation is in general not abelian. It seems likely 
that the study of multi-valued functions as in the context of uniformization and the solu
tion of differential equations led to distinguishing between the concepts of homotopy and 
homology. 

2.4. Uniformization 

2.4.1. Klein's work on uniformization. Klein wrote several papers [49-51] where he dis
cussed the possibihty of representing the points of a given Riemann surface with equation 
f(w,z) = 0 using functions of a complex variable ij, which reproduce themselves if rj 
undergoes a transformation of the form rj' = (arj + b)/(cij + d), where a,b,c,d e C and 
ab — be y^ 0 (i.e. a Hnear transformation). For a discussion of these papers see [35]. Klein 
considers a fundamental domain ("Fundamentalbereich") Â  in the complex ;7-plane, the 
complete description of which is given in a paper of 1891 [52, p. 711]: 

The basic idea I used in Abb. CIII, is that for the definition of an algebraic surface one 
can use not only a closed Riemann surface, either given in space or given as a mulfiple-
sheeted covering surface lying over a given surface, but one can also use a plane region, 
the boundary curves of which are to be idenfified in pairs according to a certain rule. I 
denoted such a plane region by fundamental region. 

In what follows, Klein usually assumes that the sides of the "Fundamentalbereich" are 
circular arcs which are perpendicular to a given circle. This is an example of the concept of 
"Fundamentalpolygon" [53], which corresponds to our idea of a fundamental domain [29] 
of a group of hnear transformations. A fundamental domain with respect to a given group 
of transformations is a region on the sphere, connected or not, of which no two points 
can be mapped onto each other by a transformation of the given group and such that the 
neighbourhood of any point of its boundary contains points which are the image of points 
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of the given region by a transformation of the group. Obviously, a fundamental domain can 
thus be multiply connected. 

Klein identifies this fundamental domain N with the Riemann surface S it represents. 
On this surface he considers a given single-valued analytic function F. He then reproduces 
this fundamental domain by applying the linear transformations (pi in the ry-plane which 
map those sides of the fundamental domain of each other which have to be identified to 
obtain the surface S (these are called congruent in [29]). Ifcpt maps the domain Â  onto cpiN 
such that T]^ = (PiOl), Klein considers a function F' such that F^rj) = F(r]) on the side 
A of the fundamental domain N, where Â  and (fiN abut and such that F'{(pi{r])) — F{r\). 
Because the function F coincides with F' on the side A, F and F' are identical. All the 
"copies" or "translates" of Â , obtained by applying all the transformations of the group 
generated by the transformations ipi, will, according to Klein, fill out a simply connected 
domain in the ?7-plane without overlaps. 

Klein considers 77 as a function on the Riemann surface 5. This function is multi-valued 
on iS: to each point on S corresponds different ry-values which are mapped onto each other 
by linear transformations in the 77-plane (now called automorphisms). When a point P on 5 
runs along a closed curve on S, x] changes into the value x]' — {arj + b)/{cij + d). Klein re
duces the surface 5 to a simply connected surface through 2p cuts along the curves A/ and 
Bi (i = \,..., p) [48]. He joins these cuts to an arbitrary point O on the surface through 
curves c/ which join O to the point of intersection of A, and Bi. Later he suppresses these 
curves c/ such that the curves A/ and Bj all pass through O. The function r] is single-valued 
on the surface S^ he thus obtained and which he knows is simply connected. When a point 
runs along a closed curve on the original surface S, it will in general pass over one or more 
of the curves A/, Bi which correspond to the cuts. Each time this happens, the value 77 
is transformed into 77̂  by a linear transformation denote by Sj, T,. These transformations 
are generators ("Erzeugenden") for all the transformations the value 77 can undergo, since 
a closed path on the surface can be replaced by a sequence of the curves A/ and Bi. The 
resulting group of transformations is, in general, not Abelian. As seen above, Klein re
marks himself in [51, p. 675] that there is a difference between the theory of integration 
on Riemann surfaces and the discussion of the behaviour of the multi-valued function. In 
modern terminology, the fact that, in the context of this paper, in a sequence of paths the 
order can in general not be changed, imphes that homology will not be sufficient to discuss 
the transformations 77 undergoes if a point P moves along a closed path on the surface. 
Klein also obtains relations ("Relationen") which exist between the transformations Si and 
Ti associated with the cuts along A/ and B/. He surrounds the given point O by a closed 
path of which he implicitly assumes that it has no multiple points. All the curves A, and 
Bi will be crossed and 77 will reproduce itself at the end of the circumvolution. This gives 
the "Fundamentalrelation": 

b^ i j ^ l i l • • -^^ Ip bplp = 1. 

Klein then studies the fundamental domain of the group of transformations generated 
by the transformations Si and Ti and reproduces it by making copies of which he proves, 
p. 684, that they will fill up a disk if p > 1. He also proves that any other relation r = 1 
between the generating transformations must be an aggregate of transforms of the "Fun
damentalrelation" ("If /? = 1 is a relation, n any element of the group, then TTRTT'^ = 1 
is called the transformed relation"). He reasons as follows: such a relation R = I consists 
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of an aggregate of the transformations Si, Ti say R = V^^ Vp • • • V/', where each V/ is 
a generating transformation and e\ = d=l. Then the copies of the fundamental domain 
(denoted by 1) are marked in the plane beginning with 1, V^''(l), V^[^-^^ V/' (1) , . . . . Each 
of these copies has a common side with the previous one and since /? = 1, the sequence 
of copies is "closed". Instead of handling this sequence of copies Klein uses a curve y that 
runs through ("der Reihe nach") them. It is not clear whether y may have multiple points. 
According to Klein, this curve can be deformed continuously in the domain formed by the 
copies from which the vertices are removed: 

Now we can shift this curve, without changing its meaning, with as the only condition 
that we can not pass over any of the vertices of the fundamental region. ... If we choose 
a point in the interior of our curve, we can replace the curve by a sequence of loops, 
which start from the chosen point, run around each one of the vertices of the fundamen
tal region and then return to the initial point. In other words, our curve is equivalent to 
the successive revolution ai'ound certain of the vertices. 

Here, the term equivalent ("aquivalent") does not have the same meaning as in Klein's 
previous paper [48] where it referred to homology. Klein remarks that the above relation 
between the transformations Si and Ti corresponds to a circumvolution of the vertex O in 
the original fundamental domain. The circumvolution of any other vertex, which is the TT-
image of a vertex of the fundamental domain, leads to a relation which is the "transform" 
of the original relation; R = I can be written as an aggregate of such transformed relations 
and hence provides no new relation. Actually, if we interpret these results with hindsight, 
Klein obtains the isomorphism between the group of automorphisms of the universal cov
ering surface of a surface S and the fundamental group of that surface. 

2.4.2. Poincare's paper of 1883 on uniformization. In the paper [63] Poincare also pro
posed a uniformization theorem: 

Let y be an analytic, multi-valued function of JC. Then one can always find a variable z 
such that X and y are single valued functions of z. 

In this paper, Poincare defines a surface S which will later be called the universal covering 
surface using analytic continuation of multi-valued functions on an underlying surface T. 
His definition of the surface S (universal covering surface) refers to the closed paths on the 
surface T: if a path is null homotopic on T, its lifting on S will be closed. The fact that 
Poincare considers the behaviour of multi-valued functions on the surface 7, and not the 
integrals of such functions, forces him to use continuous deformation, and not homology. 

It seems likely that Poincare was inspired by his work on automorphic functions. An 
analytic function F in a region G on the sphere is called an automorphic function relative 
to a group r of conformal homeomorphisms ^ of G onto itself if F{g{w)) = F{w) for 
all ^ G r. Both Klein and Poincare published papers on automorphic functions. From 
their correspondence [54, 35] about the subject, it is clear that Poincare knew that to a 
given Riemann surface corresponds a group of linear transformations in the plane. If the 
Riemann surface has genus p > I these automorphisms can be interpreted as isometrics 
of the non-Euclidean plane. The collection of the copies of a fundamental domain of the 
group can be seen as the surface S he defines in his paper of 1883. 
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3. Continuous deformation as a topological concept 

As seen above, continuous deformation plays an important role in the discussion of the 
behaviour of multi-valued functions. Gradually, mathematicians began to realize that there 
was a difference between this subject and the theory of integration. While the theory of 
integration provides an abelian structure (if on a manifold V, a and ^ are two closed paths 
based in a point P, a • jS is the path obtained by first traversing a and then fi, and if / 
is a given function then the integral /^.^ / equals /^.^ / since /^.^ / = /« / + /^ / ) ' 
the permutations which the values of a multi-valued function undergo however need not 
be the same along the paths a • fi and )6 • a. To take into account the behaviour of multi
valued functions, mathematicians used the group of permutations their values undergo. 
At the basis of this group lie the topological properties of the paths in the space under 
consideration. This is a subject which belongs to analysis situs. So it seems natural that at 
this stage the attention shifted from the context in which mathematicians used continuous 
deformation to these deformations themselves. Gradually this evolution will result in an 
adequate terminology to work with. In the papers of Jordan, Riemann, Betti and Klein 
which we already discussed in the first part of this text, the interest in questions belonging 
to analysis situs is also apparent. In these papers, with the exception of Riemann's notes 
[76] (but we must take into account that these are only fragmentary) and Jordan's paper 
[45] of 1866, the discussion of these questions is still put in the context of analysis (theory 
of integration). 

We shall now discuss other papers in which it became clear that the concept of con
tinuous deformation actually belongs to analysis situs. Its use in analysis will become a 
secondary aspect. Continuous deformation gives information about the space in which it 
is considered. It even, in some cases, becomes a tool (finer than homology) to distinguish 
between spaces. For orientable surfaces, this classification problem was solved by Jordan 
in 1866 [45], the problem had also been treated by Mobius in 1863 [59]. In modern ter
minology, Jordan proved that two orientable surfaces with boundaries are homeomorphic 
("applicable, I'une a T autre sans dechirure ni duplicature") if and only if they have the 
same genus and the same number of boundary curves. In 1892 [64], Poincare generalized 
the question, p. 187: 

The question remains whether the Betti numbers suffice to characterize a closed surface 
in the context of analysis situs, i.e. given two closed surfaces with the same Betti num
bers, is it possible to pass from one to the other by way of a continuous deformation? 
This is U'ue in 3-dimensional space and one might be led to beheve that this remains so 
in an arbitrary space. This is not the case however. 

Poincare uses the term "surface" for higher dimensional manifolds ("varietes"). As we 
will see immediately below, Poincare tackled the problem with the use of the fundamental 
group and thus provided algebraic methods to treat topological questions [38]. 

3.1. Poincare's work in Analysis situs 

3.1.1. Sur ['Analysis situs [64]. In this paper Poincare introduces what he calls the group 
of a manifold. He considers unbranched multi-valued functions F/ on a manifold deter-
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mined by an equation 

/ ( ^ l , X 2 , . . . , X „ + i ) = 0. 

If the functions F/ are continued along a loop they undergo a permutation. All the per
mutations which correspond to the possible closed paths on the manifold form a group. 
Poincare emphasizes that this group depends upon the functions F/. To take away this de
pendency he considers all such possible functions. The resulting group G can then be used 
to describe the manifold in the following way (p. 190): 

The group G can thus characterize the shape of the surface and be denoted as the group 
of the surface. It is clear that if two surfaces can be transformed into one another by 
way of a continuous deformation, their groups are isomorphic. The inverse, though less 
evident remains valid, for closed surfaces, so that the group defines the closed surface 
from the viewpoint of analysis situs. 

For 2-dimensional manifolds, this result is correct. But, as Hirsch explains in the "Abrege 
d'histoire des mathematiques" [39] the example of lens spaces considered by Alexander in 
1919 illustrates that this last conjecture is false in general. 

3.1.2. Analysis situs'[65]. In 1895 Poincare digresses on the ideas of the above discussed 
paper. As an illustration for the functions F/ he considered in 1892, he uses the solu
tions of a given differential equation with analytic coefficients on the manifold ("variete") 
V under consideration. V is given by equations fa{x\,X2, •.. ,Xn) = 0 and inequalities 
(p^(x\,..., Xn) > 0. In this paper, Poincare introduces the term "lacet" (loop), p. 240: 

If the point M describes an infinitely small contour on the manifold V, the functions F 
win return to their initial values. This remains true if the point M describes a loop on 
V, that is to say, if it varies from MQ to M\ following an arbitrary path MQBMI, then 
describes an infinitely small contour and returns from Mj to MQ traversing the same 
path Ml 5 Mo. 

In modern terminology, such a "lacet" is null homotopic. Poincare uses the notation 

MQBMQ = 0 if MOBMQ reduces to a loop. 

"To reduce to" is not explained, from what follows we can see that Poincare interprets this 
as: along MQBMQ all possible functions F/ return to their original value. 

The sequence of two paths MQAMI BMQ and MQBMI CMQ is written as MQAMI 5Mo + 
MQBMI CMQ and the relation MQAM] CMQ = MQAMI BMQ + MQBMI CMQ reflects that 
all possible functions F/ behave the same way along the two paths in the two members 
which differ only in a path run through twice in opposite directions. Poincare emphasizes 
that the path MQAM\CMQ is not the same as the path MQCM\AMQ and that the order of 
the terms in the above sum cannot be changed. The sum notation, tacitly introduced here, 
later becomes an explicit law of composition for paths [69, p. 523]. The path —ECBFD 
stands for the path ECBFD traversed in the opposite direction. Since the product of closed 
paths is not abelian in most manifolds, this sum notation is not very adequate. Compared 
to Jordan's paper of 1866 we discussed above, and where Jordan uses a product notation, 
Poincare's notation constitutes a regression. 

In his paper of 1895, Poincare says (p. 241): 
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MQBMQ = 0, if the closed contour MQBMQ constitutes the complete boundary of a 
2-dimensional manifold contained in V; and, in fact, this closed contour can then be 
decomposed into a very large number of loops. 

This is not correct, the surface of which MQBMQ is the boundary should be simply con
nected. Poincare adds (p. 241): 

This way we have to take into consideration relations of the form 

kiC\ + A:2̂ 2 — ̂ 3^3 + ^4^*4, 

where the k are integers and the C closed contours drawn on V and starting in MQ. 
These relations, which I will call equivalences, resemble the above homologies. They 
differ from these: 

1. Since, for homologies, the contours can stait from an arbitrary initial point; 
2. Since, for homologies, one can change the order of the terms in a sum. 

In the fifth complement [68] which we will discuss below, Poincare reformulates this as 
(p. 450): 

This way for homologies, the terms are composed according to the rules of ordinary 
addition; for equivalences, the terms are composed according to the same rules as the 
substitutions in a group; that is why the set of equivalences can be symbolized by a 
group which is the fundamental group of the manifold. 

Even though he emphasizes this difference in working with the homologies and the equiv
alences there is no difference between his above definition for "MOBMQ = 0" and for a 
"homologie" (p. 207): 

Consider a /^-dimensional manifold V; let W be a ^-dimensional manifold {q ^ p) 
contained in V. Suppose that the boundary of W consists of X {q — 1)-dimensional 
manifolds vi,V2,--.,vx- We will denote this situation by the notation û  + 1̂2 + • • • 

To me it seems that Poincare in this one paper uses the term equivalence for two different 
concepts (homotopy and homology). In [68] the meaning of ''K = 0 (mod Vy\K is a 
closed path (cycle) in the manifold V) is correctly defined as (p. 490): 

This means that there is a simply connected region in V, the boundary of which is 
formed by the cycle K. 

For now, the fundamental group of the manifold V is defined as follows [65, p. 242]: 

This way, one can imagine a group G satisfying the following conditions: 
1. For each closed contour MQBMQ there is a corresponding substitution S of the 

group. 
2. S reduces to the identical substitudon if and only if MQBMQ = 0; 
3. If 5 and S^ coiTespond to the contours C and C' and if C '̂ = C 4- C^ the substi

tution con'esponding to C '̂ will be SS^. 
The group G will be called the fundamental group of the manifold V. 

The second condition will ensure that equivalent paths will lead to the same group ele
ment. For Poincare this was probably intuitively clear. In modern terminology this means 
that homotopic closed paths lead to the same group element. Poincare says nothing about 
the role of the chosen point MQ probably because it was clear to him that any other point 
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would lead to the "same" group since the manifolds he considers are arcwise connected. 
Nowadays, the fundamental group is defined in a more direct way. For two loops a and ^ 
based in the same point, the product a • ̂  is the loop obtained by first running along a and 
then along ^ . If we go over to the homotopy classes of such loops and define the product 
of two classes as the class of the product of two representing loops, this product does not 
depend on the choice of the representing loops and the group structure is ensured. Why 
Poincare makes a detour along permutations to define the fundamental group is explained 
by Hirsch [38, 39]. Using Wussing's [93] results he says that the only groups mathemati
cians worked with at that time were groups of permutations, as for instance in Galois's 
and Jordan's papers, or groups of transformations, as in Klein's, Lie's and Jordan's work. 
As already mentioned earlier this shows why mathematicians did not readily use Cayley's 
abstract definition of a group (published first in 1854 and again in 1878), a definition to 
which Cayley himself added the result that every group is in fact a permutation group. To 
us now it is very easy to recognize a group structure in, for instance, Puiseux's and Jordan's 
papers, because we see a set of elements with a law of composition. At that time however, 
such a direct recognition was actually inconceivable because group elements had to oper
ate on something as permutations or transformations do. The "product" is then the law of 
composition and associativity is ensured. As we shall see below for instance in Tietze's, 
Dehn's and Gieseking's work, the fundamental group will be introduced by these authors 
by means of generators and relations. It will gradually lose its characterization as a group 
of permutations. 

After defining the fundamental group Poincare explains how to calculate it for a given 
manifold V which is obtained form a polyhedron Pi of which the faces are to be identified 
in pairs in a given manner. Poincare says that the fundamental group will be derived (this is 
Jordan's terminology) from a set of principal permutations St ("substitutions principales") 
associated to closed contours C/ which he calls fundamental contours ("contours fermes 
fondamentaux"). Any other closed contour will be equivalent to a combination of these 
fundamental contours. The fundamental contours may satisfy a relation of the form k\ C\ + 
k2C2 + k[C\ + k^C^ = 0 which Poincare interprets as follows, p. 243: 

This means that the substitution S^' 52^ S^' S^^ reduces to the identical substitution. 
It is clear that we obtain the fundamental contours as follows. Let MQ be a point 

interior to P^, A a point on one of the faces of Pi, A' the con'esponding point on the 
conjugated face. One will pass from MQ to A, then from A' to MQ without leaving 
Pi; the con^esponding path on the manifold V will be closed. This way there are as 
many fundamental contours as there are pairs of faces. In order to form the fundamen
tal equivalences: Consider a cycle of edges. Let, for instance, an edge be the intersection 
of the faces Fi and F^, which I therefore will call the edge Pj F^; let F[ be the con
jugated face of Fi and ^2^1 the conjugated edge of Fj F^ on this face; let F2 be the 
conjugated face of F2 and F3F2 the conjugated edge of F2F[ on this face; etc. until 
we return to the face F!^ and the edge Fi F^. Note that while performing this operation 
we can return, several times, to the same face. Let A/ be a point of F/ and let Aj be the 
coiTesponding point on F!; let Q be the fundamental contour MQAI -h A'.MQ. We will 
have the fundamental equivalence Cj -h C2 -h • • • -f- C^ = 0 . This way there will be 
as many fundamental equivalences as there are cycles of edges. Once we have formed 
the fundamental equivalences in this way, we can deduce the fundamental homologies 
differing from them by the fact that the order of the terms is irrelevant. From these 
homologies the determinaUon of the Betti number Pj will follow. 
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As follows from the above, Poincare faulty definition of the equivalence MQBMQ = 0 
does not affect his calculation because he uses another criterion to decide whether a group 
element is the identity. It is clear that Poincare got his inspiration from his work on auto-
morphic functions (see [65, p. 247]; [61,62]). In modern terminology he works with closed 
paths in the universal covering space. These correspond to null homotopic closed paths in 
the underlying space. Poincare inattention may even be the result of his method since in 
the universal covering space any closed curve is both null homotopic and null homologous. 

Poincare illustrates his method by examples. These show that Poincare works with what 
we now call homology with rational coefficients and this implies that at this stage the tor
sion coefficients escape his notice [4]. As Bollinger points out, Poincare says in the second 
complement [67, p. 339]: "We will combine... the homologies using addition, subtraction, 
multiplication and sometimes division." Thus Poincare recognizes the difference between 
homology (with coefficients in Z) and homology with rational coefficients. After a com
ment made by P. Heegaard on the duality theorem [65], Poincare also points out that his 
definition of the Betti numbers differs from the one Betti gave. In modern terminology, 
whereas Betti works with homology mod 2, Poincare uses homology with coefficients in 
Z. One of the examples is a 3-manifold with non-trivial fundamental group but with the 
same Betti numbers as the 3-sphere, which causes Poincare to redefine the term simple 
connectivity. Whereas Riemann and Betti had defined connectivity in terms of boundaries 
(i.e. for us homology) and simple connected manifolds as manifolds for which all con
nectivity numbers are 1, Poincare reserves the term simply connected for manifolds with 
trivial fundamental group. 

3.1.3. Cinquieme complement a VAnalysis situs [68]. In the fifth complement (1904), 
Poincare comes back to the "equivalences" he considered in 1895. He again relates the 
fundamental group of an orientable surface of genus /? to a group of transformations in 
the plane, which as we now know is the group of automorphisms of the universal covering 
surface. In this paper, Poincare explicitly tries to find a cycle on such a surface which is 
"homologue a zero" but not "equivalent a zero". The example corresponds to a contour as 
drawn by Klein in 1882 [48]. In this paper (see pp. 465, 466) we also find the explicit dis
tinction between what we now call free and constrained homotopy ("equivalence impropre" 
and "equivalence propre") and the characterization of these using the universal covering 
surface. In the case of constrained null homotopy, the lifting of the curve to the universal 
covering space will be closed. In the case of free homotopy, if the liftings of the curves 
C, C are MPM' and M\ QM[ then C and C will be freely homotopic if the automor
phism mapping M to M' will also map M\ to Mj. Further on in this paper, Poincare gives 
an example of a 3-manifold which is not simply connected although it has the same Betti 
numbers and the same torsion coefficients as the 3-sphere. It is the spherical dodecahedron 
space. He thus shows, in a dramatic way, that the concepts of homotopy and homology 
do not coincide. The question whether the triviality of the fundamental group of a closed 
3-manifold implies that it is homeomorphic to the 3-sphere remains open. Poincare's pa
pers thus provide a rigorous basis for the discussion of homotopy. A missing aspect is the 
formal terminology to describe the continuous deformation. In 1912, Brouwer will fill up 
this gap. It seems likely that this delay results from the tendency towards combinatorial 
methods (Poincare, Tietze, Heegaard, Dehn), while the basis to describe continuous de
formation actually lies in the context of "general topology", the study of which began in 
papers by, among others Frechet [30, 31], Schoenflies [78, 79] and Hausdorff [36]. 
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3.2. M Dehn and P. Heegaard on Analysis situs [26] 

Whereas in the above papers, the discussion of topological questions tacitly assumes that 
the manifolds are embedded in a given Euclidean space the properties of which play no 
role, Dehn and Heegaard give a stepwise construction of manifolds ("Mannigfaltigkeiten") 
which are the union of abstract complexes. In the second part of their article, Dehn and 
Heegaard give an overview of results about complexes obtained thus far and put them in 
this new context (for instance results concerning homology, Poincare's work and normal 
forms of surfaces). A discussion can be found in [4]. 

It is also in this article that we find the term "Homotopie" for the first time. We shall see 
below that Dehn and Heegaard's definition does not exactly cover our concept of homo-
topy. To explain this further we first analyse their discussion of transformations of com
plexes. Dehn and Heegaard distinguish between internal and external transformations of 
complexes. An internal transformation for a "Streckenkomplex" (one-dimensional com
plex) introduces a new point <2o on a "Strecke" (Pj , P^) and replaces this "Strecke" by 
the two "Strecken" (Pj , Qo), {Qo, PQ)- An internal transformation for a "Flachenkom-
plex" (2-dimensional complex) adds a new "Strecke" Q\ = (Pj , P^) where the points Pj 
and PQ belong to a circle which bounds a surface ("Flachenstiick") in the complex and sub
divides this "Flachenstiick" in two "Flachenstlicke". For a 3-dimensional complex, such a 
transformation comes down to a subdivision of the 3-dimensional elements. These trans
formations refer to what we now call subdivisions of complexes. Two complexes C„ and 
C^ are called homeomorphic ("homoomorph" or "elementarverwandt") if they are identi
cal maybe after a change in denomination of their elements or if they can be made identical 
after a sequence of internal transformations. To describe an external transformation, Dehn 
and Heegaard consider an ^-dimensional manifold Mn (n > 1) and a one-dimensional 
complex C\ belonging to M„. If for every point PQ of C\ there exists a point QQ in M„ 
(they tacitly assume that QQ is different from PQ and that to different points PQ and PQ 
correspond different points QQ and QQ) and if for every "Strecke" (PQ, PQ) there exists 
a unique "Strecke" (QQ, QQ) in M„ joining the points QQ and QQ such that the circle 
jTi = {(P(j, PQ^), (PQ^ Gg), (2i), Qp, (P(j, ei))} bounds an elementary manifold in M„ 
("Elementarmannigfaltigkeit": for dimensions 1 to 3 these are a "Strecke", the 2-sphere, 
the disk and the 3-ball), then the transition of the complex Ci with points PQ to the complex 
C[ with points QQ is called an external transformation in M„ from Ci to Ci. Although they 
did not explicidy require QQ to be different from PQ they assume that they can join these 
points by a "Strecke". This shows an oversight of the case in which some of the points PQ 
coincide with some of the points QQ. An analogous definition of an external transforma
tion is given for two dimensional complexes. Here Dehn and Heegaard require M,i (n > 2) 
to be an elementary manifold. They assume that, for every point PQ of a 2-dimensional 
complex C2 there exists a point QQ in Mn which again is tacidy assumed to be different 
from PQ . They again tacitly assume that to different points PQ and QQ correspond differ
ent points Q'Q and Q^Q, If for every "Strecke" (P(j, PQ )̂ there exists a "Strecke" (Q'Q, Q^Q) 
in Mn joining the two points QQ and QQ; for each "Flachenstiick" determined by the cir
cle TTi there exists a "Flachenstiick" in Mn determined by the points which correspond to 
the points on the circle m such that the circle {{P^, PQ^), (PQ^, QQ), (Q'Q, QQ), (P(j, QQ)} 
is the boundary of an elementary surface ("Elementarflachenstiick") E2 in M„; if more-
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over, two corresponding "Flachenstticke" can be used as elements on the boundary of a 
3-dimensional "Elementarmannigfaltigkeit" £3 in M„ then the complexes of the points 
PQ, respectively the points QQ are said to go over in each other by an external transforma
tion. These conditions could be satisfied even if M„ is not an elementary manifold so why 
they require M„ to be an elementary manifold is not clear. They say, p. 165: 

If two complexes transform into one another by way of a sequence of external transfor
mations, possibly preceded by internal transformations, we call them homotopic.̂  We 
have the theorem: Two homotopic complexes are homeomorphic. For each complex 
one can find a homotopic one with given location. If in a given Mn all closed circles are 
the boundary of "Elementarflachenstucke", then one can find a homotopic complex to 
each complex in Mn (of dimension less than n) with given location for the "Strecken", 
etc. We thus obtain the following theorem: Two homeomorphic (n — m)-dimensional 
complexes, with or without singularities in a En are homotopic. 

Bollinger concludes in her paper [4, p. 146]: "This way the concept of continuous defor
mations is put in combinatoric terminology." But the transformation described by Dehn 
and Heegaard is not the most general continuous deformation because for them complexes 
which are "homotop" are "homoomorph". Two lemniscates in the plane with the same 
orientation are "homotop". But a simple closed curve C[ and a lemniscate C\ cannot be 
called "homotop" because, on the lemniscate there are four "Strecken" with P as a vertex 
which cannot occur on the curve C[ whichever point is chosen to correspond to P. Later 
in the paper, Dehn and Heegaard use the term "homotop" in the same meaning, as Jordan's 
term "reducible to". But Jordan's concept allows for more general continuous deformation 
than Dehn and Heegaard's which is nearer to our concept of isotopy [82, p. 14]. Dehn and 
Heegaard also introduce a concept of isotopy as follows. According to them, the exter
nal transformations are the composition of more simple transformations called elementary 
transformations ("Elementartransformationen"). If for integers m, n, where m < n, M„ is 
a given manifold and En-m is an elementary manifold on a closed manifold Mn-m in M^; 
if £','i_,„ is an elementary manifold on Mn which together with En-m constitutes the bound
ary of an elementary manifold En-m+\ ou Mn, then the replacement of En-m by Ej^_^^ 
is called an elementary transformation of Mn-m on Mn. For instance if m = 1, n = 2, 
the replacement of £1 by E[ in our figure (Figure 6) is an elementary transformation. 
Dehn and Heegaard say that such a transformation is an external transformation, but the 
endpoints of E\ remain fixed and this is not allowed for external transformations as they 
defined them because of their implicit requirement that PQ differs from QQ. For the same 
reason, these transformations cannot generate any external transformation. It seems likely 
that while Dehn and Heegaard described external transformations they had something else 
in mind which would allow for fixed points. For two manifolds Mn-m and M^_„j without 
multiple points, multiple "Strecken", etc., isotopy is then defined as follows. If no inte
rior point of the manifolds Ef^_f^ of En-m-\-i considered above belongs to Mn-m., then the 
elementary transformation is called a "spezielle externe Transformation" and two mani
folds Mn-m and M/j_̂ „ which go over into each other by such transformations preceded 
if necessary by internal transformations are called "isotop". It is clear that they think of 

The concept of homotopy in £3 is the most often considered concept in analysis situs and is mosdy called: 
"equivalence in the context of analysis situs" ("Aquivalenz im Sinne der Analysis situs"). Two homotopic curves 
on a surface are called reducible by Jordan [45, p. 100]. Two homotopic complexes in En are called homeo
morphic by Poincare [65, p. 1]. Because of the above fundamental theorem, these definitions are consistent with 
ours. 
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El 

Fig. 6. Ml = Pj, PQ2, p3. (pj ^ p2)^ £-j ^ (p2^ p̂ 3)̂  (p3^ pj). ŷ ^ -̂  situated in the plane M2. 

E^-^j , £'^_,„ and E^-wi+i as sets of points, an assumption which they expHcitly make 
in the "Anschauungssubstrat". For curves for instance, this concept almost coincides with 
isotopy as we now use the term. It would be the same if the elementary manifolds £"1 and 
E[ were only to be included in the boundary of an elementary two dimensional manifold 
E2, such that their boundary points would not have to coincide. In the "Anschauungssub-
strat", Dehn and Heegaard say, p. 169: (domains are n-dimensional manifolds which are 
part of another n-dimensional manifold). 

Two complexes on a line, surface or a domain in space are continuously deformable 
into one another, with resp. without selfintersection, if and only if they are homotopic, 
respectively isotopic. 

So, during the deformation the complex can intersect itself. This shows again that their 
description of the term "homotop" should for example allow for a continuous deforma
tion in the plane from a circle into a lemniscate. Their definition of the term "homotop" 
does not include this possibility which they apparently also want to consider. Also, ho-
motopy does not necessarily imply continuous deformation with self-intersection ("Selbst-
durchdringung"). For curves on surfaces, they come back to the concept "Homotopie". 
Here, they introduce the product notation for the law of composition of two curves pass
ing through a given point O. Curves are interpreted as sets of points traversed in a given 
direction. It is implicitly assumed that O is initial and endpoint of the curves considered 
here. 

Each curve is homotopic with a curve passing through a fixed point O. For two such 
curves nj and n^ run through in a given direction, there is a unique curve TTJ (with 
singular point in O) defined as the two curves TT^ and n^ run through in that order and 
given direction, we write: n\ = TT} • JT?. We can now consider arbitrarily many curves 
TTj,.. . , TTp which may coincide partially and compose them as above, this composi
tion satisfies the law of associativity; also, only cyclic permutations in the sequence of 
curves are allowed. Jordan now constructs a canonical fundamental system of curves 
through O, from which all the others can be obtained by composition,... 

They repeat Jordan's results of 1866 [45] and they remark (where Grundlagen Nr. 3 con
tains the definition of homeomorphism); 

Jordan's results are also important for higher dimensions: in the set of closed curves 
with given direction passing through a fixed point O one considers only the non-
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homotopic ones as different from each other. As in the above two such curves again 
define a unique curve passing through 0 and having a given direction. The set of curves 
passing through a given point of a Mn thus forms a discontinuous group, which is char
acteristic for the manifold. Indeed, as follows from Nr. 3 for each other point of Mn, 
and as one can easily see, for each point of a manifold which is homeomorphic to Mn, 
this group is the same. This group has been considered for the first time by Poincare 
who named it the fundamental group of Mn • 

Here, it becomes clear that they implicitly assume that a manifold M„ is arcwise connected 
(i.e. that every two points on Mn can be joined by a "Streckenzug" in Mn). 

3.3. Occurrences of homotopy in two papers by Tietze 

3.3.1. Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten [84]. 
We have seen that by the identification of the edges of a polygon 2-dimensional manifolds 
can be constructed. In the first section of his paper, Tietze generalizes this to construct 
higher-dimensional manifolds. This form of representation of manifolds will be called a 
"Zellensystem" or a "Schema" of manifolds. We assume that the cells of dimension 0, 1, 
etc. are closed and finite in number. For dimensions 2 and 3 the construction is described in 
detail. For higher dimensions the construction is only briefly sketched. To form the schema 
of an /t-dimensional manifold, Tietze links up m-cells ("Zellen m-ter Dimension"), m ^ n 
which are the generalization of vertices ("Ecken"), edges ("Kanten"), faces ("Lamellen") 
and 3-dimensional cells ("Zellen des dreidimensionalen Schemas"). A short discussion can 
be found in [4]. 

Before introducing the fundamental group of a manifold given by a schema, Tietze 
spends a paragraph on results belonging to group theory, p. 56: 

In this paragraph we will introduce certain concepts belonging to group theory, as we 
will consider below certain discrete groups associated to the given connected manifolds. 
We have to note here that the elements of this group are not certain operations which 
have a specific meaning, but that it is mostly the law of composition which is relevant 
so that we are dealing with the general group concept. 

Tietze defines a group by generators and relations and describes how to go over from 
one set of generators and relations to another system of generators and relations without 
changing the group. To a group correspond the "zur Gruppe gehorende charakteristischen 
Zahlen" obtained after abelianization and which we now define as follows, see for in
stance [22]. For a finitely generated abelian group G there exists an integer n > 0, primes 
P\, P2^' •', Pm and integers r\,r2,..., r,n (m > 0, r/ ^ 1) such that G is isomorphic to 
the group 

n z e z n ez'-2 e---©z,/m, 

where n denotes the direct sum of n copies of Z. If a group H is isomorphic to the group 

/Z 0 Zs, 0 Zs2 0 . • . 0 Zs, 

then G and H are isomorphic if and only \in = l, m = k and the numbers p\\ ..., pni 
and ql\q2',..., q^.'' are equal in pairs. Tietze proves that the isomorphism of two groups 
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Fig. 7. Tietze's method for the torus. 

(not necessarily Abelian) implies that the "zur Gruppen gehorenden charakteristischen 
Zahlen" must be the same. He realizes that this is only a necessary condition for the isomor
phism of two groups. Poincare had already shown that these numbers cannot determine the 
manifold's topology and conjectured that the role of the fundamental group might be de
cisive in classification problems. Poincare's example of the spherical dodecahedron space 
also showed that these numbers do not determine the fundamental group. We now know 
that it is not possible to characterize finitely generated groups by a finite set of numerical 
invariants [60]. Poincare was forced to work with the fundamental group as a whole. 

Tietze calls the fundamental group a topological invariant belonging to the connected 
manifold ("einer der zusammenhangenden Mannigfaltigkeit zukommende topologische In-
variante"). While Tietze only touches upon the connection between the fundamental group 
and the behaviour of multi-valued unbranched functions, for Poincare this behaviour was 
the starting point for the introduction of the fundamental group. Its elements were inter
preted as permutations of the values of multi-valued unbranched functions. With Tietze's 
paper, the elements of the fundamental group are being stripped of their conception as 
permutations although they are still referred to as "Operationen". The elements of the fun
damental group are the closed paths based in a given point. The product in the group 
corresponds to our modern definition and Tietze obtains the relations in the group in a way 
analogous to our modern method by running along the circumference of a simply con
nected 2-cell (edge path group of a complex, see [84, pp. 77, 78], see also [28]). Referring 
to Poincare, Tietze then shows how to calculate the fundamental group of a manifold given 
by its schema. To illustrate Tietze's method we will apply it on the torus which can be 
obtained from a rectangle by identification of the opposite sides. The point A in Figure 7 is 
represented by a closed cycle (Poincare's terminology). There are two fundamental paths 
-̂i = M^^^N[ + N['M^^^ and S2 = m^^^N!^ -h N!^M^^\ The closed path LA which sur

rounds A is represented on the schema by four arcs. When a point runs through LA on the 
torus, its movement can be followed on the schema: the path joining position 1 to position 
2 is deformable to N[M^^^ + M^^^N!^, the path joining position 3 to 4 is deformable to 
Ni^M^^^ -f- M^^^N[ and so on, such that the sequence of the four arcs is freely homotopic 
to 2̂"̂  ^j"^ 525i. Thus it becomes clear that the path LA can be replaced by a sequence of 
the generators Si and 52. This replacement corresponds to a continuous deformation of the 
path LA such that it can be seen as a nontrivial combination of the fundamental paths, as 
Tietze says on p. 67 in his note 6): 
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We can think of the closed Hne L^ around A as being deformed and stretched out so 
that it finally consists out of the segments M '̂̂  Â ^ ^ + Â ^ /̂ ^̂ -̂̂ ^ of the con-esponding 

partial paths M^^^N' + N"M^^\ The thus deformed line represents a closed line going 
round A, formed out of the fundamental paths, and the relation then says that any func
tion continued along this path will return to its initial value, as has to be the case for an 
unbranched function y. 

The path LA which corresponds to the "Umgebungsmannigfaltigkeit" of the vertex A, rep
resents the identical operation of the group because of the homogeneity condition required 
of the manifolds which Tietze considers: L/\ is drawn within a simply connected schema. 
For n-dimensional schemata, the construction is analogous. To calculate the fundamental 
group of an ;t-dimensional schema, one of the points M^^Mn the cells, M -̂̂ ^ is chosen to be 
base point ("Grundpunkt")- If the point M^^^ is different from the base point then a compo
sition C'Folge") of fundamental paths can be chosen such that there is a path Ug^i joining 
M^^^ to M^'^ ("Hilfswege"). Ug^g represents the identical operation ("identische Opera
tion")- If Sx is a fundamental path joining M^̂ '̂  to M^^^ then a closed path sx is defined by 
U~\sxUg^k = Sx. The closed paths sx are called closed fundamental paths ("geschlossene 
Fundamentalwege") after Poincare's "contours fermes fondamentaux". From the relations 
between the fundamental paths Sx, he obtains the relations between the closed fundamental 
paths Sx. For the first Betti number and the torsion coefficients which he calculates from 
the obtained fundamental group, he says, p. 80: 

While one can easily determine the equality of two sequences of numbers, one can 
in general not answer the question whether two groups are isomorphic. Contrary to 
other topological invariants, the fundamental group thus is an invariant of which the 
concun-ence for two manifolds cannot be decided in every case. 

This last assertion is somewhat premature, its proof is given 47 years later by Novikov 
[60]. 

Tietze also defines "Gleichartige Transformationen von Mannigfaltigkeiten in sich", 
which are a special case of homotopic homeomorphisms of a manifold V onto itself. As 
we know now, a continuous map / from a manifold V (as Tietze defined it) into itself 
which maps a point MQ e V onto itself will induce an endomorphism of the fundamental 
group F of \^. If / is a homeomorphism, the corresponding morphism is an automorphism 
of F, Two homotopic maps / and g induce the same morphism. An analogous reasoning 
probably inspired Tietze when he introduced the concept of similarity ("Gleichartigkeit") 
for homeomorphisms of a manifold V onto itself, pp. 88, 89: 

An invertible and confinuous function of a manifold onto itself is called a transforma
tion of the manifold in itself. Let t\ t" be two transformations of V in itself, P a point 
on V and F^ P'' the points in which P is transformed by t', respectively t". The dis
tance between both transformations is less than e if for each point P on V, the distance 
between the image points P', P" is less than e. Two transformations t\ and ti of V 
in itself are called similar, if there exists a sequence of transformations t{a) such that 
to each value of the parameter a, where 0 ^ a ^ 1 coiTesponds a transformation t{a), 
where /(O) = t\ and r(l) = t2 and t{a) is a continuous function of a. This means that 
to each 0 ^ AQ ^ 1 ̂ ^^ to each £ > 0 corresponds a 5 such that for \a — aQ\ < 8 the 
distance between the transformations t{aQ) and t{a) is less than e. Transformations of 
V similar to the identical transformation are called deformations of V in itself.'̂  

2 . the introduced definition of distance between points is determining. 
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In modern terminology, a deformation is homotopic to the identical homeomorphism; 
Tietze illustrates his definition for the case of the torus. If jc is a meridian and y a par
allel on the torus, the periods cOx, cOy taken on along x and y by an elliptic integral of the 
first kind do not change if a deformation is applied on the torus. It is clear to him that the 
"Gleichartigkeit" of / with the identical homeomorphism implies that fx is equivalent to 
X, fy ioy'in the sense that for any differential co of the first kind the integral Jr co equals 
/^ 0) and fjr (0 equals / co. Tietze introduces the following groups of transformations for a 
manifold V which provide new topological invariants. T^ is the group of "Transformatio-
nen" leaving a point MQ in V fixed. D^ is the group of "Deformationen" leaving the point 
Mo in V fixed. (He thus implicitly uses the result that if / and g are gleichartig with the 
identical transformation then so is fg.) If the manifold V is (arcwise) connected ("zusam-
menhangend") the choice of MQ is irrelevant. To each "Transformation" of T^ corresponds 
an isomorphism of the fundamental group F of V, p. 90: 

As elements of the fundamental group F of V we can choose a system of paths ai,a2 
... with MQ both as initial and end point and which cannot be transformed into one 
another, the structure of F is then defined by rules for the law of composition of these 
paths.-̂  To each transformation of T^ corresponds a permutation of the paths o/, in such 
a way that relations between paths are preserved after the permutafion. The transforma
tions thus determine isomorphisms of F onto itself Similar transformations correspond 
to the same permutation, to deformations coiTespond the identical permutation, ... 

He thus is aware of the fact that if / is gleichartig with g then for a closed path ai in 
V the paths a- and a'/ in which at will be transformed by / , g will represent the same 
element in F, in other words they will be "ineinander iiberfuhrbar". Apparently, Tietze 
does not think it is necessary to put this "equivalence" of a- and a^/ in an analogous formal 
terminology. The concept of "equivalence" as it was defined by Poincare in 1895 is clear 
enough for Tietze to work with and hence the idea of using an analogous formal definition 
does not come up. To each "Operation" (i.e. element) then of the group G = T^/D^ 
corresponds an "Operation" in the group of isomorphisms of the fundamental group F 
of F onto itself. If r, r\ T" are "Transformationen" of V such that rr^ = T" then the 
associated isomorphisms 7, / , j " of F satisfy the relation jj' = j " . (We now formulate 
this in terms of functors.) This way Tietze explicitly introduced a formal definition for 
the "Gleichartigkeit" of two homeomorphisms / and g. The concept is not our concept 
of homotopy of maps, as Brouwer introduced it, since the maps t{a) of the family are 
homeomorphisms. Tietze actually defines isotopy of homeomorphisms. 

3.3.2. ''Sur les representations continues des surfaces sur elles-memes" [85]. In this 
paper, Tietze digresses on continuous transformations of surfaces as they had been defined 
by him in 1908. In 1913 the deformations are related to modifications of paths on the 
surface, an aspect which is less explicit in 1908. Here we find the following lemma: 

Given on a surface S two simple, continuous lines /, /' with the same endpoints, both 
of them Jordan curves, which only have their endpoints in common with the boundary 
of 5, both lines having the same endpoints, there exists a deformation of S into itself, 
leaving each boundary point fixed and transforming /̂  into /. 

•̂  Two paths run through after each other again define a closed path. A relation between the closed paths aiajc = 
ai transfers to a corresponding relation between the substitutions of the values of an arbitrary unbranched function 
in V, which can be associated to the paths cij,a](,ai. 
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The transformation form / to I' is not the most general form of homotopy, since the defor
mations are homeomorphisms as required in 1908. For a surface S, which in this paragraph 
is considered to be multiply connected, he announces the following theorem the proof of 
which is only roughly sketched, p. 510: Gs is the fundamental group of 5'. 

Two closed Jordan curves, /, l\ drawn on S, having the same corresponding element in 
Gs, can be transformed into one another by a deformation of S. 

Again there is confusion between homotopy and isotopy: two closed simple curves which 
represent the same element in Gs are homotopic but not necessarily isotopic. 

3.4. M. Dehn 's papers on topology 

In [23] M. Dehn discusses how questions in group theory arise in a natural way from 
the context of topology. For instance, for based closed paths on an orientable surface of 
genus p (a closed path is called based at a point XQ if its initial and endpoint coincide 
with Xo) the question whether two such paths are homotopic (As Dehn says: "in einander 
reduzierbar mit Festhaltung eines Punktes") corresponds to the problem Dehn formulates 
as follows (p. 140): G is a group defined by generators a/ and relations. For G he uses the 
fundamental group. 

Our problems are: 1. To find a method by which one can determine in a finite number 
of steps whether two given operations of G are equal or not given their representation 
using the a/ and parficularly, whether such an operation is the idenfity. 

The question whether two closed paths based in the same point are freely homotopic cor
responds to the second problem on p. 140: 

To find a method to decide in a finite number of steps whether for each pair of given 
substitutions S and T there exists a third one U with S = UTU~^,... 

Indeed, two such closed paths a and fi are freely homotopic if and only if there exists an
other closed path v based at the same point such that a is homotopic to y ^ v ' ^ To discuss 
these problems Dehn introduces the "Gruppenbild" of the group G. Such a "Gruppenbild" 
is defined as a (finite or infinite) "Streckenkomplex" Ci of which the "Strecken" repre
sent the generators of the group or their inverse such that the "Streckenzuge" (these are 
sequences of "Strecken" where the initial point of a "Strecke" coincides with the endpoint 
of the previous one in the sequence) of Ci are in one-to-one correspondence with the el
ements of the group. A vertex Z is chosen as center of the "Gruppenbild" and represents 
the identity. If 5 is a "Streckenzug" of the complex C\ starting from Z then Dehn asso
ciates to S the transformation of Ci which maps Z to the endpoint of S. This way, to each 
group element corresponds a transformation of the complex in itself. The "Gruppenbild" 
is constructed in such a way that to two different elements of the group correspond two 
different transformations ("Bewegungen des Gruppenbildes") and vice versa. Dehn prob
ably got the idea from the following results for surfaces. For surfaces a "Gruppenbild" 
of their fundamental group can be obtained [24] as follows: a net ("Netz") can be con
structed, which corresponds to our idea of the universal covering surface. The net consists 
of meshes, these are polygons of which the edges correspond in pairs. Indeed, the one-
dimensional complex consisting of the edges of this net can be used as "Gruppenbild". For 
two closed paths on the surface are homotopic iff the corresponding transformations of 
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the net (now called automorphisms of the universal covering surface) are the same. Dehn 
adds that the "Gruppenbild", of which he expHcitly proves the existence on pp. 141-144, 
cannot be constructed in a finite number of steps. In modern terminology, this discussion 
for surfaces relates to the fact that the group of automorphisms of the universal covering 
surface is isomorphic to the fundamental group of the surface. The same ideas had already 
been used by Poincare in 1895. Dehn's student Gieseking used the idea to look for analytic 
criteria to decide whether two transformations of the "Gruppenbild" are the same or con
jugate (whether the associated closed paths are homotopic or freely homotopic), see [34] 
and [87]. In his paper, it is the first time that homology for closed paths is this exphcitly 
put in a group theoretic context: homologous closed curves represent the same element in 
the abelian group of the surface. The calculations for the transformations of the net into 
itself are very elaborate and thus not practical. 

3.5. Homotopy in Brouwer's papers 

In Brouwer's paper [7] we can find impHcit occurrences of what we now call homotopic 
maps. This idea became more expHcit in 1912 [8]. Then, Brouwer considers two continu
ous transformations of a surface into itself which can be continuously transformed into one 
another. The continuous modification of a continuous univalent transformation is described 
as follows (p. 527): 

By a continuous modification of a univalent continuous transformation we understand 
in the following always the construction of a continuous series of univalent continu
ous transformations, i.e. a series of transformations depending in such a manner on a 
paiameter, that the position of an arbitrary point is a continuous function of its initial 
position and the parameter. 

The exphcit statement which says that the position of a point is a continuous function 
of its initial position and the parameter is the mathematically rigorous definition of the 
deformation process. It marks the transition of the intuitive understanding of this process 
to a rigorously defined concept and allows for the extension of the homotopy concept from 
paths to maps in general. Tietze had already described this dependency in 1908, but in a 
narrower context: the "Gleichartigkeit" of homeomorphisms of manifolds onto themselves 
(we now call this isotopy). In [8] transformations which can be obtained from one another 
by continuous modification are said to belong to the same class. As Freudenthal indicated 
[8] it is the first time that the term class is used in the sense of homotopy class. It is 
in these papers that Brouwer also introduced simpHcial maps ("simpHziale Abbildung") 
and simphcial approximation ("modifizierte simpliziale Abbildung", later called simplicial 
approximation). If a continuous map is given which maps a polyhedron into another one, 
a simplicial approximation allows the map to be replaced by a map which, perhaps after 
a subdivision of the polyhedra, is "sufficiently near to it" and is simplicial, i.e. it maps 
simplexes onto simplexes by "piecewise linear maps". Seen from a methodological point of 
view the idea of approximating a map by a "piecewise linear map", and not by a map which 
is piecewise constant as in the case in analysis, was an important new step. These new ideas 
were used by Brouwer to introduce the "degree" of a map (calculating the algebraic sum 
of the number of times a point is covered by its image, the sign being determined by the 
reversal or the preservation of the orientation) and to prove that homotopy classes of maps 
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of the 2-sphere in itself are characterized by their degree. This result sets off the search for 
characterizing or counting the mapping classes of maps of higher dimensional spheres. 

Also in 1912, Brouwer gives a formal description of freely homotopic closed paths in a 
paper [9] in which he proves the topological invariance of closed plane curves as Schoen-
flies defined them. According to Schoenflies's [80] definition, a closed curve in the plane 
is a perfect bounded connected plane set which divides the plane in two regions of which 
it is the common boundary. As Freudenthal [8] mentions, Brouwer proves a broader re
sult, namely the invariance of the number of domains determined by a bounded connected 
closed planar point set. Brouwer considers a bounded (h -j- l)-foldly connected plane re
gion ("Gebiet") g and an arbitrary point P in g. For such "Gebiete", he knows that there 
are h simple closed fundamental curves ci , C 2 , . . . , cjj through P such that any continuous 
closed curve a (i.e. the continuous image of a circle) can be deformed continuously in g 
into a finite composition of the curves Cy (p. 523): 

Let ^ be a bounded (h -f l)-foldly connected plane region, P any point on g. We can 
choose h, simple closed curves cj , C2,. . . , c/̂  through P, which are to be considered 
as fundamental curves, and which only intersect in P and have the property that each 
closed continuous curve <7 in g can be transformed by continuous deformation in g 
into a canonic continuous curve ("kanonische stetige Kurve") cp consisting of a finite 
number of the curves c**. 

**This continuous deformation means that a plane region which is bounded by two 
concentric circles ki and /c2 can be continuously mapped in g such that a coiTesponds 
to ki, and cp con*esponds to k2. 

This continuous deformation ("stetiger Abanderung") is an example of free homotopy. 
We now know that the fundamental group of the region g is the free group generated 
by h closed paths ci , C 2 , . . . , c/̂  each of which goes once round one of the h bounded 
regions determined by g. Since the fundamental group is a topological invariant the number 
of regions determined by g (number of generators of the fundamental group) does not 
change when a homeomorphism is applied to g. But it is exactly the construction of the 
generators and of the homotopic deformation which is most difficult. One has to define 
continuous maps a/ from the circle C into g for the paths c, and for any given path a one 
has to determine a continuous map F : C x [0, 1] -> ^ : (x, t) h-> F{x, t). As seen above 
in Poincare's and Tietze's work this problem was avoided by using what we now call a 
cell decomposition of the manifold under consideration. To define the fundamental group 
Tietze used a generator for each edge and the relations were obtained from running round 
the circumference of the 2-cells. Poincare used what we now call the universal covering 
manifold and its automorphisms to justify an analogous method. If the fundamental group 
is defined in this way it has to be proved that the choice of a cell decomposition is irrelevant. 
Brouwer uses the concept of chains ("Ketten"), a concept used by Cantor [86] in the context 
of infinite plane sets. Brouwer describes them as follows (p. 523): 

By a chain we mean a finite, cyclic ordered set of points, by an £-chain a chain for 
which the distance between two subsequent points is smaller than s. 

He also introduces modifications of these chains (p. 523): 

By an ^'-modification of a chain x we understand firstly a displacement < e' of a point 
of X, by way of which x goes over into an e'-chain, secondly an addifion of a new 
point between two subsequent points of x, by way of which x goes over into an en
chain. If two subsequent points of a chain coincide, they are considered as the same 
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point. This way, after an e'-modification, the number of points in the chain remains 
constant, increases with one or decreases with one. 

Brouwer proves that for each E > 0 small enough there exists an 77 > 0 and h ^-chains at 
such that to every ^-chain x in TT, a finite composition of the at can be associated which 
can be obtained from x by £-modifications. This is a property which is invariant under 
homeomorphisms, a result which follows from what we now call the uniform continuity of 
such maps on compact subsets of the plane. Brouwer's discussion is in terms of a metric 
space (the Euclidean plane) and the properties of continuous maps into such spaces. The 
result is put in the context of set theory. The use of ^-chains as introduced by Cantor 
[10], although he does not call them ^-chains yet, also reflects this. He thus obtains his 
result without having to rely on a cell decomposition of the set n; the existence of such a 
decomposition was proved later in 1925 by Rado [73]. Brouwer's paper also reflects the 
status of group theoretic thinking at that time. The ei-chains (more precisely the closed 
"Streckenziige" determined by them) in ge through P which can be deformed into each 
other by e-modifications can be considered as representing one element of a group, if 
during the modifications all intermediate "Ziige" pass through P. This group is isomorphic 
to the fundamental group of ge. The fact that Brouwer uses free homotopy reflects that he 
did not think of using group theoretic terminology. 

4. Higher homotopy groups 

The consideration of based maps of an n-sphere {n > \) into a space can in a natural way 
be seen as a generahzation of based paths in a space and for n > \ also, a group structure 
can be defined on the homotopy classes of these maps. This was done by Hurewicz [41] 
in 1934. Before Hurewicz, Cech [18] had already introduced these groups in a short note 
which did not attract much attention because these groups were Abelian. Since the ho
mology group of dimension one is the fundamental group made Abelian, it contains only 
part of the information given by the fundamental group. Hence, it was expected that new 
concepts should be non-Abelian. 

Hurewicz introduced the homotopy type: two spaces X and Y have the same homotopy 
type if there exist mappings / : Z -> 7 and g:Y ^^ X such that the composed mappings 
fog and g o / are homotopic to the identity mappings. For instance a simplex or a full 
sphere have the same homotopy type as a point. Most of the invariants belonging to alge
braic topology depend only upon the homotopy type of the topological space under consid
eration. For simplicial complexes, an equivalence is introduced using combinatorial meth
ods by Whitehead [92]: two simplicial complexes are of the same simple homotopy type if 
one can pass from one to the other by a finite sequence of elementary simplicial operations. 

Hurewicz also treated the classification of homotopy classes of mappings from one space 
into another. He showed that the description of homotopy groups can be reduced to that of a 
fundamental group, [39]. One can obtain the sphere Sn+\ through certain identifications in 
the topological product (reduced suspension, smash product) of the sphere Sn and the seg
ment [0, 1]. Using the equivalence between mappings of the product 7 x Z into X and map
pings from Y into the set of mappings of Z into X\ by fitting it with the appropriate topol
ogy, passing to the homotopy classes and considering the role of the base point, one can 
demonstrate that the n-th homotopy group of Z, rcn {X) is isomorphic to the (n — l)-th ho
motopy group of the loop space with base point of X. This determines a recursive formula 
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which finally reduces jr„ (X) to the fundamental group of X^" , this recursion can be de
scribed using adjoint functors. Since loop spaces are an example of H-spaces, as introduced 
by Hopf [40] (spaces where a product can be defined "up to homotopy"), their fundamental 
group is always Abelian, whence the Abelian character of the higher homotopy groups. 

Higher homotopy groups are a valuable tool in the theory of obstructions, see [28]. 
However, the calculation of the higher homotopy groups proved to be difficult, its recursive 
formula not providing for an efficient calculation because the loop spaces are generally of 
infinite dimension. [39] mentions results of Hopf, Hurewicz, Freudenthal and Serre (using 
fibered spaces). 

5. Conclusions 

The above discussion illustrates how the introduction of homotopy (be it implicit or ex
plicit) depends upon the interests of the mathematicians concerned and how it gradually ac
quires a more satisfactory definition. The equivalence of paths first meant for certain math
ematicians that they led to the same value of the integral of a given, function or that they 
led to the same value of a multi-valued function. (See, for instance, [11-14, 72, 74, 75].) 
Later this dependency upon given functions is dropped (by Jordan for surfaces, by Rie-
mann and most explicitly by Poincare) and this leads to a concept which depends only 
upon the manifold. It thus becomes a concept which belongs to topology. 

As a consequence of this hesitant evolution, there was at first a confusion between con
cepts. At a later stage relations between them were investigated, as for instance the fact that 
homotopy equivalence implies homology equivalence. In 1882, Klein gave an example of 
a closed curve on a surface which is the boundary of a part of the surface but could not be 
shrunk to a point. In 1904, Poincare exphcitly said that this curve is "homologue a zero" 
(null homologous), but not "equivalent a zero" (null homotopic). Poincare obtains the ho
mologies from the fundamental group by allowing changes in the order of the terms in the 
"equivalences". This means also that the equivalences imply homologies but not vice versa. 

The success of algebraic methods in topology also had its influence: it explains the pref
erence for theories with "base point" and constrained deformation even though free defor
mation is a more natural concept. This preference can now adequately be explained using 
the terminology of categories and functors as introduced by Eilenberg and MacLane in the 
1940's. In the category of based spaces and based continuous maps there exists an object 
which is both initial and final as is also the case for the category of groups or rings and their 
homomorphisms. This is not the case in the category of spaces without base point, nor in 
the category of sets. Hence, constrained deformation leads more direcdy to the description 
of an algebraic structure (namely the fundamental group) associated with a topological 
space. (In general this group is not Abelian and hence cannot be characterized by numeri
cal invariants as was the popular inclination around the turn of the century.) This initiated 
the association of algebraic structures with an object (topological space) to get information 
about topological properties of the object. In algebraic topology this association is functo-
rial. This means that it is not only possible to associate an algebraic structure A{S) with a 
topological space S\ but the consideration of maps from such a space S into a space T leads 
in a natural way to a homomorphism between the associated algebraic structures A{S) and 
A{T), Such an association of algebraic structures in a functorial way with a topological 
space leads to fruitful results about the topological properties of the space concerned. For 
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instance, if requirements on a map / between spaces X and Y implies incompatible al
gebraic properties for the morphism A(/ ) , then / cannot exist. Hence also, the richer the 
algebraic structure A(X) the more abundant the collection of possible results will be. 
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In algebraic and geometric topology and elsewhere in mathematics the concept of a com
plex played and plays till now a basic role: in simplicial and cellular homology, in homo-
topy theory, in obstruction theory, in the study of PL-manifolds, in the homological theory 
of groups, etc. Spaces which admit a decomposition into cells are often easier to handle 
than general topological manifolds. Fortunately, the majority of 'interesting' topological 
spaces fall into this category. These advantages counterbalance the cumbersome defini
tions and proofs of the main properties of complexes, in particular, invariance properties. 

In the following we will describe the thorny way to the concepts used nowadays. It took 
quite a long time since the problems considered belonged to other disciplines of mathe
matics, mainly to analysis and geometry and the topological side became clear only later. 

For the following treatment of the history of complexes we obtained much information 
from survey articles and books with historical remarks or flavour such as [7, 9, 10, 36, 37, 
2,31]. 

1. The origin of Analysis situs 

The famous Konigsberg bridge problem was to find a walk through the Prussian city pass
ing every of its seven bridges crossing the river Pregel exactly once. To find a path by 
walking could be cumbersome, but to show that such one does not exist cannot be done 
by trial. The solution due to Euler [14] is considered as the first topological argument: He 
noticed that it suffices to consider the relative position of areas and bridges. If there would 
be a path as desired there could be at most two areas where an odd number of bridges ter
minate. This has been the first problem in graph theory, an active mathematical discipline 
with applications in many other areas. We will not deal with it here. 
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Another result of Euler became more important for algebraic topology: the Euler poly
hedron formula. A polyhedron was considered as a convex 3-dimensional subspace of R-̂ ; 
Euler treated the case where the edges of the boundary are straight segments and the faces 
are planar polygons. He found and proved the formula v — e^ f ~2 where the boundary 
consists of V vertices, e edges, and / faces [15,16]. However, Descartes already found in 
1630 the following theorem: The sum of the plane angles of the faces of a polyhedron is 
If -\-2v - 4, and this equals twice the number of space angles, that is, edges; [8]. This 
implies the Euler formula. 

If one does not assume that faces are planar polygons and the edges straight lines one 
has to postulate that the edges are homeomorphic to segments. For weaker conditions 1813 
L'Huiher constructed counterexamples to the Euler polyhedron formula [21]. One of them 
is obtained from a polyhedron bounded by two spheres. Probably he was lead to this con
struction by the study of some crystals. 

Several mathematicians - among them Legendre, Cauchy, L'Huilier, v. Staudt, Schlafli, 
Listing, Jordan (a complete bibhography in [7]) - tried to get the Euler polyhedron the
orem for surfaces with nonlinear edges and faces. The first satisfactory proof is due to 
V. Staudt [33]. The authors assumed different geometrical conditions, only in 1861 Cay-
ley [6] and Listing [22] and in 1866 Jordan [18] recognized the topological nature of the 
Euler polyhedron formula. 

The generalization of the Euler polyhedron formula to 3-dimensional complexes em
bedded in R-̂  or S^ is due to Listing (1862), a student of Gauss, [22]. He also introduced 
the term Topologie and defined complexes. In a letter he explains how he got to the new 
concepts. We repeat part of it: 

... Die erste Idee, mich mit der Sache (i.e. topology) zu versuchen, ist mir durch 
mancherlei Vorkommnisse bei den pract. Arbeiten in der Sternwarte zu Gottingen und 
durch hingeworfene Aeusserungen von Gauss beigekommen 

Almost at the same time as Mobius (1858) he describes one-sided resp. non-orientable 
surfaces. 

The generalization of the Euler polyhedron theorem to convex polyhedra in arbitrary 
dimensions is due to Schlafli (1852); in the formulation, however, there are gaps of the 
same type as there used to be in the proof before v. Staudt's. 

Riemann applied and extended the arguments of the proof of the Euler polyhedron the
orem in his articles on the behavior of functions of one complex variable. He obtains sur
faces as branched coverings of (subsets of) the sphere by cutting and gluing several copies 
of the domain of the complex variable. He calculates the "Zusammenhangsordnung" of a 
surface (twice the genus) by determining - using modern terms - the rank of its first mod 
2 homology group. 

Since all surfaces and complexes were considered as embedded into R-̂ , non-orientable 
surfaces were found quite late. Mobius (1858) described the Mobius band, [23]. Klein 
found the first non-orientable closed surface in addition to the projective plane: the Klein 
bottle. He also distinguished between the notions "non-orientable" as a topological prop
erty of the space and "one-sided" as a property of the embedding of an /t-manifold into 
an {n -f l)-manifold. The properties "non-orientable" and "one-sided" have not been dis
tinguished by all authors, for instance, not by Poincare; in [7] Dehn and Heegaard used 
only the term one-sided, meaning non-orientable. v. Dyck [13] classified polyhedral closed 
surfaces by genus and orientabiUty. 



Development of the concept of a complex 105 

2. Complexes and homology 

The development of combinatorial and algebraic topology into an important mathemati
cal field is mainly due to the work of H. Poincare. Most of his ideas can be found in the 
note [25] and in the article [26]. He obtained that the alternating sum of the Betti numbers 
equals the alternating sum of the numbers of cells of different dimensions. His definitions 
and methods were often not precise and he had to correct them in later articles and this 
led to new rich concepts. For instance, in the study of manifolds and their homology -
responding to critical remarks of Heegaard [17] from 1898 - Poincare restricted himself to 
spaces decomposed into cells, to polyhedra. In [27] Poincare used complexes, considered 
as subspaces of M". The complex is determined by incidence matrices which state whether 
a /:-simplex is part of the boundary of a (/: + l)-simplex. SimpHcial complexes were known 
at that time, Poincare added subdivision properties. (The term "triangulation" had been in
troduced by Weyl [41].) Generahzing intersection properties of hnear subspaces in R" to 
submanifolds of n-dimensional manifolds (tacitly assumed to be orientable) Poincare ob
tained that the Betti numbers in the dimensions k and n — k coincide (Poincare duality the
orem). According to him this result was known to and applied by several mathematicians 
but not formulated as a theorem, [28]. The proof depends on the construction of dual bases 
and this is done by the "barycentric subdivision". These barycentric subdivisions can be 
applied to arbitrary cell decompositions and the result is an (abstract) simplicial complex; 
of course, the dual complex will not be simplicial even if the original one is simplicial. 

The first abstract definition of a complex was given in 1907 by Dehn and Heegaard [7]. 
The question to what extent the results are those of the space or only of complexes, the 
so called Hauptvermutung, was formulated in 1908 by Steinitz [34]. Using "abstract" con
structions of complexes Gieseking first described in 1912 a hyperbolic 3-manifold, see 
Chapter 15 of this book (3-manifolds). Brouwer introduced in 1911 simphcial mappings 
and showed the existence of a simplicial approximation of a continuous mapping between 
two polyhedra, [5]. 

3. Complexes and homotopy 

From the applications of complexes we have mentioned only those to homology. Let us 
now briefly recall another one: the fundamental group or first homotopy group TTI, also 
introduced by Poincare [26]. In general, it is difficult to calculate, even to describe the 
fundamental group. For the fundamental group of a complex, however, v. Dyck (1882) 
introduced a presentation (5" | /?) by a system S of generators corresponding to the edges 
and a system R of defining relators corresponding to the 2-dimensional cells [12]. Every 
group admitting a finite presentation can be realized as the fundamental group of a finite 
2-dimensional complex (or a closed orientable 4-manifold [31, p. 180]). The presentation 
of Jt\ depends on the complex and on the choice of a maximal tree; hence, the fundamental 
group of a polyhedron has many presentations and now the "isomorphy problem" of Tietze 
arises of deciding whether two presentations define isomorphic groups. In 1908 Tietze 
describes a procedure for connecting two presentations of the same group, [38]. But it turns 
out that, in general, the isomorphism problem cannot be decided by a finite algorithm. The 
narrow relationship between the theory of complexes and the combinatorial group theory 
has been studied in many articles and is still in mathematical research nowadays. 

The well-known Seifert-van Kampen theorem is obvious for complexes, see [30, 39]. 
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4. Formal foundation of PL-topology 

During the later twenties and the early thirties a group of authors was concerned with 
the problem of giving a solid foundation to the new branch of topology which was called 
"combinatorial". Among them were J.W. Alexander, E. Bilz, L.E.J. Brouwer, M. Dehn, 
5. Lefschetz, M.H.A. Newman, K. Reidemeister, A.W. Tucker, O. Veblen, J.H.C. White
head - an incomplete list. The central object - the complex, respectively the polyhedron -
was defined in various ways, which differed only slightly. The same holds for the notion 
of equivalence of complexes and the moves introduced to generate equivalence. In many 
contributions the special case of manifolds was considered which presented extra difficul
ties in its combinatorial version. The process of convergence was furthered by a paper of 
Alexander [1] which clearly had a lasting influence. His definition of a complex, "sym
bolic" or "rectiUnear", was generally accepted as well as his "simple transformations" and 
his elegant polynomial formalism. Preparatory work was done by Newman [24]. Accord
ing to Alexander an ^-simplex A = QQ - a\ - - - an is the product of its vertices «/, and a 
/:-component the product of any k-{-\ {k ^n) of these vertices. A (finite) complex TiT is a 
polynomial with coefficients in Z/2Z in variables at, the vertices; the homogeneous terms 
of degree ^ + 1 define a "symbolic <i-complex" which is the fundamental notion in this 
paper. (In [31] this is called a "pure" (rein) complex.) Each summand of the polynomial 
represents the simplex and its components defined by the variables that occur in it. The 
complex K (the boundary) consists of the {d — l)-components of K counted mod 2. This 
polynomial algebra can be used for a formal description of geometric operations in K: the 
product corresponds to the "join", and the boundary to a derivation. The crucial move -
a simple transformation - replaces K = A- P-[-Qhy a-A- P-{-Q, A'\^2i component of K, 
fl is a new vertex. This transformation and its inverse - (A, a)"^^ - generate the combinato
rial equivalence of complexes - together with isomorphisms. It is the "stellar" subdivision 
also written as: 

K -^ {K-A- link(A; /<:)) U (a • A • link(A; K)). 

There is a natural correspondence between symbolic complexes and rectilinear simplicial 
complexes. The latter is a space in some M^ composed of a finite set of Euclidean simplices 
such that any two simplices either are disjoint or have a face in common. The space -
a polyhedron - can be partitioned into simplices in many ways. Two rectilinear complexes 
are equivalent, if they possess isomorphic partitions. Alexander proves that combinatorial 
equivalence corresponds to the rectilinear one. 

Two German textbooks on combinatorial topology appeared in the thirties: One was the 
famous "Lehrbuch der Topologie" by Seifert and Threlfall, the other one was Reidemeis-
ter's "Topologie der Polyeder". The latter is a remarkable example of "purity in method". 
It presents all the current results of the time on the basis of a stricdy abstract combinatorial 
approach using consequently Alexander's polynomial algebra. Reidemeister's philosophi
cally inclined understanding of mathematics led him to insist on the importance of fixing 
clearly the logical pattern in which a theory was to be axiomatically developed. Seifert and 
Threlfall on the other side pragmatically declared themselves to the "methode mixte" in 
the preface of their book. Combinatorial arguments and the use of continuity are applied 
according to the situation in hand, an attitude that on the whole won the day. In the sense of 
Reidemeister's definition this book is not "on combinatorial topology" - it does not even 
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introduce the notion of equivalence for simplicial complexes, but uses simplicial approx
imation instead. It is, though, one of the most successful monographs on topology ever 
written; it was first published in 1934, reprinted as a Chelsea edition after the second world 
war, and finally translated into English in 1980. 

5. CW-complexes 

In the following decade, the forties, the theme of combinatorial topology was clearly dom
inated by J.H.W. Whitehead. He had been in Princeton on a Commonwealth Fund Fellow
ship (1929-1932), and under the influence of Veblen, Lefschetz and Alexander turned to 
combinatorial topology. In his fundamental paper [42], he expanded the theory of com
plexes significantly. Adjoining an n-simplex a" to a simplicial complex K, where all 
(n — l)-faces of a" but one belong to K, he called an "elementary expansion", the in
verse an elementary contraction (collapse). The equivalence generated by these moves is 
the "simple homotopy type" ofK-'m Whitehead's paper called "nucleus". He proved 
that it is a combinatorial invariant. Another fundamental concept developed in this paper 
was that of a "regular neighbourhood L̂ " of a finite subcomplex ^ in a combinatorial 
n-manifold. t/ is a combinatorial n-manifold collapsing onto K with regard to a suitable 
subdivision. It exists uniquely up to equivalence. Whitehead proves a number of important 
theorems relating his nuclei to homotopy type in this and the subsequent paper [43], e.g., 
the homotopy classification of lens spaces. The complexes used in these papers are still 
of a piecewise linear structure, though Whitehead abandons the classical simplicial com
plex in favour of what he calls a "membrane complex". The n-simplices are replaced by 
^-elements in the sense of Newman, that is, by combinatorial n-cells E^. The definition of 
a membrane complex K is given by induction on n, attaching £" to the {n — l)-skeleton 
f[(n-i) ^y ^ simplicial map dE" -> K^'^~^^ not necessarily injective. The inductive pro
cedure was already employed by Veblen [40] in the definition of a simplicial complex, and 
will reappear in the definition of CW-complexes. 

Several other generalizations and variations of complexes are used by different authors. 
Lefschetz in [20] introduces a "topological simplicial complex", a homeomorphic image 
of a rectilinear one, or, in a simplicial complex simplices are grouped together to "blocks" 
or "cells" to form a "cell complex". Such a cell can be characterized in different ways, i.e. 
by imposing certain homological conditions [31]. 

It seems that the encumbrances which arose in the homotopy theory of complexes in
duced Whitehead to seek a more general and flexible notion of complex. 

In [43] he developed the adequate concept, his closure-finite cell-complex with the weak 
topology. Such a complex K is built of topological cells by attaching inductively n-cells 
e" to the (n — 1)-skeleton ^^"~^^ of ^ : The continuous attaching map maps the boundary 
de^l into a finite subcomplex of K^^^~^^ but leaves the interiors of the n-cells ^" disjoint 
from ^("~^) and from each other. This concept proved to be immensely useful. For ex
ample, homotopy equivalence can be characterized by the classical algebraic invariants, 
the homotopy groups ni, for CW-complexes. If two homotopy equivalence classes [Z], 
[Y] can be represented by CW-complexes X, Y, then [X] = [Y] <^ 7r/(X) = ni(Y) 
for all / = 0, 1 , . . . , where the isomorphisms are supposed to be induced by a mapping 
f :X -^ Y. Using CW-complexes it is rather easy to construct examples with given homo
topy groups. Also the cellular homology which belongs in a natural way to a CW-complex 
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provides a comfortable bridge between simplicial and singular homology. Dowker's metric 
complexes should be mentioned [11]. They consist of affine cells, and are not required to 
be countable or star-finite. The topology induced by the metric is coarser than Whitehead's. 

6. PL-results and problems 

Of course, simpHcial complexes remained alive in spite of the introduction of Whitehead's 
CW-complexes, especially in low dimensions. Here, in dimensions ^ 3 the Hauptvermu-
tung for closed manifolds was proved by Moise, see Chapter 16 of this book (Hauptvermu-
tung). But also in higher dimensions piecewise linear topology (PL-topology) remained a 
category of interest in itself. An expository paper by W. Graeub (= Greub) of 1950 is mer
itorious in which PL-techniques are described from scratch and which contains a detailed 
proof of Alexander's theorem which states that any simplicially embedded 2-sphere in a 
3-sphere separates the latter into two simplicial 3-balls. 

One reason for the lasting interest in the concept of complex, simpHcial or CW, espe
cially in low dimensions, is the theory of groups. Every group can be realized as the fun
damental group of a 2-dimensional complex which is the starting point of combinatorial 
group theory. Covering theory leads to the concept of the Cayley graph (Dehn's Gruppen-
bild), a 1-complex with additional structure (coloured). 

These combinatorial methods have produced a wealth of group-theoretical results which 
seem to be out of reach by purely algebraic arguments. Buildings are examples in higher 
dimensions. 

The theory of 2-complexes poses a couple of crucial (and unsolved) problems: The 
Andrews-Curtis conjecture [3] which states that a group presentation associated with a 
finite contractible CW-complex should be transformable into the trivial (empty) presenta
tion by certain elementary operations (2**-transformations) on generators and relators. 

Zeeman's conjecture claims [47] that a compact contractible polyhedron K'^ has the 
property, that the product K^ x I with the unit interval / collapses to a point, AT̂  x / \ *, 
meaning that a finite sequence of Whitehead's elementary contractions will reduce K^ x I 
to a point. Both conjectures are closely related to the 3-dimensional Poincare conjec
ture - Zeeman's conjecture implies it. Finally, there is a conjecture by Whitehead him
self [44]: Let Â ^ be a connected 2-dimensional CW-complex and Tt2K^ = 0 (Â ^ is aspher-
ical). Whitehead conjectures that every connected subcomplex L C AT is also aspherical, 
nil = 0. 

In the case of higher dimensions the PL-view can offer fundamental or computational 
simphfications, for instance in the theory of obstructions. 

In the sixties Zeeman and Stallings obtained striking results in the field of PL-topology. 
Zeeman's "Seminar on combinatorial topology" [46] gave a thorough and up-to-date intro
duction to the theory. He used a modified definition for a polyhedron and its equivalence 
class: A set X is endowed with a "polystructure" if there is a PL-atlas whose charts are in-
jective maps from finite Euchdean simplicial complexes into X with connecting functions 
which are PL-embeddings. The concept mirrors the usual procedure of putting a differen
tial or geometric structure on a manifold. A polyhedral space then is a set X furnished with 
a polystructure. Thus a polyhedral category can be constructed in the obvious way, sup
plied with a natural notion of equivalence. The polyhedral category does not only contain 
polyhedra in the usual sense, but they are contained in it. 
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The seminar notes contain Zeeman's results on unknotting of pairs of spheres or balls 
for codimension ^ 3 in the PL-category. They retain their special importance since they 
differ from corresponding results in the topological or differentiable category. Among other 
things the topic of "engulfing" is introduced and treated which leads to a proof of the 
generalized Poincare conjecture in the PL-case for dimensions ^ 5, [32, 45]. 
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CHAPTER 5 

Differential Forms 

Victor J. Katz 
University of the District of Columbia, USA 

Differential forms are defined (loosely) as "things which occur under integral signs", that 
is, expressions of the form 

^ — / ^ Ja\oi2..-oik ^ci\ ^^ai ' • • ^^ai(^ 

where the summation is taken over all /c-tuples (ai, ^ 2 , . . . , of/t), with 1 ^ ai < 0̂2 < • • • 
< ajc ^ n, and the fa are differentiable function in some region of n-dimensional space. 
Such a form will be called a k-fonn in n-space. In this article, we will discuss the history 
of these things in relation to differential topology. In fact, it was the study of integration 
of differential forms in certain regions which was one of the roots of subject of differential 
topology. 

Although the subject of differential forms can be traced back to eighteenth century work 
on differential equations, the connection with topology was first made by Augustin-Louis 
Cauchy (1789-1857) in two papers of 1846 dealing with 1-forms in w-space. These papers 
contained the bare statement of several theorems, without proofs. Cauchy promised to 
provide the proofs later, but apparendy did not do so. The theorems deal with a function k 
of several variables x, y, z, . . . which is to be integrated along the boundary curve F of a 
surface S lying in a space of an unspecified number of dimensions. The most important 
results are collected in the following: 

THEOREM. Suppose 

as as as 

where X dx -\- Y dy -jr Zdz -\- - - - is an exact differential. (To say that this differential is 
exact is to say that dX/dy = SY/dx, dX/dz — dZ/dx, SY/dz = dZ/dy, . . . .) Suppose 
that the function k is finite and continuous everywhere on S except at finitely many points 
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P, P', P", .. An its interior. Ifa,p,y,...are closed curves in S surrounding these points, 
respectively, then 

' + •• 
'y 

/ kds = kds-^ kds+ kds 
Jr Ja Jp Jy 

In particular, if there are no such singular points, then 

kds = 0. L 
In the 2-dimensional case, where S is a region of the plane and k is an arbitrary differential, 
then 

Ifk is an exact differential, then dX/dy = 97/9^, so the right side, and therefore the left, 
vanish [9, 10]. 

Although we can derive the Cauchy integral theorem from the last statement, more in
teresting for our purposes is the appearance here both of the concept of a line integral in 
«-dimensional space and of the statement (in the next to the last sentence) of the theo
rem today generally known as Green's theorem. Finally, the expression of the line integral 
around the boundary of the surface as a sum of line integrals around isolated singular 
points, whose values are called periods, marked the beginning of the study of the relation
ships of integrals to surfaces over which they are not defined everywhere. Cauchy noticed 
in fact that if the path of integration goes m times around P, m' times around P', m" times 
ai'ound P", and so on, and if the periods for these points are designated by I, I\ P\ and 
so on, then f kds can be written as m/ + m^f + m^'P^ + • • •. But because Cauchy never 
published the proof of this theorem, one can only speculate as to how far he carried all of 
these new concepts. 

It was Bernhard Riemann (1826-1866) who restated Cauchy's results a few years later, 
with full proofs, and extended the result on periods far beyond Cauchy's conception. As 
part of this process, he introduced the basic ideas of what we now call the topology of a 
Riemann surface. In other words, instead of concentrating on the points of discontinuity of 
the coefficient functions of the differential form, he focused his attention on the connect
edness of the domains over which they were defined. In 1851, he sketched this idea in his 
dissertation, but he explained it more fully in a paper of 1857. 

Riemann began by observing that the integral of an exact differential X dx -{-Y dy van
ished when taken over the perimeter of a region of the (Riemann) surface R which covers 
the x-y plane. He then continued: 

Hence, the integral /(Xdx + Y dy) has the same value when taken between two fixed 
points along two different paths, provided the two paths together form the entire bound-
ai'y of a region of R. Thus, if every closed curve in the interior of R bounds a region 
of R, then the integral always has the same value when taken from a fixed initial point to 
one and the same endpoint, and is a condnuous funcfion of the position of the endpoint 
which is independent of the path of integration. This gives rise to a distinction among 
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surfaces: simply connected ones, in which every closed curve bounds a region of the 
surface - as, for example, a disk - and multiply connected ones, for which this does not 
happen - as, for example, an annulus bounded by two concentric circles [3, pp. 52, 53], 
[23]. 

Riemann proceeded to refine the notion of multiple connectedness: "A surface F is said 
to be {n + l)-ply connected when n closed curves A i , . . . , A„ can be drawn on it which 
neither individually nor in combination bound a region of F, while if augmented by any 
other closed curve A„-|-i, the set bounds some region of F" [23], [3, p. 53]. Riemann noted 
further that an (n + l)-ply connected surface can be changed into an n-p\y connected one 
by means of a cut, a curve going from one boundary point through the interior to another 
boundary point. For example, an annulus, which is doubly connected, can be reduced to 
a simply connected region by any cut q which does not disconnect it. A double annulus 
needs two cuts to be reduced to a simply connected region. 

Using the idea of cuts, Riemann was able to describe exactly what happened when one 
integrated an exact differential on an (n + l)-ply connected surface R. If one removes n 
cuts from this surface, there remains a simply connected surface R\ Integration of the exact 
differential X dx-\-Y dy from a fixed starting point over any curve in R^ then determines, as 
before, a single-valued continuous function Z of position on this surface. However, when
ever the path of integration crosses a cut, the value jumps by a fixed number dependent on 
the cut. There are n such numbers, one for each cut. This notion of multiple connectedness 
turned out to be important in physics, particularly in fluid dynamics and electromagnetism, 
and so it was extended to regions of 3-dimensional space by such physicists as Hermann 
von Helmholtz (1821-1894), William Thomson (1824-1907), and Clerk Maxwell (1831-
1879). 

Helmholtz extended Riemann's definition to 3-dimensional regions in a paper of 1858: 
"An n-ply connected space (in 3-dimensional space) is one which can be cut through by 
n — 1, but no more, surfaces without being separated into two detached portions" [15, 
p. 27]. Thus Helmholtz's surfaces replaced Riemann's cuts. Helmholtz noted that certain 
important theorems in potential theory failed to hold in a multiply connected region pre
cisely because integrals of exact differentials could not then be considered as single-valued 
functions. 

The British physicists picked up on Helmholtz's ideas shortly after his paper was trans
lated into English. Thomson in 1869 explained what happened when line integrals were 
taken in an n-ply connected 3-dimensional space. He illustrated his discussion with pic
tures of pretzel-like regions and interconnected rings. Using Helmholtz's definition of 
n-ply connected spaces, he defined numbers analogous to Cauchy's periods. Namely, if 
F ds = udx -\- vdy -{- wdz i^ ^n exact differential and fii is one of Helmholtz's barrier 
surfaces, then, if points P and Q are "each infinitely near a point B of ^i, but on the two 
sides of this surface," he defined /c/ to be / F d̂  taken along any curve in the space joining 
P and Q without cutting any other barrier fi. Thomson showed that this value is the same 
for any such curve and for any point B on fij [24, pp. 43, 44]. 

A few years later, Maxwell further generahzed this idea [18]. Namely, if a closed curve 
r passes m/ times through fi,-, then the corresponding line integral fp F ds will be given 
by 

/ Fds = miKi-\-m2fC2-\ VmnKn-
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Around the same time, Enrico Betti (1823-1892) generalized this notion even further, by 
defining connectivity in n-dimensional spaces. 

Betti's definition was as follows: For each dimension m < n,3. region R is said to have 
m-dimensional order of connectivity p,n -\-l, if there are p,n closed m-dimensional spaces 
A\, A2,..., Ap^^^ in R, which together do not form the boundary of a connected (m + 1)-
dimensional region of R, while any additional closed m-dimensional space together with 
some subset of the {Ay} forms such a boundary [2]. (A closed space, for Betti, was one 
without a boundary.) So, for example, in a region whose m-dimensional order of connec
tivity is 1, any closed m-dimensional space is the boundary of an (m -\- l)-dimensional 
space. For n = 2 and m = 1, Betti's definition is the same as Riemann's original defini
tion. We should note, of course, that Betti's definition requires a theorem to show that it is 
consistent. Betti provided one, but his proof was deficient. The situation was not entirely 
clarified until the work of Poincare. 

Generalizing the work of Riemann, Betti showed that to make a space simply con
nected (1-ply connected) in the m-th dimension, one had to remove from it p,n (n — m)-
dimensional cross-sections. For example, if m = 1, one must remove p\ (n — 1)-
dimensional cross-sections from R to make the remainder R^ simply connected in the first 
dimension. 

Betti then went on to compare n-fo\d integrals with (n — l)-fold integrals. For example, 
he considered an n-dimensional region R bounded by t closed {n — 1)-dimensional spaces 
Si, S2, • •', St, given respectively by equations Fi = 0, F2 = 0, . . . , F̂  = 0 . We will 
just consider the case t = I, where the hypersurface S is given by the equation F = 0. If 
f\^ f2, •' •, fn are functions on R, Betti's aim was to express the w-fold integral 

/ . 

in terms of an (n — 1 )-fold integral. To do this, he parametrized the hypersurface 5 through n 
parameters Zi = Zi(ui, ^ 2 , . . . , W/i-i) (/ = 1, 2 , . . . , n) and then, via a proof generalizing 
the fundamental theorem of calculus, showed that 

y^C-l) ' / ! ' ^, ' ' ' ' " " dMid^2-»-d^n-i, 
^ d(UuU2, ...,Un-l) 

where the integral is taken over the appropriate parametric region in (n — l)-space. Qn can 
be expressed more simply as 

^n= / V ( - l ) ' 7 ; d z i . . . d £ / . . . d z , , . IP-"' 
This result of Betti's generalizes the classical divergence theorem. He also noted that 

if the space R is simply connected in the {n — l)-st dimension, then any two (n — 1)-
dimensional regions having the same boundary F together form a closed space. Thus, we 
note that if J2 ^fi/^Zi = 0, then the integral / ^{-lY fi dzi . . . d£/ . . . dz„ will always 
have the same value over any spaces with boundary F . 
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Betti also generalized the classical Stokes' theorem, by looking at one-forms ^ X/ dzi 
in n-dimensional space. Assuming that the curve y represented by Zi = n (u) bounds the 
region C given by Zi = Zi (v\, V2), he defined the integral 

and calculated that this expression is equal to 

Betti then assumed that the region R had connectivity p + 1 in the first dimension. This 
means that there are p (n — 1)-dimensional cross-sections ^i, ^2, • • •, Sp, such that on re
moving these sections from R, the remainder R^ will be simply connected. Furthermore, 
there are p closed curves L\, L2, . . . , Lp, which, respectively, meet the sections 5/, and 
such that any other closed curve y forms with the L's the boundary of a 2-dimensional 
space C. Betti could then conclude that if dXj/dzj — dXj/dzi = 0 for all i, j , then 
/ J2 ^i ^^i = 0' where the integral is taken over the entire boundary system of C, namely, 
y, Li, L2, . . . , Lp. It follows that if Mt = Ji^Yl ^i ^^/' ^^en "the integral / ^ X/ dz/, 
taken from zo^o z\ along any curve which meets certain sections Sj, differs from that taken 
along any curve from zo to zi which does not meet any of the sections Sj by the quantities 
Mj relative to the intersected sections Sj; these quantities are taken to be positive or nega
tive depending on whether they [the curves] intersect the section [while] progressing in one 
or the other direction" [2, p. 158]. Hence, if R is simply connected in the first dimension, 
"the integral taken along any curve in R from zo to z\ always has the same value." It is 
easy to see that this result is the same as Maxwell's result, except, of course, that it is vaHd 
for an arbitrary number of dimensions. 

The conditions above insuring that the line integral / ^ Xi dzi is independent of the 
path of integration and depends only on the endpoints in a simply connected space were 
called the integrability conditions by Henri Poincare (1854-1912) in 1887. He used this 
name because these conditions imply the existence of an "integral" for ^ Xi dz, that is, a 
function / such that d / = ^ X, dz/. Poincare went on to consider similar conditions for 
surface integrals in n-dimensional space, motivated by the aim of generalizing the work of 
Cauchy on functions of one complex variable to functions of two complex variables [20]. 

Poincare succeeded in this aim, although in the process he had to consider surface inte
grals of real functions in n-space, namely integrals of the form 

-HT. J= II 2^(Xi,Xk)dxidxk, 

where each symbol (X/, Xk) denotes a function of the n variables jc/, where (Xk, Xk) = 0 
and (X/, Xk) = — (Xjt, X/) for all values of / and k; and where the summation is taken over 
all pairs of indices. Poincare defined this integral by parametrizing the surface, thereby 
converting J into an ordinary double integral in the plane. He was careful to remark that 
the order of integration of the parametric variables was crucial; this was his reason for 
insisting on the skew symmetry of the functions (X/, X^). 
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Poincare went on to derive the integrability conditions he was seeking, namely, the con
ditions under which the integral does not depend on the surface of integration, but only on 
the boundary curve. These conditions turned out to be the conditions 

d{Xi,Xk) ^ d(Xk,Xh) ^ d(x,r,Xi) ^^ 

dxh dxi dxjc 

In essence, the case n = 3 of this result had been known to Betti, but Poincare 's proof was 
different from that of Betti. In addition, the case n = 4 gave Poincare the result he wanted 
for functions of two complex variables. 

Having obtained the result for 2-dimensional integrals, Poincare then generahzed it to 
integrals of higher order. Thus , for a triple integral of the form 

/ / / X]^^"' ^^' ^y^^^^^^^^y 

where the symbols (Xa, X^, Xy) satisfy analogous properties to those for functions of 
two variables, the conditions under which the integral only depends on the 2-dimensional 
boundary of the 3-dimensional space over which the integral is taken are 

djXg, Xp, Xy) ^ d{X^, Xy, X s) 9 (Xy , X^ , Xg) 3 (X S , Xg, X ^) _ 

9X5 9-^Q; 9 X ^ dXy 

Poincare noted that similar results would hold in any dimension, with the signs between 
the individual terms alternating in the odd-dimensional cases and always being positive in 
the even-dimensional cases. Vito Volterra (1860-1940) , in fact, wrote out and proved these 
condit ions in full in 1889, although in terms of solutions of partial differential equations 
rather than in terms of integrals depending on boundaries [26]. 

Now both Poincare and Volterra in these results had assumed connectivity of the domain 
only in the sense that the functions involved could not have any singularities in the regions 
of integration. But in 1895, Poincare discussed what happened to integrals over regions 
of multiple connectivity. In his fundamental paper "Analysis Situs", Poincare defined the 
notions of homology and Betti number, further clarifying these four years later: A homol
ogy relation exists among p-dimensional subvarieties vi , V2, . . . , v,- of an /7-dimensional 
variety V, written 

vi -t- V2 H h V;- -^ 0 , 

if for some integer k, the set consisting oik copies of each of the y/ constitutes the complete 
boundary of a ( p -j- l ) -d imensional subvariety W [21 , p . 203] , [22, p . 291] . (A "variety" 
for Poincare (now generally called a manifold in English) was the generalization to higher 
dimensions of a curve in one dimension or a surface in two dimensions and was generally 
thought of as being defined, at least locally, either as the set of zeroes of an appropriate sys
tem of functions or parametrically as the image of a certain set of such functions.) Poincare 
introduced "negat ives" of varieties by considering orientation. That is, — v is the same va
riety as V but with the opposite orientation. As an example of a homology relation, let vi 
and V2 be the outer and inner boundaries respectively of a ring, with opposite orientations. 
Then v\ and V2 together form the complete boundary of the ring, and, since —V2 has the 
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opposite orientation as V2, the relation vi — y2 ~ 0 holds. Poincare further observed that the 
varieties in homology relations can be added, subtracted, and multiplied by integers and 
therefore was able to call a set of varieties linearly independent if there were no homology 
relation among them with integer coefficients. 

To clarify the notion of multiple-connectedness, Poincare went on to define the p-dimen-
sional Betti number Bp of a variety V to be one more than the maximum number of linearly 
independent, closed, p-dimensional subvarieties, where a closed variety is one without a 
boundary. Thus according to Poincare the one-dimensional Betti number of the ring is 2, 
while that of the double ring is 3. On the other hand, the one-dimensional Betti number 
of the disc is 1. (Poincare's definition is nearly the same as that of Betti; the difference is 
that Betti had failed to consider the possibiHty that a multiple of a variety was a boundary, 
while the variety itself was not. On the other hand, the definitions of both were modified 
in the 1920s, when the p-dimensional Betti number was defined to be exactly the number 
of independent, closed /7-dimensional subvarieties. Today, however, the Betti number is 
defined to be the rank or dimension of a particular homology or cohomology group.) 

Having defined the Betti numbers, Poincare was ready to consider integrals of the form 

I / ^ ^a\...ap d^ai • • • ^XQ 

where the integrals are now taken over multiply-connected varieties. He then generalized 
his earlier result on the integrability conditions: If the complete boundary of an (m -f 1)-
dimensional variety W is composed of k m-dimensional varieties Y\, Vj, . . . , Vk, then, 
assuming the integrability conditions are satisfied, the algebraic sum of the integrals over 
the Vi will also be zero. 

Hence, since there are B,n — 1 independent closed m-dimensional varieties Vi, V2,. . . , 
yB,n~i such that any closed variety U is (up to homology) a linear combination of these and 
since, therefore, a multiple of U together with the same multiple of this linear combination 
forms the boundary of an (m + l)-dimensional variety, Poincare could conclude that the 
integral taken over U is simply a linear combination of the values that the integral takes 
over the V/. Poincare called these values, which are the generalizations of similar values 
appearing in the works of other authors, the periods of the integral. In fact, he noted that 
Betti had essentially come to the same conclusion, but only for dimensions 1 and n — 1. 
Poincare knew, naturally, that the maximum number of linearly independent periods is 
equal to B,n — 1, but he also claimed, without proof, that there always exist integrals for 
which the maximum number of periods is attained [21, p. 95]. A full explanation and proof 
of this remark took another thirty years. 

Even though Poincare had extensively used differential forms and showed how to inte
grate them, they still lacked even a formal definition. This was provided in 1899 by Elie 
Cartan (1869-1951) [5]. His definition was a "purely symboHc" one; namely, he defined 
"differential expressions" as homogeneous expressions formed by a finite number of ad
ditions and multiplications of the differentials djc, dy, dz, . . . and certain differentiable 
coefficient functions. Thus, for instance, Adx -^ B dy was a first degree expression and 
A dx dj 4- B dzdy was a second degree expression. These forms were to have as their 
algebra the exterior algebra of Hermann Grassmann (1809-1877). His work, though orig
inally neglected when it appeared in 1844, had by the late 19-th century been discussed 
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by many mathematicians. In fact, Cartan in 1908 wrote an encyclopedia article explaining 
Grassmann's work [7]. 

The major idea for Cartan was the exterior multiplication starting with an «-dimensional 
real vector space V\ namely, there are to be n independent "units" of the first class s\, £2, 
..., £n in V with an associative multiplication characterized by the relations SjSj = 0 
and £i8j = —£j£i. Of course these elements £i£j are no longer in V but in a new vector 
space of dimension n(n — I)/2 in which the independent units (of the second class) are the 
elements £ij = £i£j, where \ ^ i < j ^ n. One can similarly define units of the ^-th class 
for any k with 0 ^ k ^ n; there are then n\/k\{n —k)\ such units. 

For Cartan, the units of the first class were the differentials djc/, / = 1, 2 , . . . , n, while 
the units of higher classes were simply formal products of these differentials. Interestingly, 
Cartan had already used these Grassmannian rules with very little comment in a paper 
of 1896 [4], in which he even showed that formal multipHcation of the differential forms 
dw = {du/dx) djc + {du/dy) d j and &v = {dv/dx) dx + {dv/dy) dy gave the change-of-
variable formula for double integrals: 

du av = ax ay. 
d{x,y) 

Besides developing the algebra of differential forms, Cartan also developed their calcu
lus. Namely, in [5] he defined the derived expression (now called the exterior derivative) of 
a one-form co = Y^Aj dxi to be the two-form do; = ^ dA/ dxj. For example, the derived 
expression of the form co = A dx -]- Bdy is the form 

f^^A ^^A\. f^B . ^^.\A (^^ ^^\. . 

^'''=^\j-x^''--B^^'r^\j-x^^-3^v^^ 
Note that this derived expression appears in the statement of Green's theorem, while the 
exterior derivative of the one-form A dx-\- B dy -\-C dz appears in the statement of Stokes' 
theorem. In 1901, Cartan generalized his definition of the exterior derivative to forms of 
any degree [6]. Namely, if a; = ^ ciij,,± dx/ dxj . . . dxk, then the exterior derivative dco is 
defined to be Yl ^^ij...k dJC/ dxj . . . djĉ :. It is straightforward to show then that the exterior 
derivative of the two-form Adydz + Bdzdx-{-Cdxdyis the 3-form 

dA dB dC\ , , , 
\ \ ]dxdydz, 

dx dy dz) 

the expression which shows up in the divergence theorem. 
Although Cartan realized that these three theorems of vector calculus could be easily 

stated using differential forms, it was Edouard Goursat (1858-1936) in 1917 who first 
noted that these theorems were all special cases of a generalized Stokes' theorem, which 
could be written in the simple form 

JS JT 
dco, 

T 

where a; is a p-form in /2-space, and S is the jp-dimensional boundary of the (/? H- 1)-
dimensional region T [14]. (This general theorem had already been stated, in coordinate 
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form, by Volterra in 1889 in [25].) Goursat also used differential forms to state and prove 
the Poincare lemma and its converse, namely, that if a> is a p-form, then do) = 0 if and 
only if there is a (/? - l)-form rj with co = dr]. Goursat did not notice, however, that the 
"only if" part of the result depends on the domain of co and is not true in general. 

Cartan in 1922 gave a counterexample [8]. Namely, he noted that the two-form 

xdydz-hydzdx + zdxdy 
^ = (x2 + 3;2 +^2)3/2 ' 

defined in D = R^ — 0 had the property that dco = 0, but that there could not be a 
one-form r] defined in D with dr] = co. For if such an Y] existed, then by Stokes' theorem, 
with E being the unit sphere and dE its boundary, f^o) = f^ dr] = /^^ r? = 0, since 
the sphere has no boundary. On the other hand, a straightforward calculation shows that 
J^o) = An. Thus, the Poincare lemma impHes that R^ is cohomologically trivial, while 
Cartan's example shows that with manifolds whose higher order Betti numbers are positive, 
one needs to refine this result considerably. This work was accomphshed by Cartan and 
Georges DeRham in the following decade. 

To understand the work of DeRham, we need a quick review of the progress in alge
braic topology after Poincare's original papers of the late 1890s. The basic change was that 
Poincare's varieties were replaced by simplexes and complexes. That is, the p-dimensional 
submanifolds were considered not as solutions to systems of equations but as being formed 
from certain simple p-dimensional manifolds, each of which was the continuous image of 
a p-dimensional "triangle". The appropriate definitions were completely worked out by 
James W. Alexander (1888-1971) by 1926 when he defined a p-simplex to be the p-di-
mensional analogue of a triangle and a complex to be a finite set of simplexes such that 
no two had an interior point in common and such that every face of a simplex of the set 
was also a simplex of the set [1]. An elementary /-chain of a complex was defined to be 
an expression of the form zbVoV̂ i • • • V'/, where the Vs are vertices of an /-simplex. The 
expression changes sign upon any transposition of the Vs, thus giving each chain an ori
entation. An elementary /-chain was then an /-dimensional "face" of a p-simplex, while 
an arbitrary /-chain was a linear combination of elementary /-chains with integer coeffi
cients. As an example, the tetrahedron with vertices VQ, ̂ i , V2, V3 is a 3-simplex while it 
together with its four faces (each a 2-simplex), its four edges (each a 1-simplex), and its 
four vertices (each a 0-simplex), form a complex. The face VQVI V2 is then an elementary 
2-chain of the 3-simplex. Alexander next defined the boundary of the elementary /-chain 
K = VoVi... Vi to be the (/ - l)-chain K' = J2(-iyVo .. .Vs... V/ and extended this to 
arbitrary /-chains by Unearity. Thus the boundary of VoV\ V2 is VQ^I — VQV2 + VQVi. An 
easy calculation with this example shows that the boundary of the boundary is zero, and 
one can show that this result is true in general. 

Alexander gave his definition of homology applied to closed chains (cycles), chains 
whose boundary is zero. Namely, a closed chain K is homologous to zero, K ^ 0,if it is 
the boundary of a chain L. Two chains K and Â * are homologous, K ^ K'^^if K — K"^ is 
homologous to zero. The p-th Betti number of a complex is then the maximum number of 
closed /^-chains which are linearly independent with respect to boundary, that is, such that 
no linear combination is homologous to zero. (Note that this number is one less than the 
number according to Poincare's original definition.) 
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With a commutative operation ("addition") having an inverse being considered on the 
set of closed chains, it should be clear to modern readers that there is a group hiding among 
Alexander's definitions. It was Emmy Noether (1882-1935) who suggested to the Gottin-
gen mathematicians in the late 1920's that they apply group-theoretic ideas to combinato
rial topology. As Pavel Aleksandrov (1896-1982) put it in his address in her memory, 

When in the course of our lectures she first became acquainted with a systematic con-
stmction of combinatorial topology, she immediately observed that it would be worth
while to study directly the groups of algebraic complexes and cycles of a given poly
hedron and the subgroup of the cycle group consisting of cycles homologous to zero; 
instead of the usual definidon of Betd numbers and torsion coefficients, she suggested 
immediately defining the Betti group as the (quotient) group of the group of all cycles 
by the subgroup of cycles homologous to zero [13, p. 130]. 

With Noether's remarks and the subsequent pubhcadons of Leopold Vietoris (1891-) and 
Heinz Hopf (1894-1971), the subject of algebraic topology began in earnest. Vietoris in 
1927 defined the homology group H(A) of a complex A to be the quodent group of cy
cles modulo boundaries, as Noether recommended. About the same time, Hopf defined 
several other AbeUan groups, namely, the groups LP, Z^, RP, and R^ generated by the p-
simplexes, the j!7-cycles, the p-boundaries (those chains which were the boundary of some 
chain), and the p-boundary-divisors (those chains for which a multiple was a boundary), 
respectively. Then for Hopf, the factor group Bp = Z^/R^ was a free group (a group none 
of whose elements had a muldple equal to 0) whose rank (the number of basis elements) 
turned out to be the p-th Betd number of the complex [16]. 

]VIatters progressed so quickly in this new field that just a year later Walther IMiayer 
(1887-1948) pubUshed an axiom system for defining homology groups [19]. Namely, 
Mayer was no longer concerned with the topological complexes themselves, but solely 
with the algebraic operadons which were defined on them. Thus a complex ring U was a 
collection of elements (complexes) K^P\ to each of which was attached a dimension p. The 
/7-dimensional elements formed a finitely generated free Abelian group K^. For each p, 
a homomorphism Rp.K^" -^ K^'^ is defined such that Rp-\{Rp{KP)) = 0. (Rp is 
called the p-th boundary operator. Often, one just uses R, without subscripts, and then 
writes the last equation in the form R^ = 0.) Given these axioms, Mayer defined the group 
of /7-cycles C^ to be those elements K of RP for which R{K) = 0 and the group of 
p-boundaries iobt RiK^^^). Modifying Hopf's definidon sHghtly, he defined the p-th 
homology group of Z to be the factor group Hp(U) = CP/RiKP-^^). 

Using these definidons, DeRham in 1931 was able to complete the generalizadon of 
Poincare's lemma in the way which Poincare had indicated earUer. In his doctoral disserta
tion of that year, pubhshed in [11], DeRham first defined the ^-chains, namely, the objects 
over which differential g-forms are to be integrated in a variety V. An elementary ^-chain 
c^ is the differendable homeomorphic image in V of a convex ^-dimensional polyhedron T 
(a ^-simplex) while an arbitrary ^-chain is a linear combination of elementary ones with 
integral coefficients. The boundary of an elementary ^-chain is the chain formed by re-
stricdng c^ to all of the faces of T in turn with appropriate signs. Then if a; is a ̂ -form and 
c is a ^-chain, /^ co is defined by "pulling back" everything to the appropriate polyhedra 
and performing an ordinary integration there. 

Next DeRham made explicit the analogies between forms and chains by introducing def
inidons for the forms to match the corresponding definidons for chains: A form co is closed 
if its exterior derivadve dco is 0 while a chain c is closed if its boundary is 0. A ^-form co is 
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homologous to zero if there is a (^ — l)-form rj with drj = co, while a (̂ r-chain is homolo
gous to zero if there is a (^ + l)-chain C whose boundary is c. Both the derivative and the 
boundary operators give zero when repeated. By the generalized Stokes' theorem, there
fore, the integral of a form homologous to zero over a closed chain is zero, as is the integral 
of a closed form over a chain homologous to zero. Finally, DeRham assumed that V has a 
"polyhedral subdivision", that is, there is a finite system of elementary chains [af] which 
"form" V. In other words, V has a differentiable triangulation. Under this hypothesis, he 
demonstrated that for each q there are a finite number pq of "elementary" closed ^-forms 
such that every closed ^-form is homologous to a Hnear combination of these elementary 
ones and also a finite number p^ of elementary closed ^-chains with the same property. 
It is perhaps surprising that DeRham did not mention one further analogy. He did define 
the homology groups for a chain complex as Mayer had. But although the forms satisfy 
essentially the same axioms as the chains, he made no mention of defining similar groups 
for them. 

In a private communication, DeRham said that he saw no reason to introduce these "co-
homology" groups at the time since they are nothing but the homology groups of the recip
rocal complex. In particular, in an n-dimensional manifold, a ^-chain and an (n — q)-foTm 
are simply two aspects of the same more general notion which DeRham later developed 
extensively under the name "current". 

In any case, after defining the period of a closed form co over a closed chain c to be 
f^ CO, DeRham completed the analogies with three important theorems. First, a closed form 
of which all the periods are zero is homologous to zero. Second, given p closed ^-chains 
among which there is no homology (therefore p ^ p^), there exists a closed ^-form which, 
integrated over these ^-chains, gives p given values. (This is the result stated earUer by 
Poincare.) Third, if Bq is the ^-th Betti number of the complex of the {A?}, then Bq = 
p^ = p' In current terminology, these theorems say that for each q, the singular homology 
group Hq(V, R) and the differential cohomology group //^ (V) are dual real vector spaces 
via the operation f^ co. 

Within the next few years, cohomology groups were in fact introduced. First, Eduard 
Kahler in 1932-1934 defined the ring of differential forms essentially as a module over the 
ring of functions in n-space generated by "symbols" dx, d(x/, Xk),..., d(x/,, x/2,.. •, ^z^) 
with appropriate operations [17]. And DeRham himself, in lectures delivered in Hamburg 
in 1938, called this type of ring an "alternating ring", noting of course that the "integrands 
in n-dimensional space, otherwise called differential forms", are a prime example [12]. He 
further defined the exterior derivative, then noted that the subring of "total forms" - those 
which are homologous to zero - is an ideal in the subring of closed forms. Hence, one 
can consider the residue class ring, that is the "cohomology ring" as a graded ring, each 
dimension of which is a "cohomology group". 

Over the next fifteen years, the notion of differential forms was involved in the develop
ment of several new concepts, including the ideas of fibre bundles, sheaves, and differential 
graded rings. It was out of these concepts, in fact, that a set-theoretic definition of differ
ential forms could be given. Namely, a differential form was defined to be a section of a 
vector bundle over a manifold, where at each point the vector space was 717*, the exterior 
algebra of the dual space of the tangent space to the manifold at that point. 

But even with this very abstract definition, it is as "things under integral signs" that most 
mathematicians think of differential forms. And they continue to prove useful in numerous 
areas. 
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CHAPTER 6 

The Topological Work of Henri Poincare 

K.S. Sarkaria 
Department of Mathematics, Panjab University, Chandigarh 160014, India 

Introduction 

Topology, as we know it today, started with Poincare's ''Analysis Situs'' [59] and its five 
Complements [61,62,66,67,69]. My objective is to describe the contents of these classics, 
together with some remarks relating them to further developments. 

So we will not go into the details of Poincare's life (1854-1912) and the various honours 
bestowed on him. However, a mathematician will enjoy Appell's anecdotes [3] about their 
year together in high school in Nancy, e.g., the way in which Poincare would draw figures 
on a wall with his finger to explain his reasoning to his fellow students, or how he instantly 
gave very creative solutions to geometry problems that were posed to him (Appell gives a 
number of such examples). Also very informative is Darboux's eulogy [15] of 1913. 

As we shall see, Poincare covered a lot of ground in the papers mentioned above. In 
the light of this, it seems almost incredible that this was really only a small part of the 
huge canvas on which he was working during this time. In a series of long papers starting 
from 1880 he had created the qualitative theory of ordinary differential equations. Then, 
impelled with the desire to solve linear differential equations having algebraic coefficients, 
he had created and developed yet another theory, that of Fuchsian and Kleinian groups. 
Hard on the heels of this had come his prize-winning 1890 paper [55] on the 3-body prob
lem, which was now being elaborated further in his three volume treatise on celestial me
chanics [57]. Add to this dozens of courses delivered in almost every imaginable area of 
theoretical physics, and we are left gasping at the very idea that he had any time left to 
create and develop yet another very original mathematical theory! 

Darboux tells us that Poincare's "answers came with the rapidity of an arrow" and that 
"when he wrote a memoir, he drafted it at one go, limiting himself to just some crossings 
out, without coming back to what he had written". Despite this, Poincare's writings are 
characterized by great lucidity of thought, an intuitive ability of getting at once to the heart 
of the matter, and clarity of exposition. 

At Mittag-Leffler's request Poincare wrote in 1901 an analysis of his own work [63]. 
Of these hundred odd pages only four, pp. 100-103, deal with "Analysis Situs" and its 
first two Complements. Here he recalls (this line occurs in the Introduction of "A.S." as 
well) that ''geometry is the art of reasoning well with badly made figures. Yes, without 
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doubt, but with one condition. The proportions of the figures might be grossly altered, 
but their elements must not be interchanged and must conserve their relative situation. 
In other terms, one does not worry about quantitative properties, but one must respect 
the qualitative properties, that is to say precisely those which are the concern of Analysis 
Situs!' Thus his hope was that topology would render in higher dimensions much the same 
service which these "badly made" figures give to ordinary geometry. After mentioning the 
previous work of Riemann and Betti in this direction he continues as follows. 

''As for me, all the diverse paths on which I was successively engaged have led me to 
Analysis Situs. I had need of the ideas of this science to pursue my studies on curves defined 
by differential equations and for extending these to higher order differential equations and 
in particular to those of the three body problem. I had need of it for the study of multi
valued functions of 2 variables. I had need of it for the study of periods of multiple integrals 
and for the application of this study to the development of the perturbation function. Finally 
I glimpsed in Analysis Situs a means of attacking an important problem in the theory of 
groups, the search for discrete or finite groups contained in a given continuous group. It is 
for all these reasons that I devoted to this science a fairly long work!' 

Indeed Poincare's other works probably contain just as much interesting "topology" -
in the wide sense of the word - as "Analysis Situs" and its five Complements! For exam
ple, his memoirs on the qualitative theory of differential equations contain the Poincare 
index formula giving the Euler characteristic of a surface as the sum of the local degrees 
of a generic vector field at its isolated singularities: this was generahzed later to higher 
dimensions by Hopf [27]. And, of course, the study of periods of multiple integrals is 
"de Rham-Hodge theory"; and of invariant integrals, which he introduced while doing 
celestial mechanics, that of "symplectic transformations"; and the work on perturbation 
functions of astronomy the "small divisors problem". (A seminar run by A. Chenciner 
has recently been analysing Poincare's treatise on celestial mechanics.) The last geomet
ric theorem [70] which Birkhoff [5] resolved shortly after Poincare's premature death, is 
also equally "topology". It says that if a volume preserving diffeomorphism of the annulus 
moves its two bounding circles in opposite directions than it must have two fixed points. 
(A recent paper of Gole and Hall [24] shows that the existence of a fixed point does follow 
by slightly modifying Poincare's original attempt.) 

However, we shall confine ourselves in the following to "Analysis Situs" and its five 
"Complements". Section 1 is a summary of "Analysis Situs". Section 2 contains notes on 
this summary, intended mostly to connect Poincare's contributions with future develop
ments. For the "Complements" (these contain more material than "A.S." itself) we have 
summarized and annotated in tandem in Section 3. We shall pause for just a few remarks 
before we embark on this task. We have not hesitated to use modern notations, and even 
ideas, whenever this seemed to help in understanding Poincare's mathematics. For exam
ple, Riemann's connectivity of a surface was 1 more than bi, so Poincare defined his Betti 
numbers to be 1 more than the modern ones: we have lowered them by 1. Again, we have 
discarded Poincare's congruences, and just used 9w = c to denote a boundary. On the other 
hand, for homotopy between loops, we liked Poincare's equivalences A = B, and have, like 
him, combined these using additive, rather than the modern multiplicative notation. Lastly, 
Poincare's grade in art class notwithstanding - see Darboux [15, p. XIX] for the surprising 
answer! - it is clear to anybody who reads him that he thought via. figures: so we have 
added some, but we remark that, of those given below, five are his own. 
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1. A summary of "Analysis Situs" 

Introduction. The branch of Geometry called Analysis Situs describes the relative situation 
between some points, lines, and surfaces, without bothering about their sizes. There is a 
similar Analysis Situs in more than three dimensions as has been demonstrated by Riemann 
and Betti (and which we shall develop further in this paper). We expect it will have many 
appUcations, e.g., the following three. 

"The classification of algebraic curves by means of their genus is based, following Rie
mann, on the classification of closed real surfaces, made from the viewpoint of Analysis 
Situs. An immediate induction now tells us that the classification of algebraic surfaces and 
the theory of their birational transformations is intimately tied to the classification of closed 
real (hyper)surfaces in 5-space from the viewpoint of Analysis Situs. M. Picard, in a work 
which has been hailed by the Academic des Sciences, has already stressed this point." 

"Besides, in a series of memoirs pubHshed in the Journal de Liouville and entitled ''Sur 
les courbes definis par les equations dijferentielles'\ I have used ordinary 3-dimensional 
Analysis Situs to study (second order) differential equations. The same researches have 
also been pursued by M. Walther Dyck. One sees easily that a generalized Analysis Si
tus would permit us to similarly treat higher order equations, and in particular those of 
Celestial Mechanics." 

"M. Jordan has analytically determined the groups of finite order which are contained in 
the linear group of n variables. M. Klein had previously, by a geometrical method of rare 
elegance, solved the same problem for the linear group of two variables. Could not one 
extend the method of M. Klein to a group of n variables, or even an arbitrary continuous 
group! I have not been able to do this so far, but I have thought long on this question, and 
it appears to me that the solution should depend on a problem of Analysis Situs and that 
the generalization of the celebrated theorem of Euler should play a role in this." 

§ 1. Premiere definition des varietes. A nonempty subset V of n-space defined by p equa
tions Fa(xi,... ,Xn) = 0 and q inequalities 0^(xi , . . . ,x„) > 0, where the functions F 
and 0 are continuously differentiable, will be called a variety of dimension n — p if the 
rank of the matrix [dFa/dxi] is equal to p at all points V. 

When a variety is defined only by inequalities, i.e. when p = 0, then it is called a do
main. Furthermore, varieties which are one-dimensional, respectively, not one-dimensional 
but having codimension one, are called curves, respectively, (hyper) surfaces. A variety 
will be called bounded (finie) if the distance of all its points from the origin is less than 
some constant. 

We will only consider connected (continue) varieties, regarding others we only remark 
that they can be decomposed into a finite or infinite number of connected varieties. For 
example, the plane curve x'^-{- x\ — Ax\ -f 1 = 0 is the disjoint union of the two con
nected curves obtained by adjoining to its defining equation either the inequality x\ < 0 or 
else jci > 0. (See Fig. 1.) 

By the complete boundary (frontiere complete) of a variety V we will mean the set of 
all points of n-space satisfying {FQ, = 0, 1 ^ or ^ p, 0^ = 0; 0y > 0, \ ^y i^ ^ ^q) 
for some 1 ^ ^ ^ q- However, sometimes we shall think of the largest (n — p — \)-
dimensional variety contained in this set as the true boundary (we shall denote this by dV) 
of y. A boundaryless (ilhmite) variety will be one which has empty true boundary; if 
furthermore it is connected and bounded we shall call it closed (fermee). 



The topological work of Henri Poincare 
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Fig. \.xl-\-x\-Ax\-\-\ =0. 

§ 2. Homeomorphisme. Consider the "group" formed by all maps between open subsets 
of n-space for which the functional determinant is always nonzero: the science whose 
object is the study of this and some other analogous "groups" is called Analysis Situs, 

By a dijfeomorphism (homeomorphisme) between two varieties of n-space we shall 
mean a bijection between them which extends to a differentiable bijection between open 
Euclidean sets obtained by replacing their defining equalities F^ = 0 by some inequalities 
—£ < FQ, < +£. A similar definition can be given for more complicated figures, made up 
of many varieties, of n-space. 

Consider first m-dimensional varieties v of n-space 
•Oiiyi,..., ym) with rank[8^//9}^y] = m, and some 

{R^ 

§ 3. Deuxieme definition des varietes. 
satisfying a system of n equations xi -
inequalities V^(ji, . . . , ym) > 0. 

For example, the system of three equations x\ = {R -\- r cos j i ) cos j2, ^2 
r cos y\) sin y2 and ^3 = r sin 3̂1 defines a torus. (See Fig. 2). 

Indeed in the following definition we may only use those v's which, unlike that of the 
above example, have a one-one ^. Furthermore, we can assume these functions to be (real) 
analytic: this follows because we can always replace 0 by an arbitrarily close real ana
lytic 0'. 

Given two such varieties v and v' we shall say that they are analytic continuations of 
each other iff their intersection y Pi vMs also an m-dimensional variety of the above type. 
As per our new definition a "variety" - or sometimes, to use a different word, a manifold 
- will mean any connected network (reseau continu) M of varieties v related to each other 
by analytic continuation (i.e. a graph whose vertices are varieties of the above type, with 
two vertices contiguous in the graph iff they are analytic continuations of each other). 

We shall see later that such an M need not be definable by equations of the type given 
in § 1; however, as shown below any variety V 0/ § 1 is also a variety as per this second 
definition. 
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Fig. 2. (jĉ  + jc| + x^ + /?2 . , 2 ) 2 . 4/?^(xf+jcj) = 0. 

To see this we shall use the well-known result that if the n real analytic equations yi — 
Fi(x\,..., Xn) are such that their functional determinant is nonzero at x, then they have 
real analytic solutions x/ = ft (ji, . . . , yn) valid in some neighbourhood of F{x). 

Now let P be any point of V, defined as in § 1 by /7 equations Fa{xi,... ,Xn) = 0 and 
some inequalities 0 ( x i , . . . , Xn) > 0. It clearly suffices to find an (n — p)-dimensional 
variety vp of the above type such that P G yp c y. To see this choose any /i — p ad
ditional analytic functions F^+i , . . . , Fn ofn variables, which vanish at P, and are such 
that the functional determinant of all the n functions F/ is nonzero at P. So we can solve 
the n equations w/ = Fi{x\,..., Xn) to get real analytic solutions x/ = ft(wi,..., Un) 
in some neighbourhood of F{P) = 0 specified by some inequalities X{ui,..., w„) > 0. 
By making this neighbourhood smaller, if need be, we will assume also that these in
equalities imply the defining inequalities (j){x\,... ,Xn) > 0 of V. Thus the n equations 
Xi = ft ( 0 , . . . , 0, y i , . . . , yn-p) and the inequalities A(0, . . . , 0, j i , . . . , yn-p) > 0 are 
satisfied by P and imply the defining p equations Fa(x\,... ,Xn) = 0 and inequahties 
0 ( x i , . . . , X;i) > 0 of V, and so give a vp such that P e vp c V. 

§ 4. Varietes opposees. We will assume that if we interchange two of the defining equa
tions of a y as in § 1 then we no longer get V, but the opposite variety —V. More 
generally, given any nonsingular matrix Aa^ of functions, the ordered set of equations 
J2a ^^oc^a = 0 gives V, respectively. — V, iff det(Aa^) is positive, respectively, nega
tive. 

Likewise, for a v as in § 3, we shall assume that interchanging any two of the m parame
ters yt no longer gives v, but the opposite variety — v, and more generally, if the parameters 
undergo a transformation 3^1,..., ym -̂̂  zi, • • •, Zm, we shall assume that the resulting 
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variety is v or —v, depending on whether the transformation's functional determinant is 
positive or negative. 

The two concepts will be tied to each other by stipulating that if vp c V as in § 3, 
then Vp has the correct orientation iff the n x n functional determinant mentioned there is 
positive. 

Also the order of the defining equations of an (n — p — 1)-dimensional nonsingular 
variety occurring in the true boundary of V will be deemed to be that in which one first 
writes the equations of V and then puts the new equation 0 = 0 in the very end. 

§ 5. Homologies. Suppose V is a subvariety of a manifold M whose oriented boundary 
consists of kj copies of the variety v/ for 1 ^ / ^ a, and Sj copies of the variety —/xj for 
1 < 7 ^ b. Then we shall write 

/ciVi H \-kaVa - 51/Xl H \-SbfJ^b, 

and refer to this relation as a homology of M. These "homologies can be combined with 
each other just like ordinary equations" (i.e. the sum of any two homologies will also be 
deemed to be a homology, and we can take any term to the other side provided we change 
its sign, and so on). 

In case M has a boundary, the notation /ci vi H \-kaVa — £ will indicate that the sum 
of the varieties on the left is homologous to a sum of varieties contained in this boundary. 

§ 6. Nombres de Betti. The cardinality of a maximal linearly independent set - i.e. one 
for which there is no nontrivial homology between its members - of closed r-dimensional 
subvarieties of M will be called the r-th Betti number bj-iM) of M. (In the paper it is 
br{M) H- 1 which is called the r-th Betti number and is denoted by P,--) 

Let us make these definitions clearer by an example. Let D be a domain of 3-space 
bounded by n disjoint surfaces St. Then its Betti numbers are b\{V) — (1/2) ^^ b\{Si) 
and biiV) = n — 1, where each b\{S) + 1 is necessarily odd, being the connectivity of S 
as defined by Riemann. 

§ 7. Emploi des integrales. The integral 

X]<^a i . . . a , ( -^ l , - . . , ^«)dXQ; i ••• dXoi,. X^Oti^ n, L 
or briefly fy co, over any r-dimensional variety V (which is equipped with an orientation 
as in § 4) of n-space, will be defined to be 

X ! / Yl^c(i...ar(x\,..., Xn) dti{dXai/Syj) dyi-'- dy,. 

where V = ^v, and for each v, the multiple integral is evaluated, using the equations 
Xj z= Oi(yi^,,, ^ yj.) of y, between the Hmits of yi prescribed by the inequalities of v. 

About the functions coa^.^a,- - or a){a\,..., a,-) - being integrated it will be assumed 
that they merely change sign when any two of the indices of/ are interchanged. The result 
below is from paragraph 2, entitled ''Conditions dlntegrabilitf\ of Poincare [54], 1887. 
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The integrals fy co are zero for all closed varieties V of n-space if and only if the (̂  " j) 
cyclic sums 

are identically zero. 
The proof given there shows also that if these (̂ .̂ j) conditions hold in the vicinity of 

a given m-dimensional submanifold M of w-space, then the above integrals are still zero 
over closed subvarieties V of M; in fact, for this, just (^'^J analogous conditions suf
fice. 

For any functions co satisfying these conditions, one can find at most br{M) numbers 
such that the integral jyco of o) over any closed r-variety V of M is a linear integral 
combination of these numbers (we omit the proof given). In other words, the indefinite 
integral f co, of any functions co satisfying the conditions of integrability near M, has at 
most br(M) periods. Further, it can be shown that this bound is the best possible, i.e. there 
exist such functions co having exactly br(M) periods. For r = 1, m — 1, this interpretation 
of the numbers br(M) was given by Betti himself. 

§ 8. Varietes unilateres et bilateres. A manifold M (as defined in § 3) will be called two-
sided (bilatere) iff we can assign an orientation (as in § 4) to each of the varieties v of 
its connected network, in such a way that the m x m determinant dQt(dyi/dy'.) is positive 
whenever v is contiguous to y^ 

Otherwise M will be called one-sided (unilatere) and deemed equal to its own oppo
site —M. This happens iff either, its network contains a contiguous pair {v, v'} with the 
determinant not of the same sign in all the components of v O v^ or else, has a one-sided 
circuit ( v i , . . . , y^), i.e. one for which making the determinant between y/ and y/4-1 posi
tive for 1 ^ / ^ ^ — 1, makes the determinant between ŷ  and v\ negative. 

However, to justify these definitions (i.e. to see that one- or two-sidedness is a property 
of the space M) one also must check (we omit the proof given) that the same alternative 
continues to hold if a new local parametrization y* is added to the connected network. 

Everyone knows of the one-sided surface which one obtains by folding a paper rectangle 
ABCD and then gluing the edges AB and CD in such a way that A is glued to C and Bio D. 
(See Fig. 3.) 

Examples of two-sided manifolds are easier to give: for example, in n-space, any do
main, or any curve, or any closed (n — 1)-dimensional surface, are all two-sided. Indeed 
much more is true: the varieties V of § 1 are all necessarily two-sided (we omit the proof 
given). 

This shows that "varietes" as defined in § 3 (i.e. manifolds) do not all satisfy equations 
of the type given in § 1. 

Fig. 3. 
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§ 9. Intersection des deux varietes. Given two points x and x^ of /i-space lying in oriented 
varieties v and v̂  of dimensions p and n- pyNt denote by S{x, x') G {—1, 0, +1} the sign 
of the n X /I determinant 

dxi/dyj 

dx\/dy[ 
I ^ i ^ n, \ ^ j ^ p, I ^ k ^ n — p, 

and using it deem the algebraic number of intersections of v and v' to be N(v, v̂ ) = 
^{^(x , jc'): A: = JC^}. More generally one likewise (we omit the details given) counts the 
algebraic number of intersections of two oriented complementary dimensional submani-
folds of any oriented n-manifold M (intuitively one counts an intersection x as +1 iff the 
orientation of v at jc followed by that of v' agrees with that of M). 

We note that A (̂y, vO changes sign if the orientation of any one of the three manifolds 
{M, V, v̂ } is reversed, and that 

N(v\ v) = (-l)^i"^^ ^^"^"'A^(V, V^). 

If closed (n — p)-dimensional varieties V/ C M are such that there exists a p-dimen-
sional cut C of M having intersection number ^ - kiN{C, V/) nonzero then we cannot 
have J2i ^i^i — ̂ ' ^^d. conversely, if this homology does not hold, then such a cut C can 
be found. Here, by a cut (coupure) of M we mean either any closed subvariety, or else one 
whose boundary is contained in the boundary of M. 

For case p = 1 and M closed (we omit the proof given for the case dM ^ 0) the direct 
part follows because if 9 W = Vi + • • • + V̂ , then the oriented closed curve C must go as 
many times from the complement of W into W, as it goes from W into its complement. 
Conversely the given conditions ensure (we omit details given) that there is no nontrivial 
homology amongst these V/'s. So the complement W of Vi U • • • U V̂  in M must be 
connected, for otherwise the boundary of any component of this complement will furnish 
a nontrivial homology between some of these V/'s. Now we can obtain the required closed 
curve C by joining the extremities y and z, of a small arc yxz cutting Vi at x, to each other 
in W. (Regarding the sketched generalization see the First Complement.) 

If follows that, for a closed M, the Betti numbers equidistant from the two ends are 
equal, i.e. that bp{M) = bn-p{M) forO ^ p ^ n. "This theorem has not been, I believe, 
ever been stated; it is, however, known to many, who have even found some applications 
of it." 

To see this choose in M maximal sets of linearly independent p- and (n—;?)-dimensional 
closed oriented varieties {C\,.. .,Cx} and {Vi, . . . , V^}, where X = bp{M) and /x = 
bn~p{M). If the number X of linear equations ^ - XiN(Cj, Vi) = 0 was less than the 
number /x of unknowns xi, they would have a nontrivial solution x/ = ki. Then (by the 
direct part of the previous result) we would have Yli ^/A^(C, Vi) = 0 for all closed r-
dimensional Cs . So (by the converse part of that result) we would have ^ - /:/V/ 2:̂  0 
in M. Since this is not so we must have k^ pi. Likewise /x ^ A. 

Let us now consider the middle Betti number bn/iiM) for the case n even: if 
n = 2mod 4 then bn/2{M) is even. 

To see this choose b — bnjiiM) hnearly independent closed (rt/2)-dimensional sub-
varieties V\, ^2, • • • of ^^, and consider the ^ x ^ determinant N — \_N{yi,V-^)\, where 
by A^(y, V) we mean A^(y, VO for a suitable V :^ V. Since njl is odd this determi
nant is skewsymmetric, and so, if b were odd, it would be zero. So we would be able to 
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find /:/'s not all zero such that Y^j kjN(Vi, Vj) = 0. So as in last argument we would 
have J2j kjN(C, Vj) = 0 for all (^z/2)-varieties C, which implies J^j ^j^j — 0 in M, a 
contradiction. 

This is no longer true if 4 divides n, nor if M is one-sided, as we shall see later by means 
of examples. 

§ 10. Representation geometrique. "There is a way of describing three-dimensional va
rieties situated in four space which facihtates their study remarkably", viz., as some poly-
tope(s) P having an even number of facets, with the facets identified in pairs. 

For a two-sided variety these conjugate facets F = F' are such that if we walk on P 
along dF keeping F to our left, then the corresponding walk on P along dF' should 
keep F' to our right. 

Let me recall something similar from ordinary space, viz. cutting a torus along a merid
ian and a parallel, we can describe it as a square ABDC with identifications AB = 
CD, AC = ED, of its sides. Likewise we can identify pairs of facets of a cube in, for 
example, the following five ways, which all satisfy the above criterion for two-sidedness. 
(In the paper, the fifth example, i.e. RP^, is defined by the antipodal conjugation of the 
facets of an octahedron instead of the cube.) (See Fig. 4.) 

Nevertheless, not all of the above facet conjugations of the cube can occur: we shall see 
below that Examples 1, 3, 4 and 5 are admissible but Example 2 is not. 

First note that - in complete analogy with the formation of cycles in the theory of Fuch-
sian groups - the prescribed facet conjugations partition off the sets of edges and vertices 
into cycles consisting of edges or vertices which get identified to each other, e.g., for Ex
ample 2 these are AB = B'D = CC = B'A' = AC = DD\ AA' = DC - C A! = B'B = 
CD' =DB, A = B' = C = D,mdB = D' = C = A\ 

For each cycle a of vertices let /Q, = its cardinality, ea = half the sum of the number 
of facets incident to each member of a, and Va = number of cycles of edges incident to 

D 

Fig. 4. Square and cube. 

ABDC = 
ACC' A! = 
ABB'A' = 

Example I 
A'B'D'C' 
BDD'B' 
CDD'C' 

Example 2 
B'D'C'A' 
DD'B'B 
DD'C'C 

Example 3 
B'D'C'A' 
DD'B'B 
C'CDD' 

Example 4 
B'D'C'A' 
BDD'B' 
CDD'C' 

Example 5 
D'C'A'B' 
D'B'BD 
D'C'CD 
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vertices of a, taking care to count each such edge cycle twice if both vertices of an edge 
are in a. We assert that/or a conjugation of facets to be admissible, it is necessary and 
sufficient, that one has Va — Ca + fa = ^far all a. 

To see this note that the subdivision, of the portion of the variety consisting of all points 
at a distance < s from any vertex a, is diffeomorphic to a star (aster), i.e. a figure formed 
by some soHd angles arranged around a single vertex in such a way that each point of space 
belongs to one and only one of them. Since f̂ , Ca, and /« are the number of rays, faces 
and solid angles of this star, the required condition follows by using Euler's formula. 

The above condition holds (we omit the computations given) for all our examples ex
cepting the second, for which fa — ^a + /« = OVof. 

§ 11. Representation par un groupe discontinu. In analogy with the theory of Fuchsian 
groups one may sometimes describe a three-dimensional variety via a properly discontin
uous group of substitutions S of ordinary space. 

Indeed, consider any fundamental domain D of this group. Subdivide its boundary into 
surfaces F which it shares with neighbouring translates S{D), with F' denoting the surface 
shared by P and S~^{D). Then the variety can be obtained, just as in the last article, 
from D, by gluing all its conjugate pairs of facets F, F' to each other. 

EXAMPLE 6. Consider the group G^ of transformations of 3-space generated by 

(x, y, z) H> (x -f 1, y, z), (x, y, z) i-> (x, y 4-1, z), and 

(jc, y, z) 1-̂  {oix -f- fiy, yx -|- 5y, z + 1), 

T = e SL(2, Z). One can check (we omit the proof given) that this group is 

where a, fi, y, and 8 are four chosen integers with a8 — fiy = 1, i.e. such that 

y ^. 
discontinuous, with the unit cube F as a fundamental domain. So we obtain a variety MT 
by conjugating pairs of facets of a subdivided cube Pj. 

, now Pj — P, and one recovers Example 1. The simplest case is when T 

F o r r 

When T = 

0 1 
- 1 0^ 

1 1 
0 1 

0 1^ 

, once again Pj — P, but now the conjugations are that of Example 4. 

, then P has a nontrivial subdivision Pj, which with its facet conju

gations is shown in Fig. 5. More generally, any Pj has the same (unsubdivided) vertical 
facets as F, but the number of its top and bottom cells will increase with the size of the 
entries of the matrix F. 

§ 12. Groupe fondamental Suppose given a system JF of multiple-valued locally defined 
continuous functions Fa on the variety V, which return to their initial values if we trace 
small loops on the variety. We will denote by gj: the group of all permutations of the 
branches which ensue if we follow them over all closed loops starting and ending at a 
given base point b of the variety. 

To be specific we may consider solutions F^ of an equation 

dFo, = Y^ Xa,i{xu...,Xn; Fu...,Fx)dxi, 
lCi<n 
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AJ^C'C = BB'D'D 
ABB'A! =CDD'C' 

ABC =A'D'C 
BCD =B'A'D' 

Fig. 5. P7 for r = 

where the nX coefficients X^,/ are given functions of Xk and Ft, single valued and con
tinuous, together with their derivatives, in a neighbourhood of V, and satisfying there the 
conditions of integrability 

9Xa,/ 
dXi +E ^)S,7 = 

dXi +E ^is , i 

We note that if we trace a lacet C, i.e. go along any path from b to c, followed by a 
small loop at c, and then return to b along the original path, then we only get the identity 
substitution Sc € gjr. Also for the loop C1C2, i.e. C\ followed by C2, one has Sc^Cj = 

SciSc2-
Motivated by this we shall set C = 0 for all lacets, and Ci + C2 = C1C2. A general 

equivalence 

klCi + ^2^2 H = kaCa + k^C^ -\ 

will be between integral combinations of loops based at b. One adds them just like ho
mologies but the order of the terms cannot be interchanged. So, e.g., A = B and C = D 
impUes A -\- C = B + D but not C -{- A = B -^ D. Also note that from 2A = 0 one does 
not have the right to conclude A = 0. Another difference from homologies is that a base 
point b is involved in their definition. 

(The above careful distinction between equivalences and homologies notwithstanding at 
one point it is erroneously written that the boundary of a two dimensional variety of V is 
equivalent to zero; also see [66, p. 390]; analogously on p. 293 of [61] Ci = 0 should be 
C\ c:^ 0. This surprising error is rectified in [69], see pp. 451-452.) 

For any gjr, we obviously have (I) C = C\ + C2 => Sc = Sc^ Sc2 and (2) C = 0 =^ 
Sc = Id. We shall denote by G the fundamental group G of substitutions Sc satisfying (1) 
and the stronger (2') C = 0 4^ 5c = Id. There is thus an epimorphism from G onto 
any gjr. This can be one-one, but is in general not so, because some loop C, which is not 
decomposable into lacets, may still give the identity substitution in gjr. 
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§ 13. Equivalences fondamentales. One can always find some fundamental loops 
C i , . . . , Cp such that any loop is equivalent to a combination of these. The relations sub

sisting between them, which determine the form of the group G, will be cdXltd fundamental 
equivalences. 

For a variety described as in § 10, using just one polytope F, each pair of conjugate 
facets [F, F'] gives a fundamental loop C: proceed along a straight line from the base 
point b € intP to a point x G F, and then along another straight line from the conjugate 
point x' ^ F' back to h. Denoting each edge of P as the product of its two incident facets 
any cycle of edges is of the type Fi F^ = F2F( = • • • = F^ ̂ ^- i • Each of these gives us a 
fundamental equivalence Ci + C2 H h Ĉx = 0. 

Ignoring the order of the terms in these fundamental equivalences, one obtains the 
fundamental homologies between these loops. These give Z?i(M), which for these three-
dimensional varieties M, also equals Z?2(M). 

For Example 3 of § 10 (computations are also given for Examples 1,4 and 5) this method 
gives fundamental equivalences 2C\ = —2C2 = 2C3, 4C\ = 0, which show that G is 
isomorphic to the hypercubic order eight group (/, 7, k), and that b\{M) = biiM) = 0. 

For Example 6 of § 11 the fundamental group is evidently isomorphic to G^. Denoting 
(the loops inducing) the three defining substitutions of this group, respectively, by C\, C2, 
and C3, we see that 

Ci + C2 = C2 + Ci, Ci + C3 = C3 + ocCx + yC2, and 

C2 + C3 = C3 + )6Ci+5C2. 

These are fundamental equivalences, because using them, any member of G7 can be 
written m3C3 -\- m\C\ + m2C2, which can be checked to be the identity substitution iff 
m i = m 2 = m 3 = 0 . The fundamental homologies are thus {ot — \)C\ + yC2 — 0 and 
PC\ -\- {8 — 1)C2 — 0. These homologies are trivial iff F = / . In this, and only this, case 
does one have bi = b2 = 3. For T ^ / , the above homologies are proportional iff the 

la — 1 y 
\ P 8-1 

in this case, the Betti numbers are ^1 = ib2 = 2. In all other cases the homologies are 
nontrivial and nonproportional, and so we have b\ = b2 = I. 

determinant vanishes, i.e. iff tr(r) = of + 5 = 2. So in this case, and only 

§ 14. Conditions de Vhomeomorphisme. One knows that closed 2-manifolds are diffeo-
morphic iff their Betti numbers are same. This follows, for example, from the study of the 
periods of Abelian functions. In any Riemann surface R with z as variable, one can intro
duce a new complex variable t, such that z is a Fuchsian function of t and that t, considered 
as function of z, has no singular point on the surface R. The Fuchsian group is obviously 
nothing else but the fundamental group G of F. This rules out the possibility that some 
cycle of vertices of the Fuchsian polygon, FQ or FQ + FQ, has angle sum 2n/n with n > 1, 
for then we would get a nonidentity substitution as we describe a lacet around this point of 
the variety. The possibility of a non simply connected Fuchsian polygon RQ + FQ is ruled 
out because then a nontrivial loop C of this polygon would yield the identity substitution 
of the Fuchsian group. Thus only Fuchsian groups of the first kind with angle sums In 
at all cycles of vertices can occur. All of these groups which are of the same genus are 
isomorphic, and it is for this reason that all closed two-dimensional manifolds having the 
same Betti number are diffeomorphic. 
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However, in dimensions > 2 the questions of Analysis Situs become much more com
plicated and, as we shall see, it is no longer the case that closed varieties having the same 
Betti numbers must be diffeomorphic. 

Let us return to our sixth example (§§11 and 13). We shall say that our T e SL(2,- Z) is 
hyperbolic, parabolic, or elliptic, according as its two eigenvalues are real distinct, equal, 
or imaginary. If Gj-' = GT then a pair of elements of Gr can correspond to the el
ements C[ and C2 of GT' only if they are commuting but linearly independent. So let 
flsCs -f fliCi + (32C2 and /73C3 -\- b\Ci + b2C2 be any two elements of Gr such that no 
nonzero multiple of either equals a multiple of the other. For T hyperbolic these elements 
commute iff as = 0 andbs = 0, and for T elliptic orT = —I this happens iffa^ = 0 mod v 
and Z?3 = 0 mod y, where v > 1 is such that T^ = I (we omit the proof given). 

One can say more: the groups GT and Gj' are isomorphic iffT is in the same conjugacy 
class as T'. To check this (we omit the very long details) we choose generators C\, C2, C3 
of G^ such that C\ and C2 are commuting but Unearly independent and such that C + C3 = 
C3 + T{C) for all C G (Ci, C2). The idea of the proof is that, in these relations, T gets 
replaced by the similar (transformee) matrix UTU~^ if we replace C by U{C). We give, for 
various cases, sequences of such elementary moves by means of which we finally replace T 
by r ^ n these relations. 

The number of these conjugacy classes is infinite because similar matrices must have the 
same trace\ however conversely, just like noncongruent quadratic forms can have the same 
determinant, two linear substitutions can be nonsimilar even if they have the same trace. 

Thus there are infinitely many nondiffeomorphic Mr's. Since, on the other hand, their 
Betti number b\ = Z?2 can be only 1, 2, or 3, it follows that,/or two closed varieties to be 
diffeomorphic, it does not suffice that the Betti numbers be the same. This follows equally 
because, for our third example G was of order 8, for the fifth (= RP-^) of order 2, and for 
the unit sphere of 4-space it is of order 1, yet for all of these b\ = b2 — 0. So it seems 
natural that only those varieties should be called simply connected for which G is null. 

It would be interesting to know which fundamental equivalences can actually arise, and 
how one can construct these varieties, and whether two varieties having the same G must 
be diffeomorphic? Such questions need a difficult and long study, so I will not pursue these 
here. 

However, I do want to draw attention to one point. Riemann had studied algebraic curves 
as two-dimensional varieties, likewise algebraic surfaces are four-dimensional varieties. 
M. Picard has shown that for all but some very special algebraic surfaces one always 
has Z?i = 0. This paradoxical looking result appears less so now: the group G can be 
quite complex and yet the Betti numbers can be very small. 

§ 15. Autres modes de generation. One may give other definitions of varieties which 
are, so to speak, intermediate between the two given before, e.g., if the equations of § 1 
depended on q parameters, then the dimension of our variety would increase by q, or, if 
the parameters of § 3 were subject to A equations, the dimension would decrease by k. 

Also, given a variety W, and a group G which preserves it, one may construct a vari
ety V, to each point of which corresponds one and only one orbit (systeme de points) of W. 
This variety will be two-sided iff the functional determinants of the substitutions of G are 
positive with respect to compatible parametrizations of the two-sided variety W. 
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EXAMPLE 7. Let V be the sphere y'^-\-yl + yj = 1 of ordinary space and let G be 
{(yi.yi, B ) ; i-y\, -yi. - B ) ) . if then, e.g., 

M=y\. ^2 = yh -̂ 3 = ^ 3 ' M = y2y3, •̂ 5 = Byi» ^6 = ji}^2, 

the x's will not change if the j ' s change signs. This two-dimensional variety V of six-
dimensional space is one-sided because the spherical substitution (0, 0)\ {(t)-\-n,n —0) e 
G has functional determinant — 1. 

EXAMPLE 8. Let W be the {2q —2)-dimensional variety W of 2^-dimensional space given 
by the equations y^ H \-y^ = 1 and z^ H h z? = 1; its points correspond to ordered 
pairs (Q, Q^) of points of the hyperspherej^H \-y^ — 1. The ^(^ + 3)/2 combinations 

yi-^zi. yizi, yuk + zkyi. 

give usn = q{q-\-3)/2 new variables x\, X2,. . . , JĈ  which do not change if we interchange 
the 3;'s and the z's, i.e. a variety V whose points correspond to unordered pairs {Q, Q'] of 
points of the hypersphere S^~^. 

For q = 2 this V is not closed, however, for (̂  > 3 it does have an empty bound
ary dV', furthermore V is one-sided for q even and two-sided for q odd (we omit the 
proofs given). 

The nonzero Betti numbers ofW are h{){W) = h2q-2{W) = 1 andbg-i = 2. By duality 
it suffices to compute hi, i ^ q — I. Any subvariety of dimension less than q — I can be 
deformed into the ball W\(L^i U(72), where [/i,respectively, t/2 denotes all (2 , QO ^ W 
such that Q = Qo, respectively, Q^ = Qo- In dimension q — I, U\ and U2 are linearly 
independent: for, if J is the usual volume element of S^~^ in spherical coordinates, then 
J{J\ -\- XJ2) satisfies the conditions of integrability of § 7, and, for X irrational, its periods 
over Ui and U2 are integrally independent. Lastly (we omit the proof given) any closed 
{q — 1)-dimensional variety y of W is homologous to some mU\ -\-nU2. 

On the other hand,/6>r q ^ 3, the nonzero Betti numbers of V are /?o(V) = bq-\ = 
b2q-2{y) = 1 (we omit the argument). This shows, as announced in § 9, that there exist 
one-sided, respectively, two-sided, varieties of dimensions 4k + 2, respectively, 4/c, having 
middle Betti number odd. 

§ 16. Theoreme d'Eulen This tells us that if 5, A and F are, respectively, the number 
of vertices (sommets), edges (aretes) and faces of a convex polyhedron, then one must 
have S — A -\- F = 2. This theorem has been generalized by M. I'amiral de Jonquieres 
to nonconvex polyhedra. One now has S — A-\-F = 2 — b\, where b\ denotes the Betti 
number of the bounding surface. The fact that the faces are planar is of no importance, and 
the same result is true for any subdivision of a closed surface into cellular (simplement 
connexe) regions. 

We shall generalize this result to an arbitrary closed variety V of dimension p. This 
will be subdivided into some varieties Vp of dimension p which are not closed, and the 
boundaries of these v^'s will be made up of some varieties Vp_i which are not closed. 
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Fig. 6. Derived tetrahedron. 

and so on till some points VQ- If the regions v/'s are all cellular, then we shall call such a 
subdivided V di polyhedron. We propose to calculate the number 

N = ap -ap-i H dz^o, 

where aq denotes the number of the v̂  's in the polyhedron. 
Two polyhedra arising from the same V will be called congruent. Further, if the regions 

of the first are contained in those of the second, then the first will be said to be a derived of 
the second, e.g., we can derive a tetrahedron into 24 triangles as shown in Fig. 6. 

We shall show that the number N is the same for any two congruent polyhedra. Since 
two congruent polyhedra have a common derived it suffices to show N{P') = N(P) for 
any derived P^ of P. If a y/, / ^ q— 2, is incident to exacdy 2 y/+i 's we shall say that Vq is 
a singular region of the polyhedron. We allow these because then we can go (we omit the 
argument given) from P^ to P, in a number of steps, done in order of increasing dimension, 
each involving erasing a v/ having exactly two incident y/+i 's, followed by an annexation 
of these three regions. Clearly Â  is unchanged after each of these steps. 

However, this argument is open to objections, e.g., during the above operations the re
gions may not remain cellular? Before modifying our proof so as to overcome these objec
tions, let us compute some A '̂s. 

For the boundary V of any (p -f I)-cell one has N ~ 2 if p is even and N = 0 if p 
is odd. By the above we can use, e.g., the boundary of a generalized tetrahedron (we omit 
this calculation), or a generaUzed cube —1 ^ x, ^ +1 , +1 ^ / ^ p + 1: for the latter 
aq =2^+i-^(^+^), so (1-2)^+1 = l-ap + '"±ao = l-N.i.t.N = l - ( - l ) ^ + ^ 

Our rigorous proof of the invariance of Â  will be by induction on p. The regions v,, / > 
q, incident to a given Vq e P will be said to constitute the star (aster) of Vq. The induction 
hypothesis, and the above computation, imply that,/or the star of any Vq e P one has 

Yp - Yp^x + . . . ± y^+i = 1 + (_i)/^-^-i (A) 

where Yt denotes the number ofvt 's in the star. 
Next, let us take a quadrillage, i.e. a cubical subdivision of n-space by n pencils of 

nonaccumulating hyperplanes parallel to the coordinate planes, x/ = at^k, I ^ i ^ n. 
Then, if the mesh of this quadrillage is small, the intersection of each of its {n — t)-cubes 
Dn-t ^Ith V is a (p — t)-cell v?, and these cells give us a polyhedron Q covering V. Let 
P ' be a polyhedron which is a derived of P and of Q. 

To see N{P^) = N(P) we go from P' to P by erasing the hyperplanes jc/ = a, one by 
one. Let 8q denote the number of ^-cells of P^ on this plane, 5̂  the number contiguous 
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to it on the (x, < a)-side of the plane, and 8'^ the number contiguous to it on the other 
side. Since 8' = 8q-\ = 8'^ (with also 8Q = 0 = 8Q and 8p = 0), the suppression of this 
hyperplane decreases each otq by 8q + 5^+i, and since the alternating sum over q of these 
numbers is zero, N remains same. 

To see N{P') = N{Q) we can assume (by making the mesh small) that the interior c 
of each cell of Q intersects only one least dimensional cell v^ of P: thus the cells of 
P intersecting c are precisely those that have Vq on their boundary. We now go from P^ to 
Q by erasing all cells of P' which are in p-ce\\s c of Q but which have lesser dimension 
than p. So in each c we are erasing the least dimensional Vq and, for each p > t > q, yt 
incident cells of dimension t. Moreover, the number of /7-cells within c was yp before and 
1 after. Thus the total decrease in Â  is — 1 + y^ — yp-\ +•••=!= K/+i =F U which by the 
result above is zero. Next we erase all cells of P^ which are in (p — 1)-cells of Q but which 
have lesser dimension than p — 1, and so on. The same verification shows that N remains 
same at each step. 

§ 17. Cas oil p est impair. For any polyhedron P (subdividing V as in § 16) we shall 
denote by fixf^ the sum, over all vx, of the number of v^'s which are incident to v^. Note 
that Pxi = ax and ^x^ = ^^A-

If the dimension p of V is even, the number Â  depends on the Betti numbers of V (see 
§ 18) but if p is odd, then a closed variety^ V always has N = O.To see this consider the 
following tableau 

Pp,p-\- Pp,p-2 +Pp,p-3 -Pp,p-4 + • • • 
-\- Pp-\,p-2- Pp-l,p-3-^ Pp-\,p-4- • ' ' 

+ Pp-2,p-3 - Pp-2,p-4 + • • • 

The sum of the first row is the sum of the A '̂s of the bounding (p — l)-spheres of the 
ap /?-cells of P, so it equals 2ap. Likewise that of second row is zero and that of third is 
2ap-2, etc. Thus the sum of the tableau is twice ap + ap-^2 -h • • •. On the other hand the 
sums ofthe columns are 2ap_i, 0, 2Q!p_3, 0, . . . by Eq. (A) of § 16. Thus the sum of the 
tableau is also twice ap-\ + ap-3 H . Equating the two values one gets N = 0. 

§ 18. Deuxieme demonstration. This proof will tell us how Â  depends on Betti numbers. 
I will first give an exposition of it for the Case /? = 2, i.e. an ordinary polyhedron P with 
ao vertices, ai edges and 0̂2 faces, and show that N =^2 — b\. 

Assign to each of the ao vertices any number, and to each of its oriented a 1 edges the dif
ference 8 of the numbers of its two vertices. These a 1 numbers 8 depend on the ao numbers, 
and conversely determine them up to an additive constant, so there are in all a\ — ao + I 
linear relations between the 8 '5. These linear relations are given by setting equal to zero, 
the algebraic sum of the 5's, of some cycle K of edges. Firstly, each of the oriented ^2 faces 
furnishes a cycle, viz. its perimeter 77. Secondly, from any chosen b\ homologously inde
pendent cycles C of V, we construct cycles C of edges as follows - see Fig. 7. 

We assert that any relation between the 5's is a linear combination of the 0:2+^1 relations 
given by the /7's and the C s . To see this, let K be any cycle of edges. Adding a suitable 
linear combination of the C'^s to it we get L, which is homologous to zero. Being a cycle 
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of edges of P, this L must be the boundary of a sum of faces of F, and so a sum of their 
perimeters 77. Also, the sum of all the oriented perimeters is zero, but no partial sum of the 
77' is zero. Thus our new count shows ot2-\-b\ — \ Unearly independent relations between 
the (5's. Equating this with a\ — aQ-\-\ gives the required formula. 

For any subdivision F of a closed p-dimensional variety V one has 

ap - ap-i + ap-2 = bp - bp-\ + bp-2 • 

This follows by a generahzation (we omit the proof which is written out for the Case p = 
3 only) of the above argument. Since the Betti numbers equidistant from the extremes are 
equal the above formula again shows that N = 0 when the dimension p is odd. 

2. Notes 

With reference to the Introduction ofA.S. 

NOTE 1. Starting with his dissertation [73], 1851, Riemann had visuahzed the graph of a 
multi-valued analytic function - e.g., the function y of x defined by a polynomial equation 
/(jc, j ) = 0 in two variables - as a surface obtained by gluing some complex "sheets" to 
each other along some "cuts", and in [74] he showed that the connectivity of this surface 
characterizes a nonsingular algebraic curve up to birational equivalence. This connectiv
ity is defined on p. 11 of [73], and in [75] he left some ideas about a similar notion in 
higher dimensions; these higher connectivities were defined by Betti [4]. In 1880, Picard 
launched an analogous programme fox polynomial equations f{x,y,z) =0 in three vari
ables, leading eventually to the famous treatise [49] on algebraic surfaces which he wrote 
with Simart. 

NOTE 2. Poincare developed his qualitative theory of differential equations in the three 
part memoir [51]. The index formula for generic vector fields is proved for all surfaces 
on pp. 121-125 of the second part - the 2-sphere case is there even in his C.R. note [50] 
of 1880 - while pp. 192-197 of the third part deal with the case of all /i-spheres, n ^ 3. For 
Dyck's work on Analysis Situs see [19]. We note also that Poincare's "A.S." was preceded 
by two Comptes Rendus notes [56, 58]. 
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NOTE 3. The assertion that the (next to impossible) problem of classifying the finite sub
groups o/GL(n, C) had been solved is of course wrong, however, Jordan [33] had given 
(modulo two groups of order 168 and 169 which he missed) the classification of all finite 
subgroups of GL(3, C). The case n = 2 had been done previously by Klein [35]. The clas
sification is now known for all n ^ 7: for references, and other information on this subject, 
see Dixon [17]. 

With reference to ^ \ ofA.S. 

NOTE 4. Poincare's uses of the word ''variety" have at least four modern connotations. 
For instance a "closed variety" V, or rather its closure, can be thought of as a closed pseu-
domanifold, e.g., for ^ ^ 4, Poincare's eighth example (§ 15) only gives pseudomanifolds. 
The "variety" M defined in § 3 as a "reseaux connexe" is more or less today's abstract 
closed manifold, while the special kind of "varieties" v used in its definition are the local 
parametrizations of M. In § 4 "varieties" are oriented, and then in §§ 5 and 6 Poincare 
considers integral or rational linear combinations of the oriented varieties of an M to de
fine its homologies and Betti numbers: in this context it is best to think of his "varieties" 
as smooth chains of M. 

With reference to %2 ofA.S. 

NOTE 5. This definition of Analysis Situs is in harmony with Klein's famous Erlangen 
Program [34] of 1872, even though now the "group" in question is really only a pseu-
dogroup or a groupoid. 

With reference to § 3 ofA.S. 

NOTE 6. The reader will note that Poincare's "analytic continuation" works equally well 
with C^ or C ^ charts, and is just the way one would nowadays define an abstract man
ifold M, together with an immersion in n-space. Poincare's focus will always be on the 
abstract M, he never enters into questions related to the immersion, and only exploits the 
convenience of n-space to present without fuss some important ideas whose simphcity is 
obscured if one insists - the book of Milnor [45] being a beautiful exception - on a totally 
intrinsic treatment. 

The idea of an abstract manifold goes back to Riemann, but became popular only much 
later after Weyl [88], 1918. 

With reference to § 5 ofA.S. 

NOTE 7. Interpreting 9 as the oriented boundary of smooth oriented chains Poincare's 
homologies are the same as those of Eilenberg [22]. It was probably because of this that 
Eilenberg remarks, on p. 408 of his 1942 paper [21] on singular homology, that the sin
gular method of defining homology ''is as old as topology itself". 

NOTE 8. At this stage Poincare's "just like equations" is confusing, for it is not clear that 
he allows division by nonzero integers, i.e. whether he wants to use integral or rational 
coefficients? However, this point gets clarified in the first "Complement". 
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With reference to ^6 ofA.S. 

NOTE 9. As Poincare pointed out in [60], the numbers defined by Betti [4] himself were 
not the same as these! In modern terms Betti had considered tJw number of elements re
quired to generate Hr(M', Z), rather than the rank of the free part of this group: see the 
First Complement. 

With reference to §1 ofA.S. 

NOTE 10. Poincare's indefinite integrals are uniquely determined by their skewsym-
metric integrands or differential forms co. This section of "Analysis Situs" inspired 
E. Cartan [12, 13]. Following him, the exterior derivative dco, of an r-form a> of a tubular 
neighbourhood U of a manifold M C M", is the (r + l)-form defined by 

{d(D){a\, . . . , Qfr+i) = ^{-lyd/dxoci[ct){oi\. . . . , a/, . . . , 0,4)]. 
i 

One has dod = 0, i.e. these differential forms constitute a cochain complex (Q{U), d). 
Now Poincare's "conditions d'integrabilite" read dco = 0, and the result, nowadays called 
Poincare's Lemma, which he quotes from his earlier paper, says that / /*(^(R") , d) van
ishes in all positive dimensions. Given any r-form satisfying dco = 0, integration over cy
cles gives an additive group homomorphism Hr{U\ M) -> (R, -f-) (likewise Hr{M; C) -^ 
(C, -{-) if one uses complex valued forms) whose image is called the period group of co. 
Poincare checks that this free Abelian group has rank < br(M), and asserts without proof 
that this bound is the best possible. For simple cases - like, e.g., U = C\ {some points} 
when one can use Cauchy's integral formula, also see Poincare's use of the volume form J 
in § 15 - one can check this by giving explicit closed r-forms having br(M) periods. The 
assertion is true in general, and equivalent to a generalization of the Poincare lemma pro
posed by Cartan [13], which soon became de Rham's theorem [72], viz., the cohomology 
H*iQ(U), d) defined via differential forms is isomorphic to H'^iM; R). 

NOTE 11. AS observed in Sarkaria [76], dropping the requirement that the compo
nents of CO be skewsymmetric with respect to the indices gives a bigger cochain 
complex (^assoc(^), <̂ ) with d defined exactly as above, and furthermore, intermedi
ate between ^(U) and ^assoc(^) one has yet another, (Qcyc\{U),d), consisting of 
all co's skewsymmetric with respect to rotations of their indices. The cohomology of 
(•^assoc(^). d) is also H*(M; R), but the cyclic cohomology is somewhat different, be
ing 

//*(^cyc(^), )̂ = 0 H'^-^JiM; R). 

Cyclic subcomplexes were first observed by Connes [14], however, the cyclic man
ner in which Poincare displayed his "conditions d'integrabihte" could have suggested 
(^cyc(^), d) even to Cartan? 

With reference to § S ofA.S. 

NOTE 12. Orientability is not sufficient to ensure that a manifold can be defined as in§ 1. 
Such a V"~^ c R" has a trivial normal bundle, so all its characteristic classes must vanish. 
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For example, since p\ (CP^) / 0, the complex projective plane, i.e. for q = 3, Poincare's 
eighth example, cannot be so defined. 

With reference to §9 ofA.S. 

NOTE 13. Here rational coefficients are necessary, e.g., the double of a nonbounding 1-
cycle V of Poincare's fifth example RF^ (see § 10) bounds, so N{C, V) = Q for all two 
cycles C. With rational coefficients it is true that a (n — /?)-cycle is nonbounding iff its inter
section number with some p-dimensional cut is nonzero. The proof which Poincare gives 
of this assertion for the case p = 1 is okay, however, for p ^ 2 the sketched generalization 
is flawed: see the First Complement. 

NOTE 14. Picard had used b\ = b^ for complex surfaces. Besides Poincare duality, i.e. 
bp = bn-p for closed oriented manifolds, the above assertion about cuts also implies 
Lefschetz duality, i.e. bn-p(iniM) = bp{M, bd M) for oriented manifolds with boundary. 
More generally, one has bn-p{M \ A) = bp{M, A) if M \ A is an orientable n-manifold, 
e.g., one has Alexander duality between the Betti numbers of a closed A C 5*" and its 
complement. This generahzed Jordan curve theorem shows, e.g., that the Betti numbers 
of the example of § 6, i.e. of S^ \ {some bouquets of circles}, are indeed those given by 
Poincare. 

NOTE 15. Recall that two integral n x n matrices A and B are called congruent iff A = 
PBP' for some P e GL(/t, Z). The unimodular intersection matrix N(Vj, Vj) of size 
bn/2(M) which Poincare considers is well defined up to congruence, and is especially 
important for n = 4k when it is symmetric. For example. Whitehead [91] showed that the 
homotopy type of a closed simply connected 4-manifold is determined by the congruence 
class of this matrix, and a theorem of Donaldson [18] says that, if definite, such a matrix 
must be congruent to ±7. 

Combining this with Freedman [23] it follows, e.g., that there are about a 100 million 
distinct simply connected closed four-dimensional topological manifolds with b2 = 32, 
and having intersection matrix - now of course defined via cup products - positive or neg
ative definite, yet only two of these manifolds can carry a smooth structure! Topological 
manifolds, or for that matter all of point set topology, came long after ''Analysis Situs'': 
unless explicitly stated otherwise, these notes also are about smooth manifolds and poly-
hedra. 

With reference to ^ 10 of AS. 

NOTE 16. The assumption that manifolds are obtainable from polytope(s) by facet conju
gations is equivalent to their triangulability. In § 16 Poincare suggests a cell subdivision 
via "quadrillages", and in the first "Complement" (§ XI) he gives yet another with more 
details. For proofs of triangulability of smooth manifolds see Cairns [10, 11], and White
head [89]. For topological manifolds, triangulability is a much more delicate question, e.g., 
Casson has shown that some such closed 4-manifolds (related to Poincare's homology 3-
sphere) are not homeomorphic to any simplicial complex: see Akbulut and McCarthy [1, 
p. xvi]. 



144 K.S. Sarkaria 

NOTE 17. There are in all seven orientable closed 3-manifolds obtainable by conjugat
ing opposite facets of a cube, these are listed in Sarkaria [77]. We note also that instead 
of Poincare's star criterion one may simply check that the 3-complex resulting from the 
facet conjugations has Euler characteristic zero, then it will automatically - see Seifert and 
Threlfall [78, p. 216] - be a manifold. For topological triangulations stars can be funny, 
e.g., Edwards [20] gives a simplicial subdivision of S^, in which one of the edges has as 
link the 3-manifold of Poincare's "Cinquieme Complement". 

With reference to^W ofA.S. 

NOTE 18. Poincare's sixth example amounts to identifying the 2 ends of T^ x [0, 1] using 
the diffeomorphism of the torus T^ = M^/Z^ defined by 7 G SL(2 , Z ) . Starting instead 
with two copies of a soUd torus, and identifying their bounding tori using T, one obtains 

1 0" 
the lens spaces LT of Tietze [87]. For T 

h 1 
this toral diffeomorphism commutes 

with the projections of the two solid tori onto the 2-disk, so yielding all the circle bundles 
LT -^ S-^: cf. Steenrod [84]. As against this, Poincare's M^'s are T^-bundles over 5^ and 
in the "Troisieme Complement" he will also consider other surface bundles over S^. 

NOTE 19. One can check that the top and the bottom squares of Pj are each made up of 
exactly \ot\ + \^\ + \y\ + |(5| - \ facets. 

With reference to § 12 ofA.S. 

NOTE 20. Poincare gives four approaches to his groups g and G. Firstly, as all deck trans
formations of a covering space over M, viz. that whose projection map is the inverse of 
the multiple valued function F^ (one should allow the number of values to be infinite also). 
Secondly, his differential equations definition - which plays a major role in Sullivan [85] 
- gives g as the holonomy group of a "curvature zero" or integrable connection on a vec
tor bundle over M (for nonintegrable connections holonomy groups need not be quotients 
of 7i\{M)). Thirdly, his definition using "loops", "equivalences" and "lacets" amounts to 
that which one usually finds in most text books. Lastly, in § 13, for any M obtained from a 
polytope by facet conjugations, Poincare defines n\{M) via some simple and elegant (yet 
intriguing) cyclic relations. 

Much later Hurewicz [31], 1935, defined his higher homotopy groups as fundamental 
groups of iterated loop spaces: Tti{M) = 7ri(^'~^M). That n^^iS^) is nontrivial was seen 
by using the Hopf map [29], i.e. the projection LT -> S^ (see Note 18) for case T = 

, whenLr = S^. 

With reference to § 13 ofA.S. 

NOTE 21. It looks curious to a modern reader that Poincare speaks of the 'fundamen
tal group'' but never of the (first) ''homology group'\ and this even though he speaks of 
"fundamental equivalences" in tandem with "fundamental homologies"! This is because 
- cf. [69, p. 450] - at that time, the word "group" was used in a more restricted sense: 
one spoke of groups of transformations {•= substitutions = permutations etc.) but not of 
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groups of points. For example, M equipped with addition was seldom called a group, but 
one spoke of the group of translations of R. For equivalences, Poincare had given such an 
interpretation via substitutions induced by monodromy, for homologies he had not. This 
undefinable distinction between transformations and points was discarded later, likewise 
function and path spaces entered topology. 

With reference to § 14 ofA.S. 

NOTE 22. The theory of Fuchsian groups was created and developed by Poincare: see, 
e.g., [52]. Examples (of all three kinds) of these discontinuous groups of motions of the 
non-Euclidean plane will occur later in course of the arguments of the third, fourth and fifth 
Complements. (This last also contains a more topological argument - via Morse theoryl 
- for the classification of surfaces.) Poincare also started work on the harder theory of 
discontinuous groups of motion of the non-Euclidean space - see, e.g., [53], also see [68, 
pp. 64-68] for his popular account of a non-Euclidean world - and probably got interested 
first in 3-manifolds while examining fundamental domains of these groups. The recent 
work of Thurston [86] shows that going back to these geometric "roots" may lead to a 
classification of 3-manifolds. 

NOTE 23. As observed in Sarkaria [77] the main result of this section needs to be cor
rected slightly: the groups GT and Gj' are isomorphic iffTorT~^ is in the same conju-
gacy class, in GL(2, Z), as T\ This is also then easily seen to be necessary and sufficient 
for the manifolds Mj and MT' to be diffeomorphic to each other. 

Since SL(2, Z)/{±/} is isomorphic to a free product of Z/2 and Z/3, it follows that the 
finite orders v which can occur are 1, 2, 3, 4 or 6. There is just one conjugacy class of 
SL(2, Z) corresponding to each of these y's, viz. those of 

-/, -1 
1 

- 1 
0 

"0 

1 

- 1 " 

0 _ 
, and 

"0 

1 

- 1 " 

1 

respectively. The conjugacy classes of parabolic elements are also easy and are given by 
Poincare: representatives are 

1 h 
0 1 

and 
-1 h 
0 -1 

h eZ. 

However, it is not easy to make Poincare's classification of the Mr's more explicit, because 
a complete enumeration of the conjugacy classes o/GL(2, Z) is unknown, but one does 
know that the number of hyperbolic conjugacy classes having a fixed trace t equals -
see [77] - the class number of the real quadratic field Q[(/^ — 4)^^^]. For a different 
connection between the topology of Poincare's MT 'S and number theory, read Hirzebruch-
Zagier [26, pp. ix-xii]. 

NOTE 24. One of the questions asked by Poincare in § 14 can be answered by using the 
analogous manifolds Lj (see Note 18) for which an explicit classification was found by 
Reidemeister [71], 1935: Lr is homeomorphic to L7, iff y = y' and either S = ±5'mod y 
or 88' = ±1 mod y. Here jri(Lr) = Z/y. So one obtains nonhomeomorphic closed 3-
manifolds having the same fundamental group. Indeed, by Whitehead [90], one also has 
nonhomeomorphic Lj ' s having the same homotopy type. 
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With reference to ^ 15 ofA.S. 

Fig. 8. Symmetric square of S^ 

NOTE 25. The image of the map of Example 7 is actually contained in a A-sphere - this 
follows because x\ -\- X2 -\- x^, = 1 and x^ -\- x^ -\- x^ -\- 4jc| + 4JC| + 4x | = 1 - thus 
showing that RF^ embeds in the 4-sphere; more generally by Whitney [92] any closed M" 
embeds in 5^". We note also that Kuiper [38] has checked that the image of the analogous 
map {yi^yi. B ) ^ {yxh^yih^ J3B, jih + yiy^^ y?>y\ + B J I , hyi + hyi). from the 
unit sphere of C^ to R^, is equal to a A-sphere, thus showing that CP^ mod complex 
conjugation is S^. See also Massey [43]. 

NOTE 26. For ^ ^ 3 the link of the diagonal points of the V of Example 8 is S^~^ * 
MP^"^, so for (7 > 4, V is only a pseudomanifold. For q = 3 one gets a manifold, 
viz. CP^. More generally CP" is diffeotnorphic to the space of all unordered n-tuples of 
points of the 2-sphere - see, e.g., Shafarevich [79, p. 402] - and likewise the symmetric 
n-th power of any 2-manifold is a 2/i-dimensional manifold. For q = 2, V is the Mobius 
strip, as is shown by the simpUcial identifications made below. (See Fig. 8.) 

Adding the shaded triangle to the Mobius strip gives the minimal triangulation RP^ 
of RP^. Analogously, the minimal triangulation CPg of CP'^ - see Kiihnel and Ban-
choff [37] - is close to the result of Kuiper and Massey mentioned in the last note. 

With reference to ^ \6 ofA.S. 

NOTE 27. The reference for the cited work of Admiral de Jonquieres is [32]. Incidentally 
I do not know of any higher-ranking topologist! 

NOTE 28. Though in § 14 Poincare gave the now current definition of simply connected, 
mostly he used it - see p. 275 of this section, or p. 297 of the first "Complement" - to mean 
a cell or, sometimes, its bounding sphere: e.g., while asking, on p. 498 of [69], the famous 
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Fig. 9. 

question which is now mistakenly called the Poincare conjecture. The Euler-Poincare for
mula is of course false if one only demands that the regions be simply connected in the 
modern sense of the phrase. 

NOTE 29. The figure above (Fig. 9: here P is an unsubdivided triangle) shows that 
Poincare's "erasing/annexing algorithm" may stop before reaching P. 

Indeed any algorithm of this kind would give a positive answer to a problem which, to 
the best of my knowledge, is still open, viz. is there a combinatorial characterization of the 
set of all simplicial complexes realizable as geometric subdivisions of a given simplicial 
complex (cf. Hudson [30, p. 14])? However, a fundamental theorem of M.H.A. New
man [48] does identify the equivalence relation generated by "have a common geomet
ric subdivision" with that generated by "have a common stellar subdivision". The invari-
ance of Â  follows because clearly elementary stellar moves preserve it. This argument 
is close in spirit to the one being tried by Poincare in his second attempt in this sec
tion. 

With reference to ^ 11 ofA.S. 

NOTE 30. For simplicial complexes (these made their appearance in the first Comple
ment) P^x = Qfx(^ii) for all /x ^ A., so then column summation of Poincare's "tableau" 
gives the Dehn-Sommerville equations [16, 82], 

«'(::;)—c:,)-—(::i)="-<-"""'«" 
which, for a simplicial sphere, are equivalent to saying that the polynomial ^(z) = 
otpZ^^^ — oip-\Z^ + • • • ± a{)Z =F 1 must obey \ht functional equation ^{z) = C(l — ^)-
A complete characterization of these polynomials is now known: see Stanley [83]. 

With reference /o § 18 ofA.S. 

NOTE 31. This attempt - the two first "Complements" will push it further - at the invari-
ance of Â  is the one which affected future developments the most. It gives (implicitly) 
a new definition of Betti numbers which uses a cell subdivision P of M and Poincare is 
trying to show - with ideas which clearly foreshadow simplicial approximation - that 
these coincide with those of § 6. This programme, in which Brouwer - see, e.g., [9] -
played a big role, culminated in Alexander [2], 1915, which contains an elegant proof of 
H^(P) = H^{M). After this it remains only to check, as Poincare does, that the alternating 
sum of the face numbers a/ equals the alternating sum of the Betti numbers /?, of P. This 
lemma came to fruition with Hopf [28] and Lefschetz [41]. 
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3. Complements 

3.1. The First Complement 

The First Complement opens with a reference to the "tres remarquable" work of Hee-
gaard [25], 1898, who had deemed the duality bp = bn-p of "Analysis Situs" inexact 
and the proof of it given there without any value. Before examining Heegaard's spe
cific objections Poincare points out that Betti's numbers [4] were quite different from 
those of "A.S.". For Betti homologies were between distinct varieties together forming the 
boundary of some V, while Poincare had considered arbitrary 9 Vs. At this point Poincare 
states that it is convenient to even allow division by nonzero integers (see Note 8). What 
an example given by Heegaard, or for that matter Example 3 of 'A.S." itself, showed (see 
Note 13), is only that the duality is false for Betti's numbers, on the other hand the duality 
is very much true for Betti numbers (as defined in "A.S."), and the main object of this 
paper is to give a new proof of this using the polyhedra P of § 16 of 'Analysis Situs". 

As for the previous proof (§ 9 of 'Analysis Situs"), after showing for c = 1 that a homol-
ogously nontrivial codimension c cycle V of an oriented closed manifold M admits a c-
dimensional transversal C which intersects it nontrivially, Poincare had hurriedly sketched 
that the general case could be done by finding an M' of one dimension more which con
tains y, then using case c = 1 to get a one-dimensional transversal cut C in M^ and 
finally enlarging C' to a complementary dimensional cycle C which intersects M' in C 
Heegaard's objections to this were two: how can one find M\ or even if one can, how can 
one enlarge C to a cycle C of the required kind? Poincare admits the validity of at least 
the second of these objections. 

Given a polyhedron P its schema, i.e. how it is built up from the y/'s, is determined by 
its incidence numbers: one has e^. = 0 if the 7-th (oriented) {q — l)-cell is not incident to 
the /-th ^-cell, and = ±1 otherwise, sign depending on whether or not the orientation of 
the {q — l)-cell agrees with the boundary orientation (§ 4 of "A.S.") of the ^-cell. Poincare 
observes the all-important necessary condition 

e^e^-i = 0 (i.e.aoa = 0), 

but points out that this is not all, one has, e.g., the star condition of "A.S.", § 10. Poincare 
poses the problem of characterizing schemas of manifolds (Newman's Theorem, Note 29, 
answers this partially). 

Next, given a cell subdivision P of our manifold, we can consider the reduced Betti 
numbers bq{P) ^ bq defined as the maximum number of linearly independent cellular 
cycles. Note that here "linearly independent" is still in the sense of § 6 of "A.S.", i.e. the 
homologies are not required to be cellular. However, Poincare asserts that all homologies 
are generated by the cellular ones, and an intricate proof of this - only for the case of 3-
manifolds - is given in Section VI. (As remarked in Note 31 a full proof, using Brouwer's 
simplicial approximation, was given much later by Alexander.) 

However, before this he shows in Section III how the above assertion implies (this is 
along lines already sketched in § 18 of "A.S.") the Euler-Poincare formula for the reduced 
Betti numbers, 

ClrniP) - arn-l(P) + •" = b^P) " bjn-l(P) + "' 
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(i.e. he checks that X^/(-l) ' dimC/ = Zl/(""!)' dim/// for any chain complex • • • -> 
d -^ C/_i -^ •••overQ). 

In modern parlance, Section IV checks that, by imaging each ^-cell of P to the sum of all 
the smaller compatibly oriented ^-cells of a subdivision P', one gets the chain subdivision 
mapC(P)-^ C{P'), 

In Section V he proves (again using the assertion that cellular homologies suffice) that 
the reduced Betti numbers are subdivision invariants. For this he deforms each ^-cycle 
of P' over /z-cells of P, in order of decreasing /i, till finally it is contained in the ^-skeleton 
of P. Then the coefficients of all smaller cells belonging to the same ^-cell of P being the 
same, chain subdivision identifies it with a ^-cycle of P. So bq{P) does not depend on P. 

At the end of Section V, Poincare asserts that given any closed (smooth) cycle one can 
always subdivide P so that the cycle becomes cellular in this subdivision. Using this tri-
angulability assertion it follows that the reduced Betti numbers coincide with those of 
"Analysis Situs", § 6. He enters into these intricacies in Section X (no use is now made of 
the "quadrillages" of § 16, "A.S.", instead there is an interesting idea involving76>m5 ofsim-
plicial complexes) and declares at the end that "on est ainsi debarasse des dernier doutes" 
about triangulability. (We note that the "simple triangulation method" of Cairns [11] is al
most the same as Poincare's previous method of § 16, "A.S.", viz. intersecting M with a 
sufficiently fine "quadrillage".) 

In Section VII Poincare puts a vertex a in each a e P, and subdivides inductively by 
coning the already subdivided boundary of a over a. This gives a simplicial complex, 
viz. the barycentric derived P^ of P. If one transfers the incidence relation amongst the 
cells of P to their barycentres, one sees that the simplices of P^ have as vertices all totally 
orderable sets of barycentres, and that a cell a of P consists of all simpUces of P^ having 
highest vertex a. 

Poincare now defines his dual cells a* by inductively coning over a the already defined 
dual cells of the higher dimensional cells incident to a (that a* is indeed a cell follows by 
the stai' criterion of "A.S.", § 10). So a* consists of all simphces of P^ whose lowest vertex 
is a. 

The dual cells a* constitute the polyedre reciproque P* (Poincare dual cell complex): 
note that P and P* have common subdivision P^ so just the subdivision invariance of Betti 
numbers gives bq{P) — bqiP""). We shall orient the dual cells so that, under the incidence 
reversing correspondence a ^> a* between the schema of P and P*, one has 

(i.e. the boundary 9 of P becomes the coboundary 5 of P*, thus giving at once the modern 
Hq{P) = //"-^(P*)). 

Using this duality of incidences Poincare obtains his duality bq{P) — bn-qiP"^) by 
showing, in the course of Section VIII, that the reduced Betti numbers can be computed 
from the schema by using 

bq(P) = aqiP) - r{e^P)) - r{E^^\P))^ 

where r{A) denotes the rank of the matrix A. (For the sake of simplicity Poincare prefers 
to write all details, starting with the definition of P*, only for 3-manifolds; however, the 
general versions can be found in §§ 1 and 3, of the Second Complement.) 
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Section VIII actually gives an algorithm which computes the Betti numbers of a 
schema. For this he sets up his tableaux 

e^+i 0 

and then using elementary row and column operations, triangularizes the top right and 
bottom left corners. Working over Z, instead of Q which suffices for his Betti numbers, 
enables him to show in Section IX that bq coincides with Betti's q-th number iff the greatest 
common divisor of the largest sized nonzero minors of the (q + l)-th incidence matrix is 1. 

Section IX also contains a cellular version of a result of § 9 of "Analysis Situs", viz. that 
it is possible to find a p-cycle V\ in P such that N{Vi, V2) is nonzero if and only if the 
(n — p)-cycle V2 of P"" is not homologous to zero over Q. This is easy algebra because 
a and a* have intersection number N(G,O'') = ±1 . Then, using triangulability, Poincare 
again claims the previous results of § 9, "A.S.", in full. 

3.2. The Second Complement 

The Second Complement is only, says Poincare, to simplify and clarify results already in 
hand. He begins by precising that, with dual cells oriented as above, one has 

N{a, a*) = (-1)^(^+2)72^ ^^^^^ ^ ^ dim(a). 

In the previous paper Poincare had only triangularized the corners of his "tableaux" 
because he was unaware of Smith [81], 1861, where it had been shown that a rank r 
integer matrix can be reduced, by elementary operations over Z, to a unique matrix of the 
type, diag(Ji, J2, • • •, <̂ r, 0 , . . . , 0), d\\d2\... \ dr. Still unaware of Smith's work, he now 
re-discovers, and gives a nice proof of this result in § 2. 

In terms of these important new torsion invariants di of the schema P he then works out 
in § 3 that Betti's ^-th number exceeds bq by the number of invariants of s^^^ bigger 
than 1, and that the product of these invariants gives the number of "distinct" cycles whose 
multiples bound (i.e. the order of the torsion part of Hq{P)). 

As mentioned in Note 21 Poincare did not speak of homology groups, but of course 
knowledge of Betti numbers and torsion invariants is equivalent to knowing homology or 
cohomology groups: 

Hq(P) = 0{ZM(e^+^)Z: di{e^+') > l}©Z^^ 

HHP) ^ 0{ZM(£^^)Z: di{£^) > 1} ez^^. 

Computations (§4). Poincare gives the Betti numbers and torsion invariants of Ex
amples 1, 3, 4, and 5 of § 10 of "Analysis Situs" by diagonahzing over Z the incidence 
matrices of the cell complexes (so s^. can be integers other than 0, ±1) given by the facet 
conjugations (a more sophisticated cell complex H was used later for the homological 
computations of the Fourth Complement). 

He also computes the same for Heegaard's [25] example, viz. the singular link of the 
complex surface z'^ = xy. Curiously, though it is all but apparent from the cell subdivision 
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which he uses, he fails to notice that Heegaard's example is actually the same as his own 
Example 5 of ''Analysis Situs'', i.e. diffeomorphic to RP^. (See Milnor [46] for more on 
singular links of complex hypersurfaces.) 

Poincare also computes his new invariants for the manifolds Mj of Example 6 (§ 11 of 
"A.S."). In modern terms he shows that//i = ZeZ/diiT-I)ZeZ/d2(T-I)Z2indH2 = 
Z^i. This time his method is to note (using § 13 of "A.S.") that H\ is (Ci, C2, C3) mod the 
relations 

(a - 1)C2 + yC3 - 0, 

and the result follows by reducing the coefficient matrix. 
In § 5 (which perfects Section X, and end of Section VII, of the First Complement) there 

is a direct combinatorial proof of the particular case bq{P) = bq{P*) of the invariance 
theorem. 

In § 6 it is shown that if the q-skeleton of P has no "one-sided circuits" in the sense 
of § ^ of "Analysis Situs'', then its (q — \)-th homology is torsion free. This condition 
amounts to saying that if we consider any circuit, with some entries of the ^-th incidence 
matrix as its vertices, and with edges alternatively horizontal and vertical, then the product 
of its vertices, if nonzero, is +1 or —1 depending on whether the length of the circuit is, 
respectively, 0 or 2 mod 4. (See Fig. 10.) 

From this Poincare deduces that all minors of e^ must be 0 or d=l which of course 
implies that Hq-\ is free. (We note that the vanishing of a Stiefel-Whitney class Wn-q can 
likewise be interpreted as a milder "orientabihty condition" on the ^-skeleton.) 

Poincare ends by conjecturing that if Betti numbers and torsion invariants are all trivial 
then the manifold is a sphere. As is well known, he later disproved this via the famous 
example of the Fifth Complement, but it is to be noted that he already has at least examples 
of orientable 3-manifolds having the same homology groups but different fundamental 

groups, e.g., take Mj with T = ^ 0 r 
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and "2 r 
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Fig. 10. A one-sided circuit. 



152 K.S. Sarkaria 

3.3. The Third Complement 

The Third Complement computes TTI (V) of some Vs satisfying the polynomial equation 
z'^ = F(x,y). (In [64] Poincare mentions that he got interested in these surfaces because 
of a problem regarding perturbation functions of celestial mechanics.) It is assumed that, 
but for finitely many singular points {Ai , . . . , Ag] of the complex y sphere, F(x, y) = 0 
has 2/7+ 2 distinct roots A:O(J),XI (y ) , . . . ,X2p+i(j), p ^ I. 

First consider y as a constant i^ Ai, I ^ i ^ q. Then z^ = F(x,y) gives a complex 
curve V of genus p, and the coordinates x and z of its points are Fuchsian functions of 
an auxiliary variable u = ^ -h ir], having a Fuchsian polygon R of the first type with 
angle sum In, such that opposite pairs of its 4p edges get identified under transformations 
Sk(u) = (j)k{H, rj)-\-i\l/k(^, T]), I ^ k ^ 2p, generating the Fuchsian group G' admitted by 
these functions. The curve being hyperelliptic (it has the involution (x,y,z) <^ (x,y, —z)) 
one can choose an R which admits a central symmetry (non-EucUdean, if p ^ 2) and is 
made up of two symmetric halves R' and R'\ with R^ being such that its 2p -h 1 vertices lie 
above XQ and the mid-points of its edges correspond to the remaining roots x i , . . . , X2p-^\ 
of F(x, y) = 0. Each of these tiles R^ covers the complex x sphere with the two halves of 
each of its 2/7H-1 edges imaging onto the two "lips" of a cut going from XQ to x i , . . . ,X2p-\-i 
(the genus p surface is obtained by identifying two copies of this cut sphere). (See Fig. 11.) 
Each member of 7T\(V) = G' is a product of an even number of central symmetries Sk 
through points above Xk (e.g., ^i = s\S2k-^\). These symmetries obey, besides s^ = \, the 
Fuchsian relation S{)S\ • • • 2̂/7+1 = 1-

What happens if we now let y vary and describe a simple closed curve in S^ \ 
{Ai , . . . , A^}? Our Fuchsian group will vary in a continuous way, likewise the roots 
xo, x i , . . . , X2p-^i, and the Fuchsian polygon R. After y has described the closed curve, 
the group will return to the original G^ but the points xi will in general get permuted 
amongst themselves, so that R might become a different, but still equivalent polygon Ru 
i.e. still generating G\ 

The three-dimensional variety V defined by z^ — F{x, j ) , with y constrained on such a 
closed curve is then analyzed via monodromy, i.e. as y varies we shall make the Fuchsian 
variable u vary continuously in such a way that vertices of the original tiling go to vertices 
of the new (but homeomorphic) tiling, edges to edges, and congruent points go to congruent 
points. We introduce three real variables ^, r], and f: the first two being the real and 
imaginary parts of the initial u, and the last a function of y alone which augments by 1 as we 
describe the closed curve. We can then represent V (see "A.S.", § 11) by the discontinuous 
group G generated by the 2/? -f 1 substitutions 

(^,?7,0 H> (0^($,/7),iA^(^,/?),?)' 

(§,r7,0 ^ (^(?,;7),^i(?,^?),C + l), 

where u\ — 0(^, rj) + i^i(^, r]) denotes final position of w = ^ + i?7 (so the 3-manifold 
V is the mapping torus of the diffeomorphism of the surface of genus p induced by the 
monodromy u \-^ ui). Note that TTI (V) = G contains a normal subgroup isomorphic to G' 
which, together with the last substitution U, generates it. For the EucHdean case p = 1 we 
have 

(9(§, 1]) = a§ + PT], 6>I(§, ry) = y? + 8r], where T = 
a p 
y 5 

G SL(2, Z) 
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Fig. 11. Hyperelliptic curve (half) of genus two. 

images the parallelogram R onto the equivalent /?i, so for /̂  = 1 we have again the vari
ety MT and the group Gr of Example 6 of "A.S.", §11. 

Let us considernext the four-dimensional variety V defined by z} = F{x, j ) , with y only 
constrained to be outside q small circles guarding the singular points {A i, . . . , A^}. To an
alyze V we shall join a chosen ordinary point O of the complex y sphere to these points by 
means of q disjoint cuts O A i , . . . , 0 A^. Indeed we shall think of }̂  as a Fuchsian function 
of a new auxiliary variable f -f i^' e A, invariant with respect to a Fuchsian group F 
generated by a Fuchsian polygon Q of the second type whose q cusps at correspond to the 
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Fig. 12. A Fuchsian tile of the second kind. 

singular points A/, while its remaining vertices Pi all correspond to the ordinary point O. 
(See Fig. 12.) The sum of the tile's angles is again 27i (the angle at each cusp being zero) 
and the group F, i.e. the free rank q — 1 fundamental group of 5^ \ {q points}, is generated 
by q motions Ei which identity pairs of edges incident to the same cusp, and one has the 
relation E\U2' -- Eq = 1. 

To each point of V assign four variables ^, r], ^ and ^\ of which ^ and rj are the 
real and imaginary parts of the UQ above a base point yo obtained from u by monodromy 
over any path from y to yo which does not cross the cuts OA/. This is independent 



The topological work of Henri Poincare 155 

of the path chosen, however, if y makes a loop around At resulting in the substitution 
T/C^, ^0 = {Ki{^\ ^"), K'.{t;', ^")) of r , then the variables ^ and 77 can change, to say 
ft(^, 77) and 0'.{^, rj). Our variety is thus represented by the discontinuous group G of 
4-space determined by the 2p -\- q substitutions, 

and this G is its fundamental group (Poincare checks via the usual argument which iden
tifies 7T\ with all covering transformations of a simply connected cover). Note that it 
has G' as a normal subgroup which generates it together with the last q substitutions 
Ti = {Oi, 0-, Ki, K[). (That Jt\{V) is an extension of G' by the free group F can be seen 
also by using the homotopy sequence of V as a fibration over S^ \{q points} having the 
surface of genus p as its fiber.) 

Getting rid of the circles guarding the points A/ and supposing that x and y can take ar
bitrary complex values we now consider the algebraic surface V defined by z^ = F{x,y). 
It will be assumed that as y approaches an A/ some two of the roots, say Xaiy) and Xd{y), 
approach a common value Xad, but the other 2p roots all remain distinct, so the (possible) 
singularities of our V are (xad^ A/, 0) only. Poincare shows that V is simply connected 
(as against Picard who had shown ^1 (V) = 0 for a generic complex projective surface V). 
For this note that TTI (V) is a quotient of the above G. Also that, as y makes a small loop 
around A/, while x remains constant, we get a small loop on V, so Ti :^ 1V/. With y moving 
as before, now let x also make a small loop around both Xaiy) and Xd(y). This augments 
the angle of z^ = F{x, y) by 4n, so giving us another small loop on V, this time around 
the singularity (Xad, A/, 0). Thus TiSaSd — 1, so giving SaSd — l^a.d. 

Lastly, let V be the nonsingular part of the above complex surface. Since we can no 
longer deform past (xad, A/, 0) we cannot conclude Sa — Sd in the above manner. We, 
however, still have Ti :^ IVz, so 7TI(V) is at most a quotient of G^ For p = 1, G' is 
Abelian, so then Picard's result implies that ni (V) is finite. Poincare shows this in general 
by writing down some more relations using the fact that, in TTI (V), the monodromy action 
of Ti must become the identity. 

We illustrate this for p = 2, first ifxaiy) and Xdiy) interchange as y makes a small 
loop around A/. Shown in Fig. 13 are the initial (full) and final (dotted) positions of cuts, 
from an ordinary point 0, to these two roots; the other four cuts do not change as y makes 
this loop. Now St, (or just b for short) corresponds to a loop which intersects only one 
initial cut, viz. Ob. Observing in order the final cuts which this loop intersects we get 
b :^ dabad. Likewise a 2^ d, c 2:̂  dacad, d 2:̂  dad, e 21 e, and / 2r / . So we again 
have Sa — Sd. Indeed (xad, ^/ , 0) is a removable singularity of V, i.e. its Unk is S^: this 
follows because, near it, our surface is like z^ = y — x'^ near the origin. If Xa{y) and 
^diy) remain distinct then the picture can be as in Fig. 14. The same method now gives 
b :^ dadabadad, a 2̂  dad, b ~ dadabadad, c 2^ dadacadad, d :^ dadad, e :^ e and 
/ 2:: / . So we only obtain {SaSd)^ = 1. Now {Xad^ A/, 0) is a conical singularity: near 
it the surface is like z^ = y'^ - x^ (or Heegard's example z^ = xy) and the link is RP^. 
From these considerations it is easy to see that 

7ri(y) = (Z/2)'^-i or (Z/2)^^-^ 
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Fig. 13. Removable singularity. 
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Fig. 14. Conical point. 

where n denotes the number of irreducible factors of F(x, y). Indeed if the roots a and b 
belong to the same factor, then we can identify the corresponding symmetries Sa and Sd, 
and otherwise identify them up to an ambiguity of order two, with the Fuchsian relation 
giving one more relation unless all factors are of even degree. 

3.4. The Fourth Complement 

The Fourth Complement opens with a mention of the pioneering "beaux travaux" of Picard, 
and goes on to show how monodromy can be used to find all the Betti numbers of a smooth 
complex two-dimensional variety V (Poincare works over Q but it is asserted in [65] that 
this method will also give the torsion invariants). We shall suppose V represented as an 
algebraic surface f(x,y,z) = 0 having only "ordinary singularities", such that for each 
fixed y ^ A i , . . . , Ag our equation determines a smooth complex curve S(y) C V of 
constant genus /?, but the genus of the q exceptional curves f(x, A/, y) = 0 can be lower. 

A cell subdivision H of V(§ 1): this projects, on the };-sphere, to a 2^-gon Q with 
pairs of sides Piat = Pi-\-\ai covering the two lips of the cuts OAi (see a picture above), 
and induces, for each fixed y ^ S'^ \ {cuts OA/}, a subdivision P of S{y) which is pre-
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served by monodromy over paths not crossing the cuts. Further, as y approaches a point M 
on a cut OAi from its two sides, P can approach two quite different subdivisions, MP 
and (MP), of the same Riemann surface S(M): we shall assume that now H induces 
the common refinement P^ of MP and (MP). Likewise, as y approaches O from within 
any of the q sectors, P can tend to q different subdivisions of S(0): now H induces the 
common refinement P^^ of all q of these. Finally, as M approaches A/ along OA/, MP 
and (MP) approach coincidence, and at the same time some cells get identified, to give the 
cells of H covering the lower genus curve f(x, A/, z) = 0. The faces, vertices, and edges 
of P (respectively P^ respectively P'O are denoted F/, Bj, Q (respectively/^^ Bj, C^, 
respectively F^^ B"., C p , and those of H by pre-multiplying these with the appropriate 
faces of Q. 

Computation of H2>(V) (§ 2). We sketch below the argument which is given to show 
(in modern terms) that H2,(V) is isomorphic to the subgroup of H\ (S) which remains fixed 
under the action of the Picard group (so named in [65] by Poincare), i.e. the image of the 
monodromy induced group homomorphism 7t(S'^ \ qpis) -^ Aui(H\(S)) = GL(2p, Z). 
(Also, the parity of b^(V) = b\(V) is always even, being double the irregularity of V, as 
was shown by Picard using transcendental methods.) 

Let CO = Ylj Cj Q^j + Y^k i ̂ kiOiiPi F'^ be any 3-cycle of H, then - look at terms of left 
side of 9a; = 0 involving cells with first factor Q~ Q = Ylj ^j ^j "^^^t be a 1-cycle of P, 
and it is easily seen that co c::^ co' impHes Q '21 Q'. Also - look at the remaining terms of 
3a; = 0 - Y- CjOii^i^x Bj — Y,j CjaiPi Bj is a boundary V/, which imphes, on intersecting 
with S(M), that the copies of 12 in the subdivisions MP and (MP) of S(M), M e O A,-, 
must be homologous (in P' after subdivision). In other words the 1-cycle ^ of P is in
variant (up to homology) under monodromy. Further if f2 bounds then so must co: to see 
this note that now we can add a boundary to a> to get a 3-cycle of the type J2k / ^kiOii ̂ i Fj^, 
but then it has to be zero, for otherwise, for some /, we are saying that the fundamen
tal cycle of S(M), M e OAi, goes to 0 as M approaches A/. Poincare also checks that 
every invariant 1-cycle Q arises from a 3-cycle o) in the above way. For this purpose he 
chooses on S(M) a region R bounded by Q and Ti(Q) - here 7/ denotes monodromy 
about Ai -which approaches 0 as M approaches A,-. Using this it follows that the bound
ary of a; = QQ + Xl/ ^iPi^i contains at most terms involving cells with first factor ^/. 
This 2-cycle dco cannot cover all of S(0) and so must be zero. To see this note, because of 
our choice of R, that it covers the area of 5(0) "swept out" by ^ C S(y), monodromed 
back to 0, as y describes the flower shaped contour of Fig. 15. Our monodromy (cf. Third 
Complement) results from the movement of the branch points Xk(y) - i.e. the common 
roots of f(x, y, ^) = 0 = df /dz - with y, so our sweeper curve is at all times "fleeing" 
away from these moving branch points, and thus doj cannot cover all of 5(0). 

As this sketch indicates the argument depends heavily on the nature of H above the 
points A/. In § 5 Poincare elaborates on this by giving two examples: in both cases the 
subdivisions MP and (MP) are exhibited, the invariant 1-cycle ^ and the aforementioned 
"vanishing region" R explicitly given, and (in §§ 3 and 4 this is assumed in general) it is 
shown that a 1-cycle vanishing at A/ is necessarily of type Q — Ti(Q). 

Computation 0/ //2(V) (§ 3). Using arguments similar to those sketched above a com
plete fist of homologically distinct 2-cycles of H is displayed. Their number ^2(^) is given 
(there are some misprints here) in terms of the numbers of homologically distinct invariant 
and vanishing cycles of S and the rank of a certain matrix defined using monodromy (the 
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Fig. 15. 

correct computation - see [40, p. 40] - identified the Zeuthen-Segre invariant of V with 
its Euler characteristic). 

Computation of Hi{V) (^ 4). As Poincare points outb\{V) had already been computed 
by Picard who had shown (in modern terms) that Hi(V) is isomorphic to Hi(S) mod the 
subgroup generated by the vanishing cycles Q — Ti(f2) (cf. a similar result, about 7t\ of 
the smooth part of a surface, in the Third Complement). Poincare gives another proof of 
this statement using arguments like those sketched above. Then, using the skewsymmet-
ric intersection form of the genus 2/7 Riemann surface 5, he shows that the sum of the 
numbers of homologically distinct invariant and vanishing cycles of S is 2p, thus verify
ing Poincare duality bi(V) = b^iV) for the orientable smooth 4-manifold V. (In fact a 
"stronger Poincare duality" holds for V, viz. the so-called hard Lefschetz theorem [40, 
p. 29]: there exists a basis of Hi (S) represented by cycles which are either invariant or van
ishing. The arguments of Lefschetz's book, which also contains generalizations for smooth 
complex projective varieties V of arbitrary dimension, are like those sketched above. How
ever- see Lamotke [39] - a complete topological proof of this stronger duality still remains 
elusive, the best proof being via Hodge theory. Incidentally - see [40] - these transcenden
tal methods were also pioneered by Picard and Poincare.) 

3.5. The Fifth Complement 

The Fifth Complement is mostly about 2- and 3-manifolds but the method used (now called 
Morse theory) is, as Poincare puts it, "sans doute d'un usage plus general". (For example, 
Morse [47] and Lusternik and Schnirelmann [42] generalized this method to path spaces, 
furnishing the tool used by Bott [6] to compute ni (f/(«))V/ < 2n.) 

In § 2 Poincare sections any smooth (m + 1)-dimensional manifold V C M̂  into m-
dimensional subvarieties W(t) by means of a one-parameter family of real hypersurfaces 
0( jci , . . . , JC/̂ :) = t. In general W{t) has no singularities, but for finitely many values to 
of t it is allowed to have one singular point. Poincare notes that the diffeomorphism type 
of W{t) changes only when t crosses an exceptional value to. If, near its singular point, 
the section Vl̂ (/o) looks like say 0i(3^i,..., Jm+i) = 0 (we shall take 0i = 0 — 0(ro)) 
near the origin, then we can always assume, after perturbing (p slightly if need be, that the 



The topological work of Henri Poincare 159 

second degree terms of (f)\ give a nondegenerate quadratic form. Choosing coordinates 
which diagonalize this quadratic form, we see thus that near its singularity W{to) is, for 
some 0 ^q ^m + I, like the hypersurface 

near the origin (so A. = m + 1 — ̂  is the index of the singularity). When q =Oorq = m + l 
the singular link C of W(to) is empty, otherwise it is diffeomorphic to S^~^ x S"^~^: 
this follows because C is given by the above equation and |yip + • • • + bm+iP == 1-
(Note that Poincare had used a similar method even in the last two Complements, viz. 
sectioning a complex variety by a pencil of hypersurfaces depending on a complex param
eter >̂ . For this holomorphic Morse theory a singular Unk is given by the complex equations 
zf H \- zl =0 and |zi P 4- h \Zn. P = 1, and thus is the tangent sphere bundle of a 
sphere: see Lamotke [39, p. 37], for the role which this fact plays in this theory.) 

Each W{t) can have many components Wi{t). Poincare defines the squelette (a graph 
in 3-space) of V by collapsing each Wi(t) to a single point. If ^ = 0 or m + 1 then one 
is on a cul-de-sac, and if wi splits into two (or vice versa) as we move past this r, on a 
bifurcation of the squelette. In general there are also other singular values of t which too 
are marked appropriately on the squelette. 

SURFACES V. Now any singularity must be a cul-de-sac or a bifurcation. To see this let 
W(0) have a singularity with ^ = 1 - so C consists of 4 points - near which it is the union 
of the intersecting arcs 13 and 24. If 1 were associated to 3, i.e. joinable to it in W(0) 
without passing the singularity, then 2 must be associated to 4. Now there is no bifurcation 
(see Fig. 16 which shows a part of V, which we think of as a polygon with pairwise 
conjugation of its boundary edges) but V would be one-sided (for AB gets conjugated to 

Fig. 16. A one-sided singularity. 
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Fig. 17. Half of a Fuchsian polygon of the third kind. 

A'B'). So 1 can only be associated to 2 or 4, and so 3 to 4 or 2, respectively, and in either 
of these cases we get a bifurcation of the squelette. 

In § 3 this is used to sketch a Morse theory proof of the classification of surfaces. Choose 
p points on the squelette whose removal would get rid of all its circuits but keep it con
nected. From the above discussion one can deduce that if we cut V along the Wi(tys 
corresponding to these p points then we would be left with a planar region R bounded by 
2p circles. The uniqueness of this model follows because clearly p = bi(V). One may 
think of R as one of infinitely many congruent Fuchsian polygons of the third kind tiling 
the plane, with conjugations realized via elements of the Fuchsian group. (See Fig. 17.) 
Another model of V is a normal polygon R^ (geometrically a Fuchsian tile of the first 
kind) of 4/7 sides: e.g., for /? = 2 it is an octagon 12345678 with boundary identifications 
giving the sole equivalence Ci + C2 — Ci — C2 + C3 + C4 — C3 — C4 = 0 between the 
fundamental cycles Ci = 12, C2 = 23, C3 = 56, C4 = 67. For p = 2 (see Fig. 18) 
one can go (§ 4) from R to R' by cutting the region between DMD and —B and pasting 
it to +J5. (An algorithm for normalizing any polygonal representation of V was given by 
Brahana [17]; in many text books the classification of triangulated surfaces is proved via 
some such algorithm.) 

ORIENTABLE 3-MANIFOLDS V. If w;(0) has a singular point other than a cul-de-sac, the 
singular link C is a union of two disjoint circles. We note (see Fig. 19) that the throat 
("ellipse de gorge") K of w(-\-6) shrinks (under the gradient flow of the Morse function) 
to the singularity 0 as t decreases to 0 and then disappears. In case the two circles of C are 
not in the same component of u;(0) \ 0, then K disconnects W(-\-£) and so is a boundary, 
now there is bifurcation but w{-\-s) and w(—s) have the same b\.ln case the two circles of 
C are in the same component of w;(0) \ 0, then there is no bifurcation but the b\ ofW{-[-e) 
is 2 more than that ofW{—s). A reduction by 1 occurs because the throat K, which is now 
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Fig. 18. Cutting and pasting. 

Fig. 19. Throat. 

homologically nontrivial, disappears, and by another 1 because a cycle C of W(H-e) with 
N(C, Â ) / 0 also disappears. There is no further reduction because if A^(Ci, K) = k\ and 
N(C2, K) = k2, then k2C\ — k\C2 is homologous to a cycle not cutting K, and so cannot 
disappear. (One obtains W{-\-£) from W{—£) by doing a surgery of type X, or equivalently 
W{^ +e) from W « —s) by attaching a handle of index X.) 

To motivate the questions which Poincare tackles next in §§ 3 and 4 we note that in 
§ 5 he is going to fix (via the gradient flow), for each singular value tq a copy of its 
throat on W(t)yt > tq. Thus one needs to look at systems of non self intersecting ("non 
boucle") cycles Kt of W{t) which do not intersect each other. (In higher dimensions too. 
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to simplify a Morse function, one needs to analyse systems of spherical cycles, of at most 
half dimension, on the generic level surfaces.) 

For example, he checks in § 3 that a I-cycle of a surface W is homologous to a 
non self intersecting cycle iff it is a combination, with relatively prime coefficients, of 
the fundamental cycles, i.e. iff it represents a primitive element of H\{W) = 1?^. 
This is deduced as a corollary of a theorem which, in modern terms, says that the map 
Diff(iy) -^ Aut/r(//i(W)), / h^ /*, is surjective. Here Aut/r(//i(W)) consists of all 
automorphisms of //i(W) which preserve the intersection form. Recall that any integral 
skewsymmetric matrix having determinant 1 is congruent over Z to 

F = diag(..., \^\ ^] . . . . ) 

Choosing such a basis A\xif{H\{V)) is same as Symp(2p, Z), i.e. all A e GL(2p,Z) 
such that AM' = F. Poincare Usts some matrices over {—1, 0, +1} which he asserts - this 
was verified by Brahana [8] - generate Symp(2/7, Z). The theorem is proved by a long 
cutting and pasting argument which shows that these generators of Autp(H\(W)) arise 
from diffeomorphisms of W. 

In § 4 Poincare deals with some analogous questions for equivalences, e.g., when is a 
given cycle of the surface equivalent to one which is non self intersecting? Considering W 
as A/G, where G = TTI (W) is a Fuchsian group of the first kind, he hfts the given cycle C 
to an arc of A going from say M to SM, S e G, and denotes by a, fi e dA the two fixed 
points of this hyperbolic transformation S. He shows that C is improperly equivalent to a 
non self intersecting cycle iff the non-Euclidean line afi does not intersect the correspond
ing line a' fi' of any conjugate S' of S. Here improper equivalence A = B (impr.) means 
that base point can move (i.e. the loops are freely homotopic). Poincare points out that 
A-j-B-\-C = B-\-C-\-A (impr.), so now cyclic reordering is allowed, as against equiv
alences when no reordering may be valid, or as against homologies when all reorderings 
are valid. 

He also gives a rule to check if a combination of the fundamental cycles of W is equiv
alent to a non self intersecting cycle. The complicated details are written out only for 
/? = 2 for which case it shows, e.g., that of all the combinations involving C\ and C3, 
only Ci, C3, C\ -\- C3 and C3 + C\ are equivalent to non self intersecting cycles. (As 
against this any aC\ -\- hC-^ with {a,b) = 1 was homologous to a non self intersecting 
one; this anomaly between homologies and equivalences disappears when one uses Morse 
theory in dimensions ^ 5 . ) 

The next § 5 examines an orientable 3-manifold V (with boundary W = W{1)) gener
ated by connected W(tys, 0 ^ r ^ 1, with p exceptional r/'s, at each of which bi increases 
by 2. The ^-th throat fixes a non self intersecting cycle Kg on each W(t) with t > tq and 
these cycles Kq of W(t) do not intersect each other. As t increases from tq each Kq sweeps 
out a ball Bq around the ^-th singularity, whose final position at f = 1 is called Aq. Two 
parallel disjoint 2-balls B^ and B^^ (which approach coincidence as t approaches 1) are 
then taken on either side of Bq and we denote by K^^ and K^^ their intersections with W(t). 
We cut from W{t) the small area Sq between K'^ and K'^ and paste to these two circles 
the 2-disks B^^ and B'^. This new surface Wi(t) is a 2-sphere for all t bigger than 0. To 
see this note that cutting out the Sq's from W{t) gives a planar region R bounded by some 
circles and by pasting the disks we have filled in all the holes including that of the outer 
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circle. The variety U generated by W\(tys is thus a 3-ball U with 2p scars ("cicatrices") 
on its boundary, the 2 lips of the cut Ag which have to be identified in pairs to make V. It 
follows that V is dijfeomorphic to the genus p handlebody, i.e. the region bounded by a 
genus p surface embedded in 3-space, and that this is independent of the embedding of the 
surface (i.e. that surfaces do not knot in 3-space). 

Poincare checks that any cycle of V is equivalent to one on W and that any equivalence 
of V is a consequence of K\ =0,.,., Kp = 0 (i.e. that ;ri (V) is the free group on p gen
erators). Also he checks that p non self intersecting cycles K[,..., K^ of W, which do 
not intersect each other, can arise in the above way only if they are equivalent to a com
bination of conjugates of the cycles K\,..., Kp (alternatively cutting along them should 
give a planar region bounded by 2p circles). 

The final § 6 considers an orientable 3-manifold V generated by connected W(0's, 
0 ^ r ^ 1, with 2p exceptional values of r; at the first p of these, which lie in (0, 1/2), b\ 
increases by 2, and at the remaining p, which lie in (1/2, 1), it decreases by 2. Our V 
thus decomposes into two handlebodies V^ and V^\ the first over [0, 1/2], the other over 
[1/2, 1]. The manifold is determined by the genus p surface W — W(l/2) together with 
the two systems of principal cycles K[,... ,K'p and K[,..., K'p of these handlebodies. 
{Every 3-manifold admits such a Morse function, i.e. a Heegaard decomposition into two 
handlebodies of some genus p. The least such p is called its Heegaard genus, and a two-
dimensional description of the kind mentioned a Heegaard diagram of V: see [25]. A man
ifold has Heegaard genus 1 iff it is one of the L^'s of Notes 18 and 24, but classification is 
unknown for any Heegaard genus ^ 2.) 

Poincare shows that any cycle of this closed 3-manifold V is equivalent to one ly
ing on W and that any equivalence is a consequence of the obvious equivalences K[ = 
0, . . . , Kp^O,mdK'{ = 0, . . . , K^ = 0 (this determines ici (V)). Writing the principal 
cycles as combinations of the fundamental cycles and reordering one gets the homologies 

which determine the Betti number and torsion coefficients of V. So these are the same 
as a 3-sphere, i.e. V is a homology sphere, iff the 2p x 2p determinant formed by the 
above integer coefficients is ±1. However, as the example below shows this need not be a 
homotopy sphere. 

Poincare defines his homology 3-sphere via a Heegaard diagram: p = 2 and W is 
represented as a planar region R bounded by four circles, he takes K[ = C\, K2 = C3 
while K^^ and K2 are given, respectively, by the unions of the full and dotted segments. 
(See Fig. 20.) 

He computes using the above method to see that TTI (V) is generated by C2 and C4 subject 
to the equivalences 4C2 + C4 - C2 + C4 = 0 and -2C4 - C2 + C4 - C2 = 0. The 
corresponding homologies 3C2 + 2C4 2:: 0 and 2C2 — C4 2:̂  0 have determinant 1. On the 
other hand 7T\{V) is nonzero because on adjoining the first of the following equivalences 
one has 

-C2 + C4 - C2 + C4 = 0, 5C2 = 0, 3C4 = 0, 



164 

Fig. 20. Poincare's homology 3-sphere. 

which are the defining relations of the icosahedral group. (This, and Example 3 of "Anal
ysis Situs", already suggest what Kneser [36] later checked: V can be obtained by conju
gating facets of a dodecahedron.) 

Then comes the famous query: "is it possible that the fundamental group of V reduces to 
the identity substitution, and yet V is not diffeomorphic to a sphere?" . . . ''But this question 
will drag us too far''. (Poincare's conjecture still seems to be open, but we note that 
Poincare's method, i.e. Morse theory, did enable Smale [80] to show, in dimensions n ^ 5, 
that any homotopy /z-sphere is necessarily homeomorphic to the w-sphere; by Milnor [44] 
it need not be diffeomorphic.) 

Bibliography 

[ 1 ] S. Akbulut and J.D. McCarthy, Casson 's Invariant for Oriented Homology 3-Spheres, Princeton, NJ (1990). 
[2] J.W. Alexander, A proof of the invariance of certain constants in analysis situs, Trans. Amer. Math. Soc. 16 

(1915), 148-154. 
[3] P. Appell, Henri Poincare, en mathematiques speciales a Nancy, Acta Math. 38 (1921) 189-195; Oeuvres 

de Henri Poincare, Vol. XI, Gauthier-Villars, Paris (1951), 139-145. 
[4] E. Betti, Sopra gli spazi un numero qualunque di dimensioni, Ann. Mat. Pura Appl. 4 (1871), 140-158. 
[5] G.D. Birkhoff, Proof of Poincare's last geometric theorem. Trans. Amer. Math. Soc. 14 (1913), 14-22. 
[6] R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337. 
[7] H.R. Brahana, Systems of circuits on two dimensional manifolds, Ann. of Math. 23 (1921-22), 144-168. 
[8] H.R. Brahana, A theorem concerning unit matrices with integer elements, Ann. of Math. 24 (1922-23), 

265-270. 



The topological work of Henri Poincare 165 

[9] L.EJ. Brouwer, Beweis der Invarianz der Dimensionenzahl, Math. Ann. 70 (1911), 161-165. 
[10] S.S. Cairns, On the triangulation of regular loci, Ann. of Math. 35 (1934), 579-587. 
[11] S.S. Cairns, A simple triangulation method for smooth manifolds. Bull. Amer. Math. Soc. 67 (1961), 389-

390. 
[12] E. Cartan, Sur les nombers de Betti des espaces de groupes clos, C. R. Acad. Sc. 187 (1928), 196-198. 
[13] E. Cartan, Sur les invariants integraux de certains espaces homogenes clos et les proprietes topologiques 

de ces espaces, Ann. de la Soc. Pol. Math. 8 (1929), 181-225. 
[14] A. Connes, Cohomologie cyclic etfoncteurs Ext", C. R. Acad. Sc. 296 (1983), 953-958. 
[15] G. Darboux, Eloge historique d'Henri Poincare (1913), Oeuvres d'Henri Poincare, Vol. II, Gauthier-Villars, 

Paris (1952), VII-LXXI. 
[16] M. Dehn, Die Eulersche Formel in Zusammenhang mit dem Inhalt in der nicht-Euklidischen Geometric, 

Math. Ann. 61 (1905), 561-586. 
[17] J.D. Dixon, Structure of Linear Groups, Van Nostrand Reinhold, London (1971). 
[18] S.K. Donaldson, An application of gauge theoiy to four-dimensional topology, J. Diff. Geom. 18 (1983), 

279-315. 
[19] W. Dyck, Beitrage zur Analysis Situs, Math. Ann. 32 (1888), 457-512; 37 (1890), 273-316. 
[20] R.D. Edwards, The double suspension of a certain homology ^-sphere. Notices Amer. Math. Soc. 22 (1975), 

A-334. 
[21] S. Eilenberg, Singular homology theory, Ann. of Math. 45 (1944), 407-444. 
[22] S. Eilenberg, Singular homology in dijferentiable manifolds, Ann. of Math. 48 (1947), 670-681. 
[23] M.H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357-453. 
[24] C. Gole and G.R. Hall, Poincare's proof of Poincare's last geometric theorem. Twist Mappings and Their 

Applications, R. McGehee and K.R. Meyer, eds. Springer, Berlin (1992), 135-151. 
[25] P. Heegaard, Forstudier til en topologisk teorifor de algebraiske Fladers Sammenhdng, Thesis, Copenhagen 

(1898). Translation: Sur I'analysis situs. Bull. Soc. Math. France 44 (1916), 161-242. 
[26] F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, Publish or Per

ish, Boston (1974). 
[27] H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1926), 427-440. 
[28] H. Hopf, Fine Verallgemeinerung de Euler-Poincareschen Formel, Nach. Ges.-Wiss, Gottingen (1928), 

127-136. 
[29] H. Hopf, tJber die Abbildungen der dreidimensionalen sphdre aufdie Kugelfldche, Math. Ann. 104 (1931), 

637-665. 
[30] J.F.P. Hudson, Piecewise Linear Topology, Benjamin, New York (1969). 
[31] W. Hurewicz, Beitrage zur Topologie der Deformationen, Proc. Akad. Wet. Amsterdam 38 (1935), 112-119. 
[32] E. de Jonquieres, Note sur un point fondamental de la theorie des polyedres, C. R. Acad. Sc. 60 (1890), 

110-115. 
[33] C. Jordan, Memoire sur les equations differentielles lineaires a integrate algebrique, J. fur Reine und 

Angew. Math. 84 (1878), 89-215. 
[34] F. Klein, Vergleichende Betrachtungen iiber neure geometrische Forschungen, Eintritts-Programm Erlangen 

(1872). 
[35] F. Klein, Ueber bindre Formen mit linearen Transformationen in sich selbst. Math. Ann. 9 (1875), 183-208. 
[36] H. Kneser, Geschlossene Fldchen in dreidimensionale Mannigfaltigkeiten, Jahr. Deutsch. Math.-Verein 38 

(1929), 248-260. 
[37] W. Kiihnel and T.F. Banchoff, The 9-vertex complex projective plane. Math. InteUigencer 5 (1983), 11-22. 
[38] N.H. Kuiper, The quotient space ofCP{2) by complex conjugation is the 4-sphere, Math. Ann. 208 (1974), 

175-177. 
[39] K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), 15-51. 
[40] S. Lefschetz, L'Analysis Situs et la Geometric Algebriques, Gauthier-Villars, Paris (1924). 
[41] S. Lefschetz, Manifolds with a boundaiy and their transformations. Trans. Amer. Math. Soc. 29 (1927), 

429-462. 
[42] L. Lusternik and L. Schnirelmann, Methodes Topologiques dans les Problemes Variationnels, Hermann, 

Paris (1934). 
[43] W.S. Massey, The quotient space of the complex projective plane under conjugation is a 4-sphere, Geom. 

Dedic. 2 (1973), 371-374. 
[44] J.W. Milnor, On manifolds homeomorphic to the 1-sphere, Ann. of Math. 64 (1956), 399-405. 
[45] J.W. Milnor, Topology from the Differentiable Viewpoint, Univ. of Virginia, Charlottesville (1966). 



166 K.S. Sarkaria 

[46] J.W. Milnor, Singular Points of Complex Hypersurfaces, Princeton, NJ (1968). 
[47] M. Morse, The foundations of a theory in the calculus of variations in the large. Trans. Amer. Math. Soc. 

30 (1928), 213-274. 
[48] M.H.A. Newman, On a foundation of combinatory analysis situs, II, Theorems on sets of elements, Proc. 

Amster. Acad. 29 (1926), 627-641. 
[49] E. Picard and G. Simart, Theorie desfonctions algebriques de deux variables independant, I, II, Gauthier-

Villars, Paris (1897). 
[50] H. Poincare, Sur les courbes definies par une equation differentielle, C. R. Acad. Sc. 90 (1880), 673-675; 

Oeuvres de Henri Poincare, Vol I. Gauthier-Villars, Paris (1951), 1-2. 
[51] H. Poincare, Memoire sur les courbes definis par une equation differentielle. Jour, de Math. 7 (3) (1881), 

375-422; 1 (1885), 167-244; 2 (1886), 151-217; Oeuvres, Vol. I, 3-84, 90-158, 167-222. 
[52] H. Poincare, Theorie des groupes Fuchsiens, Acta Math. 1 (1882), 1-62; Oeuvres, Vol. II, 108-168. 
[53] H. Poincare, Memoire sur les groupes Kleineens, Acta Math. 3 (1883), 49-62; Oeuvres, Vol. II, 258-299. 
[54] H. Poincare, Sur les residus des integrales doubles, Acta Math. 9 (1887), 321-380. 
[55] H. Poincare, Sur le probleme des trois corps et les equations de la dynamiques, Acta Math. 13 (1890), 

1-270; Oeuvres, Vol. VII, 262-479. 
[56] H. Poincare, Sur I'analysis situs, C. R. Acad. Sc. 118 (1892), 663-666; Oeuvres, Vol. VI, 189-192. 
[57] H. Poincare, Les Methodes Nouvelles de la Mechanique Celeste, Vols I, II, III, Gauthier-Villars, Paris (1892, 

1893, 1899); Dover, New York (1957). 
[58] H. Poincare, Sur la generalisation d'un theoreme d'Euler relatif auxpolyedres, C. R. Acad. Sci., 117 (1893), 

144-145; Oeuvres, Vol. XI, 6-7. 
[59] H. Poincare, Analysis situs, J. Ec. Poly. 1 (1895), 1-121; Oeuvres, Vol. VI, 193-288. 
[60] H. Poincare, Sur les nombres de Betti, C. R. Acad. Sc. 128 (1899), 629-630; Oeuvres, Vol. VI, 289. 
[61] H. Poincare, Complement a I'analysis situs. Rend. Circ. Math. d. Pal. 13 (1899), 285-343; Oeuvres, Vol. VI, 

290-337. 
[62] H. Poincare, Second complement a I'analysis situs, Proc. Lond. Math. Soc. 32 (1900), 277-308; Oeuvres, 

Vol. VI, 338-370. 
[63] H. Poincare, Analyse des travaux scientifiques de Henri Poincare faite par lui-meme (1901), Acta Math. 38 

(1921), 1-135. 
[64] H. Poincare, Sur I'analysis situs, C. R. Acad. Sc. 133 (1901), 101-109; Oeuvres, Vol. VI, 371-372. 
[65] H. Poincare, Sur la connexion des surfaces algebriques, C. R. Acad. Sc. 133 (1901), 969-973; Oeuvres, 

Vol. VI, 393-396. 
[66] H. Poincare, Sur certaines surfaces algebriques', troisieme complement a I'analysis situs. Bull. Soc. Math. 

France 30 (1902), 49-70; Oeuvres, Vol. VI, 373-392. 
[67] H. Poincare, Sur les cycles des surfaces algebriques; quatrieme complement a I'analysis situs, J. de Math. 

8 (1902), 169-214; Oeuvres, Vol. VI, 397-434. 
[68] H. Poincare, La Science et I'Hypothese, Flammarion, Paris (1904). English translation: Science and Hy

pothesis, Dover, New York (1952). 
[69] H. Poincare, Cinquieme complement a I'analysis situs. Rend. d. Circ. math, di Pal. 18 (1904), 45-110; 

Oeuvres, Vol. VI, 435-498. 
[70] H. Poincare, Sur un theorem de geometric. Rend. d. Circ. math, di Pal. 33 (1912), 375-407; Oeuvres, 

Vol. VI, 499-538. 
[71] K. Reidemeister, Homotopieringe und Linsenraiime, Abhand. Sem. Hamburg 11 (1935), 102-109. 
[72] G. de Rham, Sur I'analysis situs des varietes a n dimensions, J. Math. Pure Appl. 10 (1931), 115-200. 
[73] B. Riemann, Grundlagen fUr eine allgemeine Theorie der Functionen einer vardnderlichen complexen 

Grosse, Inauguraldissertation, Gottingen, 1851; Collected Works of Bernhard Riemann, H. Weber, ed., 
Dover, New York (1953), 3-45. 

[74] B. Riemann, Theorie der AbeVschen Functionen, J. fur Reine und Angew. Math. 54 (1857); Collected 
Works, 88-142. 

[75] B. Riemann, Fragment aus der Analysis Situs, Collected Works, 479^82. 
[76] K.S. Sarkaria, From calculus to cyclic cohomology, I. H. E. S. (1995) M/95/82. 
[77] K.S. Sarkaria, A look back at Poincare's Analysis Situs, Henri Poincare Science et Philosophic, Akademie, 

Berlin (1996), 251-258. 
[78] H. Seifert and W Threlfall, Lehrbuch der Topologie, Teubner, Leipzig (1934). Translation: A Text Book of 

Topology, Academic, New York (1980). 
[79] I.R. Shafarevich, Basic Algebraic Geometry, Springer, Berlin (1977). 



The topological work of Henri Poincare 167 

[80] S. Smale, Generalized Poincare's conjecture in dimensions greater than 4, Ann. of Math. 74 (1961), 391-
406. 

[81] H.J.S. Smith, On systems of linear indeterminate equations and congruences, Phil. Trans. Roy. Soc. 151 
(1861), 293-326; Collected Works, Vol. 1, Chelsea, New York (1965), 367-409. 

[82] D.M. Y. Sommerville, The relations connecting the angle-sums and volume of a polytope in space ofn di
mensions, Proc. Roy. Soc. Lond. A 115 (1927), 103-119. 

[83] R.P. Stanley, The number of faces of simplicial poly topes and spheres, Ann. N. Y. Acad. Sci. 440 (1988), 
212-223. 

[84] N.E. Steenrod, The Topology of Fibre Bundles, Princeton, NJ (1951). 
[85] D.R Sullivan, Infinitesimal computations in topology, Publ. I. H. E. S. 47 (1977), 269-332. 
[86] W.P. Thurston, The Geometry and Topology of3-Manifolds, Princeton, NJ (1980). 
[87] H. Tietze, Uber die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monat. fiir Math. 

undPhys. 19(1908), 1-118. 
[88] H. Weyl, Die Idee der Riemannschen Fldchen, Teubner, Leipzig (1918). 
[89] J.H.C. Whitehead, On C"^-complexes, Ann. of Math. 41 (1940), 809-824. 
[90] J.H.C. Whitehead, On incidence matrices, nuclei and homotopy types, Ann. of Math. 42 (1941), 1197-1239. 
[91] J.H.C. Whitehead, On simply connected, 4-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48-

92. 
[92] H. Whitney, The self intersections of a smooth n-manifold in In-space, Ann. of Math. 45 (1944), 220-246. 



.
This Page Intentionally Left Blank



CHAPTER 7 

Weyl and the Topology of Continuous Groups 

Thomas Hawkins 
Department of Mathematics, Boston University, IIJ Commington St., Boston, MA 02215, USA 

Introductory overview 

The idea of a general theory continuous groups goes back to Sophus Lie (1842-1899) 
who developed the theory in the decade 1874-1884, published a three-volume synthesis of 
his theory with the help of his assistant Friedrich Engel [1888-93] and created a school of 
mathematicians devoted to the theory and application of continuous groups - and including 
among its members the great French mathematician Elie Cartan (1869-1951).^ Lie's work 
is the common origin of both the modern theory of Lie groups and the more general theory 
of topological groups. During Lie's lifetime the topological considerations that nowadays 
seem essential in such theories were not a part of the theory, for in Lie's time topology 
was in its infancy. Consequently the theory was developed by purely analytical means, 
although these were inadequate in certain respects. Even as topology developed, however. 
Lie's students did not initiate the application of topology to his theory. 

Hilbert was the first to introduce a topological viewpoint into the theory of continuous 
groups, and during 1909-1910 his work was carried on in a sense by L.E.J. Brouwer; but 
this did not lead anywhere at the time. One reason was that topology itself first required 
further development and refinement, and Brouwer was a pioneer in this direction. His pro
found contributions to topology in 1911-1912 did much to stimulate a ground swell of 
mathematical research on topological questions during the following twenty-five years. 

With the rise of topology as a major mathematical discipHne it was perhaps inevitable 
that it would eventually be applied to deal with some of the questions that had arisen in 
Lie's theory of continuous groups. Indeed, in [1925] Otto Schreier (1901-1929) proposed 
to deal topologically with a question apparent to any critical reader of Lie's treatises but 
ignored by Lie and his students: what is the relation of groups which are locally isomor
phic? Schreier dealt rigorously and abstractly with groups - called continuous groups by 
him - that would now be described as topological groups which are Hausdorff, connected 
and locally EucHdean. His main result was undoubtedly motivated by Lie's misleading 
pronouncements (discussed in Section 1) regarding the global isomorphism of groups with 
isomorphic Lie algebras. Schreier's Theorem may be stated as follows: Consider the class 

' See my papers [1982, 1987, 1989, 1992, 1994, 1998]. 
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Hermann Weyl (1885-1955) 
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of all continuous groups © which are locally isomorphic. Then there exists within this 
class a group 6 with the following properties: If 0 is any group of this class then (5 is 
isomorphic to a factor group 0/S), where 2) is a discrete subgroup of the center of (5 
and is isomorphic to the Poincare fundamental group of(&, 7r\((3). The group 0 , which 
he showed to be simply connected and unique up to global isomoq)hisms, was called a 
covering group. The name was suggested to Schreier by his colleague at the University of 
Hamburg, Emil Artin, and reflects the connection with the development of the notion of a 
covering space that arose in the context of the uniformization problem of complex function 
theory (Section 3)? 

Schreier was the first to lay down precisely the foundations for the modern theory of 
topological groups. However, slightly earlier, in 1924, Hermann Weyl (1885-1955) had 
already, in a more informal manner, introduced topological considerations into the theory 
of the structure and representation of semisimple Lie groups which are closely related to 
Schreier's theorem. Schreier, who did his work without knowing of Weyl's,^ thus inad
vertently laid the foundations for some of the central topological considerations in Weyl's 
great paper on the representation of semisimple continuous groups [1925]. However, it was 
Weyl's work, namely the paper [1925] and its sequel [1927] (written with F. Peter), with 
their wealth of new ideas and viewpoints and impressive theorems that provided the main 
impulse for the development of the global, topological aspects of mathematical theories re
lated to continuous groups. In this connection I have in mind particularly: (1) the topology 
of Lie groups; (2) the more general development of topological groups in conjunction with 
Hilbert's fifth problem; and (3) the development of harmonic analysis on groups. These 
three interrelated areas of research provided the main thrust behind the development of 
topological notions within the context of continuous groups. And Weyl's work, in one way 
or another, motivated them all. Had Schreier not proved the above-mentioned theorem, 
someone else would have done so, motivated by Weyl's work. On the other hand, it is not 
clear what would have happened without the work of Weyl. 

The following essay has two primary goals: (i) to sketch the historical background to 
Weyl's work with emphasis on those developments which led Weyl to bring topological 
considerations to bear upon the problems with which he was dealing; (ii) to indicate how 
and why Weyl's work was so influential in promoting the lines of development (l)-(3). The 
first four sections are related to goal (i) and the fifth to goal (ii). Sections 1-3 also provide 
the background to Schreier's work, but here the emphasis is upon Weyl."̂  For a broader 
view of the development of topological groups with special emphasis on Lie groups, see 
[Freudenthal, 1968]. 

1. Lie's theory of transformation groups 

The continuous groups that Lie spent his life studying were groups of transformations, 
which he conceived of in intuitive geometrical terms as acting upon or transforming the 

Schreier's construction of 0 in [1925] is quite different from the geometrically intuitive construction of a 
universal covering surface in uniformization theory, but in [1927] he adopted this approach and extended the 
scope of his theorems by replacing the local Euclidean hypothesis by weaker assumptions. 
^ Weyl's work is not mentioned in Schreier's papers [1925, 1927] but is discussed in his survey article [1928]. 
^ This essay was written thanks to the Resident Fellowship granted to me by the Dibner Institute for the History 
of Science and Technology located at MIT. 
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elements of an ^-dimensional "manifold" which might represent points or lines or some 
other type of geometrical object coordinatized by n variables, x i , . . . , jc,̂ . From the outset 
of his work with such groups their characteristic feature was that the "finite" transforma
tions x' = Tx of the group 0 were generated by infinitesimal transformations. For Lie, an 
infinitesimal transformation was defined by a differential operator X = X]/Li ft (x)d/dxi, 
the associated infinitesimal transformation being x- = x/ + X(xi)8t. (Nowadays X would 
be regarded as a vector field.) The infinitesimal transformation X generates a one param
eter family of transformations x' = TfX, where 7) = exp(rX) = J2JLo^'^^"^/J^-'^ ^^^ ^^ 
say that any T G 0 is generated by an infinitesimal transformation is to say that T belongs 
to such a one parameter family. Initially for Lie it was this property that made the group 
0 continuous. Thus in [1883, p. 314] he wrote: "A group is called continuous when all of 
its transformations are generated by repeating infinitesimal transformations infinitely often 
...". Since Tt with t = 0 corresponds to the identity transformation, this means that every 
T is connected via a one parameter family Tt to the identity transformation. Thus Lie's 
notion of the continuity of a group involved a kind of connectivity. 

In the first volume of his treatise Theorie der Transformationsgruppen, Lie began with 
some generalities about what it meant for a group to be continuous and presented the 
following modified characterization: "A transformation group is called continuous if it is 
possible for any given transformation belonging to the group to specify certain other trans
formations of the group which differ only infinitely little from the given transformation, 
[and] if, on the other hand, it is not possible to decompose the totality of transformations in 
the group into individual discrete families" [1888-93, vol. 1, p. 3]. Here it is not explicitly 
claimed that all transformations of the group are generated by infinitesimal ones, and the 
second part of the definition serves to guarantee the sort of connectedness that had been 
implicit in the earlier definition. Lie provided no example that would illustrate the need 
for the new definition so that it is uncertain what he had in mind in formulating it. How
ever, two years later, in 1890, Engel discovered what amounts to an example of a group 
continuous in the latter sense but not in the former. That is, he discovered that not every 
transformation of the special linear group SL(2, C) is generated by an infinitesimal trans
formation. Hence SL(2, C) is not continuous in accordance with Lie's definition of 1883 
but it is continuous in the sense of the later definition. Perhaps Lie had some such example 
in mind when he proposed the new definition, although if he had SL(2, C) in mind, he 
evidently did not reveal his thoughts to Engel. 

A prime example of a continuous transformation group is the projective group of the 
line which is defined by the equation 

ax -{- b 
x'= , ad-bcj^O. (1) 

ex -\- d 

As an example of group which is not continuous. Lie gave the group of all coordinate 
changes in the plane that take one (right-angled) Cartesian coordinate system into an
other [1888-93, vol. 1, p. 7], i.e. all translations, rotations and reflections in planes. The 
transformations of the group are given by two different sets of equations, defining two 
discrete 'continuous' families of transformations which are defined, respectively, by 

x̂  = (3 H-xcosa — j s i n a 1 fx^ = a-j-xcosa + }^sina 
y' = b -\-xsma + y cos a \ \y^ = b + xsina — y cos a 
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The family on the left involves an orthogonal transformation of determinant +1 while that 
on the right by one with determinant - 1 . 

The above described discussion of what it means for a group to be continuous, given 
in the introductory pages of the first volume of Theorie der Transformationsgruppen, was 
as far as Lie ever ventured into a discussion of the global, topological properties of his 
continuous groups. Although he was a geometer in spirit, when it came to developing his 
theory of groups he saw no choice but to use the standard analytical language of the period. 
As a consequence he was not compelled to develop his ideas on the continuity of a group 
because, at least for the groups on which he concentrated in Theorie der Transformations-
gruppen, he saw it as guaranteed by the assumption that the group is defined by a single set 
of equations given by analytic functions. That is. Lie considered groups of transformations 
defined by a single system of equations involving a finite number of parameters: 

X- = fi(xu...,Xn,a\,...,ar), / = 1,2, . . . , ^ . (2) 

It is assumed that the functions in (2) are analytic in the n variables xi, ... ,Xn and the r 
parameters a i , . . . , â  [1888-93, vol. 1, p. 11], and this was seen as guaranteeing that the 
family defined by (2) was continuous [1888-93, vol. 1, p. 311]. 

A group 0 of transformations defined by a single set of equations of the form (2) is thus 
the principal object of study in Theorie der Transformationsgruppen. These are the 'finite 
continuous transformation groups' of the theory. However, an additional assumption on 
such equations is necessary before they can provide the theoretical starting point. In (2) 
all the parameters a\,... .a,- need not be 'essential'. According to Lie they are essential 
"if it is impossible to introduce as new parameters independent functions of a i , . . . , a,-
so that as a result the equations x- = fi(x, a) contain fewer than r parameters" [1888-
93, vol. 1, p. 12]. I have given Lie's definition verbatim to illustrate the manner in which 
he typically masked the local nature of what he was discussing. For example, the four 
parameters a,b,c,d of the projective group of the fine (1) are not essential; there are 
for Lie only three essential parameters involved. For example, in a sufficiently restricted 
neighborhood of (^o, ^0. CQ, ^O) where do ^ 0, one will have d ^ Q and one can divide 
through by d and express (1) in terms of three parameters as ;ĉ  = {ax -\- P)/{yx + 1), 
where a = a/d, and so on. In Lie's actual definition of essential parameters, however, there 
is no mention of the fact that new parameters need only be defined locally as functions of 
the original parameters. 

Indeed, most of Lie's theory is developed in a neighborhood of the identity element of 
the group. That is all that is needed to show that the r-dimensional group 0 defined by 
(2) possesses r linearly independent infinitesimal transformations X i , . . . , X^ such that 
their linear span g comprises all infinitesimal transformations of 0 and, in addition, that 
for all /, j [Xi, Xj] = XiXj - XjXi e g. This means, in modern terms, that g is an r-
dimensional Lie algebra. Much of Lie's theory involves g rather than 0 ; g was not thought 
of as separate from 0 but as comprising the infinitesimal transformations of 0 . One could 
say that Lie's theory of transformation groups is a theory of group germs, but this would 
be misleading if taken to mean that Lie explicitly and carefully formulated his theory in 
such terms, for he did not. Quite the contrary, as in his definition of essential parameters, 
he tended to suppress much mention of the truly local nature of the reasoning underlying 
his theory. Indeed, he went further: he articulated his theorems in a form that made them 
appear to be globally true. Thus Lie stated that every T G 0 is of the form T = exp(X), 
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X € 0 [1888-93, vol. 1, p. 75], even though the proof preceding it was local in nature. 
I will refer to this as Lie's exponential mapping theorem. 

Another example is given by Lie's isomorphism theorem [1888-93, vol. 1, p. 418]. Sup
pose that 0 and S) are r-dimensional continuous groups with Lie algebras g and (}, respec
tively. Lie said that the groups have the same structure or composition if bases X i , . . . , Z^ 
and 7 ] , . . . , ŷ  of their respective Lie algebras could be chosen so that for all /, j [Xt, Xj] 
and [Yi, Yj] are the same hnear combination of the respective bases. This of course means, 
in modern terminology, that 9 and \) are isomorphic as Lie algebras. His isomorphism theo
rem states that 0 and S) are isomorphic as groups if and only they have the same structure. 
In his statement of this theorem he even emphasized the one-to-one, onto nature of the 
correspondence between 6 and i}, even though his proof can be seen to establish nothing 
more than a local isomorphism in the neighborhood of the identity elements. 

The apparent global mode of statement used by Lie may have been merely a loose man
ner of speaking, but I suspect it was perhaps more than that. I suspect that he regarded his 
theorems as generic statements, i.e. "generally" true in the global form of his statements. 
He was imitating the analysts of the 18th and early 19th centuries (e.g., Lagrange, Jacobi, 
Clebsch) whose work on differential equations he drew on extensively in developing his 
theory. They preferred to reason and state their results in terms of what they saw as the 
"general" case. In such a frame of mind, possible exceptions to the generic theorems are 
not something of concern and may not even be expected. 

That is why Engel was somewhat surprised by his discovery that not every transforma
tion of SL(2, C) is generated by an infinitesimal transformation so that Lie's exponential 
mapping theorem does not hold globally. When he communicated the discovery to his 
friend, the mathematician Eduard Study, who was working at the time within Lie's sphere 
on the applications of Lie's theory to the theory of invariants, Study replied that this prop
erty of SL(2, C) was new to him, although he had always found Lie's exponential mapping 
theorem "amazing" (wunderbar).^ This shows that Study interpreted Lie's statement of his 
theorem literally, albeit with suspicion. Most of Study's letter was devoted to a geometrical 
explanation of why SL(2, C) had this surprising property, and he suggested they write a 
paper on the matter with the title "A Paradox in the Theory of Groups". In a postcard the 
next day he added that such a paper was a good idea because most mathematicians "know 
nothing about such things". 

Such a joint paper was never written, but Engel went on to write a two part paper on 
the matters raised by his discovery [1892, 1893]. It did not, however, bear Study's sug
gested title because that tide was not in keeping with the main thrust of Engel's paper. 
In this connection it should be noted that although in Lie's theory "linear" groups play 
the expected central role, by virtue of Lie's background in projective geometry, he tended 
to couch everything "hnear" in terms of projective space and projective transformations. 
In his paper Engel showed that for the general projective group PGL(w, C) and two of its 
most important subgroups, namely the projective orthogonal group PSO(w, C) and the pro
jective symplectic group PSp(2/t, C), Lie's exponential mapping theorem is globally valid. 
These results formed the bulk of Engel's papers, which thus downplayed the "paradoxical" 
phenomenon displayed by SL(2, C). 

Nonetheless, in his second paper Engel did present Study's geometrical explanation of 
the basis for that phenomenon. He also called attention to the imphcation the examples 

^ Letter to Engel dated 9 November 1890. The original is located in the Engel archive at the University of 
Giessen, as are the two postcards Study sent the next day by way of a postscript. 
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SL(2, C) and PGL(2, C) had for Lie's isomorphism theorem. That is, it was well known 
that these two groups have isomorphic Lie algebras, but they are not globally isomorphic 
as Lie's isomorphism theorem literally asserts. Engel put it this way: since the two groups 
have isomorphic Lie algebras "it follows, as Lie has proved . . . , that both groups are also 
isomorphic in the sense of the theory of permutations so long as one restricts oneself to 
the transformations in a certain neighborhood of the identical transformation. This sort of 
hmitation is assumed in all the theories of . . . [Lie, 1888-93, vol. 1] . . . and only under 
this assumption is it there proved that groups with the same structure are also isomorphic" 
[1893, p. 695]. In particular, Engel pointed out that SL(2, C) and PGL(2, C) are not iso
morphic "in the strictest sense of the word", i.e. on a global level. 

Of course Engel's blanket assumption that everything in Theorie der Transformations-
gruppen is only true for group elements in a certain neighborhood of the identity was not 
explicitly made there, and the global nature of the statements of the theorems themselves 
continued to leave readers unclear as to their intended import. Indeed a decade later, En
gel [1902] had once again to explain that Lie's theorems were only to be understood as 
local theorems based on local reasoning after an American mathematician, Steven Slocum, 
having studied Theorie der Transformationsgruppen but oblivious to this point, claimed to 
have discovered a flaw in Lie's proof of one of his fundamental theorems. 

A question raised by Engel's remarks is: what can be said about the relation of groups 
which have the same structure in the sense that they have isomorphic Lie algebras and so 
are locally isomorphic? This is, of course, precisely the question posed by Schreier and 
also raised, as it applies to group representations, by Weyl. To my knowledge, however, 
no one within Lie's school considered this problem. This is not surprising since evidently 
a global approach would be needed whereas the analytical methods used by Lie and his 
students gave only local results, as Engel emphasized in the above quoted passage. The 
initial impetus for a global, topologically oriented approach to continuous groups came 
from without, from Hilbert at Gottingen. 

2. Hubert's fifth problem 

Hubert's interest in the foundations of geometry turned his attention to what became known 
as the "space problem" of Hermann von Helmholtz (1821-1894), a distinguished physiol
ogist and physicist who in 1868 proposed to deduce the geometrical nature of space from 
observed facts of experience having to do with the properties of mobile rigid bodies. Using 
calculus, he argued that his facts lead to the conclusion that metric relations in space corre
spond either to Euclidean geometry or to the geometry of Lobachevsky. In [1887] Poincare 
used Lie algebra techniques to solve the analog of Helmholtz's problem in two dimensions, 
and Lie [1890] did the same in n dimensions. Hilbert questioned the necessity of assuming, 
as was done by Helmholtz and his successors, the differentiability of the transformations 
they considered, a sine qua non if one were to solve the problem using Lie's theory. In 
particular, the assumption that the group is generated by infinitesimal transformations did 
not fit in easily or naturally with the other geometrical axioms. Hilbert wondered whether 
this assumption might actually follow as a consequence of the continuity of the transforma
tions defining the rigid motions, together with the group property and the other axioms of 
geometry. Thus in his famous lecture on mathematical problems Hilbert posed as his fifth 
problem the more general question as to what extent Lie's theory, with its differentiabil-
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ity assumptions, could be recovered from seemingly weaker continuity assumptions about 
the transformations of the group and their multiplication. "Hence there arises the ques
tion whether, through the introduction of suitable new variables and parameters, the group 
can always be transformed into one with differentiable defining functions; or whether at 
least with the help of certain simple assumptions a transformation is possible into groups 
admitting Lie's methods" [1900, p. 452]. 

Shortly thereafter, Hilbert himself dealt with this problem within the Hmited context of 
the analog of Helmholtz's problem for the plane. Here we find the first attempt to deal with 
continuous groups by topological means. Hilbert stressed the fact that his methods of proof 
were completely different from Lie's, that he would mainly use the concepts of Cantor's 
theory of point sets and the Jordan Curve Theorem for the plane [1902, p. 234]. Of course, 
the context of Hilbert's topological approach to groups was a special and Hmited one, but 
it showed that results could be achieved and suggested the possibility of doing something 
similar with respect to the more formidable fifth problem. Although the details of Hilbert's 
paper need not concern us, it should be noted that in seeking to characterize the plane 
as a two-dimensional manifold [1902, pp. 234-235], Hilbert introduced the approach that 
eventually led (through Weyl, as indicated in §3) to the modern concept of a manifold. 
"These stipulations", Hilbert wrote, "contain for the case of two dimensions, it seems to 
me, the rigorous definition of the concept which Riemann and Helmholtz designated by 
'multiply extended manifold' and Lie by 'number manifold' and which is at the basis of 
their entire investigation" [1902, p. 235]. 

In deahng with the special groups of motions of the plane, Hilbert had no need to 
characterize them as manifolds as well. That step was taken by L.E.J. Brouwer, who un
dertook the topological study of continuous groups with an eye towards the fifth prob
lem [1909a, 1909b, 1910]. However, he did not follow Hilbert's lead on how to define a 
manifold and gave instead his own definition [1909b, p. 247], which was completely ver
bal and expressed so succinctly that its precise meaning must have been difficult for most 
readers to fathom. It was Hilbert's notion, as developed by Weyl (Section 3), that ultimately 
became the standard approach. In terms of his own definition, Brouwer then defined a finite 
continuous group to be a group of transformations acting on an «-dimensional manifold 
such that the transformations themselves may be identified with a p-dimensional 'parame
ter manifold'. Unlike Lie's finite continuous groups, no differentiability assumptions were 
involved in Brouwer's definition. 

The goal of Brouwer's papers was to determine, using the theory of point sets, all such 
groups with n = 1, 2, the idea being to then see if indeed they could all be realized as 
groups in Lie's sense, thereby answering the question posed by Hilbert's fifth problem in 
these special cases. For the case n = 1 treated in [1909b] he succeeded with the clas
sification and was able to give an affirmative answer to Hilbert's fifth problem, but for 
w = 2 [1910] he only developed the theory to a point which made it possible, he claimed, 
in a future paper to push through the complete classification. Brouwer, however, published 
no more in this vein. Undoubtedly a major reason for his termination of research on con
tinuous groups was lack of an adequate topological theory. For the plane he had relied on 
the work of Schoenflies, which he discovered to be seriously flawed, and for higher di
mensions little had been done. Consequently Brouwer focused his attention on topological 
questions and became one of the founders of modern topology. 

Brouwer's work on continuous groups was reviewed for the abstracting journal 
Fortschritte der Mathematik by Engel. In his review of [Brouwer, 1909b] Engel justifi-
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ably complained about the overly succinct definition of a continuous group which, in so 
far as he could understand it, did not seem to cover all the possibilities for groups in Lie's 
sense [1912, p. 194]. Brouwer objected to Engel's unspecific criticisms and so began a 
brief correspondence with Engel, which Freudenthal has described as "a discussion be
tween people living in different worlds: Engel, the co-author of Lie's great treatise, who 
could not grasp a group except in its analytical setting, and Brouwer, who had shaken off 
the algorithmic yoke and from his conceptual viewpoint could not comprehend his corre
spondent's difficulties."^ Although Freudenthal's evaluation is essentially correct, Engel's 
difficulty in comprehension was certainly magnified by Brouwer's excessively compressed 
writing style. But even after Brouwer patiently explained the meaning and implications 
of his terms, Engel remained overwhelmed by and suspicious of Brouwer's topological 
approach. Thus in his review of Brouwer's second paper [1910], Engel began with some 
clarifying remarks about the first: "I am still of the opinion that everyone who is not an 
inveterate set-theoretician will find, as I did, that the general assumptions of § 1 are not 
worded clearly enough I cannot conceal the fact that, in general, the vast generality of 
the investigation and the great number and multiplicity of the necessary lines of reasoning 
strikes me with a slight dread. It is actually inconceivable to me that on the first try ev
erything should have been settled" [1913, p. 182]. As we shall see in Section 5, a similar 
sentiment was expressed by Elie Cartan, Lie's greatest disciple, when in 1925 he advocated 
avoiding the use of topological reasoning in dealing with Lie groups because of the great 
"delicacy" of its arguments. 

Although Brouwer had stressed the fact that his approach had the advantage over Lie's of 
providing insight into the global structure of transformation groups [1909a, p. 303, 1909b, 
p. 267], it undoubtedly at the time appeared too difficult for others to emulate. In any 
case, the topological study of continuous groups was not taken up again until the work of 
Weyl and Schreier (1924-1925). Brouwer's dimension-by-dimension approach to deter
mining all finite-dimensional continuous groups is reminiscent of Lie's effort in the 1870's 
to do the same, albeit by analytical means. Lie gave up on his project after solving it for 
n ^ 3 and only published his results for n < 2. However, during 1888-1913, Killing and 
Cartan developed the deep and powerful algebraic tools needed to completely resolve the 
more limited problem of classifying complex semisimple Lie groups and their linear rep
resentations up to local isomorphisms. Of course the local nature of these results was not 
emphasized or fully recognized within Lie's school. It first became apparent when Weyl 
became interested in the theory, as we shall see in Section 4. His greater sensitivity to the 
global aspects of Lie's theory as well as the approach he brought to bear upon the resulting 
questions grew out of his involvement with the uniformization problem of complex analy
sis, to which I now turn. One of the key notions to emerge from the consideration of this 
problem was that of a covering space, a notion which may have inspired Schreier's work 
as well. 

3. The uniformization problem and covering spaces 

The story behind the uniformization problem begins with the work of Poincare. Poincare 
had become involved in a friendly competition with Klein involving what is now known 

The correspondence, which occuiTed in 1912, is included in [1976, pp. 141-155]; Freudenthal's quoted edito
rial comment is from p. 142. 
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as the theory of automorphic functions.^ One type of automorphic function studied by 
Poincare he had called "Fuchsian functions," and in a note [1881, p. 31] he claimed he 
could prove that: "the coordinates of the points of any algebraic curve can be expressed 
by Fuchsian functions of an auxiliary variable." That is, as Poincare explained in [1882, 
p. 101], if / ( x , y) is a polynomial in the complex variables x and y, then Fuchsian func
tions F, G defined in an open circular disc D exist such that the nonsingular points on 
the algebraic curve f(x, y) = 0 are parametrized by the equations x = F(^), y = G ( 0 
so that / ( F ( ^ ) , G(f)) = 0 for all ^ e D. Poincare's assertion can also be expressed as 
follows. Imagine that the equation f(x,y) = 0 defines, say, j as a multiple-valued ana
lytic function of x, what was called at the time a nonuniform function of jc. For example 
f(x, y) = y^—x = 0 defines the two-valued square root function y. Then since x = F(^) 
and y = G ( 0 are single-valued, or uniform, functions of ^, they may be regarded as 
uniformizing the original multiple-valued function. Thus x = f ̂ , j = ^ uniformizes the 
two-valued square root function. 

Klein was impressed by Poincare's uniformization theorem and, stimulated by Poincare's 
achievements, he discovered a remarkable theorem of his own, which he called the funda
mental theorem of the theory of automorphic functions [1883, pp. 698-699] and which had 
the uniformization theorem as a corollary.^ Poincare and Klein discovered that the proofs 
of their respective theorems involved a similar type of argument which Poincare called 
"the method of continuity" [1884, p. 329]. The method involved reasoning of an essen
tially topological nature at a time when topology was still in its infancy. Consequently the 
method was fraught with difficulties. Klein made no claims of a proof but merely sketched 
out his intuitive ideas for such a proof. Poincare, while suggesting that Klein's approach 
involved a difficulty "which cannot be overcome in a few fines" [1884, p. 332], sought to 
develop his own condnuity arguments more carefully by establishing lemmas which "per
mit us to apply the method of continuity with all rigor" [1884, p. 368]. Eventually in the 
fight of advances in set theory and topology, the arguments of both Klein and Poincare 
were seen to be inadequate.^ 

Hubert's Paris lecture of 1900, in which he focused attention on uniformization theo
rems, was an important factor in triggering renewed interest in these matters. Although 
Hilbert may have privately doubted the adequacy of the proofs of Poincare's uniformiza
tion theorem and Klein's Fundamental Theorem, he focused his critical attention upon a far 
more general uniformization theorem which Poincare set forth in a paper of 1883. There, 
without any explicit reference to his uniformization theorem for algebraic curves, he pro
posed to demonstrate the following theorem: "Let y be any nonuniform analytic function 
of X. A variable z can always be found so that x and y are uniform functions of z" [1883, 
p. 57]. To followers of Riemann it was clear that by considering the Riemann surface of the 
nonuniform function, x and y could be regarded as uniform funcdons of a variable tracing 
out this surface, but Poincare's variable z traces out a portion of the complex plane and 
thus makes x and y uniform functions of a complex variable. 

Poincare was not very well versed in Riemannian principles and had developed his own 
ways of looking at Riemann surfaces [Gray, 1986, p. 299]. In pardcular, the demonstra-

^ An engaging account of this competition can be found in [Gray, 1986]. 
^ For a discussion of Klein's Fundamental Theorem and the closely related Limit Circle Theorem {Grenzkries-
theorem) see [Gray, 1986, pp. 297-316]. 
^ A detailed comparative analysis of Klein's and Poincare's use of the method of continuity is given by 
Scholz [1980, pp. 205-216]. 
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tion of his theorem is based upon his own construction of a simply connected Riemann 
surface for several multivalued analytic functions. The construction involves the now fa
miliar idea behind the construction of a universal covering space and is worth quoting in 
its entirety [1883, pp. 58-59]: 

We consider m analytic functions of jc, 

>l,>'2,---,>'m, (1) 

which are in general not uniform. These functions will be completely defined when not 
only the value of x is known but also the path, starting from an initial point O, by which 
the variable has attained this value. 

We do not consider the variable x as moving on a plane but on a Riemann surface S. 
This surface will be formed of superimposed plane sheets as in the Riemann surfaces 
by means of which algebraic functions are studied: only here the number of sheets will 
be infinite. 

We trace in the plane an arbitrary closed contour C which begins and ends at at the 
same point x. The surface will be completely defined if we state the conditions under 
which the inidal and final point of this contour must be regarded as belonging to the 
same sheet or to different sheets. 

Now there are two sorts of contours C: 
(1°) Those which are such that at least one of the m functions y does not return to its 

initial value when the variable describes the contour C; 
(2°) Those which are such that the m funcdons y return to their inidal values when 

the variable ;c describes the contour C. 
Among the contours of the second sort, I will distinguish two species: 
(1°) C will be of the first species if, by deforming this contour in a continuous man

ner, one can pass to an infinitesimal contour so that the contour never ceases to be of 
the second sort. 

(2°) C will be of the second species in the contrary case. 
Well, the initial and the final point of C will belong to different sheets if this contour 

is of the first sort or of the second species of the second sort. They belong to the same 
sheet if C is of the first species of the second sort 

The Riemann surface is then defined completely It is simply connected and does not 
differ, from the viewpoint of the geometry of position, from the surface of a circle, from 
a spherical cap or from one sheet of a hyperboloid of two sheets. 

Although the above description of S is rather vague by present day standards, in view of 
the first paragraph of the quotation, it seems safe to say that Poincare's remarks suggest the 
idea of conceiving of the points x of the surface S which lie over the point x in the complex 
plane as corresponding to paths from O to x which lie in the domain D of analydcity of 
the functions yi,... ,ym^ where two such paths, a and p, are regarded as determining the 
same point Jc of 5 if the closed curve —a + 6̂ (o? traced in reverse direction from x to O 
followed by fi from O to ;t) is of the first species of the second sort. Furthermore, if the 
functions y\,... ,ym are all assumed to be uniform and so irrelevant to the construction of 
5, then two paths a and fi from O to JC would determine the same point x over JC precisely 
when —a-\-p can be continuously deformed within D to a point. In this case S would be 
the universal covering space of D. As we shall see, these ideas were set forth explicitly 
by Poincare in 1907 when he returned to his general uniformization theorem, spurred on 
by Hubert's Paris lecture which called attention to an unsatisfactory quirk in Poincare's 
demonstration and resultant theorem. 
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Before describing the quirk, it is necessary to say something about the overall proof idea, 
which was a good one: to establish the existence of what is now called a Green function 
on the surface 5, and then using the simple connectivity of 5, to deduce the existence of a 
one-to-one conformal mapping from S into the unit disk |z| < 1. This idea is still central to 
modern proofs of uniformization.^^ If i = 0{z) denotes the inverse of this mapping and 
p^{x) = X is the projection mapping from S to D, then, since each yi is a single-valued 
function on S, say yi = / / ( i ) , the desired uniformization of x, j i , . . . , ym is given by 
x = p^{0{z)).yi^fi{^{z)). 

The quirk arises in the following manner. In order to construct the Green function, 
Poincare used a composite of Hnear fractional transformations and an elliptic modular 
function to define a function V (̂̂ ) satisfying |V^(OI < 1 which is analytic, except at three 
points a,b,c corresponding to the points 0, 1, oo where the elliptic modular function is 
not analytic. Then by taking y^ = il/ in the construction of the Riemann surface S, he 
could assume i/̂  was defined on S and consider the function ^ = log ll/V'"! on 5 which 
is then used to construct a Green function on S. However, because ij/ enters into the con
struction of S the points a,b,c sue excluded from the common domain of analyticity of 
Ji, •. •, Jm-i, i^' Thus, for example, to uniformize a single function }̂  of x, as is asserted 
in Poincare's theorem, one would consider the Riemann surface S for the two functions 
y, \lf which excludes the points covering a,b,c even though a,b,c have nothing to do 
with the function y and may well be points at which y is analytic. Thus in the uniformiza
tion X = p^{0{z)), y = f(^(z)) some perfectly good values of jc and y may be excluded 
due to the introduction of the function i//. Poincare himself called attention to this artifi
cial restriction by remarking in a note at the end of his paper that the points a,b,c "being 
singular points, are outside the Riemann surface." 

Although Poincare's paper [1883] seems to have been fairly well known, it was not until 
the turn of the century that attention was focused on its defects and on the desirability of 
remedying them. The first to do so was W.F. Osgood in lectures of 1898, but it was Hilbert 
who refocused attention on the matter of uniformization. On August 8, 1900 in his Paris 
lecture on mathematical problems, Hilbert posed, as one of the ten problems included in his 
talk, the problem of uniformization, noting that Poincare's 1883 Theorem on the matter was 
subject to limitations due to the above-mentioned points a,b,c. In the pubhshed version 
of his talk the problem is the twenty-second [Hilbert, 1900, p. 323]. 

It was Poincare himself and Paul Koebe, a Privatdozent at Gottingen, who in 1907 in
dependently provided what is generally regarded as the first satisfactory resolution of the 
issues raised by Hilbert. Poincare's paper [1907] is of particular interest because in it he 
decided to separate the construction of the Riemann surface of a nonuniform function from 
that of its universal covering surface. To construct the Riemann surface of such a function, 
Poincare followed the lead of Weierstrass and conceived of the surface as composed of 
"function elements" (;c, y) corresponding to pairs of series in powers of ^ — fo but, unlike 
Weierstrass, he added elements to correspond to poles and branch points as well [1907, 
pp. 73-77]. Weyl was to develop this approach systematically in his book [1913]. 

Having indicated how to describe in this fashion a Riemann surface for nonuniform 
functions j i , . . . , jm, which he called the "principal domain" D of j i , . . . , ym, Poincare 
pointed out that other constructions were possible which, instead of leading to D would 

^̂  See in this connection the expository account by Abikoff [1981], especially §5. A more detailed description of 
Poincare's own construction of the Green function and the associated conformal mapping is given by Gray [1994, 
§2]. 
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lead to a "multiple domain" A in which every point of D corresponds to several, possibly 
infinitely many, points of Z\. He came closest to the modern notion of a covering space 
with his definition of a "regular multiple" of D [1907, p. 90]: 

We will say that A is a. regular multiple of D if it satisfies the following condition. 
Let M be a point of D; let Mj, M2,... be the coiTesponding points of A. Let M̂  be 
another point of Z), infinitely close to M; we suppose that among the points of A which 
coiTespond to M\ there is one which is infinitely close to Mj, one which is infinitely 
close to M2, If this condition is fulfilled, that is to say, if Z\ is a regular multiple 
of D, it is clear that if to a certain point M of D a finite number n of points of A 
correspond, then there will correspond to any other point of D the same finite number 
n of points of ^. 

With these preliminaries out of the way, Poincare returned to the ideas he had presented in 
his paper [1883], now presenting them without the added complications of a Riemann sur
face construction. The result is essentially the modern construction of a universal covering 
space, which he gave to justify his claim that there is a regular multiple A of D which is 
simply connected. If Mo, M are points of D: 

One can go from MQ to M on D by many paths. Consider two of these paths. They 
could be equivalent, that is they could bound a continuous area situated on D; but 
they may not be, at least if D is not simply connected. That given, let us define the 
domain A. A point of this domain will be characterized by the point M of D to which it 
corresponds and by the path by which one proceeds from MQ. In order that two points 
so characterized be identical it is necessary and sufficient that one has come from MQ 
by equivalent paths. It is clear that A is simply connected [1907, p. 90]. 

Poincare then sketched an argument to the effect that ^ is a regular multiple of D. 
Several months before Poincare's paper [1907] appeared, Klein presented to the Got-

tingen Academy a paper by Paul Koebe [1907] which also established the general uni-
formization theorem without any restrictions. Koebe (1882-1945) had been a student of 
H.A. Schwarz at Berlin, where he received his doctorate in 1905. He became Privatdozent 
in Gottingen in 1907. Following in the footsteps of Schwarz, Koebe was interested from 
the outset of his career in conformal mapping problems. His proof of the uniformization 
theorem was based upon his theorem that any simply connected Riemann surface can be 
mapped conformally onto one of the following 3 regions of the Riemann sphere: a spherical 
cap, the sphere minus a point or the entire sphere [1907, p. 198]. (In terms of the complex 
plane C, the three regions may be taken as |z| < 1, C and C plus the point at infinity.) To 
establish the uniformization theorem for nonuniform analytic functions y\, . . . , y,„ of x, 
Koebe considered the Riemann surface for y\,..., y,n. Then, citing Poincare's original pa
per [1883], he concluded that if this surface is not simply connected, "it is then transformed 
into a simply connected surface B by means of a definite covering process. The construc
tion of this surface offers no major difficulties" [1907]. If 0 : D -> B denotes the inverse 
of the conformal mapping into the Riemann sphere posited by Koebe's theorem, then on B 
x,y\,..., y,n are all uniform functions of Z? 6 B, say, yi = Fi{b),i = 0, 1 , . . . , m, where 
yo = X, and so yi = (F/ o 0)(^) gives the uniformization. 

During 1907-1911 Koebe published a total of 19 papers on various aspects of uni
formization, including the algebraic case where he provided the first proof of Klein's "Fun
damental Theorem" and many detailed studies of the various cases that can arise due to the 
nature of the group of linear fractional transformations defining the automorphic functions. 
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Although he developed other methods as well, Koebe also stressed the importance of the 
"Method of Covering Surfaces." Thanks to Koebe there was no danger that the subject of 
uniformization or covering surfaces would soon be forgotten around Gottingen. Indeed, he 
appears to have generated considerable interest in uniformization and conformal mappings 
among the young mathematicians at Gottingen circa 1909, which is not surprising given 
the notoriety he had achieved for sharing with a mathematician of the stature of Poincare 
the honor of solving one of Hilbert's problems. 

According to Weyl's later recollections Koebe's work on the fundamental uniformiza
tion theorems and "Hilbert's establishment of the foundation on which Riemann had built 
his structure and which was now available for uniformization theory, the Dirichlet Prin
ciple," were two of the "three events" that "had a decisive influence" on the form of his 
lectures on Riemann surfaces (presented at Gottingen in the Winter Semester 1911-1912 
and published as [1913]). The other "event" was "the fundamental papers of Brouwer on 
topology from 1909 onwards". ̂ ^ In §2 I mentioned that in his work on continuous groups 
Brouwer had reUed on a version of point set topology that was still somewhat naive in its 
reasoning. Brouwer pointed this out impressively with an Annalen paper of 1910 contain
ing, among other things, an example of a curve which divides the plane into three open 
connected sets but is the complete boundary of each. This example and the others Brouwer 
constructed virtually undermined point set topology as it then stood and revealed the need 
for a more rigorous treatment [Johnson, 1987, pp. 67-71]. Brouwer then went on to show 
in a succession of innovative papers how point set topology could be developed rigorously. 
In particular he solved a problem of considerable interest in Gottingen, that of invariance 
of dimension under one-to-one continuous mappings of Euclidean space R". Brouwer's 
theorem on invariance of dimension and the related theorem on invariance of domain were 
of special interest because the method of continuity utilized by Klein and Poincare in the 
uniformization of algebraic curves by automorphic functions had taken such invariance 
properties for granted. Brouwer's proof of these invariance properties appeared in the An
nalen in 1911, and in 1912 he applied his results to vindicate the method of continuity. 

It is clear from the preface to Weyl's lectures on Riemann surfaces that the develop
ments in point set topology had convinced him that the theory of Riemann surfaces should 
be developed in a form that "completely satisfies all modern requirements of rigor'', and 
that Brouwer's work, with its many innovative ideas of an algebraic topological nature, 
had convinced him that it could be so developed: "To a far greater extent than follows 
from the citations, I have been encouraged by the fundamental topological investigations 
of Brouwer" [1913, iii]. Although Weyl shared with Klein a conviction that the essence of 
mathematics is intuitive and that there is a real danger in pushing the rigor and abstrac
tion too far, he also saw the theory of Riemann surfaces as being by its nature especially 
in need of a rigorous formulation: "A rigorous set theoretical founding of the topological 
concepts and theorems which come into question in Riemannian function theory is all the 
more necessary since the 'points' of the basic configurations (curves and surfaces) in this 
case are not points in space in the usual sense but can be arbitrary mathematical entities of 
a different sort (e.g., function elements)" [1913, iv]. 

The influence of both Klein and Hilbert can be seen also in Weyl's definition of a Rie
mann surface. Following the lead of Klein, he accepted the idea that the theory should 

^̂  Quoted from the Preface of the English translation of the third edition of Weyl's book [1955]. The importance 
of these three events is already implicit in the preface to the 1913 edition. 
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be developed within the conceptual framework of the theory of surfaces rather than in 
terms of a wrapping of the complex plane over itself so as to make an analytic function 
single-valued. And it was to Hilbert's paper [1902] that Weyl turned for his approach to 
the concept of a surface. Thus he began, sounding very much like Hilbert: "Let a totality 
of things, which are called 'the points of the manifold 'S' be given. To every point p of 
the manifold ^ let certain sets of points be defined as 'neighborhoods of p on 'S' ". The 
neighborhoods thus define what would now be called a basis for the topology on ^, and 
Weyl then went on to stipulate further properties of these neighborhoods to make ^ a sur
face [1913, pp. 17-18]. Thus associated with each neighborhood is a bijective mapping 
onto an open disk in the plane satisfying certain conditions. Weyl's definitions contained 
in spirit if not in detail the modern formulation of a 2-dimensional manifold. In addition, ^ 
is assumed to be arcwise connected. Such an abstract surface 'S then becomes a Riemann 
surface if it possesses additional structure that makes it possible to speak of an analytic 
function of points p e^ [1913, pp. 35-36].^^ 

From the viewpoint of this essay what is of interest in Weyl's presentation is that the 
theory of Riemann surfaces is developed within the broader context of a theory of real two-
dimensional manifolds, a theory that readily generalizes to r-dimensional manifolds. This 
is true in particular of Weyl's extensive discussion of covering surfaces [1913, pp. 47-51], 
which marks an important step towards the development of a purely topological theory 
of covering spaces. Likewise his construction of a "universal covering surface" ^ (as 
he called it) associated to a given surface ^ is capable of broad generalization. As with 
Poincare, the points of Ŝ  consist of "curves" y - i.e. continuous mappings / : [0, 1] -^ 5̂  
- emanating from a fixed point y(0) = po G iJ, where two such curves y,y^ define the 
same point of 'S if K(1 ) = y'(l) and if they satisfy a condition that nowadays would be 
described by saying they are homotopic.^^ Thus in effect each point p e ^ can be identified 
with an equivalence class [y] of homotopic curves y which start at po and end at the same 
point p = y (1) and is thereby covered by p. The neighborhoods 11 of Ŝ  are then defined as 
follows: "Let yo be a curve in ^ from po to p and it a neighborhood of p. Attach to yo all 
possible curves y which start from p and lie within il and say that the points of'S defined 
by all such curves yo + y ̂ ^ form a 'neighborhood 11 of p" ' [1913, p. 51]. With these words 
Weyl thus gave what is now the customary description of a basis for the topology of the 
universal covering space. 

If we consider the points po which cover the point po defined above, each po corre
sponds to an equivalence class of curves which begin and end at po and thus correspond to 
the elements of Poincare's fundamental group of 3̂  at po, TTi (^, po). Weyl never mentioned 
^\(d, po) but spoke instead of the group F of covering transformations T {Decktransfor-
mationen), which he defined to be homeomorphisms of ^ with the property that for any 
p G ^, T{p) covers the same point as p, i.e. as is still done today. Considered abstractly, 
the group F , Weyl declared, expresses completely the relation between ^ and 3, "in so 
far as it possess an Analysis situs character" [1913, p. 50]. It is not difficult to see^hat 
r is isomorphic to 7t\{S, po), for if T e F sends the equivalence class p = [y] G 5̂  to 
p' = [y^]^ then the characteristic property of T requires that y(l) = y'( l) . Hence, curve 

'^ For a detailed, critical discussion of Weyl's definitions, and their relation to ideas of Hilbert and Klein, 
see [Scholz, 1980, pp. 193-198]. 
^^ Weyl's definitions of simple connectivity and of the universal covering surface avoided using homotopic equiv
alence and were apparently guided by convenience of application to function theory [1913, p. 47 (n. 2)]. 
^̂  That is, the curve which first follows yo and then y. 
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y^ — y begins and ends at po and defines an equivalence class [a\ of n\ (ĝ , po) such that 
T[y] = [a -\- y]. The correspondence T -^ [a] gives the isomorphism. Presumably Weyl 
realized all this but preferred not to introduce fundamental groups p^r se. 

In view of the use Weyl later made of universal covering spaces in his work on group 
representations (Section 4), it is helpful to make a few observations at this point because 
they follow readily from what has been said, although they were not made by Weyl until 
a decade later - and then in the context of the higher dimensional manifolds defined by 
Lie groups. To this end, let us suppose that ^ denotes the r-dimensional generalization of 
Weyl's notion of a surface. 

The first observation involves the situation in which'S is compact in the sense employed 
by Weyl and his contemporaries, namely every infinite subset of ^ has an accumulation 
point. Suppose that ^ has finite connectivity, i.e. that ^ has the property that there are N 
nonhomotopic curves from po to p, so that each point p e ^ has Â  points of ^ lying over 
it which is sometimes expressed by saying that ^ consists of Â  sheets. Then if .^ c i? is 
infinite, it follows that the set ^ c 5̂  of points covered by points in ^ must also be infinite. 
Thus ^ has an accumulation point q. If q i , . . . , qÂ  are the points which cover q, then it 
follows readily from Weyl's definition of the topology of ^ that at least one of the points 
q i , . . . , qÂ  must be an accumulation point of ^ so that ^ is also compact. 

The second observation is that if the product pp' of elements of ^ is defined so that'S is 
a group, then it easy to extend the multiplication from ^ to the universal cover ^ so that the 
projection mapping /?*, which sends p into the point p it covers, is a group homomorphism 
from ^ onto ^. Indeed, this can be done in more than one way. To see this, choose as the 
point Po in the above construction of 5 the identity element e of 3̂ . Then \iy,y' denote two 
curves with initial point e, let the product curve y -y' ht defined by {y • y'){t) = y{t)y'{t) 
for all t e [0, 1]. Then e is also the initial point of y • y\ and if p = [y] and p̂  = [y^] 
are two elements of ^, we may define the product pp' to be the element of ^ determined 
by y ' y\ With multipli£ation^so defined, ^ becomes a group as well, and p^ : d -^ d 
is a homomorphism. If .^ C ^ denotes the kernel of this homomorphism then, as noted 
above, since ^ consists of the points covering po = e its elements can be identified with 
those of the fundamental group T[\ (5 ,̂ e), although the multiplication defined in k need not 
coincide with the multiplication defined in n\ (3 ,̂ e). This can be made to happen, however, 
by defining multiphcation in 5̂  as follows. Given p = [y], p' = [/'] G ^, let p x p' = 
[y + y(l)-y ' ] , where y + y (1) • y' denotes the curve which follows y from e to its end point 
y (1) and then follows the curve t -> y (l)y^(O from its starting point aty(l)e = y( l ) to 
its end point at y( l )y ' ( l ) . (Thus p*(pp') = /7*(p x pO.) Then for p = [y],p' = [y1 e !ff, 
p X p' = [y + y'], in accordance with the definition of multiplication in 7ri(S ,̂ e). As we 
shall see in §4, Weyl simply observed that ^ could be made into a group without pausing 
to define the multiphcation, and either definition sufficed for his purpose. 

4. The contributions of Weyl: 1925-1926 

The universal covering group of a continuous group in Lie's sense became relevant to 
Weyl's research interests about a dozen years after his brilliant lectures on Riemann sur
faces. By that time (1924) Weyl was deeply involved with Einstein's general theory of 
relativity, including its mathematical foundations and possible extensions, and this interest 
led him to an interest in the linear representation of continuous groups [Hawkins, 1998]. 
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For finite groups, the Berlin mathematician Georg Frobenius had developed in 1896-1903 
a remarkable theory of linear representations, as Weyl realized. A fundamental theorem of 
Frobenius' theory was what became known as the complete reducibility theorem for finite 
groups. It may be stated as follows: Let (/?: 0 -> 0 C GL(V) be a representation of 0 , 
i.e. a group homomorphism, where V is a complex, finite dimensional vector space. Then 
V = 0'^^j Vk where each vector subspace Vk is left invariant by the transformations of 
0 and 0 acts irreducibly on each Vk in the sense that Vk contains no proper, nontrival 
subspace which is left invariant by the transformations of 0 . The action of 0 on Vu de
fines an irreducible representation (̂ ^ : 0 -> 0jt C GL(VA:), and the complete reducibility 
theorem shows that the problem of determining all representations of 0 reduces to that of 
determining the irreducible ones. 

Weyl's interest in the scope of the tensor calculus, the fundamental mathematical appa
ratus of Einstein's theory, led him to seek to establish the complete reducibility theorem 
for the special linear group SL(n, C), which is a simple Lie group. In this connection he 
knew the work of Cartan [1913], which could be interpreted as determining, on the Lie 
algebra level, all irreducible representations of any complex simple or semisimple group. 
1 say "could be interpreted" because it was not so interpreted by Cartan, who did not relate 
his work to Frobenius' theory, and saw his result as solving the problem of determining 
all projective geometries (in the sense of Klein's Erlanger Programm) which leave no 
points, fines, planes, etc., invariant. Both Cartan and Study privately conjectured that for 
semisimple groups, a geometrical theorem would hold which is tantamount to the complete 
reducibility theorem for these groups. However, no one had succeeded in giving a proof 
except, on the Lie algebra level, for sl(2, C). In the third volume of Theorie der Transfor
mations grupp en, Lie had conjectured the same result would hold for sl(n, C). Weyl was 
unaware of this interest in Lie's school in what amounts to complete reducibility theo
rems. His motivation came from tensor calculus and the possibility of such a theorem for 
SL(n, C) was inspired by Frobenius' theory. 

It was Frobenius' student, Issai Schur (1875-1941), who provided Weyl with the means 
to prove a complete reducibility theorem for SL(M, C ) . In a paper [1924] on the theory 
of invariants, Schur called attention to the fact that in [1897], Adolf Hurwitz had showed 
how to define an integral over the rotation group D„ = SO(n, R) which is what is now 
called (right) 'translation invariant', i.e. if / is any continuous function defined on D,|, 
then /̂ ^^ fiRS) dm(R) = f^ f{R) dm{R) for any 5 G D„. Making use of this integral 
in a manner analogous to how Hurwitz had used it - as a continuous analog of summation 
over a finite group - Schur observed that Frobenius' theory could be extended to D„. In 
particular, it was known that the complete reducibility theorem was equivalent to a theorem 
due to Maschke, which asserts that if 0 C GL(V) has the property that its transformations 
leave a proper subspace W / 0 invariant then there is a complementary subspace W^ 
also left invariant by 0 such that V = W 0 W^ Maschke's theorem follows by defining 
an inner product on V by (i;, w) = J^Re^^^^^ ^ ^ ) ' where ( , ) denotes any (complex) 
inner product on V. Clearly by "translation invariance" of group sums {Sv, Sw) = {v, w). 
This says that the 5 € 0 may be regarded as unitary transformations relative to this inner 
product. Thus given the proper subspace W, the orthogonal complement W' = W-^ is 
easily seen to be the desired complementary subspace. As Schur observed, the same proof 
yields Maschke's theorem, and hence complete reducibility, for ©„ since we may use the 
Hurwitz integral to define the inner product (i;, w) = f^ {Rv, Rw)dm{R). A crucial 
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property of the Hurwitz integral used here is that since S)„ is closed and bounded, the 
Hurwitz integral of any continuous function is finite. 

Schur extended the basic theorems of Frobenius' theory to ^n in order to solve a count
ing problem regarding the invariants of 2)^ that had been solved for the classical binary 
case of GL(2, C) by Cayley in 1858. But he also called attention to two other ideas that 
Hurwitz had introduced in 1897. The first is that a translation invariant integral can be de
fined on any Lie group (5. Thus if (S is closed and bounded so that the 'Hurwitz integral' 
(as I will call it) converges for all continuous functions on (5, Frobenius' theory, including 
the complete reducibihty theorem may be extended to (5. The second idea was what Weyl 
later termed the 'Unitarian Trick'. Hurwitz had used his integral on the rotation group J)„ 
to prove that the invariants of Tin have a finite basis, i.e. that a finite number of invari
ants I\,..., IN exist such that every invariant is expressible as a polynomial in / i , . . . , /A^. 
Hilbert had proved that the invariants of SL(w, C) have a finite basis, but was unable by his 
methods to do the same for Tn except in the case n = 3. Hurwitz, however, showed that his 
methods would work for SL(«, C) as well. At first glance this seems doubtful because, as 
Hurwitz observed, SL(n, C) is unbounded, which meant that the integral method could not 
be directly applied. Enter the 'Unitarian Trick'! The group SU(n) of unitary linear trans
formations of determinant +1 is a subset of SL(«, C) forming a real, closed and bounded 
group. Hurwitz's integral method applied to Sl](n) and established the existence of a fi
nite basis. The same would follow for SL(n, C) if it could be shown that every invariant 
relative to SU(«) is actually an invariant relative to the larger SL(«, C). This reduced, in 
Schur's version of the 'Unitarian Trick', to showing that if a homogeneous polynomial in 
n^ variables tjk vanishes for all tjk defining elements of SU(«), then it vanishes identically. 

The fertile ideas conveyed in Schur's paper provided Weyl with the leading ideas for 
proving the complete reducibihty theorem for (3 = SL(n, C) and then for any semisimple 
group. In what follows, for the sake of brevity a group 0 or a Lie algebra g will be said to 
have the complete reducibility property (CRP) if the complete reducibihty theorem holds 
for its representations. (For a Lie algebra, a representation is a Lie algebra homomorphism 
<̂  : 9 -> S C gl(V).) Weyl reahzed that the group 0^ = SU(«) has the CRP since being 
closed and bounded, the Hurwitz integral may be used to prove Maschke's theorem. Now 
a version of the 'Unitarian Trick' was needed to push this result to SL(w, C). To obtain it 
Weyl dropped down to the computationally simpler Lie algebra level and easily proved: 
If ^^^ =z su(n) has the CRP, then so does g = s\{n, C). Basically the proof boiled down 
to showing that if a linear homogeneous function / = Yljk ^jk^jk vanishes for all tjk 
defining an element (tjk) G su(n), then / vanishes identically. 

On the basis of Weyl's version of the Unitarian Trick, it might have been tempting for 
him to jump to the conclusion that he had proved the complete reducibility theorem for the 
special hnear group. That is, to conclude that, since 0„ = SU(n) has the CRP, so does 
its Lie algebra g„ = su{n) and thus by his Unitarian Trick so does g = sl(nC) and hence 
(3 = SL(n, C). Indeed, Lie and his students usually never made any clear distinction in 
their mathematical discourse between Lie groups and Lie algebras. But Weyl realized that 
a representation of a Lie algebra such as g^ need not correspond to a representation of the 
Lie group from which it was derived. Hence even though 6„ has the CRP, ĝ  need not have 
it, which means the unitarian trick cannot be directly applied. 

Weyl seems to have arrived at this insight by perceiving an analogy with analytic con
tinuation and covering surfaces, a subject with which he was well acquainted (Section 3). 
Given a representation X -> (p{X) of the Lie algebra g^, Weyl reasoned [1925, pp. 561-
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562], one obtains by integration, following Lie, a matrix 0(x) for every x G ©^ in a 
neighborhood il of the identity element e. For XQ € il consider the translated neighbor
hood XQH of XQ. Since all elements in this neighborhood are of the form XQU where u eii 
the representation can be continued by setting 0(xow) = 0(xo)0(u). Repeating this pro
cess of continuation could lead to a multi-valued representation on 0^ which first becomes 
single-valued on a covering manifold over (5^ Referring to the universal covering surface 
of uniformization theory (Section 3), Weyl declared: "This universal covering manifold 
[^ii] over [&u] is the true abstract group whose representations are under consideration; 
[©i/] is only one of its representations, and indeed it is [unfaithful] . . . when the cov
ering manifold is many-sheeted." Weyl did not pause to explain what he meant by this 
"true abstract group," leaving it to his readers, who were assumed to know about covermg 
manifolds from uniformization theory, to see how to define a group multiplication in (5u-
As was indicated in Section 3, this is not difficult to do. 

A simple but important example of a covering group which was known to Weyl had been 
implicit in Hilbert's proof of the finite basis theorem for the invariants of 2)3 = SO(3, R), 
the rotation group of ordinary space. Hilbert had used the well-known connection between 
rotations in ordinary space and quaternions. That is, if a = ao -\- a\i -\- a2} + «3k is a 
real quaternion such that Yl^f = 1' ^^en the transformation (xi, ^2, X3) —> (yi, y2, ys) 
of M̂  defined by y = a~^xa, where x = xii -h X2J + xsk, y = yii + yii + jsk is an 
orthogonal transformation T (a) with determinant +1 • It is readily seen that the above type 
quaternions a form a group ©3 under quaternion multiplication and that ^ : P -> T(P) 
is a homomorphism from ©3 to S3 with kernel consisting of —1 and +1 . Topologically, 
^ 3 looks like the three-sphere S^ which is simply connected. Hence ©3 is the universal 
covering group for V3. As Weyl realized, this shows that 1)3 is not simply connected and 
that ©3 is a two sheeted covering [1925, p. 598]. Here then was a well-known example 
showing that a group need not coincide with its covering group. 

To apply the "integration method" of Hurwitz to establish^he CRP for a Lie algebra g 
of a group ©, it was thus necessary that the covering group 6 be compact. (In the above 
example, of course, both X>3 and ^ 3 are compact.) As noted at the conclusion of Section 3, 
by virtue of his work on Riemann surfaces, Weyl could see that the compactness of 0 
would follow from that of 0 provided 0 is a covering with finitely many sheets (as occurs 
in the above example). Weyl realized that a universal covering manifold of a compact group 
need not be compact. One has only to consider, as Weyl did, the rotation group of the plane, 
which in terms of complex variables can be thought of as the group 0 consisting of all 
transformations To :z -^ Q^^z of the complex variable z. As a topological object 0 can be 
identified with a circle and its covering group 0 thought of as an infinite spiral. Hence 0 
is not compact even though 0 is. Using this simple example, he defined a representation 
of the Lie algebra g of 0 which generates a many-valued representation on 0 that first 
becomes single-valued on 0 . In other words, the representation of g does not correspond 
to one of 0 but only of 0 . He also pointed out that 0 fails to have the CRR 

Weyl could thus see something that had eluded Cartan, who, like Lie, tended to deal 
with groups on the Lie algebra or group germ level: the irreducible representations of 
the infinitesimal group g associated to a given group 0 do not necessarily correspond 
to representations of 0 but rather to its simply connected universal covering group 0 . This 
meant that in order to utilize his Unitarian Trick, Weyl had to show that the covering group 
0« of ^11 = SU(n) is compact. He confirmed that this is the case by proving that SU(«) 
is simply connected and hence its own covering group. Now it did follow that QU = su(^) 
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has the CRP and so (by the Trick) g = s\(n, C) has the CRR Now it followed that (S = 
SL(n, C) had the CRP as well. In his first announcement of this result in the Gottingen 
Nachrichten, Weyl emphasized that: "Here analysis situs plays a decisive role; the real 
impediment to the universal application of Hurwitz's method (which would lead to the 
thoroughly false theorem that every linear group is fully reducible) lies in the realm of 
topology: the noncompactness of most group manifolds" [1924a, p. 464]. 

By the time of the Nachrichten note Weyl reahzed that his proof that SL(n, C) has the 
CRP could be modified to cover the other main classes of simple groups, the symplectic 
groups 0 = Sp(2«, C) and the special orthogonal groups 6 = SO{n, C). In both cases 
(3u is defined to consist of all T G 6 which are unitary, and the analog of the Unitarian 
Trick is proved by similar considerations. For © = SP(2n, C) Weyl showed that that 
(3II is simply connected, and for 0 = SO(n,C) he showed (S« — SO(n,R), n > 2, is 
doubly connected [1925, pp. 588ff., 598ff.]. Thus in both cases the covering group ^u is 
compact and the complete reducibiUty theorem follows. Shortly after his Nachrichten note 
was submitted, Weyl was able to announce a proof of the complete reducibility theorem 
for any semisimple group [1924b]. He had discovered that the ideas behind his proof for 
the classical groups could be extended to this more general context. The basic ideas are 
sketched below. 

Let 0 denote a complex semisimple group with Lie algebra g. Then 0 does not neces
sarily consist of linear transformations, but, as anyone acquainted with Lie's theory would 
realize, one can consider the adjoint representation Ad: 0 -> 21 C GL(g), and work with 
the linear group 21. Because g is semisimple, the differential of the adjoint representation 
is an isomorphism from g onto the Lie algebra a of 21. To get a real subgroup of 21 which 
might play the role of the groups 0^ utilized in deahng with the classical groups, Weyl 
considered what are now called real forms of g. That is, it was clear from the structure 
theory of semisimple g that bases X i , . . . , Z^ for g exist for which [Z/, Xj] is a real Hnear 
combination of X i , . . . , Z;- for all / and j . The real span of such a basis then defines a 
real Lie algebra g^. Let â  C a denote the image of Qr under the differential of the adjoint 
representation and let 21̂  C GL(g) denote the corresponding connected real Lie group. Of 
course to play the role of 0^ ,̂ 21;- must be compact. 

Weyl knew from Cartan's papers that 21 leaves invariant the nonsingular quadratic 
Killing form i/{X) = tr X o trZ, X G g. Thus the Hnear transformations of 21,- take the 
real vector space ĝ  into itself and leave V (̂X) invariant. It is easily seen that the group 
of all real Hnear transformations which take a nonsingular quadratic form i/̂  into itself is 
bounded, and therefore compact, precisely when ij/ is definite, so that the group is the fa-
miHar real orthogonal group. Since 2lr is a subgroup of this group it will also be compact 
since it is closed. Thus to obtain a compact 21 ,̂ Weyl proved there exists a real form of g, 
Qr = 0M. such that the Killing form restricted to g^ is negative definite. Now QU is called a 
real compact form O/Q. Corresponding to the real compact form g^ in the above manner is 
a real Hnear group 21̂  which is compact. 

Thus 21M is the candidate to fill the role played by the unitary transformations in 0 when 
0 is one of the classical groups. As in Weyl's proofs for those groups, in order to prove 
that g has the CRP, two theorems remain to be proved. For the general semisimple case 
they take the following form: 

FINITE CONNECTIVITY THEOREM. If (3 is semisimple, then 21̂  has finite connectivity, 
i.e. ^u is a finite-sheeted covering of%i. 
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GENERAL UNITARIAN TRICK. Ifg is semisimple and QU has the CRP, then so does Q. 

Weyl proved the Finite Connectivity Theorem by showing that among all the curves in 21̂  
which start at the identity element and end at another suitably chosen fixed point there are 
Â  ^ (r — /)! which are homotopically inequivalent, where r and / denote, respectively, 
the dimension and rank of (5. This means that the universal covering group Sty has at most 
Â  points covering a point of 21̂  and so inherits the compactness of ^^ as indicated in 
Section 3. Once the compactness of 21̂  is established it follows via the Hurwitz integral 
technique that not only it, but also its Lie algebra â  has the CRP. Since â  is isomorphic 
to 0if, this means that g^ has the CRP and so by the General Unitarian Trick so does g. 
Once the CRP is estabhshed for g, it follows for (5. (It is the reverse conclusion that fails, 
as Weyl was first to observe, when 0 is not simply connected.) 

The use of topology by Weyl was not limited to his theorems about the finite connec
tivity of semisimple groups. He had used it earlier to prove what amounts to the theorem 
in present-day Lie group theory that all maximal toral subgroups of a Lie group are con
jugate, a result he needed to prove the Finite Connectivity Theorem. When the underlying 
semisimple group 6 is one of the classical simple groups, Weyl explained, "this theorem 
coincides with known algebraic facts" [1925, p. 629]. For example, in the case of the spe
cial hnear group, it follows readily from the known fact of Hnear algebra that a unitary 
matrix U can be "unitarily diagonalized," i.e. U = V~^ DV, where V is unitary and D is 
diagonal. To establish the general theorem, however, he had to resort to more than Hnear 
algebra: "Here [the theorem] will be established generally by means of the method of con
tinuity" [1925, p. 629]. By the "method of continuity" Weyl meant a "topological method" 
a phrase he also could have used as can be seen from the Weyl quotations given earlier. His 
choice here to speak of the "method of continuity," however, imbued his remark with his
torical resonance, for, as we saw in §3, that term had evolved out of the work of Klein and 
Poincare on the former's fundamental theorem of automorphic functions where topologi
cal reasoning had proved to be indispensable - and in need of further development. In the 
course of working on his lectures on Riemann surfaces, Weyl had occasion to absorb the 
newly developing topology (especially as found in Brouwer's papers), and now, a dozen 
years later, he saw that Lie's theory, like complex function theory earlier, was in need of 
topological concepts and reasoning to further its development. 

Weyl's work revealed the important role played by the real compact Lie group (3 = 21̂  
in the representation theory of complex semisimple Lie groups. In effect, the study of the 
representations of semisimple groups reduced, by the logic of the Unitarian Trick, to the 
study of the representations of (S, which, being compact, was equipped with a translation 
invariant integral. The representation theory of real compact groups thus became central to 
Weyl's quest for a Lie group analog to Frobenius' theorem that every irreducible represen
tation of a finite group 0 is obtained in the complete reduction of the regular representation 
of (3. The regular representation of 0 is defined as follows. Regard the n elements of (5 as 
forming the basis for an /i-dimensional complex vector space V, and write its elements in 
the form x = J2se(3^^^^^' y ~ ^te0 3 (̂0 -̂ Using the multiplication of 0 we can make 
V into a linear associative algebra, called the group algebra of 0 , by setting 

x^y= Yl ^(')y(t)'^ "=' E L^("^~0>^w 
sje(& 

u. (3) 
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The (right) regular representation s -> T(s) e GL(V) is then defined by 

T{s)y = y^s = J^y{t)ts " = ' J2y{us-^)u. (4) 
te(3 ue(3 

Frobenius' theorem says that in the complete reduction of T(s), every irreducible repre
sentation of 0 occurs as often as its degree. 

The analog of (4) is obtained for the real compact group 0 by identifying y with its 
coefficients y(s) and thinking of the latter as a continuous complex-valued function of ^ G 
0 . (Nowadays one considers y as an element of L^(0), but Weyl choose C((5) because 
Hubert's theory was then developed in that context.) This replaces the finite-dimensional 
vector space by the infinite-dimensional space C((3) of all continuous functions on C5. 
In the regular representation, T(s) is now the linear operator on C((S) which sends y(t) 
to the function y(u) = y(us~^). The only linear operators on C(X), with X compact, 
that had been studied were the integral operators Ty = / ^ K{s, t)y{t) dt of Hilbert where 
X = [a,b] but with the realization that the theory could be extended to more general closed 
and bounded subsets of R". The operator T(s) is not one of these, but Weyl saw how to 
reduce the problem of decomposing T(s) into its irreducible components to an application 
of Hubert's theory with X = 0 . 

Weyl realized that the continuous analog of multiplication in the group algebra (3) is 
what has since become known as the convolution of functions x,y £ C(C5): (x * y)(s) = 
f^ x{st~^)y{t) dm(0, where the integral is that of Hurwitz. For any x e C((!5), the opera
tor Axy = X * y is thus an integral operator with kernel K(s, t) — x{st~^). (This does not 
work ioxTis) — y ^s since the group element 5, as a function, is zero everywhere except 
at s where it takes the value 1; consequently there is no viable analog of 's' in C(C5) -
or in L^((S).) The operator Ax is not hermitian symmetric, so that the strongest results of 
Hubert's theory do not apply, but a well known technique of the theory was to consider 
the hermitian symmetric operator AxA^, where A^ denotes the hermitian (or conjugate) 
transpose of Ax with kernel L{s, t) = K(t, s) — jc(r5~^). Weyl did this and was able to 
take the idea one step further because of the special nature of the kernels of his operators. 
That is, it turns out that AxA^ = A ,̂ where z = x ^x and jc(5) = x(s~^). In other words, 
if we talce any x e C (0 ) and set z = jc * Jc we obtain a hermitian symmetric, definite 
integral operator A^ with kernel z(st~^) to which the most extensive results of Hilbert's 
theory can be applied. 

For example, if A 7̂  0 is an eigenvalue of A^ then X > 0 and the space Sx of solutions 
to {Az — XI)(p = 0 is a finite-dimensional subspace of C((S). The relevance of A^ to the 
decomposition of the regular representation T(s) stems from the fact that T{s) commutes 
with Az and so takes £x into itself thereby determining a finite-dimensional representa
tion of (5. In this way, Weyl proceeded to decompose the regular representation into its 
irreducible constituents. And by using Hilbert's theory to do it, he in effect, inaugurated 
Fourier or harmonic analysis on groups. That is, for a hermitian symmetric operator, the 
eigenfunctions cpn of nonzero eigenvalues can be chosen to form an orthonormal set with 
respect to the inner product (x,y) = f^ x{s)y{s) ds and were regarded by Hilbert as gen
eralizations of the sine and cosine functions of ordinary Fourier analysis and the 'Fourier 
coefficients' a„ = {x,(pn) and 'Fourier series' Yln^n^Pn considered. Of particular interest 
in Hilbert's theory was the question as to when the (pn form a complete set. As formulated 
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by Hilbert this meant that Parseval's equality, j ^ \x{s)\^ diS = Y.n\^n? should hold for ev
ery x G C[a,b]. Nowadays one thinks of completeness as saying that for all x e L^[a, Z?], 
X = Yin ^n^Pn in the sense of the L^ norm. 

In the course of decomposing the regular representation, Weyl obtained, with the as
sistance of his student F. Peter, what is now called the Peter-Weyl completeness theo
rem [1927]. Briefly put, it says that if s -^ E^^^Hs) = {uf^{s)), /x = 1, 2 , . . . , is a full set 
of inequivalent irreducible matrix representations of ©, which without loss of generahty 
can be assumed unitary, then, suitably normaUzed, the functions u -^ (s) form a complete 
set. As the most important application of this theorem, the authors singled out the follow
ing result: Suppose for s,t e ^ E^^^\s) = E'^^Ht) for all /x; then s = t [1927, p. 74]. 
No explanation was given as to why this result was so important, although it became a 
fundamental tool in subsequent developments. In particular, as we shall see in Section 5, 
it provided the key to John von Neumann's solution to Hilbert's fifth problem for compact 
groups. I will refer to it there as the point separation corollary to the Peter-Weyl theorem. 

In this connection, it is important to realize that although the Peter-Weyl paper was mo
tivated by Weyl's interest in an analog of Frobenius' regular representation theorem as it 
applied to the particular compact group (J5 = 21M, it was realized that the reasoning only 
depended upon having a real compact 'continuous group' on which a translation invariant 
integral was defined. Hurwitz had showed how to define such an integral, but his defini
tion depended upon the differentiability of the group operations: dm(t) = xj/it) dr, where 
the density function \l/(t) was the Jacobian of the transformation s -> st. For this reason 
at the outset the authors posited (S to be any compact continuous group such that "Lie's 
infinitesimal-conceptual apparatus is appUcable" to (S [1927, p. 58]. The Peter-Weyl paper 
thus suggested the problem of defining a translation invariant integral on a compact con
tinuous group without resorting to a differentiable Lie group structure - a problem solved 
byHaarin[1933]. 

5. The influence of Weyl's papers 

Beyond the topological considerations described in Section 4, Weyl directly contributed 
little more to the topological study of continuous groups. But indirectly, through the impact 
of his work on others, he, more than anyone else, triggered the surge of activity in this area 
that occurred during the three decades after his papers were published. In this concluding 
section I consider briefly the main links between Weyl's work and the three major research 
programs which contributed to that surge: (1) the topology of Lie groups; (2) Hilbert's fifth 
problem; (3) harmonic analysis on groups. 

With his finite connectivity theorem, Weyl had made the earhest contribution to (1) but 
as can be seen from the introductory overview, Schreier had gone much further in this di
rection. Nonetheless it was Weyl's work, by virtue of the great advance it made in Lie's 
theory, that made Lie's foremost successor, EHe Cartan, a believer in the global topolog
ical approach to Lie's theory. Between 1894 and 1924, Cartan had advanced Lie's theory 
profoundly in many respects, but all of his work, like Lie's, was tacidy on the local level, 
based upon algebraic considerations involving the Lie algebra of the group. After Cartan 
saw Weyl's 1924 announcements of the complete reducibility theorem - but before he had 
any idea of how Weyl proved it for semisimple groups in general - he devised his own 
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proof [1925]. It drew on many ideas which were mentioned in Weyl's 1924 announce
ments such as the idea of utiUzing the Hurwitz integral in conjunction with the unitarian 
trick, but Cartan avoided Weyl's idea of introducing the universal covering group and prov
ing its compactness. The advantage of his approach, Cartan explained in a letter to Weyl, 
was that complete reducibility could be proved "without being obligated to devote oneself 
to studies of analysis situs, which are always delicate". ̂ ^ However, as Borel has pointed 
out [1986, p. 76 (n.l6)], Cartan's proof takes for granted results which seem to require 
the sort of topological reasoning he wished to avoid. In his reply to Cartan's letter Weyl 
defended his use of topology explaining that the "consideration of Analysis situs is very 
simple and applies to all semisimple groups without distinguishing cases. This approach 
lies closer to my whole way of thinking than your more algebraic method, which at the 
moment I only half understand". ̂ ^ 

After Cartan was able to read Weyl's detailed paper [1925], which shows how the topo
logical approach can be applied to semisimple groups in general and also shows the benefits 
of such an approach, he became convinced of the merits of the global topological approach 
to Lie groups. This can be seen in his paper "The geometry of simple groups", where he 
declared: "The study presented here is no longer local; rather it concerns the properties of 
space which depend on Analysis situs ..." [1927, p. 210]. 

Cartan's paper is primarily a study of the connections between Riemannian geometries 
and Lie groups, to which now a global, topological approach is applied. But in the intro
ductory part of this lengthy paper, he made some of his first contributions to the topology 
of Lie groups by developing the implications of Weyl's work and filhng in some of the de
tails. Thus he showed how to construct the covering group (3 of (3 = %i. He defined the 
multiplication in (3 in the second of the two ways indicated in Section 3 so that the kernel 
A of the covering homomorphism p* : (3 ->^ (3 could be identified with the fundamental 
group TTi (C5).̂ ^ Cartan also pointed out that K is always in the center of (3 so that 7T\ ((3) is 
abelian. Schreier had of course already proved a more general result, but his work was not 
yet known to Cartan. For Cartan it was an easy consequence of Weyl's finite connectivity 
theorem: Since ^ is normal, for any fixed /: G .^ the continuous function f(x) = xkx~^ 
maps (3 into R; since /[C5] is connected and R is finite, it must be a single point; and 
since f(x) = k when x is the identity element of (3,xkx~^ = /: for all x and so k is in the 
center of (3. Cartan also computed 7t\ (0) expUcitly for each simple type. 

The above described results of Cartan's were just elaborations of the topological aspects 
of Weyl's work, but they are indicative of his new interest in the topology of Lie groups, 
which he continued to pursue. Indeed in the immediately following years, it was Cartan 
who through his publications insured a continuing interest in the topology of Lie groups. As 
Samelson has written in his survey article [1952, p. 6], interest in the topology of Lie groups 
"is due, besides to H. Weyl, above all to E. Cartan, who in a long series of papers . . . came 
back to this subject again and again, pointed out its importance, made a thorough study 
of many special cases and went on from there to prove or predict many general results". 
In particular, Cartan pubHshed the first monograph on the topology of Lie groups [1930] 

^̂  Letter dated 12 October 1925. The quoted passage reads: "sans etre oblige de se livrer a des etudes d'analysis 
situs toujours delicates." The original letter is located in the archives of the library of the Eidgenosische Techni-
sche Hochschule (ETH) Zurich [Hs 91: 5011. 
^̂  Weyl's letter, dated 22 March 1925, is in the possession of Henri Cartan. 
^̂  Cartan called 7V\ ( 0 ) the 'connection group' of (3 because the term 'fundamental group' had another meaning 
in his group-theoretic approach to geometry. 
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and initiated [1928] the program of determining the Betti numbers (Poincare polynomials) 
of Lie groups, conjecturing in the process the theorems established by de Rham in his 
important memoir [1931] on the differential topology of manifolds. 

One final remark regarding Cartan. As we saw in Section 4, it was the goal of proving 
the complete reducibility theorem for a semisimple Lie algebra g that had led Weyl to his 
approach involving the compact group (J5 = %i and its compact covering group. In 1935 a 
completely algebraic proof that semisimple g have the complete reducibility property was 
given by Casimir and van der Waerden so that for its original goal Weyl's approach was 
no longer needed. But, as Cartan showed repeatedly in his own work, Weyl's ideas were 
extremely fruitful for the topological study of Lie groups. In particular, Cartan drew from 
Weyl's work the implication that compact groups were the key to the topological study of 
more general Lie groups. In this connection I will simply mention Cartan's theorem [1936, 
p. 245] to the effect that any noncompact simply connected Lie group is homeomorphic to 
a Cartesian product of compact simple groups and a Euclidean space. An analogous result 
was later established for all connected Lie groups by Malcev and Iwasawa. A good idea of 
the plethora of results and techniques on the topology of Lie groups in the thirty years after 
Weyl's paper [1925] can be obtained from the above survey article by Samelson and the 
sequel by Borel [1955]. Vivid, first-hand accounts of the early influence of Cartan's work 
on topological developments can be found in essays by de Rham [1981, pp. 641-664]. 

Research on more general topological groups was also greatly stimulated by John von 
Neumann's solution to Hilbert's fifth problem for compact groups [1933]. In the language 
of manifolds, the question behind the problem is: given a locally Euclidean group 0 which 
acts on an n-dimensional manifold Al, is it possible to choose the local coordinates in 
6 and M so that x -^ a - x and {a,b) —> ab~^, a,b e ©, JC E A^ are continuously 
differentiable (or analytic)? Von Neumann showed the answer is affirmative in the stronger 
sense provided 0 is compact and acts transitively on M, i.e. for any x,y e M there is 
a r G 0 such that Tx = y. (He also gave an example of a one-dimensional noncompact 
group acting intransitively on a two-dimensional manifold for which Hilbert's question has 
a negative answer). Von Neumann's theorem was the first affirmative answer to Hilbert's 
problem for an extensive class of groups and offered hope of a complete resolution of 
the question. Von Neumann was probably the first to divide Hilbert's problem into two. 
The first problem concerns the case in which A1 = 0 , where a - x = ax, a,x e 6 . 
Here (5 acts (simply) transitively on itself. This will be referred to as Hilbert's problem for 
abstract groups and the second problem as Hilbert's problem for transformation groups. 
Von Neumann first solved the former problem for 0 compact and then used the result 
to solve the second problem. As we shall see, it was in solving the first problem that he 
utilized the Peter-Weyl theory. 

Von Neumann's first academic position was as an instructor (Privatdozent) at the Univer
sity of Berhn, where Issai Schur was on the faculty. We saw in Section 4 that Schur's work 
on the representations of the rotation group had been a great inspiration to Weyl. Schur 
went on to study the representations of the real full orthogonal group as well. In all his 
work Schur avoided Lie algebra techniques; and the representations he studied were sim
ply assumed to be continuous, i.e. the matrix elements of the representation were assumed 
to be continuous functions of the elements in the group being represented. By contrast, in 
their work on representations of a group 0 , both Weyl and Cartan made critical use of the 
existence of what would now be called the differential of the representation, namely the 
corresponding representation of the Lie algebra 9. Assumptions about the differentiability 
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of the representations of 0 was thus fundamental to their approach. In a letter to Weyl in 
1924, when the latter was in the process of creating the results presented in [1925], Schur 
had emphasized as one of the virtues of his approach that differentiability is not assumed 
of his representations only integrability in the sense of continuity. ̂ ^ Probably with the en
couragement of Schur, von Neumann considered the question of whether the continuity of 
a representation of a linear group implied its differentiability. Von Neumann was able to 
give an affirmative answer in [1927], but his strongest results were given later in [1929]. 

In [1929] von Neumann considered a group of linear transformations (3 C GL(w, C) 
for which a continuous representation A -^ D(A) is given. He showed that if (3 is the 
closure of 0 with respect to GL(w, C), the latter being considered in the relative topology 
it inherits as a subset of R^" , then D has a unique extension to 0 and D(A) is a real 
analytic function of the aij, where A = (aij) [1929, p. 543 (Satz II)]. From the stand
point of the rigorous theory of functions of a real variable, of course, it was well known 
that continuity does not imply differentiability, but as von Neumann noted, the existence 
of the group operation prevents this sort of pathology and thus removes the critical objec
tions raised (possibly by Schur) against the study of groups of Hnear transformations and 
their representations based upon consideration of Lie algebras. "Above all, the results of 
Weyl on the representation of semisimple groups are thereby freed from their far reaching 
differentiability assumptions" [1929, p. 511]. 

Von Neumann's theorem was based upon another which is not only of interest in its own 
right but historically consequential as well [1929, pp. 532-533 (Satz I)]. He showed that 
0 possesses a real r-dimensional Lie algebra Q and that if r > 0 the exponential mapping 
from g to 0 gives an injective mapping from a neighborhood of 0 G g onto a neighborhood 
of the identity element in 0 which makes the matrix coefficients of the elements of 0 in 
this neighborhood analytic functions of r variables and implies the matrix multipHcation 
in this neighborhood is Hkewise analytic. Thus the component of 0 containing the identity 
element "forms a continuous group in the usual sense of the word, with all the expected 
analyticity properties" [1929, p. 533]. 

Perhaps von Neumann did not consider the above result as a significant enough answer 
to Hubert's question to be worth emphasizing as such, but, stimulated by a paper by Alfred 
Haar (1885-1933), he saw how he could use it to obtain the far more significant solution to 
Hubert's problem pubhshed in [1933]. Both Haar's paper and von Neumann's appfication 
of it were motivated by the Peter-Weyl paper [1927]. In the case of Haar, the motivation 
came from the fact, noted in §4, that the entire Peter-Weyl theory for real compact Lie 
groups (S depended only on & being a Lie group so that the translation invariant integral 
of Hurwitz could be introduced. The entire theory would go through for any compact topo
logical group (S on which a translation invariant integral could be defined. Haar showed the 
latter could be defined for topological groups (3 which were only assumed to be separable, 
locally compact metric spaces. As von Neumann pointed out [1934, p. 445 (n. 2)] with a 
reference to Hausdorff's Megenlehre [1927, p. 230], by virtue of the metrization theorem 
of Urysohn [1925] as sharpened by Tychonoff [1926], it was known that regular topolog
ical spaces with a countable basis were precisely the topological spaces homeomorphic 
to separable metric spaces, so that Haar's results applied to locally compact groups with 
these topological properties. (Later, using Tychonoff's theorem that the product of compact 

^̂  Letter to Weyl dated 10 November 1924. The original is located in the library archives of the Eidgenossische 
Technische Hochschule Zurich [Hs 91:734]. 
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spaces is compact, Weil showed that Haar's ideas could be used to estabhsh the existence 
of a translation invariant integral on any locally compact group [1940, pp. 33-38].) 

As an application Haar briefly indicated how "the beautiful theory of F. Peter and H. 
Weyl" could be extended to the case in which & is assumed, in addition, to be compact. 
Haar had given a copy of a draft of his paper to von Neumann, who saw how to use Haar's 
results to obtain his solution to Hilbert's problem for compact groups. The solution was 
pubhshed as [1933] in Annals of Mathematics, which von Neumann edited, immediately 
following Haar's paper [1933]. It is easy to see that compact, locally Euclidean groups 
(3 satisfy the above topological conditions for the existence of the Haar integral. Thus (3 
admits a translation invariant integral such that (S has finite measure, and the Peter-Weyl 
Theory goes over to 0 , including, in particular, the point separation corollary to the Peter-
Weyl theorem (§4). On a heuristic level, the corollary says that the infinite direct sum of 
all the inequivalent unitary representations is faithful; and von Neumann saw (in a manner 
sketched below) how to use the compactness of 0 to obtain a finite partial sum which is 
also faithful. If D : © -> 0 C GL(n, C) denotes this (continuous) faithful representation, 
then the compactness of (S implies that D is a homeomorphism. Hence 0 is closed and 
the above-mentioned results of his paper [1929] apply to ©. This showed that Hilbert's 
problem is solved affirmatively for the compact group C5. 

To show that a compact, locally Euclidean topological group (3 has a faithful repre
sentation, he proceeded as follows. Let U^^\x), /x = 1, 2, 3 , . . . , denote the inequivalent 
unitary matrix representations of (S, with f/̂ ^̂  being n^ x n̂ .̂ Form the Â ^ x Â ^ unitary 
matrix representation V^^\ TV̂  = X!(̂ =i ^v, which has iht U^^\v — 1 , . . . , /x, as diag
onal blocks and zero blocks elsewhere. Also let V^^^ denote the infinite matrix obtained 
by letting IJL -^ oo in V^^\ Each mapping x -> V^^\x) isdi continuous homomorphism 
from 0 to a topological group of matrices. The same is true of jc -> V^'^\x) once a 
suitable metric topology is introduced on the totality of all infinite matrices. In addition, 
by the point separation corollary x -^ V^^\x) is an isomorphism. If .̂ ^^^ is the com
pact kernel of the corresponding homomorphism x -^ V^^\x), then ^ '̂̂ ^^^ c ^ '̂̂ ^ and 
n ^ i ^^^^ is the kernel of x -> V^^^{x), which of course consists solely of the identity 
element of (!5. Using Brouwer's invariance of domain theorem and results on the theory 
of dimension from the book by Menger [1928], von Neumann showed that /XQ exists so 
that .̂ ^^^ = .̂ ^^o) for ^n /x ^ /XQ. Thus ^^^^^ is also the kernel of x ^ V^'^Hx) and 
X -^ V^^^\x) is consequently faithful.^^ 

As the first affirmative solution to Hilbert's fifth problem for an extensive class of groups, 
von Neumann's paper inspired further work on it and therewith on the theory of topological 
groups, eventuating, in the early 1950's, in a definitive resolution for both abstract groups 
and transformation groups. See in this connection the account by Skljarenko [1971]. 

Regarding the impact of Weyl's work on the development of harmonic analysis on 
groups - the third and last line of development mentioned at the beginning of this sec
tion - little needs to be said. Thanks to Haar's work, the Peter-Weyl paper could be seen as 
establishing a Fourier type analysis on compact groups and, of course, suggesting the pos
sibility of an analogous theory for locally compact groups since locally compact groups 
possess a Haar integral. As Gross has written in his essay on the evolution of harmonic 
analysis [1978, p. 533]: "Modern harmonic analysis begins in the 1920's The date 

^̂  A simpler proof based on von Neumann's idea of considering a descending chain of kernels can be given; see, 
e.g., [Brocker and Dieck, 1985, p. 136]. 
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of birth is 1927, and the official birth certificate is the remarkable paper . . . by Peter and 
Weyl". An idea of the theory and the importance to its development of diverse aspects of 
Weyl's work can be obtained from Gross' essay and from those of Mackey [1992]. 

By way of conclusion I should mention that Pontriagin, L.S. (1908-1988), who went 
on to compose a standard reference on topological groups [1954], was among the first 
mathematicians to contribute to the research problems (l)-(3) generated by Weyl's work. 
In the brief period 1934-1935 he made important contributions to Cartan's problem of 
calculating Betti numbers for simple groups; and, inspired by von Neumann's paper, he 
solved Hubert's problem for locally compact abelian groups and also developed for these 
groups his duality theory by using the fact that the character group associated to such a 
group is compact in a suitable topology so that the Peter-Weyl theory applies. 
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1. Introduction 

In his letter of invitation to contribute to this handbook of the History of Topology, Pro
fessor James asked us to discuss the role of general topology in other areas of topology. 
So this paper is not a paper on the history of general topology, it is a paper on the history 
of its interactions with other fields of mathematics. Of the many possibilities, we decided 
to report on the one hand on the genesis of general topology and on the other hand on 
infinite-dimensional topology and set theoretic topology.^ For a much more comprehen
sive description of (parts of) the history of general topology, we refer the reader to [15]. 

The primary goal in general topology, also sometimes called point set topology, is the 
investigation and comparison of different classes of topological spaces. This primary goal 
continues to yield interesting problems and results, which derive their significance from 
their relevance with respect to this primary goal and from the need of applications. In 
the history of general topology we distinguish three periods. The first period is the pre
history of the subject. It led to the work of Hausdorff, Brouwer, Urysohn, Menger and 
Alexandroff. The prehistory resulted in a definition of general topology, but it left many 
questions unanswered. The second period, roughly from the 1920's until the 1960's was 
general topology's golden age. Many fundamental theorems were proved. Many of the 
results from that period can be viewed as a necessary consequence of the genesis of the 
subject. However, much work from the golden age was also an investment in the future, 
an investment that started to yield fruit in the third period lasting from the 1960's until the 
present. That is why we will call this period the period of harvesting, 

^ These two research areas are famihar to us. Other possibihties to report on could have been: Topological 
Dynamics, Theoretical Computer Science, Topological Groups, Topological Games, Categorical Topology, Di
mension Theory, Topological Algebra, Descriptive Set Theory, etc. 
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In this paper we concentrate on the first and the last period: the prehistory and on the 
period of harvesting. In Section 2, which deals with the prehistory, we describe in partic
ular the historical background of the concept of an abstract topological space. We discuss 
the contributions of Georg Cantor, Maurice Frechet and Fehx Hausdorff. That discussion 
is rather informal; it reflects the informal style of that particular period in history. Because 
a complete description of that work is out of the question, we concentrate in particular 
on the background and the genesis of some crucial topological notions. Although we re
peatedly went back to the original texts, we also relied heavily on secondary sources. We 
would like to mention Purkert and Ilgauds [145] and Dauben [53] with respect to Cantor, 
Taylor [170] for information on Frechet, and Scholz [156] concerning Hausdorff. We also 
used Moore [136] and Monna [135] with appreciation.^ 

Sections 4 and 5 of the paper are devoted to the period of harvesting. In that period gen
eral topology rather unexpectedly succeeded in solving several difficult problems outside 
its own area of research, in functional analysis and in geometric and algebraic topology. 
Also here a survey of all significant results is impossible. There were in that period at least 
two major developments in general topology that revolutionized the field: the creations of 
infinite-dimensional topology and set theoretic topology? It was mainly due to the efforts 
of Dick Anderson and Mary Ellen Rudin that these fields have played such a dominant role 
in general topology ever since. 

There is a well-known pattern that occurs often in mathematics. An established part 
of mathematics generates nontrivial questions and possible ways to answer these questions 
that are new, but of little immediate significance. Research in the area is essentially pursued 
for its own sake. However, if the mathematics is good, after a longer or shorter period, the 
theories involved significantly contribute to solve external problems. Hilbert [89] wrote: 

The final test of every new mathematical theory is its success in answering pre-existent 
questions that the theory was not designed to answer. By their fruits ye shall know them 
- that applies also to theories. 

And indeed, there is no doubt that the most convincing test for the value of a theory is its 
external significance.^ We will show that the genesis and further development of general 
topology offer many examples that illustrate this pattern. We believe, frankly, that research 
in general topology is almost exclusively driven by two things: the existence of difficult, 
challenging problems, and the beauty of many of the results. Of course, not everything that 
was and is done in general topology is equally important, as is the case in any other field of 
mathematics. It is, for example, relatively easy to define variations of the axiomatic bases 
of the various types of spaces and, as in other fields, it is not always easy to say in advance 
whether certain lines of research are worth pursuing. Yet, most of the areas of research in 

^ Manheim wrote [123] the first book on the history of general topology and certainly at the time it was a useful 
contribution. He restricted himself to what we call the prehistory of the field. 
^ Also shape theory was created by Borsuk, see, e.g., [33], but this field was much more motivated from algebraic 
and geometric topology than infinite-dimensional and set-theoretic topology. 
^ "Wherefore by their fruits ye shall know them", St. Matthew 7:20. 
^ Hallett [83]: It may take a long time before the external significance of a theory becomes clear. For example, 
when the Greeks were pursuing mathematics entirely for its own sake, independent of applications, they devel
oped an elaborate theory of conic sections. Only many centuries later Kepler applied this theory to describe the 
orbits of the planets. External significance is a sufficient condition for quality, it proves the value of a theory af
terwards. Obviously, a theory may generate and solve such interesting problems that even without definite proof 
through external significance, the theory should be considered valuable (Koetsier [107, p. 171]). 
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general topology represent good mathematics. The two examples of infinite-dimensional 
topology and set theoretic topology illustrate this. 

2. The prehistory of general topology 

2.1. Developments in 19-th century analysis 

2.1.1. Weierstrassian analysis. Cauchy played a major role in the first revolution of 
rigour, that had turned eighteenth century calculus from a collection of formal methods 
to solve problems, into a coherent deductive theory based upon definitions of the funda
mental concepts of convergence, continuity, the derivative and the integral in terms of the 
notion of limit (Grabiner [82]). Yet, after Cauchy, a further development and refinement 
of concepts was inevitable. Cauchy primarily used his new conceptual apparatus to give a 
solid foundation of existing analysis and in his mathematics a function is still always asso
ciated with a formula. In the second half of the nineteenth century the conceptual apparatus 
itself became the object of investigation. This happened in combination with a much more 
general concept of function: a function became, in principle, a completely arbitrary corre
spondence between numbers. In particular the discovery that discontinuous functions can 
be expressed by means of Fourier series - dating from the beginning of the 19-th century 
- contributed considerably to this change. For example, in 1854, in his "Habilitationss-
chrift", Riemann studied the problem of the representation by means of Fourier series of 
as large a class of arbitrary functions as possible. This automatically led to the problem 
of the integrability of highly discontinuous functions. Riemann discovered that a function 
could possess an infinite number of points of discontinuity in any interval and still be inte-
grable (in the sense of Cauchy-Riemann). It became clear that such highly discontinuous 
functions could be studied and research partially shifted from the investigation of functions 
defined by a particular formula or classes of formulas to the investigation on a much more 
general level: abstracting from particular examples that illustrate those relations, the re
lations themselves between notions like real number, function, series, convergence, limit, 
continuity, differentiability, integrability became subject of investigation. 

From this perspective Cauchy's work showed weaknesses and a second revolution of 
rigour took place in analysis, that is associated with the name of Weierstrass. It became 
clear that Cauchy had not sufficiently distinguished between, for example, uniform conver
gence and non-uniform convergence. It also became clear that he had, essentially, taken the 
real numbers and their properties, for example their completeness, for granted. A proof of a 
theorem like "A real function that is continuous in a closed and bounded interval attains its 
maximum value", which we owe to Weierstrass, would have been out of place in Cauchy's 
work^ and the same holds for more fundamental theorems like the Bolzano-Weierstrass 
Theorem, actually due to Weierstrass alone: "Every infinite bounded subset of R'̂  has a 
limit point".^ This theorem was stated for n = 2 by Weierstrass in a course of lectures 
in 1865. In 1874 he gave a general proof (Moore [136, p. 17]). The theorem is necessary 
to prove the existence of limits, something that Cauchy had also, at heart, still taken for 
granted. 

" Cauchy's well-known proof of the intermediate value theorem is in the context of Cauchy's work rather ex
ceptional. But also in this case the first completely satisfactory proof was given by Heine [87]. 
^ As far as we know the notion of limit point or accumulation point was first used by Weierstrass. 
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2.1.2. Volterra, AscolL As early as 1883^ Volterra had the idea to create a theory of func-
tionals,^ or real-valued "functions of lines", as he called the field. Volterra wrote several 
papers on the subject. ̂ ^ The fines are all real-valued functions defined on some interval 
[a,b]. These functions are viewed as elements of a set for which notions like neighbour
hood and limit of a sequence can be defined. Volten'a gave definitions for the continuity 
and the derivative of a function of lines and he tried to build up a line-function theory anal
ogous to Riemann's theory of complex functions. These attempts were not motivated by 
their immediate significance in solving problems in the calculus of variations. Hadamard 
wrote about Volterra's motivation: 

Why was the great Italian geometer led to operate on funcdons as the infinitesimal cal
culus operated on numbers [...]? Only because he realised that this was a harmonious 
way to complete the architecture of the mathematical building. ̂  ^ 

Weierstrass' teaching was influential also in Italy. In 1884 Giulio Ascofi (1843-1896) ex
tended the Bolzano-Weierstrass Theorem to sets of functions as follows. He studied a set 
T of uniformly bounded functions on [a,b]. In order to prove that a sequence of functions 
{fn} in ^ possesses a convergent subsequence {g„}, he needed the assumption that the 
set T is equicontinuous. The result is known as Ascoli's Theorem. Equicontinuity of JT 
means then that for every e > 0, there exists a 5 > 0, such that for all / G F and for 
all |x — }̂ | < 8, we have \f{x) — f{y)\ < s. The proof-idea is that a subsequence [g[^) 
of {fn} is chosen, such that {g[^{a)} converges. Then a subsequence [g'^] is chosen from 
{g[^] such that [g'l^{b)] converges. Then a subsequence [g['^] is chosen from {g'^] such that 
{gn{{a + b)/2)] converges. Continuing in this way a sequence of converging sequences 
is generated that correspond to the elements of a set that is dense in [a,b]. The "diagonal 
sequence" then does the job (Moore [136, p. 81]). 

2.1.3. The Dirichlet-principle and the theorem of Ascoli-Arzela. The Italian attempts 
to extend results from Weierstrass' real analysis to sets of functions and real functions 
defined on such sets, can certainly be understood as "a harmonious way to complete the 
architecture of the mathematical building". Yet there were also other reasons. An example 
is Dirichlet's principle. In 1856-1857 Dirichlet lectured on potential theory in Gottingen. 
Modelling conductors, he considered a part Q of R-̂ , bounded by a surface S on which a 
continuous function is defined and dealt with the problem of the existence of a function u 
on Q that equals f on S and satisfies Au{x,y, z) = 0. In order to solve the problem he 
considered the integral 

u=,n^\\m\'"' LLva^ \dyj \dz 
dV, 

on Q, which obviously is non-negative for all functions u considered. He concluded that 
there must be at least one function w on i? for which the integral reaches a minimum value. 
One can show that the minimizing function satisfies Au(x,y,z) = 0 and Dirichlet thought 

^ According to Whittaker, see Monna [135, p. 108]. 
^ The term functional was introduced by Hadamard in 1903 (Monna [135, p. 108]). 
10 Atti della Reale Accademia dei Lincei (4) 3 (1887), 97-105, 141-146, 153-158 = Opere matematiche 1, 
294-314, and other papers of the same and later years. We have not seen these papers. 
11 Quoted by Siegmund-Schultze [163, p. 377]. 
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he had solved the problem (Monna [135, pp. 27-30]). In 1871 Heine criticised Dirichlet 
for accepting without proof the existence of a minimizing function (Monna [135, p. 41]). 
And indeed this method, which is sometimes called Dirichlet's principle, needs further 
justification, because the existence of a greater lower bound for the values of the integral 
does not necessarily imply that there exists a function that corresponds to that greater lower 
bound. In a paper from 1889 by Cesare Arzela [14] the author refers to Volterra and his 
"functions that are dependent on fines" ("funzioni dipendenti dalle linee") and writes that 
continuity for such functions had been defined but that the existence of maxima and minima 
still needed investigation. Expressing the hope that his work will lead to a justification 
of the "Principio di Riemann-Dirichlet" he proceeded to prove what is nowadays usually 
called the Theorem of Ascoli-Arzela. First Arzela generalized Ascoli's theorem from 1884 
and proved that an equicontinuous set J^ of uniformly bounded functions on [a, b] has a 
limit-function. By definition a limit-function / of J^ is a function that has the property that 
for every 6: > 0, there are infinitely many functions ^ in ^ for which, for all x, 

f(x)-£ < g(x) < f(x) + e. 

Then Arzela turned to continuous real-valued functionals defined on such an equicontinu
ous set J^ of functions - something which Ascoli had not done - and showed that, if the 
set J^ is closed, i.e. contains all its limit-functions, the lower bound of the set of values of 
the functional, the upper bound and all values in between are taken. 

In 1896 Arzela published a paper in which he applied his results to the Dirichlet prin
ciple. He succeeded to prove it only under certain extra conditions (Monna [135, p. 112]). 
Nowadays the fundamental Ascoli-Arzela Theorem in analysis is phrased in terms of com
pactness, a term introduced by Frechet in 1904. However, in order to understand the back
ground of the ideas of Frechet, it is necessary to describe the birth of transfinite set theory 
first. 

2.2. Cantor 

2.2.1. From Fourier series to derived sets and transfinite counting. Georg Cantor studied 
in Berlin under Kummer, Kronecker and Weierstrass. In 1869 he became a Privatdozent 
at the University of Halle. His doctoral thesis and his Habilitationsschrift were on number 
theory, but soon Cantor turned to analysis. Edward Heine, one of his colleagues at the 
University of Halle, had suggested him to study the problem of the uniqueness of the 
representation of a function by means of a trigonometric series. In the years 1870 through 
1872 Cantor pubfished a series of papers on that matter. In 1870 he published a proof of 
the theorem saying that if 

oo 

-<̂ 0 + y^((^n sin nx -\- bn cos nx) 
2 

n=\ 

converges to f{x) for all x on (0, 27r), /(JC) cannot be represented by another trigono
metric series converging to / (x) for all x on (0, 27r). In 1871 he improved the proof and, 
moreover, showed that the representation remained unique if the requirement of conver
gence or the convergence io f{x) would be dropped for a finite set of exceptional points. 
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Soon Cantor's main interest moved from trigonometric series to exceptional sets consisting 
of infinitely many points. It was this problem that led to the theory of transfinite sets and 
at the same time to a number of topological results. Cantor realized that the proof of the 
theorem could be easily modified to hold if the infinite exceptional set contained a finite 
number of limit points and that it could even be proved if it contained an infinite number 
of hmit points, provided the set of limit points itself possessed at most a finite number of 
limit points. The argument was easily extended to higher levels of sets of Hmit points of 
sets of limit points. However, how could one describe such complex subsets of the contin
uum? This question led Cantor, in fact, to a definition of the real number system, which 
was independent of those of Weierstrass, Meray, Heine and Dedekind that were also given 
in that period. Cantor [38] started with the set of rational numbers, which he called A. He 
considered the set of all Cauchy sequences of rational numbers (as they are now called -
Cantor himself called them fundamental sequences) and defined what we would now call 
an equivalence relation on that set. The set of equivalence classes is called B. The ordering 
and the elementary operations are then extended from A to the union of A and B. Cantor 
now repeats the construction: In precisely the same way by considering Cauchy sequences 
in A U 5 a set C is generated, then sequences in A U 5 U C generate a set D, etc. In this way 
after X steps a set L is reached whose elements Cantor called "numbers of type A". Cantor 
was aware of the fact that he could identify A with a subset of B and he also knew that 
B, C, D, etc. are isomorphic (although he does not use that terminology), but he avoided 
the identification. He needed the hierarchy of number sets to identify point sets on a line. 
In order to do that he first introduced the notion "derived set" of a point set on a line. The 
first derived set P^ of a point set P is by definition the set of all limit points of P and 
recursively: the derived set P^ of a set P is the first derived set of P^~^. Cantor then called 
P a set of type y, iff the v-th derivative P^ is finite. The existence of such sets can now 
be seen by using the above defined hierarchy of number sets, because if we take one point 
on the line whose coordinate is a number of type v, we know that this number represents 
a Cauchy sequence of numbers of type v — 1, while those numbers all represent Cauchy 
sequences of numbers of type v — 2, etc. If in this way, we go all the way back to the 
rational numbers, we wind up on the line with a point set of type v. 

Applying this new apparatus Cantor proved the uniqueness theorem for trigonometric 
series for exceptional sets of type v where v is an arbitrary natural number. In the same pa
per he wrote with respect to the hierarchy of number systems defined by means of Cauchy 
sequences: 

[...] the nodon of number, in so far as it is developed here, carries within it the germ of 
a necessary and absolutely infinite extension. ̂ -̂  

Although he does not mention it in his paper he had at the time already extended that 
hierarchy beyond the finite levels. And indeed, the question whether there exist sets that 
are such that P^ is infinite for all finite v, arises naturally. We know that already in 1870 
Cantor was aware of the possibility to count beyond the finite (Purkert and Ilgauds [145, 
p. 39]).The idea of the transfinite ordinal numbers, was born in this context. 

2.2.2. The birth of the transfinite cardinals. In 1872 and 1873 the nature of the contin
uum intrigued Cantor more and more. In a letter to Dedekind, dated November 29,1873, he 

^̂  "[...] der Zahlenbegriff, soweit er hier entwickelt ist, den Keim zu einer in sich notwendigen und absolut 
unendlichen Erweiterung in sich tragt" (Cantor [40, p. 95]). 
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wrote that he had tried to find a one-one correspondence between the natural numbers and 
the real numbers, but that he had failed. Several days later the transfinite cardinal numbers 
were born; they still would have to go a long way, but the idea was there. On December 7 of 
the same year Cantor wrote to Dedekind that he had found the proof that the proposed one-
to-one correspondence does not exist. Cantor, who would later use the diagonal method, 
gave the following simple proof. Let ai, ^2, ̂ 3, ^4, etc. be the sequence of all real numbers. 
Consider an interval [p,q]. Find in the sequence the first two real numbers that represent 
an interval [p\,q\] inside [p,q]. Find then the first two real numbers that represent an 
interval [p2, qi] inside [p\, ^1], etc. This inevitably leads to a nested sequence of intervals 
with a non-empty intersection of points that do not occur in the sequence t^i, 02, ^3, ^4, etc. 
Cantor pubhshed the proof in 1874 (Cantor [40, pp. 115-118]) pointing out that the proof 
implied the existence of transcendental numbers. It is remarkable that at the time, Can
tor and Dedekind both considered these results as interesting but not of great importance 
(Purkert and Ilgauds [145, p. 45]). The next problem Cantor turned to was the question 
whether a 2-dimensional continuum could be mapped one-to-one on the real numbers. In 
1877 he found the answer: the unit square, yes, even the /t-dimensional unit cube can be 
mapped one-to-one on the interval [0, I]. The paper was pubhshed in 1878. Cantor imme
diately realised that the result created a problem for the traditional view that the number of 
dimensions of a continuum corresponded to the number of parameters needed to describe 
it. Here we have the beginning of dimension theory. A survey of its further history was 
given by Johnson [98, 99]. See also Koetsier and van Mill [108]. 

2.2.3. Transfinite set theory and topological notions. Those first results from the period 
1872-1878 gave Cantor the idea that the problem of the nature of the different kinds of 
point sets could be approached systematically. That is what he did in a famous series of six 
pubhcations under the title "About infinite linear pointmanifolds" ("Uber unendliche lin-
eare Punktmannigfaltigkeiten"), that appeared in the years 1879 through 1884. The papers 
wonderfully show how Cantor's theory gradually developed; they also show the emer
gence of several topological notions and results. Right from the start set theory and general 
topological notions have been intimately connected. A complete discussion of the six pub
lications goes beyond the purpose of this paper. We will mention a few results. 

In the first paper Cantor distinguishes point sets of the first kind - the n-th derivative is 
empty for a finite n - and points sets of the second kind - by definition those that are not 
of the first kind. The notion of "density in an interval" is introduced and it is shown that 
sets of the first kind are never dense in an interval. Cantor also shows that all sets of the 
first kind and also some but not all of the second kind are countable. In the second paper 
Cantor introduces the sequence: P^, poo+i ^ poo+2^ ^^^^ where P^ refers to the y-th 
derivative of a set P. The fourth paper contains a number of topological results. He calls a 
set P of M" "isolated" if it contains none of its limit-points. He proves: "Every isolated set 
in R" is at most countable" and some related results. 

In the fifth paper the transfinite ordinal numbers, viewed as well-ordered sets, are "con
structed", and denoted in the now standard way: (O,CL> -\- I,... ,co - co,... etc. The ordinal 
numbers are related to the cardinal numbers by means of the notion of number class. The 
theory developed in this way generated two fundamental problems: the need to prove that 
every set can be well-ordered (this would guarantee that all cardinal numbers could be 
reached by means of ordinal numbers) and the continuum hypothesis. The continuum hy
pothesis is in the last sentence of the fifth paper. In this text from 1878 Cantor writes that 
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his investigations point at the conclusion that among the infinite "Hnear manifolds", i.e. 
the subsets of R, there would occur only two cardinal numbers. He added: "we postpone a 
precise investigation to a later occasion" (Cantor [40, p. 133]). 

In this fifth paper Cantor also discusses the question when a subset of E" should be 
called a "continuum". In order to answer that question he defines the notions of a perfect 
point set and a connected point set. h perfect point set is by definition equal to its derivative. 
A set T is by definition connected if for any two points t and t' of T and for any e > 0, 
there exists a finite number of points t\J2^ - • • ^hi of T in such a way that all distances 
tti, tit2, t2t3, . . . , tn-\tn, tnt' are all smaller than e. A subset of W then is defined as a 
continuum iff it is a perfect, connected set (Cantor [40, p. 194]). In a note Cantor gave the 
famous example of a set that is perfect and at the same time dense in no interval: 

C\ C2 Co, 

J + ^ + :^ -\-' •'' Ci £ {0,2} for every i 

The sixth paper contains a number of topological results on point sets in W^, which 
Cantor undoubtedly obtained while working towards a proof of the continuum hypothesis. 
Two examples are: "A perfect set is not countable", and "If a set is not countable, it can be 
split into a perfect set and a countable set". 

2.2.4. The reception of set theory. After a period in which he hardly wrote anything 
Cantor pubhshed in 1895 and 1897 in two parts his last important paper on set theory: 
"Contributions to the foundation of transfinite set theory" ("Beitrage zur Begrlindung der 
transfiniten Mengenlehre"). In this paper, primarily devoted to "general" set theory, ̂ ^ Can
tor's theory got its final form. At the same time the appreciation for set theory among 
mathematicians was growing slowly. Right from the start Cantor's set theory had been 
met by sceptical reactions. In particular, Kronecker was very critical. However, significant 
external applications made many prominent mathematicians understand the value of set 
theory. In 1872 Heine, Cantor's colleague in Halle, had proved that a real-valued func
tion that is continuous on an interval [a, b] of M is uniformly continuous. The proof runs 
roughly as follows. Using the continuity, Heine first aims at constructing for all small e > 0 
a monotonously increasing sequence {x/} with a = x\ for which 

\f(xi^i)-f(xi)\ = 3s 

and for all x with xi ^ x ^ x/4-1 ^ b, one has 

\f(x)-fixi)\^3s. 

If the sequence cannot be constructed (because the function varies less than 36:) or the con
struction stops after a finite number of steps because in the remaining interval the function 
varies less than 3^, we are done. If the sequence is infinite, it converges to a number X in 
the interval. Then there exists also an r] for which for all x with X — TJ^X^X^Q have 

\f(x)-f(X)\^2e. 

^•^ Zermelo wrote: "viele Hauptsatze der 'allgemeinen' Mengenlehre finden erst hier ihre klassische Begriindung" 
(Cantor [40, p. 351]). 
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This, however, contradicts the fact that in the interval [X - r],X] there are infinitely many 
points of the sequence {xt} for which l/fe-^i) — / (x / ) | =3s. 

In his 1894 doctoral thesis Emile Borel (1871-1956) appUed Cantorian set theory to 
problems of analytic continuation in the theory of functions of a complex variable. It was 
undoubtedly this work which put him on the road to his later contributions to measure 
theory. However, one of his proofs involved "a theorem interesting in itself [...]: If one 
has an infinity of sub-intervals on a fine (that is a closed interval) such that every point 
of the line is interior to at least one of them, a finite number of intervals can effectively 
be determined having the same property" (Quoted and translated by Hawkins; Grattan-
Guinness [69, p. 175]). We have here the Heine-Borel Covering Theorem. Borel's proof 
uses Cantor's transfinite ordinals. He considers a transfinite sequence {{ax, bx): X < a} of 
open intervals that covers the interval [a, b] from the left to the right and then by transfinite 
induction on a proves that the collection can be reduced to a finite collection. Hallett [83] 
discussed this proof an argued that, although the Heine-Borel Theorem was soon proved 
without the use of transfinite numbers, Borel's proof still counts as one of the first applica
tions of transfinite ordinal numbers outside of set theory. Soon other applications followed. 
Hurwitz gave an invited lecture at an international congress of mathematicians in Zurich in 
1897 on the development of the general theory of analytical functions in which he summa
rized Cantor's theory of transfinite ordinal numbers and subsequently applied it to classify 
analytical functions on the basis of their sets of singular points. Set theoretical methods had 
arrived in a classical discipline like the theory of complex functions. And both the problem 
of the Continuum Hypothesis and the Well-Ordering Theorem occur in Hilbert's famous 
list of problems he considered in 1900 to be the most important for mathematical research 
in the twentieth century. 

2.3. Maurice Frechet's ''Analyse Generale'' 

2.3.1. Tables, chairs, and beer mugs: another revolution of rigour. In the history of anal
ysis one distinguishes often the "first revolution of rigour", brought about by Cauchy and 
the "second revolution of rigour", brought about by Weierstrass. The systematic introduc
tion of the axiomatic method in mathematics (in combination with the language of set 
theory and first-order predicate logic) could, undoubtedly, also be characterized as a rev
olution of rigour. There is a famous story told by Constance Reid in her biography of 
Hilbert: 

In his docent days Hilbert had attended a lecture in Halle by Hermann Wiener on the 
foundations and structure of geometry. In the railway station in Berhn on his way back 
to Konigsberg, under influence of Wiener's abstract point of view in dealing with geo
metric entities, he had remarked thoughtfully to his companions: 'One must be able to 
say at all times - instead of points, straight lines and planes - tables, chairs, and beer 
mugs' (Reid[146, p. 57]). 

In an appendix to the book Weyl writes that according to Blumenthal it must have been 
1891 and Wiener's paper was on the role of Desargues's and Pappus's theorems (Reid [146, 
p. 264]). Hilbert's remark contains in a nutshell an important aspect of the abstract, ax
iomatic point of view: the theory becomes independent of its intended model; whatever 
names are used for the undefined terms, the axioms completely determine the way in which 



208 T. Koetsier and J. van Mill 

these terms are related. In Hilbert's "Foundations of Geometry" ("Grundlagen der Geome-
trie") of 1899 this point of view is applied to geometry. For many mathematicians Hilbert's 
book represented the future; after more than 2000 years Euclid had been dethroned. Con
sequently, in the first decade of the twentieth century the axiomatic method was very much 
in the air. In 1904 Zermelo published a proof of the Well-Ordering Theorem (Moore [136, 
p. 159]). The proof contains the first explicit statement of what was later called the Axiom 
of Choice. The reactions to the paper were such that Zermelo found it necessary to secure 
the proof even further. The result was Zermelo's axiomatization of set theory (Moore [136, 
p. 157]).i4 

The axiomatic method is, on the one hand, a method by means of which an already 
existing theory can be given its final form. However, the axiomatic method is also a power
ful research method. Its basic rule is: "The occurrence of analogy between different areas 
points at the existence of a more general structure that should be defined expUcitly by 
means of a suitable set of axioms". In France, Borel used the axiomatic method, Lebesgue 
did and also Frechet, who applied it on a problem suggested to him by Hadamard, whose 
student he was. At the first International Congress of Mathematicians in 1897 Hadamard 
lectured briefly on possible future applications of set theory. He remarked that it would be 
worthwhile to study sets composed of functions. Such sets might have properties different 
from sets of numbers or points in space. He said: 

But it is primarily in the theory of paitial differential equations of mathematical physics 
that research of this kind will play, without any doubt, a fundamental role^^ 

and one of the examples that he impHcitly referred to was Dirichlet's principle. 

2.3.2. The genesis of Frechet's thesis. In 1904 and 1905 Frechet published a series of 
short papers on "abstract sets" or "abstract classes" in the "Comptes Rendus", that layed 
the groundwork of his thesis: "Sur quelques points du calcul fonctionnel", Rendiconti del 
Circolo Matematica di Palermo, 1906, pp. 1-74. That thesis is one of Frechet's most im
portant contributions to mathematics. We will concentrate on the early papers in order to 
get an idea of the genesis of the thesis. In his first paper [74] the analogy between Weier-
strass' theorem: "A real function continuous in a closed and bounded interval attains its 
maximum value" and the Dirichlet principle is given as the motivation to develop a general 
theory of continuous real functions (Frechet said "operations fonctionnelles") on arbitrary 
sets that encompasses both theorems. Frechet did not mention the Italians and it is possible 
that he only heard about their work in 1905. In his first paper Frechet introduced an abstract 
axiomatic theory of limits. The theory refers to a set or class C of arbitrary elements and 
concerns infinite sequences of elements Ai ,A2,A3, . . .ofC that may or may not possess 
a hmit element B'mC. Frechet's axioms are 

(i) If a sequence has a limit B, then all infinite subsequences have the same limit, and 
(ii) If A/ = A for all /, then the hmit of the sequence equals A. 

In terms of this axiomatically defined notion of limit Frechet can then define the notions of 
a closed subset of C, a compact subset of C and of a continuous real function on a subset 
ofC. 

^̂  So Zermelo's primary motivation was not the occurrence of the antinomies. By the way, the so-called Russell's 
paradox was also found by Zermelo, several years before Russell did so (Moore [136, p. 89]). 
^̂  "Mais c'est principalement dans la theorie des equations aux derivees partielles de la physique mathematique 
que les etudes de cette espece joueraient, sans nul doute, un role fondamental" (quoted by Taylor [170, p. 259]). 
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(iii) A subset £ of C is by definition closed if every limit element of a sequence of 
elements of E belongs to E. 

(iv) A subset £ of C is compact if for all sequences En consisting of non-empty closed 
subsets of C, that are such that £"/+! is a subset of Ei for all /, the intersection of 
all the En's is non-empty. 

(v) The continuity of a function F on C is also defined in terms of sequences: F is 
continuous on a subset £" of C if for all sequences [Ai] in E that have a hmit B in 
E, the sequence {F(£"/)} has the limit FiB). 

Frechet then, without further proof, phrases the generalisation of Weierstrass' theorem as 
follows: "If £• is a closed and compact set in C and U isa. continuous functional operation 
on C, then the values of U are bounded and U assumes an absolute maximum value at 
some point A of £." In his next note [77] in the "Comptes Rendus" Frechet answers in 
the negative the question whether the derived set of a set E is necessarily closed. The 
counterexample that he gives consists of all real polynomials in the set of all real functions 
on an interval; a function / is the limit of a sequence of polynomials if there is pointwise 
convergence. This was a problem for Frechet, because he felt that in order to get interesting 
generalisations of existing theorems he would need the property that the derivative of a 
set is always closed. In the third note [76] the new ideas are applied to the space £"* of 
infinitely many dimensions, the elements of which are all real sequences {«/}. Sequence A 
is the limit of a sequence {A/} of sequences iff for all p the sequence of p-th coordinates 
of the Ai converges to the p-th coordinate of A.̂ ^ A set of points A in E* is bounded iff 
there are fixed numbers M/ such that for all points in the set for all / the absolute value 
of the i-ih coordinate is smaller than M/. Frechet defines a condensation point ("point 
de condensation") of a set A as a Umit-point that remains a limit-point of the set if one 
removes in an arbitrary way a countable infinite number of points from the set. Frechet then 
states, without actually giving proofs, that he succeeded in proving several theorems. Three 
examples are: "The necessary and sufficient condition for a subset of £"* to be compact is 
that it is bounded", "The derived set of a subset of £"* is closed" and "Every uncountable 
and bounded subset of E* possesses at least one condensation point". 

The desire to develop a general theory in which the derived set of a set E is necessarily 
closed, continued to bother Frechet. There exists an interesting letter (probably from 1904) 
concerning this point from Hadamard to Frechet in which Hadamard suggests the use of 
an abstract notion of nearness or neighbourhood ("voisinage") (quoted by Taylor [170, 
pp. 245-246]). Hadamard wrote: 

Would it be good if you started, in general, from the notion of neighbourhood and not 
from that of Hmit? ̂ ^ 

In [75] Frechet had decided to introduce a generalised notion of "voisinage", assuming that 
in the classes of arbitrary elements to each couple of arbitrary elements there corresponds 
a real number (A, B) for which 

(i) ( A , B ) ^ 0 , 
(ii) (A,B) = 0 iff A = 5 , 

(iii) If (A, C) and (B, C) are infinitely small, then so (A, B). 

^" So Frechet considers the space that we now call s, see Section 4. 
^̂  "Feriez vous bien de partir, en general, de la notion de voisinage et non de celle de limite? [...]" (Taylor [170, 
p. 246]). 
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(The last requirement means: if (A, C) and (B, C) are sequences converging to zero, then 
so (A, B).) Frechet defines the notion of limit in terms of this abstract notion of distance: 
[An] converges to A iff {An, A) converges to 0. Without proof Frechet states that always 
when the limit can be defined by means of a suitable "ecart": 1. Every derived set is closed, 
2. A functional operation that is continuous on a compact set is uniformly continuous. 
Frechet also refers to Ascoli and Arzela, remarking that these theorems and the ones in his 
earher notes can be seen as generalisations of the Italian work. 

2.3.3. Frechet's 1906 thesis. Frechet's 1906 thesis is based on the papers from the period 
1904-1905. We will only discuss the thesis very briefly. ̂ ^ In the thesis an abstract class 
with sequential limits that satisfy the two requirements from his first 1904 note is called 
"une classe (L)". We shall call them L(imit)-classes. In the second chapter of the first part 
of the thesis Frechet introduces an abstract notion of distance, which he calls "voisinage". 
An abstract set is "une classe (V)", or, as we will say, a V(oisinage)-class if there exists a 
real-valued binary function (A, B) on the set which satisfies: 

(i) ( A , ^ ) = = ( ^ , A ) > 0 , 
(ii) (A, 5) =Oiff A = i5, 

(iii) There exists a positive real function /(£) , defined for positive s, for which 

lim f{e) = 0, 
£->0 

such that, whenever (A, B) ^ e and (B, C) ^ £, then (A, C) ^ f(e). 
A V-class can be turned into an L-class by means of the definition: [An] converges to A 
iff {An, A) converges to 0. 

It is remarkable that at one point in the thesis Frechet replaces the third V-class axiom 
by a triangle inequaUty: 

(iii^) for all A, B, C we have (A, C) ^ (A, B) 4- (5, C). 
Here is what we nowadays call a metric space (following Hausdorff [84, p. 211]). It is 
called a "classe (£•)" by Frechet, because here he uses the term "ecart" instead of "voisi-
nage". For such ecart-classes or £"-classes Frechet proves the theorem: If a subset G of 
an E-class is such that every continuous functional operation on G is bounded on G and 
attains on G its least upper bound, then G is closed and compact. The E-class was actually 
introduced because Frechet could not prove this theorem for V-classes.^^ The thesis also 
contains a generalization of the Heine-Borel Covering Theorem: If £" is a closed and com
pact subset of a V-class then every countable covering Mof E contains a finite number of 
sets that also cover E. In the second part of his thesis Frechet applies the abstract theory to 
concrete examples. 

2.4. Hausdorff's definition of a Hausdorff space 

2A.1. Hilbert. While Frechet was developing a theory of abstract spaces, others were 
doing similar things. Before Frechet started working on abstract spaces, Hilbert in 1902 
briefly wrote about the possibility to characterize the notion of manifold in an abstract 

^̂  For a more extensive discussion we refer to Taylor [170]. 
^̂  In 1908 Hahn succeeded in doing so and in 1917 Chittenden [47] turned it into a metrisation theorem. 
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way, while in 1906 in Hungary, independent of Frechet, Frigyes Riesz (1880-1956) also at
tempted to give as general as possible a characterization of the notion of space. In Hilbert's 
proposal the notion of neighbourhood is central. Hilbert wrote: 

The plane^^ is a system of things that are called points. Every point A determines cer
tain sub-systems of points to which the point itself belongs and that are called neigh
bourhoods of the point A. The points of a neighbourhood can always be mapped by 
means of a one-to-one correspondence on the points of a certain Jordan-area in the num
ber plane. The Jordan-area is called the image of that neighbourhood. Every Jordan-
area, that contains (the image of) A, and is contained in an image, is also image of 
a neighbourhood of A. If different images of a neighbourhood are given, then the re
sulting mapping of the two corresponding Jordan-areas on each other is continuous. If 
B is any point in a neighbourhood of A, this neighbourhood is also a neighbourhood 
of B. To any two neighbourhoods of A always corresponds such neighbourhood of A, 
that the two neighbourhoods have in common. When A and B are any two points of 
the plane, there exists always a neighbourhood of A that contains at the same time B. 
These requirements contain, it seems to me, for the case of two dimensions, the shaip 
definition of the notion that Riemann and Helmholtz denoted as "multiply extended 
manifold" and Lie as "number manifold", and on which they based their entire inves
tigations. They also offer the foundation for a rigourous axiomatic treatment of the 
analysis situs.-̂ ^ 

The quotation, which contains everything that Hilbert wrote about the subject, dates from 
1902, that is from before Frechet started his topological work. Hilbert never continued 
the line of research that the quotation suggested. He left the further "rigourous axiomatic 
treatment of the analysis situs" to others. The axioms define an abstract notion of space and 
the basic concept is the concept of neighbourhood. Some of the axioms only concern the 
set theoretic properties of neighbourhoods. The other properties of the neighbourhoods are, 
however, fixed by means of axioms concerning the (continuous) one-one correspondences 
that are postulated to exist between neighbourhoods and Jordan-areas in the number-plane. 

2.4.2. Riesz. Riesz' approach to the problem and also his motivation are quite different. 
In his 1907 paper (a German translation of a Hungarian paper that appeared in 1906) Riesz 
distinguishes our subjective experience of time and space from the mathematical continua 
by means of which we describe them. His goal is to give as general a characterisation as 
possible of mathematical continua and to show the precise relation between our subjec-

As will be clear later, Hilbert uses the notion of plane in a generalised sense. 20 

"Die Ebene ist ein System von Dingen, welche Punkte heiBen. Jeder Punkt A bestimmt gewisse Teilsys-
teme von Punkten, zu denen er selbst gehort und welche Umgebungen des Punktes A heiBen. Die Punkte einer 
Umgebung lassen sich stets umkehrbar eindeutig auf die Punkte eines gewissen Jordanschen Gebietes in der 
Zahlenebene abbilden. Das Jordansche Gebiet wird ein Bild jener Umgebung genannt. Jedes in einem Bilde en-
thaltene Jordansche Gebiet, innerhalb dessen der Punkt A liegt, ist wiederum ein Bild einer Umgebung von A. 
Liegen verschiedenen Bilde einer Umgebung vor, so ist die dadurch vermittelte umkehrbar eindeutige Transfor
mation der betreffenden Jordanschen Gebiete aufeinander eine stetige. Ist B irgendein Punkt in einer Umgebung 
von A, so ist diese Umgebung auch zugleich eine Umgebung von B. Zu irgend zwei Umgebungen eines Punktes 
A gibt es stets eine solche Umgebung des Punktes A, die beiden Umgebungen gemeinsam ist. Wenn A und B 
irgend zwei Punkte unserer Ebene sind, so gibt es stets eine Umgebung von A, die zugleich den Punkt B en-
thalt. Diese Forderungen enthalten, wie mir scheint, fur den Fall zweier Dimensionen die scharfe definition des 
Begriffes, den Riemann und Helmholtz als "mehrfach ausgedehnte Mannigfaltigkeit" und Lie als "Zahlenman-
nigfaltigkeit" bezeichneten und ihren gesamten Untersuchungen zugrunde legten. Auch bieten sie die Grundlage 
ftir eine strenge axiomatische Behandlung der Analysis situs." (Hilbert [88, pp. 165-166].) 
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tive experience and mathematical continua. In a footnote Riesz criticises the way in which 
philosophers have dealt with notions like continuous and discrete and he repeats Russell's 
remark about the followers of Hegel: "the Hegelian dictum (that everything discrete is 
also continuous and vice versa) has been tamely repeated by all his followers. But-as to 
what they meant by continuity and discreteness, they preserved a discrete and continuous 
silence; [...]" (Riesz [147]). The relation of our subjective experience of space and time 
and mathematical continua is described by Riesz as follows. Mathematical continua pos
sess certain properties of continuity, coherence and condensation. On the other hand, our 
subjective experience of time is discrete and consists of countable sequences of moments. 
Systems of subsets of a mathematical continuum can be interpreted as a physical contin
uum when subsets with common elements are interpreted as undistinguishable and subsets 
without common elements as distinguishable. Riesz [147, p. I l l ] is an interesting paper 
in which Riesz, who had read Frechet's work and appreciated it, developed a different 
theory of abstract spaces, based on the notion of "Verdichtungsstelle", i.e. "condensation 
point" or, as we will translate "limit point". In his theory Riesz succeeded in deriving the 
Bolzano-Weierstrass Theorem and the Heine-Borel Theorem. We will not discuss this pa
per. We will restrict ourselves to a shorter paper that was presented by Riesz in 1908 at 
the International Congress of Mathematicians in Rome. In that paper, "Stetigkeit und Ab-
strakte Mengenlehre" (Riesz [148]), concentrates on the characterisation of mathematical 
continua. We will briefly describe some of the ideas that Riesz describes in the paper. As 
we said, Riesz' basic notion is the notion of limit point (Verdichtungsstelle). Riesz did 
consider Frechet's restriction to limit points of countable sequences as too severe. That is, 
why in his theory limit points satisfy the following three axioms: 

(i) Each element that is a limit point of a subset M is also a limit point of every set 
containing M. 

(ii) When a subset is divided into two subsets, each limit point is a limit point of at 
least one of the subsets. 

(iii) A subset consisting of only one element does not have a limit point. 
A mathematical continuum is for Riesz, by definition, any set for which a notion of limit 
point is defined that satisfies these three axioms. However, in order to be able to develop 
some theory on the basis of the axioms Riesz is forced to add a fourth axiom: 

(iv) Every hmit point of a set is uniquely determined through the totality of its subsets 
for which it is a limit point. 

Riesz uses the examples of R \ {0} and M \ [0, 1], that exhibit as far as their Umit points 
are concerned precisely the same structure, to show that the four axioms are not enough to 
characterize properties of "continuity". That is why in his paper Riesz suggests to add the 
notion of "hnkage" (Verkettung). For any pair of subsets of a manifold it should be defined 
whether they are linked or not. Such a linkage structure must satisfy the following three 
axioms: 

(i) If subsets ^i and ^2 are linked, then every pair of sets that contain S\ and ^2 are 
also linked. 

(ii) If subsets S\ and ^2 are Hnked and S\ is spht into two subsets, at least one of the 
two is linked to S2. 

(iii) Two sets that each contain only one element cannot be linked. 
Although he believed that the notions of limit point and linkage could be used to develop 

an abstract theory of sets in the sense of Hadamard's proposal of 1897, Riesz himself did 
not continue this work. In later pubhcations Frechet used some of Riesz' ideas. 



By their fruits ye shall know them 213 

2.4.3. Hausdorjf, The different attempts to give an abstract definition of space culmi
nated in the work of Fehx Hausdorff (1868-1942). In 1912 Hausdorff, professor at the uni
versity of Bonn, taught a class on set theory. Chapter 6 of his notes^^ deals with "Point sets" 
("Punktmengen") and is called "Neighbourhoods" ("Umgebungen"). Hausdorff writes: 

Point sets on a straight line (linear), in the plane (planar), in space (spatial), in general 
in an n-dimensional space r = r^. A point is defined by a system of n real numbers 
(xi , JC2,.. •, JC;i) and vice versa, that we think as orthogonal coordinates. As distance 
of two points we define 

X-y = yjixi - yi)2 + (X2 - J2)^ + "- + {Xn~ yn)^ ^ 0. 

The neighbourhood Ux of a point JC is the collection of all points y for which x - y < p 
(p a positive number; the inner area of a "Sphere" with radius p). 

For the sake of illustration we will usually take the plane r = r2\ if the individ
ual numbers of dimensions cause deviations, we will especially emphasize them. The 
neighbourhoods have the following properties: 

(a) Every Ux contains x and is contained in r. 
(P) For two neighbourhoods of the same point L̂ jJ. 3 Ux or Ux 2 ^^ holds. 
(y) If y lies in Ux, then there also exists a neighbourhood Uy, that is contained in 

Ux (Ux 2 Uy). 
(8) If X ^ y, then there exist two neighbourhoods Ux, Uy without a common point: 

mux,Uy) = o). 
The following considerations are based initially only on these properties. They hold 
very generally, if r is a point set {JC}, if to the points JC coiTespond point sets Ux with 
these 4 properties. Such a system is, for example, the following: one defines as a neigh
bourhood of X the system of points where 

k i -3^i l < p . y2 = x2', 

a neighbourhood is then a horizontal segment (without endpoints) of length 2p. Or: one 
defines as a neighbourhood the system 

k i - J i l < P . \x2~y2\ < p . 

i.e. the inner area of a square with side-length 2p, whose centre is JC, etc.-^^ 

^^ Hausdorff, manuscript 1912b, par. 6, Archive Bonn University. 
^̂  "Punktmengen auf einer Geraden (linear), in der Ebene (ebene), im Raume (raumliche), allgemein in einem 
/i-dimensionalen Raume r = r„. Ein Punkt x ist durch ein System von /i reellen Zahlen (x\,X2, ... ,Xn) und 
umgekehrt definiert, die wir als rechtwinklige Coordinaten denken. Als Entfernung zweier Punkte definieren wir 
X -y = y/{x\ — yi)^ -I- (JC2 — 3̂ 2)̂  "I 1" i^n — yn)^ ^ 0- Unter einer Umgebung Ux desPunktesx verstehen 
wir den Inbegriff aller Punkte y fiir die x • y < p (p eine positive Zahl; Inner[e]s einer "Kugel" mit Radius p). Wir 
werden zur Veranschaulichung in der Regel die Ebene r = r2 nehmen; sollten die Einzelnen Dimensionenzahlen 
Abweichungen hervorrufen, so werden die besonders hervorgehoben werden. Die Umgebungen haben folgende 
Eigenschaften: (a) Jedes Ux enthalt x und ist in r enthalten. (^) Fiir zwei Umgebungen desselben Punktes ist 
Ux 2 Ux Oder Ux 5 U^. iy) Liegt y mUx, so giebt es auch eine Umgebung Uy, die in Ux enthalten ist Ux 2 
Uy). (8) Ist JC 7̂  y, so giebt es zwei Umgebungen Ux, Uy ohne gemeinsamen Punkt {9{Ux, Uy) = 0). Die fol-
genden Betrachtungen stiitzen sich zunachst nur auf diese Eigenschaften. Sie gelten sehr allgemein, wenn r eine 
Punktmenge [x] ist, wenn Punkten x Punktmengen Ux zugeordnet sind mit diesen 4 Eigenschaften. Ein solches 
System ist z. B. folgendes: man definiere als ein Umgebung von JC das System der Punkte, wo [JCJ — y\\ < p, 
y2 = JC2' ^iii^ Umgebung ist dann eine horizontale Strecke (ohne Randpunkte) von der Lange 2p. Oder: als 
Umgebung werde das System |jci — yil < p, |JC2 — y2l < P definiert, d.h. das Inner eines Quadrates von der 
Seitenlange 2p, dessen Mittelpunkt JC ist, u.s.w." 
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According to Scholz [156], Hausdorff was led to the four axioms in the spring or the sum
mer of 1912 by a logical analysis of the foundations of complex analysis. In this context 
it is remarkable that at the same time, Weyl was applying Hilbert's ideas from 1902 in his 
work his on Riemann surfaces (Weyl [188]). Scholz argues that both were independently 
influenced by Hilbert. In 1914 Hausdorff's "Grundzlige der Mengenlehre" appeared, one 
of the first textbooks on set theory. Above we saw how set theory was born from point set 
theory in R" and that Cantor's first papers show a mixture of point set theory and more 
abstract considerations. Hausdorff carefully distinguishes general set theory from point set 
theory. The first seven chapters of his book are devoted to general set theory. It is remark
able that he did not include Zermelo's axiomatization. In the first chapter, after mentioning 
the antinomies, he writes why not: 

E. Zermelo undertook the subsequently necessary attempt to limit the borderless pro
cess of set-creadon by suitable restrictions. Because so far these extremely shrewd in-
vesfigaUons can not yet claim to be finished and an introduction of the beginner in set 
theoiy in this way would be connected with great difficulties, we will permit here the 
naive notion of set, at the same time, however, we will in fact stick to the restrictions 
that cut off the road to that paradox.-̂ "̂  

In Chapter 7 of his book, Hausdorff addresses the question of the position of point set 
theory within the system of general set theory. Point set theory here means abstract point 
set theory. He briefly discusses three possible approaches to turn a set that is so far treated 
purely as a system of its elements without considering relations between the elements, into 
a space. His goal is obviously to define a very general notion of space that encompasses 
not only the M", but also Riemann surfaces, spaces of infinitely many dimensions and 
spaces the elements of which are curves or functions (Hausdorff [84, p. 211]). He gives 
two advantages of such a general notion: it simplifies theories considerably and it prevents 
us from illegitimately using intuition (die Anschauung). The first possibility is to base point 
set theory on the notion of the distance (Entfernung) of two elements, that is a function that 
associates with each pair of elements of a set a particular value. Hausdorff remarks that on 
the basis of the notion of distance the notion of a converging sequence of points and its hmit 
can be defined. Moreover, on the basis of the notion of distance, one can also associate with 
each point of a set subsets of the space called neighbourhoods of the point. 

However, one can also turn a set into a space by circumventing the notion of distance 
and starting from a function f{a\, a2, a^,... ,ak,...) which maps certain sequences of 
elements (the converging sequences) of the set M on elements of M (the hmits of the se
quences). Thirdly, one can also start with the notion of neighbourhood. Formally one then 
maps every element of a set M on certain subsets of M that are called the neighbourhoods 
of the element. Which of the three "spatial" notions one chooses as the most fundamental 
is for Hausdorff to a certain extent a matter of taste (Hausdorff [84, p. 211]). Neighbour
hoods and hmits can be defined in terms of distances. By means of neighbourhoods one 
can define limits, but in general no distances. By means of limits one can define neither 
neighbourhoods nor distances. Hausdorff writes; "Thus the distance theory seems to be 

"Den hiernach notwendigen Versuch, den ProzeB der Uferlosen Mengenbildung durch geeignete Forderungen 
einzuschranken, hat E. Zermelo unternommen. Da indessen diese auBerst scharfsinnigen Untersuchungen noch 
nicht als abgeschlossen gelten konnen und da eine Einfiihrung des Anfangers in die Mengenlehre auf diesem 
Wege mit groBen Schwierigkeiten verbunden sein diirfte, so wollen wir hier den naiven Mengenbegriff zulassen, 
dabei aber tatsachlich die Beschrankungen innehalten, die den Weg zu jenem Paradoxon abschneiden." (Haus
dorff [84, p. 2].) 
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the most special and the limit theory the most general; on the other hand, the limit theory 
creates immediately a relation with the countable (with sequences of elements), which the 
neighbourhood theory avoids." (Hausdorff [84, p. 211].) 

As a good teacher he now first gives an example. He defines metric spaces by means of 
the well-known three axioms. R" with the EucUdean distance is an example of a metric 
space. Hausdorff concentrates on the four properties of the spherical neighbourhoods that 
he had already given in his 1912 lectures. He writes: 

A topological space is a set E in which the elements (points) x are mapped on cer
tain subsets Ux, that we call neighbourhoods of x, in accordance with the following 
neighbourhood axioms [.. .]P 

He then gives the four axioms that occur already in his 1912 lectures and he shows that the 
spherical neighbourhoods in R" satisfy the axioms. 

Hausdorff s generalization of the notion of space represented a major contribution to the 
unification of mathematics. Geometry and analysis had been separate disciplines. Axiom-
atization ended that. Hausdorff succeeded in picking a set of axioms that was, on the one 
hand, general enough to handle abstract spaces and, on the other hand, restrictive enough 
to yield an interesting theory. He succeeded in giving a theory of topological and metric 
spaces that encompassed the previous results and generated many new notions and theo
rems. 

2.4.4. L.EJ. Brouwer. Above we sketched the genesis of the notion of topological space 
as it was finally defined by Hausdorff. His book was very influential. For years it was 
an important source for many mathematicians. Yet our story, which is so far restricted 
to the genesis of the notion of topological space, is very one-sided. In order to do some 
more justice to the actual development, the contributions of Brouwer must be mentioned. 
Brouwer's approach to general topology is totally different from Hausdorff's. Also their 
views of mathematics were completely different. Hausdorff was a great supporter of the 
axiomatic method. Brouwer rejected the axiomatic method and argued that mathematics 
ought to be founded in intuition.^^ 

In the first decade of this century Arthur Schoenflies had attempted to give a thorough 
set-theoretic foundation of topology.^^ In Schoenflies' work a central result is Jordan's 
Theorem: a closed Jordan curve, i.e. the one-to-one continuous image of a circle, divides 
the plane into two domains with the image as their common boundary. A domain is an open 
connected set. At certain points Schoenflies work is quite subtle. For example, he distin
guishes between simple closed curves and closed curves that are not simple by means of the 
notion of accessibility. By definition a point P on the boundary of a domain is accessible if 
it can be reached from an arbitrary point in the domain by a finite or an infinite polygonal 
path in the domain. A closed curve is here by definition a bounded closed point set that 
divides the plane into two domains with the curve as their common boundary (Schoen
flies [155, pp. 118-120]). Closed curves that are such that all their points are accessible 
from the two domains are called simple by Schoenflies. An important result that he proved 

•̂ ^ "Unter einem topologischen Raum verstehen wir eine Menge E, worin den elementen (Punkten) jc gewisse 
Teilmengen Ux zugeordnet sind, die wir Umgebungen von JC nennen, und zwar nach MaBgabe der folgenden 
Umgebungsaxiome [...]" (Hausdorff [84, p. 213]). 
^^ See also Koetsier and van Mill [108]. 
^̂  For a fuller treatment we refer to Johnson [98, 99]. 
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is the following: simple closed curves are closed Jordan curves. In his early work Brouwer 
rehed on Schoenflies' results. However, in the winter of 1908-1909 he discovered sud
denly that Schoenflies' results were not reUable. In [35], entitled "Zur Analysis Situs", 
he gave a series of devastating counterexamples. Brouwer does not criticise Schoenflies' 
theory of simple closed curves, but attacks his more general theory of closed curves. In 
the paper he gave the sensational example of a closed curve that splits the plane into three 
domains of which it is the common boundary. It is also the first example of an indecom
posable continuum. Schoenflies' general theory of closed curves and domains had to be 
rejected entirely. Soon Brouwer produced several other highly original papers. We will 
mention only two: ("Beweis der Invarianz der Dimensionenzahl", submitted in June 1910 
and published in 1911 (Brouwer [36]) and his paper [37]. The first paper marks, according 
to Freudenthal, the onset of a new period in topology. Although the paper is very short and 
merely contains a simple proof of the invariance of dimension, "it is in fact much more 
than this - the paradigm of an entirely new and highly promising method, now known 
as algebraic topology. It exhibits the ideas of simplicial mapping, barycentric extension, 
simphcial approximation, small modification, and, impUcitly, the mapping degree and its 
invariance under homotopic change, and the concept of homotopy class." (Freudenthal [68, 
p. 436]).-^^ In the second paper Brouwer proved the basic theorem on fixed points: every 
continuous transformation of the /i-simplex into itself possesses at least one fixed point. Al
though Brouwer's results were reached from a totally different philosophical position his 
results could be easily incorporated in and considerably enriched the axiomatic framework 
created by Hausdorff. This led to much further work. 

2.4.5. Functional analysis. Brouwer's work shows how problems in point set topology 
led to algebraic topology. We will, however, use the example of Brouwer's fixed point 
theorems to illustrate another way in which results from general topology penetrated other 
areas of mathematics. 

Between Hilbert's, Frechet's and Riesz' first attempts and the publication of Hausdorff's 
book the number of "sets with a spatial character", deviating from Euclidean space, had 
grown, and with it the potential value of abstract characterisations of the notion of space. 
For example, between 1904 and 1910 Hilbert had published his six famous "communica
tions" on the foundations of the theory of integral equations. The space i^ had gradually 
become the object of investigation. The proof of the isomorphism of £̂  and L^, the space of 
quadratic Lebesgue-integrable functions, led to the notion of Hilbert space. In 1910 Riesz 
introduced the normed Hnear function space L^. That work meant also the start of modern 
operator theory. ̂ ^ 

In his Lwow dissertation of 1920 Banach introduced the notion of a "Banach space" 
(the name is Frechet's). In the 1920's and 1930's the PoUsh school carefully appHed set-
theoretic methods to functional analysis and proved fundamental theorems like the Hahn-
Banach Theorem and the Banach Fixed-Point Theorem. With Banach's "Theorie des opera
tions Uneaires" of 1932 functional analysis was estabhshed as one of the central fields in 
modern analysis. Banach's student J.P. Schauder (Studia Mathematica 2, 1930, pp. 170-
179) and Schauder and J. Leray (Ann. de I'Ecole Normale Superieure 51,1934, pp. 45-78) 

^^ For a more extensive treatment of Brouwer's work in dimension theory we refer to Johnson [98, 99]. See also 
Koetsier and van Mill [108]. For Brouwer's topological work as a whole we refer to Freudenthal [68]. 
^^ For a more extensive survey of the history of functional analysis at the beginning of the century we refer to 
Siegmund-Schultze [163]. 
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carried over Brouwer's topological notions into infinite-dimensional spaces and general
ized his fixed point theorem in order to estabhsh the existence of solutions of nonUnear 
differential equations. This work was of great importance for the development of nonlinear 
functional analysis in the 1950's. 

3. Intermezzo: the golden age 

The next phase in the history of general topology, its golden age, lasted roughly from the 
1920's until the 1960's. Among the main themes in this period were dimension theory, 
paracompactness, compactifications and continuous selections. The important results and 
the way in which they are related can all be found in a number of classical textbooks (see 
below). About this phase we will be very brief. 

Dimension theory was fully developed (see Hurewicz and Wallman [94] for a beau
tiful survey of dimension theory until 1941). In the late 1940's and early 1950's para
compactness, introduced by Dieudonne [57], was the leading theme in general topology. 
Stone [168] proved that metrizable spaces are paracompact and Nagata, Smirnov and Bing 
published/proved their metrization theorems in [140, 164, 29], respectively. The work on 
compactifications in the 1950's culminated in the publication of the beautiful book [80] by 
Gillman and Jerison. Michael [128-130] developed his theory of continuous selections. For 
more information, see, e.g., Hu [92], Dugundji [65], Nagata [142,141], Engelking [71,72] 
and Arhangel'skii and Ponomarev [13]. 

We will turn now to the third period that we distinguish in the history of general topol
ogy: the period of harvesting. We will concentrate in Sections 4 and 5 on two major areas 
of research that developed out of the golden age, infinite-dimensional topology and set the
oretic topology, and show how these solved difficult problems outside of general topology. 

The style of Section 2 was rather informal, in keeping with the pioneering works of the 
area. In Sections 4 and 5 we attempt to describe some complex results from the front line 
of mathematics. In order to do so we will use the much more compressed, conceptual style 
of modern mathematics. 

4. The period of harvesting: infinite-dimensional topology 

4.1. The beginning 

As usual, let a separable Hilbert space be the set 

e X G R ^ : Y^xf < 00 

endowed with the norm 

The metric derived from (4.1) is complete and hence l^ is a complete linear space.^^ 

^^ A linear space in this article is a real topological vector space. 
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By using convexity type arguments, Klee [106] proved that f- \ {pt} and t^ are homeo-
morphic. We say that points can be deleted from l^. In fact, he proved in that even arbitrary 
compact sets can be deleted from any infinite-dimensional normed Hnear space. This re
sult demonstrates a striking difference between finite-dimensional and infinite-dimensional 
normed linear spaces. For a finite-dimensional linear space is equivalent to some W and 
no point can be deleted from W, since R" \ {pt} is not contractible. 

Klee's results were later substantially simpUfied by the approach of Bessaga [22, 23] 
who proved, among other things, that if an infinite-dimensional Hnear space admits a 
C^-differentiable norm (except at 0) which is not complete, then the deleting homeomor-
phisms can in fact be chosen to be diffeomorphisms of class C^. 

Motivated by the results of Klee, Anderson [9] studied in 1967 the question which sets 
can be deleted from another classical linear space, namely the countable infinite topological 
product of real Unes R ^ (see Section 2.3.2). This space is denoted by s. Its topology is 
generated by the following complete metric: 

''<-)=i:^-"T^i^. 

So 5 is a locally convex complete metrizable linear space. Such a space is called a Frechet 
space in the literature. Unfortunately, s has an unpleasant defect: its topology is not 
normable in the sense that there is no norm || • || on it so that the metrics 

p{x,y)= \\x -y\\ 

and d in (4.2) are equivalent. This is clear once one realizes that every neighbourhood of 
the origin contains a nontrivial (linear) subspace of R°^. 

The linear structure on s is therefore very different from the linear structure on a normed 
linear space, and so the methods of Klee and Bessaga do not apply if one wishes to prove 
results on the possibility of deleting sets. But by using a completely different method, 
Anderson [9] showed that from s one can delete sets as easily as from t^. In fact, he got 
the following remarkable result: ̂ ^ 

THEOREM 4.1.1. Let X be any separable metrizable space. Then every a-compact set 
can be deleted from X x s. 

A new field in topology was born: it was called infinite-dimensional topology. 
Anderson was motivated by purely intrinsic topological questions. Soon however it 

turned out quite unexpectedly that his methods could be used to solve a classical open 
problem, posed by Frechet [78, pp. 94-96] in 1928. In 1932 in [19, p. 233], Banach stated 
that Mazur had solved the problem, but this claim turned out to be incorrect. Subsequently 
it was understood that the question was still open. 

To put the question into perspective, let us first make a few remarks. The spaces s and 
l^ are both natural generalizations of the finite-dimensional EucHdean spaces R", but their 

As usual, a space is a-compact if it can be written as a union of countably many compact subspaces. 
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linear structures are notably different. There does not exist a homeomorphism h:s -^ t^ 
which is linear, i.e. has the property that 

h{kx + jjiy) = Xh{x) + iJih{y) 

for all jc, }; G 5, and X, /x G R. The question therefore naturally arises whether s and t^ are 
(topologically) homeomorphic at all. The question of Frechet and Banach is much more 
elaborate, it asks whether all infinite-dimensional Frechet spaces are homeomorphic. 

The question had a long history when Anderson considered it in 1966. By several ad 
hoc methods, homeomorphy of many linear spaces had already been established. The first 
relevant result is due to Mazur [126] who proved in 1929 that all spaces L^ and l^ for 
1 < /? < oo are homeomorphic to l^. Then Kadec in a series of papers developed an inter
esting "renorming technique" for separable Banach spaces and finally proved in 1965 that 
all infinite-dimensional separable Banach spaces are homeomorphic (see Kadec [101]). 
Kadec's proof used the result of Bessaga and Pelczynski [25] that a separable Banach 
space containing a linear subspace homeomorphic to t^ is in fact itself homeomorphic 
to t^. This result combined with another result of Bessaga and Pelczynski [26] showed 
that the homeomorphy of s and l^ would imply the positive answer to Frechet's question, 
i.e. the homeomorphy of all separable infinite-dimensional Frechet spaces. The proofs of 
these interesting results combine techniques from functional analysis, especially the geom
etry of Banach spaces, with various ingenious arguments from general topology. 

This final, but crucial, open problem was solved in the affirmative by Anderson [7] 
using the results from his previous paper [9]. He proved that s and f- are homeomorphic 
and hence settled the question of Frechet and Banach in the affirmative. 

4.2. The Hilbert cube Q 

Let Q denote the product Y[l^=\ [""!' 1]« ^^ countably many copies of [—1, 1]. The topol
ogy on Q is the Tychonoff product topology. Alternatively, its topology is generated by the 
metric 

oo 

d{x,y) = Y^2-'' -{xn-ynl 
n=\ 

So Q is a compact metrizable space. Geometrically one should think of it as an infinite-
dimensional brick the sides of which get shorter and shorter. This can be demonstrated in 
the following way. Let x{n) e Q be the point having all coordinates 0 except for the n-ih 
coordinate which equals 1. So x{n) is the "endpoint" of the n-th axis in QAn addition, let 
y be the "origin" of Q, i.e. the point all coordinates of which are 0. Intuitively, each x(n) 
has distance 1 from y and hence x{n) and y are far apart. However, the appearance of the 
factor 2"" in the definition of d implies that 

J(x(n),3;) = 2-", 

whence the sequence {x{n))n converges to y in Q. 
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It can be shown that Q is homeomorphic to the subspace 

xef: {'inen)(\xn\^^\ 

of £2. 
The first paper in infinite-dimensional topology is in fact Keller's paper [104] from 1931. 

In that paper it is shown that all infinite-dimensional compact convex subsets of l^ are 
homeomorphic to Q, and also that Q is topologically homogeneous, i.e. for 2M x,y e Q 
there exists a homeomorphism f - Q -> Q with f(x)~y. This last result is at first glance 
very surprising since the finite-dimensional analogues F of Q are not homogeneous. For 
n = I this is a triviahty, and for larger n this boils down to the Brouwer Invariance of 
Domain Theorem. 

A familiar construction in topology is that of the cone over a locally compact space X, 
it is the one-point compactification of the product X x [0, 1). The compactifying point is 
called the cone point of the cone which itself is denoted cone(Z).-^^ 

Now, it is clear that for each n the cone over F̂  is homeomorphic to E""̂ ^ and so naively 
one would expect, by taking the "Umit" as n goes to infinity, that cone(2) ^ Q. That 
this is indeed true follows from Keller's first result because we can realize cone((2) as a 
compact convex subset of l^. 

Since Q is contractible, the cone point in cone(2) has arbitrarily small neighbourhoods 
with contractible boundaries. This is not surprising since every point on the boundary of 
F has the same property. However, points in the interior of F do not have this property. 
But since Q is homogeneous, every point of Q has arbitrarily small neighborhoods with 
contractible boundaries. This is again a striking difference with the finite-dimensional sit
uation. 

At the time Keller made his fundamental observations, they apparently did not get the 
credit they deserved for they did not play any significant role for approximately thirty-five 
years. Maybe, but this is speculation on the part of the authors of the present paper, in the 
thirties Keller's results were thought of as mere curiosities. Infinite-dimensional topology 
took approximately thirty-five more years to finally come to real existence. In that process, 
the work of Anderson was vital. 

4.3. Homeomorphism extension results in Q-manifolds 

In [9], Anderson also proved results on the possibihty of extending homeomorphisms in 
Q. It was known already that if X is any countable closed subset of Q then any homeomor
phism f :X -> X can be extended to a homeomorphism of Q (see Keller [104], Klee [105] 
and Fort [73]). In the subsequent paper [8], Anderson introduced the fundamental concept 
of a Z-set in Q and proved that any homeomorphism between such sets can be extended 
to a homeomorphism of Q. 

Before we present the definition of a Z-set, we make some remarks. Let K denote the 
familiar Cantor middle-third set in I It is known that it is characterized by the follow-

•̂ ^ There are other constructions of cones that work for general spaces. One then considers the product X xl and 
identifies the set X x {1} to a single point. But this cone is, in general, not metrizable. 
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ing topological properties: AT is a compact, metrizable, zero-dimensional space^^ without 
isolated points. So it follows easily that K x K ^ K from which it follows that K con
tains a nowhere dense closed copy of itself, say X. It also contains a copy of itself having 
nonempty interior, namely K itself. Consider any homeomorphism (p:X -^ K. Then it 
cannot be extended to a homeomorphism Jp: K -> AT for obvious reasons. One of them 
being that K is fat, having nonempty interior, and X is small, having empty interior. 

A space homeomorphic to K is called a Cantor set. 
Similar remarks apply to other spaces as well. It is known that any homeomorphism (p 

between Cantor sets in R^ can be extended to a homeomorphism of M .̂ However, An-
toine's necklace Z is a Cantor set in B? whose complement is not simply connected and 
so no homeomorphism q):X -^ Y, where F is a Cantor subset of the ĵ c-axis of R-̂ , can 
be extended to a homeomorphism of (̂  : R^ -^ R^. This phenomenon occurs in Q as well: 
in [191] Wong constructed a wild Cantor set in Q. 

So for a homeomorphism extension theorem, one needs a class of tame subspaces which 
are flexible enough to perform the required constructions. For Q this class was identified 
by Anderson. He called a closed subset A of 2 a Z-set^^ provided that for every nonempty 
homotopically trivial open subset U c Q the set (7 \ A is nonempty and homotopically 
trivial as well. He proved in [8] the following fundamental homeomorphism extension 
theorem: 

THEOREM 4.3.1. If(p:A -^ B is a homeomorphism between Z-sets in Q then there 
exists a homeomorphism ^'- Q -> Q extending cp. 

In the proof important ideas of Klee [105] were exploited. 
Later, Barit [20] observed that if the homeomorphism (p satisfies d{(p,\(\) < s for some 

6 > 0 then the extension (p can be chosen to satisfy the same smallness condition. 
The final result on the possibility of extending homeomorphisms in manifolds modeled 

on Q is due to Anderson and Chapman [11]. Let Z be a space and let / : X -> X be 
a function. If U is an open cover of X then we say that / is limited by U provided that 
for every x e X there exists U e U containing both x and f{x). Here is the Anderson-
Chapman Homeomorphism Extension Theorem from 1971: 

THEOREM 4.3.2. Let M be a manifold modeled on Q and let A, B C M be Z-sets. If 
(p: A -^ B is a homeomorphism andU is an open cover ofM such that cp is limited by it, 
then there exists a homeomorphism Tp : M -> M extending cp which is also limited by U. 

This is a purely topological result belonging to general topology and at the time An
derson and Chapman proved it, they could not have foreseen what potential this theorem 
turned out to have. We will report on this later. 

^^ Here a space is called zero-dimensional if it has a base consisting of open and closed sets. 
^^ One of the authors of the present paper once asked Anderson why he chose this terminology. He replied that 
he had no idea. 



222 T. Koetsier and J. van Mill 

4.4. Identifying Hilbert cubes 

In 1964, Anderson [6] proved that the Q is homeomorphic to any countably infinite product 
of dendrons.^^ In particular, one gets the curious result that if T denotes 

( l x { 0 } ) u n i } x l ) 

then T X Q and Q are homeomorphic. For a pubHshed proof of Anderson's result, see 
West [185]. So the Hilbert cube surfaces at various places, not only as convex objects 
such as in Keller's theorem cited above. The result started the game of identifying Hilbert 
cubes. It was a very fascinating game. The tools were from general topology with special 
emphasis on geometric methods. 

The hyperspace 2^ of a compact space X is the space consisting of all nonempty closed 
subsets of X with topology generated by the Hausdorff metric du defined by 

du(A, B) = inf{e > 0: A c Ds{B) and B c D^(A)}; 

here De{A) means the open ball about A with radius e. Hyperspaces were first considered 
in the early 1900's in the work of Hausdorff and Vietoris. In 1939 Wojdyslawski [190] 
asked whether for every Peano continuum X the hyperspace 2^ is homeomorphic to Q. 
At the time of the conjecture this was a rather bold question because the only nontrivial 
Hilbert cubes that were identified at that time were Keller's infinite-dimensional compact 
and convex subsets of l^. In [157] Schori and West proved that 2̂  is homeomorphic to Q 
and in [52] Curtis and Schori completed the picture by showing that 2^ is homeomorphic 
to Q if and only if X is a Peano continuum. This was a spectacular result at that time and 
fully demonstrated the power and potential of infinite-dimensional topology. 

4.5. Hilbert cube manifolds 

In the early seventies. Chapman began the study of spaces modeled on Q, the so called 
Hilbert cube manifolds or Q-manifolds. Certain delicate finite-dimensional obstructions 
turned out not to appear in Q-manifold theory. In some vague sense, Q-manifold theory is 
a "stable" PL ^-manifold theory. 

We already mentioned the important homeomorphism extension result Theorem 4.3.2. 
Using this result, and several ingenious geometric constructions. Chapman developed the 
theory of g-manifolds. It was known from previous work that if P is a polyhedron then 
P X Q is a Q-manifold. Chapman [43] proved the converse, namely that all Q-manifolds 
are of this form, a result that turned out to be of fundamental importance later. 

Some truly spectacular results were the result of Chapman's efforts. In 1974 he used Q-
manifold theory to prove the invariance of Whitehead torsion. This is the statement that any 
homeomorphism between compact polyhedra is a simple homotopy equivalence. A map 
/ : Z ^- y of compact polyhedra is a simple homotopy equivalence if it is homotopic to a 
finite composition 

A > X\ > A2 > ' • • > Xn > I, 

^^ A dendron is a uniquely arcwise connected Peano continuum. 
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where each Xi is a compact polyhedron and each // is either an elementary expansion or 
an elementary collapse. Thus a simple homotopy equivalence is a homotopy equivalence 
of a very special nature. It is one which can be resolved into a finite number of elementary 
moves. More specifically, Chapman proved in [44]: 

THEOREM 4.5.1. A map f :X -^ Y between compact polyhedra is a simple homotopy 
equivalence if and only if f x {id} :X x Q -^ Y x Q is homotopic to a homeomorphism. 

There is also a version of this result for noncompact polyhedra. 
All of Chapman's results quoted here can also be found in his book [45]. 

4.6. Wesfs theorem 

Borsuk [32, Problem 9.1] asked whether every compact ANR has the homotopy type of 
a compact polyhedron. For simply connected spaces, this question was answered by De 
Lyra [122] in the affirmative. For nonsimply-connected spaces Borsuk's problem stayed a 
mystery for a long time. 

The problem was laid to rest by West [186] who showed, using among other things the 
technique in Miller [133], that for every compact ANR X there are a compact Q-manifold 
M and a cell-like map from M onto X. 

A cell-like map between compacta is one for which point-inverses have the shape of 
a point; a cell-like map between ANR's is a fine homotopy equivalence as proved by 
Haver [85] and Torunczyk [177]. As we have seen above, the Q-manifold M is homeo-
morphic to P x Q for some compact polyhedron P and so X has the same homotopy type 
as P. 

4.7. Edwards' theorem 

In 1974, Edwards [45, Chapter 14] improved West's result by showing that X x 2 is a 
Q-manifold if and only if Z is a locally compact ANR. This provides an elegant proof of 
West's Theorem: for a compact ANR X there is by Chapman's result a compact polyhe
dron P such that X X Q and P x (g are homeomorphic; clearly then X and P have the 
same homotopy type. 

In the proof of Edwards' result and in Torunczyk's work, which we shall describe 
momentarily, a crucial role was played by shrinkable maps. A continuous surjection 
/ : X -> y between compact spaces is said to be shrinkable if one can find for every £ > 0 
a homeomorphism (̂  of X ontoitself suchthat J ( /o(^ , / ) < e, anddiam((^(/~H}^))) < e 
for all y € F. So a shrinkable map / is map whose fibers can be uniformly shrunk to small 
sets by a homeomorphism that looking from Y does not change / too much. 

Ring's shrinking criterion from [30] characterizes shrinkable maps as uniform limits of 
homeomorphisms (so-called near homeomorphisms). Thus, in order to prove two compact 
spaces homeomorphic it suffices to produce a shrinkable map between them. 

As an example consider cone((2). We observed above that from Keller's theorem it 
follows that cone(<2) ^ Q. But this follows also trivially from Bing's shrinking criterion. 
Since one-point compactifications are unique, it follows that we can also think of cone((2) 
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as the space obtained from 2 x [0, 1] by identifying the set g x {1} to a single point. The 
decomposition map is easily seen to be shrinkable, hence a near homeomorphism, and so 
cone((2) ^ 2 X [0, 1] ^ Q, as desired (for details, see [131, Theorem 6.1.11]). 

It is easy to see that if X and Y are compact ANR's and f :X -^ 7 is a near homeo
morphism then / is cell-like. So the method of shrinkable maps only works for cell-like 
maps. 

4.8. Torujiczyk's theorems (part 1) 

In 1980, Toruriczyk [178] pubUshed a remarkable result. He was able to topologically 
characterize the 2-manifolds among the locally compact ANR's. From Edwards's theorem 
it was already known that if Z is a locally compact ANR then X x g is a g-manifold. 
Torunczyk studied the question when the projection 

n:X X Q-^ X 

is shrinkable, and came to an astounding conclusion. This map is shrinkable if and only if 
X has the following property: given n e N and two maps / , ^ : F -> X and e > 0 there 
exist maps §, ?y: I" -^ X such that 

^[r]nr/[r]=:0 

while moreover 

d(f,^) < £ and d(ri, g) < s. 

For obvious reasons this property is called the disjoint cells-property. So one arrives at the 
following conclusion, which is called Torunczyk's theorem: 

THEOREM 4.8.1. Let X be a locally compact ANR. Then Xifa Q-manifold if and only 
ifX satisfies the disjoint-cells property. 

As in the case of Edwards' theorem, the Bing shrinking criterion and the Z-set Unknot
ting Theorem 4.3.2 were crucial in the proof of this result. 

Torunczyk's remarkable theorem ended the game of identifying Hilbert cubes. For in 
order to prove that a given space X is homeomorphic to Q, all one needs to prove is that it 
is an AR and satisfies the disjoint cells-property. Observe that both properties are trivially 
necessary for a space to be homeomorphic to g . It is fascinating that these two properties 
that are stated in simple topological terms are also sufficient. In order to demonstrate the 
power of his topological characterization of Q, Toruriczyk [178] presented a very short and 
elegant proof of the Curtis-Schori-West hyperspace theorem. 

4.9. The Taylor example 

The above results emphasized the close relationships between infinite-dimensional topol
ogy and AR and ANR-theory. As we said above, certain deUcate finite-dimensional 
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obstructions turned out not to appear in g-manifold theory. However, certain delicate 
infinite-dimensional obstructions do appear in infinite-dimensional topology. The first re
sult demonstrating this was the result of Taylor [171] which we shall describe briefly. 

It is an example of a cell-like map from a compactum X to Q which is not a shape 
equivalence. The space X is the inverse limit of a sequence of compact polyhedra with 
special properties. That the desired polyhedra exist follows from work of Adams [2] and 
Toda [173]. Adams' proof uses complex ^-theory. 

The Taylor example was widely used in infinite-dimensional topology, shape theory and 
ANR-theory to obtain all sorts of counterexamples. Daverman and Walsh [55] used it to 
get an example of a cell-hke map f '.X -^ Y between compacta whose non-degeneracy set 
is contained in a strongly countably dimensional set and which is not a shape equivalence. 
They also obtained from the Taylor example new examples of locally contractible continua 
which are not ANR's. It was also used in 1979 to answer Borsuk's problem [32, Problem 
V.12.16] in the negative for the construction of an upper semi-continuous decomposition 
of Q into copies of itself, whose decomposition space is not an ANR.^^ And it was used to 
give a negative answer to Kuratowski's question [117] from 1951 whether a space with the 
compact extension property is necessarily an AR; a space X is said to have the compact 
extension property if for every space Y and every compact subset A of 7 every continuous 
map from A to X has a continuous extension over X?'^ For the use of the Taylor example 
in shape theory, see Mardesic and Segal [125]. 

4.10. Dranisnikov's example 

Through the work of Edwards and Walsh [184] it was known in 1981 that the following 
two fundamental problems in dimension theory are equivalent: 

1. Does there exist an infinite-dimensional compactum with finite cohomological di
mension? (This problem is due to Alexandrov [5].) 

2. Does there exist a cell-like map f : X -^ Y, where X is a finite-dimensional com
pactum but Y is infinite-dimensional? (This problem, known as the cell-like dimen
sion raising mapping problem, grew out of manifold theory and the work of Koz-
lowski [111]. The first attempt to solve it by proving that every infinite-dimensional 
compactum contains sets of arbitrarily large finite dimension was shown to lead 
nowhere by Walsh [183].) 

The problem was solved by Dranisnikov [63] in 1988: there exists an infinite-
dimensional compactum with cohomological dimension 3. Essential in his construction 
is that there is a generalized cohomology theory for which the Eilenberg-MacLane com
plex i^(Z, 3) behaves like a point. For 2 dimensions, such an approach does not work. But 
there does exist an infinite-dimensional compactum with cohomological dimension 2, as 
was shown by Dydak and Walsh [66]. Their work is based on the validity of the Sullivan 
conjecture. 

As in the case of the Taylor example, the Dranisnikov example was also used by vari
ous authors to obtain counterexamples to a variety of questions. We will mention only one 
such application of special interest in infinite-dimensional topology. To put this result into 

^" The construction can be found in Topology and its Applications 12 (1981), 315-320. 
^̂  The construction can be found in Proc. Amer. Math. Soc. 97 (1986), 136-138. 
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perspective, we will first make some remarks. It was known since 1951 from the work of 
Dugundji [64] that every locally convex linear space is an AR. Whether the local convexity 
assumption could be dropped was a fascinating question in infinite-dimensional topology 
and ANR-theory for a very long time. It was settled in the negative by Cauty [41] in 1994 
by a very interesting method and an essential use of the Dranisnikov example. More specif
ically, he proved that there exists a necessarily nonlocally convex linear space L which is 
not an AR but which is a closed linear subspace of a linear space which is an AR. 

4.11. Torujiczyk's theorems (part 2) 

So far, we mainly concentrated on (locally) compact spaces. As is to be expected, there are 
also results for complete spaces. Recall that infinite-dimensional topology started with the 
investigation of completely metrizable Hnear spaces. In [179] Torunczyk characterized the 
topology of Hilbert spaces in much the same way as he characterized the topology of the 
Hilbert cube. In this characterization the disjoint-cells property is replaced by the discrete 
approximation property; this property states that for every open cover U of the space X 
and every map / from the topological sum 0 , ^ i F to X there is another map g from 
0 ^ 1 F to X that is U close to / and is such that the family {^[F]: n € N} is discrete. 
The characterization reads: 

THEOREM 4.11.1. A separable space is a manifold modeled on l^ if and only if it is a 
completely metrizable separable ANR with the discrete approximation property. 

As a consequence i^ is characterized as the only separable completely metrizable AR 
with the discrete approximation property. 

Torunczyk has also a similar characterization of manifolds modeled on arbitrary Hilbert 
spaces, see [179] for more details. 

4.12. Epilogue 

We saw that Anderson, interested in questions in general topology, created a new field in 
topology called infinite-dimensional topology and was at the beginning unaware of its po
tential. But good mathematics inevitably led to good results in various other disciplines, 
mostly in algebraic and geometric topology. The highlights of infinite-dimensional topol
ogy are the theorems of Anderson on the homeomorphy of i^ and s, of Chapman on the 
invariance of Whitehead torsion, of West on the finiteness of homotopy types of compact 
ANR's and of Torunczyk on the topological characterization of manifolds modeled on var
ious infinite-dimensional spaces. 

A large collection of open problems is West's paper [187]. The subjects that are being 
touched upon range from absorbing sets and function spaces to ANR theory. We mention 
two particularly prominent problems: 

1. Let a: Q -> 2 be an involution with a unique fixed point. Is a conjugated to the 
standard involution fi on Q defined by p{x) = —xl 

2. For n > 3, let Hn be the group of all homeomorphisms on F endowed with the 
compact-open topology. Is Hn homeomorphic to €^? 
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5. The period of harvesting: set theoretic topology 

In the sixties, general topology renewed its interaction with set theory. In 1878, Cantor's 
work [39] had created set theory and topology as we saw in Section 2.2. They developed as 
diverse, complex and independent fields. Soon after their renewed interaction spectacular 
results surfaced, also in parts of topology where traditionally geometric and algebraic tools 
were used, or tools from analysis. It is about those results that we wish to report here. 

We saw that in [39] Cantor wrote down the Continuum Hypothesis (abbreviated CH) 
that would have a profound effect on set theory in the 20-th century. The CH states that the 
first uncountable cardinal is c, the cardinality of the real line (the continuum). The work 
of Godel [81] and Cohen [49] has shown that CH is consistent with and independent from 
the "usual" Zermelo-Fraenkel axioms of set theory. The methods used in these proofs, and 
especially Cohen's forcing, had a profound effect on the development of a new field in 
topology called set theoretic topology. In that development, the work of Mary Ellen Rudin 
was vital. 

In our report below we will almost exclusively concentrate on independence results 
in topology, that is, results that are independent from and consistent with the "usual" 
Zermelo-Fraenkel axioms of set theory. So we will ignore important parts of general topol
ogy. Also some problems are being discussed whose solution is very strongly of a set the
oretic nature without being an independence result. None of the results mentioned has its 
roots in general topology. 

5.1. Souslin 's problem 

Suppose that 5 is a connected, hnearly ordered topological space without a first or last 
element. If S is separable then S is isomorphic to R. What happens if one relaxes the 
separability condition to the condition that any pairwise disjoint collection of nontrivial 
intervals of X is countable? This is Soushn's problem from [166]. It was posed in 1920 
and has fascinated topologists and set theorists ever since. 

The requirement that pairwise disjoint collections of intervals (or more general open 
sets) are countable is called the countable chain condition (abbreviated ccc). 

A counterexample to Souslin's question, a ccc connected linearly ordered space with
out first or last element that is not homeomorphic to the real fine, is called a Souslin line, 
and Souslin's Hypothesis (SH) is the statement that no Souslin lines exist. Jech [96] and 
Tennenbaum [172] used Cohen's forcing method to show that Souslin fines can exist and 
Jensen [97] proved that they also exist in Godel's Constructible Universe, the same uni
verse Godel used to estabfish the consistency of the Continuum Hypothesis. In [165], Solo-
vay and Tennenbaum developed the forcing method further and proved the consistency of 
Souslin's Hypothesis. Their proof established the consistency of a powerful combinatorial 
principle, which we shall discuss briefly. 

The principle, called Martin's Axiom (MA), states that no compact Hausdorff space that 
satisfies the ccc is the union of fewer than c nowhere dense sets. Under CH "fewer than c" 
means countable and so MA holds by the Baire Category Theorem. However, MA is also 
consistent with the negation of CH and it is this combination, MA + -^CH, that proved to 
be very powerful indeed. 
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Solovay and Tennenbaum [165] showed that under MA + -iCH there are no SousHn 
lines, thereby proving that SH is undecidable. Ever since this result, Martin's axiom played 
a prominent role in set theory and set theoretic topology, as the rest of our story will tell. 

5.2. Alexandroff's problem 

Most mathematicians in geometric topology are only interested in metrizable spaces, and 
metrizable manifolds in particular. But there are also mathematically important objects that 
are not always metrizable, for example, CW-complexes, Hnear spaces, topological groups 
and manifolds. By a manifold we mean a locally Euclidean Hausdorff space. Manifolds 
are certainly mathematically important, with or without differential or algebraic structure. 

Let M be a manifold. If A c M is closed then one certainly wants to be able to extend 
every continuous real valued function / : A -> R to a continuous function / : M -> R. 
By the Tietze-Urysohn theorem, this is equivalent to M being normal. In the process of 
constructing new continuous functions from old ones (think of homotopies) it is also ex
tremely pleasant if M has the following property: for every closed subset A ^ M there is 
a sequence (Un)n of open subsets of M such that A = C\n<co ^n- General topologists say 
that spaces with this property are perfect. If one wants to generalize some of the existing 
theory on metrizable manifolds to nonmetrizable ones, it becomes clear quite quickly that 
in many instances it is inevitable to restrict oneself to manifolds that are both normal and 
perfect, i.e. manifolds that 2LYQ perfectly normal. The question then naturally arises whether 
there is a perfectly normal manifold which is not metrizable. This question was asked by 
Alexandroff [4] in 1935 and also by Wilder [189] in 1949. 

It seems very unlikely that a set theoretic statement like CH has anything to do with 
manifolds, let alone with Alexandroff's problem. In [154] however, Rudin and Zenor con
structed assuming CH an example of a perfectly normal nonmetrizable manifold. Later, 
Kozlowski and Zenor [112] even constructed such a manifold that is analytic, again un
der CH. These provisional solutions to Alexandroff's problem very strongly suggested a 
positive answer to it. 

In [153], Rudin proved that under MA + -^CH, all perfectly normal manifolds are 
metrizable; as a consequence, she came to the remarkable conclusion that Alexandroff's 
problem is undecidable. 

5.3. Dowker's problem 

In [31], Borsuk proved his famous homotopy extension theorem for metrizable spaces. Ac
tually, his result is true for spaces X for which the product Z x I is normal. This generalisa
tion is due to Dowker and was first published in Hurewicz and Wallman [94]. A necessary 
condition for Z x I to be normal is that X is normal. So it is natural to ask whether this 
condition is also sufficient. This is Dowker's problem. Dowker [62] and Katetov [102] in
dependently gave necessary and sufficient conditions for a space X to have the property 
that its product with I is normal. 

THEOREM 5.3.1. Let X be a space. Then X xlis normal if and only X is normal and for 
every decreasing sequence of closed subsets {Dn)n of X with f^^^^^ Dn = & there exists 
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a sequence {Un)n of open subsets of X such that Dn ^ Un for every n while moreover 

A normal space X for which X x I is not normal is called a Dowker space in the literature. 
So if one wishes to construct a Dowker space, all one needs to do is to construct a normal 
space X having a sequence of closed subsets {Dn)n of X with n«<a) ^n = 0 such that if 
[/„ c Z is open and D„ c JJn for every n then H/KO; ^n / 0- It is surprising that this 
condition is such a complicated one. 

In 1955, Rudin [149] constructed the first example of a Dowker space assuming the 
existence of a Souslin line. That was a major breakthrough at that time, but as turned out 
later, had an unpleasant drawback since, as we saw above, SH is undecidable. 

But in 1971 it was shown that the solution to Dowker's problem does not depend on set 
theory: the first example of a real (= using no axioms beyond ZFC) example of a Dowker 
space was constructed again by Rudin [151]. This Dowker space was the only ZFC example 
of such a space for about twenty years. Balogh [17] constructed another such example only 
in 1994 (see also his subsequent paper [18]). This very interesting example is "small" while 
the original Dowker space is "large". It is certainly not the final word on Dowker spaces 
since it is still unknown whether there can be a first countable Dowker space in ZFC, or 
one of cardinality (D\. Using pcf theory, Kojman and Shelah [109] constructed a Dowker 
subspace of Rudin's example in [151] of size ^o^+i- This is a "real" example of a small 
Dowker space since its cardinality is decided in ZFC, while Rudin's and Balogh's are not. 

Ironically, Borsuk's theorem that started all this research, turned out to hold also without 
the assumption of normahty of the product with I, see Morita [137] and Starbird [167]. 

5.4. Whitehead's problem 

Whitehead asked whether every compact arcwise-connected AbeHan topological group is 
isomorphic to a product of circles. This is a very natural problem for a topologist. We 
first translate it into purely algebraic language to turn it into a very natural problem for 
an algebraist as well. If A and B are Abelian groups then a surjective homomorphism 
/ : A -> B is said to split if there is a homomorphism g\B -> A with / o g is equal to 
the identity on 5 . An Abelian group G is Whitehead if for every AbeUan group B, every 
surjective homomorphism f : B -^ G with kernel isomorphic to Z splits. It is clear that all 
free groups are Whitehead and Whitehead asked whether all Whitehead groups are free. It 
is a consequence of Pontrjagin duahty that both problems we attributed here to Whitehead 
are equivalent. 

Shelah [158, 159] showed that Whitehead's problem in undecidable by showing that 
under V = L all Whitehead groups are free while under MA + -»CH there exists a 
Whitehead group which is not free. 

The fact that Whitehead's problem can be formulated both into algebraic and topological 
language is not an exception for a problem that turns out to be dependent upon one's set 
theory. These problems can often be translated into several mathematical languages and can 
therefore be attacked from several directions. There are for example numerous problems 
in Boolean algebras that can be translated into topology and vice versa. Sometimes such a 
translation helps. 

It is questionable of course whether Whitehead's problem discussed above is a "real" 
topological problem. We took the liberty of mentioning it because it is such a good example 
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of our point that problems of set theoretic nature can often be attacked from different 
angles. 

5.5. Choquefs problem 

A BA (= Boolean Algebra) will be identified with its universe. A BA 5 is called 

complete / countahly complete / weakly countahly complete 

if for any two subsets P and Q such that p A ^ = 0 for r e P and q e Q 

without further condition / with |P | = coox\Q\ —0)1 with | P | = \Q\ = co 

there is an 5 G 5 which separates P and Q, i.e. p ^ s fpr p e P and ^ ^ -̂̂  for ^ G Q. 
Consider the following statements: 
• FB every weakly countahly complete BA is a homomorphic image of a countahly com

plete BA; 
• BE every countahly complete BA is a homomorphic image of a complete BA; 
• FE every weakly countahly complete BA is a homomorphic image of a complete BA. 
The earhest statement we are aware of where one of these statements is considered is 
Louveau [121]. Here he attributes the question (or conjecture) of whether FE holds to 
Choquet, and proves that under CH the restriction of FE to algebras of size ^ c holds. 
The question of whether BE holds was raised by Koppelberg [110], who was apparently 
unaware of Louveau's paper. She proved that the restriction of BE to algebras of cardinahty 
^ c holds under CH. The question of whether FB holds was raised by van Douwen, Monk 
and Rubin [59], who also repeated the question of whether BE holds. 

By Stone duality, all these question can be formulated in topological language. They 
were all solved by topologists. It was shown that FB is not a theorem in ZFC under MA + 
c = C02, hence, neither is FE.-̂ ^ The problem of whether BE holds turned out to be difficult. 
It was finally shown in Dow and Vermeer [61] that BE is not a theorem of ZFC. The 
algebra in question is B, the algebra of Borel sets of the unit interval. They showed that if 
B is the quotient of some complete Boolean algebra then there is a lifting of the quotient 
of B modulo the meager sets back into B. An appeal to a result of Shelah [162] that such 
a lifting need not exist finishes the proof. 

5.6. Binary operations on ̂ co 

Let Po) denote the the Cech-Stone compactification of the discrete space o). As is well 
known, the points of this space can be thought of as ultrafilters in V(a)). Thinking about 
the points in ^co in this way, it is easy to extend various binary operations on co to binary 
operations on Pco. As an example, let us consider ordinary addition on co. 

For A c CO and n G a; we set 

j^ — n = [k e co: k-{-n e A]. 

3^ The construction can be found in Trans. Amer. Math. Soc. 259 (1980), 121-127. 
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For p,q e Po) put 

p-\-q = [A ^(JO: [n e CO: A~n e p] e q). 

Then + is a well-defined binary operation on Pco which extends the ordinary addition 
on CO and moreover is associative and right-continuous (this is due to Glazer, see [50]). So 
(^0), +) is a compact right topological semigroup. By a result of Wallace [181, 182] (see 
also Ellis [70]), the compactness of pco implies the existence of a point p e fico for which 
p + p = p, i.e. a so-called idempotent. 

Glazer (see [50]) used the existence of idempotents in the semigroup {fico, +) to give 
a particularly simple topological proof of Hindman's theorem from [90]: If the natural 
numbers are divided into two sets then there is a sequence drawn from one of these sets 
such that all finite sums of distinct numbers of this sequence remain in the same set. 

This statement was known for some years as the Graham-Rothschild Conjecture. 
Several other results from classical number theory can be proved as well by similar 

methods. In [21] Bergelson, Furstenberg, Hindman and Katznelson again used the semi
group {^(1), +) to present an elementary proof of van der Waerden's theorem from [180]: 
if the natural numbers are partitioned into finitely many classes in any way whatever, one 
of these classes contains arbitrarily long arithmetic progressions. 

S.l, Strong homology 

Let y(^+i) be the topological sum of countably many copies of the {k + 1)-dimensional 
Hawaiian earring. The calculation of the strong homology of F^^+ )̂ is of interest in the 
question of whether strong homology satisfies the additivity axiom (of Milnor [134]). 
In [124], Mardesic and Prasolov translated the calculation of the (/:-dimensional) strong 
homology of 7̂ ^+^̂  into a condition of set theory. They proved that this condition holds 
under CH, and hence that the (/^-dimensional) strong homology of y ̂ +̂1) can be nontrivial. 
But, as was shown in Dow, Simon and Vaughan [60], there are also models of set theory in 
which it does not hold, and therefore in such models the (A;-dimensional) strong homology 
of y^^+^^ is trivial. 

5.8. Banach spaces 

In Banach space theory, many results from general topology are applied. The completeness 
of the real line gives the Hahn-Banach Theorem, Baire's Category Theorem is essential in 
the proof of the open mapping theorem and the uniform boundedness principle, while 
Tychonoff's compactness theorem proves the Alaoglou theorem, etc. It is therefore not 
surprising that set theoretic topology turned out to have very interesting applications in 
Banach space theory. It is about two of those results that we wish to report here. 

For a compact space K we let M{K) denote the space of all finite real-valued regular 
Borel (or, Baire) measures on Â  (with ||/x|| = |/x|(^), where |/x| is the total variation of/x). 

Pelczynski [144] proved the following result: 
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THEOREM 5.8.1. Let a be an infinite cardinal number, X a Banach space, and l\ ^^ X 
an isometric imbedding. Then the space M({0, 1}") admits an isometric imbedding in the 
dual Z* ofX. In particular, 

L^({0, 1 } " ) ^ Z* and 4« ^ ^*-

The question naturally arises whether the converse to this theorem holds, i.e. whether 
from M({0, 1} )̂ ^^ Z* it follows that i]^ ^^ X. Pelczynski conjectured that this is 
true, and verified the conjecture for a = co, [144]. The answer to Peiczyiiski's Conjecture 
is fascinating. For cardinals a > coi it is true, as was shown by Agryros [3]. So there 
only remains the cardinal coi. For that cardinal number the question is undecidable. Under 
MA + --CH, Pelczynski's Conjecture is true for a = coi as was also shown by Agryros [3]. 
But under CH, Haydon [86] constructed a counterexample of a particular nice form since 
it is of the form C(K) for a certain compact Hausdorff space K. The space K is an inverse 
limit of an CDI-sequence of Cantor sets with certain specific properties. Independently, a 
similar space was also constructed by Kunen [115] motivated by topological questions. 
In addition, it also surfaced in the work of Talagrand [169]. So Pelczynski's Conjecture 
turned out to boil down partly to the construction under CH of a very peculiar compact 
Hausdorff space A". It is precisely in such constructions where set theoretic topology plays 
such a prominent role and where its techniques are fundamental. 

Another appUcation of set theoretic topology to Banach space theory is the following 
one. If Z is a Banach space and A c. X then convex(A) denotes the closed convex hull 
of A. If Z is separable, then for every uncountable subset A c. X there exists an element 
a e A such that a e A\{a},m particular, a e convex(A \{a}). Davis and Johnson asked 
whether the latter property could hold in a nonseparable Banach space. It was solved in the 
affirmative by Shelah [160] under the combinatorial principle <>. But this example is not of 
the form C(K) for some compact Hausdorff space K. But such a space exists even under 
the weaker hypothesis CH, as was shown by Kunen [113]. 

5.9. Epilogue 

Our overview of set theoretic topology is very much less than complete as a description 
of what happened in that area (see our remarks at the beginning of the introduction). We 
have for example not mentioned several very important areas in set theoretic topology 
such as cardinal functions, S- and L-spaces, the Normal Moore Space Conjecture, j6Z 
(including ^co), the set theoretic aspects of topological groups, etc. In addition, we could 
have talked much more about its relation with set theory and we said very little about 
Boolean Algebras. 

For more information on set theoretic topology we refer the reader to Rudin's 
book [152], the Handbook of Set Theoretic Topology [116] and the book on Open Prob
lems in Topology [132]. 

Notes 

In this section we will give some additional information on the material presented in Sec
tions 4 and 5 that we find useful. No attempt has been made to be complete. 
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In Section 3 we already mentioned the following books for among other things informa
tion on some the results obtained in the golden age of general topology: Hu [92], Hurewicz 
and Wallman [94], Gillman and Jerison [80], Dugundji [65], Nagata [142, 141], Engelk-
ing [71, 72] and Arhangel'skii and Ponomarev [13]. To this Ust we can add the follow
ing books for additional information and later developments, some of which we already 
mentioned in the other sections: Arhangel'skii [12], Bessaga and Pelczyhski [27], Bor-
suk [32, 33], Comfort and Negrepontis [51], Balcar and Stepanek [16], Devhn and Johns-
braten [56], Bourbaki [34], Hu [93], Aarts and Nishiura [1], Juhasz [100], Kechris [103], 
Kunen [114], Kuratowski [118, 119], Kuratowski and Mostowski [120], Mardesic and 
Segal [125], Nadler [139], Shelah [161], Todorcevic [175], Daverman [54], AuU and 
Lowen [15], Chapman [45], Rudin [152], the Handbook of Set Theoretic Topology [116], 
the book on Topics in General Topology [138], the book on Open Problems in Topol
ogy [132], the book on Recent progress in General Topology [95] and Chigogidze [46]. 

Notes on Section 4. For a different proof that all infinite-dimensional separable Banach 
spaces are homeomorphic, see Bessaga and Pelczyriski [24]. 

For different proofs of Anderson's theorem that s ^ £^, see Anderson and Bing [10] and 
[131, Chapter 6]. 

As we observed, Keller proved that the Hilbert cube is homogeneous. This result was 
later generalized by Fort [73] who proved that the infinite product of compact manifolds is 
homogeneous if and only if none or infinitely many of the factors have a boundary. 

For a proof that any homeomorphism q) between Cantor sets in M^ can be extended to 
a homeomorphism of R^, see Kuratowski [118, 119]. For the cited result about Antoine's 
necklace, the reader can consult, e.g., Daverman [54, Corollary 5A]. 

Let X be a space, and let A c X be closed. Nowadays we call A a. Z-set in X if for 
every s > 0 and every continuous function f \ Q -> X there exists a continuous function 
g: Q -^ X \ A such that d{f,g) < e. This definition is easier to work with than the 
original one and is equivalent to it in the special case X = Q (but this is not entirely 
trivial). For detailed proofs of the Z-set homeomorphism extension results in g-manifolds, 
see Bessaga and Pelczynski [27], Chapman [45] and van Mill [131, Chapter 6]. 

See Cohen [48] for more information on the concept of a simple homotopy equivalence. 
For a detailed description of the Dranisnikov example, see also Chigogidze [46]. 
As we remarked, the remaining open problems in infinite-dimensional topology (see 

West [187]) deal among other things with problems in absorbing sets (see, e.g., [28, 58]), 
function spaces (see, e.g., [42]) and ANR-theory. 

For general information on hyperspaces see Nadler [139]. 

Notes on Section 5. For a simple proof that metrizable spaces are paracompact, see 
Rudin [150]. 

Many of the set theoretic things that we merely touched upon in this section can be found 
in great detail in Kunen [114]. 

For more information on SH and many related topics, see Todorcevic [174]. 
For more information on Whitehead's problem, see Ecklof [67]. 
For more information on the role of topology in Banach spaces and measure theory, see 

Negrepontis [143], Mercourakis and Negrepontis [127] and Fremhn [79]. 
For more information on ultrafilters and combinatorial number theory, see Hind-

man [91]. 
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A recent book on general/set theoretic topology is Todorcevic [176]. 
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Absolute neighborhood retracts (ANR's) and spaces having the homotopy type of ANR's, 
like polyhedra and CW-complexes, form the natural environment for homotopy theory. 
Homotopy-like properties of more general spaces (shape properties) are studied in shape 
theory. This is done by approximating arbitrary spaces by ANR's. More precisely, one 
replaces spaces by suitable systems of ANR's and one develops a homotopy theory of 
systems. This approach Hnks the theory of retracts to the theory of shape. It is, therefore, 
natural to consider the history of both of these areas of topology in one article. A further 
justification for this is the circumstance that both theories owe their fundamental ideas to 
one mathematician, Karol Borsuk. We found it convenient to organize the article in two 
sections, devoted to retracts and to shape, respectively. 

1. Theory of retracts 

The problem of extending a continuous mapping f : A -> Y from a closed subset A of 
a space X to all of Z, or at least to some neighborhood 17 of A in Z, is very often en
countered in topology. Karol Borsuk realized that the particular case, when Y — X and 
/ is the inclusion / : A ^- X, deserves special attention. In this case, any extension of / 
is called a retraction {neighborhood retraction). If retractions exist, A is called a retract 
{neighborhood retract) of X. In his Ph.D. thesis "O retrakcjach i zbiorach zwi^zanych" 
("On retractions and related sets"), defended in 1930 at the University of Warsaw, Borsuk 
introduced and studied these basic notions as well as the topologically invariant notion of 
absolute retract (abbreviated as AR). He thus laid the foundations of the theory of retracts. 
The very suggestive term retract was proposed by Stefan Mazurkiewicz (1888-1945), who 
was Borsuk's Ph.D. supervisor. The term absolute retract was suggested by Borsuk's col
league Nachman Aronszajn, also a student of Mazurkiewicz. 

It appears that the original of Borsuk's thesis has been lost in the turmoils of the Sec
ond World War. However, its main results were published in [27]. Absolute neighborhood 
retracts (abbreviated as ANR) were introduced in [28]. In the beginning Borsuk only con
sidered separable metric spaces, especially metric compacta. Other early contributions to 
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K. Borsuk was born in Warsaw in 1905 and studied mathematics at the University of Warsaw. 
He spent the period 1931-1932 on postdoctoral studies with leading European topologists of 
that time (Karl Menger in Wien, Heinz Hopf in Zurich and Leopold Vietoris in Innsbruck). 
His habilitation at the University of Warsaw took place in 1934 and he became Professor in 
1946. After retirement in 1975, he continued with activities at the Mathematical Institute of the 
Polish Academy of Science. On four different occasions, Borsuk spent a Winter semester in 
US (Princeton, Berkeley, Madison, New Brunswick), which contributed to the quick spread
ing of his theory of retracts and later, the theory of shape. Borsuk died in Warsaw in 1982. 
N. Aronszajn was born in 1907 in Warsaw, where he went to school and university, obtaining 
his Ph.D. in 1930. He then worked in Paris and Cambridge until 1948, when he emmigrated 
to US. There he spent most of his career at the University of Kansas in Lawrence. He died in 
Corvallis, Oregon in 1980. 

the theory of retracts, due to K. Kuratowski [154] and R.H. Fox [107], also refer to these 
classes of spaces. Gradually, the theory was extended, first to arbitrary metric spaces by 
C.H. Dowker [79] and J. Dugundji [85], then to more general classes of spaces C, closed 
under homeomorphic images and closed subsets, by S.-T. Hu [126], O. Banner [121] and 
E.A.Michael [184]. 

An AR (ANR) for the class C is a space Y from C, such that, whenever 7 is a closed 
subset of a space X from C, then F is a retract (neighborhood retract) of X. A space Y 
is an absolute extensor {absolute neighborhood extensor) for the class C, abbreviated as 
AE(C) (ANE(C)), provided, for every closed subset A of a space X from C, every mapping 
/ : A -> F extends to all of X (to some neighborhood (7 of A in X). It is not required that 
Y belongs to C. Clearly, if Y is from C and is an absolute extensor for C, then Y is also an 
absolute retract for C. The terminology AE and ANE was introduced in [184]. Gradually 
it became clear that the class C of metric spaces gives the most satisfactory theory. Hence, 
if we speak of ANR's and do not specify C, we mean ANR's for metric spaces. A rather 
detailed and reliable study of the spaces ANR(C) and ANE(C), for various classes C, has 
been carried out in Hu's monograph [128]. 

Borsuk's work on the theory of retracts had its precedents. The most important among 
these is the Tietze-Urysohn extension theorem. It was first proved, for metric spaces by 
H. Tietze [225]. Then P.S. Uryson proved his famous lemma: If A and B are closed disjoint 
subsets of a normal space X, there exists a mapping f :X -> / to the real line segment 
/ = [0, 1] such that / | A = 0 and f\B = l [232]. In the case of metric spaces, the 
assertion of Urysohn's lemma is an elementary fact, which was used in Tietze's argument. 
Replacing this fact by its generalization enabled Uryson to obtain the extension theorem 

Ernest A. Michael, Professor at the University of Washington in Seattle, was bom in Zurich 
in 1925. He obtained the Ph.D. in 1951 from the University of Chicago. Sze-Tsen Hu, Pro
fessor at the University of California in Los Angeles, was born in Huchow, China in 1914. 
He obtained the B.Sc. from the University of Nanking, China and the D.Sc. in 1959 from the 
University of Manchester. 
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Heinrich Tietze (1880-1964) was born in Schleinz, Austria. He studied in Wien, Miinchen and 
Gottingen and obtained his Ph.D. in 1904 in Wien, where he became Privatdozent in 1908. 
From 1910 to 1919 he was professor at the Technical University in Brno and it is during that 
period that he obtained his extension theorem. He spent the rest of his career at the universities 
of Erlangen and Miinchen. Pavel Samuilovich Uryson (1898-1924) was born in Odessa. He 
was a student of D.F. Egorov (1869-1931) and N.N. Luzin (1883-1950) in Moscow, where he 
obtained his Ph.D. in 1921. Urysohn was one of the most promising Russian mathematicians 
of his generation, when he lost his life at the age of 25 in a tragic accident, while swimming 
in the rough seas of French Bretagne. His collected papers fill up two volumes. 

for normal spaces. In present terminology the theorem asserts that / = [0, 1] and the real 
line R are AE's for normal spaces. Recently, J. Mioduszewski drew attention to the fact 
that the argument used by Uryson in constructing the mapping / : X -> / appeared a year 
earlier (in a different context) in the only paper by W.S. Bogomolowa, a student of Luzin 
[25]. 

An important question raised in the early days of the theory of retracts was to determine 
whether an absolute retract Y for a class C is necessarily an absolute extensor for C. This is 
true for many important classes C. For separable metric spaces it was proved in [154] and 
for arbitrary metric spaces in [85]. To obtain this result, one first embeds F in a normed 
vector space L, in such a way that it is a closed subset of its convex hull K. For L one can 
take the space of bounded mappings / : F -> E, which is even a Banach space [155,248]. 
Then one applies the Dugundji extension theorem [85], an important generalization of the 
Tietze-Urysohn theorem. It asserts that every convex set in a normed vector space (more 
generally, in a locally convex vector space) is an absolute extensor for metric spaces. This 
result was made possible only after A.H. Stone proved that metric spaces are paracompact 
[223]. For separable metric spaces Dugundji's extension theorem was already known to 
Polish topologists. Note that paracompactness of these spaces is an elementary fact, be
cause separable metric spaces are Lindelof, hence, also paracompact. Dugundji's theorem 
was later generalized to stratifiable spaces [26], a class of spaces, introduced in [56], which 
includes both metric spaces and CW-complexes. 

An important result in the theory of retracts was J.H.C. Whitehead's theorem that the 
adjunction space of a mapping / : A ^- 7, where A c X, Z and Y are compact ANR's, 
is again a compact ANR [244]. Another important result was obtained by Manner. He 
considered local ANE's, i.e. spaces which admit an open covering formed by ANE's, and 
proved that for metric (more generally, for paracompact) spaces, every local ANE is an 
ANE [121]. This theorem implies, e.g., that (metric) manifolds are ANR's. 

In introducing (compact) ANR's Borsuk wanted to generalize compact polyhedra in a 
way which excludes the pathology often present in arbitrary metric compacta. For example, 
compact AR's have the fixed-point property [27], but there exist acyclic (locally connected) 
continua in M̂  which do not have this property [29]. Generalizing a sum theorem from 
[9], Borsuk proved that the union X = Ai U A2 of two compact ANR's is an ANR, 
provided A\ Pi A2 is an ANR [28]. This implies that every compact polyhedron is indeed 
an ANR. In the same paper he showed that in the class of finite-dimensional compacta, 
ANR's are characterized by local contractibility. For an infinite-dimensional compactum 
X, local contractibility alone is not sufficient to ensure that X be an ANR [31]. 
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Kazimierz Kuratowski (1896-1980), one of the founders of the Polish topology school, was 
born and died in Warsaw. He obtained his Ph.D. from the University of Warsaw in 1921. 
He first worked at the Technical University in Lwow. Since 1934 he was Professor at the 
University of Warsaw. During the Nazi occupation of Poland, both Kuratowski and Borsuk 
lectured at the underground university in Warsaw. Clifford Hugh Dowker was born in 1912 
in a rural area of Western Ontario. He obtained his B.A. and M.A. in Canada and his Ph.D. 
in 1938 in Princeton, where he came to study under Solomon Lefschetz (1884-1972). In 
1950, during the period of McCarthyism, Dowker moved to England and eventually became 
Professor at Birckbeck College in London, where he worked until his retirement in 1979. He 
died in London in 1982. James Dugundji (1919-1985) was born in New York in a family of 
Greek immigrants. He obtained his B.A. degree from New York University in 1940. The same 
year he started his graduate studies at the University of North Carolina at Chapel Hill as a 
student of Witold Hurewicz (1904-1956). After spending four years of war in the US. Air 
Force, in 1946 he entered the Massachusetts Institute of Technology, where Hurewicz became 
Professor in 1945. Under him Dugundji obtained his Ph.D. in 1948. The same year he started 
teaching at the University of Southern California in Los Angeles, where he became Professor 
in 1958. The Swedish topologist Olof Hanner was bom in Stockholm in 1922 and obtained his 
Ph.D. from the University of Stockholm in 1952 with a thesis which consisted of three of his 
papers on ANR's. He became interested in ANR's during a visit to the Institute for Advanced 
Study in Princeton in 1949/50, where he came in touch with the work of Ralph Hartzler Fox 
(1913-1973) and Lefschetz. 

The important property LC^ (local connectedness up to dimension n) was introduced 
in 1930 in Lefschetz's book [158] (see p. 91) and studied further in [159]. Generalizing 
Borsuk's work, Kuratowski proved that an ^-dimensional separable metric space X is an 
ANR if and only if it is LO^ [154]. The proof uses the fundamental concepts of nerve of 
an open covering and canonical mapping, whose origins can be traced back to the work of 
Alexandroff [2, 3] and Kuratowski [153], respectively. The Kuratowski theorem was later 
generalized to arbitrary metric spaces by several authors [151, 145, 87]. 

In 1973 W.E. Haver proved that a locally contractible metric space X, which is the union 
of a countable collection of finite-dimensional compacta, is an ANR [123]. This result had 
important consequences in the study of the space PLH(M) of piecewise linear homeo-
morphisms of a compact PL-manifold M. A.V. Chernavskii proved in 1969 that the space 
H(M) of homeomorphisms of a compact manifold M is locally contractible [68]. A sim
plified proof of Chernavskii's result was obtained by R.D. Edwards and R.C. Kirby [104]. 
It follows from this proof that, for a compact PL-manifold M, the space PLH(M) is also 
locally contractible. On the other hand, R. Geoghegan showed that, for a compact polyhe
dron P, PLH(P) is the union of a countable collection of compact finite-dimensional sets 
[113]. Consequently, Haver's result applies and yields the conclusion that, for a compact 
PL-manifold M, PLH(M) is an ANR. For compact topological manifolds M, the question 
if H(M) is an ANR, is still open. The analogous question for g-manifolds was answered 
in the affirmative, independently by S. Ferry [105] and by H. Torunczyk [229]. 

In general, the geometric realization of an infinite simplicial complex K can be endowed 
with the weak topology (also called CW-topology) or the metric topology [161]. The re
sulting spaces will be denoted by | ^ | and \K\,n, respectively. We refer to spaces | ^ | as 
polyhedra. A polyhedron |i^| is metrizable if and only if the complex K is locally finite. 
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S. Lefschetz was born in Moscow and educated in Paris. After working for some years in 
industry, he turned to mathematics (following an industrial accident in which he lost both 
hands). In 1925 he joined the Mathematics Department in Princeton, where he became a 
leading topologist, together with O. Veblen (1880-1960) and J.W. Alexander (1888-1971). 
After retiring from Princeton University, he continued his activities at Brown University and 
in Mexico. John Henry Constantine Whitehead (1904-1960), another leading topologist, was 
born in India and educated in Oxford. He continued his studies in Princeton under Veblen 
and there obtained his Ph.D. in 1931. He became Professor in Oxford in 1945. He died in 
Princeton, where he was spending a year's leave. 

In this case the weak topology and the metric topology coincide. Polyhedra are special 
cases of CW-complexes (CV^-spaces), introduced by Whitehead in [246]. It was shown by 
Dugundji [86] that CW-complexes are paracompact spaces and ANE's for metric spaces. 
For polyhedra, the latter assertion was proved independently by Y. Kodama [144]. If a 
polyhedron |A |̂ is locally compact, then the complex K is locally finite and therefore, 
\K\ = \K\rn mustbean ANR. 

For an arbitrary simplicial complex K, the space \K\m is an ANR. To prove this im
portant fact, one first proves the assertion in the special case of full simplicial complexes, 
i.e. complexes where every finite set of vertices spans a simplex. This is easily done by 
applying Dugundji's extension theorem. In the general case, one needs the fact that, for 
every subcomplex L c A', |LU is a neighborhood retract of | A |̂,„. The standard argument 
consists of showing that, in the first barycentric subdivision K^ of K, the star of the carrier 
of L' is an open set in the carrier of K\ which retracts to the carrier of L^ However, to 
apply this argument, one needs to know that \K\m = \K'\m. This was proved by Lefschetz 
in [161], a monograph devoted entirely to local«-connectedness and retraction. 

The French topologist Robert Cauty studied closely the relationship between polyhe
dra and CW-complexes. In particular, in [50] he characterized spaces which embed into 
polyhedra as closed subsets. All CW-complexes satisfy his criterion. Moreover, if a CW-
complex X is embedded as a closed subset of a polyhedron P, then there exists an open 
neighborhood U of X in P which retracts to X. It is well known that every open subset 
of a polyhedron is itself a polyhedron. Therefore, CW-complexes are retracts of polyhe
dra. Twenty years later, Cauty showed that an open subset of a CW-complex need not be a 
CW-complex [53]. He thus corrected an error, appearing occasionally in the literature. 

Cauty showed that there exist CW-complexes which are not ANR's for paracompact 
(hereditarily paracompact) spaces [49]. An example, due to E. van Douwen and R. Pol 
[78] shows that, there exist a regular countable space X (hence, a Lindelof space), a closed 
subset A c X and a mapping / of A to a 1 -dimensional polyhedron | ̂  |, which does 
not extend to any neighborhood of A. Consequently, | AT | is a not an ANE for paracompact 
spaces. On the other hand, for a simplicial complex K with no infinite simpHces, \K\,n is an 
ANE even for collection wise normal spaces [52]. This shows that the extension properties 
of complexes depend essentially on the choice of the topology. 

Cauty proved that every CW-complex is an ANR for stratifiable spaces [51]. This was 
achieved using topological convexity (abbreviated as TC) and local topological convexity 
(abbreviated as TLC). A space X is TLC provided there exists a neighborhood U of the 
diagonal AinX x X and there exists a mapping (p:U x I ^^ X such that (p(x,y,0) = x, 
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R. Cauty was born in 1946. He studied in Paris and belonged to M. Zisman's Algebraic Topol
ogy Seminar. He obtained his doctorat d'etat in 1972. Since in Paris there was not much inter
est in General Topology, Cauty learned the subject by himself, beginning with Kuratowski's 
Topologie. ANR's and complexes, being the meeting ground of General and Algebraic Topol
ogy, constituted the natural topic of his research. 

0(x, y, 1) = y, for all (x, y) ^U and0(x,x, t) = jc, for all j e X,t e I. In addition, one 
requires that every point x e X admits a basis of neighborhoods V such that V x V Q U 
and 0 ( y X V X /) c y. Property TC is obtained by requiring that U = X x X. Clearly, 
locally convex topological vector spaces have property TC. There exist compact ANR's 
which are not TLC-spaces [42] (also see [33], Ch. VL4). 

A weaker notion, called equiconnectedness {local equiconnectedness) was already con
sidered by Fox [108] and J.-P. Serre [212], who used the abbreviations UC (ULC). These 
properties are obtained from properties TC (TLC) by omitting the additional condition 
0 ( y X V X /) c V. It is easy to see that every AR (ANR) is a UC-space (ULC-space). 
Finite-dimensional metric ULC-spaces are ANR's [87]. For infinite-dimensional metric 
ULC-spaces, one finds in [88,125] additional conditions, which make these spaces ANR's. 
The question whether every metric ULC-space is an ANR, remained open for a long time. 
Only recently, a counterexample was obtained by Cauty, who exhibited a metric linear 
space (hence, a UC-space), which is not an AR [55]. Cauty's example depends essentially 
on the existence of dimension-raising cell-like mappings of compacta [83]. 

In the Hterature there are many results characterizing ANR's. Here we mention a clas
sical criterion, based on realizations of simplicial complexes K with respect to a covering 
U. A full realization of AT is a mapping g : |A |̂ -> X of the geometric realization of K 
(CW-topology) such that every (closed) simplex a e K maps into some member UofU. 
A partial realization is a mapping f :\L\ -> X, defined on the carrier of some subcomplex 
Lof K such that, for every a € AT, the set / ( |L | n a ) is contained in some member U ofU. 
A metric space X is an ANR if and only if every open covering U of X admits a refinement 
V such that, for every subcomplex L ^ K, which contains all the vertices of K, every 
partial realization f :\L\ -^ X with respect to V admits an extension to a full realization 
g:\K\ -> X with respect to U. This was proved in [160], for compact metric spaces and 
in [87], for arbitrary metric spaces. The problem of finding convenient characterizations of 
infinite-dimensional ANR's still deserves attention. 

A very useful theorem on ANR's asserts that sufficiently near mappings into an ANR 
must be homotopic. More precisely, ifU is an open covering of an ANR 7, then there exists 
an open covering V such that any two V-near mappings 0, V :̂ X -> 7 are W-homotopic, 
i.e. are connected by a homotopy H :X x I -^ Y with paths H{x x I), x e X, contained 
in members ofU [85, 120]. ANR's can be characterized as metrizable spaces Y having the 
property that, for every open covering U,Y is W-homotopy dominated by some polyhedron 
P, i.e. there exist mappings f \Y -^ P, g: P -^ Y such that gf and id are W-homotopic 
[87, 120]. Necessity of the condition is a consequence of the fact that every covering V 
of an ANR Y admits a polyhedron P and admits mappings / , g such that gf and id are 
V-near mappings. Spaces Y having this property are called approximate polyhedra [173]. 
That every ANR Y is an approximate polyhedron is a consequence of the bridge theorem, 
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which asserts that, for every mapping f :X -^ F of a space into an ANR and for every 
open covering V of 7, there exists a normal covering U of X and a mapping g:\N(U)\ -> 
Y of the geometric realization of the nerve N(U), such that, for any canonical mapping 
p'.X -^ |N(W)|, the mappings / and gp are V-near [127]. 

It was John Milnor who in 1959 renewed the interest of topologists in the class of spaces 
having the homotopy type of CW-complexes [187]. ANR's belong to this class, because 
every ANR X has the homotopy type of the geometric realization \S{X)\ of its singular 
complex S{X). For an arbitrary space X, there is a canonical mapping jx '• \S{X)\ -> X, 
which is a weak homotopy equivalence, i.e. it induces isomorphisms of homotopy groups. 
By a well-known theorem, a weak homotopy equivalence between CW-complexes is a 
homotopy equivalence [129, 245]. This theorem readily extends to spaces homotopy dom
inated by CW-complexes and, therefore, applies to jx, whenever X is an ANR. For every 
space X, \S{X)\ is triangulable and thus, every ANR has the homotopy type of a polyhe
dron. Actually, the geometric realization | A' | of any simplicial set Â  is a polyhedron. The 
proof given in [13] and reproduced in [169] contained an error, which was corrected in the 
Ph.D. thesis of Rudolf Fritsch, a student of Dieter Puppe [110-112]. 

Conversely, every polyhedron P has the homotopy type of an ANR. Indeed, if ^ is a 
simplicial complex such that P = \K\, then the identity mapping | ^ | -^ | ^ | „ | is a homo
topy equivalence [80]. However, \K\in is an ANR. A recent result of Cauty characterizes 
ANR's as metric spaces all of whose open subsets have the homotopy types of ANR's [54]. 

One of the most useful results on ANR's is Borsuk's homotopy extension theorem [30]. 
A pair of spaces (X, A) is said to have the homotopy extension property (abbreviated as 
HEP) with respect to a space F, provided every mapping / : (X x 0) U (A x /) -> Y admits 
an extension F :X x I -^ Y. Borsuk's theorem asserts that every pair, where X is a metric 
space and A is closed, has HEP with respect to any ANR Y. Among many generalizations 
of this theorem, especially interesting was the result of Dowker, which asserts that pairs, 
where X x / is normal and A is closed, have HEP with respect to separable Cech complete 
ANR's, in particular, with respect to compact ANR's [81]. This result naturally led to 
the question, does normality of X imply normality of X x /? This proved to be a very 
challenging problem, which generated much research in general topology. It was finally 
solved in the negative by Mary Ellen Rudin [206]. 

After the development of the theory of fibrations [212, 130], it became clear that, for 
a pair (X, A), HEP with respect to all spaces Y, viewed as a property of the inclusion 
A -> X, is a notion dual to the notion of fibration, hence, it is referred to as a cofibra-
tion. Cofibration pairs (X, A) are also called neighborhood deformation pairs and play an 
important role in homotopy theory. 

One of the central problems of geometric topology in the last decades has been the 
recognition problem for topological manifolds: Find a Hst of topological properties which 
characterize manifolds among topological spaces. The properties should be easy to check, 
hence, they should not use notions like homeomorphisms. In 1978 James W. Cannon solved 
the famous double suspension problem, by showing that the double suspension of a ho
mology 3-sphere is homeomorphic to the 5-sphere S^ [47]. This work led him to state 
the following conjecture, which would solve the recognition problem. Cannon's conjec
ture: A topological space X is an w-manifold (separable metric), n ^ 5, if and only if 
it is a homology n-manifold having the disjoint disc property. By definition, homology 
n-manifolds are finite-dimensional separable locally compact ANR's X, whose local ho
mology groups (integer coefficients) coincide with those of R", i.e. H,niX, X\{;c}; Z) ^ 
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H,n(M.^, M'̂ \{0}; Z), for all m. A metric space (X, d) has the disjoint disc property pro
vided, for any two mappings f\, fi'.B^ -^ X of the 2-ball B^ and any ^ > 0, there exist 
two mappings gi.gi'.B'^ -^ Z, such that J ( / / , gi) < e, / = 1, 2, and the images g\ {B^) 
and g2(B^) are disjoint. Note that ANR's play an important role in this conjecture. 

A major step towards proving Cannon's conjecture was the cell-like approximation theo
rem of R.D. Edwards, which considerably strengthened earlier work on cell-like mappings 
between manifolds [214]. Edwards announced his result in 1977 and pubHshed an outhne 
of the proof in [98]. A detailed proof, for n ^ 6, appeared in Daverman's monograph [77]. 
The Edwards theorem asserts that a cell-like mapping f :M -> X from an «-manifold 
M to a finite-dimensional space X is a near-homeomorphism, i.e. can be approximated by 
homeomorphisms, if and only if it has the disjoint disc property. Consequently, Cannon's 
conjecture is true provided X is the image of an n-manifold M under a cell-like mapping 
/ . Edwards theorem is the crown of years of efforts of many geometric topologists. An 
essential ingredient in the proof is R.H. Bing's shrinking criterion, which gives necessary 
and sufficient conditions in order that a proper mapping f :X -^ Y bt approximable by 
homeomorphisms. The criterion requires that for every pair of open coverings U of X and 
V of y, there exists a homeomorphism h:X -^ X having the following properties: 

(i) The mappings fh,f:X-^ F are V-near. 
(ii) For every y e Y, there exists SLU inU such that /z(/~^ (y)) c U [182]. 
In view of the cell-like approximation theorem, to complete the proof of Cannon's con

jecture, it would have been sufficient to show that every homology n-manifold X, n ^ 5, 
is resolvable, i.e. it is the cell-like image of an w-manifold. Frank Quinn discovered an 
integer-valued obstruction i(X) = l(mod8) and showed that the above question has a 
positive answer if and only if i(X) = 1 [203, 204]. For a while it was not known if there 
actually exist homology manifolds with i(X) y^ 1. The existence of such homology man
ifolds is a major recent achievement in topology, due to J. Bryant, S. Ferry, W. Mio and 
S. Weinberger [44]. 

A mapping f : X -^ 7 is cell-like provided it is proper (counter-images of compact sets 
are compact) and all the fibers f~^(y), y € F, are cell-like spaces, i.e. have the shape 
of a point. Cell-like spaces and mappings were studied before the advent of shape theory. 
Note that a space X is cell-like if and only if every mapping f :X ^^ P to an ANR P 
is homotopic to a constant mapping. A metric space X is cell-like if and only if for every 
embedding in an ANR M the following UV^ property holds: For every neighborhood 
U of X in M, there exists a neighborhood V of X such that V Q U and the inclusion 
/ :V -^ U is nullhomotopic. A special case of cell-likeness is cellularity of sets in an 
w-manifold M, a notion introduced by Morton Brown in connection with the Schoenflies 
problem [43]. A subset X of an n-manifold M is cellular in M if there exists a sequence 
(5f) of A2-dimensional balls in M such that 5;YI C Int J5f, for all /, and X = fl, 5f. 
Cellularity was studied extensively by D.R. McMillan, Jr. [183]. For a survey on cell
like mappings see [157]. Mappings between ANR's with AR-fibers as well as mappings 
satisfying the corresponding LC^ and n-contractibility conditions were studied already 
in [217]. 

Problems encountered in the research concerning infinite-dimensional manifolds, espe
cially manifolds modelled on the Hilbert space h and the Hilbert cube Q, were similar to 
problems encountered in the research concerning n-manifolds and progress in one area of
ten stimulated progress in the other one. In many cases the infinite-dimensional problems 
turned out to be more accessible than the corresponding finite-dimensional problems and 
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R.H. Bing (1914-1986) was a student of the legendary topology teacher Robert Lee Moore 
(1882-1974) at the University of Texas in Austin. Bing obtained his Ph.D. in Austin in 
1945. He did pioneering work concerning decomposition spaces and homeomorphisms in 
3-dimensional manifolds [22]. The first systematic study of homology manifolds is due to 
another student of Moore, Raymond Louis Wilder (1896-1982) [247]. 

the solution of the former preceded the solution of the latter. The center of this research 
was the group around Richard Davis Anderson, Professor at the University of Louisiana in 
Baton Rouge. 

R.D. Anderson was born in Hamden, Connecticut in 1922. He was a student of R.L. Moore 
at Austin, Texas, where he obtained his Ph.D. in 1948. One can associate with the Anderson 
group T.A. Chapman, D.W. Curtis, S. Ferry, R. Geoghegan, D.W. Henderson, R.M. Schori, 
J.E. West, R.Y.T. Wong. 

The direct product of an n-manifold by the Hilbert space I2 is obviously an /2-manifold. 
In 1960 V. Klee asked the converse. Is every /2-manifold homeomorphic to the product 
of an n-manifold with /2? In 1961 in a surprising article Borsuk answered this question 
in the negative [32]. He also posed the following intriguing problems: Is it true that the 
cartesian product of a compact polyhedron (ANR) by Q is a Q-i^^i^ifold? Is it true that 
every Q-manifold is homeomorphic to the product of a compact polyhedron by Q? 

A very special case of the first problem, contributed by Borsuk to the Scottish book in 
1938, asked whether the product of a triod with Q is homeomorphic to Q. It was answered 
affirmatively by Anderson in 1964. The first problem for (locally compact) polyhedra was 
answered affirmatively in 1970 by West [240]. In 1973 Chapman developed a procedure 
to perform surgery on infinite-dimensional manifolds, which enabled him to establish an 
infinite-dimensional version of the handle-straightening theorem of R.C. Kirby and L.C. 
Siebenmann [143]. This result was an essential ingredient in the proof of two important 
theorems of Chapman. The first one was the triangulation theorem, which answered af
firmatively the second of the Borsuk problems [64]. The second one was an unexpected 
proof of the topological invariance of the Whitehead torsion, i.e. proof of the assertion that 
homeomorphisms between compact polyhedra are simple homotopy equivalences. The 
solution of this more than 20 years old finite-dimensional problem of WTiitehead was a 
great achievement of infinite-dimensional topology. More precisely. Chapman proved that 
a mapping between compact polyhedra / : X -> 7 is a simple homotopy equivalence if 
/ x i d i Z x Q — > y x g i s homotopic to a homeomorphism [65]. The converse impli
cation was proved earlier by West [240]. Chapman also succeeded in extending the simple 
homotopy theory from compact polyhedra and CW-complexes to compact ANR's [67]. 

In 1973 Torunczyk proved that the direct product of a compact AR with the Hilbert 
space h is homeomorphic to h [227]. Generalizations to products of ANR's with normed 
vector spaces were obtained in [228]. Finally, in 1975 R.D. Edwards proved that the prod
uct of a locally compact ANR with 2 is a g-manifold (see [66]). Combining Edwards' 
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ANR theorem with Chapman's triangulation theorem, one immediately concludes that ev
ery compact ANR has the homotopy type of a compact polyhedron P, which answers a 
classical problem stated by Borsuk at the International Congress of Mathematicians held 
in Amsterdam in 1954. 

This problem was first solved by West. He proved that every locally compact ANR X is 
resolvable, i.e. it is the image of a Q-manifold M under a cell-like mapping f : M -^ X 
[241, 242]. Since cell-like mappings between locally compact ANR's are (fine) homotopy 
equivalences [124], X has the homotopy type of M. If X is compact, M is also compact 
and, by the triangulation theorem, M has the homotopy type of a compact polyhedron. 
The fact that Z x [0, 1) is resolvable is often referred to as Miller's theorem. Actually, R.T. 
Miller proved the analogous assertion for finite-dimensional ANR's and finite-dimensional 
manifolds [186], but the arguments were applicable to the infinite-dimensional case as well. 
Note the difference of behavior between Q-manifolds and w-manifolds, exemplified by the 
resolvability of ANR's and the lack of resolvabihty of homology n-manifolds (which are 
finite-dimensional ANR's). 

In Warsaw Torunczyk proved a remarkable characterization of 2-manifolds as locally 
compact ANR's having the disjoint n-cube property, for all n [230]. He discovered this 
property independently of Cannon's discovery of the disjoint disc property [47]. Actually, 
his result preceded Cannon's work by a few months (see p. 291 of [114]). The preprints 
were widely disseminated already in the beginning of 1977. However, the paper appeared 
only in 1980, because of the long waiting time in Fundamenta Mathematicae at that time. 
The strategy of Torunczyk's proof consisted in showing that the projection Z x Q -> Z 
(under the assumptions of the theorem) fulfills Ring's shrinking criterion, which yielded 
a homeomorphism X x Q ^ X. However, by the Edwards ANR theorem, X x 2 is a 
(2-manifold. Alternative proofs of Torunczyk's theorem were obtained by Edwards [96] 
and later by J.J. Walsh [238]. These proofs use neither the West resolution theorem nor 
the Edwards ANR theorem. Instead they use Miller's theorem and the scheme used in 
proving the characterization theorem for finite-dimensional manifolds. Torunczyk's char
acterization theorem for Q-manifolds implies the Edwards ANR theorem and many other 
results on Q-manifolds. In 1981 Torunczyk characterized /2-manifolds as ANR's having 
the discrete-cells property [231]. An alternative proof was given in [21]. Torunczyk also 
considered the characterization of nonseparable Hilbert space manifolds and solved an old 
problem by proving that the weight of an infinite-dimensional Frechet space determines its 
topological type. 

There exist elementary examples of cell-like mappings f \X -^ Y between metric com-
pacta, which are not homotopy equivalences. A much deeper fact is the existence of cell
like mappings which are not shape equivalences. The first such example was described by 
J.L. Taylor [224], who used sophisticated algebraic topology [1, 226]. In this example X 
is not an ANR and F = Q. There exist similar examples, where X = Q and Y is not an 
ANR [140]. At this point it was natural to ask whether the cell-like image of a compact 
finite-dimensional ANR must always be an ANR? It follows from a result of George Ko-
zlowski [149] that this is equivalent to the following question. Must a cell-like image Y 
of a compact finite-dimensional ANR X be finite-dimensional? This problem proved to be 
very difficult and for a number of years defied the efforts of many topologists. 

Finally, the problem was answered negatively. First it was proved that the following two 
problems are equivalent: (i) Does there exist a finite-dimensional metric compactum, which 
admits an infinite-dimensional cell-like image? (ii) Does there exist an infinite-dimensional 
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Thomas A. Chapman (born in 1940 in Mt. Hope, West Virginia) obtained his Ph.D. in 1970 at 
Louisiana State University from Anderson. Robert Duncan Edwards (born in 1942 in Freeport, 
New York) obtained his Ph.D. in 1969 from the University of Michigan under James Kister. 
Ross Geoghegan (born in 1943 in Dubhn, Ireland) obtained his Ph.D. in 1968 at Cornell 
University from David Wilson Henderson. James Earl West (bom in 1944 in Grinnell, Iowa) 
obtained his Ph.D. in 1967 at Louisiana State University from Anderson. Henryk Torunczyk 
(born in 1945 in Warsaw) obtained his Ph.D. in 1971 in Warsaw from Czeslaw Bessaga. Steven 
Charles Ferry (born in 1947 in Takoma Park, Maryland) obtained his Ph.D. in 1973 from 
Morton Brown at the University of Michigan. John Joseph Walsh (born in 1948 in Helena, 
Montana) obtained his Ph.D. in 1973 at the State University of New York in Binghamton 
from Louis McAuley. 

metric compactum X with finite (integral) cohomological dimension dim^ X < oo? The 
latter was a more than 50 years old unsolved problem of P.S. Aleksandrov. The equiv
alence of the two questions was announced in 1978 by R.D. Edwards in an abstract in 
the Notices of the American Mathematical Society [97]. In 1981 J.J. Walsh published a 
proof in [237] with acknowledgement to Edwards. A construction described in this proof 
proved to be very useful in cohomological dimension theory and is usually referred to as 
the Edwards-Walsh complex. In 1988 Aleksandr Nikolaevich Dranishnikov in Moscow 
[83, 84] (a student of E.V. Shchepin born in 1958) solved the Aleksandrov problem by 
producing an infinite-dimensional metric compactum X having dim^Z = 3. He used 
the Edwards-Walsh complex and some sophisticated computations in reduced complex 
AT-theory with mod p coefficients [4, 45]. It was then easy to obtain a cell-like mapping 
f:S^-> y with dim 7 = 00. 

An important strengthening of cell-like mappings are the hereditary shape equivalences, 
i.e. proper mappings f : X -> Y, which have the property that, for every closed subset 
5 c y, the restriction of / to A = f~^{B) is a shape equivalence f\A: A ^- ^ . It 
was proved by Kozlowski [149] that the image of a compact ANR under a hereditary 
shape equivalence is always an ANR. Kozlowski's influential paper was never published. 
According to its author, the referee (Trans. Amer. Math. Soc.) required too many changes. 

Research in the theory of retracts was also going on in Moscow, especially in Smirnov's 
seminar. Yu.M. Smirnov, a well-known general topologist, started his seminar in 1953. In 
the beginning it was devoted to general and infinite-dimensional topology. Later it included 
the theory of retracts and shape. Yu.T. Lisitsa, a member of Smirnov's seminar, success
fully applied factorization techniques to problems concerning the extension of mappings. 
In particular, he obtained extension theorems for mappings into LC^-spaces, which are 
analogues of Dugundji's theorems for mappings into LC"-spaces. Moreover, he showed 
that ANR's for metric spaces are always ANR's for the class of M-paracompact spaces, i.e. 
Hausdorff spaces, which admit perfect mappings onto metric spaces [166]. S.A. Bogatyi, 
another member of the seminar, studied various types of approximate retracts, especially 
from the point of view of shape theory [24]. Smirnov and his group devoted a number of 
papers to equivariant theory of retracts [218,219,6,7,170], a topic initially studied by J.W. 
Jaworowski [133, 134]. E.V. Shchepin obtained the surprising result that an ANR for the 
class of compact Hausdorff spaces must be either infinite-dimensional or metrizable [213]. 
The proof uses results on uncountable inverse systems of compacta, which he developed 
in his Ph.D. thesis. 
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Yurii Mikhailovich Smirnov, professor at Moscow State University, was born in Kaluga in 
1921. He began his studies at Moscow State University in 1939. He first belonged to the 
seminar of A.N. Kolmogorov (1903-1987). He became Alexandrov's student when, on Kol-
mogorov's recommendation, he was assigned to Aleksandrov to help him write his papers 
(Aleksandrov had a very poor eyesight). Smirnov's studies were interrupted by the second 
world war, which he spent in the navy. Returning from the war to the University, he defended 
his candidate's thesis in 1951 and his D.Sc. thesis in 1958. Yurii Trofimovich Lisitsa was born 
near Bershad' in Ukraine in 1947. He defended his candidate's thesis in 1973 at Moscow State 
University. Eugenii Vitalevich Shchepin was born in Moscow in 1951. He was the last student 
of Aleksandrov. At Moscow State University he defended the candidate's thesis in 1977 and 
the D.Sc. thesis in 1979. 

Recent advances in cohomological dimension theory led to the formation of a new area 
of topology, called extension theory. According to a classical theorem on the (covering) 
dimension, dim X ^ ^ if and only if every mapping / : A —> 5", defined on a closed subset 
A of X, extends to a mapping f \X -^ S". Similarly, for the cohomological dimension 
with coefficients in G, one has dim^ X ^ n provided every mapping f : A -> K{G, n) 
into the Eilenberg-Mac Lane complex K{G, n) extends to a mapping f :X -^ K{G, n). 
More generally, in extension theory one considers the problem of extending mappings into 
metric simplicial complexes and CW-complexes. This unifies and generalizes the theories 
of covering and cohomological dimensions [92]. 

2. Theory of shape 

It is generally considered that shape theory was founded in 1968, when Borsuk published 
his well-known paper on the homotopy properties of compacta [34]. Borsuk's starting point 
was the observation that many theorems in homotopy theory are valid only for spaces 
with good local behavior, e.g., manifolds, CW-complexes, ANR's, but fail when applied 
to spaces like metric compacta. A simple example of this phenomenon is the already men
tioned Whitehead theorem that a weak homotopy equivalence between connected CW-
complexes is a homotopy equivalence. 

An example showing the failure of Whitehead's theorem for metric compacta is provided 
by the mapping / : X -> 7, where X is the Warsaw circle and Y = {*} is a point. The 
Warsaw circle, an object popular in shape theory, is the planar continuum obtained from the 
closure of the graph of the function sin(l /0, t e (0, I/TT], by identifying the points (0, 1) 
and (I/TT, 0). The mapping / is a weak homotopy equivalence, because all the homotopy 
groups of the Warsaw circle vanish. Nevertheless, / is not a homotopy equivalence. 

To overcome such difficulties, caused by local irregularities of spaces, Borsuk consid
ered metric compacta embedded in the Hilbert cube Q (more generally, in a fixed absolute 
retract). Instead of mappings / : X -> 7 between such compacta, he considered/wnJa-
mental sequences (fn): X -^ 7, i.e. sequences of mappings fn'. Q -> Q, n = \,2,..., 
such that, for every neighborhood V of 7 in 2 , there exist a neighborhood L̂  of X in 2 and 
an integer m such that /„([/) c y, for n > m. Moreover, the restrictions fn \ U and /„' | U 
are homotopic in V, for n,n^ ^ m. Fundamental sequences compose by composing their 
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components, i.e. {gn){fn) = ignfn)- Two fundamental sequences (/„), (/„0 are considered 
homotopic provided every V admits a U and an m such that fn\U :^ fl^\U in V, whenever 
n ^ m. Homotopy of fundamental sequences is an equivalence relation and the homotopy 
classes [{fn)] compose by composing their representatives, i.e. [(gn)][{fn)] = [(gn)(fn)]' 
In this way one obtains a category, whose objects are compacta in Q and the morphisms 
are homotopy classes of fundamental sequences. Since arbitrary metric compacta embed 
in Q, one readily extends this category to an equivalent category Sh(CM), whose objects 
are all metric compacta. This is Borsuk's shape category. 

Every mapping / : X -> 7 induces a fundamental sequence, whose homotopy class de
pends only on the homotopy class of / . In this way one obtains a functor S: Ho(CM )-^ 
Sh(CM) from the homotopy category of metric compacta to Borsuk's shape category, 
called the shape functor. Compacta X, Y of the same homotopy type have the same shape, 
sh(X) = sh(F), i.e. are isomorphic objects of Sh(CM). Borsuk showed that, for a compact 
ANR Y, shape morphisms F :X -^ 7 are in one-to-one correspondence with the homo
topy classes of mappings X ~> Y. Therefore, for compact ANR's, shape coincides with 
homotopy type. The Warsaw circle and the circle S^ are examples of metric continua which 
have different homotopy types, but the same shape. 

Borsuk's work on shape theory also had its precedents. These include cell-like spaces 
and cell-like mappings, i.e. property UV^, as well as its finite analogue, the prop
erty UV'\ They also include the Vietoris and the Cech homology (cohomology) groups 
[234, 57]. D.E. Christie's Ph.D. thesis, written in Princeton under Lefschetz's supervision, 
contains the beginnings of ordinary and strong shape theories [70]. In particular, Christie's 
homotopy groups coincide with Borsuk's shape groups. The 1-dimensional shape group 
was discovered even before [148]. The Brasihan topologist Elon L. Lima, a student of 
Edwin H. Spanier (1921-1996), generahzed the Spanier-Whitehead duahty to compact 
subsets of the sphere, by introducing a stable shape category [162]. However, in his paper 
no attempt was made to develop the shape category. Lima's work was "discovered" by the 
shape-theorists with considerable delay. 

Undoubtedly, many topologists became aware of Borsuk's work on shape theory after he 
presented his ideas and results in Baton Rouge, Louisiana, in 1967, during a symposium 
on infinite dimensional topology (the proceedings were published only in 1972) and in 
Hercegnovi (former Yugoslavia) in 1968, during an international conference on topology. 
At the second of these events Borsuk used for the first time the suggestive term shape [35]. 

Shortly after Borsuk's talks and seminal papers on shape theory [34-38], an avalanche 
of articles on this new branch of topology appeared. By 1980 the literature on shape theory 
already consisted of about 400 papers. Around the world, groups of shape theorists were 
formed. Three speciahzed conferences, organized in Dubrovnik in 1976, 1981 and 1986 
(Volumes 870 and 1283 of the Springer Lecture Notes in Mathematics) also contributed to 
the quick growth of shape theory. 

In the initial period Warsaw was the center of activities in shape theory and the seat of 
the Borsuk group, which included J. Dydak, S. Godlewski, W. Holsztynski, A. Kadlof, 
J. Krasinkiewicz, Krystyna Kuperberg, P. Mine, Maria Moszynska, S. Nowak, Hanna 
Patkowska, S. Spiez, M. Strok, A. Trybulec. 

In the US the first contributions to shape theory were made by Jack Segal, Professor at 
the University of Washington in Seattle (born in Philadelphia in 1934, Ph.D. in 1960 at 
the University of Georgia from M.K. Fort, Jr.), R.H. Fox (a well-known specialist in knot 
theory) and T.A. Chapman, Professor at the University of Kentucky. They were quickly 
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joined by Billy Joe Ball (born in 1925, died in Austin, Texas in 1996) and R.B. Sher (born 
in Flint, Michigan in 1939) (Athens, Georgia), J.E. Keesling (born in 1942) and Philip 
Bacon (born in Chicago in 1929, died in Gainesville 1991) (Gainesville, Florida), R. Ge-
oghegan and D.A. Edwards (Binghamton, New York), H.M. Hastings (Hempstead, New 
York), R.C. Lacher (Tallahassee, Florida), L.R. Rubin (Norman, Oklahoma), T.B. Rush
ing (born in Marshville, N. Carolina in 1941, died in Salt Lake City in 1998) (Salt Lake 
City, Utah), J.B. Quigley (Bloomington, Indiana), D.S. Coram and R F. Duvall (Stillwa
ter, Oklahoma), L.S. Husch (Knoxville, Tennessee), S. Ferry (Lexington, Kentucky), F.W. 
Cathey and G. Kozlowski (Seattle, Washington), G.A. Venema (Grand Rapids, Michigan) 
and many others. 

In Moscow, since 1924, Aleksandrov conducted a seminar on topological spaces and 
dimension theory. Smirnov was a member of Aleksandrov's seminar and from 1953 to 
1987 had his own seminar. Since 1970 the name of the seminar was Seminar for shape 
theory and retracts. Among the participants interested in shape theory and related areas 
were V.V. Agaronian, S. Antonian, S.A. Bogatyi, A.I. Bykov, A.Ch. Chigogidze, V.A. 
Kahnin, S.S. Kotanov, B.T. Levshenko, Yu.T. Lisitsa, I.S. Rubanov, A.R Shostak, E.G. 
Sklyarenko, G. Skordev. Smirnov's group especially studied FANR's and related spaces as 
well as equivariant shape theory. In the Soviet Union contributions to shape theory were 
also made in TbiUsi, Georgia, by Z.R. Miminoshvih, a student of L.D. Mdzinarishvih 
(who in his turn was a student of G.S. ChogoshviU (1914-1998), the leading topologist in 
Georgia). Research in shape theory and related areas was also done in Novosibirsk by V.I. 
Kuz'minov, LA. Shvedov, M.A. Batanin. 

In Japan contributions to shape theory came from Kiiti Morita (1915-1995), the founder 
of general topology in Japan (dimension theory, product spaces) and from the group around 
Yukihiro Kodama at the University of Tsukuba. Kodama's group included H. Fukaishi, 
H. Hosokawa, H. Kato, K. Kawamura, A. Koyama, J. Ono, K. Sakai, K. Tsuda, T. Watan-
abe, T. Yagasaki, K. Yokoi. 

The shape group in Zagreb (earlier Yugoslavia, now Croatia) was led by Sibe Mardesic 
(born in 1927 in Bergedorf near Hamburg, Germany). It included Z. Cerin, Q. Haxhibeqiri, 
K. Horvatic, I. Ivansic, Vlasta Matijevic, N. Sekutkovski, S. Ungar, N. Uglesic. In Ger
many, shape theorists were led by Friedrich Wilhelm Bauer, Professor in Frankfurt a.M 
(born in Berlin in 1932). His group included B. Gtinther, P. Mrozik, H. Thiemann. In Great 
Britain the first contributions to shape theory were made by Timothy Porter, Professor at 
the University of Wales in Bangor (born in Abergavenny, Gwent in 1947). Further contri
butions were made by Allan Calder from Birckbeck College in London. In France shape 

K. Morita was born in Hamamatsu-shi, Shizuoka. He studied at Tokyo Higher Normal School 
and Tokyo University of Science and Literature. He defended his Ph.D. thesis in 1950 at the 
University of Osaka. However, he was essentially a self-taught topologist. He was Professor 
at the Tokyo University of Education, which later became the University of Tsukuba. Morita 
also worked in algebra (module and ring theory). Y. Kodama was born in Tsuruoka in 1929. 
He obtained his B.Sci. from Tokyo University of Literature and Science in 1950 and his Ph.D. 
from Tokyo University of Education in 1960, under Morita. For his work in topology he was 
primarily inspired by studying the papers of Aleksandrov and Borsuk. He was Professor at 
Tsukuba University until his retirement in 1993. 
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S. Mardesic obtained his Ph.D. in 1957 from the University of Zagreb. He is essentially a self-
taught topologist, influenced primarily by the work of Aleksandrov and Borsuk. F.W. Bauer 
obtained his Ph.D. in 1955 in Frankfurt a.M. In his work he was primarily influenced by 
W. Franz, P.S. Aleksandrov and S. MacLane, and considers himself a member of the Aleksan
drov school. T. Porter obtained his Ph.D. from the University of Sussex in 1972. J.-M. Cordier 
obtained his doctoral d'etat from University Paris 7 in 1987. J.M.R. Sanjurjo obtained his 
Ph.D. in Madrid in 1979 under the supervision of J.M. Montesinos. Being a knot-theorist, 
Montesinos came in touch with shape theory through Fox. 

theory began with Jean-Marc Cordier and Dominique Bourn from the University of Pi-
cardie in Amiens. The Spanish shape group was led by Jose M.R. Sanjurjo, Professor at 
the Complutense University in Madrid (born in Madrid in 1951). His group included A. Gi-
raldo, V.F. Laguna, M.A. Moron, F.R. Ruiz del Portal. Some shape theory was also done in 
Belgium (R.W. Kieboom), Canada (L. Demers), Italy (E. Giuli, L. Stramaccia, A. Tozzi), 
Mexico (Monica Clapp, R. Jimenez, L. Montejano, Sylvia de Neymet), Romania (I. Pop), 
Switzerland (H. Kleisli, C. Weber). 

Jack Segal spent the academic year 1969/70 in Zagreb. The result of this visit was joint 
work with Mardesic, generalizing Borsuk's shape theory to compact Hausdorff spaces 
[178, 179]. The new description of shape was based on a systematic use of inverse sys
tems. Every compact Hausdorff space X can be represented as the inverse limit of a 
cofinite inverse system X = (Xx, pxx', ^ ) of compact polyhedra (or compact ANR's). 
Shape morphisms F :X -> F are given by homotopy classes of homotopy mappings 
{f, f^)\X ^^ y = (F^, p^^' , M). The latter consist of an increasing function f : M -> A 
and a family of mappings f^ : X/(^) -> Y^ such that, for /XQ ^ Ml, the following diagram 
commutes up to homotopy 

P/(/^o)/(Mi) 

^ / ( M o ) -^ ^ / ( M i ) 

(1) 

^Mo/^1 

Two homotopy mappings (f\ f), {f", fp are considered homotopic if there exists an 
increasing function / ^ f\f' such that f'^Pf'{n)f{n) ^ f^!iPf"{n)f{n)' Equivalence 
with the Borsuk approach was proved using inverse systems which consist of a decreasing 
sequence of compact ANR-neighborhoods of X in g and of inclusion mappings. 

While Borsuk's approach was rather geometric, the inverse system approach was more 
categorical and led quickly to further generalizations. In 1972 Fox generalized Borsuk's 
approach in a different direction, i.e. to arbitrary metric spaces X [109]. He embedded X 
as a closed subset in a suitable absolute retract L and used inclusion systems of ANR-
neighborhoods of Z in L. Both generalizations were unified in the papers by Mardesic 
[171] and K. Morita [191], where the general shape category Sh(Top) of arbitrary topo
logical spaces was defined. Morita allows his systems X to be homotopy systems, i.e. the 
usual conditions on bonding mappings px\': Xx' -^ Xx and projections px'.X -> Xx are 
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replaced by homotopy conditions pxx'Px'x" — Pxx", Pxx'Px' — px^ ^ ^ ^' ^ ^"- More
over, some theorems from [179] now became conditions (Ml), (M2), which are part of the 
definition of a system being associated with a space: 

(Ml) For every mapping / : X -> P to a polyhedron (or ANR) P, there exist a X E yl 
and a mapping fx'.Xx^ P such that fxpx - / . 

(M2) For every X e A and mappings fx, f^'.Xx -^ P such that fxpx — fxPx, there 
exists an index X' ^ X such that fxPxx' — fxPy^x'-

Morita proved that the Cech system, formed by the nerves of all normal coverings of X, 
is a homotopy system associated with X [192]. In the terminology first used in algebraic 
geometry [116], shape morphisms are given by morphisms X ^^ Y from the category 
pro-Ho(Top), where Ho(Top) denotes the homotopy category of topological spaces. 

One of the first successful apphcations of shape theory is Fox's theory of overlays, a 
modification of covering spaces [109]. The classical theorem of covering space theory 
asserts that n-fold covering spaces of a connected arcwise locally connected and semi-
locally 1-connected space X are in a one-to-one correspondence with the classes of ho-
momorphisms of the fundamental group Tt\ {X) into the symmetric group X'̂ , where two 
homomorphisms 0, yj/ belong to the same class provided there exists an inner automor
phism 0 : En -^ ^n such that 0 = ^i/r. Fox's shape theoretic version of the theorem, 
refers to overlays of arbitrary metric spaces X (embedded in some ANR). However, the 
fundamental group 7ti{X) has to be replaced by iht fundamental pro-group 7ri(X, *), the 
inverse system of fundamental groups of ANR-neighborhoods of X. 

Further significant successes of shape theory were the shape-theoretic versions of 
the theorems of Whitehead, Hurewicz and Smale. The statements of these results also 
use pro-groups, i.e. inverse systems of groups. Application of the singular homology 
functor H,n(.',G) to X yields an inverse system of Abelian groups H,n(X; G) = 
(H,n{Xx', G), pxx'^, A), called the m-th-homology pro-group of X. Similarly, for sys
tems of pointed spaces {X, *), one defines the m-ih-homotopy pro-group 7Tm(X, *). If X 
and (X, *) are systems of ANR's associated with the space X and (X, *), respectively, 
then these pro-groups do not depend on the choice of the associated systems. Moreover, 
they are shape invariants of X and (X, *), respectively. The inverse limit H,n{X\ G) = 
lim Hm(X; G) is the Cech homology group. The shape groups ftmiX, *) = \imnm(X, *), 
were first defined in [70]. One should keep in mind that the Cech groups and the shape 
groups give less information about the space than the corresponding homology and homo
topy pro-groups. 

The most general version of the Whitehead theorem in shape theory is due to K. Morita 
[190]. It asserts that a morphism of pointed shape F: (X, *) -> (Y, *) between finite-
dimensional topological spaces is a shape equivalence, i.e. an isomorphism of pointed 
shape if and only if it induces isomorphisms of all homotopy pro-groups F# : 7Tm (X, *) -^ 
7im(Y, *). In contrast to the classical Whitehead theorem, there are no restrictions on the 
local behavior of the spaces involved. Morita's result was preceded by less general versions 
of the theorem, obtained by Moszynska [193] and Mardesic [172]. The restriction to finite 
dimensions cannot be omitted. A counterexample was obtained in [82], using a metric 
continuum defined by D.S. Kahn [135]. For every odd prime p, one considers the CW-
complex Xo, obtained by attaching a (2/7 + l)-cell to 5^^ by a mapping of degree p. One 
defines X^+i as the (2/7 — 2)-fold suspension E^P~^{Xn), n ^ 0. A particular mapping 
fi'.Xi -^ Xo is chosen. For « > 1, one defines mappings fn : X„ -^ X„_i by putting 
/„ = i;^^~^(/„_i). The Kahn continuum is the limit of the inverse sequence defined 
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Stanislaw Spiez (born in Kalisz, Poland in 1944), Slawomir Nowak (born in Sosnowiec, 
Poland in 1946) and Jerzy Dydak (born in Brzozow, Poland in 1951) obtained their Ph.D. 
degrees from the University of Warsaw in 1973, 1973 and 1975, respectively. They were Bor-
suk's students. Dydak moved to US in 1982. 

by the spaces Z„ and by the mappings /„ . The crucial property that all the compositions 
fi o ' " o fj, i < j , are essential mappings depends on deep results in homotopy theory 
[1,226]. 

In the Whitehead theorem mentioned above the restriction to finite-dimensional spaces 
can be replaced by the weaker restriction to spaces of finite shape dimension sd (also called 
fundamental dimension and denoted by Fd). This is a numerical shape invariant introduced 
by Borsuk [36]. An extensive study of this notion was carried out by Polish topologists 
S. Nowak [196] and S. Spiez [220, 221]. 

The shape-theoretic Hurewicz theorem involves homology pro-groups. One assumes 
that X is a (n — \)-shape connected space, n ^ 2, i.e. its homotopy pro-groups 7tm(X, *) 
vanish, for m ^ n — I. One concludes that the corresponding homology pro-groups 
Hfn(X; Z) vanish and there exists a natural isomorphism 0„ : 7r„(X, *) -^ Hn{X; Z) of 
the n-th-pro-groups. The general result is due to Morita [190]. Earlier versions involv
ing shape groups were obtained by M. Artin and B. Mazur [10] and K. Kuperberg [152]. 
A Hurewicz theorem involving Steenrod homology is due to Y. Kodama and A. Koyama 
[146] and to Yu.T. Lisitsa [168]. 

The classical Smale theorem is the homotopy version of a theorem of Vietoris concern
ing cell-like mappings of compacta [217]. The shape-theoretic Smale theorem was proved 
by J. Dydak [89,91] and asserts that, for metric compacta, every cell-like mapping induces 
isomorphisms of homotopy pro-groups /# : 7r„(X, *) -> 7r„(F, *), for all n and all base-
points. Consequently, if sd Z, sd 7 < oo, the Whitehead theorem applies and / is a shape 
equivalence. 

Among the most important contributions of Borsuk to shape theory is the introduction 
of two shape invariant classes of metric compacta, the fundamental absolute neighborhood 
retracts FANR's [36] and movable compacta [37]. X is an FANR provided, for any com
pact metric space Y containing X, there exist a closed neighborhood U of X in Y and a 
shape retraction R:U -> X, i.e. a shape morphism which is a left shape inverse of the 
inclusion mapping i\X -> U, RS[i} = id^. Clearly, every compact ANR is an FANR. 
Many results from the theory of retracts have their analogues in the theory of shape. For 
example, if X is shape dominated by X' (i.e. there exist shape morphisms f \X ^^ X' and 
g'.X' -^ X such that gf = idx) and X' is an FANR, then X is also an FANR. This im
plies that FANR's coincide with metric compacta which are shape dominated by compact 
polyhedra. 

A compact space X, embedded in the Hilbert cube Q, is movable provided every neigh
borhood [/ of X in g admits a neighborhood U^ of X such that, for any neighborhood 
U" c ^ of X, there exists a homotopy H.U'xI ^ U with H(x,0) = x, H{x,l) e U\ 
for all X € U'. In other words, sufficiently small neighborhoods of X can be deformed ar
bitrarily close to X. Borsuk proved that this remarkable property is a shape invariant. In a 
subsequent paper, he characterized FANR's by a similar property, called strong movabil-
ity [38]. From its definition it is clear that FANR's are always movable. In fact, Borsuk 



258 S. Mardesic 

introduced movability as a tool needed to detect that some compacta, e.g., the solenoids, 
are not FANR's. Borsuk also introduced the notion of n-movability and proved that LC^~^ 
compacta are always ^-movable [39]. A compactum X Q Qis ^-movable provided every 
neighborhood U of X in Q admits a neighborhood U^ of X in g such that, for any neigh
borhood U^' c i7 of Z, any compactum K of dimension dim K ^ n and any mapping 
f :K -> U\ there exists a mapping g: K -^ U'\ such that / and g are homotopic in U. 
Clearly, if a compactum X is /2-movable and dim Z ^ /i, then X is movable. The notion of 
Ai-movability was the beginning of n-shape theory, which was especially developed in the 
papers of A.Ch. Chigogidze [69]. The n-shape theory is an important tool in the theory of 
n-dimensional Menger manifolds, developed by M. Bestvina [19]. 

Further studies revealed the importance of pointed FANR's and pointed movability. For 
example, the union of two pointed FANR's, whose intersection is a pointed FANR, is 
again a pointed FANR [94]. The main protagonists of this research were D.A. Edwards, 
R. Geoghegan, H.M. Hastings, A. Heller and J. Dydak. It was shown in [99, 101] that 
connected pointed FANR's coincide with stable continua, i.e. continua having the shape 
of a polyhedron. In general one cannot achieve that this polyhedron be compact. This is 
because there exist noncompact polyhedra P, which are homotopy dominated by compact 
polyhedra, but do not have the homotopy type of a compact polyhedron [236]. Edwards and 
Geoghegan [100] defined a Wall obstruction a (X) for FANR's X and they showed that X 
has the shape of a compact polyhedron if and only if a (X) = 0. Since a (X) is an element 
of the reduced projective class group K^ini (Z, *)) of the first shape group n\ (X, *), this 
result linked shape theory to AT-theory. 

The question whether every FANR is a pointed FANR eluded the efforts of shape the
orists for several years. Finally, in 1982, Hastings and Heller proved that this is always 
the case [122]. The crucial step in their proof is a purely homotopy theoretic result. This 
is the theorem that on a finite-dimensional polyhedron X every homotopy idempotent 
f :X -^ X splits, i.e. f^ — f implies the existence of a space Y and of maps u.Y ^^ X, 
v'.X -^ Y, such that vu 2:: ly, uv 2:^ f. The proof uses nontrivial combinatorial group 
theory as well as the spectral sequence of a covering mapping. More precisely, it uses a par
ticular group G and a particular homomorphism (t)\G ^^ G, which induces an unsplittable 
homotopy idempotent / : K{G, 1) -> K{G, 1) of Eilenberg-Mac Lane complexes. It also 
uses the fact that the construction is universal in the sense that whenever f^:X-> X is an 
unsplit homotopy idempotent, then there is an injection G ^- TTI ( Z ) , which is equivariant 
with respect to /# and /^. The group G itself has been considered before by R.J. Thomp
son (unpublished). Parts of the argument were discovered independently by R Mine, by 
J. Dydak [90] and by R Freyd and A. Heller (unpublished). The question whether movable 
continua are always pointed movable is still open. 

For movable spaces various shape-theoretic results assume simpler form. For example, 
if / : (X, *) -^ (F, *) is a pointed shape morphism between pointed movable metric con
tinua, which induces isomorphisms of shape groups /# : TCkiX, *) -^ likiY, *), for all k 
and if the spaces X, Y are finite-dimensional, then / is a pointed shape equivalence. This 
is a consequence of the shape-theoretic Whitehead theorem and the fact that such an / 
induces isomorphisms of homotopy pro-groups TikiX, *) -^ 7r^(F, *) [141, 91]. 

In 1972 a new direction in shape theory was inaugurated by Chapman. He applied meth
ods of infinite-dimensional topology to the study of shape of metric compacta [62]. More 
precisely, he considered compacta X which are Z-embedded in the Hilbert cube Q, i.e. 
have the property that there exist mappings f: Q -^ Q, which are arbitrarily close to 
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the identity but their image f{Q) misses X. This condition, introduced by R.D. Anderson 
[5], impUes tameness and unknottedness of compacta and proved to be fundamental in the 
development of the theory of Q-manifolds [66]. Chapman's complement theorem asserts 
that two compacta X, Y, embedded in Q as Z-sets, have the same shape if and only if their 
complements Q\X, Q\Y are homeomorphic. Chapman also exhibited an isomorphism of 
categories T : yVV -> S. The domain of T is the weak proper homotopy category of com
plements M = Q\X oi Z-sets X of Q. Morphisms of WV are equivalence classes of 
proper mappings f: M -> N = Q\Y. Two such mappings f,g'.M -> Â  are consid
ered equivalent provided every compact soi B ^ N admits a compact set A c M and a 
homotopy H: M x I -^ N such that H connects f to g and H((M\A) x /) c N\B. 
The codomain of T is the restriction of the shape category Sh(CM) to Z-sets X of Q. On 
objects M = Q\X of W P one has T(M) = Q\M = X. 

Subsequently, Chapman published a second paper, which contained a finite-dimensional 
complement theorem, i.e. a theorem where the ambient space was the Euclidean space 
[63]. This paper had a strong geometric flavor and immediately attracted the attention of a 
number of specialists in geometric topology, in particular in PL-topology, who produced a 
series of finite-dimensional complement theorems. In most of these theorems one assumes 
that X and Y are "nicely" embedded in the Euclidean space R" and satisfy the appropri
ate dimensional conditions. The conclusion is that X and Y have the same shape if and 
only if their complements R^\X, R^^\Y are homeomorphic. The most general of the re
sults obtained is the complement theorem from [132]. It assumes that X and Y are shape 
r-connected, sdX = sdY = k, n — k ^ 4 and n ^ max{5, 2k -\-2 — r}. The "niceness" 
condition is the inessential loops condition ILC, introduced by G.A. Venema [233]. A com-
pactum X c R" satisfies ILC provided every open neighborhood t/ of X in R'̂  admits an 
open neighborhood V of Z in L̂ , such that each loop in V\X, which is null-homotopic in 
V, is also null-homotopic in U\X. This condition was preceded by McMillan's cellularity 
criterion CC [183]. Complement theorems in more general ambient spaces and different 
categories were studied extensively by P. Mrozik [195] 

A compact metric space X embeds up to shape in a space Y provided Y contains a metric 
compactum X' such that sh (X) = ^h{X'). L.S. Husch and I. Ivansic obtained several 
interesting results concerning this notion. In particular, they showed that every r-shape 
connected and pointed (r -|- l)-movable compactum X with sd(X) =k,k^?>, embeds up 
to shape in R^^-^ [131]. 

Based on Quillen's homotopical algebra [202], Edwards and Hastings introduced a ho
motopy category of inverse systems, denoted by Ho(pro-Top). It is obtained from the cate
gory pro-Top by locahzation at level homotopy equivalences. Using this category instead 
of pro-Ho(Top), they defined a strong shape category SSh( CM) of compact metric spaces. 
Strong shape has distinct advantages over shape, e.g., Edwards and Hastings showed that 
the analogue of Chapman's category isomorphism theorem assumes a more natural form. 
It asserts the existence of an isomorphism T :V -^ SS, between proper homotopy cate
gory V of complements M = Q\X of Z-sets X of Q and the restriction SS of the strong 
shape category SSh(CM) to Z-sets of Q [102, 147]. The strong shape category for metric 
compacta was first defined by J.B. Quigley, a student of J. Jaworowski at the University of 
Indiana in Bloomington [201]. 

Through efforts of various authors over several years, in particular. Porter [199], 
Bauer [15, 16], Calder and Hastings [46], MiminoshviU [189], Cathey and Segal [48], 
Lisitsa [167], Lisica and Mardesic [163, 164], Dydak and Nowak [93], Gunther [117], 
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a strong shape category for topological spaces SSh(Top) was defined and so was a strong 
shape functor S : Ho(Top) -> SSh(Top). It is related to the shape functor 5 by a factoriza
tion S = E S, where E : SSh(Top) -^ Sh(Top) is a functor which forgets part of the richer 
structure of strong shape. 

In defining the strong shape category for arbitrary spaces, one needed a method of asso
ciating with any given space X a system of polyhedra (or ANR's) in the category Top. One 
way of doing this is provided by the Vietoris system [199, 118]. Another approach, used 
by Bauer, rigidifies a construction from [171] and associates with X a 2-category Px. Its 
objects are mappings into polyhedra g:X-^P and its 1-morphisms gi -> g2 are given by 
a mapping r : P\ -^ P2 and a homotopy CD, which connects rg\ with g2. The 2-morphisms 
are defined by homotopies of order 2. This approach was generalized to homotopies of 
arbitrarily high order (expressed in simplicial terms) by Gunther [117]. 

Another method is based on the notion of resolution of a space X [173] (more generally, 
on strong expansions [93, 117, 174]). A resolution/i: Z —> Z is a morphism of pro-Top 
which satisfies a stronger version of Morita's conditions. 

(Rl) Given a polyhedron P and an open covering V of P, any mapping f :X -> P 
admits SLX e A and a mapping h\Xx -^ P such that the mappings hpx and / are V-near. 

(R2) There exists an open covering V' of P, such that whenever, for a A € y\ and two 
mappings h,h' \Xx -> P, the mappings hpx, h'px are V'-near, then there exists a Â  ̂  A. 
such that the mappings hpxx', h^Pxx' are V-near. 

To define a strong shape morphism F : X —> F, it suffices to choose (cofinite) polyhedral 
resolutions/?: X ^^ Y, q:Y -^ Y and a morphism Z -^ Y of Ho(pro-Top). 

It is an important fact that the category Ho(pro-Top) is equivalent to the coherent ho
motopy category CH(Top), which can be viewed as a concrete realization of the for
mer category [163, 164]. Its morphisms are coherent homotopy classes of coherent map
pings f'.X-^ Y. The latter consist of an increasing function f \M -^ A and of map
pings /^Q: X/(^Q) -^ F^Q, which make diagram (1) commutative up to a homotopy 
//xoMi '^/(/xi) X / -^ y^Q, which is also part of the structure of/. For three indices 
/̂ o ^ Ml ^ ^2, one has homotopies //xoMiAt2 • ^/(M2) X ^^ -^ ^MO' where A^ is the stan
dard 2-simplex. One requires that, on the faces of A^, f^iQiiMii is given by the mappings 
//X1/X2, //ioM2' /MO/̂ 1 as indicated on the following figure. 

MlM2 

•^/^O fixQfji^ / M I 



Absolute neighborhood retracts and shape theory 261 

Analogous requirements are imposed on higher homotopies ffiQ...fM„ : ^/(/x„) x zi'̂  -> F^̂ Q, 
for all increasing sequences /XQ ^ • • • ^ /x„ and all n. There are other, more sophisti
cated descriptions of coherent categories, due to J.M. Boardman and R.M. Vogt [23, 235], 
Cordier and Porter [72, 73], N. Sekutkovski [211], Batanin [14], but they all yield cate
gories equivalent to CH(Top). 

An important circle of ideas, related to strong shape, refers to strong or Steenrod homol
ogy. It was originally defined only for metric compacta [222]. Over the years, especially 
in former USSR, much work was done on strong homology of general spaces [215, 216]. 
The relation of strong homology to singular and Cech homology is similar to the relation 
of strong shape to homotopy and ordinary shape. For pairs of spaces (X, A), where A is 
normally embedded in X (e.g., if A is closed and X is paracompact), all the Eilenberg-
Steenrod axioms are fulfilled. From the point of view of shape theory, the most important 
property of strong homology is its invariance with respect to strong shape [163, 165]. In 
contrast to Cech homology, Cech cohomology has a long record of successful applica
tions. The explication lies in the fact that direct limit is an exact functor, while inverse 
limit is not, i.e. in general, the derived functors lim'̂  of lim are nontrivial. The higher limits 
Xmi^Hm{X\ Z) of the homology pro-groups play an important role in strong homology of 
spaces. Actually, there exist paracompact spaces X with lim"//;„(X; Z) / 0, for n arbi
trarily high [175]. However, if X is compact, lim"//„,(Z; Z) = 0, forn ^ 2 [156, 176]. 

Using a suitable approximate homotopy lifting property, D.S. Coram and RF. Duvall 
have introduced approximate fibrations as mappings f '.X -^ Y between ANR's, which 
generalize cell-like mappings and share many homotopy-theoretic properties with fibra
tions [71]. This class of mappings proved very useful in the study of mappings between 
manifolds. For mappings between metric compacta, approximate fibrations had to be re
placed by shape fibrations [111, 250]. The definition of a shape fibration between arbitrary 
spaces required the notion of resolution of a mapping [173]. A very useful generalization of 
the latter notion was introduced by T. Watanabe, who introduced approximate resolutions 
of mappings [239]. Subsequently, a more general theory was developed in [181]. 

Appropriate variations of the basic ideas of shape led to new types of shape theories. 
In particular, there is fibered shape [138, 249], equivariant shape [8, 61], stable shape 
[197, IS], proper shape [12, 11], uniform shape [209, 188]. 

Generally, one expects to find applications of shape theory in problems concerning 
global properties of spaces having irregular local behavior. Such spaces naturally appear 
in many areas of mathematics. A typical example is provided by the fibers of a mapping 
as in the case of cell-like mappings. Other examples are given by remainders of com-
pactifications, by sets of fixed points, by attractors of dynamical systems and by spec
tra of operators. In the latter, strong extraordinary homology plays and important role 
[137,136,17,76]. 

Keesling has devoted a series of papers to the study of the remainder )6X\Z of a locally 
compact space X in its Cech-Stone compactification [142]. In this research he used his 
earlier results concerning the Cech cohomology groups of movable spaces. Recently, shape 
theory found applications also in the field of geometric group theory. More precisely, the 
boundary 9G of a (discrete) group G is defined as a Z - set of a finite-dimensional compact 
AR X, such that the following two axioms hold: (i) X = X\Z admits a covering space 
action of G with compact quotient; (ii) The collection of translates of a compact set in 
X forms a null-sequence in X, i.e. for every open covering U of X all but finitely many 
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translates are W-small. The boundary 9 G is determined up to shape, i.e. if Z\ and Z2 satisfy 
the above axioms, then sh(Zi) = sh(Z2) [20]. 

Shape theory also led to new developments in the fixed point theorems. For every com
pact ANR X and every mapping / : X -> Z, the Lefschetz number A{f) is a well-defined 
integer. If A{f) / 0, then / has a fixed point. This well-known theorem is not true for 
arbitrary metric compacta, because for acyclic continua A{f) = 1 and they need not have 
the fixed point property. Nevertheless, Borsuk proved that, for an arbitrary metric com-
pactum X, A(f) ^ 0 impUes the existence of fixed points, provided / belongs to a certain 
class of mappings, called nearly extendible mappings [40]. Another new result asserts that 
the space 2^ of nonempty compacta and the space C{X) of nonempty continua in a locally 
connected Hausdorff continuum X have the fixed point property [210]. This was known 
before only for Peano continua X. 

As an example of application of shape theory in dynamical systems we state the follow
ing result. A finite-dimensional metric compactum embeds in a (differentiable) manifold 
M as an attractor of a (smooth) dynamical system on M if and only if it has the shape of 
a compact polyhedron [119, 208]. Another appUcation of shape concerns the definition of 
the Conley index for continuous and discrete dynamical systems [205]. 

Shape theory has also applications in the theory of continua. For example, joinable con
tinua were characterized as pointed 1-movable continua [150]. H. Kato successfully ap-
phed shape theory to the study of Whitney mappings of hyperspaces 2^ and C{X) [139]. 

There are many situations, where shape itself does not apply, but its methods do. Typ
ical examples are properties at infinity of locally compact spaces (see [58]) and proper 
homotopy (see [185,200,59]). Ideas of shape theory had a bearing on homology of groups 
[115]. The abstract aspects of shape led to categorical shape theory [75] and opened further 
possibilities of application, e.g., in pattern recognition [198, 74]. 

The approach to shape by inverse systems of polyhedra or ANR's is not the only one. 
A different approach, recently inaugurated by Sanjurjo [207] and further developed by 
Cerin [60] is based on the idea of replacing mappings by multivalued mappings, which 
map points into sufficiendy small sets. 
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1. Introduction 

In a paper for the Symposium on the Mathematical Heritage of Henri Poincare in 1980, 
Felix Browder [8] wrote that 

Among the most original and far-reaching of the contributions made by Henri Poincare 
to mathematics was his introduction of the use of topological or 'qualitative' methods 
in the study of nonlinear problems in analysis — The ideas introduced by Poincare in
clude the use of fixed point theorems, the continuation method, and the general concept 
of global analysis. 

Fixed point theory was an integral part of topology at the very birth of the subject in the 
work of Poincare in the 1880's. He showed that the solutions to certain important analytic 
problems could be studied by defining a set X and a function / : Z -> X in such a way that 
the solutions correspond to iht fixed points of the function / , that is, to the points x e X 
such that f{x) = x. 

In Section 2, we will examine the circle of ideas about fixed points that originated in 
Poincare's work and that were subsequently developed, in a topological setting indepen
dent of Poincare's analytic motivation, especially in the celebrated fixed point theorem 
of L.E.J. Brouwer. As topology became a well-established branch of mathematics in the 
1920's, fixed point theory continued to be central to the subject. In particular, the use of 
homology theory in the fixed point theory of Solomon Lefschetz, that was further devel
oped in that same period by Heinz Hopf, permitted a considerable refinement of Brouwer's 
discoveries, as we shall see in Section 3. 

Lefschetz introduced what is now called the Lefschetz number of a map and proved that 
if the number is nonzero, then the map has a fixed point. Since the Lefschetz number is 
defined in terms of the homology homomorphism induced by the map, it is a homotopy 
invariant. Consequently, a nonzero Lefschetz number implies that each of the maps in the 
given homotopy class has at least one fixed point. Papers of Jakob Nielsen in the 1920's 
sought to do more than establish the existence of fixed points. He wished to find the least 
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number of fixed points among all the maps in a homotopy class. We will discuss Nielsen's 
theory, and what became known as the Nielsen number, in Section 4. 

Although, as topology continued to develop in the 1930's and 1940's it came to focus 
less on fixed point theory, there were important further advances within fixed point theory 
itself. Kurt Reidemeister and his student Franz Wecken unified the Lefschetz and Nielsen 
numbers through the Reidemeister trace, which is the subject of Section 5. Wecken also 
considerably expanded and strengthened the theory that Nielsen had introduced. We will 
discuss that development in Section 6. 

As the summary above indicates, we will be concerned here, for the most part, with the 
early history of fixed point theory, that is, from its origins in the 1880's until the 1940's. 
Furthermore, we will not attempt a survey even within that restricted time period, but we 
will instead concentrate on the principal topological themes of the subject. However, the 
theory of Nielsen and Wecken raised many questions about the least number of fixed points 
among the maps in a homotopy class that were only settled much later, primarily through 
the work of Boju Jiang in the 1980's. Thus, in Sections 6 and 7, we will examine how Jiang 
completed much of the program that was initiated by Nielsen more than 50 years earlier. 

The 1980's was a period of great activity in fixed point theory, including many important 
developments in addition to the work of Jiang that we will discuss, and that level of activity 
has continued into the present decade. This is not the place to attempt a survey of that 
activity, but we have dedicated Section 8 to a brief sampling of some topics that were 
chosen to illustrate the diversity of topological contexts that now form a part of fixed point 
theory. In presenting these topics, we will concentrate on how they arose and will not 
follow their subsequent development, which is still continuing. Consequently, many of the 
most exciting discoveries of recent years will not be mentioned. It will be the task of some 
future history of fixed point theory to include the detailed discussion of them that they well 
merit. 

Fixed point theory started in response to the needs of nonlinear analysis, a subject which 
has undergone a spectacular growth throughout this century, and the topic of such applica
tions continues to be an important one. However, we will be concerned only with the purely 
topological aspects of fixed point theory. We have limited our discussion to a strictly topo
logical setting: maps on connected finite polyhedra. Thus, by a manifold we mean one that 
is both compact and triangulated. Although many of the results we present remain true in 
more general settings, our focus on finite polyhedra will unify the presentation as well as 
exclude related but distinct areas of mathematics. In particular, we will not be concerned 
with the type of fixed point theory that is related to the Contraction Mapping Principle of 
Banach. 

2. Brouwer's theorem 

When a topologist sees the phrase "fixed point theory", the first thing likely to come to 
mind is the 

BROUWER FIXED POINT THEOREM. Let 5" be the unit ball in Euclidean n-space W 
and let f : B^^ -> B" be a map, then f has a fixed point. 

To discover the family of mathematical ideas to which this result belongs, we consider 
the case n = 1. We have a map / : [ -1 , 1] -> [ -1 , l ] .Letg: [ -1 , 1] -^ R be defined by 
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g(x) =x- fix), then g ( - l ) ^ 0 and g{l) ^ 0. If g ( - l ) or gi\) are 0, then / certainly 
has a fixed point. Otherwise, we know that / has a fixed point because of the 

INTERMEDIATE VALUE THEOREM, / / g : [-1,1] -> Ris a map such that g(-l) < 0 
and g(l) > 0, then g(c) = Ofor some c with — 1 < c < 1. 

This theorem, first proved by Bernard Bolzano in 1817, is a direct consequence of a basic 
property of the real numbers: every subset that is bounded above has a least upper bound. 
Its connection to the n = 1 case of Brouwer's theorem, is very close indeed because, in 
fact, the results are "equivalent" in the sense that each directly implies the other. To show 
that Brouwer's theorem implies Bolzano's, we begin with a map g : [— 1, 1] -> R such that 
^ ( -1) < 0 and ^(1) > 0. Define / : [ -1 , 1] ^ [ -1 , 1] by setting f(x) = p(x - g(x)), 
where p(y) = —\ for y < —l,p(y) = 1 for y > 1 and p(y) = y, otherwise. The 
Brouwer theorem tells us that / (c) = c for some c € [— 1, 1]. If c = — 1, that would imply 
g(l) — 1<—1 contrary to the hypothesis, and, similarly, c ^ 1. But — 1 < c < 1 implies 
c = f(c) = c - g{c) so g{c) = 0. 

Just as the Brouwer theorem holds in all dimensions, there is a form of the Intermediate 
Value Theorem that is valid in all dimensions. It concerns a map / : /" -> W, where 
/« = [ -1 , 1] X [ -1 , 1] X . •. X [ -1 , 1]. Let 

hi-) = {x^ (Xi , . . . , J„) G /" \Xk = - 1 } 

and let hW be the same except xk = I. Write / = {f\, • - •, fn), where fk'-1^ -^ M. 
Denote the origin in R" by 0. 

n-DIMENSIONAL INTERMEDIATE VALUE THEOREM. Let f:P -^ R" be a map SUch 

that fkix) ^ Ofor all x e hi—) ci^d fk{x) ^ Qfor all x 6 4 (+) , for k = \,... ,n, then 
f(c) = Ofor some c e I^. 

Poincare announced this result, for / differentiable, in 1883 [46] and published a proof 
three years later [47]. Since we have seen that the n = 1 case of the Brouwer fixed point 
theorem and Bolzano's intermediate value theorem are equivalent in the sense that each 
directly impHes the other, it should not surprise us to learn that this n-dimensional interme
diate value theorem is equivalent to the general Brouwer fixed point theorem in the same 
sense. But this equivalence was not estabhshed until C. Miranda did it in 1940 [43]. As a 
consequence, what we have here called the w-dimensional intermediate value theorem is 
usually known as Miranda's theorem or, more accurately, the Poincare-Miranda theorem. 

There is another result equivalent to the Brouwer fixed point theorem, that was published 
by P. Bohl before any appearance in print of Brouwer's theorem: 

BOHL' S THEOREM. Let 0 denote the origin in W. There is no map / : /" ^ R" - 0 such 
that f is the identity on the boundary of r\ 

We will see below that Bohl's theorem is also equivalent to the Brouwer theorem. Bohl's 
theorem was pubUshed in 1904 [1], with a proof that required that / be differentiable. 

Brouwer published his fixed point theorem, for continuous functions on the 3-ball, in 
1909 [5]. When the first proof for the n-ball, with / differentiable, appeared in print a year 
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later, in an appendix by J. Hadamard to a text by Tannery [21], the theorem was called 
the "Brouwer Fixed Point Theorem", which suggests that the result was already famous 
by that time. It is not known in what year Brouwer made his discovery and, apparently, 
communicated it to other mathematicians in an informal manner. The first published proof 
of the general case, that is, for continuous functions on the «-ball, was by Brouwer himself 
in 1912 [6]. 

Poincare based the proof of the generalized form of the intermediate value theorem on 
the Kronecker index, introduced in 1869 [36]. The purpose of Hadamard's appendix to 
Tannery's text [21] was to demonstrate the usefulness of the same tool (see [55]). 

Brouwer's proof instead used the notion of topological degree, which he introduced as 
a replacement for the Kronecker index that would not require the map to be differentiable. 
To understand Brouwer's proof of his fixed point theorem, we need only consider maps 
/ : 5" -> 5", where S'^ is the unit sphere in Euclidean space R""*'̂  Brouwer proved that 
/ could be approximated by a simplicial map 0 : 5" -^ S2 with respect to triangulations 
of 5" we denote by 5" and 5*2. For an /i-simplex s e S2 that is well-behaved with respect 
to 0, he let p (respectively q) denote the number of w-simpHces of 5" that 0 maps to 
s preserving (respectively reversing) their orientation; and he defined the degree of / to 
be p — q. Thus, in contrast to Hadamard's analytic proof, Brouwer's approach can be 
described as combinatorial in the sense that the simpUcial approximation to the given map 
relates two combinatorial structures, the triangulations of the sphere. The modern view of 
this subject, that relates topology to modern algebra, depends on the realization, beginning 
with Emmy Noether in the mid 1920's, that homology associates groups with spaces and 
homomorphisms with maps. That approach gives us the present definition of degree of a 
map of a sphere. We know that ///i(5'^) is infinite cycUc and we choose a generator [5"]. 
The homomorphism induced by / : 5*" -> 5" is determined by the image of a generator, 
so the degree d defined by /*([5'"]) = d[S'^] characterizes the homomorphism. It can then 
be proved that d = p — q and therefore the definition is independent of the many choices 
Brouwer made in computing /? — ^, as Brouwer had shown by a lengthy combinatorial 
argument. Brouwer also proved that homotopic maps have the same degree which, as we 
shall now see, was the other crucial property he required to prove his fixed point theorem. 
(For a more detailed exposition of Brouwer's development of the degree, see [11].) 

Brouwer made use of the degree to prove his theorem as follows. It is easy to see from 
Brouwer's definition that the degree of the antipodal map a : 5" -> 5" defined by a(x) = 
—X is nonzero, specifically (-1)"+^ If a map g'.S*^-^ S" has no fixed points, then 
(1 — t)g{x) + ta{x) = 0 has no solutions, so defining H(x, t) = 7r((l — t)g(x) + ta{x)), 
where nix) = x/\x\, shows that g is homotopic to a and is therefore of the same degree. 
What Brouwer had thus established is worth stating as a formal result, which we call 

BROUWER'S SPHERE THEOREM. / / g : 5 " -> S'^ is a map of degree different from 
(—1)""^^ then g has a fixed point. 

Now, to complete Brouwer's proof of his fixed point theorem let 

M'|+^ = {(xu...,Xn.Xn^i)eM!'-^^: x„+i ^ 0 } 

and define ]R'1+̂  similarly, and set S^ = S'' n R^+^ A map / : ^" -> ^" gives f = 
hfh-^ :Sl -^ S'l, where h:B'' ^ S^ is a homeomorphism. Define g : S" ^ S^ C S" 
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by setting it equal to / ' on .S^ and for jc = (^ i , . . . , x„, x„+i) e 5", letting g(x) = 
/ ' ( j c i , . . . , jc„, -jc„4-i). It is clear from Brouwer's definition that the degree of g must be 
zero so, by his Sphere theorem, it has a fixed point, which must lie in S^. Thus f\ and 
consequently / , has a fixed point. 

In 1931, Karol Borsuk observed [2] that the Brouwer fixed point theorem is a conse
quence of (and it in turn implies) the 

NO-RETRACTION THEOREM. There is no map r \ B^ -> dB^ such that r{x) = x for all 
X in 95", the boundary ofB^. 

This result has been particularly amenable to proof using a wide variety of mathematical 
tools, and thus the Brouwer fixed point theorem is the consequence of insights obtained 
from strikingly diverse points of view. But we will not examine this extensive literature, nor 
will we explore other mathematical statements that have been shown to be the equivalent 
of Brouwer's theorem. (A good source of information on these topics is [14].) 

However, it is instructive to observe how easily the no-retraction theorem can be related 
to Bohl's theorem, that was published 27 years earher (this result was apparently unknown 
to Borsuk). Actually, it is the negations of the no-retraction theorem and of Bohl's theorem 
that are so similar. On the one hand, a retraction of /" to its boundary is certainly a map of 
/" to R" — 0 that is the identity on the boundary of /". On the other hand, if there is a map 
of /" to R" — 0 that is the identity on the boundary of /", then following that map by radial 
retraction of R" — 0 onto the boundary of /" gives us a retraction of /" onto its boundary. 

We can quickly complete this circle of ideas by showing the equivalence of the no-
retraction theorem and Brouwer's theorem or, again more easily, their negations. First of 
all, if a retraction of /" to its boundary exists, then, identifying the boundary of /" with 
S^~^ and following the retraction by the antipodal map a we used above produces a map 
of /" without fixed points. Conversely, if there is a map / of /" to itself without fixed 
points, send each point x in /" to the point where the ray from f{x) through x intersects 
the boundary of /". Once we convince ourselves that the function obtained in this manner 
is continuous, we see that it retracts /" to its boundary. 

In fairness to Borsuk, we should note that his purpose in using the Brouwer theorem 
was not just the no-retraction theorem, but rather a more subtle observation. Borsuk proved 
in [2] that if A is a retract of R", then every component of R" — A is unbounded. Thus, 
although the boundary of /" cannot be such a retract of R" and thus by restriction not a 
retract of /", many other subsets of R" are excluded as retracts as well. 

3. Lefschetz-Hopf theory 

Lefschetz published three brief notes in the 1923 and 1925 volumes of the Proceedings 
of the U.S. National Academy of Sciences about the research that included his celebrated 
fixed point theorem. In the first of these [37], he announced that he had "new and far 
reaching methods" for investigating continuous maps of manifolds and, in particular, their 
fixed points. 

Lefschetz had been studying intersections within manifolds. Given a closed oriented 
manifold W and oriented submanifolds M and N with dim M + dim Â  = dim W inter
secting nicely in a finite number of points, each intersection point is assigned a sign, either 
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positive or negative. The number of positive intersections minus the number of negative 
intersections Lefschetz called the algebraic number of intersections and denoted (MN). 
In a suitably restricted context, this number is the Kronecker index to which we made 
reference in the previous section. Thus, Lefschetz was concerned with extending the Kro
necker index for differentiable functions of Euclidean spaces to obtain a tool for studying 
continuous functions on manifolds. 

Lefschetz related the study of a map f :X -^ X to intersection theory by means of the 
graph. Within the manifold X x X the graph 

rf = [{x,fix)):xeX} 

is embedded as a submanifold. The graph may also be thought of as an n-cycle in the 
2«-manifold X x X; this was important to Lefschetz because he used homology to inves
tigate the algebraic number of intersections. Given another map g : X ^- X, then its graph 
Fg is another such n-cycle. A point (x\, X2) is in the intersection of Ff and Fg if and only 
if 

(XUX2) = (xufixi)) = {xug{xi)) 

so jci G X has the property that f{xi) = g(xi). Such a point is called a coincidence of 
the maps / and g. Thus (F/Fg) gives an algebraic count of the number of coincidences. 
The coincidence question is related to fixed points by taking g to be the identity map, so 
that (FfFg) is then concerned with fixed points. Although coincidences arise naturally in 
the context of the intersection of graphs, the study of solutions to the coincidence equation 
f(x) = g(x) was certainly not a common topic in the topology of the time. However, it 
seems that Lefschetz's point of view was not unusual in algebraic geometry, a subject in 
which Lefschetz also had a very strong interest. The problem, whether one is concerned 
with coincidences or the more familiar fixed points, is to relate the algebraic number of 
intersections of the graphs to properties of the maps themselves, and to be able to calculate 
it. 

In the second of the three announcements [38], Lefschetz takes up the rather technical 
matter of determining the algebraic intersection of cycles in a suitably general setting for 
his later purposes. Then, in the final announcement [39] he presents his main result: a 
formula for calculating (F/Fg), the algebraic number of intersections of the graphs of 
f, g :X -> X, from what we would now call the induced homomorphisms of rational 
homology. It is instructive to see the form of the main formula of [39]. Choosing a suitable 
basis for the homology of a closed orientable «-manifold X, the formula is 

where the R^, are the Betti numbers of X, the a depend on the homomorphism induced 
by / and the p come from the Poincare dual of the homomorphism induced by g (see 
below). A more thorough discussion of the Lefschetz formula from the point of view of the 
topology of that time can be found in [11]. 

Lefschetz published the detailed proofs of the results announced in the Proceedings 
in [40]. This paper is in two parts. In the first, Lefschetz develops what he once more 
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characterizes as a "far reaching theory of the intersection of complexes on a manifold" in 
which the "intersection" is a cycle with the property that its homology class is independent 
of the constructions necessary to define it. He obtains the results described in [38], but in 
a somewhat simpler manner than he outlined in that announcement. In the case that the 
complexes intersect in a finite set of points, this intersection is seen to be a generalization 
of the Kronecker index. In the second part of the paper, Lefschetz applies the intersection 
theory to calculate (rfTg) in the way he described it in [39]. This calculation holds only in 
the setting of oriented manifolds without boundary, but he states: "With suitable restrictions 
the formulas derived are susceptible of extension to a wider range of manifolds, but this 
will be reserved for a later occasion". 

That "later occasion" was the pubHcation just one year later of [41]. This paper is much 
more than an extension of [40] to manifolds with boundary. Lefschetz uses matrices to 
simplify substantially the formulas he had presented in [40], in particular by making use of 
the concept of the trace of a matrix. Here, in modern terminology, is what the main formula 
of [39] tells us, as it was presented in [41]. Let M be a closed, orientable n-manifold and 
let / , g : M -> M be maps. For each k, where 0 ^ k ^ n, define a hnear transformation of 
the rational homology Hk{M), that I'll denote (in a notation suggested by Lefschetz's) by 
(PQ)k^ to be the composition 

(PQ)k = D;^og''-^oDkofk, 

where Dk : Hk{M) -^ H^~^{M) is the Poincare duality isomorphism and fk : Hk{M) -^ 
Hk{M) and g^~^ : H^~^{M) -> H^~^{M) are induced homomorphisms. Lefschetz's 
main formula is 

n 

(^f^g) = ^ ( - 1 ) ^ trace(PQ)k. (*) 
k=o 

The right-hand side of (*) is now called the Lefschetz coincidence number and denoted by 
^(/» g)' What Lefschetz obtained from the formula is the 

LEFSCHETZ COINCIDENCE THEOREM. Let M be a closed, orientable n-manifold and 
let f, g: M -^ M be maps. If L(f, g) ^ 0, then f and g have a coincidence, that is, 
f(x) = g(x) for some X e M. 

Lefschetz did not state this result explicitly because there was no need to do so; it was 
evident from the left-hand side of (*). If L(/ , g) ^0 but there were no coincidences, then 
Ff and Fg would be disjoint subsets of M x M. In order to define (F/Fg) in general it 
is necessary to modify these subsets, but only by an arbitrarily small amount, so disjoint 
subsets could still be kept disjoint and thus there would be no points of intersection. There
fore (FfFg), the difference between the number of positive and the number of negative 
intersection points, would be 0, contrary to the formula (*). 

In addition to this important simplification of [40], Lefschetz did, as promised, extend 
the theory to manifolds with boundary. For this purpose, he devoted part of [41] to ob
taining duality theorems for compact orientable manifolds with boundary, to produce iso
morphisms that replace the Poincare duality isomorphism Dk in the definition of (PQ)k' 
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Furthermore, he extended the coincidence setting by considering maps f, g:M -> Â , 
where M and N are different manifolds of the same dimension. 

Once (*) was estabhshed, Lefschetz speciaUzed it to obtain what he called his "fixed 
point formula". From the modern definition above, we immediately see that, taking g to be 
the identity map, (PQ)k reduces to the induced homomorphism fk and the right-hand side 
of (*) becomes what is now called the Lefschetz number, namely. 

L(f) = Y^(~lftrace(fk). 
k=0 

From (*), now in the more general setting of [41], we have the 

LEFSCHETZ FIXED POINT THEOREM. Let M be a compact, orientable manifold, with or 
without boundary, and let f : M -^ M be a map. IfL{f) / 0, then f has a fixed point. 

Even the closed manifold version of this result, already obtained in [40], is sufficient to 
prove the Brouwer fixed point theorem because, if M = 5", then 

^ ( / ) = l + ( - l ) " (degree o f / ) 

which is zero if and only if the degree of / is (—1)"+^ so Lefschetz's theorem implies 
Brouwer's sphere theorem in this case. 

A particular case of (*) that Lefschetz emphasized was the fixed point setting with the 
map / a deformation of M, that is, a map homotopic to the identity. In that case, trace(fk) 
is the dimension of the vector space Hk{M) so L{f) equals the Euler characteristic of M. 
Lefschetz was sufficiently impressed with this part of his theory to restate (*) as a formal 
theorem, in this way: "For every M, with or without boundary, the number of signed fixed 
points of a deformation is the Euler characteristic". 

Coincidence theory requires a duality isomorphism in order to define L(/ , g), but it is 
clear that, for the definition of the Lefschetz fixed point number L( / ) , all that is needed is 
that the sum of the traces of the induced homomorphisms fk be finite. A map / : X -> X 
on a finite polyhedron X thus has a well-defined Lefschetz number. The generalization of 
Lefschetz's theorem to this setting was published by Hopf in 1929 [24]. 

Hopf first considers a simplicial map / : X -^ X on a finite polyhedron. On the 
simpHcial A:-chains Q(X) generated by the ^-simplices of X, we have the chain map 
(j)k : Q(X) -> Q(X) induced by / . The fact that 0^ maps cycles Zk to cycles and bound
aries Bk to boundaries gives us the induced homomorphism of homology fk : Hk(X) -> 
Hk(X). Hopf then proved the 

HOPF TRACE THEOREM. Let f : X -^ X be a simplicial map of a finite polyhedron of 
dimension n, then 

^ ( - 1 ) * traceifk) = Y.{-if trace{4>k). 
k=0 k=0 
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It is not difficult to convince ourselves of the truth of Hopf's equation. The definition of 
fk implies that 

trace(fk) = trace((l)k\Zk) - trace(MBk). 

On the other hand, we can express the trace of the matrix of (pk in terms of traces of 
restrictions, that is 

tracei^k) = trace{(j)k\Zk) + trace{(j)k-\\Bk-\). 

Comparing these formulas, we see that, because of the alternating sign, we obtain the same 
sum in each case. 

If / is the identity map, we have seen that L ( / ) is the Euler characteristic. On the other 
hand, in this case trace{(l)k) counts the number of /:-simplices in X, so the Hopf trace 
theorem reduces to the classic Euler-Poincare formula 

Euler characteristic = y ^ ( - 1 )^(number of/:-simplices). 
^=0 

The Hopf trace theorem allowed Hopf to express the Lefschetz number L( / ) in terms 
of the chain map 0. Hopf then proved the Lefschetz fixed point theorem for maps of finite 
polyhedra by observing that if a map f \X -> Z of a finite polyhedron has no fixed points 
then, using sufficiently fine triangulations of X, no simplex is mapped into a simplex that 
contains it, from which it follows that trace{(j)k) — 0 for all k and therefore L ( / ) = 0. 

In the last part of [24], Hopf studied the relationship between the Lefschetz number and 
the concept of degree that had been so central to Brouwer's earher work, as we discussed 
in the previous section. Consider a map f \X —> X on a finite dimensional polyhedron. 
Suppose / has finitely many fixed points and each fixed point /? of / is contained in a 
maximal simplex, that is, a simplex that is not a face of a simplex of higher dimension. 
Denote by Sp the maximal simplex containing the fixed point p and the dimension of Sp by 
k{p), which varies with p. The simplex Sp may be identified through a homeomorphism 
with M^̂ ^̂  in such a way as to identify p with the origin. For each such p, take the image 
Bp in Sp of an Euclidean ball centered at the origin small enough so that Bp is mapped 
into Sp by / . Denote the boundary of Bp by Sp. The map on Sp, defined by mapping x 
to jc — f{x) followed by radial retraction onto Sp (both steps make sense in terms of the 
Euclidean structure on 5^) is a map which we denote by (/ — f)p : Sp -> Sp, 

LEFSCHETZ-HOPF THEOREM. If f :X -> X is a map on a finite polyhedron that has 
finitely many fixed points and each fixed point p of f is contained in a maximal simplex, 
then 

Lif) = Y^ degree of(i - f)p, 
p 

where the sum is taken over all fixed points of f. 

This theorem obviously extends the Lefschetz fixed point theorem to maps of finite poly
hedra since it implies that an empty fixed point set makes the value of the Lefschetz number 
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zero. Hopf proved the theorem only in the case that X is an n-dimensional polyhedron and 
each fixed point Hes in an w-dimensional simplex. His proof then made use of a subdivision 
of X such that no simplex of dimension k < n contributes to the trace of the chain map 
(j)k, that is, all diagonal entries of a matrix representation of 0̂ ^ are zero, so trace{(j)k) = 0. 
Then he was able to identify the contribution to trace{(t)n) of an ^-simplex containing a 
fixed point p with the degree of (/ — f)p and the Hopf trace theorem completed the argu
ment. Actually, instead of the maps we have called {i — f)p, Hopf's definition of the maps 
whose degrees determine L(f) used the difference f(x) — x, which would be ( / — i)p in 
our notation, and that introduced a factor of (—1)" into the statement of the theorem. 

The Lefschetz-Hopf theorem stated above seems to have been long known, but only as 
a "folk theorem" of fixed point theory with no proof available in print. A result of Albrecht 
Dold [13] published in 1965 concerning the fixed point index, an extension of the Lefschetz 
number concept, implies the Lefschetz-Hopf theorem. However, there is no statement of 
the theorem above in [13] and, in fact, the relationship between the fixed point index and 
the degree concept, in the case of a finite fixed point set, is not discussed. That relationship 
was made explicit in [9], which includes Dold's theorem, but there is no formal statement 
of the Lefschetz-Hopf theorem there either. 

The reason the dimensions of the maximal simpUces may be permitted to vary in the 
statement of the Lefschetz-Hopf theorem is made clear in Dold's work. Embedding X in a 
EucHdean space of some dimension Â , there is a neighborhood [/ of Z in R^ that can be 
retracted to X by a (deformation) retraction r :U -> X. Each fixed point /? in a maximal 
simplex lies in an A^-dimensional ball Bp that is mapped near p by the composition fr. 
Making use of the map (/ — fr)p : Sp ^^ Sp of the boundary Sp of Bp puts us into a setting 
like the one Hopf considered. It is clear that L{fr) = L(f) and a suspension argument 
readily estabhshes the fact that degree of (/ — fr)p = degree of (/ — f)p. 

Since Hopf's paper [24], there have been a number of generalizations and extensions of 
the Lefschetz fixed point theorem. We will not explore that topic here except to state one 
extension that we will need to refer to in a later section. Suppose X is a finite ^-dimensional 
polyhedron, A is a subpolyhedron and / : X -> X is a map such that / (A) c A, so we 
have a map of pairs / : (X, A) -> (X, A), then / induces fk : Hk(X, A) —> Hk{X, A). In 
1968, C. Bowszyc [3] defined, by analogy with the Lefschetz number, a number that we 
denote in this way 

L{f^X,A) = Y^{-\ftrace{fk) 
k=0 

and he proved 

BOWSZYC'S THEOREM. If X is a finite polyhedron, A is a subpolyhedron, and 
f : (X, A) -> (X, A) is a map of pairs such that L{f\ X, A) ^ 0, then there is a fixed 
point of f in the closure of the set X — A. 

4. Nielsen theory 

At the beginning of his first announcement [37], Lefschetz identified as a key problem in 
the study of maps: "Determination of the minimum number of fixed points and related 
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questions". In the context of his work, the minimum number he was referring to concerned 
the homotopy class of a map. The Lefschetz number is a homotopy invariant algebraic 
count of the number of fixed points, but it does not in general offer information on the 
actual number of points kept fixed by the maps in the homotopy class, as Lefschetz pointed 
out. 

The determination of the minimum number of fixed points for all maps homotopic to a 
given one was a question of great interest to Nielsen, starting with his doctoral dissertation 
of 1913. In [44], Nielsen considered the lifts of a map f :T -> T to the universal covering 
space of the torus, that is, the plane. Choosing a basepoint in T, he identified the set of lifts 
with a fiber, so it is a set of points in the plane whose coordinates differ by integer amounts. 
He then defined an equivalence relation on the fiber as follows: two points are equivalent 
if the difference of their coordinates hes in the image of the linear transformation of the 
plane with matrix / — F, where / denotes the identity matrix and F is a matrix representing 
the homomorphism of the fundamental group of T induced by / . This relation partitions 
the lifts of / into \det(I — F)\ equivalence classes. The fixed points of inequivalent lifts 
project onto disjoint sets of fixed points of / (see below). Nielsen proved that if / — F 
is nonsingular, then every lift has fixed points so, since F only depends on the homotopy 
class of / , he concluded that, if / - F is nonsingular, then every map homotopic to / has 
at least \det(I — F) | fixed points. 

This lower bound had already been established in a paper of Brouwer [7], using methods 
that applied directly to the torus and did not relate the problem to the plane. Nielsen, on 
the other hand, used his equivalence relation on the lifts to the plane to partition the entire 
set of fixed points of the map / of the torus into disjoint subsets, namely, the projections 
of the fixed points of the equivalence classes of lifts. At the end of that section of his paper, 
Nielsen noted that although the bound was already known through the work of Brouwer, 
"the division of... fixed points into finitely many classes as above seems to be the simplest 
and most natural way of proving minimality" [44]. 

Nielsen put this "class" concept in a more general context in [45]. Now he was concerned 
with mappings of closed orientable surfaces of genus greater than one, so the universal 
covering space is the hyperbolic rather than the Euclidean plane. Given a selfmap / of 
such a surface, Nielsen still considered the lifts of / to the universal covering space, but 
he expressed the equivalence relation between them in different terms. Lifts f\ and f2 are 
equivalent if there is a covering transformation oo such that /2 = a)f\(jo~^, that is, the lifts 
/ i and /2 are in the same conjugacy class with respect to the covering transformations. We 
will see below that this definition extended his definition for maps of the torus. 

Expressed in this way, it is not difficult to understand how fixed points of equivalence 
classes of lifts of / relate to the set of fixed points of / itself. First of all, each fixed point 
/? of / is the projection of a fixed point of some lift since we can choose any point p in 
the covering space that projects to p and there is a unique lift of / that takes p to itself. 
Furthermore, if f\ fixes p then cDf\(jo~^ fixes co{p), which is in the same fiber, so the fixed 
point sets of conjugate lifts project to the same subset of fixed points of / . Moreover, if 
lifts / i and /2 have fixed points p\ and p2, respectively, that are in the same fiber, let o) be 
the covering transformation that takes p\ to p2, then it is not difficult to see that / i and f2 
are conjugate by co. In conclusion, letting a fixed points class be the projection of the fixed 
points of a conjugacy class of lifts, Nielsen again partitioned the set of fixed points of / 
into disjoint subsets in a "natural way". 
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Suppose we choose a lift / of / , then every Uft can be expressed uniquely as a~^/ 
for some covering transformation a. Identifying the covering transformations with the ele
ments of the fundamental group, the homomorphism fn of the fundamental group induced 
by / is represented as follows: For 8 a covering transformation, the composition of maps 
f8 is a lift of / which is of the form f8 = a~^f, where a~^ = /̂ r (8) as elements of the 
fundamental group. 

Lifts a~^f and )6~^ / are conjugate by a covering transformation o) if and only if 

r^f = a)a-^fo)-^^coa-^f4co-^)f, 

that is, if and only if 

(The form of this relationship depends on the choice of convention for the operation of 
the fundamental group on the universal covering space. We are following [22]; see Sec
tion 5 below.) If the fundamental group is Abelian, as it is for the torus, we can write that 
relationship additively and rearrange the terms as 

a-p = co-fAco) = {Id-f^){(o). 

To relate Nielsen's more general theory to his earlier analysis of the torus, consider a 
fiber in the plane, that is, a basepoint (XQ, yo) and all integral translates of it, that in turn 
correspond to the covering transformations for the torus. Now representing the homomor
phism Id — fjr by 3. matrix / — F, we see from the equation above that lifts are equivalent 
if and only if, for the points in the fiber corresponding to the covering transformations 
that determine these lifts, the difference of their coordinates lies in the image of the linear 
transformation of the plane with matrix / — F, just as in [44]. 

In the torus setting, it was possible to show that all lifts have fixed points if / — F is 
nonsingular. Thus the lower bound for the number of fixed points was equal to the number 
of equivalence classes of hfts. For maps of other surfaces, not all Hfts have fixed points, so 
Nielsen required a tool to establish the existence of fixed points of lifts. Assuming that the 
set of fixed points is finite, Nielsen took advantage of the structure of the hyperbolic plane 
to define a "winding number" that measured the way that a map goes around a fixed point. 
The index of a fixed point class (assuming a finite set of fixed points) was then the sum of 
the winding numbers of the fixed points in it. We will require a definition that applies to 
more general contexts, so instead of winding numbers, we will next use some ideas from 
the slightly later paper of Hopf [24], that we discussed in the previous section, to defined 
the index of a fixed point class. 

Let f '.X -^ Z be a map of a finite polyhedron. The definition of a fixed point class 
of / , as the projection of the fixed points of a conjugacy class of lifts, extends to this setting 
because the discussion above made no use of any property of a surface other than that it has 
a universal covering space. The fixed point classes F/ are disjoint compact subsets of X, 
so there are a finite number of them and there are disjoint open sets Ui containing them. 
By a technique in [24], the map / may be approximated arbitrarily closely by a simplicial 
map, call it / ^ such that each fixed point of / ' Hes in a maximal simplex of a triangulation 
of X. Making / ' close enough to / ensures that f has no fixed points outside of the Ui 
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and the fixed points in each Ui form a single fixed point class of f. The index of the fixed 
point class F/ is defined to be the sum of the degrees of the (/ — f')p for all fixed points 
p of f in Ui (compare the Lefschetz-Hopf theorem of the previous section). The index is 
independent of the choice of the approximating simplicial map f. Notice that the sum of 
the indices of all the fixed point classes is the sum of the degrees of the (/ — f')p for all 
fixed points of f and therefore the sum of the indices of all fixed point classes equals the 
Lefschetz number L{f') = L{f) by the Lefschetz-Hopf theorem. 

Nielsen stated in [45] that "it is to be expected" that the number of fixed point classes 
of nonzero index will be invariant under homotopy, though he was able to estabhsh this 
fact only in special cases. A class of nonzero index is called an essential fixed point class 
and the number of essential fixed point classes is now called the Nielsen number of a map 
f :X -^ X of a finite polyhedron and denoted by A^(/). 

Nielsen was correct: if / and g are homotopic maps, then A^(/) = N(g), as Wecken 
proved in 1941 [58]. There is a convenient way to view the behavior of fixed point classes 
under a homotopy, that was introduced by Kurt Scholz in 1974 [53]. Let 

H = {ht}:X X I -^ X 

be a homotopy between maps / and g of a finite polyhedron and define 

H : X X I -> X X I 

by H(x, t) = (ht(x), t). Scholz observed that the fixed point classes of ht are precisely 
the intersections of the fixed point classes of H with the subset X x {t}. Take disjoint open 
sets in X X / about the fixed point classes of H and consider the intersection of one such 
set with X X {r}, calling it Ui. For t' sufficiently close to t, the fixed point class of ht' 
that is the intersection with that same class of H is also contained in Ui. We may use the 
same simplicial approximation, with fixed points only in maximal simplices, for both ht 
and ht', so the fixed point classes of ht and of hf' that he in Ui have the same index. Thus, 
as t changes, the value of the index of the fixed point class of ht obtained by intersecting a 
given fixed point class of H with X x {t} is locally constant, so it is constant. In this way, 
the fixed point classes of H that at all levels have nonzero index determine the required 
one-to-one correspondence between the essential fixed point classes of / and those of g. 

The immediate consequence of the homotopy invariance of the Nielsen number is the 

NIELSEN FIXED POINT THEOREM. Let f :X -> X be a map of a finite polyhedron, then 
every map homotopic to f has at least N{f) fixed points. 

Nielsen recognized in [45] that the calculation of what we now call the Nielsen number 
was a crucial question raised by his new theory, in fact he called it the "general fixed point 
problem". Nielsen's earlier paper [44] had calculated A^(/) for a map f :T -> T of a torus 
when / — F is nonsingular, where we recall that F depends on the homomorphism of the 
fundamental group of T induced by / . The calculation was that N(f) — \det(I — F)\ 
because Nielsen showed that / has \det(I — F)\ fixed point classes and it can be proved 
that all of them have nonzero index, as we will see. 

There was little progress on the computation problem until Jiang published a significant 
extension of the torus calculation in the early 1960's [27]. We recall that the cokernel of a 
homomorphism h'.G -^ G of an Abelian group G is the quotient group G/h{G). 
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JIANG'S LIE GROUP THEOREM. Let G be a compact Lie group and let f :G ^ G be a 
map. Let fji denote the endomorphism of the fundamental group ofG induced by f. If the 
Lefschetz number L(f) is zero then N(f) = 0. IfL(f) 7̂  0, then N(f) is the order of the 
cokernel of the homomorphism Id — fji of the fundamental group, where Id denotes the 
identity. 

The group structure on G was used by Jiang to prove his theorem in the following way. 
Choose a lift /o of / and let a~^ fo be a lift of / , for some covering transformation a. 
Regard a as an element of the fundamental group of G based at the identity element e 
of the group G, so a is represented by a loop a based at e. Defining ht :G -^ G by 
ht(x) = a (I — t)f(x) by means of the group multiplication on G gives a homotopy 
H = {ht} with ho = hi = f under which the fixed point class of f = ho determined by 
the conjugacy class of /o and the fixed point class of f = h\ determined by the conjugacy 
class of Qf~̂  ^ are contained in the same fixed point class of H. Thus both classes have the 
same index and, since a was arbitrary, we conclude that all the fixed point classes have the 
same index. Now L(f) = 0 implies A^(/) = 0 because, as we noted, the sum of the indices 
of all fixed point classes equals L(f). Otherwise, N{f) equals the number of conjugacy 
classes of lifts. We have seen that if the fundamental group is Abelian, as it is for a Lie 
group, Hfts a~^ fo and P~^ fo are conjugate by co if and only if 

a-fi = co- fnico) = (Id - fy,){cD). 

Thus, the number of conjugacy classes is the order of the cokernel of the homomorphism 
Id — fjr, as Jiang claimed. 

In the case of the torus T, it is not difficult to show that L ( / ) = detU - F).lf I — F 
is nonsingular, so L( / ) ^ 0, we choose generators for the fundamental group of T, the 
free Abelian group on two generators, in such a way that the homomorphism Id — fn 
is represented by the matrix I — F. There are unimodular matrices A and B such that 
A(I — F)B = D — diag(d\, J2), a diagonal matrix. Then the order of the cokernel of 
Id — fn is the order of the direct sum of the cyclic groups of order d\ and ^2 which is 
\di ' d2\ = \det(D)\ = \deg(I — F)\. Thus Jiang's theorem generalizes Nielsen's original 
calculation. 

Since the time of Jiang's paper, much progress in calculating the Nielsen number has 
been made (see [42]), but Nielsen's "general fixed point problem" is still a challenging 
one. 

5. The Reidemeister trace 

We have seen that Lefschetz was able to simplify the main result of his fixed point theory in 
[39] by making use in [41] of the concept of the trace. Nielsen's paper [45] demonstrated 
the role of the universal covering space in fixed point theory. In a paper of 1936 [48], 
Reidemeister combined these notions by lifting the trace to the universal covering space, 
in a manner we will now describe. 

We begin with a map / : X -> Z of a finite n-dimensional polyhedron. The simplicial 
structure on X can be lifted to its universal covering space X. We choose a lift / of / which 
we may assume is a simpUcial map f :X' -^ X, where X^ is a subdivision of X. We have 
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the homomorphism fk : Q(X) -^ Q(X) of the /:-chains of X obtained by composing the 
subdivision operator with the chain map induced by / . Denoting the fundamental group 
of X by TT, the chains CkiX) may be viewed as a free module over the group ring Z[7r], 
with a basis obtained by taking over each /c-simplex 5 in X one /^-simplex s inX. For each 
generator s of Ck(X) and element a G TT, it can be shown that 

fk{as) = fn(oi)fk{s), 

where, as in the previous section, /^ is the homomorphism of the fundamental group in
duced by / . The matrix with entries in Z[7r] that represents fk with respect to that basis 
has a trace which we will denote by trace (fk) e Z[7r]. 

Now we recall from the previous section the equivalence relation on Tt that resulted from 
considering lifts of / equivalent if they were in the same conjugacy class with regard to 
the covering transformations: Elements a and fi of ic are equivalent if and only if ^ = 
fjj; (<jo)aco~^ for some co e Tt. Let Rifn) be the set of equivalence classes and let p : TT ^• 
R{fn) send an element to its equivalence class, then p extends hnearly to p: Z[Tt] -^ 
Z[R(fjj;)]. The Reidemeister trace of / is the element lZ{f) € Z[/?(/;r)] defined by 

n{f) = Y.^-\fpi^''''^'if^))' 
k=0 

The definition of the Reidemeister trace shows in its form Reidemeister's debt to Lef-
schetz, but there is more to it than that, as Wecken showed in a paper of 1942 [59]. We have 
seen that there is a one-to-one correspondence between R(fn) and the conjugacy class of 
lifts of / . On the other hand, if the lifts in a conjugacy class have fixed points, then their 
projection is a fixed point class F of / . In the previous section, we defined the index of a 
fixed point class, which we will denote by /(F). Thus, corresponding to some of the ele
ments of R(fjj:) we have an integer /(F). We assign the integer 0 to the remaining elements 
of R(fn), which are the ones with the property that the corresponding lifts have no fixed 
points. Thus, for each a € TT we have the equivalence class p(a) e R{fn) and an integer 
for that class, which we now denote by i(p(a)). The main result of Wecken's paper [59] is 
his 

REIDEMEISTER TRACE THEOREM. Let f: X -^ X be a map of a finite polyhedron, then 

R(fn) 

where by the summation over R{fn) ^e mean that the a are chosen so that each element 
ofRifji) is represented by exactly one p(a). 

As a consequence of Wecken's theorem, we easily see that the definition of the Reide
meister trace includes the calculation of the Lefschetz number of / . If we add up the co
efficients in the formula of the theorem, we are adding up the indices of all the fixed point 
classes of / , which equals L ( / ) , as we noted above. The Reidemeister trace also con
tains the information in the Nielsen number because, by its definition, the Nielsen number 
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N(f) is nothing other than the number of nonzero terms in the expansion of TZ(f) that is 
furnished by this theorem. 

It is thus evident from Wecken's theorem that A^(/) is less than or equal to the number 
of terms on the right-hand side, that is, to the cardinality of Rifn)- That number, which 
may be infinite, is called the Reidemeister number of / and denoted R{f). When R{f) is 
finite, the inequahty A^(/) ^ R{f) can give useful information about the Nielsen num
ber because R{f) is usually much easier to compute than is A^(/). For instance, if n is 
Abelian, we can seen from the previous section that R{f) is just the order of the cokernel 
of Id— fn- Furthermore, since the Reidemeister number will, under certain conditions, 
equal the Nielsen number, for instance for maps on Lie groups, it will then furnish the 
solution to Nielsen's "general fixed point problem". 

A discussion of Wecken's proof of his Reidemeister trace theorem is contained in [22], 
on which this section is largely based, and we will summarize it next. Modern proofs of 
the Reidemeister trace theorem can be found in [26, 19]. 

Applying a technique from [24], as we have done before, we may assume the fixed 
point set of / is finite and that each fixed point Hes in a maximal simplex. We may further 
assume that the hft / has the same properties. Let x be a fixed point of / . Over the simplex 
s containing x there is the simplex s in the Z[7r] basis for the chains of X and a unique 
point X es that projects to x. Now f{x) Ues in the same fiber, so we can write f{x) = ax 
for a covering transformation that we represent by of en. This implies that the fixed point 
X produces a contribution to the trace of fk that consists of some multiple of a, and so it 
contributes that same multiple of p{ot) to 7^(/). Now suppose x' is some other fixed point 
of / , contributing some multiple of ^ € TT to the trace of fk, then x' is in the same fixed 
point class of / as jc if and only if p(y6) = p{a). In this way we can see how the fixed point 
classes of / are reflected in the definition of TZ{f) so that TZ{f) can be expressed in terms 
of elements in Rifn)- For the more delicate matter of why the multiples of p{(x) coming 
from the points in the corresponding fixed point class add up to the index of the class, we 
refer the reader to [22] and, for more detail, to [19]. 

The Reidemeister trace has become an important tool for the calculation of the Nielsen 
number, again see [22]. 

6. The Wecken property 

The Nielsen fixed point theorem of Section 4 tells us that every map homotopic to / : X -> 
X has at least A^(/) fixed points. So N{f) is a lower bound for the number of fixed points 
for all maps in its homotopy class, but the theorem does not furnish any information on 
how good a lower bound it is. In particular, it does not tell us when the bound is "sharp" in 
the sense that some map g homotopic to / has exactly A^(/) fixed points. Wecken took up 
this problem, in another paper of 1942 [60] which included the following result: 

WECKEN'S MANIFOLD THEOREM. Let f :M ^ Mbea map where M is an n-manifold, 
n ^ 3. Then there is a map g homotopic to f with exactly N{f) fixed points. 

A special case of this theorem is closely related to Lefschetz's theorem that a map 
f :X -> X with nonzero Lefschetz number has a fixed point. Suppose there were a map g 
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homotopic to / that "was fixed point free, that is, g had no fixed points, then its Lefschetz 
number would be zero, as we discussed in Section 3 with regard to the Lefschetz-Hopf the
orem. But it is obvious from the definition that homotopic maps have the same Lefschetz 
number. Thus, the Lefschetz fixed point theorem could have been stated: if L ( / ) ^ 0, then 
every map homotopic to / has a fixed point. Now, if the manifold M in Wecken's manifold 
theorem is simply-connected, then M is its own universal covering space and / has just 
one lift, the map itself, so there is a single fixed point class, of index L( / ) . Consequently, 
L ( / ) = 0 implies A^(/) = 0 when M is simply-connected and Wecken's theorem implies 
the converse to the form of the Lefschetz theorem in which we just restated it: 

CONVERSE LEFSCHETZ THEOREM. Let f \M -> M be a map where M is a simply-
connected n-manif old, n ^ 3. If L{f) = 0, then there is a fixed point free map homotopic 
to f. 

Turning now to a discussion of the proof of Wecken's manifold theorem, we may, as 
usual, assume that / has only finitely many fixed points. Wecken's proof required two 
techniques. The first we will refer to as the "combining technique". Let Fix{f) denote the 
set of fixed points of a map / and suppose p and q are fixed points of / in the same fixed 
point class F. The combining technique will homotope the map / to a map f such that 
Fix{f') = Fix(f) — [q}. The fixed point class structure of / ' will be the same as that of 
/ except that, for the class F̂  corresponding to F under the homotopy as in Section 4, we 
have F' = F — {^}. Wecken was "combining", rather than "removing" fixed points, even 
though /^ has one fewer fixed point than / , because the Lefschetz-Hopf theorem implies 
that the index of p as a fixed point of f is the sum of the indices of the fixed points p and 
qoff. 

The other technique that Wecken used was a "removal technique". Given a fixed point of 
a map / : X -> X of a finite polyhedron that has a finite number of fixed points, each in a 
maximal simplex, suppose a fixed point p is of index zero. This means that, taking a small 
ball Bp containing p, the map (i — f)p: Sp -^ Sp of the boundary of Bp is of degree zero. 
A map of the boundary of a ball to itself that is of degree zero can be extended to the entire 
ball, as a map back to the boundary. Using this fact, it is not difficult to homotope / to a 
map f\ identical to / except in a neighborhood of p, such that Fix{f') = Fix{f) — [p]. 
This homotopy therefore "removes" the fixed point p without affecting the fixed point 
structure in any other way. 

Applying the combining technique a finite number of times, Wecken homotopes the 
given map / to a map f that has the same number of fixed point classes as / , but each 
fixed point class of f consists of a single point. After the removal technique is applied to 
every fixed point of / ' of index zero, Wecken has a map g homotopic to / with one fixed 
point for each essential fixed point class of / and no other fixed points, so g has exactly 
A^(/) fixed points. 

It is clear why a removal technique was available to Wecken, for a map of any finite 
polyhedron and not just for maps of manifolds. We will next use some concepts from 
geometric topology to understand why, in a manifold, Wecken was able to combine fixed 
points in the same class. 

It will help us, just as it helped Wecken, to interpret the fixed point class concept in 
a somewhat more geometric manner than that furnished by Nielsen's original definition 
in [45]. In fact, Nielsen himself pointed out this alternate definition immediately after he 



288 R.E Brown 

defined a fixed point class as the projection of the fixed points of a conjugacy class of Ufts. 
If fixedj)oints p and ^ of a map / : X ^- Z are in the same fixed point class, we have a 
lift / : X -^ ^ of / and fixed points p and q of f that project to p and q respectively. 
Take any path ^ in Z from p to q, then f(l) is another such path and, since X is simply-
connected, these two paths are homotopic by a homotopy H: I x I -^ X keeping the 
endpoints p and q fixed. The projection f of ^ to Z is a path from p to ^ that is homotopic 
to its image / ( f ) under / by a homotopy keeping the endpoints fixed, because following 
H by projection to Z defines just such a homotopy. Conversely, suppose p,q e X are 
fixed points of / and there is a path f connecting them that is homotopic to / ( f ) by a 
homotopy keeping the endpoints fixed. Choosing a point p that projects to p and a lift / 
of / that fixes p, a homotopy lifting theorem for covering spaces lifts the given homotopy 
up to Z and establishes the existence of a point q that projects to q and is fixed by that 
same / . Therefore, p and q are in the same fixed point class. 

Returning to the problem of creating a "combining technique", we have a map f : M -^ 
M on a manifold and we assume / has a finite number of fixed points. We have fixed points 
p and q of f that are in the same fixed point class. Therefore there is a path f from pto q 
and a homotopy H : I x I -^ X between f and / ( f ) that keeps the endpoints fixed. We 
may assume that f does not intersect any of the finite number of fixed points of / other 
than p and q. We will want to assume that M is of dimension at least 5, so it is clear that by 
general position (see, for instance, [49]), we may replace f by an arc, still avoiding other 
fixed points of / , and then modify the map by a homotopy, without changing the fixed 
point structure, so that / ( f ) is also an arc, disjoint from f except at the endpoints, that 
is, f U / ( f ) is an embedded simple closed curve, and / ( f ) is still homotopic to f by a 
homotopy keeping the endpoints fixed. The dimension of M is high enough so that general 
position allows us to replace the singular disc in M determined by the homotopy by an 
embedded disc. 

A result from geometric topology tells us that a regular neighborhood of an embedded 
disc in an n-manifold is homeomorphic to R'̂ . Therefore we may view the map / in a 
neighborhood of the arc f as a map of a subset of R" that maps into R" and that has just 
two fixed points, p and q, the endpoints of the arc f. Without loss of generality, we can 
take f to be the fine segment in R'̂  between p and q. Let B be an «-ball in /?" containing 
f on its interior such that, for each point x of 5 — {/?}, the ray from p through x intersects 
the boundary 5 of B in a single point that we will denote by jc. We write x = tp-h(l —t)x 
for some t e I and define a map / ' on B by letting f^(p) — p and setting f'{x) = 
tp -\- {\ — t)f(x), otherwise. Since / has no fixed points on S, the map / ' has a fixed 
point only at p and, since / ' agrees with / on S, we can extend / ' to the rest of M thus 
completing the combining technique in this high-dimensional setting. 

Wecken's combining technique was different from the one we have just sketched, and 
it could be applied to manifolds of dimension as low as 3. The purpose of the discussion 
above was to make it behevable that such a technique could be developed, but without 
going into the more complicated procedures that Wecken actually used. 

Wecken's combining technique was not limited to maps of manifolds but could be 
appHed to a broader class of finite polyhedra. A (connected) polyhedron Z is three-
dimensionally connected if there is no subpolyhedron A of dimension less than or equal to 
one such that Z — A is disconnected. Wecken proved in [60] that the Nielsen number is a 
sharp lower bound for the number of fixed points in a homotopy class of maps on a poly
hedron that is three-dimensionally connected and locally three-dimensionally connected. 
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We will not discuss Wecken's combining technique but instead describe a combining 
technique developed by Jiang, who used it in a paper of 1980 [28] to obtain a substantial 
improvement of Wecken's result. A local cut point of a polyhedron X is a point x for which 
there is a connected neighborhood f/ of x in X such that U — {x} is disconnected. 

WECKEN-JIANG THEOREM. Let f:X -> X tea map of a finite polyhedron X such that 
X has no local cut points and X is not a 2-manifold, with or without boundary, then there 
is a map g homotopic to f such that g has exactly N {f) fixed points. 

A space X is said to have the Wecken property if, for every map / : X -> X, the Nielsen 
number A^(/) is a sharp lower bound for the number of fixed points in the homotopy class 
of / . Thus the Wecken-Jiang theorem tells us that a finite polyhedron that has no local 
cuts points and is not a surface has the Wecken property. 

The reason Jiang had to exclude surfaces in his hypotheses was that his combining tech
nique requires the presence in X of a 1-simplex that is the face of at least three 2-simplices. 
An n-dimensional polyhedron, w > 3, has such a 1-simplex because a 3-simplex can be 
triangulated to contain it. Thus the only finite polyhedra without local cut points that fail 
to have such a 1-simplex are those in which each 1-simplex is on the boundary of at most 
two 2-simplices, that is, the surfaces. 

To describe Jiang's technique, we begin with a map / : X -> X, now on a polyhedron X 
satisfying the hypotheses of the theorem. We assume / has a finite number of fixed points, 
and we have fixed points p and q of f that are in the same fixed point class. Thus there is 
a path f from pio q and a homotopy between t, and / ( O that keeps the endpoints fixed. 
Since there are only a finite number of fixed points and there are no local cut points, we 
can assume that there are no fixed points of / on f except for its endpoints. We can further 
assume that f is an arc by first making its self-intersections finite and then removing them 
one at a time, by general positions if the intersection is in a simplex of dimension at least 
three. Intersections in dimension 2 can be eliminated by sliding part of f off its endpoint. 
By hypothesis, we have a 1-simplex, call it 5*, in X that is on the boundary of at least three 
2-simplices. We modify f so that it passes through 5. To do this, we use an arc y from 
^(^o) = K(0) , for some 0 < ô < 1, to 5 and then replace a small portion of f near f (ro) by 
an arc that parallels y to 5, loops around y{\) and then returns parallehng y. 

Now suppose (5 is a path from pio q. Jiang calls 5 special (with respect to O if ^(0 7̂  
^(r) for all 0 < r < 1. Note that since f contains fixed points only at its endpoints, the 
path / ( f ) is special with respect to f. Two special paths are specially homotopic if they 
are homotopic through special paths. Jiang's key result states that if two paths 6\ and 62 
that are both special with respect to f are homotopic, then they are specially homotopic. 
We will not discuss the proof of this result except to say that the fact that f passes through 
the 1-simplex s that is the face of at least three 2-simplices is crucial in constructing the 
maps hf of the homotopy so that they are special. 

Jiang constructs a path 6 that is special with respect to f by just modifying the parameter 
of f, specifically he sets 8{t) = ^{t — e sintn) for a small e. Now this 5 is homotopic to 
f{^), because f is, so we now know that they are specially homotopic, by a homotopy we 
denote by [ht]. Letting Z =• t,{l) and setting /z'̂  = /i^f "^: Z -> X defines a homotopy, 
between the map 5f ~̂  and the restriction / | Z of / to Z, with the property that the fixed 
point set of each h\ consists of p and q. 
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A homotopy {ht} with the same fixed point set for each ht was called by Jiang a special 
homotopy. He proved a "special homotopy extension theorem" that, in the present case, 
tells us that, since f\Z extends to X, the map 5f ~̂  also does so, by means of a special 
homotopy. Consequently, the fixed points of the extension of 5^""^ are precisely those 
of/ . 

We still want to combine p and q, but now we have a map, which we will continue 
to call / , with the property that, on an arc ^ connecting them, the map is very close to 
the identity map, since on Z the map is defined to be 5^~^ and s can be made as small 
as desired. A map sufficiendy close to the identity map is a proximity map and it is not 
difficult to combine fixed points of such a map. The arc i; determines a chain of maximal 
simplices 5i, ^2, • • •, Sk, where p e s\ and q e Sk. Taking r e Sk-i H f, we can modify 
/ on Sk-i U Sk so that q is no longer a fixed point but r is. Furthermore, the map is still 
a proximity map on the portion of f that connects p to r.By repeating this construction, 
we replace the fixed point ^ by a fixed point, again call it r, that lies in 51, as p does. 
Furthermore, the map is a proximity map on an arc in 51 connecting them. We are now in 
the same Euclidean setting that the techniques of geometric topology obtained for us in the 
high-dimensional manifold case above so, as there, we can easily combine p and r. 

Since the Wecken-Jiang theorem extends Wecken's manifold theorem to other polyhe-
dra, it implies a corresponding extension of the converse Lefschetz theorem. That is, if 
X is a simply-connected polyhedron that has no local cut points and is not a surface and 
/ : X -> X is a map with L(f) = 0, then there is a fixed point free map homotopic to / . 

7. The fixed point theory of surfaces 

Nielsen himself was concerned with what is now called the Wecken property, that we 
discussed in the previous section. In 1927 he wrote "one might conjecture that any fixed 
point class might be made either to vanish or reduced to a single point by continuous 
deformation" [45]. However, the setting of [45] was that of surfaces, which are the finite 
polyhedra without local cut points specifically excluded from the Wecken-Jiang theorem 
of 1980. Thus, more than 50 years after he made his conjecture, it was still open. 

The paper [45] was not concerned with all continuous functions, but only with home-
omorphisms. Thus Nielsen's conjecture was that any homeomorphism f :M -> M of a 
surface could be deformed so that there were only A^(/) fixed points. The surfaces in [45] 
were required to be closed and orientable, but Nielsen wrote in the introduction to the paper 
that this restriction was "for the sake of simplicity . . . it is not difficult to see how one may 
extend the methods to other cases of two-dimensional manifolds". Since the context is that 
of homeomorphisms, a "deformation" would mean through homeomorphisms, that is an 
isotopy, so Nielsen's conjecture was that any homeomorphism / of a surface was isotopic 
to a homeomorphism g with exactly A^(/) fixed points. Jiang announced in 1981 [31] that 
Nielsen's conjecture was correct for all closed surfaces, orientable or not. 

For the few surfaces that are of non-negative Euler characteristic, Jiang could verify 
Nielsen's conjecture on a case-by-case basis. The main part of Jiang's proof depended 
on a classification of the self-homeomorphisms of surfaces of negative Euler character
istic by William Thurston that was available in unpublished form. (It was not pubhshed 
by Thurston until 1988 [56].) Such a classification was pursued by Nielsen in [45] and 
subsequent papers, using many of the tools that Thurston was to discover independently 
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many years later, see [20] and the introduction to [56]. One of the two basic types of 
homeomorphisms in Thurston's classification are the periodic homeomorphisms. A map 
f :X ^^ X can be iterated as /^ , / ^ , . . . by setting /^(JC) = f{f{x)) and, in general, 
letting f^{x) = f(f^~^(x)). A homeomorphism / is periodic if some iterate / ' " is the 
identity function. The other basic type of homeomorphism is called pseudo-Anosov and 
we will not attempt to define it here. Thurston's classification theorem states that, for any 
homeomorphism / : M -> M of a surface, there is a (possibly empty) set of disjoint sim
ple closed curves C in the interior of M such that the restriction of / to each component 
of M — 0 (̂C) is either periodic or pseudo-Anosov, where ^(C) is an /-invariant tubular 
neighborhood of C. 

Jiang's proof begins by putting the periodic and pseudo-Anosov homeomorphisms on 
the components of M — 91(C) in a standard form in which all their fixed point classes 
are connected. Furthermore, the homeomorphism can be made periodic on the boundary 
of ^(C). Jiang then puts the homeomorphism into a standard form on 91(C) so that he 
has a homeomorphism / : M -> M all of the fixed point classes of which are connected. 
Furthermore, the fixed point classes are themselves manifolds, of dimension less than or 
equal to 2, and Jiang is able to list all the possible cases with regard to the behavior of 
/ in a neighborhood of the fixed point class. Then, for each case, he describes how to 
deform / by an isotopy so that the fixed point class is removed, if it is of index zero, or, 
if it is essential, reduced to a single point, thus completing the verification of Nielsen's 
conjecture. 

Jiang did not pubhsh the proof of the Nielsen conjecture until 1993, in a paper with 
his student Jianhan Guo [34]. One cause of the delay was the unsatisfactory state of the 
conjecture in the case that M is a surface with nonempty boundary dM. As he had stated 
it, Nielsen's conjecture could not be true in that case, but for a rather shallow reason. 
Consider a reflection / of the unit disc about an axis, then certainly A^(/) = 1. However, 
a homeomorphism of the disc must map the boundary circle to itself and since that is of 
degree — 1, it must have at least two fixed points (by, for instance, Jiang's Lie group theorem 
of Section 4). The problem is that a homeomorphism of a surface with boundary is a map 
of pairs / : (M, dM) -> (M, dM). We have seen in Section 3 that Bowszyc had extended 
the Lefschetz theory to maps of pairs, but there was no such theory of Nielsen type. The 
classification theorem of Thurston is valid for surfaces with boundary, so it seemed that the 
tools for establishing a form of Nielsen's conjecture in this setting were available, provided 
that the correct notion of Nielsen number could be found. 

This problem was solved by Helga Schirmer in a paper of 1986 [51]. Let / : (Z, A) -> 
(X, A) be map of pairs, where X is a finite polyhedron and A is a subpolyhedron. It is easy 
to see from the geometric definition of fixed point classes that we discussed in the previous 
section that each fixed point class of / : A -^ A, the restriction of / , is contained in a 
fixed point class off:X -> X. An essential fixed point class of the map / : X -> X is 
called an essential common fixed point class if it contains a fixed point class of / : A -^ 
A that is essential. Letting A^(/, / ) denote the number of essential common fixed point 
classes of / , Schirmer defined A^(/; X, A), the relative Nielsen number of the map of 
pairs / : (X, A) -> (X, A) by 

A^(/; X, A) = N(f) + A^(/) - N(f, / ) . 

This concept extends the usual Nielsen number because certainly A^(/; X, A) = A^(/) 
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when A is the empty set. She proved that A^(/; X, A) is a lower bound for the number of 
fixed points of all maps of pairs homotopic to / by a homotopy of maps of pairs. 

Jiang was then able to use Thurston's classification to extend his solution to the Nielsen 
conjecture to all surfaces, with or without boundary, in [34] as 

JIANG'S SURFACE HOMEOMORPHISM THEOREM. Let M be a surface, with or without 
boundary, and let f '.M -> M bea homeomorphism. There is a homeomorphism g isotopic 
to f with exactly N(f\M, dM) fixed points. 

Although the relative Nielsen number was used by Jiang only in the case of a pair (X, A), 
where X is a surface and A its boundary, there are many other interesting fixed point 
questions to which relative Nielsen theory can be applied. The survey [52] describes the 
first applications to be published, but much more has been done since that time in this very 
active area of fixed point theory. 

Jiang was successful in settling the Nielsen conjecture concerning homeomorphisms of 
surfaces, but there was still no information on the sharpness of the Nielsen number as 
a lower bound for the number of fixed points in a homotopy class for maps in general. 
The Wecken-Jiang theorem states that all finite polyhedra without local cut points, except 
surfaces, have the Wecken property. Do surfaces also have the Wecken property? It was 
known that the seven surfaces with non-negative Euler characteristic do have the Wecken 
property, but nothing was known about the rest. 

Then, in 1984, Jiang published a paper [32] containing an example of a map f \M ^^ M 
on a surface such that A^(/) = 0 but every map homotopic to / has at least two fixed 
points. In a paper published the following year [33], Jiang showed that he could embed a 
modified version of that example in any surface of negative Euler characteristic. Thus, with 
regard to the Wecken property, he could state that a surface M, with or without boundary, 
has the Wecken property if, and only if, the Euler characteristic of M is non-negative. 

The surface in Jiang's original example from [32] is the disc with two open discs re
moved, often called the "pants surface" since it is homeomorphic to a surface in the shape 
of such a garment, and therefore denoted by P. Jiang's map f: P -^ P had two fixed 
points, of index 1 and —1, and they were evidently in the same fixed point class, so 
A^(/) = 0. If P had the Wecken property, there would be a fixed point free g map ho
motopic to / . 

To prove that no such fixed point free map g exists, Jiang assumed there was one and 
sought to establish a contradiction. He constructed loops M;O, u^i, w;2 in P by taking an arc 
from a base point to each of the three components of the boundary of P and defining each 
Wi to be the loop that follows the arc to the boundary component, goes once around the 
boundary component and then returns along the arc to the base point. The fixed points of / 
are on the interior of P, so it is easy to choose Wi that avoid them. The loops are oriented 
so that the loop wiW2 can be deformed through P to w;o, thus WIW2WQ^ represents the 
identity element of the fundamental group TTI ( P ) . Therefore there is a homotopy ht'.I -^ 
P shrinking w\W2w'^^ to the constant loop. Letting A denote the diagonal in P x P, the 
map g defined hy g{x) = (x, g(x)) maps each Wi to a loop in P x P - Z\ that represents 
an element r/ e ni(P x P — A), the braid group (of pure 2-braids) on P. Since g is fixed 
point free, we have the homotopy g o ht: I -^ P x P — A that shows us that tirirj"^ 
is the identity element of 7ri(P x P — A). Letting a, G 7ri(P x P — Z\) be the element 
represented by the loop f(wi), where f{x) = (x, f(x)), Jiang showed that, since / and g 
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are homotopic, a/ and zt are conjugate in jri(P x P — A), that is, r/ = UiOiuJ for some 
Ui. Since ri 12 = TQ in TTI (P x P — ^ ) , Jiang obtained from the existence of the fixed point 
free map g homotopic to / the following equation in the braid group: 

u\o\u'^ U202U2 = UQCJOUQ . (*) 

The a/ depend on the map / which Jiang had explicitly defined, so they can be expressed 
in terms of the generators of the braid group. He defined a homomorphism ^ : JTI (P x P — 
A) ^^ G, where G is the group with two generators, a and ^, subject to the single relation 
Qf2 = 1, and he calculated that ^(ao) = i^^ 6>(ai) = 1 and 0(a2) = a^'^a^. Thus the 
equation (*) leads to the equation 

vidP^a^v^^ = V{)P^v^^ (**) 

in G, where vi = 6(ui). But (**) implies that ayŜ â ^ is conjugate to ^^ in G, which 
is readily seen to be false. Thus there is no equation (**) in G, which contradicts the 
equation (^) in 7ti(P x P — A) that must exist if the fixed point free map g does. In 
this way, Jiang proved that there is no fixed point free map homotopic to the map / of 
his example. There could not be any map homotopic to / with a single fixed point either 
because it would be of index zero and so could be removed by a technique we described in 
the previous section. Consequently every map homotopic to / has at least two fixed points, 
even though A^(/) = 0, so P does not have the Wecken property. 

More discoveries about the Wecken property on surfaces followed Jiang's work and the 
study of this property continues to be an important part of fixed point theory (see [10]). 

8. Some additional topics 

In this final section, we will discuss briefly some of the many topics that are of current 
interest but that did not come up earlier. The topics have been chosen to illustrate the di
versity of subject matter that has evolved from the sort of fixed point theory we have been 
considering. In recent years, this branch of topology has come to be known as "Nielsen 
theory". As we have seen, Nielsen's ideas had a profound impact on the subsequent de
velopment of fixed point theory, so it is appropriate that this area has become associated 
with his name. More significantly, a very substantial portion of the subject is concerned 
with the further development of those same ideas, through the characteristic methodology 
of Nielsen theory, which I will next describe in very general terms. 

Nielsen theory is concerned with finding a lower bound, that is valid for maps in an 
appropriate homotopy class, for the number of solutions to some equation. The solutions 
are partitioned into equivalence classes, much like the fixed point classes of Nielsen's pa
per [45], and a criterion for the essentiality of a class is established. The Nielsen number, 
call it Â , is defined to be the number of essential classes. Once the suitable Nielsen number 
concept has been found, there are two principal lines of inquiry. One of these is the devel
opment of techniques for the computation of Â . For instance, some class of spaces may 
allow a relatively straightforward calculation of Â , as is the case for the classical Nielsen 
number A^(/) if / is a map on a Lie group (see Section 4). The other line of inquiry 
concerns whether, as a lower bound, Â  is sharp, that is, whether there are maps in every 
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homotopy class for which the number of solutions is exactly Â . In the setting of classical 
Nielsen fixed point theory, that was the subject of the previous two sections, that is, the 
Wecken property. 

We will not attempt to cover these additional topics in any detail but will just state 
briefly what they are and, to some extent, describe the work that initiated them. In general, 
references will be limited to the first papers in that line of inquiry. An adequate exposition 
of the subsequent development of these topics, which in all cases is substantial, must await 
another occasion. 

In Section 3 we discussed the fact that intersection theory was the setting for the work 
of Lefschetz that contained his fixed point theorem and that, in that setting, it was natural 
to study coincidences. Specifically, in [40] Lefschetz considered maps / , ^ : M -> Â  be
tween oriented manifolds of the same dimension and found conditions for the existence of 
coincidences of the maps, that is, for solutions x e M to the equation f(x) = ^(;c). In 
1954, Wolfgang Franz [18] described a Nielsen theory of coincidences for maps of mani
folds. Extending the geometric form of the Nielsen equivalence relationship that Wecken 
found so useful, coincidences x\ and X2 of maps f,g:M-^NarQ equivalent if there is 
a path ^ in M from xi to X2 such that the paths f{^) and g(^) are homotopic in TV by a 
homotopy keeping the endpoints fixed. A "coincidence index", that is a local version of 
the Lefschetz coincidence number L(f, g) defined in Section 3, may be used to define a 
Nielsen coincidence number A^(/, g) that is a lower bound for the number of solutions for 
the equation f\x) = g\x) among all maps / ' homotopic to / and g^ homotopic to g. 
Although, as we noted, at its start coincidence theory seemed a somewhat unusual topic 
for topology, it has developed a significant body of information which continues to grow 
rapidly. 

If the coincidence equation f(x) = g(x) is specialized by taking g to be the identity 
map, we have the fixed point equation f(x) = x.On the other hand, if we take f, g :X ^^ 
y to be a map, where g is the constant map, say g(x) = c for all x G X, a solution to the 
coincidence equation is a point x e f~^{c). The study of the sets f~^{c) for maps between 
orientable manifolds of the same dimension is related to the degree of Brouwer that we 
discussed in Section 2 because the absolute value of the degree can furnish information 
on the number of points in f~^{c). In a paper of 1930 concerned with this topic [25], 
Hopf introduced a Nielsen theory modelled, as he states, on the 1927 paper of Nielsen 
[45]. Points xi and X2 in f~^(c) are equivalent if there is a path ^ in X from xi to X2 
such that the loop f(^) is contractible in 7 by a contraction keeping c fixed. His notion 
of essentiality of an equivalence class is closely tied to Brouwer's degree. Although the 
degree theory of Hopf's paper, which applied even to maps of non-orientable manifolds, 
became an estabhshed part of algebraic topology, the part related to Nielsen's work did not. 
Then, in 1967, as part of his work on Nielsen coincidence theory, Robin Brooks [4] studied 
solutions to the equation f(x) = c, which he called root theory. Brooks independently 
developed Nielsen root theory in a more general context than Hopf had considered and, 
since that time, root theory has been recognized as an important part of Nielsen theory. 
(An exposition of Brooks's root theory can be found in [35].) 

In principle, Lefschetz's intersection theoretic approach did not limit him to the study 
of single-valued functions. If / is a function that associates to each point x in a space X a 
subset of the space X, then the graph of / can be defined as 

rf = {{x,y)eXxX: y e f(x)}. 
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A point (jc, y) in the intersection of Ff and the diagonal in Z x X corresponds to a point 
X e X with X e f(x), which is called 3. fixed point of the multivalued function / . But the 
history of fixed point theory for multivalued functions really begins with a paper of Samuel 
Eilenberg and Dean Montgomery in 1946 [15]. Let X be a finite n-dimensional polyhedron 
and / a function on X such that, for each x € Z, its image f(x) is a nonempty closed 
subset of X that is acycUc, that is, its reduced rational homology is trivial. Suppose further 
that / is upper semi-continuous which means that for every open set V in X containing 
fix) there is a neighborhood U of x such that f(U) C V. Let p,q : Ff -^ X be the 
projections p{x, y) = x and q{x, y) = y. Since, for each x e X, the set p~^(x) is 
acycHc because it is homeomorphic to f(x), a theorem of Vietoris of 1929 [57] impUes 
that, for all k, the homomorphism pk : HkiPf) -^ Hk(X) is an isomorphism. Eilenberg and 
Montgomery defined a Lefschetz number L ( / ) for the multivalued function / by setting 

n 

L{f) = Y.{-\ftrace{qko{pkr^) 
k=0 

and proved that if L(f) / 0, then / has a fixed point, that is, x e f{x) for some x e X. 
The first Nielsen theory for multivalued functions appeared in a paper of Schirmer [50] 

of 1975. She considered upper semi-continuous functions 0 taking points of a finite poly
hedron X to small subsets of X, that is, such that (p{x) lies in the star of a vertex for each 
X e X. Letting A^(0) = N(f) for a suitable single-valued approximation / : X -> X to 
0, she found conditions, in particular for multivalued functions that are acyclic-valued as 
in [15], so that Â ((/>) is a lower bound for the number of fixed points in an appropriate 
sense. Subsequent work on the fixed point theory of multivalued functions has extended 
the types of such functions that can be analyzed. 

Given a map / : X -> X, a fixed point of the iterate / ' " is called a periodic point (of 
period m). The application of fixed point theory to periodic points began in a paper of 
Brock Fuller in 1953 [17]. Fuller used the Lefschetz fixed point theorem to prove that if 
h: X ^ X is a homeomorphism of a finite polyhedron with nonzero Euler characteristic, 
then h has a periodic point. In fact, he proved more, namely that if Rk is the /:-th Betti 
number, then h has a periodic point of period no larger than the larger of the sum of the 
Rk for k odd and the sum for k even. The argument depends on the fact that, if there is no 
such periodic point then, by the Lefschetz theorem, all the Lefschetz numbers L(h), L(h^) 
and so on must be zero. This condition can be expressed in terms of the eigenvalues of 
the induced homology homomorphisms /ẑ % which are all nonzero since h is 3. homeomor
phism. An algebraic argument then demonstrates that the condition implies that the Euler 
characteristic of X is zero. 

The Nielsen theory of periodic points began much more recently, in a book published in 
1983 by Jiang [30]. The purpose of such a theory should be to find a lower bound for the 
number of periodic points of a given period among all maps homotopic to the given map. 
But there is an issue that arises as soon as one considers the problem. For example, a fixed 
point of a map / is also a fixed point of any iterate of / . Thus, for instance, by the number 
of periodic points of period 2 do we include the fixed points or only consider the other 
points with the property /^(x) = xl Jiang dealt with this problem by defining two Nielsen 
numbers for periodic points. One of these Nielsen numbers, now generally denoted by 
N0m ( / ) , is a lower bound for the number of periodic points of period m among all maps 
homotopic to / . Thus this number counts fixed points as periodic points of all periods. On 
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the other hand, by a periodic point of period exactly m is meant a fixed point of f^ that is 
not a fixed point of /^ for any j < m. The Nielsen number NP^ ( / ) is a lower bound for 
the number of periodic points of period exactly m among all maps homotopic to / . For a 
thorough exposition of this very active area of Nielsen theory, see [23]. 

The purpose of Brouwer's use of simpHcial approximation and related combinatorial 
techniques was to eliminate the restriction, found in Poincare's work, that maps had to be 
differentiable. In a sense then, a paper Jiang published in 1981 [29], in which he proved 
Wecken's manifold theorem (see Section 6) in the differentiable setting, reversed the direc
tion of the development of fixed point theory. Jiang's theorem states that if M is a smooth 
manifold of dimension at least three and f: M -^ M is a smooth map, then / can be 
smoothly homotoped to a map g with exactly A^(/) fixed points. The principal tool of his 
proof was the smooth version of the "Whitney Lemma". By transversality, the fixed points 
of / can be made transverse, so each is of index (in the sense of Section 3) either 1 or 
— 1. If two equivalent transversal fixed points have different indices, the Whitney lemma 
cancels them. After applying the lemma as much as possible, only essential fixed point 
classes remain and each consists just of a number k of points all with the same index. Jiang 
then deformed the map to create, within the class, k + 1 new fixed points of which k are 
transversal of sign opposite those already in the class and there is one more fixed point 
whose index makes the total index of those added equal to zero so that the construction is 
possible. A further apphcation of the Whitney Lemma reduces the fixed point class to that 
single point and completes the proof. Thus, for this part of fixed point theory, the smooth 
category behaves just like the continuous one. On the other hand, Michael Shub and Den
nis Sullivan had demonstrated in 1974 [54] that it is not always the case that restricting 
to smooth maps has no affect in fixed point theory. They proved that if / : M -> M is 
a smooth map of a smooth manifold and the set of Lefschetz numbers {L(/^)} of all the 
iterates of / is unbounded, then there is an infinite set of points x e M that are periodic 
points of / . On the other hand, they defined a continuous function / : 5^ -> S^, of de
gree 2, with the property that the only fixed points of /^ , for any k, are the poles. Thus 
{L(f^) = 1 + 2^} is unbounded in this case and yet there are just two periodic points 
for / , which could not happen if / were smooth. The question of the distinction, or lack 
of it, between the smooth and continuous categories in the various parts of Nielsen theory 
continues to be of interest. 

An immediate consequence of Jiang's smooth version of Wecken's manifold theorem 
is a smooth version of the converse Lefschetz theorem: if / : M -^ M is a smooth map 
on a smooth, simply-connected manifold and L( / ) = 0, then there is a smooth fixed 
point free map smoothly homotopic to / . A smooth map on a smooth manifold is one 
that preserves the underlying structure on the manifold. In the same way, if a group G 
acts on a manifold M so that g • x is defined for ^ e G and x e M, then M is called a 
G-manifold and a G-map is one that preserves that underlying structure because it obeys 
the rule f(g - x) = g - f(x). In 1984, D. Wilczynski [61] extended the converse Lefschetz 
theorem to G-maps in the following way. A subgroup H of G is an isotropy subgroup if 
there exists some x e M such that g - x = xif and only if g e H. Let H be an isotropy 
subgroup of G, then M^ denotes the submanifold of M consisting of the points that are 
fixed by / / , that is h - x = x, for all h e H. The restriction of a G-map / takes M^ 
to itself and we denote that restriction by / ^ . Letting NH denote the normalizer of H 
in G, its Weyl group WH is defined by WH = NH/H. Wilczynski proved that if, for 
every isotropy subgroup H of G with finite Weyl group, M^ is simply-connected and of 
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dimension at least 3 and the Lefschetz number L(f^) = 0 , then there exists a fixed point 
free G-map that is G-homotopic to / . The Nielsen theory of G-maps began in 1988 with 
a paper of Edward Fadell and Peter Wong [16]. By using appropriate Nielsen numbers in 
place of the Lefschetz numbers of Wilczynski's paper, they were able to obtain a converse 
Lefschetz theorem for G-maps that did not require that the M^ be simply-connected. 

The converse Lefschetz theorem of Section 6 has been extended in yet another way. If 
H = [ht]: X X I ^^ X is a homotopy, then the fixed points of H are the fixed points of 
the maps ht for all t, that is, by 2i fixed point of H is meant a point (x,t) e X x I such 
that H(x,t) = X. A converse Lefschetz theorem in this setting would furnish conditions 
under which, given such a homotopy H between fixed point free maps, there is a homo
topy without fixed points that is homotopic to H through maps from X x I to X. Donco 
Dimovski and Ross Geoghegan considered this problem in a paper of 1990 [12] whose 
title "One-parameter fixed point theory" is the name given to this new branch of Nielsen 
theory. 
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1. Introduction 

§ 1. Among the most widely noticed achievements of knot theory are certainly the fa
mous knot tables produced by the Scottish tabulating tradition in the late 19th century, the 
polynomial invariant invented by James W. Alexander in the 1920's, and the series of new 
polynomial invariants that came into existence after Vaughan F. Jones discovered a new 
knot polynomial in 1984. It might seem that these results easily fit into a story centered 
around plane knot diagrams, symbolical codings of such diagrams and the operations one 
can perform with them, and combinatorial techniques to draw conclusions from the infor
mation that is thereby encoded.^ In this contribution, I will first outline such a narrative 
and then show that it fails to account for important causal and intentional links in the fabric 
of events in which these achievements were produced. Indeed, a striking feature of knot 
theory is that, even if a significant number of its results may be stated and proved in a 
direct, combinatorial fashion, the research that produced those results was often motivated 
by and directed toward geometric considerations of varying complexity. In many cases, 
these geometric ideas alone provided the links to other topics of serious mathematical in
terest and thus could induce mathematicians to devote their time to knots. Moreover, only 
by taking into account the surrounding geometric aspects can historians reach a position 
from which they may judge the relations between the steps in the formation of knot theory 
and the broader mathematical and scientific culture in which these steps were taken. These 
relations form part of the causal weave that needs analysis in order to attain a historical 
understanding of Tait's, Alexander's, or Jones's results. 

§ 2. In what follows, I will pursue this subject in five steps (corresponding to Sec
tions 2-6). In Section 2, some of the relevant combinatorial aspects of the history of knot 
theory will be sketched. This account is mainly intended to anchor the events relating to 
combinatorics in the historical chronicle, and to highlight the kinds of questions that re
main unanswered if the history of knot theory is presented in a perspective that concentrates 

^ A sketch along these Hnes has been published by Przytycki [131]. 
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exclusively on combinatorial issues. In Section 3, the main geometric ideas in the back
ground of the first mathematical treatments of knots, up to and including the tabulations 
of Peter Guthrie Tait and his followers, will be discussed. It will be seen that, in an im
portant sense, the knot tables of the 19th century did not represent an isolated and curious 
effort in the hardly existent science of topology. Section 4 will then be devoted to the mak
ing of what may be called modem knot theory in a historically specific sense, based on 
the new tools of Poincare's Analysis situs, the fundamental group, torsion invariants, and 
Alexander's polynomial. Section 5 takes up the difficult task of choosing and describing 
some developments concerned with the further investigation of knots in the period up to 
Jones's breakthrough. Besides the background to his new invariant, I will mainly focus on 
researches formulating innovative ideas on knots as genuinely three-dimensional objects, 
rather than as objects given by diagrams. I will return to my general theme in the conclud
ing Section 6, in a brief attempt to assess the historical role of geometric aspects in the 
mathematical treatments of knots. 

§ 3. Due to limitations of competence and space, the selection of topics discussed cannot 
be exhaustive and may perhaps not even be representative with respect to the main theme 
of this article. This holds both with respect to the description of mathematical ideas and 
- even more so - with respect to the causal and intentional saturation of the historical 
narrative.^ Among the many mathematical issues I have not dealt with are results about 
special classes of knots, investigations relating to the finer structure of knot groups, knots 
in higher dimensions, and the relations between knots and dynamical systems.-^ 

It must also be emphasized that the following remarks are written from the perspective 
of a historian, and not from that of a mathematician engaged in active research on knots. 
This raises a particular difficulty when it comes to recent developments. Since there is 
little or no distance to view these events from, one is hard pressed to find historical criteria 
that would help to order the overwhelming amount of material that could be subjected to 
historical investigation. Since, on the other hand, it is not the historian's task to side with 
one or several of the engaged parties of active researchers in the assessment of this material, 
he is left with a huge and (from his perspective) largely unordered corpus of information. 
Under these circumstances, the best I can hope for is to propose some points of view that 
may prove useful for a better structuring and understanding of this corpus in subsequent 
historical work."̂  

2. A tale of diagram combinatorics 

§ 4. It has been suggested that one of the earliest tools of combinatorial knot theory was 
forged by Carl Friedrich Gauss. Some posthumously pubhshed fragments of his Nachlafi, 

^ Taking descriptions of a complex of intellectual events in which certain mathematical ideas were produced 
as elements of the basic chronicle of a historical narrative, a historian has to "saturate" this chronicle in one 
of various possible ways. The idea that guides me in this enterprise is to produce an account of the weave of 
mathematical action in which these intellectual events actually happened. A historical narrative might thus be 
called "saturated" with respect to its basic chronicle if the causal and intentional context of the basic events in 
this weave is adequately captured. See also [42, Introduction]. 
^ Interesting survey articles that offer information on these and still other questions are [60, 156, 67]. 
^ A fuller treatment of the topics discussed here will be found in some of the papers referred to below and in my 
book Die Entstehung der Knotentheorie, forthcoming. 
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Fig. 1. A "Tractfigur" with crossing sequence ABCDBADC. 

originally written in the years 1825 and 1844, document that the Gottingen mathematician 
tried to classify closed plane curves with a finite number of transverse self-intersections, 
sometimes called "Tractfiguren" (tract figures) by Gauss.^ To do so, he invented a symbol
ical coding of such figures. He assigned a number or letter to each crossing and then wrote 
down the sequence of crossing symbols that resulted from following the curve in a given 
direction from a given point (see Figure 1). 

To some extent, this symbol-sequence captured the characteristic features of the tract 
figure in the sense of Geometria situs, as Gauss preferred to call the as yet unexplored 
science of topology.^ Gauss noticed that the sequences arising in this way had to satisfy 
certain conditions: Each of the symbols representing one of the n crossings had to appear 
exactly twice, once in an even and once in an odd place of the sequence. As Gauss noticed 
in 1844, however, these conditions were sufficient only for n ^ 4. He thus set out to write 
down a table of the admissible sequences for five crossings, but he did not find a method to 
solve the general problem of determining exactly which symbol sequences satisfying the 
above conditions actually represented crossing sequences of "Tractfiguren".^ 

What reasons did Gauss have for looking at this matter? Unfortunately, the fragments 
themselves do not give a clear answer. From the perspective of later knot theory, Gauss's 
attempt might look like a first step toward knot tables, but we will see that he had other 
reasons for studying "Tractfiguren". 

Apparently unrelated to these considerations is another posthumous fragment that has 
often been cited as evidence for Gauss's interest in knots and links. This text, written in 
1833, gives a double integral for counting 

the intertwinings of two closed or infinite curves. Let the coordinates of an undeter
mined point of the first curve be x, j , z; of the second x\ >'̂  z\ and let 

/ / 
jx' - x)(dydz' - dzd/) + (/ - y)idzdx' - dxdz') + jz' - zKdxd/ - dydx^) _ ^ 

[(x^ - jc)2 + (y - j)2 + (z' - 2)2]3/2 

then this integral taken along both curves is = 4mn and m the number of intertwinings.^ 

Here, the situation is different than with the fragments on "Tractfiguren". A number that 
modern knot theorists might be inclined to calculate from a link diagram by adding "signs" 

^ [57,vol. VIII, pp. 271-286]. 
^ Today, it is known that a reduced projection of a prime knot is indeed determined by its crossing sequence; 
see [29]. 
^ This problem received new interest after Gauss's fragments were published in 1900 and described in [33]. An 
algorithm solving the problem was first published by Max Dehn in [36]. 
8 [57, vol. V, p. 605]. 
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Fig. 2. Marking corners of diagrams. 

of diagram crossings, was described by Gauss using analytical information. As it stands, 
also this fragment poses a historical riddle: Why, when, and how was Gauss led to consider 
linked space curves and this integral? 

§ 5. While there is no direct evidence that Gauss actually studied the knot problem, his 
student and protege Johann Benedikt Listing did.^ In his 1847 essay, Vorstudien zur Topolo-
gie (in which he coined the term topology). Listing proposed to study, among other things, 
"Linearcomplexionen im Raume", roughly corresponding to 1-dimensional cell complexes 
embedded in ordinary space. The simplest case were knots (in the sense of smooth closed 
space curves without double points). Listing did not formulate the classification problem 
expHcitly, but the general thrust of his essay suggests that he was interested in topologically 
invariant characteristics of "Complexionen" like knots. Guided by the Leibnizian idea of 
a symboHcal calculus expressing "situation", as it was understood at the time,^^ Listing 
associated a "Complexionssymbol" with each knot diagram which, in slightly modernised 
notation, is a polynomial with integer coefficients in two variables. It was based on a rule 
for marking the corners of a diagram associated with Figure 2. Connecting two opposite 
regions by an axis running between the two arcs of the link, these arcs turn around the axis 
either like a right-handed or a left-handed screw. Accordingly, the regions were marked k 
or 5, respectively [94, p. 52]. Listing's symbol was then defined to be the polynomial 

where each term CijX^8J represented all diagram regions with precisely / marks X and j 
marks 8; the coefficients cij were just the numbers of regions of type X^S-^, including the 
outer region. This polynomial was not a knot invariant, however, since diagrams of equiv
alent knots could have different polynomials. What Listing hoped was that the resulting 
identities could be made the basis of an algebraic calculus with diagram polynomials (in 
modern terms, one might interpret Listing's idea by considering the quotient of Z[A, 8] by 
the ideal generated by all diagram equivalences). The obvious problem was that the basic 
identities were unknown as long as the knot problem was unsolved, and Listing was unable 
to draw any interesting consequences from his definitions. 

On Listing, see [21]. A letter of Betti's reporting on his conversations with Riemann gives indirect evidence 
that during the last years of his life, i.e. after Listing's Vorstudien had appeared, Gauss studied knots, though 
without much success; see [170]. 
^̂  The recurrent appeal to Leibniz' authority on Analysis situs is itself a historically interesting phenomenon, 
see [91, Introduction]. The particular conception of Analysis situs that Listing had in mind was in fact due to 
Euler [43]. 
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Fig. 3. "Twists" and "two-passes" 

§ 6. The next visible scientific enterprise relating to knots was the construction of tables 
of alternating knots of up to eleven and of non-alternating knots of up to ten crossings 
by the Edinburgh physicist Peter Guthrie Tait, the Lancashire clergyman and mathemati
cian Thomas P. Kirkman and the American civil engineer Charles N. Little in the last two 
decades of the 19th century. These tables, all but one pubhshed in the journals of the Royal 
Society of Edinburgh, were the outcome of hard combinatorial work.̂ ^ Tait, who initiated 
the whole enterprise, outlined the strategy to be followed. It consisted of two separate tasks: 
first, all possible projections of prime knots (i.e. diagrams where over- and undercrossings 
were not distinguished) had to be enumerated; second, all possible choices of over- and 
undercrossings in these projections had to be checked, eliminating diagrams of equivalent 
knots. 

The enumeration of knot projections was the easier part of this strategy. For the lowest 
crossing numbers, and independently of Gauss's still unpublished ideas, Tait first tried a 
method based on a refined version of crossing sequences. Later, he settled for a differ
ent technique, involving what today is called the "graph" of a knot. For higher crossing 
numbers, Kirkman took over this project, using another method for enumerating certain 
four-valent graphs from which knot projections could be derived. The harder task involved 
searching for duplications among the knot diagrams resulting from the enumerations of 
knot projections. Tait completed this task for alternating diagrams of up to ten crossings, 
and Little went on to deal with those having eleven crossings as well as the non-alternating 
diagrams. Two ideas about how diagrams of equivalent knots were related, implicit in Tait's 
work but only made explicit by Little, helped them to construct their tables, though both 
were acutely aware that their results were, to some extent, only tentative. For alternating 
diagrams without "nugatory" crossings,^^ Tait's implicit assumption and Little's explicit 
claim was that two such diagrams represented the same knot if and only if they could be 
related by a sequence of "twists" as in Figure 3 (left).̂ -̂  Only recently, and based on Jones's 
new invariant, has this conjecture been proved by Menasco and Thistlethwaite [108]. For 
non-alternating diagrams. Little argued that a sequence of twists and of additional op
erations, today called "two-passes" and illustrated in Figure 3 (right), would suffice to 
generate all diagrams of equivalent knots. Unfortunately, this claim was recognised to be 
wrong when K.A. Perko discovered a duphcation in Little's tables in 1974 that the latter 
had missed because the two are not related by twists and two-passes. 

^̂  The main publications are [153-155, 88, 89, 95-97]. See [42] for a more detailed description of this work. 
'^ A diagram crossing was called "nugatory" by Tait if a simple closed curve existed in the diagram plane 
intersecting the diagram only at this crossing. Diagrams without such crossings are today called "reduced". 
^̂  The name "flype" that modern authors tend to attach to this operation was used by Tait for a different operation. 
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Two obvious historical questions arise. First, why did these men spend so much of their 
time on knot tabulations? And, second, was their work causally Hnked to the Gottingen 
environment of the 1840's, where Gauss and Listing had dealt with similar issues? 

§ 7. Not long after Poincare had created the conceptual tools of modern topology - ho-
mological invariants and the fundamental group - presentations of the fundamental group 
of a knot complement, associated with a knot diagram, became known. In 1910, Max 
Dehn published a method for finding such a presentation and pointed out that a study 
of knots using group presentations would require solving some of the basic problems of 
combinatorial group theory [34]. In this connection, Dehn actually gave the first gen
eral and explicit formulations of the word and conjugacy problems in finitely presented 
groups. ̂ "̂  Dehn also sketched a technique for treating the word problem by constructing 
what he called the "Gruppenbild", namely, the Cayley graph of a finitely presented group 
G :— {a\,..., Uji \ r\,..., Vfi) consisting of the group elements as its vertices and oriented 
edges connecting group elements of the form g and aig. The cycles in this graph obviously 
correspond to all trivial words of the presentation, so that constructing the "Gruppenbild" 
and solving the word problem of a group presentation are equivalent tasks. Dehn managed 
to construct the graph of the group of a trefoil knot. The graph showed that this group was 
non-commutative, and hence a trefoil knot could not be deformed without self-intersections 
into an unknotted circle. 

In the 1920's, Kurt Reidemeister and Emil Artin pointed out that another method for 
associating a group presentation with a knot diagram had been developed already around 
1905 by the Vienna mathematician Wilhelm Wirtinger; and in fact the method had been 
described in a somewhat disguised fashion by Tietze in a paper of 1908.^^ Again, a question 
arises: what drew Wirtinger and Dehn to study knots and their groups in the first place? 
Was it just the wish to apply Poincare's new tools to a "natural" particular case? 

§ 8. The 1920's brought the first effectively calculable invariants of knots, and thus also 
a means for verifying the knot tables of the 19th century. More or less independently, the 
Princeton topologist James W. Alexander (together with his student G.B. Briggs), and Kurt 
Reidemeister, first at Vienna and then at Konigsberg, showed how to associate certain ma
trices with knot diagrams in such a way that the elementary divisors of these matrices were 
knot invariants.^^ The model for this technique was clearly Poincare's calculation of the 
torsion numbers of cell complexes, but both Reidemeister and Alexander presented their 
results in a completely independent way; Reidemeister even spoke of a new "elementary 
foundation" for knot theory. Both defined knots as equivalence classes of finite polygons 
in three-dimensional Euclidean space. Two such polygons were considered equivalent if 
and only if they could be deformed into each other by a sequence of applications of the 
following operation and its inverse: two incident edges AB, J5C of a polygon may be re
placed by an edge AC, provided the triangle ABC contains no further point of the polygon. 
Reidemeister and Alexander translated this into an equivalence relation between knot (or 
fink) diagrams. Instead of just one operation, four had now to be considered: an analogue 

^̂  For a discussion of the relations between knot theory, topology in general, and early combinatorial group 
theory, see [28, Chapter 1.4]. 
^̂  See [9, Section 6; 160, p. 103f]. 
16 See [134, 135,7]. 
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Fig. 4. Reidemeister's diagram moves. 

of the above in the plane (where it is allowed that an arc of the polygon without cross
ings lies "below" or "above" the triangle involved), and three "diagram moves" involving 
modifications of diagram crossings which since have become known under the name of 
"Reidemeister moves" (see Figure 4). 

Again, diagrams that could be deformed into each other by a finite sequence of such 
moves represented the same knot, and thus any mathematical object associated with a knot 
or link diagram invariant under Reidemeister's moves was a knot (or link) invariant. Reide
meister and Alexander showed this to be the case for the nontrivial elementary divisors of 
the matrices they were considering. Since this helps to understand Alexander's subsequent 
invention of a knot polynomial, let me present Alexander's version of a matrix associated 
with a knot diagram in condensed form. Thus, let the v crossings of a knot diagram be 
denoted by ci, C2,. . . , Cy, and let its v + 1 finite regions be denoted by ro, r i , . . . , r^}^ 
The region ro should have a common border with the infinite region. After selecting an 
orientation of the diagram, the corners of diagram regions are marked according to the 
convention that the corners of the two regions to the left of each undercrossing arc receive 
a dot. Moreover, an integer « ^ 2 is chosen. Then an {nv x ny)-matrix M is defined, 
consisting of y x v blocks aij, each of size n x n. In order to abbreviate the definition, let 
/ denote the {n x n)-unit matrix, and let x be the {n x «)-block given by 

X := 

0 

0 

\ 1 

1 

0 

0 

0 

0 . 

1 

0 • 

• ̂ ] 

•• 1 

.. 0 / 

Then M is defined by the following rules: (1) to each crossing c/ corresponds a row of 
blocks aij, and to each region rj, j = 1 , . . . , y, corresponds a column of blocks ajj in M; 
(2) if ry, rk^n, r,n are the regions incident with a crossing c/, in cycHcal order as one goes 
round c/ in counterclockwise sense, and such that the dotted corners belong to rj and r^, 
then aij = aik = x and an = aun = I. 

It was now a matter of straightforward calculation to show that the elementary divisors 
of M different from zero and one - called the "torsion numbers" of the knot - remained 
invariant under Reidemeister's diagram changes. Alexander and Briggs calculated the el
ementary divisors of all of the 168 matrices associated with the 84 knots of nine or less 

These notations are taken from [5]. In the earher [7], different notational conventions were adopted. In both 
papers, the matrix defined was viewed as a matrix of coefficients of a system of Hnear equations in the variables Vj. 



308 

Fig. 5. Local modifications of links. 

crossings in Tait's tables, corresponding to n = 2 and n = 3. Except for three pairs with 
identical torsion numbers, all of these knots were found to have distinct invariants. 

Of course, the above description makes Alexander's construction of invariant numbers 
appear historically opaque. How could he possibly have found all this machinery? Why 
were these invariants called torsion numbers? 

§ 9. In Alexander's and Briggs's first paper, the block structure of the above matrix was 
not introduced explicitly. Once it was recognized (and no doubt it was recognized during 
the extensive calculations needed for checking Tait's tables), it was but a small step to 
see that one could view the (v x y)-matrix of blocks as a matrix with polynomials in 
the formal variable x as its entries (/ being identified with 1). This step was taken in 
[5], where virtually the same arguments as before showed that the nontrivial elementary 
divisors of this new matrix, and therefore in particular its determinant Z\(x), were invariants 
under the Reidemeister moves up to a factor ±x^ (k e Z)}^ Normahzing A(x) by the 
requirement that the term of lowest degree became a positive constant, Alexander obtained 
the polynomial invariant of oriented knots that today carries his name. Again, the knots 
in Tait's tables were used to test the force of the new invariant. Alexander found that the 
polynomial, though of course much easier to calculate, was only shghtly less effective in 
distinguishing knots than the torsion numbers. It turned out that both, however, could not 
distinguish knots from their reverse knots (obtained by reversing the orientation) or mirror 
images (obtained by switching all crossings). 

Toward the end of his paper, Alexander included a side remark which probably resulted 
from his experiences with calculations of A(x). After noticing that his definition could 
equally well be applied to link diagrams (in this case, it gave rise both to a one-variable 
polynomial of oriented links, defined by the same rules as above, and a polynomial in 
as many variables as the link had components), Alexander established a relation of the 
one-variable polynomials of "three closely related links" [5, p. 301]. Using the modern 
subscripts L^, L-, and LQ for oriented hnk diagrams that only differ at one crossing in the 
way indicated in Figure 5, Alexander's relation can be written as 

AL_(X) - AL+(X) = {l -x)ALoix). (*) 

For the time being, however, nothing was made of this relation. 

§ 10. In 1961, Wolfgang Haken published a long and difficult paper in which an algo
rithm was described that allowed one to decide whether or not a given knot was equivalent 

^ ̂  Actually, Alexander used both this matrix and an equivalent one, in which certain signs were added to take 
care of orientations. 
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to the unknot [64]. Although this algorithm was extremely impractical, its existence made 
it probable that the classification of knots was possible by algorithmic means. Accordingly, 
and enhanced by the availability of powerful computers, the interest in computerised knot 
tabulations increased significantly during the 1960's. At a conference in 1967, John Con
way surprised the tabulators by presenting an algorithm for enumerating knots and links 
which was much more effective than those used by the 19th-century tabulators and which 
enabled him to enumerate knots of up to eleven crossings and links of up to ten crossings 
by hand [31]. The main tool was a calculus of "tangles", parts of link diagrams with four 
open ends, that could be used to survey their possible combinations and closings. In order 
to distinguish the various links enumerated in this way, Conway had to calculate invariants, 
too. This led him to reconsider the Alexander polynomial, and he redefined it by a change 
of variables and a new normalization. Apparently without having read Alexander's earlier 
remark, Conway pointed out that his version of the polynomial satisfied an equivalent of 
(*) and similar relations which he later came to call "skein relations".^^ In view of their 
usefulness in calculations, he counted these relations among "the most important and valu
able properties" of his version of the Alexander polynomial, but he did not try to define the 
polynomial using a variant of (*). 

This was done in 1981 by L.H. Kauffman. He observed that up to a suitable normal
ization, Alexander's one-variable polynomial Ai(t) of oriented links L was uniquely de
termined as a symmetric element of Z[r^/^, t~^^^] (in the case of proper knots even of 
Z[t, t~^]) by the following two conditions (the symbol Q represents the unknot):^^ 

^ o ( 0 = 1, (1) 

^L+(0 - ^L_(0 + (r^/^ - t-^^^)ALo(t) = 0. (2) 

Since any link diagram could be changed into a trivial one by switching its crossings, 
it was not difficult to see that these two rules would suffice to calculate the polynomial 
inductively, provided it was well-defined. This was shown to be the case using yet an
other description of A{x) as the determinant of a matrix associated with an oriented Hnk 
diagram. Still, no further analysis of this seemingly peculiar property of Alexander's poly
nomial was undertaken, and Kauffman expressed his astonishment about the approach: "It 
seems nothing short of miraculous that such a scheme should produce good invariants" 
[83, p. 102]. 

§11. The view of the matter changed dramatically when Jones discovered his new poly
nomial invariant of oriented links in 1984 [77]. In discussions, Jones and Joan Birman 
found that also this invariant satisfied a skein relation similar to the one found by Alexan
der. In fact, if Viit) denotes the Jones polynomial associated with a Hnk L, then V L ( 0 was 
uniquely determined by the conditions 

(i) VQ(t) = h 
(ii) tVi^t) - t-^VL_(t) + (̂ /̂̂  - r-i/2)yz.o(0 = 0. 

^̂  According to Lickorish [92]. In [31], this terminology was not used. 
^^ Conventions on signs and variables in the literature on knot polynomials are far from consistent. I follow here 
[54, 67], In [83], the polynomial f2{t) := z\(r^) was considered. 
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Fig. 6. Local modifications of unoriented links. 

This striking similarity induced several mathematicians to investigate the conditions under 
which a general skein relation would define a hnk invariant. Almost simultaneously, at least 
eight mathematicians found an equivalent answer to this question. In the joint article (Freyd 
et al. [54]),2i this answer was stated as follows: there is a unique invariant Piix.y.z) of 
oriented Unks with values in the homogeneous Laurent polynomials of degree 0, satisfying 

(I) Po{x^y^D = \^ 
(II) XPL+(X, y. z) + yPiM. y. z) + ZPLQU, y.z) = 0. 

Moreover, this invariant is universal in the sense that any link invariant Q with values in 
a commutative ring A that equals one for the unknot and satisfies a linear skein relation 
^QL^ + i>QL- + ^2LO = 0, for arbitrary invertible coefficients a,b,c G A, can be 
obtained from P by the canonical ring homomorphism from Z[x, jc^^ y, y~^, z, z~^] to 
A which sends x, y, z to a, b, c, respectively. In particular, both Alexander's and Jones's 
polynomials can be obtained from P (which is often expressed as the inhomogeneous two-
variable polynomial PL{U l~^,m)) by suitable substitutions of the variables. 

It turned out that Jones's polynomial and its generalization were much stronger invari
ants than the Alexander polynomial. In many cases, these polynomials distinguished knots 
from their mirror images, and up to the time of writing, no nontrivial knot seems to be 
known with the Jones polynomial of the unknot. 

Of course, once the surprising force of skein relations was recognized, variations of this 
combinatorial theme seemed promising and a whole series of related polynomials were 
found.^^ Kauffman's investigations were again particularly successful in this respect. By 
considering the four possible local modifications of unoriented links (see Figure 6) he 
found not only a new and extremely simple definition of Jones's polynomial (Kauffman 
[84]) but also a two-variable polynomial invariant of oriented links that was seen to be 
independent of P (Kauffman [85]). 

§ 12. It is a historiographical commonplace that quite different historical narratives based 
on the same documentary material are possible. The above outline of some important com
binatorial aspects in the development of knot theory is one of the stories that can be told 
about mathematical treatments of knots and links. Homogeneous as it may seem, though, 
it is clear that crucial historical questions remain unanswered and important parts of the 
documentary evidence have been passed over in silence. What were the actual motivating 
backgrounds for those contributing to this development? For whom, and in what contexts, 
did they work on knots? How, precisely, were physicists hke Tait and mathematicians such 
as Dehn, Reidemeister, or Alexander led to form their ideas? How could an operator al
gebraist like Jones hit on a topological invariant of links? It is hardly imaginable that an 

21 See also [132]. 
•^^ A concise survey is given in [93]. 
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interest in the combinatorics of knot diagrams alone provided enough motivation and a 
sufficiently elaborated intellectual framework for constructing knot tables, for studying the 
knot group, or for inventing polynomial invariants. And indeed, in most cases, it turns out 
on closer inspection that quite varied and much richer impulses were at work in the histor
ical development. Thus, a story about the mathematical study of knots can be told which is 
quite different from the above. 

3. Mathematical treatments of knots before 1900 

§ 13. Since prehistoric times, knots and interlacing patterns have been used in human 
cultures for practical, ornamental, and symbolical purposes. Against this background, the 
beginning of a mathematical interest for knots in the late 18th century marks a striking dis
continuity. It has to be understood within the general context of the progressing mathema-
tization of many domains of human knowledge and practice that characterizes this epoch. 
More precisely, knots and interlacing patterns found the attention of those few mathemati
cians that were interested in a vaguely conceived new exact science, tentatively called the 
"science of situation". Analysis situs or Geometria situs?^ In fact, the first but vigorous 
attempt to bring knots within the reach of mathematical treatment bears all the marks of a 
typical Enlightenment attempt to mathematize a domain of human practice. It was made in 
1771 by the Paris intellectual, A.T. Vandermonde, later a decided supporter of the French 
Revolution. In a short paper entitled "Remarques sur les problemes de situation", he wrote: 

Whatever the convolutions of one or several threads in space may be, one can always 
obtain an expression for them by the calculus of magnitudes; but this expression would 
not be of any use in the arts. The worker who makes a braid, a net, or knots, does not 
conceive of them by relations of magnitude, but by those of situation: what he sees is 
the order in which the threads are interlaced. It would thus be useful to have a system 
of calculation that conforms better to the course of the worker's mind, a notation which 
would only represent the idea which he forms of his product, and which could suffice 
to reproduce a similar one for all times.-̂ "̂  

Besides showing how some symmetrical weaving patterns (ones actually used in textile 
manufacture) could be described by means of a symbolical notation, Vandermonde did lit
tle to advance a veritable "system of calculation" relating to knotted or linked space curves. 
Nevertheless, it is significant that this kind of problem was incorporated into Geometria si
tus long before, say, the classification of surfaces became an important issue. 

§ 14. Also in Gauss's case, it seems to have been the uses of the new science of Ge
ometria situs that captivated his interest in the topic. For him, however, these uses were 
concerned not with the practical arts but rather the exact sciences, including traditional 
pure mathematics as well as sciences like astronomy, geodesy, and the theory of electro-
magnetism.^^ Gauss encountered linked space curves for the first time in his scientific 
career in an astronomical context. This happened in 1804, some twenty years before the 
first of the fragments described in the last section was written. After Gauss's successful 

23 See [129, 53]. 
2^ [163, p. 566]; my (rather literal) translation. 
2̂  The following paragraphs are a condensed version of [41]. For details and full references, the reader is referred 
to this article. 
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calculation of the orbit of the first observed asteroid, Ceres, had spread his fame over Eu
rope in 1801, he continued to follow the discoveries of several other "small planets" made 
soon thereafter with increasing rapidity. In this connection, he published a small treatise 
entitled Uber die Grenzen der geocentrischen Orter der Planeten, which took up a rather 
practical question, namely the determination of the celestial region in which a given new 
"planet" might possibly appear.^^ Taking the liberty of presenting Gauss's arguments in 
modern mathematical language, the problem of this paper can be described as follows. If 
the orbit of the earth's motion around the sun is given by X c M ,̂ and if X' c M̂  is the 
orbit of another celestial body (the sun being at the center of a suitable system of Cartesian 
coordinates). Gauss wanted to determine the region on the sphere given by 

-—— eS^\xeX, x' eX'\. 

This region he called the zodiacus of the celestial body in question. Its determination 
helped to Hmit the effort needed both in the observation of the celestial body and in the 
production of an atlas of the smallest part of the celestial sphere on which the orbit of the 
body could be drawn. In order to solve this problem, Gauss derived a differential equa
tion for the boundary curve or curves of the zodiacus, implicitly assuming the orbits to be 
smooth curves. lfx = (x, j , z) € Z and x' = {x\ y', zO e X' denote the coordinates of 
orbit points, a necessary condition that a pair of points (x, x') corresponds to a boundary 
point of the zodiacus is that the triple consisting of the two tangent vectors to the orbits at 
X and x' and the distance vector r := x' — x is linearly dependent. Gauss expressed this 
condition by saying that the two tangents at x and x' had to be coplanar. Translating the 
condition into a formula led to the differential equation 

{x' - x){dy'dz - dydz) + {y - y){dz'dx - dzdjc') 

+ {z' - z){dx'dy - dxdy) = 0. 

Obviously, the differential form on the left-hand side is, up to a change of sign, nothing 
but the numerator of the integrand in the linking integral! At this point, Gauss inserted a 
typical remark: He had undertaken a mathematical study of this equation in its own right, 
but for the sake of brevity he did not wish to go into that now. However, Gauss pointed 
out that one case was of particular importance, namely that in which the two orbits were 
linked. (Even this was not just a mathematical fancy: While none of the orbits of the known 
"planets" was hnked with that of the earth. Gauss reminded his readers that "comets of the 
sort exist in abundance".^^) In this case, the zodiacus was, "for reasons of the geometry of 
situation", the whole celestial sphere. 

As I have described elsewhere, it is probable that already in his study of the equation de
termining the boundary of the zodiacus Gauss began to understand the connection between 
the geometry of linked space curves and the integer calculated by his double integral - an 
integer which in modern mathematical language may also be described as the mapping 
degree of the mapping defining the zodiacus. Thus, geometric considerations that came up 

2^ The article is reprinted in [57, vol. VI, pp. 106-118]. 
^^ [57, vol. VI, p. 11 If] - in 1847, Listing counted 25 pairs of asteroids, whose orbits were known to be linked 
by then [94, p. 64fl. 
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in a scientific context highly appreciated at its time induced Gauss to think about this kind 
of topological phenomenon. 

A similar connection involving an exact science and Geometria situs probably first 
aroused Gauss's interest in tract figures. During the 1820's, his geodetic work related to 
the triangulation of the Kingdom of Hanover induced him to develop once again some new 
mathematics. While Gauss was directing this lucrative enterprise, he also worked on the 
Disquisitiones generales circa superficies curvas, published in 1827. In this concise trea
tise, he developed the basic ideas on curvature and geodesies on surfaces that formed the 
starting point of modern, intrinsic differential geometry. The crucial tool for studying cur
vature, however, depended on the consideration of surfaces embedded in ordinary space. 
This tool was a mapping that today carries Gauss's name: it associated to each point on 
a curved surface the direction of the surface normal at that point; this direction was then 
represented as a point on an auxiUary sphere. Using this mapping. Gauss introduced the 
notion of the total curvature of a portion of the surface bounded by a simple closed curve. 
By definition, this curvature was given by the area enclosed by the image of the boundary 
curve on the auxiliary sphere. Here, however, a problem arose: the image curve could have 
singularities - i.e. it could be a tract figure on the sphere (or even worse). Thus one had to 
clarify what "the area enclosed" by such a figure actually meant. In this way, Gauss was 
led to look at the topology of closed plane curves in more detail, and it was amidst his work 
on the Disquisitiones that he sketched his first ideas about tract figures. In the published 
treatise, he only alluded to this work (and the solution of the problem of defining the area 
enclosed by a tract figure by means of "characteristic" numbers given to the various regions 
of the figure). But in a letter to his friend Schumacher, he complained: 

Some time ago I started to take up again a part of my general investigations on curved 
surfaces, which shall become the foundation of my projected work on higher geodesy. 
[...] Unfortunately, I find that I will have to go very far afield [...]. One has to fol
low the tree down to all its root threads, and some of this costs me week-long intense 
thought. Much of it even belongs to geometria situs, an almost unexploited field.'^^ 

At about this time. Gauss also spent some thought on another peculiar object of Geome
tria situs - a four-strand braid. While the page in one of Gauss's notebooks documenting 
this astonishing attempt reveals that he knew how to determine the linking number of two 
curves by counting signs of diagram crossings, it remains unclear how this fragment relates 
to Gauss's other mathematical activities.^^ 

The third exact science which brought Gauss back to the study of linked space curves 
was the theory of electromagnetism, which drew considerable scientific and public atten
tion after Oersted's and Faraday's discovery of electromagnetism and electromagnetic in
duction. As is well known. Gauss was involved together with his friend and colleague, 
the physicist Wilhelm Weber, in setting up the first telegraph in Gottingen in April 1833. 
In connection with this work. Gauss studied intensively the mathematical formulation of 
the laws of electromagnetical induction. It could not have escaped his notice that the law 
describing the magnetic force induced by an electric current was governed by precisely 
the same differential form which he had encountered in his earlier investigation of the zo-
diacus. Conceiving magnetic forces as acting on particles, which behave mathematically 
like monopoles in some "magnetic fluid", the linking integral could be interpreted as ex-

2^ Gauss to Schumacher, 21 November 1825, in: [57, vol. VHI, p. 400]. 
^^ The fragment has been published and discussed in [41]. 
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pressing the work needed to carry an "element of magnetic fluid" along a closed path in 
the magnetic field induced by a current running through another closed curve. Still, when 
Gauss wrote the passage on the Unking integral in his notebook a few months before the 
telegraph was finished, he made no explicit remarks about electromagnetism. 

Those with close contact to Gauss's work, including Wilhelm Weber and Ernst Schering, 
the later editor of Gauss's writings on electromagnetism, knew that he had thought of 
topological issues in connection with electromagnetism, and Schering thus decided that 
the fragment on the finking integral should be pubfished in the fifth volume of Gauss's 
Werke, which appeared in 1867 and contained his unpublished notes on electromagnetic 
induction. It was there that another physicist learned of Gauss's interest in Geometria situs: 
James Clerk Maxwell. In his masterpiece, the Treatise on Electricity and Magnetism of 
1873, Maxwell went to considerable lengths to explain the physical content of the finking 
integral [104, §§409-422]. 

From several passages in Gauss's letters as well as from certain writings of his scientific 
friends, we know that Gauss held the still barely existent science of Geometria situs in very 
high esteem and expected great developments to come from future research in this field. 
The reasons for his expectations certainly had little to do with his inconclusive results on 
tract figures or similar combinatorial ideas. Rather, they derived from his experience that 
certain types of objects and problems, like linked space curves and tract figures, that were 
geometric in nature but independent of "magnitude", continually reappeared in some of the 
leading sciences of his day, ranging from pure mathematics to electromagnetism. 

§ 15. A similarly close relationship between important issues in the exact sciences and 
new ideas related to knots continued to hold throughout the 19th century. When Tait em
barked on his tabulation enterprise, he was motivated by developments in natural philoso
phy in which topological ideas played a very fundamental role. The crucial mathematical 
device that brought topology into play came from Germany: potential theory in multiply 
connected domains. Thus, Tait's enterprise and the earlier topological ideas shaped under 
Gauss's hegemony at Gottingen were actually connected in the fabric of scientific practice, 
although in an indirect way. Three elements must be put together in order to understand 
this connection: the dynamical theories that many British natural philosophers held in the 
second half of the last century, H. von Helmholtz' researches on vortex motion in perfect 
fluids, and Riemann's notion of connectivity?^ 

Guided by the many "mathematical analogies" between physical phenomena that could 
be described by means of the Laplace equation (electrostatics, heat flow, etc.), many of 
the leading British physicists in the second half of the last century believed that all of 
physical theory could and should ultimately be based on some kind of Lagrangian dy
namics that governed the flow of a continuous medium (or several media). However, an 
important challenge to this conception emerged with the continuous rise of atomistic con
ceptions in chemistry. From the 1860's onward, atomism was forcefully supported by what 
was perhaps the most advanced experimental technology of the time, spectrum analysis. 
This posed an immediate problem: how could the smallest units of matter possibly be ex
plained by the dynamics of a continuous medium? One hint came from experiments with 
magnetism that seemed to imply that, on the molecular level, some kind of rotary motion 

^^ Full references and a detailed account of the events described in the following paragraphs may be found in 
[42]. 
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took place. Already in the 1850's, one of the important proponents of dynamical theories, 
William Thomson, the later Lord Kelvin, hoped to solve the riddle of atoms by detect
ing some kind of stable (presumably rotary) dynamical configuration in the motion of the 
universal medium (ether). 

A crucial piece of knowledge for Thomson's pursuit of this line of thought was provided 
when Hermann von Helmholtz pubhshed a ground-breaking paper in which the dynamics 
of a perfect (i.e. incompressible and friction-free) fluid was investigated without supposing, 
as had been done earlier, that such a flow could be described by a globally defined poten
tial function (Helmholtz 1858). In modern mathematical notation, Helmholtz discussed 
solutions V of the Euler equations, 

- 1 dv ^ ^ 
F--Vp = — + {vV)v, 

h at 

0 = V S , 

for which the field of rotation, rot v, did not necessarily vanish.^ ̂  Helmholtz observed that 
the integral curves of rot v - called "Wirbellinien" (vortex Hues) - possessed a kind of 
dynamical stability. During the motion of the fluid, the particles constituting a vortex fine 
would continue to do so throughout the motion. In particular, if a vortex line was closed, 
it would remain closed, however altered in shape. This suggested looking for a particu
lar kind of solution to the Euler equations. Helmholtz supposed the dynamics of a finite 
number of closed vortex lines (or vortex tubes, i.e. tubular bundles of vortex fines emerg
ing from a small area) to be given. He then asked: could a solution to the Euler equations 
be found with precisely these vortex lines or tubes as its (discontinuous) rotation field? 
Since outside the vortices the rotation had to vanish, this problem amounted to finding a 
solution of the Laplace equation A(p = 0 in the multiply connected complement of the vor
tices (possibly bounded by some closed surface). Here, a solution was understood to be a 
many-valued function cp defined on the complement of the vortices, the branches of which 
satisfied the Laplace equation locally. By invoking the analogy between the mathematics of 
hydrodynamics and of electromagnetism, Helmholtz made it clear that such solutions al
ways existed. The mathematics of the situation corresponded to that of a system of closed 
currents (playing the role of the vortices) which induced a magnetic field (assuming the 
role of the flow) in their complement.^^ In fact it was easy to write down integral formulae 
representing the solutions locally. Helmholtz illustrated his results, which he viewed as a 
three-dimensional analogy to the "Abelian integrals of the first kind" on Riemann surfaces, 
by giving explicit formulae for a few concrete cases fike circular vortex rings. 

After a delay of more than eight years, and through the mediation of some experimental 
illustrations of Helmholtz' results by the Edinburgh physicist Peter Guthrie Tait, Thomson 
eventually understood that these findings provided one of the missing links in his earlier 
speculations on atomism. Were not these sorts of closed vortices the kind of stable dy
namical configuration in the ether that made up atoms? Once this idea had taken shape in 

As a matter of fact, the vectorial notations for the rotation field and for the equations of fluid motion were 
indirectly inspired by Helmholtz' paper. When Tait read this paper in the fall of 1858, he was reminded of certain 
quatemionic formulae he had seen earlier in Hamilton's writings; this induced him to start a crusade for the use 
of quaternions - and thus, also vectorial notations - in physics. 
^^ The analogy is strictly correct only in the stationary case. 
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early 1867, Thomson set out to pursue it with surprising energy. Two things were clear: 
first, if his speculation was correct, then the different topological types of knots and links 
provided a wealth of forms that should account for the variety of chemical elements. Sec
ond, if it was legitimate to hope for a precise mathematical treatment of "vortex atoms", as 
Thomson's ether singularities were now called, it would be necessary to extend Helmholtz' 
theory of vortex motion to a considerable degree. 

Thomson took up the second of these tasks. Among the first goals he set himself was 
to determine the solution space of the problem Helmholtz had considered. Thus, given 
a multiply connected domain in three-dimensional space (the complement of a system of 
vortices), how many linearly independent solutions of the Euler equations for a perfect fluid 
existed with given boundary conditions (e.g., with the fluid flow tangential to all boundary 
surfaces)? The surprising answer that Thomson found was that the number of parameters 
determining a solution was dependent only on the topology of the domain considered. It 
equalled the "order of continuity" of this domain, as Thomson called it. In modern terms: 
The dimension of the linear space of harmonic vector fields in a given domain, with fixed 
boundary conditions, was equal to the domain's first Betti number. Thomson was aware 
of the fact that his result provided an analogy between integrals of the Euler equations for 
a perfect fluid and Abelian integrals on Riemann surfaces, an even closer analogy than 
that Helmholtz had seen earher. Much later, this insight would be explored in a different 
direction by Hodge's theory of harmonic integrals. 

Due to Thomson's theory, interest among British physicists in topological ideas began 
to surge. In late 1867 and during the following year. Maxwell also began to think about the 
topological issues involved in the theory of vortex atoms, although his interest stemmed 
perhaps more from the relevance of the mathematics of vortex motion for electromagnetism 
rather than because he believed it could be used to explain the structure of matter. Maxwell 
produced several manuscripts in which he sketched some of the topological ideas needed 
for dynamical theory.̂ -̂  One basic proposition concerned the first Betti number of a region 
in ordinary space, a "solid with holes" as he described such a region intuitively. If a solid 
with holes was bounded by one external surface of genus ni and several internal bounding 
surfaces of genus n2,.. •, n,n, then the first Betti number of the region was b =^ n\ -\- n2 -\-

Both Thomson and Maxwell did not yet have a sufficiently clear language to give pre
cise formulations and proofs of their topological results; neither the notion of the genus of 
a surface nor that of the "order of connectivity" of a space region were completely clear 
in their work. Maxwell and Thomson tried to explain their ideas mainly in terms of "ir
reconcilable curves" in a domain, but "reconcilability" meant for them something closer to 
homotopical rather than homological equivalence. Thus, a particular difficulty in determin
ing the first Betti number of a space region arose again from knotting: why was the "order 
of connectivity" of a Hnk complement equal to the number of components of the link, as 
Maxwell's result implied? A closer analysis shows that it was physical thinking rather than 
mathematical precision that helped Thomson and Maxwell to find the correct results.̂ "^ In 
any case, an understanding of the topology of knots and links became a requisite part of 
their physical theories. 

^^ These manuscripts were published only recently in [106, vol. 2]. 
•̂ ^ Briefly put: In technical arguments on multiply connected domains, cutting surfaces (interpreted as membranes 
stopping fluid motion) were used rather than "irreconcilable curves". See [42, Section II] for details. 
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In one of his manuscripts, and to the best of my knowledge for the first time, Maxwell ex
plicitly formulated the classification problem for knots and links. Independently of Gauss's 
and Listing's earlier attempts, he then developed a method to represent link diagrams sym
bolically, and went so far as to look for obvious diagram modifications ordered according 
to the number of diagram crossings involved. Not surprisingly, this led him to uncover 
the "Reidemeister moves" - without, however, considering the question of whether or not 
these moves would generate all diagram equivalences.^^ Apparently, Maxwell did not pur
sue his reflections on knots very far in the years around 1868. However, in a very favourable 
review of Thomson's theory of vortex atoms, written for the ninth edition of the Encyclo
pedia Britannica in 1875, he pointed out that the classification of knots might actually turn 
out to be rather comphcated: "The number of essentially different implications of vortex 
rings [that is: knot types] may be very great without supposing the degree of impHcation 
of any of them very high" [105, p. 471]. 

Soon afterward, Tait began to investigate the classification problem of knots along the 
lines described in Section 2. Throughout his work on the tabulations, Tait was motivated 
by the possible contributions these tables could make to the theory of vortex atoms, and he 
dropped his work when he felt the tables were sufficiently extensive to be compared with 
the requirements of physics - be it with a positive or, as became more and more probable, 
with a negative result.^^ It should be emphasized, however, that the scientific background 
of Tait's tabulation enterprise was anything but a scientific curiosity. Given the beliefs and 
methods of the period, Thomson's theory was considered a serious and even promising 
speculation. The fact that several of the leading British natural philosophers, including 
Maxwell, followed Thomson's ideas with interest, in itself offers ample evidence of this. 
Moreover, even if unsuccessful, the theory of vortex atoms was the first serious attempt 
to explain atoms on the basis of fundamental laws of motion rather than by postulating 
additional theoretical entities, like force centres or the like. Finally, the mathematics that 
had to be developed in order to pursue the theory was clearly perceived to be important, 
even if the physical core of the theory should turn out to be incorrect. One final point 
deserves attention. As in all earlier contributions to the mathematical study of knots, knots 
were thought of as physical objects in ordinary space. While Tait and his followers used 
diagrams to deal with these objects, the physical context implied that the complement of 
a knot or link was at least as interesting as the link itself. Thus, in connection with vortex 
atoms, it was the geometry of this spatial domain rather than the combinatorics of diagrams 
that "mattered". 

4. The formation of "modern" knot theory 

§ 16. By the time mathematicians of the twentieth century turned again to the investiga
tion of knots and links, both the status of topology and the general horizon of mathematical 
culture had changed deeply - a new epoch of mathematics had dawned that may reason
ably be called "mathematical modernity". Two aspects of these changes are particularly 

35 Cf. [42, §20; 104, vol. 2, pp. 433-438]. 
3^ During the 1880's, Thomson himself gradually abandoned the theory of vortex atoms. He repeatedly failed to 
prove that vortices possessed kinetic stability, and he began to feel that the difficulties to include other physical 
phenomena like light and gravitation into the picture were unsurmountable. See [152] for a concise description 
of Thomson's changing views. 
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relevant for our story. On the one hand, Poincare's writings on Analysis Situs offered new 
ways to conceive topological objects and new mathematical tools to deal with them, how
ever vague some of his proposals still were on the technical level.^^ On the other hand, the 
emergence of the modern, axiomatic style in mathematics, the power of which had been 
impressively demonstrated in Hilbert's Grundlagen der Geometrie of 1899, underHned the 
intellectual autonomy of mathematics and its increasing conceptual separation from the 
exact sciences. In such an environment, a continuation of the study of knots along the 
lines followed by Tait, Kirkman and Little seemed hardly promising.^^ Indeed, two quite 
different hues of thought brought knots to the fore of modern mathematics: the study of 
singularities of complex algebraic curves and surfaces, and Poincare's attempt to give a 
topological characterization of ordinary three-dimensional space, known as the "Poincare 
conjecture . 

§ 17. Around 1895, the Austrian function-theorist Wilhelm Wirtinger began to think 
about ways to generalize the approach to algebraic functions of a single complex variable 
based on harmonic functions on Riemann surfaces to the case of algebraic functions of two 
complex variables, i.e. "functions" z = z{x,y) defined by a polynomial equation 

f{x,y,z) = 0, x,y,z € C. 

Such an approach was very much in the spirit of Felix Klein's views on algebraic func
tions, and indeed Wirtinger regularly reported on his ideas in his correspondence with 
Klein. Soon, however, Wirtinger realized that among the many difficulties that had to be 
overcome, the topological ones were crucial. Viewing algebraic functions of two variables 
as branched coverings of C^, 

p : {(x, y, z) e C^: / ( x , y, z) = O} ^ C^ (JC, y, z) ^ (x, y), 

Wirtinger tried to characterize the topological situation along the singularity set of such 
a function (a curve given by the discriminant of / ) . In particular, Wirtinger was inter
ested in the local monodromy of such a covering along the branch curve, i.e. the group of 
permutations of the values /7~^(xo, yo) over a point (xo, yo), induced by analytic contin
uation of the function values along small closed loops starting and ending at (XQ, yo) and 
avoiding the branch curve. In modern terms, this meant considering, for a neighbourhood 
17 of a branch point with the branch curve removed, the image of the fundamental group 
n\{U, (xo, yo)) under the canonical mapping to the symmetric group acting on the fibre 
P~^ {xo, yo)' However, it should be emphasized that, in the beginning at least, Wirtinger's 
work was independent of Poincare's, and the notion of a fundamental group did not appear 
exphcitly. 

While Wirtinger noticed that along regular pieces of the branch curve, the sheets of 
the covering were permuted in cyclical order, he recognized that at singular points of the 

•̂ ^ On Poincare, see [141, 37, 166], and Chapter 6 in this volume. 
^^ The exception confirms the rule: In 1918, Mary G. Haseman of Bryn Mawr College published her dissertation 
on amphicheiral knots of 12 crossings in the footsteps of Tait, Kirkman and Little. She did not mention any of the 
modern contributions to knots by Tietze and Dehn that had appeared in the meantime. 
^^ The following paragraphs are mainly based on [40]. For a description of early work related to the Poincare 
conjecture, see also [166]. 
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branch curve the sheets could be connected in a more complicated way. Several years went 
by, however, before Wirtinger managed to work out a paradigmatic example, that given by 
the equation 

f(x,y.z) = z^-h3xz^2y=:0. 

The discriminant of this polynomial is Df(x, y) = x^ -\- y'^, which yields a cubic with 
a cusp as branch curve. In 1905, Wirtinger presented this example to the annual meeting 
of the Deutsche Mathematiker-Vereinigung. The proceedings of the meeting give only the 
title of his talk, but from his correspondence with Klein and various remarks of later au
thors on Wirtinger's ideas the gist of what he said on that occasion is quite clear. In order 
to characterize the topological behaviour of a function like the one above in the neigh
bourhood of a singular point of its branch curve, Wirtinger brought a new idea into play 
which he probably had learned from Poul Heegaard's dissertation [69]. Therein, Heegaard 
described a similar program for a topological study of algebraic surfaces.^^ The idea that 
interested Wirtinger was to restrict the covering p to the boundary of a small 4-ball around 
the point in question, that is, to a covering of the sphere 5^, branched along a certain set 
K of real dimension one, namely the intersection of S^ with the branch curve of the given 
algebraic function. In the particular example considered, this covering turned out to be a 
three-sheeted covering of 5^, branched along the trefoil knot [69, p. 85]! The point of this 
restriction was that it had the same monodromy as the algebraic function itself, and, more
over, that it allowed one to compute the monodromy group, as a matter of fact, to compute 
the fundamental group of the base space S^ — K of the restricted, unbranched covering. 
For his example, Wirtinger obtained the full symmetric group on three elements as mon
odromy group - and thus the first serious proof that the trefoil knot was actually knotted. 
It was soon reahzed, either by Wirtinger himself or by his younger Vienna colleague Hein-
rich Tietze, that Wirtinger's method actually gave a way to write down a presentation of 
the fundamental group of the complement of arbitrary knots and links, and not just of the 
trefoil knot. Moreover, it became clear that this approach could be used to describe the 
topology of singularities of algebraic curves (algebraic functions of one variable) by dis
regarding the covering obtained by Wirtinger and by taking the branch curve itself as the 
basic object to be studied. 

The importance of the whole argument for the emergence of modern knot theory can 
hardly be overestimated. Not only had knots appeared in one of the central areas of math
ematical interest, but the situation suggested a whole set of new ideas and questions. To
gether with a knot and its complement, covering spaces of knots - either coverings of the 
3-sphere branched along a knot or unbranched coverings of knot complements - had come 
into the picture, including homomorphisms from the knot group to permutation groups. 
Among the obvious questions were: what kinds of knots could arise in situations like those 
considered by Wirtinger? What kinds of covering spaces could be obtained in such cases? 

Since Wirtinger did not publish his ideas, it took some time before these problems were 
taken up by others. Wirtinger's basic insight and the main ingredients of the answer to 
the first question have often been attributed to Karl Brauner, who pubhshed a three-part 
article on the subject in 1928, based on his Hahilitationsschrift under Wirtinger. Follow
ing Brauner, Kahler, Zariski, and Burau simplified and rounded off Brauner's arguments 

40 More information on Heegaard may be found in Chapter 34 in this volume. 
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Fig. 7. Tietze's wild knot. 

to obtain the final result that singularities of irreducible curves were topologically char
acterized by iterated torus knots while for reducible curves, links of such knots had to be 
considered.^^ Moreover, the knots and Unks arising from singularities of algebraic curves 
were classified by the pairs of integers determining the Puiseux expansions of the curve 
branches around the singularity. However, Wirtinger was certainly right when he pointed 
out in his (unpublished) review of Brauner's Habilitationsschrift'. "More than twenty years 
ago, the reviewer has shown the way in which these difficult, but basic problems may be 
dealt with".42 

Not only Brauner, but several other mathematicians who made significant contributions 
to modern knot theory in its early years were also inspired by Wirtinger's insights. Heinrich 
Tietze, Otto Schreier, Emil Artin, and Kurt Reidemeister all came in direct contact with 
Wirtinger at some time, and it will become clear below to what extent their ideas were 
influenced by Wirtinger's. 

§ 18. Twenty years before Brauner, another young mathematician presented a Habil
itationsschrift on topology, guided by Wirtinger in Vienna: Heinrich Tietze. His paper 
[162] marked a crucial step toward a clear technical understanding of Poincare's topolog
ical ideas. Following a rather coherent, combinatorial approach to the topology of three-
dimensional manifolds, Tietze re-established Poincare's results, emphasizing that all then 
known invariants of three-dimensional manifolds could be derived from the fundamental 
group. Among the examples he discussed was Wirtinger's method for finding a presenta
tion of the fundamental group of knot complements, including the example discussed by 
Wirtinger."̂ -̂  In addition, and in the thorough, critical spirit which marks the whole paper, 
Tietze formulated several basic questions related to knots and three-dimensional manifolds 
whose answers were unknown at the time. 

First, Tietze pointed out in a discussion of Poincare's definition of the homological in
variants of manifolds that certain curves required special attention: For instance, a curve 
like that of Figure 7 could not be said to bound a finite two-dimensional cell complex in 
S^ in Poincare's sense. This example also made clear that the notion of a knot and of knot 
equivalence itself required additional care if "wild knots" were to be avoided. 

41 See [20, 82, 175, 25, 26]. 
"̂ 2 Quoted from [38, p. 247]. 
^^ However, Tietze's description of Wirtinger's ideas was scattered in different passages of his paper which made 
it hard for his readers to see just what Wirtinger's contribution had been. See [162, §§15, 18]. 
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The second group of questions was inspired by Wirtinger's calculation of the group of 
the complement of the trefoil knot. Tietze viewed this as a region in R-̂ , bounded by a 
torus which bounds on its other side a tubular neigbourhood of the knot. Clearly, both 
the right-handed and the left-handed trefoil had homeomorphic complements (and, conse
quently, isomorphic groups), but what about the converse? Could two knot complements 
be homeomorphic without one knot being isotopic to the other or its mirror image? As 
Tietze remarked, it was not even clear whether all submanifolds of IR-̂  bounded by a torus 
were knot complements [162, § 15]. 

A third complex of questions arose from Tietze's consideration of the group of self-
homeomorphisms of a (closed or bounded) manifold and its quotient by the group of those 
self-homeomorphisms homotopic to the identity [162, §16]. For oriented manifolds, one 
could also consider just the orientation-preserving self-homeomorphisms. These groups 
acted in a canonical way on the fundamental group of the manifold as well as on the fun
damental group of its boundary. In the case of several boundary components, the group of 
permutations of these components induced by this action might also carry interesting infor
mation. In this way, a whole new set of topological invariants arose about which very little 
was known. Tietze illustrated these concepts by considering the complements of collec
tions of disjoint right- and left-handed trefoil knots, pointing out that not even the intuitive 
belief that the two trefoil knots were inequivalent (a belief that he used in his illustrations) 
had been rigorously proved. 

Finally, Wirtinger's construction suggested yet another way of looking at three-
dimensional manifolds, namely as coverings of 5^, branched over a link. Manifolds de
scribed in this way were called "Riemann spaces" at the time, generalizing the idea of 
a Riemann surface (viewed as a branched covering of 5^). It was known that all closed, 
orientable surfaces could be described in this way; but, Tietze asked, could all closed, ori-
entable 3-manifolds be described as Riemann spaces [162, § 18]? 

All of Tietze's questions stressed the relations between knots (or links) and the general 
study of three-dimensional manifolds. In at least two ways, knots and links gave rise to 
interesting classes of such manifolds: by their complements, and by covering spaces. It 
turned out that some questions of Tietze's could be answered rather quickly by the next 
generation of topologists, while others resisted a solution until very recently. 

§ 19. More or less simultaneously with Tietze, Max Dehn, a student of Hilbert who had 
started his mathematical career with brilhant results on the foundations of geometry, turned 
to an investigation of 3-manifolds which led him to study knots."*"̂  In the beginning, Dehn 
hoped to be able to prove an equivalent to Poincare's conjecture that S^ was the only closed, 
orientable 3-manifold with trivial fundamental group. However, a discussion with Tietze 
at the International Congress of Mathematicians in Rome in 1908 made clear to Dehn that 
his arguments were flawed.'*^ Nevertheless, he continued to work on the topic. In 1910, 
he published a paper whose title "Uber die Topologie des dreidimensionalen Raumes" 
indicated that he still hoped to find a topological characterization of ordinary 3-space or 
the 3-sphere. Instead of trying to prove the Poincare conjecture, however, he showed how 
to construct infinitely many "Poincare spaces", i.e. orientable 3-manifolds bounded by a 
two-sphere, with vanishing homological invariants but nontrivial fundamental group. In the 

^ On Dehn's career, see Stillwell's contribution to this volume. 
See [40] for more details on this. 
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T=dA = dJ 

Fig. 8. Dehn's setup. 

closing paragraph, Dehn outlined an argument by which he hoped to prove the Poincare 
conjecture, directing the attention of his readers to the crucial gap. 

While Dehn's paper made clear that the Poincare conjecture was difficult, it broke new 
ground both for the study of knots and for combinatorial group theory. In order to con
struct his examples of "Poincare spaces", Dehn introduced a presentation of the group of 
a knot different from Wirtinger's and a new criterion for knottedness. A knot is trivial, 
he claimed, if and only if its group is commutative. While the "only if" was obvious, the 
other implication required proof. Here, Dehn argued as follows (compare Figure 8): for all 
knots K, there exists a longitudinal curve A, on a torus T which bounds a tubular neigh
bourhood J of the knot, such that X bounds in the knot complement A \= S^ — J!^^ If, 
in addition, the fundamental group of the knot complement is commutative, then X must 
actually be null-homotopic in A. Hence it bounds a singular disk in the knot complement, 
in such a way, however, that all singularities may be removed from the boundary of the 
disk. At this point, Dehn invoked the famous, insufficiently proved "lemma" which today 
carries his name: if a closed curve in S^ bounds a (piecewise linear) singular disk in such 
a way that an annulus along the boundary is free of singularities, then this curve even 
bounds a regularly embedded disk."**̂  From the "lemma", then, it followed that X and hence 
the knot itself were trivial. Regardless of the difficulties with the lemma, Dehn's criterion 
could be used to prove that certain knots were non-trivial by showing that their group was 
non-commutative. 

Then Dehn proceeded to consider manifolds arising from the following construction. Let 
KhQdi knot in 5^, and let A,, 7, T, and A be as above. The generators of the fundamental 
group of T may be represented by the longitude X and a curve IJL bounding a transversal 
disk in 7 U r . Any other element in this (commutative) group may then be represented 
by a curve A V " » or by the pair of integers, (/, m). Dehn now chose a curve p of class 
(/, 1) in r and formed a new manifold 0 = (PxiU 1) by attaching to A a thickened disk 
D (i.e. a 3-cell, whose boundary is considered as the union of an annulus and two disks, 
see Figure 8) along a small strip on T that forms a neighbourhood of p. By construction, 
(PK{U 1) is a manifold bounded by a sphere and with trivial homology, i.e. a "Poincare 

^^ My notation is a slightly modernized version of Dehn's. 
^^ The gap in Dehn's rather involved argument was recognized in the 1920's, both by H. Kneser and Dehn 
himself. A sound proof was only given by Papakyriakopoulos [127]. For more details on this, see Chapter 36 in 
the present volume. 
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space". Its fundamental group arises from adjoining to the group of the knot the relation 
expressing the contractibility of p. Dehn's presentation of the knot group allowed him to 
express this relation in a straightforward fashion so that a presentation of the fundamental 
group of ^A:( / , 1) could actually be found. 

For the trefoil knot, Dehn managed to construct the graphs of the resulting groups. Of 
course, 0A: (0, 1) was just a 3-cell. The group of 0A: (it 1, 1) turned out to be a finite group 
of order 120, a binary extension of the group of rotational symmetries of the icosahedron.^^ 
All other manifolds possessed infinite groups. In this way, Dehn found an infinite family 
of "Poincare spaces". Moreover, he observed that all of their fundamental groups (like the 
group of a trefoil knot itself) acted on the hyperboHc plane in a canonical way. Thus, he 
established a link between knot groups and hyperbolic geometry, a link that he exploited 
again in a paper of 1914 answering one of Tietze's questions. By a detailed consideration 
of the automorphisms of the group of a trefoil knot and their actions on longitudes X and 
meridians /x of the knot, Dehn showed that the right- and left-handed trefoils were not 
isotopic. 

One should note that Dehn's construction of "Poincare spaces" is not quite the same 
as what today is usually called "Dehn surgery", since Dehn considered bounded mani
folds and restricted himself to the case of attaching curves of type (/, 1), a restriction that 
guaranteed that all manifolds obtained by his construction from knot complements were 
homologically trivial. I will describe below how the change to the modern point of view 
came about. It should also be noted that Dehn did not ask whether his construction might 
eventually produce not just a homology cell but even a counterexample to the Poincare 
conjecture, i.e. a manifold bounded by a 2-sphere and with trivial fundamental group but 
topologically different from the 3-ball. Clearly, he still hoped he was on his way toward a 
proof of this conjecture, rather than a refutation. 

§ 20. The geometric motivation behind Wirtinger's, Heegaard's, Tietze's, and Dehn's 
contributions is obvious. Neither of these mathematicians was motivated by building up 
a theory of knots per se. Rather, they were led to study knots by their research in other 
areas: research on the singularities of algebraic curves and surfaces, and investigations of 
three-dimensional manifolds as they had become tractable by Poincare's new techniques of 
Analysis situs. Knots thus appeared in a rich geometric context, involving covering spaces 
or Dehn's method for constructing "Poincare spaces". In both approaches, the knot group 
played a crucial role, but with different additional structures involved. Some of the prob
lems related to these objects and structures turned out to be quite deep, and several were 
even too difficult to admit solutions with the methods available at the time. In many ways, 
later geometric-oriented research on knots, links, and in part also on 3-manifolds, tried 
to sort out and answer the questions raised in this first phase of a modern mathematical 
treatment of knots. Some crucial problems remain open even today, as we shall see. 

World War I interrupted both Dehn's work and that of the Vienna mathematicians. After 
the war, two young mathematicians, James W. Alexander and Kurt Reidemeister, became 
increasingly interested in knots. In several respects, Alexander's and Reidemeister's work 
were strikingly parallel. Both were led to the same, indeed the first, effectively calculable 
invariants of knots in the mid-twenties. Moreover, both chose to present their results on the 

"̂^ Using his theory of fibered 3-manifolds, Seifert later showed that Poincare's original example of a homology 
sphere was homeomorphic to the closed version of Dehn's manifold (/)A:(±1, 1) [148, pp. 204ff.]. 
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basis of the elementary, combinatorial approach to knots that has been sketched in the sec
ond section. To some extent, this parallelism may be traced to the common inspiration they 
found in Tietze's and Wirtinger's earlier ideas, and in particular to the idea of studying cov
ering spaces of knots or links. On closer inspection, however, their approaches also reveal 
a basic difference. Probably guided by his earlier work, Alexander was mainly interested 
in homological invariants of covering spaces in his relevant contributions. Reidemeister's 
crucial insights, on the other hand, were concerned with Xht fundamental groups of such 
spaces. 

§ 21. Alexander's contributions to knot theory began with several clarifications of issues 
Tietze had raised. During the war years, the Princeton topologist, who had already shown 
his talents in improving Poincare's homological results, stayed as a volunteer in Paris and 
assisted in preparing a French translation of Heegaard's thesis [69]."̂ ^ It appeal's to have 
been around this time that the problems on 3-manifolds described in Tietze's paper of 1908 
caught his attention. The first of Alexander's clarifications was only indirectly related to 
knots. Still in Paris, he showed that Tietze had been correct in conjecturing that the two 
"lens spaces" L(5, 1) and L(5, 2) were not homeomorphic [2]. Alexander defined these 
spaces in a way clearly influenced by Heegaard's dissertation and Dehn's paper of 1910, 
namely as the manifolds obtained by an identification of the boundaries of two solid tori in 
such a way that the meridian of one of them gets identified with a curve of type (5, 1) or 
(5, 2), respectively, in the boundary of the other. Since the fundamental group of both was 
cyclic of order 5, this showed that the fundamental group was not sufficient to distinguish 
3-manifolds in all cases. 

About a year later, Alexander claimed in a brief note that every closed, oriented 
3-manifold given by a triangulation could indeed, as Tietze had suggested, be obtained 
as a covering of S^ branched over a fink [3]. His argument was strikingly simple, but in
complete. With each vertex of the triangulation, he associated a point in S^ such that no 
four of these points were coplanar. By mapping the simplices of the triangulation onto 
the simplices of S^ given by the corresponding vertices and respecting the orientations, 
Alexander obtained a covering of S^ branched over a subcomplex of the 1 -complex given 
by the chosen points in S^ and the edges joining them. "It is easy to show", he continued, 
"that, without modifying the topology of the space, the branch system may be replaced by 
a set of simple, non-intersecting, closed curves such that only two sheets come together at 
a curve. These curves may, however, be knotted and linking" [3, p. 372]. As R.H. Fox later 
pointed out, the missing part of the argument could be filled in by appealing to a classical 
argument given by Clifford which showed that every closed Riemann surface - viewed as 
a branched covering of the complex number sphere - could be deformed into a covering 
in which only simple branch points of order 2 occur. Alexander's conclusion followed by 
applying this argument to a continuous family of generic plane sections of the covering 
obtained in the first step of his argument.^^ 

Brief as the argument was, it gave a new and general construction technique for 
3-manifolds. Such techniques were still rare and difficult, since triangulations were in 
some sense too general while the only other known method, Heegaard's decomposition 

^^ On Alexander, see [90] and Chapter 32 in this volume. 
^^ See [48, p. 213]. Other proofs of Alexander's claim were given by Birman, Hilden, and Montesinos, leading to 
sharper results, see [72, 117, 73, 118]. Today it is known that there even exist "universal knots", i.e. knots whose 
branched coverings exhaust all closed, orientable 3-manifolds (Hilden et al. [74]). 
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of a 3-manifold into two handlebodies, did not seem easy to use except in special cases. 
Accordingly, Alexander's result whet his interest in links and their covering spaces. Indeed, 
in November 1920, he presented a new idea for studying^n/r^ cyclic branched coverings of 
knots by calculating their torsion numbers. The paper, read to the US National Academy 
of Sciences, was not pubHshed, so that it is difficult to tell precisely what it contained. 
According to Alexander's own later account, he pointed out that these torsion numbers 
were actually invariants of the knot or link itself, and he calculated them for a few of the 
simpler knots. It remains unclear, however, whether he had developed a general method to 
calculate the new invariants.^ ̂  

In 1923, Alexander further refined his picture of "Riemann spaces" by establishing a 
lemma showing that every Hnk could be deformed into what was later called a closed 
braid. This lemma had already been demonstrated by Heinrich Brunn at the ICM in Zurich 
1897, but Alexander was apparently unaware of Brunn's short note [23]. The implication of 
the lemma was that "every 3-dimensional closed orientable manifold may be generated by 
rotation about an axis of a Riemann surface with a fixed number of simple branch points, 
such that no branch point ever crosses the axis or merges into another" [4, p. 94].^^ A year 
later, Alexander settled yet another open question of Tietze's by showing that a piecewise 
Unearly embedded torus in S^ bounds a sohd torus on at least one side, making the other 
side into a knot complement (Alexander 1924). 

Up to this point, Alexander was clearly more interested in the 3-manifolds arising from 
knots or links than in the classification of links themselves. But this changed after Reide-
meister's first papers appeared in 1926, describing both a general method for calculating 
the torsion numbers of a knot from a diagram and the "elementary foundation" of knot 
theory by diagram moves. In April 1827, Alexander and Briggs submitted their paper "On 
types of knotted curves" to the Annals of Mathematics, describing their own approach to 
torsion numbers. Although this method was presented in a combinatorial fashion, a closer 
analysis of the paper makes it clear that Alexander and Briggs were actually guided by 
Alexander's earlier ideas, and that the calculation was based on an analysis of a suitable 
cell decomposition of the branched cyclic covering spaces of a knot. I have described in 
Section 2 how this approach to torsion numbers led to the invention of the first polynomial 
invariant for knots. As the infinite cyclic covering of a knot does not appear in [5], it may 
well be that here, for the first time, Alexander was guided by the combinatorial approach 
rather than by a geometric one. 

§ 22. Also in Reidemeister's case, the combinatorial presentation of his results gives a 
misleading picture of the actual course of his research. For him, it was an insight into the 
relation between the unbranched covering spaces of knot complements and the correspond
ing subgroups of the knot group that opened the way to calculable knot invariants. In 1922, 
Reidemeister obtained his first professorship in Vienna, and soon afterward he learned of 
his older colleague Wirtinger's ideas on knots. He began to study Poincare's writings on 
Analysis situs and organized a seminar on topology and algebra in which he encountered 

See [7, p. 562]. This account figures in an argument with Reidemeister on priority and must thus be taken with 
some caution. 

Also this conclusion was mathematically related to an earlier idea which Alexander may or may not have 
known: In 1891, Hurwitz had published a substantial paper studying the deformations of Riemann surfaces 
(viewed as branched coverings of the complex number sphere) arising from braid-like deformations of their 
branch points. See below, § 23. 
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the young Otto Schreier, who was full of ideas about combinatorial group theory.53 The 
breakthrough came in 1925, soon after he had accepted a position in Konigsberg (Kali
ningrad). In correspondence with H. Kneser, Reidemeister announced that he had found a 
subgroup of the knot group that possessed nontrivial torsion invariants. This group was in 
fact the fundamental group of the double cyclic covering of the knot complement. In the 
following year, Reidemeister worked up his idea into a general method for writing down 
a presentation of the fundamental groups of finite cyclic coverings of knot complements. 
The method was based on a combination of Wirtinger's method for presenting the knot 
group and Poincare's method for calculating the fundamental group of a 3-manifold given 
by a cell decomposition. The surprising fact was that, in contrast to the knot group itself, 
many of the subgroups obtained in this way had nontrivial torsion invariants. 

In preparing the publication of his results, Reidemeister tried to present his ideas in 
as abstract a fashion as possible. This led him to recognize that his method for calculat
ing subgroups of the knot group could actually be made into the method for calculating 
subgroups of finitely presented groups that today is known as the "Reidemeister-Schreier 
method" (Reidemeister [134]).54 Moreover, he developed his "elementary foundation" of 
knot theory [135], a manner of presentation that was at least partially motivated by his 
philosophical interests in the foundations of mathematics. In Vienna, Reidemeister had be
come one of the early members of the philosophical circle around Hans Hahn and Moritz 
Schlick. During the foundational debates of the twenties, he was engaged as a convinced 
"modernist", emphasizing that all exact knowledge (i.e. in his view, mathematics and logic) 
was ultimately rooted in "combinatorial facts" about signs.55 Little wonder, then, that Rei
demeister favoured a combinatorial approach to topology.56 

§ 23. Before arriving in Vienna, Reidemeister had held an assistant professorship in Ham
burg, where a new university had been founded in 1919. Its mathematical department was 
directed by Wilhelm Blaschke, who received his doctorate in Vienna under Wirtinger, and 
by Erich Hecke, a student of Hilbert. Hamburg quickly emerged as a lively mathematical 
center during the 1920's, and in 1922, the department began to publish its own journal, the 
Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitat. Reide-
meister's papers of 1926 were published in this journal, and it became the main forum for 
knot theoretical research during the following years. Hamburg's ties with Vienna were also 
particularly close. At about the time when Reidemeister left for Vienna, another Viennese 
mathematician came to Hamburg, Emil Artin, followed soon afterward by Otto Schreier. 
For a short period, the two worked together on a group-theoretical problem related to knots: 
the classification of braids, or the word problem in the braid group. 

Since the paper describing the fruits of this work, [9], has often been taken as docu
menting the invention of the braid group, a few words should be said about earlier interest 
in braid-like topological objects and related groups. As pointed out in Section 3, Gauss 
was probably the first to consider braids (i.e. a collection of n disjoint, smooth curves in 

53 An outcome of this seminar was Schreier's very simple group-theoretical proof that the two trefoils were 
inequivalent [142]. On Schreier, who died in 1929 at age 28, see [28, Chapter II.3]. 
54 For a historical description of the various stages in which this method reached its final shape, see [28, Chap
ter H.3]. 
55 A pronounced statement of Reidemeister's philosophical views can be found in [136]. 
56 j k e "purely combinatorial" approach to topology was first advocated by Dehn and Heegaard [33], strongly 
inspired by the style of Hilbert's Grundlagen der Geometrie. 
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Euclidean space such that every member of a continuous family of parallel planes inter
sects each curve in precisely one point) as objects of topological interest. His unpublished 
fragment may actually be read as posing the problem of classifying braids up to a suitable 
notion of equivalence. Later, both Listing and Tait were interested in similar geometric 
objects but failed to prove substantial results about them. As with knots, it was the wish 
for a geometric understanding of algebraic functions that motivated mathematicians to dig 
deeper. Since the appearance of Puiseux's contributions [133], the idea became common
place that the behaviour of an algebraic function of one complex variable, given by a poly
nomial equation f(x, y) = 0, could be studied by looking at the simultaneous motions 
of the finitely many values y e C that arise when the argument x describes loops start
ing and ending at a given point a e X, where X c C is the complement of the set of 
branch points of f(x, y) = 0. Puiseux and most authors following him were interested in 
the "monodromy group" of f(x, y) = 0, i.e. the group of permutations of the n roots of 
f(a,y) = 0 arising from all such loops. Once the conceptual apparatus of the fundamental 
group and the braid group became available, it was easy to see that the propositions proved 
by Puiseux actually yield homomorphisms 

7r i (X, f l ) -* £ „ - > 27„, 

where Bn is the n-strand braid group, En is the symmetric group on n elements, and the 
image of the composite homomorphism is the monodromy group. In other words, even 
if the notion of the braid group had not yet been defined, monodromy considerations led 
to knowledge concerning motions of configurations of complex numbers (we might say 
"braid motions") that was later encoded in the braid group. 

In 1891, Adolf Hurwitz published a paper on (closed) Riemann surfaces, understood as 
branched coverings of the complex number sphere with finitely many sheets and a finite 
number n of branch points. Among other things, he investigated deformations of such 
coverings arising by a continuous change of the configuration of branch points, starting 
and ending at a given configuration. Thus he was again led to consider both braid motions 
and the special kind of braid motions where each point returns to its original position (in 
modern terms: motions corresponding to pure braids). Hurwitz went a step further than 
earlier authors by considering pure braid motions as loops in the configuration space 

Cn (JC1 JC„) € Cn | ] " ] (* / - * / ) = 0 

whereas he thought of general braid motions as loops in the quotient of this space by the 
canonical action of the symmetric group En. Still, the braid group did not appear explicitly 
in his paper. Instead, for two given natural numbers n and m, Hurwitz considered the set of 
Riemann surfaces with m sheets and n branch points, each surface being specified by the 
n sheet permutations s\,..., sn e Em associated with the n branch points. He managed 
to give rules for determining the "monodromy groups" of permutations of the surfaces, 
induced by either braid or pure braid motions. Like Wirtinger, who seems to have studied 
the monodromy of coverings of a knot complement without explicitly discussing the knot 
group, Hurwitz seems to have been unaware that his rules actually determined the braid and 
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pure braid group itself. In the case of braid motions, his result was that the "monodromy 
group" in question was generated by the permutations of surfaces, 

\Sl . . . SiSi + lS. Si . . . SnJ 

Since the sheet permutations Sk were left unspecified in Hurwitz' argument, the group 
generated by the a/ may be understood as a group of automorphisms of the free group on n 
generators which is in fact a faithful representation of the braid group as Artin would show. 
Again, while the notion of braid group itself was absent, insights were developed that could 
immediately be transformed into knowledge about this group once it was defined. 

The group-theoretic structure (**) obtained by Hurwitz reappeared with a different in
terpretation in another context of ideas, relating to transformations of Riemann surfaces 
onto themselves Fricke and Klein [55, pp. 299ff.]. In this work, the idea of "braid motions" 
was less visible, but soon after the exphcit definition of the braid group, Wilhelm Mag
nus showed how some of Fricke's and Klein's ideas could be translated into a connection 
between the mapping class group of the n times punctured plane or sphere and the braid 
group [98]. 

In the early twentieth century, the idea of what I have called "braid motions" was cer
tainly well known to most mathematicians interested in algebraic functions and related 
issues. We have seen that it served Alexander to study 3-manifolds, and certainly Artin and 
Schreier were acquainted with it, too. In this light, Artin's geometric definition of the n-
strand braid group Bn and his presentation of Bn as the group generated by n — 1 elements 
a i , . . . , a„_i, with relations 

a^a/ = aiGk if \k — l\ ^ 2 ; 

cyk<yk+\cfk = (yk+\(yk(yk-^\ fork = 1 , . . . , « - 2, 

appears less as an invention out of the blue but rather as a properly topological or group-
theoretical definition of a known structure. The emphasis of Artin's paper was clearly on 
translating the geometric questions about braid motions into purely group-theoretical ques
tions. In particular, the classification of braids up to the appropriate kind of isotopy was 
restated as the word problem of the braid group, while the classification of closed braids 
amounted to the conjugacy problem of the braid group. On the other hand, Artin probably 
knew Hurwitz' paper and its geometric techniques. In order to solve the main problem of 
his paper, the word problem in Bn, Artin used precisely the representation of braids as 
automorphisms of the free group on n generators that Hurwitz had (almost) defined. The 
crucial step was to show that this representation is indeed faithful, and here Artin rehed 
on a topological argument quite close to some of Hurwitz' ideas. Moreover, when look
ing at closed braids, Artin used Wirtinger's presentation of a knot group as it had been 
communicated to him by Schreier. 

Thus, on the whole it is clear that, as with the case of knots, interest in braids was closely 
tied to a geometric approach to algebraic functions; the latter provided the background for 
the investigations of the combinatorial and group-theoretic aspects that came into focus 
after Artin had published his paper. 
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§ 24. After Alexander's homological and Reidemeister's and Artin's group-theoretical 
contributions had shown how to construct calculable invariants of knots and links, the 
prospects for developing a "theory of knots" in its own right seemed promising. Many 
problems seemed tractable, and Dehn's and Alexander's results connecting knots with 
3-manifolds, as well as the work inspired by Wirtinger on singularities of algebraic func
tions established sufficiently many links to other fields to convince others that knot theory 
was an interesting subject. At the same time, the piecewise linear, combinatorial approach 
to knots used by Reidemeister and Alexander made it possible to develop knot theory 
without entering the intricacies of these other fields too deeply. This enabled newcomers 
to join the enterprise. Indeed, both at Konigsberg and Hamburg a number of students of 
Reidemeister and Artin started to work on knots, and the flow of papers to the Hamburger 
Abhandlungen incrtastd steadily. In 1932, Reidemeister's monogvaph Knotentheorie sum
marized the results obtained until then (leaving out most connections to other fields, how
ever) and provided a kind of "paradigm" in the sense of Thomas Kuhn for the young field. 
On the mathematical level, this period of flourishing activity was oriented toward a finer 
study of particular classes of knots or links (such as the finks arising from singularities), a 
better understanding of the invariants that had been constructed, and a discussion of their 
power in distinguishing knots and links. 

A significant contribution to the understanding of Alexander's invariants was made by 
Herbert Seifert, exploiting a geometric idea that lay dormant since Tait's days. While it had 
long been known that surfaces embedded in space and bounded by an arbitrary knot could 
be found (this followed for instance from Tait's observation that every knot diagram could 
be coloured in a chequerboard-like fashion), an additional argument was needed to show 
that oriented surfaces bounded by a given knot existed as well. A procedure to find such a 
surface was described by Frankl and Pontrjagin [52]. Seifert saw that one could use such 
surfaces - today called Seifert surfaces - for the construction of cyclic coverings of a knot 
complement and hence for a calculation of homological knot invariants [150]. In particular, 
Seifert was the first to describe the Alexander polynomial in terms of the first homology 
group of the infinite cyclic covering of a knot complement. He showed that this group 
could be viewed as a module over the ring Z[x, x~~^], and that the Alexander polynomial 
was given by the determinant of a presentation matrix of this module. Seifert's construction 
also made it possible to obtain information about the minimal genus gK of Seifert surfaces, 
an invariant of the knot K which he called its "genus". For all knots, the degree of the 
Alexander polynomial was a lower bound for IgK- Since a more or less sharp upper bound 
on gK could be read off a diagram, this enabled calculations of the genus of many knots 
such as the torus knots and all knots of up to 9 crossings. Moreover, Seifert was able 
to describe a nontrivial knot all of whose cyclic coverings were homology spheres. This 
showed that the Alexander polynomial was not sufficient to detect knottedness [150, § 4]. 

Already in an earlier paper, Seifert had observed that the two composite knots presented 
in Figure 9, without being mirror images of each other, had the same group. Seifert dis
tinguished these knots by a new type of "linking invariants", computed from the torsion 
subgroup of the first homology group of cycfic coverings of the knots [149]. This showed 
that the group of a knot was not a complete invariant, at least for composite knots. More
over, Tietze's question whether a knot was determined by the homeomorphism type of 
its complement also remained a mystery. By a rather simple example, J.H.C. Whitehead 
pointed out in 1936 that the analogous statement for the case of links was false [171], and 
thus the answer to Tietze's question seemed quite unclear (see Figure 10). 
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Fig. 9. Knots with the same group. 

Fig. 10. Whitehead's Unks having homeomorphic complements. 

Yet another way of looking at the Alexander polynomial came into view when Werner 
Burau found a rather surprising connection of this invariant to braids. Burau showed how 
the Alexander matrix of a link, represented by a closed braid of n strands, could be calcu
lated from a linear representation of the braid group, 

fi:Bn -^ GL{n,Z[x,x~^]), 

that today carries his name [24].^^ In particular, if a knot K could be represented by 
closing a braid w, then up to a normaUzation, its Alexander polynomial was given by 
AK{X) = dti{fi(w) — I). Further light was thrown on the relation between braids and knots 
by a conjecture of the Russian mathematician A.A. Markov at the congress on topology in 
Moscow in 1935 [102]. He claimed that two closed braids, given by elements v e B^ and 
w e Bn in different braid groups, represented isotopic links if and only if v and w could 
be related by a sequence of modifications 

a -̂> bab {a,b e Bk) or a e Bk ô- aa, e BM. 

At the time, Markov's conjecture was not seriously pursued nor was it related to Burau's 
results. Only much later, Joan Birman included a full proof of it in her book [17].^^ 

In Germany, this period of a rapid development of the young field was ended by the 
consequences of the Nazi regime's takeover. Already in April 1933, Reidemeister lost his 
professorship in Konigsberg for being "politically unreliable".^^ After a lapse of a year, 
he obtained a new position in Marburg, but he had lost most of his Konigsberg students 
and spent his Marburg years in growing isolation. Some of Reidemeister's students moved 

^^ Joan Birman reports that Burau had learned of this representation either from Reidemeister or from Artin. 
^̂  The proof was based on notes taken at a seminar at Princeton University in 1954 [17, p. 49]. 
^^ See [39] for a description of the circumstances. 
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to Hamburg, but there, the situation was difficult as well. In 1937, Artin and his wife had 
to leave Germany because she was Jewish. After the pogroms of November 1938, Dehn, 
too, was forced to flee from Frankfurt under rather dramatic circumstances (Siegel [151]). 
Seifert was ordered by the German ministry of education to go to Heidelberg in 1937. 
There, the Nazis had driven the two Jewish professors of mathematics, Liebmann and 
Rosenthal, out of their positions. This interrupted Seifert's productive collaboration with 
William Threlfall. After the war broke out, research on knot theory was also abandoned 
outside Germany. Topologists like Alexander and Whitehead took over new tasks in the 
military and left knots and links behind. 

§ 25. A look back on the events described in this section shows how deep the changes in 
the mathematical treatment of knots were that occurred between the late nineteenth and the 
early twentieth century. Research on knots needed no longer to be justified by its function in 
scientific contexts beyond mathematics. New kinds of mathematical objects and techniques 
definitely transcended the limits imposed by thinking of knots and knot complements as 
figures or regions in physical space. Moreover, an impressive range of problems could be 
dealt with in a rather rigorous way and with promising results. All these aspects point to 
the modernity which the new field shared with much contemporaneous mathematics. 

A particular shade of this modernity is also visible in Reidemeister's successful attempt 
to build up knot theory in a very autonomous, combinatorial fashion, the Hilbertian roots of 
which can easily be discerned. Nevertheless, I hope to have made clear that both the main 
motivations and the complex mathematical objects that allowed mathematicians to reach 
a deeper understanding of knots did not originate in this "elementary" way. They came 
from the highly valued field of algebraic functions and from Poincare's ideas on three-
dimensional manifolds. Neither Alexander's nor Reidemeister's nor Artin's innovations 
would have been possible had they not been acquainted with the corresponding ideas of 
mathematicians like Hurwitz, Wirtinger, Dehn, or Tietze. For this reason, the combinatorial 
shade of modernity should not be overplayed in our understanding of the emergence of 
modern knot theory. 

5. Some geometric topics in knot theory after 1945 

§ 26. While the emergence of modern knot theory in the early decades of the 20th cen
tury can be described as a relatively coherent fabric of events, the further development 
of knot theory becomes increasingly complex. In part, this results from the fact that knot 
theory did not attain the status of a self-sustaining subfield of mathematics, with its own 
separate domain of problems and methods, with its own publication forums, institutional 
networks, etc. Rather, research on knots remained tied to the broader development of low-
dimensional topology, especially the theory of 3-manifolds. This holds both with respect to 
mathematical ideas and with respect to the social setting of work on knots. Although there 
emerged a group of experts in knot theory, most of the important work was done by math
ematicians who had interests in other areas as well. Consequently, a historical narrative 
sensitive to issues of motivation and context cannot isolate knot theory after 1945 from the 
spectrum of related mathematical activities. This makes our subject both interesting and 
difficult. The overwhelming proHferation of mathematical research during the second half 
of this century, in which the discipline of topology played a crucial role, is reflected in the 
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Fig. 11. Two satellites of the trefoil knot. 

broad range of new concepts and techniques that were formed in order to deal with knots. 
The following paragraphs try to capture a part of this complexity. Guided by the main 
theme of this article, the following groups of issues will be discussed: the systematiza-
tion of the categorical framework of knot theory by Ralph H. Fox and his Princeton group 
(§ 27); John Milnor's work related to knots (§ 28); the use of surgery techniques and the 
relation between knots and the Poincare conjecture (§ 29); the ideas of Wolfgang Haken 
and others that led to a proof that knots can be classified algorithmically (§ 30); the dis
covery of the hyperbolic structure of most knot complements by Robert Riley and William 
Thurston (§31); and the path leading from von Neumann's construction of the "hyperfinite 
III factor" to Vaughan Jones's new knot invariant (§ 32). Several further developments 
are passed over in silence, but the narrative should enable the reader to perceive the main 
geometric impulses that induced 20th-century mathematicians to investigate knots. 

§ 27. For many years after the defeat of the Nazi regime in 1945, knots and links did 
not play a significant role in mathematical research in Germany. Reidemeister gathered a 
new group of research students with interest in low-dimensional topology and knot theory 
only after accepting a professorship in Gottingen in 1955, at the age of 61. In Heidelberg, 
where Seifert was teaching, Horst Schubert stood out as the major exception from the rule 
that mathematics in Germany now had other concerns than knots. Schubert had begun his 
studies during the war with Threlfall in Frankfurt, and followed him when Threlfall re
ceived a call to Heidelberg in 1946. In his dissertation, Schubert showed that knots formed 
a commutative semigroup with unique prime decomposition under the product operation 
given by tying two separate knots on the same string [143]. Schubert's Habilitationsschrift 
[144] treated knots K embedded in a solid torus J that formed a tubular neigbourhood of 
another non-trivial knot K', such that K could not be deformed into K' or the unknot by 
isotopies within J. The knot K' was called a "companion knot" of K by Schubert, while K 
later became to be called a "satellite" of K' (see Figure 11 for two examples; note that the 
right one indicates that all product knots are satellite knots). Schubert showed how certain 
invariants of satellite knots, such as their genus, were related to the corresponding invari
ants of their companions. A year later, Schubert introduced a new invariant, the "bridge 
index" of a knot [145]. This invariant could be defined from knot diagrams, namely as the 
least number of diagram arcs that extend from one undercrossing to the next while passing 
at least one overcrossing in between. Like the crossing number or the genus of a knot, the 
new invariant was in general difficult to calculate, but Schubert was able to give a complete 
classification of knots with bridge index 2 [146]. 
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In contrast to the situation in Germany, knots quickly received attention in the United 
States. Soon after the war, a new center for research in knot theory developed in Princeton. 
There, the earlier local tradition in topology, the emigration of German mathematicians, 
and the new international contacts created a favourable environment for research on knots 
and related topics. From 1946 to 1958, Artin taught at Princeton University, and in the late 
forties, Reidemeister and Seifert also stayed at the Institute for Advanced Study for some 
time. But it was Ralph H. Fox who became the central figure in a group of young mathe
maticians interested in knots, links, and three-dimensional topology. Fox had obtained his 
doctorate under Solomon Lefschetz before joining the Princeton faculty in 1945. For a cer
tain period, he closely collaborated with Artin, who was then reconsidering his earher work 
on the braid group. Together, they published an article on "Some wild cells and spheres in 
three-dimensional space" which raised at least two important issues. On the one hand, they 
asked for a clear delineation of the domain of knot theory within three-dimensional topol
ogy; on the other, it hinted at a relation between the complements of (maybe wild) knots 
or knotted arcs and the Poincare conjecture [49].^^ During the following years, many of 
Fox's students started their careers with contributions to knots and links, often with a view 
toward 3-manifold theory.^^ 

At the International Congress of Mathematicians in 1950, Fox presented a first survey 
on the work of his group, which began with a criticism of the combinatorial fashion in 
which knot theory was conceived during the 1920's and 1930's: 

This description of what I may call classical knot theory tends, by its narrowness, to 
isolate the subject from the rest of topology. It is to be hoped that the various special 
theorems which make up classical knot theory will eventually turn out to be particular 
cases of general topological theorems. In working toward this end the following princi
ples seem almost obvious: (A) The class of polygons should be replaced by a suitable 
topologically defined class of curves. [...] (B) Euclidean 3-space should be replaced 
by other compact 3-manifolds. 

The interest of Fox and some of his students in wild arcs was tied to this desire to redefine 
the objects of knot theoretical studies. When in the early 1950's, Edwin Moise proved that 
topological 3-manifolds could be triangulated and that, moreover, the "Hauptvermutung" 
of combinatorial topology was true in this case, it became clear that "classical" knot theory 
could indeed be reformulated according to Fox's ideas as the theory of (orientation preserv
ing) homeomorphism classes of (oriented) tame simple closed curves in S^ (or a different 
3-manifold).^^ Before these clarifications, Fox had proposed to work with isotopy classes 
of smooth curves and conjectured that every smooth curve was actually tame. A proof of 
this conjecture was later included in [32]. 

This successful effort to readjust the foundation of knot theory must be seen in the 
context of a general reaction to the earlier, purely combinatorial style of low-dimensional 
topology. As R.H. Bing put the matter in an inspiring paper that will be discussed below. 

"^ The terminology of "tame" and "wild" curves in a 3-sphere was introduced in this paper. A curve, surface, 
or domain in S^ was said to be "tame" if and only if it could be transformed into a simple polygon, polyhedral 
surface, or solid polyhedron by a self-homeomorphism of S^, respectively, and "wild" if this was not the case. 

A list of Fox's research students is given in the second volume of Milnor's Collected Papers, dedicated to Fox 
[114, vol. 2, p. xi]. A look at the bibliography of Burde and Zieschang [27] shows that almost all of them worked 
on topics related to knots, links, braids, or higher dimensional analogues. 
^^ [45, p. 453]. Emphasis in the original. 
^̂  This was pointed out by Moise himself at the ICM 1954 [115]; a proof appeared the same year [116]. 
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the trend was to "regard a 3-manifold as a concrete object [described by appropriate topo
logical constructions] rather than an abstraction of combinatorially equivalent systems of 
symbols" [12, p. 17]. Of course, this desideratum was particularly easy to fulfill in the 
three-dimensional case, once it was clear that triangulations existed and the "Hauptvermu-
tung" was true. At any rate, the new perspective on knots advocated by Fox tended to make 
explicit the integration of knot theory into the broader field of low-dimensional topology. 
As I have described above, a similar view had also guided the research of the pioneers of 
modern knot theory, but this perspective had more or less vanished from the printed texts 
of "classical" knot theory of the 1920's and 30's (note how quick a "modern" approach had 
become "classical"). 

In his talk at the ICM in 1950, Fox also reported on certain new ideas developed at 
Princeton concerning the algebraic structure of the knot group and their presentations. At 
the time of his talk, these ideas had not yet appeared in print, but during the following years 
Fox gradually unfolded them in a series of articles. One of his guiding ideas, for a knot in 
a 3-manifold M represented by a knotted solid torus J with boundary 97, was to consider 
the commuting diagram of homomorphisms: 

mid J) -> 7tl(J) 
i i 

ni{M - J) -> TViiM) 

where the arrows were given up to a conjugation in the respective image by the canonical 
embeddings of manifolds. In the case of knots in S^, the information contained in such a 
diagram was already captured by the conjugacy class of subgroups of the knot group gen
erated by the homotopy classes of a meridian and a longitude of the knot. Such subgroups 
Fox called the (maximal) peripheral subgroups of the knot group. He conjectured that all 
known knot invariants could be derived from the knot group together with the class of 
its peripheral subgroups. He also mentioned that Dehn's proof of the inequivalence of the 
two trefoil knots could be interpreted as an argument about peripheral subgroups. More
over, he reported that he had been able to show that no automorphism of the group of the 
two knots discussed by Seifert (see Figure 9) preserved peripheral subgroups.̂ "^ Fox fur
ther suggested that a proof of his conjecture might possibly depend on a proof of Dehn's 
lemma. As it turned out, he was right, but even after Dehn's lemma had been saved by 
CD. Papakyriakopoulos in 1957 it took a long time and hard work to establish that the 
answer to Fox's question was affirmative, as will become clear from what follows. 

Next, Fox mentioned an algebraic tool for the study of group presentations, his so-called 
"free differential calculus", by which not only Alexander's polynomial could be investi
gated but also the finer structure of the "elementary ideals" of the group ring Z[x, x~^] 
of the abelianized knot group associated with a given presentation of the knot group. This 
calculus, first discussed in a series of papers starting to appear in 1953, was made popular 
by two pubhcations that did much to disseminate the Princeton group's work on knot the
ory: Fox's "A quick trip through knot theory" (1962) and the Introduction to Knot Theory 
by Fox and his former student R.H. Crowell (1963), the first monograph on knot theory 
since Reidemeister's book. Together with his "Quick Trip", Fox pubUshed a Ust of open 
problems on knots. The two most fundamental were: (1) Tietze's old question, "Is the type 

^ The argument, based on a discussion of the representations of this group in the symmetric group on five 
elements, was published in [46]. 
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of a knot determined by the topological type of its complement?", and (2), the new, com
plementary problem whether the topological type of a knot complement was determined 
by the knot group and its peripheral subgroups. 

§ 28. Toward the end of his 1950 talk. Fox had also reported on the work of a then 
19-year-old student that fell somewhat outside the range of topics otherwise described: 
John W. Milnor's study of the total curvature K(K) of a knot K [110]. Using a definition 
of total curvature applicable to any continuous closed curve, Milnor showed that, when 
K varied in its isotopy class ^, the greatest lower bound of K(K) was a positive integer 
multiple of 27r, and equalled 27r only if the knot was isotopic to a circle.^^ Thus the integer 

. . f<{K) 
fiK '= inf —— 

Ke^ In 

was a knot invariant that, for the first time in the development of knot theory, involved a 
notion from differential geometry. Milnor showed how to relate this invariant to a Morse-
theoretic view of knots. He began with the observation that every knot in a generic position 
in space attains a finite number of height maxima with respect to a given axis. The mini
mum number of such maxima, which Milnor called the "crookedness" of a knot, was just 
IJiK- As a matter of fact, it was not difficult to see that the crookedness of a knot and its 
bridge index (defined by Schubert a little later) were the same numbers. This gave a nice 
example of how a combinatorial knot invariant could have a geometric meaning.^^ 

In his master's and doctoral theses [111, 112], written under Fox's direction, Milnor 
dealt with a new geometric idea concerning links. In order to describe this, it may help 
to look back at Gauss's linking number briefly. It was clear that this number was not only 
invariant under ambient isotopies of the link, but also under deformations where each com
ponent of the link might cross itself, but no two components were allowed to have mutual 
intersections. Such deformations were called "link homotopies" by Milnor. Invariants un
der this kind of deformation captured information about the proper "linking phenomena" 
in links, disregarding the possible knotting of individual link components.^^ By consid
ering the factor group G/Gq of the fundamental group G of the link complement by its 
^th lower central subgroup, Milnor was able to define certain new numerical invariants of 
link homotopy, depending not just on two components of a link but on finitely many. These 
"higher Unking numbers" represented a generalization of Gauss's invariant, i.e. for the spe
cial case where only two link components were considered the definitions were equivalent. 
A geometric ingredient in Milnor's technical arguments that documents the influence of 
Fox's ideas was the essential use of longitudes and meridians of the link components. 

In 1957, Fox and Milnor together pubhshed a short note in the Bulletin of the AMS in 
which a new research theme was announced that would occupy Milnor's attention repeat
edly during the following years. It concerned the relation between knots and singular points 

^̂  This confirmed the conjecture of Borsuk [19] that the total curvature of a non-trivial knot was bounded from 
below by 47r. Borsuk's conjecture was proved independently by Fary [44]. 
^^ Strangely enough, Schubert originally claimed that his bridge number was independent of Milnor's crooked
ness [145, p. 245]. 
^^ The idea to look at this kind of deformations had already appeared in a dissertation by Erika Pannwitz in 1931, 
written under the direction of Otto Toeplitz. Using the idea, Pannwitz showed that there always exist lines in 
space intersecting a non-trivial two component link (or a knot) in at least four points [126]. 
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of surfaces in a four-dimensional manifold, a problem that had stood at the beginnings of 
modern knot theory as we have seen in Section 3. Also with respect to this topic, Artin 
functioned as a mediator between the earlier generation of knot theorists and the Prince
ton mathematicians. In 1925, Artin wrote a brief paper in which he discussed the purely 
topological aspects of the situation as considered earlier by Heegaard and Wirtinger [10]. 
Artin pointed out that, contrary to the beliefs of some of his contemporaries, knotted sur
faces in M^ (in particular, knotted spheres) did exist. To construct examples, he introduced 
a technique later called "spinning": a knot or a knotted arc in a half space in M?, bounded 
by a plane E, was "rotated" in R^ about E. The surface covered by the moving knot was 
then a knotted surface in 4-space. Moreover, Artin pointed out that the kind of singularities 
discussed by Heegaard and Wirtinger could be described in purely topological terms, with
out reference to algebraic functions. Given a point in a piecewise linear, closed surface F 
embedded in R"̂ , the intersection of F with the boundary S^ of a small 4-ball around the 
given point was a knot whose isotopy class in S^ was a complete invariant of the surface 
point with respect to deformations in R"̂ .̂ ^ If the knot was non-trivial, the point could be 
considered as a "combinatorial singularity" of F, as Artin called it. Examples could be 
obtained by forming the "cone" on a given knot in R-̂ , i.e. by joining all points of the knot 
by straight line segments with a vertex in R"̂  outside the hyperplane containing the knot. 

In their research announcement. Fox and Milnor proposed to study these kinds of lo
cal singularities of piecewise linear embeddings of oriented 2-dimensional manifolds into 
piecewise Hnear, oriented 4-dimensional manifolds more closely. They claimed that a col
lection of knots Ki, K2,..., Kn could arise from singularities of a 2-sphere in R"̂  if and 
only if the product knot K\K2 ... Kn could be obtained from a single singularity. This 
gave rise to the introduction of a new concept and a new equivalence relation among knots. 
A knot obtained from a single singularity of a 2-sphere, or, equivalently, as the boundary 
of a non-singular disc, embedded in a half space of R^ bounded by a hyperplane contain
ing the knot, was called a "slice knot".^^ Two knots Ki and K2 were called equivalent, 
if and only if the product K](—K2) of Ki with the "inverse" of K2 (i.e. its mirror im
age with reversed orientation) was a slice knot. The equivalence classes of knots under 
this relation formed a commutative group. Fox and Milnor remarked that a necessary con
dition for a knot AT to be a slice knot was that its Alexander polynomial had the form 
AK(X) = p(x)p(x~^) for some p e Z[x]. This allowed them to conclude that the new 
group was not finitely generated. 

In 1966, Fox and Milnor published a more detailed paper summarizing their ideas in 
a revised and extended form. There, they also showed that the new equivalence relation 
could be regarded as a kind of relative cobordism relation between knots: two oriented 
knots were equivalent if and only if they could be placed in two parallel hyperplanes in 
R"̂  such that in the region of 4-space between these hyperplanes, a non-singular, oriented 
annulus could be found which was bounded by the two knots (with correct orientations). 
Accordingly, Fox and Milnor proposed to call their group the knot cobordism group. 

In the years between the authors' first announcement and the paper of 1966, their ideas 
on knot cobordism had been communicated to several other people, and in particular, to 
a group of mathematicians working in Japan. This connection had been established in the 

^^ Here, Artin's claim was necessarily vague. As Fox and Milnor [51] pointed out, it was only clear that the knot 
was a "combinatorial" invariant of the embedding, i.e. unchanged by piecewise linear deformations. 
^^ This last term was actually absent from Fox's and Milnor's announcement, but was introduced in Fox's "Quick 
Trip". 



Geometric aspects in the development of knot theory 337 

late 1950's by Fox, and during the 1960's a great number of articles on knots appeared 
in the Osaka Journal of Mathematics. Many of them focused on the brand new topic of 
slice knots. Perhaps the most important outcome of this research was a paper by Kunio 
Murasugi in which the signature of knots - the signature of a quadratic form derived from 
the first homology group of a Seifert surface of minimal genus - was discussed and shown 
to be a cobordism invariant [120]. Since then, sHce knots and knot cobordism continued to 
form a focus of research at the interface between knot theory and 4-manifolds.^^ 

Milnor's interest in the relation between knots and singularities took a new turn af
ter Egbert Brieskorn, using techniques analogous to the Heegaard-Wirtinger construction, 
showed that certain algebraic varieties yielded examples of exotic spheres. Brieskorn con
sidered the intersection of the varieties 

Vn := {(ZU . . . , Zn-,1) € C^+l | Z? + Ẑ  + • • • + zl^, = O} 

with the boundary 5'̂ '̂ +i of a ball centered at the origin, giving rise to smooth manifolds 
homeomorphic to S^^^~^ and knotted in 5^""^^ Brieskorn showed that for certain n, for 
instance n = 5, these knotted spheres were even exotic, i.e. their differentiable structure 
inherited from C"^^ was inequivalent to the standard differentiable structure on 5^""^ 
[22]. Milnor set out to study the singularities of complex hypersurfaces, i.e. zero sets of 
polynomials, along similar lines [113]. His basic result was a fibration theorem: if Sg was 
a sphere of sufficiently small radius s around an arbitrary point z^ = (zp . . . , zj]̂ _i) of a 
complex hypersurface V given by f(z) = 0, and if K denoted the intersection V DSg, then 
Ss — K was a smooth fibre bundle over S^, with projection mapping 0(2) = f(z)/\f(z)\, 
having a smooth, parallelizable 2«-manifold F as fibre. From this theorem, further infor
mation on the algebraic topology of the singularity could be drawn. In the "classical case" 
of an isolated singularity of an irreducible, complex algebraic curve characterized by a 
knot K, Milnor's theorem implied that the complement S^ — K admitted a fibration by 
Seifert surfaces of minimal genus. Using another deep result of the Princeton school, a 
theorem of Neuwirth and Stallings characterizing knots with complements fibred over S^, 
Milnor concluded that the commutator subgroup of the group of K was a finitely generated 
free group whose rank t̂ equalled the degree of the Alexander polynomial of K. Moreover, 
/JL was twice the genus of the fibre F, i.e. the genus of the knot [113, p. 84]. Milnor's main 
interest, though, concerned higher-dimensional generalizations of this situation. 

In all of Milnor's contributions to knot theory, a strong component of geometric thinking 
is clearly visible. The essential new ideas - curvature, link homotopy, knots as invariants 
of local singularities of surfaces in 4-manifolds, knot cobordism, Milnor's fibration - were 
all of a geometric character. There can be no doubt that it was this aspect that made his 
work so fruitful in stimulating further research. Also Brieskorn's examples, weaving to
gether algebraic geometry, knotted spheres in higher dimensions, and exotic differentiable 
structures, gave a significant impulse to research in all fields concerned.^ ̂  

§ 29. Another series of new researches on knots and their role in the theory of three-
dimensional manifolds was initiated when Dehn's technique for constructing "Poincare 
spaces" was elaborated in the early 1960's. As in Dehn's case, the main impulse to do this 

^^ See, for instance, the long list of problems relating to this topic in [87]. 
^̂  On the topology of singularities, see also Chapter 13 in this volume. 
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came from renewed attempts to decide the Poincare conjecture (here always taken to refer 
to the three-dimensional case). In 1957, Christos D. Papakyriakopoulos, a mathematician 
supported by Fox although he had apparendy been unproducdve for several years, pub-
hshed proofs of Dehn's lemma and two other fundamental theorems, the loop theorem and 
the sphere theorem. These theorems provided new tools to draw geometric information 
on 3-manifolds from knowledge of their algebraic topology, and specialists in the field 
agree that they marked "the beginning of the modern period of growth in 3-dimensional 
topology" [114, p. xi]. In particular, substantial progress toward a resolution of Poincare's 
long-standing problem seemed possible. In the late 1950's, rumours spread in Princeton 
that several independent proofs were on the way (Bing [14, p. 124]). 

In 1958, a paper of Bing on "Necessary and sufficient conditions that a manifold be 5^" 
brought knots back into the discussion on Poincare's conjecture. As a matter of fact, Bing, 
who came hke Moise from R.L. Moore's school of general topology, tended to disbelieve 
the conjecture: "The conjecture has not been proved, and I suspect that perhaps being sim
ply connected is not enough to insure that [a closed, orientable 3-manifold] M is topologi-
cally 5-̂ ".̂ ^ Bing introduced his paper by describing an example of Whitehead of an open, 
bounded, simply connected subset U of R^ with connected boundary that nevertheless was 
topologically different from R^. In fact, Bing noticed that this open set failed to satisfy a 
topological property of ordinary 3-space that Artin and Fox had described in their paper on 
wild cells and arcs, for U contained a simple closed curve that could not be enclosed in a 
"topological cube", i.e. a 3-ball. Bing's main theorem then asserted that this property - that 
every simple closed curve can be enclosed in a "topological cube" - was indeed necessary 
and sufficient to conclude that a closed, connected 3-manifold was homeomorphic to S^. 
Knots came into play both in the form of an ingenious trick in Bing's proof of this theorem 
(see [12, § 5]) as well as in his concluding discussion of various constructions that could 
perhaps produce counterexamples to the Poincare conjecture. After discussing handlebody 
decompositions of 3-manifolds,̂ -^ Bing considered 3-manifolds that could be decomposed 
into a solid torus and the complement of a tubular neighbourhood of the trefoil knot ("a 
cube with a knotted hole"). Such manifolds could be thought of as formed by removing 
a knotted solid torus J from S^ and "sewing it back" in a different fashion by identify
ing the boundary torus of both components in various ways. The possible identifications 
were determined by the image of a meridian of the solid torus / on the boundary torus of 
S^ — J. Indeed, the resulting manifolds were just Dehn's <^A:(/, m) with a 3-sphere filled 
in to close the manifold. In contrast to Dehn, Bing now considered, for K the trefoil knot, 
all possibilities for the attaching curve and not just those with m = 1. (In the following, I 
will denote the closed manifold by 0K (I, ^^), too, and the construction will be referred to 
as "Dehn surgery on K'\) A presentadon of the fundamental group of the resuldng man
ifold could easily be found by adding the reladon that expressed the contractibility of the 
attaching curve to the relations defining the knot group. By analyzing these presentations, 
Bing showed that 0K {U^'^) was simply connected if and only if m = ±1 and / = 0. More
over, in these cases the manifold was homeomorphic to S^. Thus, from Dehn surgery on 
the trefoil knot, no counterexample to the Poincare conjecture could be formed. 

Bing closed his paper with a series of questions. Papakyriakopoulos had informed him, 
he reported, that in the above construction, the trefoil knot could be replaced by an arbi-

"̂2 [12, p. 18]. On Moore's school, see [173]. 
^̂  In particular, Bing pointed out that no manifold with a decomposition into handlebodies of genus one could 
lead to a counterexample to the Poincare conjecture. 
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trary knot K with the result that any simply connected 0K (/, rn) would still be homeomor-
phic to S^, Was the same true, Bing asked, for manifolds from which two or more knotted 
and perhaps linked solid tori were removed and replaced differently? Moreover, did every 
simply connected compact 3-manifold belong to this class? If the answer to both ques
tions were yes, the Poincare conjecture would have been proved. If, on the other hand, the 
answer to either question were no, a counterexample might eventually be constructed.^^ 

It turned out that the first question was difficult to answer. In fact, even Papakyriakopou-
los' claim was only a conjecture as Bing pointed out in a correction to his paper [13]. The 
second question, however, was quickly answered in the affirmative. Using a general ma
chinery of "modifications" of differentiable 4-manifolds, A.H. Wallace showed that every 
differentiable, closed and orientable 3-manifold could indeed be obtained by a finite num
ber of Dehn surgeries on a link of disjoint solid tori [169]. Soon afterward, W.B.R. Lick-
orish gave an elementary and very geometric proof that the same could be shown in the 
piecewise linear category [92]. Lickorish's basic idea was to decompose a given oriented 
3-manifold into two handlebodies and then to use a sequence of Dehn surgeries to sim
plify the boundary identification of these handlebodies until a 3-sphere was obtained.^^ In 
this way, a new technique for constructing and handling closed orientable 3-manifolds was 
established. The necessary data (what came to be called a "surgery description" of the man
ifold) were a link and, associated with each of its components, a rational number r = m/l 
specifying the type of the surgery on a small tubular neighbourhood of this component.^^ It 
was quickly realized that Dehn surgery could be used to calculate invariants of 3-manifolds 
by controlling the effect of the surgery operations on the invariants in question. In particu
lar, it became clear that Dehn surgery gave a powerful method for calculating homological 
knot invariants like the first homology group of the infinite cychc covering of a knot com
plement, from which the Alexander polynomial could be derived. This method was heavily 
exploited in Rolfsen's textbook [140]. In 1978, Robion Kirby was even able to describe an 
equivalence relation on surgery descriptions, generated by two simple "diagram moves", 
which corresponded to orientation-preserving homeomorphism between the 3-manifolds 
thus defined.^^ 

The result of Wallace and Lickorish also heightened the interest in Bing's other ques
tion: for which knots besides the unknot and the trefoil knot could one show that no Dehn 
surgery would ever produce a counterexample to the Poincare conjecture? In 1971, Bing 
and Martin summarized the results obtained thus far. If the following two propositions 
about a given knot K were true, the knot was said to have "property P": (1) if Dehn surgery 

Soon afterwards, Fox reminded the community of low-dimensional topologists that there was, besides han-
dlebody decompositions and surgery on links, a third way of constructing simply connected 3-manifolds, namely 
that indicated by Tietze and Alexander, using coverings of the sphere branched over a suitable link. Fox's free 
calculus allowed to give algebraic conditions on the sheet permutations of the covering that implied its simple 
connectivity [48]. 
^̂  In order to show that this idea worked, Lickorish established a basic theorem on self-homeomorphisms 
of closed, orientable surfaces: every such homeomorphism is isotopic to a sequence of elementary self-
homeomorphisms called "Dehn twists". Moreover, Lickorish showed that Dehn twists in the splitting surface 
of a given 3-manifold can be produced by Dehn surgeries. 
^° It is not hard to see that |/] and \m\ have to be relatively prime since the corresponding curve must be simple. 
Moreover, only the quotient of the signs is relevant to fix the relative orientation of the two tori involved in the 
surgery. The "rational" notation seems to be due to Rolf sen [140]. 

See [86]. More information on the developments initiated by Dehn surgery on 3-manifolds may be found in 
the article by Cameron McA. Gordon in this volume. 
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on K leads to a simply connected manifold 0 , then (P is homeomorphic to the 3-sphere; 
(2) any piecewise linear homeomorphism of S^ — J, where 7 is a small tubular neigh
bourhood of K, into S^ can be extended to a piecewise Unear self-homeomorphism of S^. 
The first condition meant that no counterexample to the Poincare conjecture could be ob
tained by Dehn surgery on K, while the second meant that the homeomorphism type of the 
complement of K determined the knot (up to orientations). Due to Alexander's theorem on 
embedded tori in S^, property P could be reformulated as follows: a knot K had property P 
if and only if, for all nontrivial surgeries (i.e. for / ^ 0), the manifold ^xih m) was not 
simply connected. Since a presentation oin\{(pK{U t^)) could be found, this reduced the 
question to combinatorial group theory. By rather tricky constructions of homomorphisms 
onto known non-trivial groups, Bing and Martin showed that several classes of knots had 
property P, including twist knots, doubled knots, and all product knots (in this last case, a 
more geometric argument was used).^^ At the end of their article, Bing and Martin pointed 
out that in many cases, like that of the trefoil knot, a properly geometric understanding had 
not yet been reached for the fact that no non-trivial Dehn surgery yielded a simply con
nected manifold. Later work by various authors changed this to some extent. For instance, 
David Gabai showed by an argument involving fohations of 3-manifolds that all torus and 
satellite knots possessed property P [56].^^ It remains unclear, however, whether or not all 
knots share the property. 

After a long series of partial results obtained by various authors, and relying on certain 
techniques of Gabai for studying fohations, Cameron McA. Gordon and John Luecke fi
nally showed that no non-trivial Dehn surgery on a knot yields S^ [62]. While this did not 
resolve the problem of property P, it answered Tietze's long-standing question: the topolog
ical type of a knot complement does indeed determine the type of a knot (with or without 
orientations).^^ Therefore, Gordon's and Luecke's result implied that the second clause in 
Bing's and Martin's original definition of property P could be dropped, so that the truth of 
the Poincare conjecture would imply that all knots have property P. On the other hand, if a 
single knot could be found such that some Dehn surgery on it yielded a simply-connected 
manifold, a counterexample to the Poincare conjecture would have been found, too. Thus, 
property P is still considered by several mathematicians as one of the major open problems 
of knot theory. 

§ 30. By the end of the seventies, a further development in 3-manifold theory came to a 
certain end which had fundamental implications for knot theory: the general classification 
problem of knots was recognized to be solvable by algorithmic means. Following the first 
undecidability results in mathematical logic in the 1930's, logicians raised the question 
as to whether certain topological problems, among them the classification of knots, might 

^̂  In the proof for twist knots, matrix representations of Coxeter groups were used for this purpose. These rep
resentations were generated by certain matrices in which complex square roots of the numbers 4cos^(7r//i), 
n = 3, 4, 5 , . . . occurred. After Jones showed that these numbers were just the possible discrete values of the 
index of subfactors of the hyperfinite / / j factor (see below, § 32), a relation between subfactors and Coxeter 
groups was immediately recognized, see, e.g., [77, p. 104]. I am not aware, however, of work relating this to the 
problems studied by Bing and Martin. 
^^ For torus knots, a purely group-theoretical proof of property P had already been included in the textbook of 
Burde and Zieschang [27, Section 15.6]. 
^^ If a knot complement S^ - Ki would be homeomorphic to another, S^ - Ki, without a homeomorphism of 
pairs {S^, A î) -> (S^, K2), there would be a non-trivial Dehn surgery on K\ yielding S^. A survey of further 
known properties of Dehn surgeries on knots can be found in [61]. 
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be algorithmically unsolvable as well (Church [30]). The reason for posing such a ques
tion was that Reidemeister's purely combinatorial approach had given the knot problem a 
form very much resembUng a kind of word (or transformation) problem in symbolic cal
culi. When, in the mid-fifties, RS. Novikov and W.W. Boone independently showed that 
the general word problem in finitely presented groups was unsolvable, Markov soon there
after pointed out that this implied the algorithmic unsolvability of the general classification 
problem of manifolds of dimension greater than three [103]. Due to these circumstances, 
the case of three dimensions, and knot classification, gained even more interest. Reide-
meister, at least, was prepared to wager that the problem of deciding whether or not two 
given knots were equivalent was solvable (see [11, p. 97]). 

Notwithstanding such hopes, undecidability results rather than decidability proofs were 
high on the agenda of mathematical logicians, and Boone even seems to have tried to 
prove that the knot problem was unsolvable. Therefore, when Wolfgang Haken, then an 
almost complete outsider in the community of topologists, announced a theory which al
lowed to decide algorithmically whether or not a given knot was isotopic to an unknotted 
circle, he could be sure both of attention and of a certain amount of scepticism about the 
correctness of his results. Haken, who first presented his ideas at the ICM in 1954, was 
asked to work out his ideas in full detail. This task took him several years, but in 1961, 
his long and technically demanding "Theorie der Normalflachen" was finally published 
in Acta Mathematica. In the same year, a somewhat simplified and more intuitive presen
tation of Haken's ideas was given by Schubert [147]. In his article, Haken described an 
algorithm which enabled one to construct, for a given compact, triangulated 3-manifold, a 
finite set of "normal surfaces", characteristic of the manifold's topology. In the case of a 
knot complement (bounded by a torus along the knot), the algorithm could be adapted to 
produce a Seifert surface of minimal genus. Thus, in principle, the genus of the knot was 
computable and in particular, it was decidable whether or not the knot was trivial. How
ever, even today Haken's highly complicated algorithm remains beyond the requirements 
of practical computation. Haken's result found great appreciation among logicians, how
ever, and a few weeks after his paper appeared, he was offered a position at Urbana, Illinois, 
where Boone was gathering a research group working on the decidability of mathematical 
problems.^ ̂  

In 1962, Haken announced that he could modify his algorithm in such a way that it 
could be used to classify a large number of 3-manifolds, including all knot complements 
[65]. The basic idea was to employ the algorithm to find so-called "incompressible sur
faces" in a given manifold M along which the manifold could be split into pieces.^^ Haken 
sought to determine a class ^ of compact, orientable 3-manifolds for which the process of 
finding such splitting surfaces could be iterated, decomposing the manifold after finitely 
many steps into a collection of 3-balls. Moreover, the class of manifolds should be such 
that the algorithm allowed, for each of the pieces obtained at a given stage, only finitely 

^̂  The historical details of this paragraph have been taken from an interview with Haken, conducted by T. Dale 
in 1994, that has kindly been communicated to me by D. MacKenzie. 
^̂  The technical definition of an incompressible surface underwent several modifications throughout the follow
ing years. Intuitively speaking, an incompressible surface cannot be simplified within M by cutting open handles 
or by deleting 2-spheres that bound a 3-ball. In [167], the following definition was chosen: An incompressible sur
face F in a compact, orientable 3-manifold M is either a properly embedded, compact surface (i.e. FHdM = dF) 
or a component of dM, such that the following two conditions are satisfied: (1) there does not exist an embedded 
disk D in the interior of M, bounded by a curve dD C F which is not contractible in F; (2) no component of F 
is a 2-sphere bounding a 3-ball in M. See also [66] for a readable description of his procedure. 
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many possibilities for the next splitting surface (the splitting process thus had the structure 
of a finite, rooted tree). For two manifolds in such a class ^, it could then be decided if 
they were homeomorphic by comparing the finitely many spHtting trees (called "hierar
chies" in the technical literature). The manifolds were topologically equivalent if and only 
if two of them ran completely parallel. However, in order to apply the algorithm to a given 
manifold M at all, it had to be known beforehand that 2-sided, incompressible surfaces 
F c M existed (with dF c 9M, if F was bounded), and, moreover, that M was irre
ducible, i.e. that every S^ C M bounded a 3-ball (otherwise, the unproved Poincare con
jecture would have prevented recognizing the 3-balls at the end of a splitting hierarchy). 
Thus it was reasonable to conjecture, and Haken in fact claimed, that R could be taken to 
include all manifolds satisfying these two conditions (following Thurston, such manifolds 
are usually called "Haken manifolds" today). Among them were all knot complements, so 
that the algorithm implied a decision procedure for the homeomorphism problem of knot 
complements. 

Unfortunately, Haken did not spell out the proofs of all the claims he made in his paper, 
so that the scope of his results was not completely clear. An announced sequel to his arti
cle, which should have given the missing technical details, never appeared. Indeed, further 
research by Haken and Friedhelm Waldhausen made clear that Haken's original arguments 
required either an additional restriction on the class R or an algorithmic solution of the 
conjugacy problem in the group of isotopy classes of self-homeomorphisms of a compact, 
bounded surface (with respect to isotopies fixing the boundary).^^ It took another decade 
before a co-worker of Waldhausen, Geoffrey Hemion, solved this additional problem and 
thus established Haken's original claim as correct [71]. In a widely read survey article, 
Waldhausen summarized the overall results of the development. While these results were 
of great importance for 3-manifold theory in general, they had particularly striking con
sequences for knot theory. By a slight modification, Haken's procedure would not only 
classify knot complements and knot groups, but actually knots themselves.̂ "^ A further 
consequence of Waldhausen's own contributions to the subject was the proof of Fox's 
conjecture that two knots whose groups could be mapped by an isomorphism respecting 
peripheral subgroups had homeomorphic complements. In view of Gordon's and Luecke's 
theorem, this imphes that the knots are equivalent. The result can be strengthened in the 
case of prime knots: up to orientation, these knots are determined by their groups.^^ 

So far, it seems, Haken's unwieldy algorithm itself has been less useful in further re
search on knots and 3-manifolds than the general theorems drawn from it by Waldhausen 
and others. Haken's contribution must thus first and foremost be viewed as a decidability 
proof. Nevertheless, the results established by working out Haken's ideas changed the out
look on knot theory. The search for simpler classifying algorithms or complete knot invari
ants was shown to be a meaningful enterprise. What should be emphasized in the present 
context is the fact that genuine three-dimensional ideas guided this line of research, and 

^̂  See [167, 66, 168, § 4]. The difficulty arose from the possibility that during the decomposition process, a fibre 
bundle over S^ could arise, fibred by incompressible surfaces, with incompressible boundary, and containing 
only incompressible surfaces isotopic to a fibre or a boundary component. In this case, the decomposition process 
would be blocked. Since such manifolds were known to be representable as mapping tori of self-homeomorphisms 
of their fibre, a solution to the above-mentioned problem was required. 
^̂  See [168, § 4]. In carrying out the splitting procedure, one had to keep track of a meridian of the knot consid
ered. 
5̂ See [168, p. 26], [172]. 
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highly specific geometric tools, such as the notion of an incompressible surface, were pro
vided by it. Once again, it was not by means of diagram combinatorics that a deep insight 
was found, and once again, knot theory profited from its status as a specialty within the 
well-estabHshed field of 3-manifold theory. 

§ 31. In the mid-seventies, the mathematical community was surprised by a revival of 
the connection between knots, 3-manifolds, and hyperbohc geometry which had akeady 
been touched upon by Dehn. In 1973, a Ph.D. student at Southampton, Robert Riley, found 
that the complement S^ — K4 of the figure eight knot K4 (see Figure 1) had a hyperbolic 
structure, i.e. it admitted a complete Riemannian metric of constant sectional curvature 
— 1 .̂ ^ In fact, Riley showed that S^ — K4 was homeomorphic to a quotient M^/G of three-
dimensional hyperbolic space HI-̂  by a discrete group G of hyperbohc isometrics, acting 
freely on M^ and isomorphic to 7ri(5^ — K4) [138]. The proof relied essentially on Wald-
hausen's theorems on Haken manifolds. Riley then went on to construct, with the help of 
a computer, similar examples of hyperbohc structures in certain other knot complements. 
He conjectured that the complements of all knots except torus and satellite knots could be 
endowed with such a structure.^^ 

In 1977, Riley met Wilham Thurston, who was then in the course of working out his 
general programme of finding geometric structures on 3-manifolds, an outhne of which 
began to circulate in the form of notes of Thurston's lectures at Princeton about a year later 
[160]. Riley's results inspired Thurston to look systematically for hyperbolic structures in 
knot complements and related 3-manifolds. Among many other things, Thurston pointed 
out in his lecture notes that Riley's example was closely related to a hyperbohc manifold 
that Hugo Gieseking, a student of Max Dehn, had discussed in 1912. In his dissertation, 
Gieseking had constructed a manifold whose fundamental group contained an isomorphic 
copy of the group of the figure eight knot as a subgroup of index two.^^ This manifold was 
constructed from a regular tetrahedron in three-dimensional hyperbolic space, all of whose 
vertices were on the sphere at infinity. By identifying the sides of this tetrahedron two by 
two, Gieseking had obtained a non-compact manifold with a complete hyperbolic metric, 
and with finite hyperbolic volume. Thurston now showed that the natural conjecture, sug
gested by the structure of the fundamental group of Gieseking's manifold, was indeed true: 
S^ — K4 was the twofold orientable covering of Gieseking's example. In particular, S^ — K4 
could be decomposed into two copies of the hyperbolic tetrahedron defining Gieseking's 
manifold. 

Thurston went on to prove a general result on the existence of hyperbohc structures 
on certain compact, bounded 3-manifolds which implied that a knot complement S^ — K 
(or, equivalently, the interior of the compact, bounded manifold obtained by removing an 
open tubular neighbourhood of K from S^) admitted a such a structure if and only if K 
was not a torus knot or a satellite knot, as Riley had conjectured. If K was a torus knot, 
then its complement could be given a different geometrical structure, while if K was a 
satellite of a non-trivial knot K\ the question of endowing the knot complement with a 
geometric structure could be asked separately for the two (simpler) pieces obtained by 
splitting S^ — K along a torus, bounding a tubular neighbourhood of K^ and containing K. 

^^ A metric is called complete if every geodesic may be extended indefinitely. 
'̂7 See [139, 161, pp. 360, 366ff]. 

^̂  See [59]. A description of Gieseking's example was also given in [99, pp. 153ff]. For the delicate question 
how much Gieseking or Dehn knew about the relation with A'4, see [101, pp. 39f.]. 
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Thus, knot complements provided a striking illustration of Thurston's main conjecture that 
"the interior of every compact 3-manifold has a canonical decomposition into pieces which 
have a geometric structure" [161, Conjecture 1.1 ]. A proof of this conjecture for the class of 
compact Haken manifolds, together with several surprising applications, earned Thurston 
a Fields medal in 1982, despite the fact that full details of the proofs had not yet appeared 
in print. 

A direct application of Thurston's results to knot theory was made possible by another 
fundamental result on hyperbolic 3-manifolds that had been proved in the early 1970's, the 
"rigidity theorem" of hyperbolic manifolds.^^ It stated that if two 3-manifolds M and Â  of 
dimension ^ 3 with a hyperbolic structure of finite volume have isomorphic fundamental 
groups, then M and Â  are not only homeomorphic but even isometric to each other. This 
implied that every isometric invariant of such a manifold, for instance the volume, was 
necessarily also a topological invariant. Since all hyperbolic knot complements had finite 
volume, the rigidity theorem provided a way to introduce a whole basket of new invariants 
for knots with hyperbolic complements. Many of these new invariants turned out to be 
calculable by means of computers. Jeffrey Weeks, a student of Thurston, was particularly 
successful in this respect. In his Ph.D. thesis, he described an algorithm for calculating 
various hyperbolic knot invariants that has since been very useful in extending knot tables 
to ever higher crossing numbers.^^ Already the volume of a knot turned out to be a rather 
fine (though not complete) invariant of knots with hyperbolic complements. It seems to 
measure a kind of geometric complexity of knots, but not much is known about this as yet. 
Thurston has conjectured that the complement of the figure eight knot K4 might be the 
hyperbolic manifold with the least volume [161, p. 365]. 

Evidently, the rigidity theorem and the work of Riley and Thurston not only related knot 
theory to 3-dimensional topology in a deeper way but also led to a variety of more specifi
cally geometric issues. For instance, representations of knot groups by discrete subgroups 
of PSL(2, C) can be investigated, or the details of the hyperbolic structure of knot com
plements may be looked at. Here, too, Dehn surgery turns out to be a particularly helpful 
tool. It allows to construct new hyperbolic manifolds from given ones, and to address ques
tions such as: which Dehn surgeries on a given knot do produce hyperbolic manifolds and 
which do not? The connection between knot theory and hyperboHc geometry has opened 
up a rich and still rather unsurveyable field of inquiry. 

§ 32. Up to this point, the "geometry" involved in the investigation of knots and Hnks 
was mainly that of three-dimensional manifolds associated with knots, be it in the sense 
of their topological structure or, as in the last paragraph, in the more specific sense of a 
Riemannian metric on the knot complement. In Vaughan Jones's discovery of a new knot 
polynomial, a completely different kind of geometry came into play: that of lattices of 
projections on a Hilbert space and the algebras generated by them. In order to explain why 
this may with reason be called a variety of geometry, a short look back to the beginnings of 
the field in which Jones was working is necessary. In the 1930's, John von Neumann and his 
collaborator Francis J. Murray embarked on a programme investigating what they called 
"rings of operators" on a separable Hilbert space (today called von Neumann algebras). 
In the course of this work, they invented a mathematical object that represented a close 

^^ See [119] for a proof in the case of compact manifolds and [130] for the non-compact case. 
^^ See [1]. Recently, tables of prime knots of up to 16 crossings have been constructed by Thistlethwaite, Hoste 
and Weeks, using a modification of Weeks's program. 
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infinite-dimensional analogy to complex projective space, although in an important respect 
it had very different properties. Since it was an investigation of the fine structure of this 
object which led to Jones's breakthrough, a more detailed account is necessary.^^ 

Von Neumann's and Murray's work was motivated by earlier research on the spec
tral theory of linear operators and the wish to understand the mathematical foundations 
of quantum mechanics. It concentrated on so-called "factors" of operator rings, i.e. rings 
M c B{H) of bounded operators acting on a Hilbert space H, closed under the adjoin
ing operation * and under pointwise convergence on H, containing the identity operator 
I G B(H), and with a trivial center. Obvious examples of factors were the rings of all 
operators on a (separable) Hilbert space. Up to algebraic isomorphism, these factors were 
classified by the dimension of the underlying Hilbert space, i.e. they were all isomorphic 
to the rings M„(C) of all (n x n)-matrices over the complex numbers or to the set B(H) 
of all bounded Hnear operators on a separable, infinite-dimensional Hilbert space H. How
ever, the theory acquired depth by the fact that more, and different, examples could be 
constructed. In particular, Murray and von Neumann described a class of factors which 
in their view represented in many ways a better analogy to the finite-dimensional factors 
Mn (C) than B{H). Using a simplified construction method that Murray and von Neumann 
published in 1943, these factors can be defined as follows. For a finite or countably infinite 
group G, the Hilbert space /^(G), consisting of all square-summable sequences of complex 
numbers indexed by the elements of G may be formed. On this Hilbert space, G acts by its 
left regular representation U, given by 

(Ug^)h:=^gh f o r a l U € / ^ ( G ) ; g , / z e G . 

Then the smallest closed subring M c B{l^iG)) containing all operators Ug is a von 
Neumann algebra, whose elements can all be represented in the form J2geG ̂ g^g ^^^ 
certain r] e l^(G). Murray and von Neumann pointed out that for finite G, the ring M was 
equivalent to Frobenius' "group numbers" (in today's language, the group ring CG). In 
contrast, it was not too difficult to show that for countably infinite groups, Ai was a factor 
if and only if all conjugacy classes of G were infinite [122, § 5.3]. 

The rings constructed in this way had a very particular property, though. The function 
^^(HgeG ^g^g^ •— ^^' where e was the neutral element in G, defined difinite trace, i.e. a 
linear function tr: A^ -^ C, satisfying tr(I) = 1, tr(jc*jc) ^ 0, and tr(jcy) = ix{yx), for all 
x,y e M. This, in turn, made it possible to define a dimension function (relative to M) on 
the lattice of all closed linear subspaces E c /^(G) of the form E = PEQ^(G)) for some 
orthogonal projection pE e M,by putting 

dimMiE) :=tT{pE). 

For finite groups of order n, this function measured the dimension of a subspace of CG, 
normalized in the sense that for a subspace E of dimension k, dim^(£') = k/n. For the 
factors constructed from groups with infinite conjugacy classes, however, the range of this 
dimension function was the closed interval [0, 1]. In general, Murray and von Neumann 
showed that for all factors a similar dimension function could be constructed, with but few 
possibilities for the range of its values [121, § 8.4]. Corresponding to these possibilities. 

^̂  Based mainly on [121, 122]. Again, notations have been slightly modernized. 
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factors with a dimension function like the above (or, equivalently, infinite-dimensional 
factors with a finite trace) were called factors of type II\. 

Von Neumann realized that this construction came very close to a view of projective ge
ometry that had been advocated by Karl Menger and Garrett Birkhoff a few years earlier. 
In 1928, Menger, like Reidemeister a mathematician with strong ties to the Vienna circle 
in philosophy, had proposed to reformulate projective geometry as the theory of linear sub-
spaces of a finite-dimensional vector space [109]. Through the use of homogeneous coor
dinates, this idea had been implicit in many researches of 19th-century analytic geometers 
such as FeUx Klein, but it was only under the influence of Hilbert's axiomatics that Menger 
proposed to shift the perspective on projective geometry and to make the properties of lin
ear subspaces of a vector space the basis of the theory. Accordingly, he characterized these 
by a suitable system of axioms. Besides axioms governing the intersection and linear span 
of two subspaces, a crucial ingredient of Menger's approach was an axiom asserting the 
existence of a dimension function, associating with each subspace a positive integer that 
behaved correctly under intersection and linear span of subspaces. The value of this func
tion then specified whether a given subspace corresponded to a point, or to a plane, etc. 
Seven years later, and independently of Menger's work, Garrett Birkhoff pointed out that 
the system of subspaces of a finite-dimensional vector space defining "a projective geome
try" represented a particular kind of what he had come to call a lattice [16].^^ The lattice of 
projections of a factor of type / / i satisfied virtually all of Menger's or Birkhoff's axioms 
except those securing that the structure defined was finite-dimensional. In this perspective, 
these factors represented a kind of infinite-dimensional complex projective space, or else, 
a geometry "without points", since no elements of least dimension existed. Von Neumann 
set out to show that one could indeed characterize the lattices of subspaces arising in the 
above way in an abstract fashion [123, 124]. For some time, he had great hopes that these 
"continuous geometries", as he decided to call them, provided the right framework to do 
infinite-dimensional projective geometry, and even quantum mechanics.̂ -^ Accordingly, he 
devoted a significant effort to the further investigation of factors of type / / i . 

In 1943, Murray and von Neumann were able to show that not all II\ -factors constructed 
as above were algebraically isomorphic, depending on the properties of the group G used in 
the construction. If G was the set theoretic union of an ascending sequence of finite groups, 
then, and only then, the associated factor M was "approximately finite" (or, in today's 
terminology, hyperfinite), i.e. generated by an ascending sequence of finite-dimensional 
algebras. Moreover, all such factors were algebraically isomorphic. In other words, up to 
isomorphism, there was just one of them, say, the factor 9^ constructed from the group Uoo 
of permutations of the integers such that each a G î oo permuted only finitely many inte
gers. Since Z'oo was the union of the finite symmetric groups, Ei C 1̂ 2 C X'a C • • •, the 
factor D\ was indeed hyperfinite; the group rings CEn could be taken as the approximating 
sequence of finite-dimensional algebras. If, on the other hand, G was taken to be a free 
group on two generators, then the associated factor was not hyperfinite [122, § 6.2]. Thus, 
the hyperfinite II\ factor D̂  had acquired a rather singular position in the theory. It rep
resented, so to speak, the closest infinite-dimensional analogue to the finite-dimensional 
factors M„(C); in other words, its lattice of projections represented the closest analogue 
to the lattice of subspaces of a finite-dimensional, complex vector space. Moreover, its 
construction showed that it had a rich but complicated inner structure. 

^^ See [107] for information on the origins of the theory of lattices. 
^^ See, e.g., the introduction to [121, 125]. 
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For a long period after World War II, the attention of operator algebraists turned to more 
general issues, and the "continuous geometry" of 91 moved in the background. A crowning 
achievement of much of this work was Alain Connes's completion of the classification of 
factors up to algebraic isomorphism, which earned him a Fields medal in 1982. Connes 
also took up the study of 9̂  again by classifying its automorphisms.^^ Finally, the time 
seemed ripe to look at the inner structure of 91 in more detail. It was Vaughan Jones who 
set himself the task of investigating suhfactors of 91, i.e. other infinite-dimensional factors 
M embedded in 91. As such subfactors were automatically equipped with a finite trace, 
they also were of type 1I\. In such a situation, i.e. given a pair of II\ factors J\f c. M 
with the same unit, von Neumann's theory of dimension functions could be used to define 
an "index" [M : Af] which equalled the index of groups, [G : / / ] , if the factors AT 
and M were constructed from groups / / c G as above. The suprising result found by 
Jones was that for II\ subfactors of 91, the possible values of this index did not consist 
of the interval [1, oo), as the definition of the index would have allowed, but only of the 
continuous interval [4, oo) and the discrete set {4cos^ n/n | « = 3, 4, 5, ...} [76]. 

In the proof of his result, Jones calculated the index in a different way. If a pair of II\ 
factors J\f c. M with the same unit was given, the inner product on M given by ix,y) i-> 
tr(y*x) allowed for a completion of A^ to a Hilbert space, denoted by L^{M, tr). On this 
Hilbert space, M acted by the left regular representation, given by left multiplication on 
the dense subspace M. Similarly, L^iM, tr) could be formed as a closed linear subspace 
of L^{M, tr). Introducing the projection ej\f: L^(M, tr) -^ L^{M, tr), Jones considered 
the von Neumann algebra M\ C B{L^{M, tr)), generated by M and ej\f. It turned out 
that M\ was again a / / i factor, with a trace extending the trace on M, and such that 
[A^i : M] = [M. : A/"] = ^, where fi~^ — \x{e]^). By iterating this construction (which 
had already been studied by C. Skau and E. Christensen in the late 1970's), Jones was 
able to find the possible values of the index. Repeating the process by which M\ had 
been formed, Jones obtained both an infinite tower of //i-factors Mi (i = 1,2,...) and 
an infinite sequence of orthogonal projections ^,+i : L^(A/1/, tr) -> L^(Mi-i, tr) (here, 
MQ \= J\4 and e\ := ej\f). These orthogonal projections satisfied a remarkable set of 
relations: 

eiei±\ei = P'^et, etej = ejet for \i - j\^2; 

moreover, for all words w; in I, ^ i , . . . , e/_i, the relation 

iT(wei) = P'hriw) (***) 

held, and fi was restricted to the set of values mentioned above. Thus, a necessary condition 
on the values of the index [M : A/"] had been found. But more than that: Jones showed that 
whenever V was the von Neumann algebra generated by a system of orthogonal projections 
satisfying the above relations, then V was isomorphic to 91 - it was approximated by the 
ascending sequence of the canonical images A^^n Q V of the abstract finite-dimensional 
algebras v4^,„, generated by I, ^ i , . . . , ^„ and satisfying the above relations - , and the 
double commutant of the set {̂ 2, ^3,...} in 'P = 9̂  was a / / i subfactor with index p. 
Consequently, the condition also was sufficient. 

^^ See [8] for a brief description of Connes's work. 
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The system of projections arising in this argument and the finite-dimensional algebras 
n soon turned out to form the core of a web of surprising relations to other mathemat

ical topics. In fact, these algebras had been encountered by several other people in quite 
different fields. For instance, H. Temperley and EUiott H. Lieb had used a representation of 
Ap^n on C '̂̂ "̂ ^ in a study of certain models of statistical mechanics already in 1971. More
over, for the discrete values of )6, the algebras A^^n were in some way or other related to 
Coxeter groups.^^ Finally, and most important, it was pointed out to Jones by D. Hatt and 
Pierre de la Harpe that the relations bore a strong resemblance to those defining the braid 
groups Bn. In fact, it was not difficult to show that after a change of variables, 

gi :=tei-(l-ei), l + t^T^ =p, 

the algebras A^^n were presented by the relations 

gf = (r - l )g /+r , 

8igj=gj8i foY\i-j\^2, 

gigi+igi + gigi+\ + gi-^\gi + gi H- g/+i + 1 = 0 . 

Consequently, the mapping p sending a braid generator a/ e Bn to the element piai) := 
gi ^ Ap,n defined a representation of the braid group 5„+i within A^ji or, similarly, 
within Ap^n ^ ^ - In this way, a connection to topology was opened up which no one 
had expected. "For the first time", Jones remarked in a contribution to a conference in 
July 1983, '7 / i factors have begun to exhibit their geometric and combinatorial nature. 
This rich structure can only be expected to deepen as one answers further simple questions 
about subfactors of finite index" [78, p. 270]. It was not immediately clear, though, how to 
exploit this connection, as the same paper shows. For a short period, Jones hoped that the 
determinant of his family of representations of Bn could be used in a way similar to that in 
which the Burau representation had been used to get new information about the Alexander 
polynomial or perhaps a related invariant of links.^^ To discuss this question, Jones turned 
to an expert in braid groups, Joan Birman. In her earher book [17], written shortly after 
Garside had solved the conjugacy problem for the braid group, Birman had collected and 
refined the available knowledge for the study of knots and links via an analysis of the 
relation between links and closed braids. She was therefore a natural partner for discussing 
Jones's new ideas. In the discussions, however, Birman pointed out to Jones that his first 
idea would not work out.̂ '̂  In a popular article, Jones later recalled: 

I went home somewhat depressed after a long day of discussions with Birman. It did not 
seem that my ideas were at all relevant to the Alexander polynomial or to anything else 
in knot theory. But one night the following week I found myself sitting up in bed and 
running off to do a few calculations. Success came with a much simpler approach than 
the one I had been trying. I realized I had generated a polynomial invariant of knots.̂ ^ 

^^ See footnote 78 above. 
96 See above, § 24, and [78, p. 244]. 
^'^ See note (2), added in proof, in [78, pp. 244 and 273]. 
9̂  From [81]. 
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It is not difficult to tell what Jones had found. Among other things, Birman had explained 
to Jones Markov's equivalence relation, characterizing the braid words that represented 
isotopic knots or Hnks as a closed braid (see above, § 24). Jones reahzed that the traces 
tr : Ap,n -> C furnished by his theory of subfactors automatically satisfied 

tr{vwv~^) = iviw) and tr{wgf_l^) = ^^Hr(u;), 

for all words i;, if in the generators gi, g2,..., gi, since two arguments of the trace could 
be interchanged and since it satisfied property (•*•). Thus, only a sUght correction was 
needed in order to make the trace itself into an invariant of links. Indeed, Jones showed that 
if w e Bn was a word with exponent sum e in the braid group generators a/, representing 
an oriented link L, then 

VLit):=(^'-±J-y\^/hr{p(w)) 

was invariant under the moves generating Markov's equivalence relation and thus V L ( 0 
was an isotopy invariant of oriented Unks. Moreover, the finite-dimensional algebra in
volved showed that VL was a Laurent polynomial in the variable t for knots and Hnks with 
an odd number of components, while it was a Laurent polynomial in y/J for links with an 
even number of components. Further discussions with Birman brought the next surprise. 
Examples showed that the new invariant was not equivalent to the Alexander polynomial. 
However, Birman and Jones found that VL satisfied a skein relation similar to the Alexan
der polynomial, as described in § 11 above.^^ This meant that Jones's polynomial could 
be defined independently of its original context in von Neumann algebras, a fact heavily 
exploited in subsequent work. 

Let me reconsider the remarkable chain of arguments leading from von Neumann's con
struction of the hyperfinite II\ factor 91 to Jones's new link invariant. While completely 
independent of low-dimensional topology, the beginnings of this development were clearly 
motivated by the wish to understand a particular kind of infinite-dimensional geometry, 
extending the approach to projective geometry by Menger and Birkhoff. Moreover, these 
beginnings were related to von Neumann's attempt to clarify the mathematical basis of 
quantum mechanics. Jones took up the problem of subfactors of IH, continuing this inves
tigation along lines close to those indicated by Murray's and von Neumann's work. When 
Jones found his towers of finite-dimensional algebras (the canonical images of ^^,„ inside 
d\), he was inclined to think of them in terms of von Neumann's variety of geometry: "The 
situation is thus very geometric and [the] relations [defining A^^i] can be thought of as 
defining special configurations of subspaces" [79, p. 377]. From this point of view, how
ever, the outcome of Jones's research generated perhaps even more riddles than it solved. 
By arguments which in the end boiled down to exploiting a surprising similarity in the 
combinatorial structures of 9\ and the braid groups, a relation between the geometry of 
configurations of subspaces of a Hilbert space and the topology of low-dimensional ob
jects such as braids and links was estabhshed. But what was - apart from this combinato
rial resemblance - the geometric reason for this connection? Was there a kind of structure 

^^ Interview with Joan Birman, Oberwolfach 1995. For this interview and further private communications about 
her involvement in the invention of the new polynomial invariants, I wish to express my sincere thanks to Joan 
Birman. 
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which bridged the algebra and the topology in question, in a similar way than the homol
ogy of cyclic coverings related knots and links to the Alexander polynomial? In the years 
following Jones's breakthrough, such questions were asked repeatedly. In a contribution 
on statistical mechanical models of link invariants, published in 1989, Jones himself con
ceded that the riddle was still unsolved: "Our main reason for doing this work was as a 
step towards a useful and genuinely three-dimensional understanding of the invariants. So 
far we have not succeeded. The situation is the same as that of the poor prisoners in Plato's 
allegory of the cave" [80, p. 312].^^^ 

While Jones's new invariant has been used and generahzed by many people in a broad 
spectrum of directions (such as: further polynomial link invariants, statistical mechanical 
models, quantum field theory, invariants of 3-manifolds constructed on the basis of Kirby's 
calculus of surgery descriptions), it seems that a deeper understanding of the relations be
tween the two kinds of geometry involved is still lacking. However, an important new idea 
which might eventually change the situation came into play through work of V.A. Vassihev 
[164, 165]. Following a general approach outhned by V.I. Arnold, Vassiliev proposed to 
study the space V of all smooth mappings S^ -> S^.ln this space, the isotopy classes of 
knots are separated by a system U of "walls" representing singular maps, and thus the ho
mology of V — X' in dimension zero, which can be studied by means of a spectral sequence, 
characterizes all numerical knot invariants. After Birman and X.-S. Lin found a connection 
between Jones's and Vassiliev's ideas in fall 1990, a substantial amount of research was 
done on this connection which might provide the starting point for a better understanding 
of the topology underlying the new Hnk polynomials.^^^ 

6. Conclusion 

§ 33. From the account given in the previous three sections it will be clear that a "tale 
of diagram combinatorics" such as that told in Section 2 reduces the complex weave of 
scientific and mathematical practice in which knot theory was formed to a rather thin nar
rative, in which the intentional and causal aspects of the development become almost un
recognizable. This can already be seen from the periodization which is suggested by the 
developments discussed. Four major stages of the history of knot theory can be discerned. 
In the first stage, extending from Vandermonde's first remarks to the late 19th-century 
tabulations, the mathematization of the knot problem stood in the foreground. This math-
ematization was called for by various developments in the exact sciences, ranging from 
astronomy and the theory of electromagnetism to Thomson's speculations on the structure 
of matter. In the second period, from 1900 to the late 1930's, modern knot theory emerged 
as a subfield of the discipline of topology, culminating in Alexander's, Reidemeister's and 
Seifert's contributions. On the one hand, we have seen that this emergence of modern knot 
theory was motivated by the desire to understand singularities of algebraic curves and sur
faces - a topic deeply rooted in 19th-century pure mathematics - and to solve several major 
problems thrown up by Poincare's new Analysis situs. On the other hand, the formation of 
knot theory was influenced by the modernist impulse toward autonomous, formal theories, 
an impulse which found its clearest expression within the developments considered here in 
Reidemeister's Knotentheorie of 1932. The third period, extending roughly from 1945 to 

100 PQJ. statements in a similar spirit, see [18]. 
^̂ ^ See the survey of this development in [18]. 
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Jones's invention of a new knot polynomial, is characterized by the close interplay between 
knot theory and the growing field of low-dimensional topology. The various ways in which 
knots gave rise to 3-manifolds were explored in detail, and the surprising resistance of the 
three-dimensional Poincare conjecture only contributed to motivate topologists to clarify 
the structure of knot complements, manifolds obtained from those by Dehn surgery, and 
3-manifolds in general. The fourth period set on with Jones's discovery, a breakthrough 
which remains surprising even today, and which changed the structure of the field very 
deeply. Knot theory is no longer more or less exclusively tied to low-dimensional topol
ogy, but also to a variety of other fields among which mathematical physics certainly stands 
out. 

A look at the intellectual contexts which I have touched upon (restricting mainly to the 
mathematical ideas involved) allows us to recognize that the actual motivations for mathe
matical investigations of knots and links were very complex. In a more or less direct way, 
and like so many other fields of mathematics, research on knots was related to the small 
sets of highly appreciated and contested research themes, the "big issues" that occupied 
the attention of the scientists of a given period. What is the nature of the small planets, 
and what are their orbits? What is an atom, and how are observed spectra to be explained? 
How do algebraic curves or surfaces behave at singular points? What are the objects of the 
new science of topology and how can ordinary space be characterized in purely topological 
terms?^^^ What is the right mathematical framework to be used in quantum physics? Which 
mathematical problems are solvable by algorithmic means? The appreciation of such prob
lems, and even more of the candidates for their solutions, has continually changed and will 
often be found not to coincide with today's valuations. WilUam Thomson's theory of vor
tex atoms which inspired Tait's tabulation enterprise did not sustain its original attraction 
for long. Nevertheless, it was in relation to such larger themes that the knot problem has 
continued to occupy the attention of mathematical minds. In their day, and for a shorter or 
longer period, they represented hard and deep problems in rich intellectual constellations; 
constellations which reached far beyond the narrow focus of a particular piece of knot-
theoretical work. Moreover, a study of the temporal modifications of the interplay between 
the grand scientific themes and more concrete research allows us to gain a deeper insight 
into the historical changes influencing the development of mathematics. It is significant 
that after 1900 the interest in knots no longer arose from physics but from pure mathemat
ics, and that in the wake of Jones's work, mathematical physics again came to play a major 
role in motivating research on knots and related topics. I have also indicated in which way 
the move toward a combinatorial style of "modern" knot theory (or "classical", depending 
on the perspective) was at least partially inspired by philosophical debates on the foun
dations of mathematics. To spell out all these influences and interrelations in the details 
of mathematical, scientific, and cultural practice would mean to produce yet another, and 
still much "thicker" historical narrative on the formation of knot theory than the one I have 
presented here.^^^ 

Returning to the proper subject of this contribution, let me close by recalling the truism 
that it is not the historian's task to predict the future. However, it is less a prediction than 
a reasonable expectation to suppose that geometric aspects will continue to play a crucial 
role in the further development of knot theory. After all, the hierarchy of knots in ordinary 

^̂ ^ A more detailed analysis would show that around 1900, the second half of this theme was not without cosmo-
logical overtones. 
103 PQJ. ̂ ĵ g interesting notion of "thick narratives", see [58]. 
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space or of similar placements in manifolds will continue to remain, first and foremost, a 
hierarchy of geometrical complexity of a certain kind. This hierarchy remains only very 
partially understood. The bare fact that it is possible in principle to enumerate all types 
of knots and links in that hierarchy does not tell too much about its finer structure (the 
comparison has been made with a fisting of all prime numbers and a deeper understanding 
of number theory).^^^ Thus, knot theory will continue to be interesting and useful in all 
situations within and outside mathematics where this kind of geometrical complexity is 
involved. If the history of knot theory tells us anything, it is that this has always been the 
case. 
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1. Introduction and early happenings 

In this essay we wish to embark on the telling of a story which, almost certainly, stands 
only at its beginning. We shall discuss the links between one very old ^\xh]tci,physics, and a 
much newer one, topology. Physics, being so much older, has a considerably longer history 
than does topology. After all the bulk of topology did not even exist before the beginning of 
the twentieth century. However, despite this disparity of antiquity between the two subjects, 
we shall still find it worthwhile to examine the situation before the twentieth century. We 
should also remind the reader that the term topology is not usually found in the literature 
before 1920 or so (cf. footnote 5 of this article), one finds instead the Latin terms geometria 
situs and analysis situs. 

1.1. From graph theory to network theory 

Perhaps the earliest occurrence of some topological noteworthiness was Euler's solu
tion [1736] of the bridges of Konigsberg problem. This was nothing if not a physical 
problem though one with a rather amusing aspect. The problem was this: in the city of 
Konigsberg^ were seven bridges and the local populace were reputed to ask if one could 
start walking at any one of the seven so as to cross all of them precisely once and end at 
one's starting point. Euler had the idea of associating a graph with the problem (cf. Fig
ure 1). He then observed that a positive answer to this question requires the vertices in this 
graph to have an even number of edges and so the answer is no^. 

In devising his answer Euler gave birth to what we now call graph theory and, in so do
ing, was considering one of the first problems in combinatorial topology; and though graph 

^ Since 1945, when the Potsdam agreement passed the city to Russia, Konigsberg has been called Kaliningrad. 
Kaliningrad is a Baltic sea port on a separate piece of Russian territory that lies between Lithuania and Poland. 
^ The point is that if one successfully traverses the graph in the manner required then the edges at each vertex 
divide naturally into pairs because one can label one as an entry edge and the other as an exit edge. 
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Fig. 1. The seven bridges of Konigsberg and its associated graph with seven edges. 

theory could once be viewed as a combinatorial study of the topology of one dimensional 
complexes it is now an independent subject in its own right. 

Among the parts of physics with close connections to graph theory is network theory. 
The earliest connection occurs in the work of Kirchhoff [1847] who, as well as formulating 
his two famous laws for electric circuits, made use of a graph theoretic argument to solve 
the resulting equations for a general electrical network. From these beginnings the links 
between graph theory and physics have strengthened over the centuries. 

1.2. Electromagnetic theory and knots 

In the nineteenth century we encounter a more substantial example of a physical phe
nomenon with a topological content. The physics concerned electromagnetic theory while 
the topology concerned the linking number of two curves. 

In electromagnetic theory the magnetic field B produced by a current / passing through 
a wire obeys the pair of equations 

V X B = /xoJ, V.B = 0, (1.1) 

where J is the current density. Now let us briefly summarise what is entailed in deriving 
the famous Ampere law. We integrate B round a closed curve C which bounds a surface S, 
then we have 

/ B d l = : / v x B d s = Ato / j d s = /XQ/, 
Jc Js Js 

(1.2) 

where in the last step we use the fact that the integral /^ J • ds gives the total current passing 
through S and this will be precisely / if (as we assume) the wire cuts the surface S just 
once. However, the wire could cut the surface more than once - say n times. When this is 
the case at each cut the the integral receives a contribution of =F/xo/ depending on whether 
J is parallel or anti-parallel to ds at the cut. Thus, if m/xo^ denotes the algebraic sum of all 
these n contributions then the most general statement for Ampere's law in this case is 

L B • dl =: noml, m e Z. (1.3) 
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This integer m is a familiar feature of textbook calculations of the magnetic field due to a 
solenoid. 

Now let us take an alternative route to calculating f^ B • dl. If we introduce the vector 
potential A where 

B = V X A, (1.4) 

and impose the Coulomb gauge condition 

.V.A = 0, (1.5) 

then, to find B, we only have to solve, the equation 

V ^ A ^ - M o J (1.6) 

and this has the solution 

h \r - r'l 
A(r) = £ / d'r'^^^^. (1.7) 

But if the wire forms a closed curve C\ say, with infinitesimal element of length dl' then J 
has support only on the wire and so is related to the current / by 

J{r)d\=ld\'. (1.8) 

This allows us to express B as a line integral around C' giving us 

An Jc \r-r'\ An Jc | r - r ' | 3 

Now we introduce a second curve C and integrate B round C thereby obtaining 

f Iixo r f (r- r') X dl' • dl 
/ B . d l = - - P / / ^ ^ — 3 . (1.10) 

Jc An Jc Jc |r - r 'P 

Perusal of (1.3) and (1.10) together shows us immediately that 

1 f f (r - rO X dl' dl 

For comparison with the work of Gauss below we wish to have this formula in a completely 
explicit form with all its coordinate dependence manifest and so we write 

r = {x,y,z), and r' = {x',y',z) (1.12) 

giving 

- ^ / / [(^' - •«)̂  + ( / - y)^ + iz - z)^Y^'\{x' - x){dydz' - dz dy') 

+ ( / - y)idz dx' - dx dz') + {z - z'){dx dy' - dy dx')) = m. (1.13) 
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That this is a topological statement is clear and the integer m is actually the linking 
number of the two curves C and C' and so electromagnetic theory has provided with an 
explicit formula for the linking number and so an early result in knot theory. 

This result (1.13) was known to Gauss in exactly the form that we have presented it 
above. Gauss's work on this matter also came from work (in 1833) on electromagnetic 
theory and is to be found in his Nachlass (Estate) cf. [Gauss, 1877] where on p. 605 one 
finds the formula (which I quote entirely unchanged from the printed version available in 
[Gauss, 1877] although one should remember that the original is handwritten rather than 
printed). 

ZUR ELECTRODYNAMIK. 605 

[4.] 

Von der Geometria Situs, die LEIBNITZ ahnte und in die nur einem Paar Geometern 
(EULER und VANDERMONDE) einen schwachen Blick zu thun vergonnt war, wissen 
und haben wir nach anderthalbhundert Jahren noch nicht viel mehr wie nichts. 

Eine Hauptaufgabe aus dem Gremgebeit der Geometria Situs und der Geome
tria Magnitudinis wird die sein, die Umschlingungen zweier geschlossener oder un-
endlicher Linien zu zahlen. 

Es seien die Coordinaten eines unbestimmten Punkts der ersten Linie x, j , z; der 
zweiten j ' , y^ z' und 

/ / 
jx' - x){dydz' - dzdy') + {y' - y){dzdx' - dxdz' + (z - z'){dxdy' - dydx') 

3 ~ 
[(A'' - A-)2 + ( / - y)^ + {z' - z)2] 2 

dann ist dies Integral durch beide Linien ausgedehnt 

= 'Xmn 

und m die Anzahl der Umschlingungen. 
Der Werth ist gegenseitig, d. i. er bleibt derselbe, wenn beide Linien gegen einander 

umgetauscht werden. 1833. Jan. 22. 

This translates^ to 

ON ELECTRODYNAMICS. 605 

[4.] 

Concerning the geometria situs, foreseen by LEIBNITZ, and of which only a couple 
of geometers (EULER and VANDERMONDE) were allowed to catch a glimpse, we know 
and have obtained after a hundred and fifty years little more than nothing. 

A main task (that lies) on the border between geometria situs and geometria magni
tudinis is to count the windings of two closed or infinite lines. 

The coordinates of an arbitrary point on the first line shall be x, y, z\ (and) on the 
second x', y^ z^ and (let) 

/ / -
x){dydz' - dzdy') + ( / - y){dzdx' - dxdz' + (z - z'){dxdy' - dydx') 

3 

I am greatly indebted to Martin Mathieu for providing me with this translation. 
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then this integral carried out over both Unes equals 

= Amn 

and m is the number of windings. 
This value is shared, i.e., it remains the same if the lines are interchanged. 

1833. Jan. 22. 

We see on comparing Gauss's formula with (1.13) that they are exactly the same mod
ulo the fact that his integer m is minus our m. Gauss's remarks^ above also show that he 
understood the topological nature of his result which he quotes without reference to any 
electromagnetic quantities; in addition he bemoans the paucity of progress in topology in 
a manner which makes clear that he thinks that there is much to be discovered eventu
ally. 

Maxwell was also aware of Gauss's result and mentions it in [Maxwell, 1904a] when he 
discusses the conditions for the single valuedness of a function defined by a line integral. 
It is clear that he realises the need for a topological restriction on the domain of definition 
of the function. On p. 17 of [Maxwell, 1904a] he says 

There are cases, however, in which the conditions 

dZ dY _ dX dZ^_r. ^ _ ^ _ o 
dy dz ' dz dx ' dx dy 

which are those of Xdz+Ydy-\-Zdz being a complete differential, are satisfied through
out a certain region of space, and yet the line-integral from A to P may be different for 
two lines, each of which lies wholly within that region. This may be the case if the 
region is in the form of the ring, and if the two lines from A to P pass through opposite 
segments of the ring We are here led to considerations belonging to the Geometry 
of Posidon, a subject which, though its importance was pointed out by Leibnitz and il
lustrated by Gauss, has been little studied. The most complete treatment of this subject 
has been given by J.B. Listing. 

Then on p. 43 of [1904b] Maxwell refers to Gauss's linking number formula and says 

It was the discovery by Gauss of this very integral, expressing the work done on a 
magnetic pole while describing a closed curve in presence of a closed electric current, 
and indicating the geometrical connexion between the two closed curves, that led him to 
lament the small progress made in the Geometry of Position since the time of Leibnitz, 
Euler and Vandermonde. We have now some progress to report, chiefly due to Riemann, 
Helmholtz, and Listing. 

Maxwell also includes a figure for which the Unking number of two oppositely oriented 
curves is zero. 

^ Additional references on the history of knot theory are [Epple, 1995, 1998] of which [Epple, 1998] also 
discusses the work above of Gauss on knots and, in this connection, prints a fragment from one of Gauss's 
notebooks which show that Gauss spent some time thinking about what the current Uterature now calls braids. 
I am indebted to loan James for sending me a preprint of [Epple, 1998]. 
^ The work of Listing referred to by Maxwell is [Listing, 1861]. We note that Listing was the first to use the 
term Topology (actually "Topologie", since he wrote in German) in a letter to a friend in 1836, cf. the detailed 
account of this on pp. 41-42 of [Pont, 1974], cf. also [Listing, 1847]. 



364 C Nash 

Fig. 2. Some of the vortex tubes considered by Kelvin in [Thomson, 1869]. 

1.3. Knots, vortices and atomic theory 

The nineteenth century was to see another discussion of knots and physics before it 
came to an end. This was in the theory of vortex atoms proposed by Lord Kelvin (ahas 
W.H. Thomson) in 1867; cf. [Thomson, 1867] for his paper on atoms as vortices and 
[Thomson, 1869, 1875, 1910] for his work on vortices themselves including references 
to knotted and linked vortices. 

Kelvin was influenced by an earlier fundamental paper by Helmholtz [1858] on vortices, 
and a long and seminal paper of Riemann [1857] on Abelian functions.^ 

His idea really was that an atom was a kind of vortex. He was sceptical about the 
chemists espousal of the Lucretius atom, in [Thomson, 1867] he says: 

Lucretius's atom does not explain any of the properties of matter without attributing 
them to the atom itself — The possibility of founding a theory of elastic solids and 
liquids on the dynamics of closely-packed vortex atoms may be reasonably anticipated. 

and later in the same article 

A full mathematical investigation of the mutual action between two vortex rings of any 
given magnitudes and velocities passing one another in any two lines, so directed that 
they never come nearer one another than a large multiple of the diameter of either, is 
a perfect mathematical problem; and the novelty of the circumstances contemplated 
presents difficulties of an exciting character. Its solution will become the foundation of 
the proposed new kinetic theory of gases. 

A significant part of the ''difficulties of an exciting character'' referred to by Kelvin 
above concerned the topological nature of vortices,^ i.e. that they can be knotted and that 
several may be linked together (cf. Figure 2). 

^ Actually, in [Thomson, 1869], Kelvin specifically refers to Section 2 of this paper which is topological: it 
discusses multiple connectedness for what we nowadays refer to as Riemann surfaces. This section bears the title: 
Lehrsdtze aus der analysis situs fiir die Theorie der Integrate von zweigliedrigen vollstdndigen Dijferentialien or 
Theorems from analysis situs for the theory of integrals over total differentials offimctions of two variables. 
^ It seems clear that Kelvin thought of these vortex tubes as knotted tubes of the ether for the opening sentences 
of [Thomson, 1869], though they do not mention the word ether, describe an ideal fluid of that kind. One reads: 
The mathematical work of the present paper has been performed to illustrate the hypothesis, that space is con
tinuously occupied by an incompressible frictionless liquid acted on by no force, and that material phenomena 
of every kind depend solely on motions created in this liquid. His belief in the ether lasted much further into the 
future cf. [Thomson, 1900] which is dated 1900; this of course is to be expected as special relativity still lay five 
years ahead. 
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Atiyah [1990] has summarised very well the main points that Kelvin considered to be in 
favour of his theory. Hence we provide a brief paraphrase of that summary here. The sta
bility of atoms would be be accounted by the stability under deformation of the topological 
type of knots. The large variety of different knot types can accommodate all the different el
ements. Vibrational oscillations of knots could be the mechanism for atomic spectral lines. 

With regard to this latter point about spectral Hues Kelvin even gives [Thomson, 1867], 
a rough upper bound for the rotation period of a sodium vortex based on the frequency of 
its celebrated yellow emission line. 

Kelvin's contemporary Tait was thereby stimulated to do extensive work on knot theory 
and to begin work on classifying knots cf. [Tait, 1898] where numerous complex knots 
are copiously illustrated as well as discussed. However, despite a lot of work, many of his 
results remained unproven and were christened the Tait conjectures. It is clear now that 
these conjectures were out of range of the mathematical techniques of his day; but many 
of them were finally disposed of in the 1980's by the work of Jones [1985] which we shall 
come to in Section 6. This work caused a resurgence in knot theory in mathematics and 
also coincided with a renewal of the physicists interest in knots. This is a rather special and 
interesting story cf. Section 6. 

1.4. The advent ofPoincare 

As the nineteenth century drew to a close topological matters were considerably enlivened 
by the work of Poincare. This work had some strong connections with physics as we shall 
now explain. 

Poincare's interest in physics endured throughout his all too short life but began with 
Newtonian dynamics and, in particular, with the three body problem. 

The Swedish mathematician Mittag-Leffler, founder and chief editor of the journal Acta 
Mathematica, was the prime mover in the organisation of an international mathematical 
competition held to celebrate the 60th birthday of King Oscar II of Sweden and Norway. 
The King was well disposed towards science and allowed a competition to be announced 
in 1885. Four problems were proposed but entrants (who were, in theory, anonymous) 
were also at liberty to choose their own topic.^ The judges were Hermite, Mittag-Leffler 
and Weierstrass. Poincare was declared the winner in 1889 - the King having officially 
approved the result on January 20th the day before his 60th birthday - there were eleven 
other entrants. 

Poincare had chosen to work on the first problem and in particular the three body prob
lem.^ His prize winning memoir^^ bore the title Sur leprobleme de trois corps et les equa
tions de la dynamique. 

° In brief the four problems (which were contributed by Hermite and Weierstrass) were the /i-body problem, 
an analysis of Fuchs theory of differential equations, a problem in nonlinear differential equations and a final 
(algebraic) problem on Fuchsian functions. 
^ Poincare actually studied the restricted three body problem. This meant that he took the first mass to be large, 
the second small and positive and the third negligible. He also took the first two masses to have a circular orbit 
about their common centre of mass while the third moved in the plane of the circles. 
^̂  The prize winning entry was to be published in Acta Mathematica and this was eventually done in 
[Poincare, 1890]. However, the published version of Poincare's work differs in some important respects from 
the entry that he submitted. This is because of an error discovered before publication by Phragmen. The mathe
matical and historical details of this particular story are available in the excellent book [Barrow-Green, 1997]. 
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Before working on this problem Poincare had worked on the theory of differential equa
tions and had concentrated on obtaining qualitative results. A key viewpoint he adopted 
and exploited was geometric - he thought of the solutions as defining geometric objects: 
e.g., curves. He then quickly obtained results of a topological nature. 

For example, he studied the singular points of these equations on surfaces of genus p 
and introduced the notions of saddle points, nodes and foci to classify these singularities -
in French he used the terms cols, noeuds and foyers, respectively - then using C, F or N 
to denote the type of the singularity he proved (cf. Poincare [1885] and [1880,1881, 1882, 
1885, 1886] that 

N + F-C = 2-2p (1.14) 

which one recognises immediately as the index of a vector field being equated to the Euler-
Poincare characteristic of the Riemann surface. 

As evidence of the stimulus that physics gave to investigations we quote from an analysis 
Poincare prepared in 1901 of his own scientific work. This was published after his death 
(Poincare [1921]). 

Pour etendre les resultats precedents aux equations d'ordre superieur au second, 11 
faut renoncer a la representation geometrique qui nous a ete si commode, a moins 
d'employer le langage de Thypergeometrie a n dimensions Ce qu'il y a de remar-
quable, c'est que le troisieme et le quatrieme cas, c'est a dire ceux qui corresponde a la 
stabilite, se rencontrent precisement dans les equations generales de la Dynamique 
Pour aller plus loin, il me fallait creer un instrument destine a remplacer 1'instrument 
geometrique qui me faisait defaut quand je voulais penetrer dans I'espace a plus de trois 
dimensions. C'est la principale raison qui m'a engage a aborder I'etude de I'Analysis 
situs; mes travaux a ce sujet seront exposes plus loin dans une paragraphe special. 

that is 

To extend the preceding results to equations of higher than second order, it is necessary 
to give up the geometric representation which has been so useful to us unless one em
ploys the language of hypergeometry of n dimensions What is remarkable is that 
in the third and fourth case, that is to say those that correspond to stability, are found 
precisely in the general equations of dynamics To go further it was necessary to 
create a tool designed to replace the geometric tool which let me down when I wanted 
to penetrate spaces of more than three dimensions. This is the principal reason which 
led me to take up the study of Analysis situs; my work on this subject will be expounded 
further down in a special paragraph. 

As yet another insight into the way Poincare was thinking about celestial mechanics 
we quote the following which is taken from the introduction to his paper Analysis situs 
[Poincare, 1895]; this is the first of his epoch making papers on topology. 

D'autre part, dans une serie de Memoires inseres dans le Journal de Liouville, et indt-
ules: Sur les courbes definies par les equations differentielles, j 'ai employe I'Analysis 
situs ordinaire a trois dimensions a I'etude des equations differentielles. Les memes 
recherches ont ete poursuivies par M. Walther Dyck. On voit aisement que I'Analysis 
situs generalisee permettrait de traiter de meme les equations d'ordre superieur et, en 
particulier, celles de la Mecanique celeste. 

that is 
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On the other hand, in a series of memoirs in Liouville's Journal^^ under the title On 
curves defined by differential equations, I have used ordinary analysis situs in three 
dimensions in the study of differential equations. The same research has been followed 
by Mr. Walther Dyck. One easily sees that generalised analysis situs would permit the 
treatment of equations of higher order and, in particular, those of celestial mechanics. 

Poincare's work opened a new chapter in celestial mechanics; the strong topological 
content of his papers on differential equations lead directly to his papers [Poincare, 1892, 
1895, 1899a, 1899b, 1900, 1901a, 1901b, 1902a, 1902b, 1904, 1912] on analysis situs 
which gave birth to the subjects of algebraic and differential topology. 

1.5. Poincare's geometric theorem 

Poincare left unproved at the time of his death a (now) famous result usually referred to 
as Poincare's geometric theorem. This theorem has both physical and topological content. 
Shortly before he died, Poincare wrote [1912] in order to describe the theorem and the 
reasons for his believing it to be true. 

In the first paragraph (of [Poincare, 1912]) he says 

Je n'ai jamais presente au public un travail aussi inacheve; je crois done necessaire 
d'expliquer en quelques mots les raisons qui m'ont determine a le publier, et d'abord 
celles qui m'avaient engage a I'entreprendre. J'ai demontre il y a longtemps deja, 
rexistence des solutions periodiques du probleme des trois corps; le resultat laissait 
cependant encore a desirer; car si 1'existence de chaque sorte de solution etait etablie 
pour les pedtes valeurs des masses, on ne voyait pas ce qui devait arriver pour des val
uers plus grandes, quelles etaient celles de ces solutions qui subsistaient et dans quel 
ordre elles disparaissaient. En reflechissant a cette question, je me suis assure que la 
reponse devait dependre de I'exactitude ou la faussete d'un certain theoreme de geome
tric dont I'enonce est tres simple, du moins dans le cas du probleme restreint et des 
problemes de Dynamique oii il n'y a que deux degres de liberte. 

that is 

I have never presented to the public such an incomplete work; I believe it necessary 
therefore to explain in a few words the reasons which have decided me to publish it, 
and first of all those (reasons) which had led me to undertake it. I proved, a long time 
ago now, the existence of periodic solutions to the three body problem; however the 
result left something to be desired; for if the existence of each sort of solution were 
established for small values of the masses, one couldn't see what might happen for 
lai'ger values, (and) what were those (values) of those solutions which persisted and in 
what order they disappeared. On reflecting on this question, I have ascertained that the 
answer ought to depend on the truth or falsity of a certain geometrical theorem which 
is very simple to state, at least in the case of the restricted (three body) problem and in 
dynamical problems with only two degrees of freedom. 

The geometric theorem is a fixed point theorem: it states that a continuous, one to one, 
area preserving map / from an annulus 0 < a ^ r ^ b i o itself has a pair of fixed 
points ( / i s also required to have the property that it maps the two boundary circles in 

^ ^ Poincare uses the term Liouville's Journal to refer to the Journal de Mathematiques as found, for example, in 
[Poincare, 1881]. 
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opposite senses). When applied to the restricted three body problem it proves the existence 
of infinitely many periodic solutions. 

Topology immediately enters because Poincare's index theorem can easily be used to 
show - as Poincare himself pointed out [Poincare, 1912]) - that there must be an- even 
number of fixed points; hence it is sufficient to prove that / has at least one fixed point. 

In 1913, Birkhoff, who was to be a prime mover and founder of the new subject of 
dynamical systems, proved the theorem cf. [Birkhoff, 1913]. 

After Poincare the pursuit of problems with a joint dynamical and topological content 
was taken up by Birkhoff, Morse, Kolmogorov, Arnold and Moser and many, many others. 
We shall have something to say about these matters later on in Section 8. 

2. A quiescent period 

2.1. Dirac and Schwarzschild 

In the early twentieth century physics was undergoing the twin revolutions of quantum 
theory and special and general relativity. These revolutions imported much new mathe
matics into physics but topology, though itself growing at an explosive rate, did not figure 
prominently in the physics of this story. 

Nevertheless two papers on physics of this period, do have a topological content, and are 
worth noting. In the first case this content is implicit and in the other it is expHcit. These 
papers are, respectively, that of Schwarzschild [1916a, 1916b]) on solutions to Einstein's 
equations and that of Dirac [1931] on magnetic monopoles. 

We shall discuss Schwarzschild's paper in Section 3 but for the moment we want to deal 
with Dirac's paper because its topological content is expHcit from the outset and because 
it has proved to be so influential. 

2.2. Dirac's magnetic monopoles 

Dirac begins his paper with some comments on the role of mathematics in physics which 
are both philosophical and somewhat prophetic. He says 

The steady progress of physics requires for its theoretical formulation a mathematics 
that gets continually more advanced. This is only natural and to be expected. What 
however was not expected by the scientific workers of the last century was the partic
ular form that the line of advancement of the mathematics would take, namely, it was 
expected that the mathematics would get more and more complicated, but would rest 
on a permanent basis of axioms and definitions, while actually the modern physical de
velopments have required a mathemafics that confinually shifts its foundations and gets 
more abstract. Non-Euclidean geometry and noncommutative algebra, which were at 
one fime considered to be purely fictions of the mind and pastimes of logical thinkers, 
have now been found to be very necessary for the description of general facts of the 
physical world. It seems likely that this process of increasing abstraction will continue 
in the future and that advance in physics is to be associated with a continual modifica
tion and generalisation of the axioms at the base of the mathemafics rather than with a 
logical development of any one mathematical scheme on a fixed foundation. 
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The subject matter of Dirac's paper was both topological and electromagnetic: he found 
that there were magnetic monopole solutions to Maxwell's equations but that the magnetic 
charge /xo of the monopole had to quantised; in addition there were two striking facts about 
this quantisation one mathematical and one physical. The mathematical novelty was that 
the quantisation was not due to the discreteness of the spectrum of an operator in Hilbert 
space but rather to topological considerations. The physical novelty was that the existence 
of even one of these monopoles would imply the quantisation of electric charge, something 
not hitherto achieved. ̂ ^ 

Dirac considered carefully the phase of a wave function \l/(x,y, z,t) of a particle in 
quantum mechanics. If A and y are the amplitude and phase, respectively, then we have 

\lf = Ae'y. (2.1) 

Once T/T is normalised to unity, in the usual way, there remains a freedom to add a constant 
to the phase y without altering the physics of the particle. Dirac wanted to exploit this fact 
and argue that the absolute value of y has no physical meaning and only phase differences 
matter physically. In [Dirac, 1913] he wrote 

Thus the value of y at a particular point has no physical meaning and only the difference 
between the values of y at two different points is of any importance. 

He immediately introduces a generalisation, saying 

This immediately suggests a generalisation of the formalism. We may assume that y 
has no definite value at a particular point, but only a definite difference in value for any 
two points. We may go further and assume that this difference is not definite unless 
the two points are neighbouring. For two distant points there will then be a definite 
phase difference only relative to some curve joining them and different curves will in 
general give different phase differences. The total change in phase when one goes round 
a closed curve need not vanish. 

Dirac now does two more things: he finds that this change in phase round a closed curve 
will give rise to an ambiguity unless it takes the same value for all wave functions, and 
he goes on to equate this phase change to the flux of an electromagnetic field. For a wave 
function in three spatial dimensions, to which Dirac specialises, this flux is just that of a 
magnetic field. Yet closer scrutiny of the situation forces the consideration of the possibility 
of xj/ vanishing (which it will do generically along a line in three dimensions) about which 
Dirac says 

There is an exceptional case, however, occurring when the wave function vanishes, 
since then its phase does not have a meaning. As the wave function is complex, its 
vanishing will require two conditions, so that in general the points at which it vanishes 
will lie along a line. We call such a line a nodal line.̂ ^ 

Dirac now finds that to get something new he must relax the requirement that phase 
change round a closed curve be the same for all wave functions; he realises that it is possible 
to have it differ by integral multiples of In for different wave functions. 

^^ Electric charge, not being the eigenvalue of any basic operator, is not quantised by the mechanism that quan
tises energy and angular momentum. 
^^ In the current literature nodal lines are called Dirac strings. 
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The final stage of the argument is to compute the flux of the magnetic field B through 
a closed surface S allowing also that nodal lines may he totally within S or may intersect 
with S. 

Each nodal line is labelled by an integer n which one detects by integrating round a small 
curve enclosing the line. Ifni are the integers for the nodal lines inside, or intersecting with, 
S the Hi are then related to the magnetic flux /^ B • ds by 

V Inrii + - ^ / B • ds = 0, (2.2) 
7^ he Js 

where h, c and e are Planck's constant, the velocity of light and the charge on the electron, 
respectively.^^ Now if the nodal Unes are closed they always cross S an even number of 
times and hence contribute zero to J2i ^^^i when one takes account of the sign of contri
butions associated with incoming and outgoing fines. Hence Ylt ^^rn/ is only nonzero for 
those lines having end points within S. Finally Dirac then surrounds just one of these end 
points with a small surface S so that (2.2) immediately implies that magnetic flux emanates 
from this end point so that it is the location of a magnetic monopole. Such an end point 
will also be a singularity of the electromagnetic field. 

Now if a single electric charge produces a field E then the size of its charge q is given 
by 

, = i^/^E.ds, (2.3) 

where 5 is a small surface enclosing the charge. So, by analogy, the magnetic charge /XQ of 
a magnetic monopole is defined by writing 

^7T Js 
MO = — / B . ds. (2.4) 

Applying this to our small surface S and using (2.2) this gives at once the result that [5 

^7X e ^ nhc ^ 
2nn H /XQ = 0 ^^ /̂XQ = ———, n e L. (2.5) 

he An 

We see that the magnetic charge /XQ has a quantised strength with the fundamental quan
tum being 

he 
-— (2.6) 
Ane 

which we note is inversely proportional to the electric charge e. Dirac noted the key fact 
that the mere existence of such a monopole means that electric charge is quantised. In 
[Dirac, 1931] we find the passage 

^^ Informally the reason that the RHS of (2.2) is zero is because it is the limit of the change in phase round a 
closed curve C as C shrinks to zero. C bounds a surface S so that when C has finally shrunk to zero S becomes 
closed. 
^̂  When reading [Dirac, 1931] one should be aware that the symbol h denotes Planck's constant divided by 27r; 
nowadays this quantity is usually denoted by h. 
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Fig. 3. The lattice of possible magnetic and electric charges. 

The theory also requires a quantisation of electric charge, since any charged particle 
moving in the field of a pole of strength [n^ must have for its charge some integral 
multiple (positive or negative) of e, in order that the wave functions describing the 
motion may exist. 

Dirac's remarkable paper encouraged physicists to consider particles which are simulta
neously magnetically and electrically charged - such particles are called dyons. The set of 
possible electric and magnetic charges form a skew lattice covering an entire R^ (cf. Fig
ure 3). For convenience from now on we denote magnetic charge by g rather than Dirac's 
/xo and in doing so we change to more conventional units of magnetic and electric charge: 
in these units ^ = c = 1 and the charge q on the electron is given by q^l(An) = 1/137. 
Dirac's condition (2.5) now reads 

= rt € Z. 
In 

(2.7) 

The quantisation condition for dyons is a Httle more complicated than that for particles 
with only one type of charge. It has been studied independently by Schwinger [1968] and 
Zwanziger [1968a, 1968b]. They found that if (^i, ^i) and (^2, ^2) represent the electric 
and magnetic charges of a pair of dyons then 

{e\g2 - g2gi) 
In 

= neZ 

and these values we represent on the lattice of Figure 3. If the angle a of Figure 3 is pre
cisely zero then the lattice becomes rectangular rather than skew: this is practically forced 
if the theory is CP invariant since CP acts on (e, g) to give {-e, g) (actually a = n/4 is 
also allowed). Hence, the size of a is a measure of CP breaking which is experimentally 
found to be small. 

For monopoles coming from non-Abelian gauge theories serious consideration must be 
given to a specific topological mechanism for this CP breaking. We shall expand on this 
remark in Section 4. 
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2.3. The topology ofDirac 's monopoles 

It is very instructive to examine Dirac's work from the point of view of topology. The 
mathematical setting is that of connections and curvatures on fibre bundles together with 
the vital calculational tool of characteristic classes; this latter was only at the very begin
ning of its development when [Dirac, 1931] was published. 

The standard physical setting is as follows. In electromagnetic theory the electric and 
magnetic fields form the components of the Maxwell field tensor F^^ according to^^ 

Ei = F/o, Bi = -SijkFjk, 
(2.8) 

However, geometrically speaking the F^y are also the components of a curvature tensor 
for the gauge potential A^. This suggests immediately that one uses the curvature 2-form 
F and the connection 1-form A about which we know that 

F^-F^ydx^" Adx\ A = A^dx^, 
^ (2.9) 

F = dA. 

Now because the electric field E is expressed as a gradient, while the magnetic field B is 
expressed as a curl, then it is natural to associate E to a 1-form and B to a 2-form. Hence 
we define the forms E and B by writing 

E = Ei dx\ B = -Fij dx' A dxK (2.10) 

This means that the curvature 2-form F is expressible as 

F = dx^AE + B (2.11) 

and Maxwell's equations simply assert the closure of *F, i.e. 

J * F = 0, (2.12) 

where the * denotes the usual Hodge dual with respect to the standard flat Minkowski 
metric on R"̂ . 

But recall that Dirac specialises to a three dimensional situation by taking a time inde
pendent electromagnetic field. We see at once from (2.11) that, in the absence of time (or 
at a fixed time), F pulls back to a 2-form on R^ which is just the magnetic field 2-form B. 
Thus, denoting for convenience this 2-form on R-̂  by F\^3, we have 

F\^3 = B. (2.13) 

^̂  In our notation x^ denotes the time coordinate, summation is implied for repeated indices and we use the 
convention that Greek and Latin indices run from 0 to 3 and 1 to 3, respectively. 
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It is important to note that the magnetic field in the guise of F|]^3 is a curvature on R^ but 
the same is not true of the electric field. So particularly for a static electromagnetic field 
the magnetic and electric fields are geometrically very different. 

Dirac's monopole has to be singular on R^ so its curvature F\^3 is a curvature defined 
on R-̂  — {0} with associated connection form A/ dxK Now the gauge invariance of the 
monopole is the standard possibility of replacing A by A -\- df where / is a function on 
R^ — {0}, i.e. the gauge group is the Abelian group f/(l). 

So, in bundle theoretic terms, we have a connection on a [/(I) bundle P, say, over 
R-̂  — {0}; but R^ — {0} is 5^ x R"̂  (R+ is the positive real axis) and so homotopy invariance 
means we might as well consider P to be a f/(l) bundle over S^. Such a P has an integral 
first Chern class c\{P) given in terms of its curvature form F by the standard formula 

c i ( P ) = f i - , C I ( P ) G Z . (2.14) 
F 

Is2 2n' 

We can now illustrate everything by doing a concrete calculation: If we use spherical 
polar coordinates^'^ (r, 0, (p) and take 

A = — (1 -cos(0))d(t), C a constant, (2.15) 

then the connection A has curvature 

C C 
F = — sin(0) dO Ad(t) = -^eijkx'dx^ A dx^. (2.16) 

Now F of course is the same as the magnetic field B or F\ ^ introduced above but the 
integrahty of the Chern class of P gives 

/ — sin(6>) de Ad(t) = neZ =^ C = n, (2.17) 
Js^ 47r 

so that the constant C is quantised, and this ensures that P is well defined. This then is 
Dirac's quantisation condition (2.5) in units where magnetic charges take integral values 
(i.e. units of size hc/Ane). 

^̂  Were we to use Cartesian coordinates (jc, y, z) we would obtain 

C (jc dy — 3; dx) 
A = 

2r (z + r) ' 

Note that this expression has a genuine singularity at r = 0 and a coordinate singularity at z + r = 0 - i.e. 
the negative z-axis - this latter singularity corresponds to Dirac's nodal line or the Dirac string. This coordi
nate singularity can be shifted to the positive z-axis by the gauge transformation / = tan~^ {y/x) yielding the 
connection 

. . . . C {xdy -ydx) 
A-\-df = . 

2r (z - r) 
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2.4. Aharonov and Bohm 

After 1931, and the appearance of Dirac's paper, neither physics nor topology stood re
motely still but they largely went along separate ways. To pinpoint a significant instance of 
an interaction between topology and physics we pass forward nearly three decades to 1959 
and the paper of Aharonov and Bohm [1959]. 

The Aharonov-Bohm effect [Aharonov and Bohm, 1959] is a phenomenon in which the 
nontriviality of a gauge field A is measurable physically even though its curvature F is 
zero. Moreover, this nontriviality is topological and can be expressed as a number n, say, 
which is a global topological invariant. 

To demonstrate this effect physically one arranges that a non simply connected region 
Q of space has zero electromagnetic field F. We are using the same notation as in the 
discussion above of Dirac's magnetic monopole, i.e. we have 

F = dA (2.18) 

and 

F = -F^ydx^ Adx"" and A^A^dx^, (2.19) 

where the x^ are local, coordinates on Q. 
Given this F and Q one can devise an experiment in which one measures a diffraction 

pattern associated with the parallel transport of the gauge field A round a noncontractible 
loop C in ^ . 

A successful experiment of precisely this kind was done by Brill and Werner [I960]. The 
experimental setup - cf. Figure 4 - was of the Young's slits type with electrons replacing 
photons and with the addition of a very thin solenoid. The electrons passed through the 
slits and on either side of the solenoid and an interference pattern was then detected. The 
interference pattern is first measured with the solenoid off. This pattern is then found to 
change when the solenoid is switched on even though the electrons always pass through a 
region where the field F is zero. 

Source 

Slits Screen 

Fig. 4. A schematic Aharonov-Bohm experiment. 
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This result is quite a dramatic demonstration of the fact that the connection, or gauge 
field, A is a more fundamental object than the electromagnetic field, or curvature F; all the 
more so since the key point is a topological one.^^ 

A topological explanation is easy to provide and begins with the notion of parallel trans
port round closed curves. The action of parallel transport on multilinear objects, viewed 
either as vectors, spinors, tensors etc. or sections of the appropriate bundles, is via the 
operator PT(C) where 

PT(C) = exp L A 
c . 

Differential topology provides us immediately with the means to see that PT{C) is non-
trivial. The argument goes as follows: F = dA^o that the vanishing of F gives us 

t/A = 0 ^ A = df locally. 

Hence A determines a de Rham cohomology class [A] and we have 

[A]G/ /^(^ ;M). 

It is clear from Stokes' theorem that integral j ^ A only depends on the homotopy class of 
the loop C; in addition the loop C determines a homology class [C] where 

[C] G / / i ( ^ ; R ) . 

This means that the integral /^ A (which we can take to be the number n) is just the dual 
pairing (•, •) between cohomology and homology, i.e. 

([A],[C]) = y A. 

Mathematically speaking we realise the solenoid by a cylinder L so that 

Q =R^ -L =^ H\Q\ M) = H^{R^ - L; R) = Z. 

In the experiment referred to above the loop C is the union of the electron paths Pi and Pi, 
cf. Figure 4. 

The holonomy group element PT(C) is also of central interest elsewhere. It occurs in 
the study of the adiabatic periodic change of parameters of a quantum system described 
by Berry [1984] cf. also Simon [1983]. This phenomenon is known as Berry's phase. 
A relevant topological appHcation here is an explanation of the quantum Hall effect, cf. 
Morandi [1988]. 

The importance of nontrivial flat connections for physics extends to the non-Abehan or 
Yang-Mills case as we shall see in due course below. 

It is now time to discuss topological matters concerning general relativity. 

^̂  It is possible that this result would not have been a complete surprise to Maxwell because, as is shown in our 
first quotation from him above, he was well aware of the necessity for topological considerations, and even knew 
something of their nature, when a function was defined by a line integral. 
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3. Topology, general relativity and singularities - black holes and the big bang 

3.1. Chandrasekhar and gravitational collapse 

Penrose [1965] made the biggest breakthrough since Chandrasekhar [1931] in understand
ing the nature of gravitational collapse: He proved the first theorem which showed that 
singularities of the gravitational field are a generic feature of gravitational collapse. More
over, Penrose's methods were topological. 

Before saying anything more about Penrose's paper we need a brief sketch of some of 
the salient features of gravitational collapse. 

Gravitational collapse is something that is worth investigating for very massive objects 
such as stars. This simple sounding idea is that, for a sufficiently massive body, the attrac
tive force of gravity may be strong enough to cause it to start to implode. 

To find something massive enough we have to choose a stellar object such as a star. Now, 
for a young active star, the burning of the nuclear fuel causes enough outward pressure 
to counteract all its gravitational inward pressure. However, since the nuclear fuel will 
eventually be used up this line of thought suggests that one calculate what gravity can do 
once it is not opposed by the nuclear reactions. In 1931 Chandrasekhar [1931] pubHshed 
his celebrated paper on this matter. 

He took a star of mass M to be a relativistic gas at temperature T obeying a relativistic 
equation of state. With the star's nuclear fuel all spent its cooling and contraction under 
gravity was opposed by the degeneracy pressure of the electrons produced by Fermi-Dirac 
statistics. However, Chandrasekhar found that this pressure could not resist gravity if M 
was greater than about 1.4 solar masses (in standard notation one writes this as 1.4 M© 
where M© denotes the mass of the Sun). On the other hand for M less than 1.4 M© the 
star should cool and contract to what is called a white dwarf. Hence, for stars heavier than 
1.4 MQ, unless something special intervened - for example, a mechanism causing matter 
to be ejected during cooHng until the Chandrasekhar limit is eluded - gravitational collapse 
is predicted. 

No one (and this included Einstein) was very comfortable with this result but it resisted 
all the attempts made to get round it or even to disprove it. White dwarfs as ultimate fates 
of cooling stars were then supplemented by neutron stars. 

Neutrons stars are so dense that their protons and electrons have combined to form neu
trons; these neutrons then have a degeneracy pressure which resists the gravitation of the 
cooling star just as the electrons do in a white dwarf. The same ideas about the maximum 
mass of white dwarfs apply to neutron stars which then also have a maximum mass, this 
varies from about 2 M© to 3 M©, the precise value depending on one's knowledge of the 
nuclear force, or strong interactions, at high densities. 

Stars which are heavy enough^^ are thought not to end up in the graveyard of white 
dwarfs or neutrons stars but instead continue their collapse and form black holes.^^ 

^̂  Apparently it may be possible for a large amount of matter to be shed by stars as they collapse: a star may 
even need a mass M greater than 20 M© in order to be forced to gravitationally collapse. However, there are stars 
known with mass M ranging up to 100 M Q SO we do expect gravitationally collapsed stars to exist. For more 
details cf. Chapter 9 of [Hawking and Ellis, 1973]. 
^^ Black holes, in the sense of dark stars from which light cannot escape, were discussed in Newtonian physics 
by Michell [1784] and Laplace [1799] (cf. Appendix A of [Hawking and Ellis, 1973] for a translation of 
Laplace [1799]). They took Ught to obey a corpuscular theory and computed the size of a star whose escape 
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The attitude to results about gravitational collapse as such as Chandrasekhar's [1931, 
1935] was that they were properties of the unrealistically high degree of symmetry of the 
solutions: collapse was not expected in the real Universe where such symmetry would not 
be found. This was also largely the attitude taken to the much later result of Oppenheimer 
and Snyder [1939]. This was a a paper (in which spherical symmetry was assumed) that 
produced the new result that a star undergoing gravitational collapse cut itself off from 
external observation as it contracted through a certain critical radius - the Schwarzschild 
radius. It contained, too, the facts about time asymptotically slowing to zero for an external 
observer but not for an observer moving with the star: 

The total time of collapse for an observer co-moving with the star is finite ... an external 
observer sees the star asymptotically shrinking to its gravitational radius. 

The Schwarzschild metric plays a central part in understanding gravitational collapse 
and we shall now sketch some of its main properties. 

3.2. The Schwarzschild metric 

Schwarzschild [ 1916a] derived the form of a (spatially) spherically symmetric metric. With 
spherical polar coordinates (r, ^, </>), and time r, it is determined by the Hne element 

ds^ ^ M - ^ ) dt^ +(\- ^y'dr^ + r\de^ + sm^ed<p^). (3.1) 

This metric is meant to represent the empty space-time outside a spherically symmetric 
body of mass m?^ We see at once a singularity at r = 0 and one at r = 2m. However, 
the singularity at r = 0 is genuine ~ for example, the Riemann curvature tensor diverges 
there - but the singularity at r = 2m is only a coordinate singularity and disappears in an 
appropriately chosen coordinate system. Incidentally this is precisely analogous to the two 
singularities we encountered for the Dirac monopole: one at r = 0 and one at z -h r = 0; 
we found that r = 0 was a real singularity but that z + r ~ 0 was only a coordinate 
singularity. 

However, the benign nature of the hypersurface r = 2m was not realised for many 
years and it was usually misleadingly referred to as the "Schwarzschild singularity". This 
special value of r is called the Schwarzschild radius of the mass m. Schwarzschild [1916b] 
himself̂ '̂  went to the trouble of quoting the value for the Sun: it is very small, namely 3 km. 

velocity was greater than that of light. For other details of interest cf. the article by Israel in [Hawking and 
Israel, 1987] and the excellent book for the layman by Thorne [1994]. 
^^ One might think of the Schwarzschild metric as a solution to the one body problem in general relativity; 
unfortunately, things are worse than in Newtonian gravity where the three body problem was so hard to solve 
analytically, in general relativity the two body problem has not (yet!) been solved analytically; this means that 
accurate approximation methods must be used to treat important problems such as binary stars. As regards the 
Newtonian three body problem we should add that it was finally solved analytically by Sundman [1909], cf. 
also Sundman [1907, 1912] and Barrow-Green [1997, p. 187]. Unfortunately, though the Sundman solution is 
a great triumph, his solution is a convergent series whose convergence rate is incredibly slow: apparently some 
10^ terms, with p measuring in the millions, would be needed for practical work. 
^^ Since this is a historical article I just add that this presumably was Schwarzschild's last article as he died of an 
illness while on the Russian front in 1916; he was born in 1876. 
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This smallness led to the conviction that r = 2m was irrelevant in practice because 
such a value of r lay deep down in the interior of any realistic body. Hence, comfort was 
derived from the fact that the Schwarzschild metric was always used to describe the grav
itational field in the empty space outside the star where r was always much bigger than 
the Schwarzschild radius. This was fine if a star never started to collapse but not other
wise. 

The cosmologist Lemaitre did notice in 1933 that r = 2m was not a real singularity 
but this seems to have gone unnoticed or not been appreciated for a long time. In [Lemai
tre, 1933] we find the words 

La singularite du champ de Schwarzschild est done une singularite fictive 

i.e. 

The singularity of the Schwarzschild field is therefore a fictitious singularity 

It is clear, though, that an (r = const, t = const) surface does change its character 
precisely when r passes through the value 2m: For r > 2m such a surface is timelike 
while for r < 2m it is spacelike. This does mean that there is something special about 
the Schwarzschild radius, the question is just what is this something? Penrose was able 
to provide the answer and use it to make a breakthrough in understanding gravitational 
collapse. The point is that, for r < 2m, one can have what Penrose called a trapped surface 
and these we now consider. 

3.3. Penrose and trapped surfaces 

Gravitational collapse still refused to go away and in the early 1960's with the discovery of 
gigantic energy sources dubbed quasars the subject again became topical. It was suggested 
(other more conventional explanations did not seem to fit) that the energy source of a quasar 
came from the gravitational collapse of an immensely massive object of mass lO^M©-
10^MQ. Presumably such a collapse would not be spherically symmetric, for example, one 
would expect there to be nonzero angular momentum. All this increased the need to study 
the possibility of gravitational collapse in general, i.e. without without any assumption of 
a special symmetry, spherical or otherwise. 

Fortunately this is precisely where Penrose's topologically obtained result comes to the 
rescue. Penrose deduced that gravitational collapse to a space-time singularity was in
evitable given certain reasonable conditions, and these conditions did not require any as
sumption about symmetry. 

In [Penrose, 1965] we find the statements 

It will be shown that, after a certain critical condifion has been fulfilled, deviations 
from spherical symmetry cannot prevent space-time singularides from arising The 
argument will be to show that the existence of a trapped surface implies - irrespective 
of symmetry - that singularities develop. 

Special attention has to be given to providing a definition of a singularity which is both 
mathematically and physically reasonable. In brief geodesic completeness is used as the 
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trapped 

r = 0 r = 2m 

Fig. 5. Gravitational collapse and a trapped surface S^. 

basis for the definition of a singularity^^ of the space-time manifold M\ to see the signif
icance of such completeness just consider that if a particle travelled along an incomplete 
timelike geodesic then it could disappear suddenly from A^ in a finite time. 

It is impossible to give a detailed account here of the arguments so we shall only outUne 
them; for a proper account cf. Hawking and Elhs [1973]. 

As the matter constituting the star contracts it passes through its Schwarzschild radius 
r = 2m and after this has happened the matter lies totally within a spacelike sphere S^ 
(cf. Figure 5). This 5^ is what is called a trapped surface; technically it is closed, com
pact, spacelike, two dimensional and has the property that null geodesies which intersect it 
orthogonally converge in the future. 

The space-time manifold M is the future time development of an initial noncompact 
Cauchy hypersurface. 

Figure 5 shows a space-time diagram of the collapse. In perusing the figure the reader 
should bear in mind that one spatial dimension is suppressed and that the circular symmetry 
of the diagram is there only for aesthetic reasons; the whole point being that no symmetry 
is assumed. The initial Cauchy hypersurface is represented by the plane at the bottom of 
the diagram. 

^̂  In relativity, since the metric is Lorentzian, geodesic completeness exists in three varieties: null, timelike and 
spacelike. To be singularity free both null and timelike geodesic completeness are demanded of M.\ spacelike 
completeness is not required because physical motion does not take place along spacelike curves. In addition to 
geodesic completeness one also requires a causality condition and a nonnegative energy condition: The causality 
condition is usually stated as the absence in M. of any closed timelike curves - causes always precede effects. The 
nonnegative energy condition is that, if T^y is the energy momentum tensor, then T^yt^t^ ^ 0 everywhere in 
AA. for all timelike vectors t^ - in the rest frame of such a t^ this becomes the statement that the energy Too ^ 0 
which is just another way of saying that gravity is always attractive. 
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The argument then computes the degree of an appropriate map which shows that null 
geodesic completeness impUes that the future of the trapped surface is compact. However 
this is incompatible with the fact the initial Cauchy hypersurface is noncompact; this con
tradiction forces M to have a singularity. 

Some insight into the importance of a trapped surface can be obtained from a physical 
discussion: Normally if light is emitted radially outwards from all points on the surface S, 
say, of a sphere then it creates an outward moving spherical wave with surface 5'; further
more S^ has a bigger area than S. However, if 5 is a trapped surface then one finds that 5' 
has a smaller area than S; this corresponds to the fact that gravity bends the Ught back and 
stops it escaping from the region inside r — 2m. Hence, as time progresses, S evolves to 
a smaller and smaller surface which eventually becomes a singularity, cf. again. Figure 5. 
The three surface r = 2m is called the (absolute) event horizon of the collapse. 

The use of the term black hole to describe such singularities is due to Wheeler who 
coined it in 1968, cf. Thorne [1994]. The entire present day Universe may have originated 
in a past singularity known as the big bang a possibihty for which there is considerable 
experimental evidence nowadays. This has resulted in the big bang being taken very seri
ously. However, without the use of topological methods to convince one that singularities 
are generic under certain reasonable conditions the big bang would have been much more 
difficult to take seriously. 

A further important paper on singularities was [Hawking and Penrose, 1970]; the general 
situation is discussed at great length and in full detail in [Hawking and Ellis, 1973]. 

To round things off we point out that an important consequence of this work on singular
ities is that the set of solutions to the general relativistic hyperbolic Cauchy problem, which 
are destined to evolve into singularities, form a set of positive measure in an appropriate 
topology. 

Just as topology was becoming a permanent bed fellow of relativity it also began to play 
a role in the Yang-Mills or non-Abelian gauge theories, these theories having moved to 
centre stage in elementary particle theory. This was to be an even more important event for 
topology as it has led to a genuinely two sided interaction between theoretical physics and 
mathematics.-̂ "^ We begin this story in the next section. 

4. Topology and Yang-Mills theory - the latter day explosion 

4.1. The rise of gauge invariance in the 1970's 

There is no doubt that a principal factor in the rise of topology in physics is due to the 
rise to supremacy^^ of gauge theories in physics. Topology entered, in the main, via gauge 
theories: physicists learned that gauge theories had a formulation in terms of fibre bundles; 
they learned too that much useful cohomological data was possessed by these bundles. 

^^ There was also some work in the 1960's using algebraic topology to study singularities of Feynman integrals, 
cf. Hwa and Teplitz [1966], Froissart [1966] and Pham [1967] but this has not continued to any great extent. 
^̂  This, of course, is another story and it is not our task to tell it here. However it is important for the reader to 
be aware that the interest in non-Abelian gauge theories was rekindled almost overnight with the vital proof of 
the renormalisability of non-Abelian gauge theories by 't Hooft [1971] and 't Hooft and Veltman [1972]. This 
led to the resurrection of earlier papers on the subject and to the so called standard model with gauge group 
SU{2) X L^(l) of weak and electromagnetic interactions and to QCD or quantum chromodynamics, with gauge 
group SU(3), the favoured model for the confined quarks believed to be responsible for the strong interactions. 
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4.2. Nielsen, Olesen, Polyakov and 't Hooft 

An early important result of this period - which we may take to be post the papers of 
't Hooft [1971] and 't Hooft and Veltman [1972] - is on magnetic monopoles in non-
Abelian gauge theories. Two independent papers ['t Hooft, 1974] and [Polyakov, 1974] 
produced the first non-Abelian monopole (now referred to as the 't Hooft-Polyakov 
monopole). An earHer paper by Nielsen and Olesen [1973] on magnetic vortices in 
superconductors was an important influence: In ['t Hooft, 1974] the author opens 
with 

The present investigation is inspired by the work of Nielsen et al. [1], who found that 
quantized magnetic flux lines, in a superconductor, behave very much like the Nambu 
string [2]. 

The 't Hooft-Polyakov monopole, hke the Dirac monopole, is a static object and lives 
in M-̂ ; however, unlike the Dirac monopole, it has no singularity at the origin and is regular 
everywhere in R-̂ . Indeed as 't Hooft [1971] says 

Our way for formulating the theory of magnetic monopoles avoids the introduction of 
Dirac's string [3]. 

The magnetic charge g of the monopole is topologically quantised and is inversely pro
portional to q, where q is the electric charge of a heavy gauge boson in the theory. The 
topology enters through the boundary condition at infinity in R-̂ . We shall now attempt to 
elucidate this by supplying some of the details of the mathematical setting. 

4.3. The topology of monopole boundary conditions 

Monopoles are static, finite energy, objects which give the critical points of the energy 
of an appropriate system of fields defined on a three-dimensional Riemannian mani
fold M. In fact the usual choice for M is the noncompact space R^. Analysis on a non-
compact M introduces some technical difficulties but these have not proved insurmount
able. 

The physical system studied consists of a Yang-Mills G-connection A, with curva
ture F, and a Higgs scalar field 0 transforming according to the adjoint representation 
of G. If the Hodge dual with respect to the metric on M is denoted by *, then the energy E 
of the system is given by 

E = ' I { - t r ( F A * F ) - t r ( ^ ^ 0 A * ^ A 0 ) + ^ * ( l 0 l ^ - C ^ ) ^ } , (4.1) 

where dA(t> is the covariant exterior derivative of the Higgs field, tr denotes the trace in 
the Lie algebra 0 of G and \(p\^ = —2tr(0^). The field equations for the critical points 
of this system are difficult to solve explicitly (indeed the 't Hooft-Polyakov monopole is 
constructed numerically) but many solutions are available in what is called the Prasad-
Sommerfield Hmit (cf. Prasad and Sommerfield [1975]) where the scalar potential term 
vanishes. The energy is then 
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= E{A,(I)) = - - / {tr(FA*F)+tr(JA0A*rfA0)} 

= l:{\\Ff + \\dAcl>f} 

U\\FT^dA(t>f±2{F,^dA(P)}. (4.2) 

2 
_ 1 

~ 2 

This shows that the absolute minima of E are attained when the pair (A, 0) satisfy 

F = T^dA(l> (4.3) 

which is the celebrated Bogomolny equation [Bogomolny, 1976]. The expression^^ 

{F,^dA(l>) = - I ir(FAdA(p) (4.4) 

is the absolute minimum and looks like a topological charge. 
Now suppose that M = M? furnished with the Euclidean metric and also set G = SU(2). 

For the energy E to converge and to make the field equation problem well posed we must 
specify boundary conditions at infinity. A standard boundary condition for 0 is 

lim 101 —> (C + 0(r-2)) , (4.5) 

where r is the distance from the origin in M?. The integral (4.4) can now be nonzero and 
it does have a topological interpretation which forces it to take discrete values. More pre
cisely, if k is an integer, then 

(F, * J A 0 ) = k. (4.6) 
47rC 

This integer is the magnetic charge and can be thought of as the Chern class of a U(l) 
bundle over a two sphere which is 5 ^ , the two sphere at infinity; setting C = 1 and using 
Stokes' theorem, we have 

k = ± f tr(FAdA(t>) = ^ [ tr(F0). (4.7) 
4^ JR3 4n Js2 

The condition |0| = 1 on the boundary defines an 5^ inside the Lie algebra su(2) and 
(F0), when evaluated at infinity, becomes the t/(l)-curvature of a bundle over 5 ^ and k 
is its Chern class. Alternatively, one can write k as the winding number, or degree, of a 

^^ Throughout this article the inner product (w, ??) between Lie algebra valued p-forms co and 77 on a Riemannian 
manifold M has the standard definition: i.e. 

{co, rj) = — I tr(co A */;). 
JM 
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map0: 5^-^ S^^^^y giving 

If ^ ^ ^ 
k = / t r ( 0 J 0 A j 0 ) . 

(4.8) 

This boundary integer k is the only topological invariant associated with the monopole 
system; the SU(2) bundle over R^ is topologically trivial since R^ is contractible. 

4.4. Dyons and CP breaking 

In Section 2 we promised to return to the subject of dyons and a topological mechanism 
for CP breaking. This CP breaking requires a non-Abelian monopole since it comes from 
the presence in the action of a multiple of the second Chem class C2(P) given by {e and 0 
are real constants and for convenience we assume that the gauge group is SU{N)) 

^^^^tT(FAF) = -yC2iP). (4.9) 

This has been discussed by Witten [1979] and it is immediate that such a term is CP 
noninvariant. The electric charge of a dyon now involves the 0 parameter: one finds that 
for dyons with magnetic charge g = Inno/e, no e Z, their electric charge q obeys the 
formula 

q = (n- : ^ \ , neZ. (4.10) 

This has the interesting feature that the electric charge of a dyon is not a rational multiple 
of a fundamental electric charge unless the CP violating Chern class coefficient 0 is zero 
(^ = TT is also allowed but may be too large experimentally). In terms of Figure 3 above it 
means that the angle a vanishes when 0 is zero. 

Still further insight into the role played by monopoles in quantum field theory has been 
obtained by combining the electric and monopole charges into a single complex parameter 
^ + ig; we shall discuss this in Section 8. 

4.5. Gauge theories in four dimensions: Instantons 

Topology came even more to the fore in Yang-Mills theories with the publication by 
Belavin et al. [1975] of topologically nontrivial solutions to the Euclidean Yang-Mills 
equations in four dimensions. Such solutions have come to be called instantons?^ 

Of fundamental importance for these solutions to the Euclidean Yang-Mills equations 
is that instantons are at the same time nonperturbative and topological. 

Quite a few early papers on the subject used the less attractive term pseudoparticle instead of instanton but 
luckily this usage was short-lived. 



384 C Nash 

The Euclidean version of a quantum field theory is obtained from the Minkowskian 
version by replacing the Minkowski time thy it. The relation between the two theories is 
supposed to be one of analytic continuation in the Lorentz invariant inner products x^y^; 
allowing these inner products to be complex is the simple way to pass from one theory 
to the other. The existence of such a continuation makes tacit certain assumptions which 
require proof; significant progress in this technical matter was made in 1973-1975, cf. 
Osterwalder and Schrader [1973a, 1973b, 1975], and Streater [1975]. 

The term instanton, though not quite precise, is often generalised to refer to a criti
cal point of finite EucHdean action for any quantum field theory. Such solutions to the 
equations of motion - for this is what these critical points are - are closely related to 
quantum mechanical tunnelling phenomena. This property of instantons quickly attracted 
great interest because tunnelling amplitudes are not calculable perturbatively but require a 
knowledge of the theory for large coupling as well as small. 

This opening of the door into the room of nonperturbative techniques was a noteworthy 
event and we shall see below that topology was a key ingredient to picking the lock on this 
door. 

A good account of this is to be found in [Coleman, 1979] who showed his pleasure at 
the progress made in his opening sentences: 

In the last two years there have been astonishing developments in quantum field the
ory. We have obtained control over problems previously believed to be of insuperable 
difficulty and we have obtained deep (at least to me) insights into the structure of the 
leading candidate for the theory of strong interactions, quantum chromodynamics. 

In [Coleman, 1979] there is also an account of an important paper ['t Hooft, 1976] 
which used instantons to solve an outstanding problem known as "the f/(l) problem", 
thereby imbuing the fledgling instantons with considerable status. We shall now give a 
brief summary of some of the more salient features of an instanton in the Yang-Mills 
case. 

4.6. Profile of an instanton 

Our fife can be made a little easier by choosing a very specific setting: we have a non-
Abelian gauge theory with G a compact simple Lie group and action 

S = S{A) = WFf = - [ tr(F A * F) (4.11) 
JM 

with M a closed four dimensional orientable Riemannian manifold and * the Hodge dual 
with respect to the Riemannian metric on M, Instantons are those A which correspond 
to critical points of S; however, we shall specialise the term here to mean only minima 
ofS. 

First we should obtain the Euler-Lagrange equations of motion, i.e. the equation for 
the critical points. Let A be an arbitrary connection through which passes the family of 
connections 

At = A-\-ta. (4.12) 
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Expanding in the vicinity of r = 0 gives 

S(At) = {F(A), F(A)) + tj^{F{At). F(A,))|,=o + • • • and 

F{At) = F{A) H- t{da -^Ar\a^-aAA) + t'^aAa 

= F(A) + tdAa -\-t^aAa (4.13) 

=^ S{At) = \\F{A)f + t{{dAa, F{A)) + ( F ( A ) , dAa)} + • • • 

= 5(A)+2r(F(A),JA«) + - . . . 

A is a critical point if 

dS(At) 

dt 

That is, if 

= 0. (4.14) 
r=0 

{F(A),dAa)=0 

=^{dlF(A),a)=0 (4.15) 

=^ (i^F(A) = 0, since a is arbitrary. 

However, F(A) = JA + A A A also satisfies the Bianchi identity dAF(A) = 0 and so we 
have the pair of equations 

dAF(A) = 0, d*^F(A) = 0. (4.16) 

This is similar to the condition for a form co to be harmonic, which is 

doj = 0, d'^cD^O. (4.17) 

It should be emphasised, though, that the Yang-Mills equations are not linear; thus they 
really express a kind of nonlinear harmonic condition. 

The most distinguished class of solutions to the Yang-Mills equations d'^F(A) = 0 is 
that consisting of those connections whose curvature is self-dual or anti-self-dual. 

To see how such solutions originate we point out that with respect to our inner product 
on 2-forms J^ has the property that 

cf* = -*(i^* (4.18) 

so that the Yang-Mills equations become 

dA^F(A)=0. (4.19) 

Thus if F = =F*F the Bianchi identities immediately imply that we have a solution to the 
Yang-Mills equations - we have managed to solve a nonlinear second order equation by 
solving a nonlinear first order equation. 
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It is also easy to see that these critical points are all minima of the action 5"; here are the 
details. First we (orthogonally) decompose F into its self-dual and anti-self-dual parts F+ 
and F~, giving 

F = - ( F + *F) -f- -(F - *F) = F+ H- F~ 
9 9 . (4-20) 

where the crossed terms in the norm contribute zero. 
The topological type of the instanton is classified by the second Chern class C2(F) e 

H^(M; Z) of the bundle on which the connection A is defined: Taking G to be the group 
SU{N) and evaluating C2(F) on M we obtain the integer 

C2(F)[M] = ^ l tr(F A F) G Z. (4.21) 

The instanton number, k, is defined to be minus this number so we find that 

\F^f-\\F-
(4.22) 

The inequality (a^ + b^) > |fl̂  — b^\ shows that, for each k, the absolute minima of S are 
attained when 

S = S7T^\k\ (4.23) 

and this corresponds to F^ = 0 or equivalently 

F = =F*/̂  (4.24) 

and we have the celebrated self-dual and anti-self-dual conditions. Changing the orienta
tion of M has the effect of changing the sign of the * operation and so interchanges F~^ 
with F~. 

Up to now, although we have not mentioned it, for algebraic convenience we have set the 
coupling constant of the theory equal to unity. But to understand anything nonperturbative 
the coupling must be present so we now temporarily cease this practice. Denoting the 
coupling constant by g (the context should prevent any confusion with magnetic charge) 
the action S is given by 

S ^ S(A) = \\\Ff = - \ [ tr(F A * F). (4.25) 

Hence if A is an instanton then we immediately have 

SiA) = ^ ^ , keZ. (4.26) 
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Finally the corresponding quantum mechanical amplitude is exp[—5] so that we have 

exp[-5(A)] = txp[-&7t^\k\/g^] (4.27) 

which we see at once is an inverse power series in g^\ moreover, topology is uppermost 
for we note that for this inverse power series to exist the instanton number k must be 
nonzero. 

4.7. The mathematicians take a strong interest 

The pace of instanton research increased towards the end of the 1970's due in part to a keen 
interest being taken in the problems by some highly able and gifted mathematicians. As 
we shall see below this attack on the problems by two distinct groups was to prove highly 
beneficial to both physics and mathematics. In fact some particularly choice fruits of these 
labours fell into the garden of the mathematicians. 

Thus far we have stressed the topological nature of the connections of Yang-Mills the
ory: the relevant mathematical structure is a fibre bundle and together with this comes 
cohomological characteristic class data giving discrete numerical invariants such as the in
stanton number k. However, for instantons, there remains a more prosaic object to study 
namely the nonlinear partial differential equation for the instanton A itself, i.e. the self-
duality equation 

F = ^F (4.28) 

or, more explicitly, 

= \e^.va^{^^A''^ - a^A^" + i^r^^A^^A^^). (4.29) 

A key change of viewpoint on the self-duahty equation changed the focus away from dif
ferential equations; this was the breakthrough made by Ward [1977]. 

Ward showed that the solution of the self-duality partial differential equation was equiv
alent to the construction of an appropriate vector bundle. His paper [1977] gives a brief 
summary at the beginning 

In this note we describe briefly how the information of self-dual gauge fields may be 
"coded" into the structure of certain complex vector bundles, and how the information 
may be extracted, yielding a procedure by which (at least in principle) all self-dual 
solutions of the Yang-Mills equations may be generated. The construction arose as part 
of the programme of twistor theory [3]; it is the Yang-Mills analogue of Penrose's 
"nonlinear graviton" construction [4], which relates to self-dual solutions of Einstein's 
vacuum equations. 

This discarding of the differential equation and its encoding into the transition functions 
of certain vector bundles imm.ediately made the problem of more interest and accessibility 
to mathematicians. Atiyah and Ward [1977] showed how the problem was equivalent to one 
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in algebraic geometry; there then followed a complete solution to the problem for M = S"^ 
by Atiyah, Drinfeld, Hitchin and Manin [1978], the situation for other four manifolds is 
treated in [Atiyah, Hitchin and Singer, 1978]. 

Atiyah, who was to become a key figure in many subsequent developments of joint 
interest to mathematicians and physicists describes his introduction to Yang-Mills theories 
as follows (taken from the preface to Atiyah [1979]) 

My acquaintance with the geometry of Yang-Mills equations arose from lectures given 
in Oxford in Autumn 1976 by I.M. Singer, and I am very grateful to him for arousing 
my interest in this aspect of theoretical physics. 

It was not long before a large body of both mathematicians and physicists were working 
on a large selection of problems related in some way to Yang-Mills theories. The next 
breakthrough was in mathematics rather than in physics and we turn to this in the section 
that follows. 

5. The Yang-Mills equations and four manifold theory 

5.1. Donaldson'swork 

In the 1980's interest in instantons continued strongly but there was a most striking result 
proved by Donaldson [1983] which used the Yang-Mills instantons to make a fundamental 
advance in the topology of four manifolds. 

Donaldson's result concerned simply connected compact closed four manifolds M. We 
shall now give a short account of some of the result's main features so that the reader may 
be better able to appreciate its significance. 

In topology one distinguishes three types of manifold M: topological, piecewise-hnear 
and differentiable (or smooth) which we can denote when necessary by MTOP, ^ P L and 
^DIFF, respectively. There are topological obstacles to the existence of PL and DIFF struc
tures on a given topological manifold M. The nature of these obstacles is quite well un
derstood in dimension 5 and higher but, in dimension 4, the situation is quite different and 
much more difficult to comprehend. It is for this dimension that Yang-Mills theories and 
Donaldson's work have made such an important contribution. 

On the subject of the importance of Yang-Mills theories for obtaining these results Don
aldson and Kronheimer [1990] (p. 27) have said the following in favour of Yang-Mills 
theory. 

These geometrical techniques will then be applied to obtain the differential-topological 
results mentioned above. It is precisely this departure from standard techniques which 
has led to the new results, and at present there is no way known to produce results such 
as these which does not rely on Yang-Mills theory. 

5.2. Donaldson and simply connected four manifolds 

We consider here compact closed four manifolds M. For a simply connected four man
ifold M, H\{M\ Z) and H^iM; Z) vanish and the nontrivial homological information is 
concentrated in the middle dimension in H2{M;Z). A central object then is the intersec
tion form defined by 
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q(a, ^) = (a U ̂ )[M], a, fi e H2(M; Z) (5.1) 

with U denoting cup product so that (a U p)[M] denotes the integer obtained by eval
uating a U )6 on the generating cycle [M] of HA{M\ Z ) on M . Poincare duahty impHes 
that the intersection form is always nondegenemte over Z and so has det^ = =F1 - <7 is 
then called unimodular. Also we refer to ^, as even if all its diagonal entries are even, 
and as odd otherwise. A very powerful result of Freedman [1982] can now be called on 
- the intersection form q very nearly determines the homeomorphism class of a simply 
connected M, and actually only fails to do so in the odd case where there are still just two 
possibilities. Further every unimodular quadratic form occurs as the intersection form of 
some manifold. 

The relevant theorem is 

THEOREM (Freedman [1982]). A simply connected 4-manifold M with even intersection 
form q belongs to a unique homeomorphism class, while ifq is odd there are precisely two 
nonhomeomorphic M with q as their intersection form. 

An illustration of the impressive nature of Freedman's work is readily available. Rec
ollect that the Poincare conjecture in four dimensions is the statement that any homotopy 
4-sphere, S^^ say, is actually homeomorphic to the standard sphere S^. Now S^ has trivial 
cohomology in two dimensions so its intersection form q is the zero quadratic form which 
we write as ^ = 0. But 5"/̂ , having the same homotopy type as S^, has the same coho
mology as S^. So any Sf^ also has intersection form ^ = 0. But Freedman's result says 
that for a simply connected M with even q there is only one homeomorphism class for M, 
therefore Sf^ homeomorphic to S^ and we have established the conjecture. Incidentally this 
means that the Poincare conjecture has now been proved for all n except n = 3 - the case 
originally proposed by Poincare. 

Now we come to Donaldson's work which concerns smoothability of four manifolds; 
one should also note that, when ^ is a definite quadratic form, a choice of orientation can 
always render q positive definite. Then we have the following theorem 

THEOREM (Donaldson [1983]). A simply connected, smooth 4-manifold, with positive def
inite intersection form q has the property that q is always diagonalisable over the integers 
toq = diag(l , . . . , 1). 

Immediately one can go on to deduce that no simply connected, 4-manifold for which 
q is even and positive definite can be smoothed! For example, the Cartan matrix for the 
exceptional Lie algebra e^ is given by 

^ 8 = 

(2 
- 1 
0 
0 
0 
0 
0 

V 0 

- 1 
2 

- 1 
0 
0 
0 
0 
0 

0 
- 1 
2 

- 1 
0 
0 
0 
0 

0 
0 

- 1 
2 

- 1 
0 
0 
0 

0 
0 
0 

- 1 
2 

- 1 
0 

- 1 

0 
0 
0 
0 

- 1 
2 

- 1 
0 

0 
0 
0 
0 
0 

- 1 
2 
0 

° \ 
0 
0 
0 

- 1 
0 
0 
2 / 

(5.2) 
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Freedman's result guarantees that there is a manifold M with intersection form q = 
Es^Es. However, Donaldson's theorem forbids such a manifold^^ from existing smoothly. 
Before Donaldson's work surgery techniques had been extensively used to try to construct 
smoothly the manifold with intersection form Eg 0 Eg. We can now see that these tech
niques were destined to fail. 

In fact, in contrast to Freedman's theorem, which allows all unimodular quadratic forms 
to occur as the intersection form of some topological manifold, Donaldson's theorem says 
that in the positive definite, smooth, case only one quadratic form is allowed, namely the 
identity / . 

One of the most striking aspects of Donaldson's work is that his proof uses the Yang-
Mills equations. We can only outline what is involved here, for more details cf. Donaldson 
and Kronheimer [1990], Freed and Uhlenbeck [1984] and Nash [1991]. 

In brief then let A be a connection on a principal 5/7(2)-bundle over a simply connected 
4-manifold M with positive definite intersection form. If S is the usual Euclidean Yang-
Mills action 5 of (4.11) one has 

S=\\Ff = - f t r (FA*F) . (5.3) 
JM 

Now given one instanton A which minimises S one can perturb about A in an attempt to 
find more instantons. When this is done the space of all instantons can be fitted together 
to form a global moduli space of finite dimension. For the instanton with k = I which 
provides the absolute minimum of S, this moduH space M i, say, is a noncompact space of 
dimension 5, with singularities. 

We can now summarise the logic that is used to prove Donaldson's theorem: there are 
very strong relationships between M and the moduli space Mi; for example, let q be 
regarded as an n x n matrix with precisely p unit eigenvalues (clearly p ^ n and Don
aldson's theorem is just the statement that p = n), then M\ has precisely p singularities 
which look hke cones on the space CP^. These combine to produce the result that the 
4-manifold M has the same topological signature Sign(M) as p copies of CP^', now p 
copies of CP^ have signature a —b where a of the CP^'s are oriented in the usual fashion 
and b are given the opposite orientation. Thus we have 

Sign {M)=a- b. (5.4) 

Now the definition of Sign (M) is that it is the signature cr(^) of the intersection form q 
of M. But since, by assumption, q is positive definite n x n then a{q) = n = Sign (M). 
So we can write 

n = a — b. (5.5) 

^^ The reader may wonder why we did not discuss the four manifold with the simpler intersection form q = E^. 
This manifold of course exists. It is not smoothable but this fact is due to a much older result of Rohlin [1952] con
cerning smoothability and the signature of ^. Rohlin's theorem only provides a necessary condition for smootha-
bility, this is that the signature of an even q must be divisible by 16. The lack of sufficiency of this condition is 
shown by the example of ^ = £§ 0 Eg since one can verify that the signature of ^ in this case is divisible by 16. 
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However, a -i-b = p and /? ^ n so we can assemble this information in the form 

n = a — b, p = a -\-b ^n, (5.6) 

but one always has a-^b^a — b so now we have 

n ^ p ^n =^ p =^ n (5.7) 

and we have obtained Donaldson's theorem. 

6. Physics and knots revisited - the Jones polynomial 

6.1. Three manifolds and Floer, Jones and Witten 

In Section 1 we discussed knots in our material on the nineteenth century. It is now time to 
return to this subject. 

Jones [1985] made a great step forward in knot theory by introducing a new polynomial 
invariant of knots (and Unks), now known as the Jones polynomial and denoted by Vi (t), 
where L denotes the knot or link and Ms a real variable. Knot invariants of this kind had 
proved hard to find: the original one was that of Alexander [1928], denoted by Aiit). 

The Jones polynomial originates in certain finite dimensional von Neumann algebras 
which Jones denotes by An. A point of physical interest here is that, as Jones observed 
in his paper, D. Evans pointed out that some representations of these A^'s had already 
been constructed in the physics literature in statistical mechanics, the relevant reference 
(which Jones gives) being [Lieb and Temperley, 1971]. The statistical mechanics concerns 
the Potts and ice-type models, cf. Baxter [1982]. This leads one to speculate that the com
binatorial structure of some models in statistical mechanics has a topological origin; this 
does seem to be borne out by subsequent work. 

The Jones polynomial proved powerful enough to decide many of the longstanding Tait 
conjectures on knots which we referred to in Section 1. The next event of joint topological 
and physical interest was a result by Witten [1989a, 1989b] which gave a completely new 
formulation (and generalisation) of the Jones polynomial in terms of a certain kind of 
quantum field theory, nowadays known as a topological quantum field theory. 

A vital ingredient in this whole story is the work of Floer [1988a, 1988b] on a new 
homology invariant of three manifolds constructed from considerations of gauge theory 
and instantons. We shall meet this work again in Section 8. We mention it now because 
of its influence on subsequent work. For the moment we just need to inform the reader 
that Floer considers the critical point behaviour of the function / where / depends on an 
SU(2) connection A: / is simply the Chern-Simons function obtained by integrating the 
Chern-Simons secondary characteristic class over a closed three manifold M. If ^ denotes 
the space of all connections A, we have 

f:A—>R, A\—-^f(A), with 

I f f 2 ^ ^'-'^ 
/ (A) = ^ / tr A A ^A + -A A A A A 

871^ 7M V 3 



392 C Nash 

Then from a very clever study of the Morse theory of this function / , whose domain is the 
infinite dimensional space A, Floer obtains new homology groups HF{M) known as Floer 
homology groups associated to the three manifold M. 

In 1987 Atiyah [1988] speculated that there was a relation between Floer's work and the 
Jones polynomial: Towards the end of this paper we find the following 

Finally let me list a few of the major problems that are still outstanding in the area 
More speculatively, I would like to end with 4) Find a connection with the link 

invariants of Vaughan Jones [11]. 
As circumstantial evidence that this is reasonable I will list some properties shared 

by Floer homology and the Jones polynomial, 
(i) both are subtle 3-dimensional invariants, 

(ii) they are sensitive to orientation of 3-space (unlike the Alexander polynomial), 
(iii) they depend on Lie groups: SUi2) in the first instance but capable of generali-

safion, 
(iv) there are 2-dimensional schemes for compufing these 3-dimensional invariants, 
(v) whereas the variable in the Alexander polynomial corresponds to 7ri(5^), the 

variable in the Jones polynomial appears to be related to 713(5 ), the origin of 
"instanton numbers", 

(vi) both have deep connecfions with physics, specifically quantum field theory (and 
statistical mechanics). 

In 1988 Witten [1989a] rose to this challenge and found the relation that Atiyah had 
suspected existed. The content of Witten [1989b] is described by its author with a certain 
amount of understatement. He says 

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah proposed 
two problems for quantum field theorists. The first problem was to give a physical 
interpretation for Donaldson theory. The second problem was to find an intrinsically 
three dimensional definition of the Jones polynomial of knot theory. I would like to 
give a flavour of these two problems. 

Our next task is to have a look at the methods that Witten used. 

6.2. Topological quantum field theories 

A topological quantum field theory (also called simply a topological field theory) is one 
which, at first sight, may seem trivial physically: it has an action with no metric depen
dence. The absence of a metric means that there are no distance measurements or forces 
and so no conventional dynamics. The Hamiltonian H of the theory has only zero eigen-
states and the Hilbert space of the theory is usually finite dimensional. The theory can, 
however, be nontrivial: its nontriviality is reflected in the existence of tunnelling between 
vacua. 

The particular action chosen by Witten for obtaining the Jones polynomial was the well 
known Chern-Simons action S given by 

S = - ^ I tr( A A JA 4- -A A A A A I, k e Z, (6.2) 



Topology and physics - a historical essay 393 

where A is an SU{2) connection or gauge field and M is a closed, compact three dimen
sional manifold. The partition function for this quantum field theory is Z(M) where 

= / Z{M) = / VA exp 
iî  

47Tg^ f" 
JM 

A A J A + - A A A A A (6.3) 

This partition function itself is an invariant - the Witten invariant - of the three man
ifold M; however, at present, we want to study knots: knots enter in the following way. 
Consider a closed curve C embedded in M so as to form a knot, AT, say. Now ones takes the 
connection A, parallel transports it around C and constructs the holonomy operator PT{C) 
as described above in the discussion of the Aharonov-Bohm effect in Section 2. This time 
we have a non-Abelian connection and to obtain a gauge invariant operator we must take 
the trace of PT{C) giving what is called a Wilson line; we denote this by W(R, C) where 

W{R,C) = t r P e x p i (6.4) 

and R denotes the particular representation carried by A. There is a natural correlation 
function associated with this knot namely 

{WiR,C)) '—fvAWiR,C) 
Z{M) 

X exp A J A + - A A A A A (6.5) 

and Witten [1989a, 1989b] shows that this determines the Jones polynomial VA: (0 of the 
knot. 

Further if one has not one curve C but a number of them, say C i , . . . , Cp then one has 
a p component link L, say, whose Jones polynomial Vi{t) is determined by a multiple 
correlation function of p Wilson lines given by 

{WiRuCi). •. W{Rp, Cp)) - — ^ / VAW{RxX\) • • • W{Rp, Cp 

L ^^8^ JM \ 
X exp AA<iA + - A A A A A (6.6) 

A nice thing that happens if we step backwards slightly to the Ahelian case is that one 
can recover the Gauss Unking number: In the AbeHan case A is just a L^(l) connection and 
5(A) becomes only quadratic in A giving (we have set g = 1) 

S{A) 
ik 

/ tr(AA<iA), 
47r JM 

(6.7) 

so that 

{WiRu Ci) •. • W{Rp, Cp)) = ^ ^ j VAWiRu Q ) • • • W(Rp, Cp) 

ik r 

47r JM 
X exp tr(A A dA) (6.8) 
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The quadratic action, together with the exponential dependence on A of a Wilson line, 
allows the entire integrand to be written as a Gaussian after completing the square. The 
calculation of the functional integral rests just on the calculation of a Green's function 
which, for M = S^ (to which we now speciahse), is an elementary computation. The 
result is that 

{W(nuCi)--'W(npXp)) 

exp 
^^ itli Jci Jc„. \x-y\\ 

(6.9) 

with x' and yj local coordinates on the knots C/ and C„,. 
We easily recognise the basic integral 

f^ f dx' f d y J ^ (6.10) 
47r Jc, Jc,n \^-yV 

in (6.9) as the Unking number of Gauss that we met in Section 1; and we note that we have 
met it again in a physical context. Incidentally for another physical context in which the 
Hnking number appears cf. Wilczek and Zee [1983]; in this paper a connection is made 
between the spin-statistics properties of particles and topology.^^ 

In the non-Abehan case we can also obtain a quadratic functional integral by studying 
the limit of small coupling g, or, completely equivalently, the limit of large k. For any 
topological field theory such a limit has considerable significance. When this limit is eval
uated for this theory one obtains another differential topological invariant: the Ray-Singer 
torsion of the connection A on M, cf. Witten [1989a, 1989b]. 

Numerous topological field theories are now studied in the current literature, we shall 
meet another one in Section 7; indeed the whole notion of a topological quantum field 
theory has been axiomatised in [Atiyah, 1989]. 

Finally we point out some of the new and more general features of the Witten approach 
to the Jones polynomial: Witten's definition is intrinsically three dimensional and not de
pendent on any two-dimensional arguments for its validation. The group SU(2) of the con
nection A is not obligatory - it can be replaced by another Lie group G, say G = SU{N); 
for the appropriate representation of SU(N) this gives rise to a two variable generaHsation 
of the Jones polynomial cf. Freyd et al. [1985]. There is an immediate generalisation to 
knots in any three manifold M rather than the classical case of knots in S^ (i.e. compacti-
fied M^). Invariants for three manifolds themselves immediately arise and so the theory is 
not really just one of knots (i.e. embeddings). 

7. Yang-Mills and four manifolds once more 

7.1. Donaldson again: polynomial invariants for four manifolds 

In the 1990's more progress was made in four dimensions with another result of Donald
son [1990]; actually some of these results were announced considerably earlier in 1986 by 

•^^ On this latter topic there is more work. For some examples cf. Balachandran et al. [1993], Berry and Rob-
bins [1997], Finkelstein and Rubinstein [1968], Mickelsson [1984], Tscheuschner [1989], and references therein. 
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Donaldson in his Field's medal address (cf. Donaldson [1987]). 
In Section 5 we described Donaldson's use of the moduH space Mi to derive smooth-

abihty results about 4-manifolds. The space Mi only contains instantons with instanton 
number k equal to one. In addition to this, by using all values of k there exist moduli spaces 
Mk, /: = 1, 2 , . . . , for instantons of any instanton number k. Donaldson's new invariants 
use all of the Mk and in the process one obtains powerful differential topological invariants 
of simply connected 4-manifolds. Donaldson [1990] begins with 

The traditional methods of geometric topology have not produced a clear picture of the 
classification of smooth 4-manifolds. This gap has been partially bridged by methods 
using Yang-Mills theory or gauge theory. Riemannian manifolds carry with them an 
array of moduli spaces - finite dimensional spaces of connections cut out by the first 
order Yang-Mills equations. These equations depend on the Riemannian geometry of 
the 4-manifold, but at the level of homology we find properties of the moduli spaces 
which do not change when the metric is changed continuously. Any two metrics can 
be joined by a path, so by default, these properties depend only on the differential 
topology of the 4-manifold, and furnish a mine of potential new differential topological 
invariants. 

The "mine of potential new differential topological invariants", as Donaldson modestly 
puts it, is a reference to his new polynomial invariants. He goes on, in the same paper, to 
say 

Here we use infinite families of moduli spaces to define infinite numbers of invariants 
for simply connected manifolds with Z? J odd-̂ ^ and greater than 1. These invariants are 
distinguished elements in the ring: 

5*(//2(X)) 

of polynomials on the cohomology of the underlying 4-manifold X. 
Equivalently, they can be viewed as symmetric multi-linear functions: 

q : H2iX; Z) x • • • x //2(X; Z) —> Z 

. . . Certainly one of the most striking facts is that we get infinitely many invariants 
for a single manifold. Discovering to what extent these are independent (i.e. whether 
there are strong universal relations between them) appears to be an interesting target for 
future reseai'ch. 

We just want to mention some results that have been obtained with the Donaldson in
variants which serve to show that they are nontrivial and important. To be able to do this 
we must introduce some notation. 

Let M be a smooth, simply connected, orientable Riemannian four manifold without 
boundary and A be an SU{2) connection which is anti-self-dual^^ so that 

F=:-^F. (7.1) 

Then the dimension of the moduli space Mk^^ the integer 

dim Mk = 8/: - 3(1 -f Z?+). (7.2) 

^^ The number b2 is defined to be the rank of the posiUve part of the intersecdon form. 
^̂  We take anti-self-dual connections rather than self-dual connections so as to follow Donaldson's sign conven-
Uons. 
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A Donaldson invariant qd{M) is a symmetric integer polynomial of degreed in the 
2-homology //2(M; Z) of M 

qdJM): H2{M) x-yX HiJM) —^ Z. • (7.3) 

^ factors 

Given a certain map m (cf. Donaldson [1990, 1996] or Nash [1991]) 

m : //2(M) -^ //^(A^fc) (7.4) 

we use m to define by qd(M) by using de Rham cohomology and differential forms. Setting 
d = dim A1)t/2 we define qd(M) by 

qdiM): H2(M) x • • • x H2(M) —^ Z, 
^ (7.5) 

ai X " • X ad I—> / m{a\) A • • • A m(ad), 
JMk 

where M.k denotes a compactification of the moduli space. We see that the qd{M) are sym
metric integer valued polynomials of degree d in H'^{M), i.e. qd(M) € Sym^(H2(M)) c 
5*(//(M)); also, since J = dimMk/2 = (Sk - 3(1 + Z7+))/2, we now understand why 
Donaldson required Z?̂  to be odd. 

Now the Donaldson invariants are, a priori, not very easy to calculate since they require 
detailed knowledge of the instanton moduli space. However, if M is a complex algebraic 
surface, a positivity argument shows that 

qd(M)y^O, for d^ do (7.6) 

with do some integer - in other words the qd (M) are all nonzero when d is large enough. 
Conversely, if M can be written as the connected sum 

M = Mi#M2, (7.7) 

where M\ and M2 both have ^^ > 0 then 

q^(M)=0, for all J. (7.8) 

The qd{M) are differential topological invariants rather than topological invariants; this 
means that they have the potential to distinguish homeomorphic manifolds which have dis
tinct diffeomorphic structures. An example where the qd(M) are used to show that two 
homeomorphic manifolds are not diffeomorphic can be found in [Ebeling, 1990]. A possi
ble a physical context for this result can be found in [Nash, 1992], cf. too, [Libgober and 
Wood, 1982] for some earlier work related to [Ebeling, 1990] which was done before the 
qd(M) were defined. 

The qd(M) can also be obtained from a topological quantum field theory as we shall 
now see below. 
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7.2. Another topological field theory 

In 1988 Witten showed how to obtain the qd{M) as correlation functions in a BRST super-
symmetric topological field theory. We shall only give a brief statement of facts to give the 
reader some idea of what sort of action and physical fields are involved; for a full account, 
cf. Witten [1988]. 

The action S for the theory is given by 

S = j d'x^trl^-F^.F'^' + \F;,F''" + ̂ -(PD^D^ + iD^f.x'''' -irjD^f'^ 

- ^<A[XMV, X""] - ^^[f^, f""] - '^^[1, ri] - i [ 0 , X]A, (7.9) 

where F^y is the curvature of a connection A^ and (0, A,, ?7, i/̂ ,̂ X/xy) are a collection 
of fields introduced in order to construct the right supersymmetric theory; 0 and A are 
both spinless while the multiplet (T/^^, X/XV) contains the components of a 0-form, a 1-form 
and a self-dual 2-form, respectively. The significance of this choice of multiplet is that 
the anti-instanton version of the instanton deformation complex used to calculate dimMk 
contains precisely these fields. Even though S contains a metric its correlation functions 
are independent of the metric g so that S can still be regarded as a topological field theory. 
This can be shown to follow from the fact that both S and its associated energy momentum 
tensor T ~ (SS/8g) can be written as BRST commutators S = {Q,V},T = {Q, V'} for 
suitable V and V' - cf. Witten [1988]. 

With this theory it is possible to show that the correlation functions are independent of 
the gauge coupling and hence we can evaluate them in a small coupling limit. In this limit 
the functional integrals are dominated by the classical minima of S, which for A^ are just 
the instantons 

F^v = -F;,. (7.10) 

We also need 0 and X to vanish for irreducible connections. If we expand all the fields 
around the minima up to quadratic terms and do the resulting Gaussian integrals, the cor
relation functions may be formally evaluated. Let us consider a correlation function 

/ 
{P) = j VTtxp[-S]P(T), (7.11) 

where !F denotes the collection of fields present in S and P ( ^ ) is a polynomial in the 
fields. Now S has been constructed so that the zero modes in the expansion about the 
minima are the tangents to the moduli space Mk', thus, if the VT integration is expressed 
as an integral over modes, all the nonzero modes may be integrated out first leaving di finite 
dimensional integration over dim Aik- The Gaussian integration over the nonzero modes is 
a Boson-Fermion ratio of determinants, a ratio which supersymmetry constrains to be =f 1 
since Bosonic and Fermionic eigenvalues are equal in pairs. This amounts to expressing 
(P) as 

{P) = f Pn. (7.12) 
JMk 
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where Pn is an n-form over Mk and n = dim A ;̂̂ . If the original polynomial P{T) is 
chosen in the correct way then calculation of (P) reproduces evaluation of the Donaldson 
polynomials. 

The next breakthrough in the topology of four manifolds came from physics and was due 
to Seiberg and Witten [1994a] (cf. Seiberg and Witten [1989a, 1989b] and Witten [1994]) 
and it is the next topic to which we turn. 

7.3. Physics again: Seiberg-Witten theory and four manifolds 

In [Donaldson, 1996] we find the most upbeat introduction to a review article on the 
Seiberg-Witten equations; it gives some idea of the excitement and the power of the meth
ods associated with this latest breakthrough. 

Since 1982 the use of gauge theory, in the shape of the Yang-Mills instanton equations, 
has permeated research in 4-manifold topology. At first this use of differential geometry 
and differential equations had an unexpected and unorthodox flavour, but over the years 
the ideas have become more famihar; a body of techniques has built up through the 
efforts of many mathematicians, producing results which have uncovered some of the 
mysteries of 4-manifold theory, and leading to substantial internal conundrums within 
the field itself. In the last three months of 1994 a remarkable thing happened: this re
search was turned on its head by the introduction of a new kind of differential-geometric 
equation by Seiberg and Witten: in the space of a few weeks long-standing problems 
were solved, new and unexpected results were found, along with simpler new proofs of 
existing ones, and new vistas for research opened up. This article is a report on some 
of these developments, which are due to various mathematicians, notably Kronheimer, 
Mrowka, Morgan, Stern and Taubes, building on the seminal work of Seiberg [S] and 
Seiberg and Witten [SW]. 

We shall say a little about both the physics and the mathematics relating to the Seiberg-
Witten equations; however, we shall make the remarks about the mathematics here but 
leave the remarks about the physics until Section 9 where they fit in more naturally. 

Seiberg and Witten's work allows one to produce another physical theory, in addition 
to [Witten, 1988], with which to compute Donaldson invariants. In [Witten, 1988], as 
just described above, Donaldson theory is obtained from a twisted N = 2 supersymmetric 
Yang-Mills theory. Seiberg and Witten produce a duality which amounts to an equivalence 
between the strong coupling Hmit of this N = 2 theory and the weak coupling Hmit of a 
theory of Abelian monopoles. This latter theory is much easier to compute with leading (on 
the mathematical side) to the advances described in [Donaldson, 1996] and [Witten, 1994]. 

If we choose an oriented, compact, closed, Riemannian manifold M then the data we 
need for the Seiberg-Witten equations are a connection A on a fine bundle L over M and 
a "local spinor" field ij/. The Seiberg-Witten equations are then 

91^=0 , F^ = --ifrxlf, (7.13) 

where S is the Dirac operator and F is made from the gamma matrices Pi according to P = 
j[Pi, Pj]dx^ A dxK We call -^ a local spinor because global spinors may not exist on M; 
however, orientability guarantees that a spin^ structure does exist and \j/ is the appropriate 
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section for this spin^, structure. We note that A is just a i7(l) AbeHan connection and so 
F = dA, with F~^ just being the self-dual part of F. 

We shall now have a brief look at one example of a new result using the Seiberg-Witten 
equations. The equations clearly provide the absolute minima for the action 

JM I 
|gv^|2 + ^ |F+ + ^ iArv^pj . (7.14) 

If we use a Weitzenbock formula to relate the Laplacian V^ V^ to S* 9 plus curvature terms 
we find that S satisfies 

JM I 
m\^ + \ + 1 - i^i 

IVAIAI' + ^\F\^ + ^m^ + ^^IV^I^l + ^^cj(L), (7.15) 

where R is the scalar curvature of M. The action now looks like one for monopoles - indeed 
in [Witten, 1994], Witten refers to (7.13) as "the monopole equations". But now suppose 
that R is positive and that the pair (A, i/r) is a solution to the Seiberg-Witten equations: 
then the LHS is zero and all the integrands on the RHS are positive so the solution must 
obey T//̂  = 0 and F'^ = 0. It turns out that if M has Z?̂  > 1 then a perturbation of the 
metric can preserve the positivity of R but change F+ = 0 to be plain F = 0 rendering 
the connection A flat. Hence, in these circumstances, the solution (A, ij/) is the trivial one. 
This means that we have a new kind of vanishing theorem in four dimensions. 

THEOREM (Witten [1994]). No four manifold with b2 > I and nontrivial Seiberg-Witten 
invariants admits a metric of positive scalar curvature. 

We referred just now to the Seiberg-Witten invariants and unfortunately we cannot de
fine them here. However, we do want to say that they are rational numbers ai and there are 
formulae relating the Donaldson polynomial invariants qd to the ai. 

Many more new results have been found involving, for example, symplectic and Kahler 
manifolds, cf. Donaldson [1996]; the story, however, is clearly not at all finished. 

8. Dynamics and topology since Poincare 

8.1. Dynamical systems and Morse theoiy 

In this section we want to return to Poincare and consider that part of his topological legacy 
which sprang from his work on dynamics. We shall only be able to look at two areas and 
these are the theory of dynamical systems and Morse theory. This is, of necessity, somewhat 
selective, nevertheless these two subjects do represent mainstream developments which de-
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scend directly from Poincare's work on dynamics and topology.-^^ It should also be borne 
in mind that there is a large overlap between the two subjects. 

It is still true that the n-body problem attracts much attention from mathematicians, 
including those using topological techniques. A few references of interest here are 
Smale [1970a, 1970b] and Saari and Xia [1996]. 

8.2. Dynamical systems 

Poincare's pioneering work on celestial mechanics prepared the way for the present day 
subject of dynamical systems with Birkhoff as the actual founder. In this subject one studies 
an immense diversity of sophisticated mathematical problems usually no longer connected 
with celestial or Newtonian mechanics. 

A very rough idea of what is involved goes as follows: Recall first that the celestial 
mechanics of n bodies has a motion that is described by a set of differential equations 
together with their initial data. One then varies the initial data and asks how the motion 
changes. 

Now the modern mathematical setting is to view the orbits of the n bodies as integral 
curves for their associated differential equations. Then one regards the qualitative study of 
the orbits as being a study of the global geometry of the space of integral curves as their 
initial conditions vary smoothly. Integral curves y{t) are associated with vector fields V(t) 
via the differential equation 

^ = v,w,)). 

Hence one is now studying the vastly more general subject of the global geometry of the 
space of flows of a vector field V on a manifold M. 

Two notions play a distinguished part in the theory of dynamical systems: closed integral 
curves and singular points. It is natural to regard two flows on M as equivalent if there is 
a homeomorphism of M which takes one flow into the other; one can also insist that this 
homeomorphism is smooth, i.e. a diffeomorphism. Finally an equivalence class of flows in 
the homeomorphic sense is a topological dynamical system, and one in the diffeomorphic 
sense is a smooth, or differentiable, dynamical system. 

As we explained in Section 1 Birkhoff proved Poincare's geometric theorem in 1913; a 
subsequent piece of work of great importance and influence was Birkhoff's proof of what 
is called his ergodic theorem in 1931, cf. Birkhoff [1931]. 

The subsequent blossoming of ergodic theory can be dated from this time. Ergodic the
ory originates largely in nineteenth century studies in the kinetic theory of gases. However 
it has now been axiomatised, expanded, refined and reformulated so that it has links with 
many parts of mathematics as well as retaining some with physics. 

Some dynamical systems exhibit ergodic behaviour, a notable class of examples being 
provided by geodesic flow on surfaces of constant negative curvature. This involves too 
the study of the flows by a discrete encoding known as symbolic dynamics, use of one 
dimensional interval maps cf. Bedford et al. [1991]. Classical and quantum chaos, and the 
distinction between the two, are also studied in this context. 

^^ Some more detailed historical material, of relevance here, is that of [Dahan-Dalmedico, 1994, 1996]. 
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A vast body of the theory of dynamical systems concerns Hamiltonian systems. These 
of course have their origin in ordinary dynamics but exist now in a much wider context. To 
have a Hamiltonian system M must be even dimensional, possess a Hamiltonian function 

/ / : M —> R (8.2) 

and have a closed nondegenerate symplectic form 2-form CD appropriately related to H. 
The perturbation theory of Hamiltonian systems underwent an enormous development in 
the 1950's and 1960's with the work particularly of Kolmogorov, Arnold and Moser and 
the creation of what is known as KAM theory (cf. Broer et al. [1995]). 

Gradient dynamical systems were used by Thom [1969,1971,1972] in his work on what 
is now called Catastrophe theory. Thom took the system 

^ = g r a d V ( K ( 0 ) , (8.3) 

where V is a potential function. Thom classified the possible critical points of V into 
seven types known as the seven elementary catastrophes; he then proposed to use these 
dynamical systems as models for the behaviour of a large class of physical, chemical and 
biological systems. In many cases the models are not at all adequate, nevertheless, there 
are some successes. However, the seminal nature of Thom's work is clear though as it is 
the beginning of the classification theory for singularities. In this connection there are the 
two results of Arnold [1973, 1978] which closely relate the classification of singularities 
to the Weyl groups of the various compact simple Lie groups. 

8.3. Morse theory: the topology of critical points 

The aim in Morse theory is to study the relation between critical points and topology. 
More specifically one extracts topological information from a study of the critical points 
of a smooth real valued function 

/ : M - ^ M, (8.4) 

where M is a compact manifold usually without boundary. For a suitably behaved class of 
functions / there exists quite a tight relationship between the number and type of critical 
points of / and topological invariants of M such as the Euler-Poincare characteristic, the 
Betti numbers and other cohomological data. This relationship can then be used in two 
ways: one can take certain special functions whose critical points are easy to find and 
use this information to derive results about the topology of M; on the other hand, if the 
topology of M is well understood, one can use this topology to infer the existence of 
critical points of / in cases where / is too complex, or too abstractly defined, to allow a 
direct calculation. 

Taking a function / the equation for its critical points is 

df = 0. (8.5) 
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We assume that all the critical points pof f are nondegenerate; this means that the Hessian 
matrix Hf of second derivatives is invertible at p, or 

dttHf(p) ^ 0 where Hf(p) = [d^f/dx^dxJ\p]^^^. (8.6) 

Each critical point p has an index Xp which is defined to be the number of negative eigen
values of Hf(p). We can then associate to the function / and its critical points p the 
Morse series Mt(f) defined by 

M , ( / ) - ^ r ^ ^ = ^ m / f ' . (8.7) 
all p i 

The topology of M now enters via Pt (M): the Poincare series of M. We have 

n n 

Pf(M) = Y,dimW{M; R)t' = ^btf. (8.8) 

The fundamental result of Morse theory is the statement that 

MtU) ^ Pt(M) (8.9) 

from which so many things follow, to mention just one simple example 

mt^bi (8.10) 

showing that the number of critical points of index / is bounded below by the Betti num
ber bi. 

Successful applications of Morse theory in mathematics are impressive and widespread; 
a few notable examples are the proof by Morse [1934] that there exist infinitely many 
geodesies joining a pair of points on a sphere 5" endowed with any Riemannian met
ric, Bott's [1956, 1959] proof of his celebrated periodicity theorems on the homotopy 
of Lie groups, Milnor's construction [1956] of the first exotic spheres, and the proof by 
Smale [1961] of the Poincare conjecture for dimM ^ 5. 

8.4. Supersymmetric quantum mechanics and Morse theory 

Witten [1982] constructed a quantum mechanical point of view on Morse theory which has 
proved very influential. It also provides a point of departure for the Floer theory discussed 
below. In summary Witten gives a quantum mechanical proof of the Morse inequaUties 
on M; however an important extra feature is that the cohomology of M is also explicitly 
constructed. 

Witten takes as Hamiltonian H: the Hodge Laplacian on forms, i.e. one has 

H = ^Ap ^ 0 ( J J * + J*J)^. (8.11) 
p^O p^O 
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The Bosons and Fermions of the supersymmetry are the spaces H^ and H^ formed by 
even and odd forms while the supersymmetry algebra is generated by two operators Qi 
and 22 which are constructed from d and d*. The appropriate definitions are 

e i = (^ + c/*), e2 = i ( ^ - ^ * ) , 
(8.12) 

A Morse function / is now incorporated into the model without changing the supersym
metry algebra by replacing d by dt where 

dt=e-f'def'. (8.13) 

It is a routine matter to verify that this conjugation of d by e^^ leaves the algebra un
changed. The proof of the Morse inequalities rests on an analysis of the spectrum of the 
associated Hamiltonian, which is now 

Ut = dtd; + d;^dt = 0 Ap{t). (8.14) 

One needs additional physics to carry out the rest of the work. It turns out that this all 
comes from the consideration of quantum mechanical tunnelling between critical points 
of / . One considers grad / as a vector field on M and then studies the integral curves of 
this vector field, that is the solutions y{t) of the differential equation 

^ ^ = -grad/ (y(5)) . (8.15) 

We can give no more details here but, as has been emphasised by Witten [1982], these ideas 
are applicable in quantum field theory as well as in quantum mechanics. In that case one 
has to deal with functions in infinite dimensions and it was not long before a significant 
result along these lines emerged; this was the work of Floer [1988a, 1988b] which we now 
examine. 

8.5. Floer homology and Morse theory 

In Section 6, cf. (6.1), we referred to Floer's work and his Morse theoretic study of the 
function 

/ : ̂  —> M, A H-> / (A) with 
(8.16) 

/ (A) = ^ / tr( A A^A + -A A A A A V 

We review now some of the details. 
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The critical points of / are given by 

df(A) = 0, (8.17) 

where the exterior derivative is now taken to be acting in the space A of SU(2) connections 
on M. If A is such a critical point then we can write At = A -\-ta and obtain 

f{At) = f{A) - ^ f tr(F(A) A fl) - I - . . . . (8.18) 

Hence we can conclude that 

F(A) 

and so the critical points of the Chem-Simons function are the flat connections on M. 
As long as n\ (M) ^ 0 then flat connections on M are not trivial, since they can have 

nonzero holonomy round a nontrivial loop on M. The holonomy of each flat connection is 
an SlJiX) element parametrised by a loop on M; in this way it defines a representation of 
711 (M) in SU{2) and the space of inequivalent such representations is the quotient 

Hom(7ri(M), SU{2))/AdSU{!). (8.20) 

Having found a critical point Morse theory requires us to calculate its index and so we 
must also calculate the Hessian of / : the snag is that this gives an operator which is un
bounded from below rendering the index formally infinite. This is not entirely unexpected 
since we are working in infinite dimensions. 

Floer gets round this very cleverly by reahsing that he only needs a relative index which 
he can compute via spectral flow and the Atiyah-Singer index theorem. He takes two 
critical points Ap and Aqin A and joins then with a steepest descent path A{t)\ i.e. a 
path which obeys the equation 

^ = -g rad / (A(0) (8.21) 

with grad denoting the gradient operator on the space A. The consequence of all this for 
the Morse theory construction is that he is able to construct a homology complex and 
associated homology groups HFp(M). However, the topology of the situation dictates that 
the relative Morse index of / is only well defined mod 8. This means that HFp(M) are 
graded mod8 and one only obtains eight homology groups: HFp{M), p = 0 , . . . 7; for 
more details cf. Nash [1991]. 

Morse theory has also been successfully applied to other problems in Yang-Mills theory. 
Some important papers are [Atiyah and Bott, 1982] on Yang-Mills theories on Riemann 
surfaces where an equivariant Morse theory was required, and [Taubes, 1985, 1988] on 
pure Yang-Mills theory and Yang-Mills theory for monopoles. In all these examples one 
has to grapple with the infinite dimensionality of the quantum field theory. 
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8.6. Knots again 

Vasil'ev [1990a, 1990b] has developed an approach to knot theory using singularity theory. 
Vasil'ev constructs a huge new class of knot invariants and we shall now give a sketch of 
what is involved. 

A knot is a smooth embedding of a circle into R-̂ . So a knot gives a map 

/ : 5I _ ^ £3 (8 22) 

so that / belongs to the space T where J^ = Map(5^ M^). Not all elements of J^ give 
knots since a knot map / is not allowed to self-intersect or be singular. Let L be the 
subspace of T which contains either self-intersecting or singular maps, then the subspace 
of knots is the complement 

T-E. (8.23) 

Now any element of E can be made smooth by a simple one parameter deformation, hence 
17 is a hypersurface in T and is known as the discriminant. As the discriminant E wanders 
through T it skirts along the edge of the complement T — E and divides it into many 
different connected components. Clearly knots in the same connected component can be 
deformed into each other and so are equivalent (or isotopic). 

Now any knot invariant is, by the previous sentence, a function which is constant on 
each connected component of T — E. Hence the task of constructing all (numerical) knot 
invariants is the same as finding all functions on !F — E which are constant on each con
nected component. But topology tells us at once that this is just the 0-cohomology of 
T — EAn other words 

H^{J^ - E)= The space of knot invariants. (8.24) 

Vasil'ev provides a method for computing most, and possibly all, of H^{!F — E). There 
are connections, too, to physics cf. Bar-Natan [1996]. 

9. Strings, mirrors and duals 

9.1. String theory, super symmetry and unification of interactions 

String theory has, by now, a fairly long history very little of which we can mention here. 
We shall, in the main, limit ourselves to remarks which relate in some way to topology. 

Topology enters string theory at the outset because a moving string sweeps out a two-
dimensional surface and, in quantum theory, all such surfaces must be summed over what
ever their topology. This leads to the Polyakov expression for the partition function Z of 
the Bosonic string which contains a sum over the genera p of Riemann surfaces E. One 
has 

^= E /^^^0exp[-^ /'(a0,a0)J = ^ z ^ , (9.1) 
genera p=0 
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where the functional integral is over all metrics gonU and the string's position 0. We have 
0 = (/>^(x^ x|^), 11= 1 , . . . , J, so the 0^ can be thought of as specifying an embedding 
of i7 in a (i-dimensional space-time M. It is well known that the theory is only conformally 
invariant when d = 26: the critical dimension; however, if one includes Fermions then this 
critical dimension changes to d = 10. 

A string theory is also a two-dimensional conformal field theory and this latter subject 
is very important for mathematics as well as physics. It has been axiomatised in a very 
fruitful and influential way by Segal [1989]. It involves important representation theory of 
infinite-dimensional groups such as LG = MapC^^, G) and Diff(5^). We regret that we 
have been unable to trace its history in this article because of lack of space; its importance 
is immediately apparent when one reads the literature on string theory as well as that of 
many statistical mechanical models, it is also a key notion used in calculation and con
ceptual work in string theory. Finally, closely connected to conformal field theories, are 
the subjects of Kac-Moody algebras, vertex operator algebras and quantum groups; these 
all have close connections with physics but, although they have topological aspects, their 
algebraic properties are more prominent and this, as well as considerations of space, is an
other reason why we have had to omit them from this essay. Conformal field theory is also 
a vital ingredient in the surgery argument used in [Witten, 1989a, 1989b] to compute the 
Jones polynomial and, viewed from this standpoint, conformal field theories can be seen 
to provide a link between the infinite-dimensional representational theory just mentioned 
and the topology of two and three manifolds. 

String theory came into its own with the incorporation of supersymmetry in the early 
1980's (cf. Green, Schwarz and Witten [1979, 1989a]). 

Quantum field theories with chiral Fermions sometimes exhibit a pathological behaviour 
when coupled to gauge fields, gauge invariance may break down, this is referred to as 
an anomaly. Such anomalies, too, have played a major part in shaping present state of 
string theory; a key paper here is that of Green and Schwarz [1984] who discovered a 
remarkable anomaly cancellation mechanism which thereby singles out five distinguished 
supersymmetric d = 10 string theories. Anomalies also have an important topological 
aspect involving the Atiyah-Singer index theorem for families of Dirac operators. We have 
not had space to discuss this here, cf. Nash [1991] for more details. 

The low energy limit of a string theory is meant to be a conventional quantum field 
theory which should be a theory that describes all known interactions including gravity. 
Supersymmetric string theories do succeed in including gravity and so offer the best chance 
so far for a quantum theory of gravity as well as, perhaps, for an eventual unified theory of 
all interactions. 

The five string theories singled out by the work of Green and Schwarz [1984] are all 
supersymmetric and contain Yang-Mills fields. These five 10-dimensional theories are de
noted by type I, type IIA, type IIB, E^ x Es heterotic and SO(32) heterotic. 

Only four of the ten dimensions of space-time M are directly observable; so the re
maining six are meant to form a small (i.e. small compared with the string scale) compact 
six-dimensional space Me, say. The favoured physical choice for Me is that it be a three 
complex dimensional Calabi-Yau manifold - this means that it is complex manifold of a 
special kind: it is Kahler with holonomy group contained in SU{3). The favoured status of 
Calabi-Yau manifolds has to do with what is called mirror symmetry which we now briefly 
review as it is of considerable interest to both mathematicians (for example, algebraic ge
ometers) and physicists. 
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9.2. Mirror symmetry 

Mirror symmetry refers to the property that Calabi-Yau manifolds come in dual pairs 
which were conjectured to give equivalent string theories. These dual pairs are then called 
mirror manifolds. Mirror symmetry can also be profitably thought of as providing a trans
form. In other words a difficult problem on one Calabi-Yau manifold may be much easier, 
but equivalent to, one on its dual. We give an example of a result obtainable this way be
low; it concerns the number of curves of prescribed degree and genus on a Calabi-Yau 
manifold. 

The term mirror manifolds was coined in [Greene and Plesser, 1990]. This paper also 
contains the first, and as yet only, known construction of such dual pairs. 

If M and N are Calabi-Yau manifolds of complex dimension n (n = 3 in the string the
ory cited above), and if h^P'^\M) denote the Hodge numbers"^^ of a complex manifold M, 
then mirror symmetric pairs satisfy 

h^P^^){M)=h^''-P^'i\N). (9.2) 

The term mirror symmetry originates in the fact that this represents a reflection symmetry 
about the diagonal in the Hodge diamond formed by the /z^^'^^'s. This reflection property 
of the Hodge numbers is not sufficient to ensure that M and Â  are mirror manifolds, one 
must prove that the associated conformal field theories are also identical, cf. Greene and 
Plesser [1990, 1992] for more information. 

The introduction (by Greene, Vafa and Warner [1989]) of manifolds which are complete 
intersections in weighted projective spaces is an important part of this story, cf. too, Can-
delas, Lynker and Schimmrigk [1990]; previously complete intersections had been studied 
in ordinary projective space, cf., for example. Green, Hiibsch and Liitken [1989] and ref
erences therein. 

A bold prediction of mirror symmetry (following from the equality of the three point 
functions on a Calabi-Yau M and its mirror) concerned the numbers n of curves of 
genus g and degree J on a Calabi-Yau manifold; these numbers could be read off from 
a rather sophisticated instanton calculation, cf. Candelas, Ossa et al. [1991] and the ar
ticles in [Yau, 1992] for more details. The startling nature of these predictions can be 
partly appreciated by browsing Table 1 (this is half of a table appearing in [Bershadsky 
et al., 1994]). The particular Calabi-Yau manifold is three dimensional and is a certain 
quotient by Z5 x Z5 x Z5 of a quintic hypersurface in CP"̂  whose equation in homoge
neous coordinates is 

Mathematical verifications of these spectacular, physically obtained, numbers were at 
first only available for small values of the degree. However, there has now been a beautiful 
confirmation of all of them by Givental [1996]; this work also extends the ideas to non-
Calabi-Yau manifolds; a key paper, whose results are used in [Givental, 1996], is that of 
Kontsevich [1995]. 

^̂  Hodge numbers are the dimensions of the various Dolbeault cohomology groups of M, i.e. h^P''-^\M) = 

dim//-^'^ (M) = dim//^(M; QP) where QP is the sheaf of holomorphic p-forms on M. 
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Table 1 
Table showing numbers of curves of genus g on a quintic hypersurface as predicted by mirror symmetry 

Degree 

n = 0 
n = 1 
72=2 
n = 3 
n =4 
n = 5 
n = 6 
n = l 

8 = 0 

5 
2875 

609250 
317206375 

242467530000 
229305888887625 

248249742118022000 
295091050570845659250 

^ = 1 

50/12 
0 
0 

609250 
3721431625 

12129909700200 
31147299732677250 

71578406022880761750 
n = 8 375632160937476603550000 154990541752957846986500 
n = 9 503840510416985243645106250 324064464310279585656399500 

large n ao/i~^(log«)-2e2^"" ain-^e^^"^ 

The solution methods employed for these problems involving curve counting, or enu-
merative geometry, are closely connected with another development of joint physical and 
mathematical interest: this is the subject of quantum cohomology. Quantum cohomology 
originates in quantum field theory. One considers a quantum cohomology ring H*(M) 
which is a natural deformation of the standard cohomology ring H*(M) of a manifold M. 
The q in H*(M) is a real parameter which can be taken to zero and, when this is done, 
one recovers the standard cohomology ring //*(M); thus ^ -^ 0 represents the classi
cal limit, one also recognises similarities with the deformations of Lie algebras known as 
quantum groups. For some physical and mathematical background material on this highly 
interesting new area cf. Morrison and Plesser [1995] and Kontsevich and Manin [1994] 
and references therein. 

9.3. Dyons again and the tyranny of dualities 

Several new kinds of duality emerged from about 1994 onwards. Their origin can be traced 
back to the subject of dyons and in particular to a paper of Montonen and Olive [1977]; on 
the other hand the present work in the subject is due in great part to the papers of Seiberg 
and Witten [1979,1989a] and the insights they offer into strong couphng problems such as 
the celebrated conundrum of the mechanism for quark confinement. 

Montonen and Olive proposed a duahty between a theory of magnetic monopoles and 
one containing gauge fields. They were motivated in part by a semiclassical analysis of 
dyons and gauge fields. Let g denote the couphng of the gauge field^^ then a dyon with 
(magnetic, electric) quantum numbers (n, m) has mass M given by 

M^ = V^(n^+^-^m\ (9.4) 

^^ Previously we used g to denote magnetic charge, since this conflicts with our present choice we shall go back 
to Dirac's notation and use jx for magnetic charge. 
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where V is the Higgs vacuum expectation value. If we interchange g with l/g, n with m, 
and V and AnV/g^ then M is invariant; there is also an exchange of the gauge group G 
with G: a group with weight lattice dual to that of G. 

Montonen and Olive astutely observed this invariance and boldly conjectured, with ac
companying reasons, that it led to a duality possessed by a full quantum theory of dyons. 
They proposed that the two quantum field theories passed between by the interchanges 
above were really dual: i.e. it was only necessary to calculate one of them to obtain full 
knowledge of the other. This is a very dramatic and attractive conjecture because the in
terchange of g with \/g is an exchange of strong and weak coupling: i.e. the (intractable) 
strong coupling limit of one theory ought to be calculable as the (tractable) weak coupling 
limit of a theory with appropriately altered spectrum and quantum numbers. Osborn [1979] 
found that an Â  = 4 supersymmetric SUil) gauge theory was the best candidate for which 
the conjecture might hold; nevertheless Seiberg and Witten's results are for an Â  = 2 
theory. 

It transpires that the electric and magnetic charges e, /x and the CP breaking angle 0 live 
more naturally together as the single complex variable 

0 Am 
e-\-\jji =z e^in-\-T), where r = 1 r-. (9.5) 

In g^ 

A general point on the dyon lattice of Figure 3 is now given by 

eoimr + n), where m,n eZ. (9.6) 

This addition of the angle 0 allows the interchange (or Z2) symmetry of Montonen and 
Olive to be promoted to a full SL(2, Z) symmetry under which 

aT-\-b .{a,b,c,deZ, ^^ ^^ 
X h^ -, with { (9.7) 

CT +(1 [ad ~bc= I. 

Now the conventional string viewpoint of the physics is that this SL(2, Z) symmetry, 
and the mirror symmetry, are only a low energy manifestation of a richer symmetry of 
the full string theory. There is now considerable successful work in this direction which 
involves string dualities known by the symbols S, T and U. Two theories which are S dual 
have the property that their weak and strong coupling limits are equivalent, two theories 
which are T dual have the property that one compactified on a large volume is equivalent 
to the other compactified on a small volume, finally U duality corresponds to a theory 
compactified on a large, or small, volume being equivalent to another at strong, or weak, 
coupling, respectively. 

Certain pairs of the five basic superstring theories are thought to be dual to one another 
in this framework. It is conjectured that these five theories are just different manifestations 
of a single eleven-dimensional theory known as M theory. 

9.4. Black hole postscript 

It has also recently become of interest to study what happens when strings have ends that 
move on p-dimensional membranes (called Dirichlet branes or D-branes because of the 
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boundary condition imposed at their ends). This has made possible a study of black holes 
in this string setting. Included in this study is the ability to calculate some of their quantum 
properties and their entropy (Strominger and Vafa [ 1996]). The topological nature of space-
time here makes contact with the noncommutative geometry of Connes [1994]. 

10. Concluding remarks 

In the twentieth century, some time after the early successes of the new quantum mechanics 
and relativity, quantum field theory encountered difficult mathematical problems. Efforts 
to solve these problems led to the birth of the subject of axiomatic quantum field theory. In 
this approach the main idea was to tackle the formidable problems of quantum field theory 
head on using the most powerful mathematical tools available; the bulk of these tools being 
drawn from analysis. 

It is now evident that the way forward in these problems is considerably illuminated if, 
in addition to analysis, one uses differential topology. We have also seen that this inclusion 
of topology has produced profound results in mathematics as well as physics. 

Not since Poincare, Hilbert and Weyl took an interest in physics has such lavish attention 
been visited on the physicists by the mathematicians. The story this time is rather different: 
In the early part of the twentieth century the physicists imported Riemannian geometry for 
relativity, thereby of course accelerating its rise to be an essential pillar of the body of 
mathematics; Hilbert spaces were duly digested for quantum mechanics as was the notion 
of symmetry in its widest possible sense leading to a systematic use of the theory of group 
representations. 

The Riemannian geometry used by physicists in relativity was first used implicitly in 
a local manner; but it was inevitable that global issues would arise eventually. This, of 
course, entails topology and so more mathematics has to be learned by the physicist but 
the singularity theorems of general relativity more than justify the intellectual investment 
required. 

Thus far, then, the gifts, were mainly from the mathematicians to the physicists. For the 
last quarter of the twentieth century things are rather different, the physicists have been 
able to give as well as to receive. The Yang-Mills equations have been the source of many 
new results in three- and four-dimensional differential geometry and topology. 

In sum, the growing interaction between topology and physics has been a very healthy 
thing for both subjects. Their joint futures look very bright. It seems fitting that we should 
leave the last word to Dirac [1931] 

It seems likely that this process of increasing abstraction will continue in the future and 
that advance in physics is to be associated with a condnual modification and generahsa-
tion of the axioms at the base of the mathematics rather than with a logical development 
of any one mathemafical scheme on a fixed foundadon. 
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Singularities 

Alan H. Durfee 
Department of Mathematics, Statistics and Computer Science, Mount Holyoke College, South Hadley, 

MA 01075, USA 
E-mail: aduifee @mtholyoke. edu 

1. Introduction 

This article recounts the rather wonderful interaction of topology and singularity theory 
which began to flower in the 1960's with the work of Hirzebruch, Brieskorn, Milnor and 
others. This interaction can be traced back to the work of Klein, Lefschetz and Picard, 
and also to the work of knot theorists at the beginning of this century. It continues to the 
present day, flourishing and expanding in many directions. However, this is not a survey 
article, but a history; the events of our time are harder to see in perspective, harder to 
marshal into coherent order, and their very multitude makes it impossible to recount them 
all. Hence this interaction is foUowed forward in only a few directions.^ 

The reader may get a sense of the current state of affairs in singularity theory by brows
ing in the conference proceedings [32, 48]. The focus of this article is singularities of 
complex algebraic varieties. Real varieties are omitted. Also omitted from this account 
is the area of critical points of differentiable functions, work initiated by Thom, Mather, 
Arnold and others; a survey of this subject can be found in the books [3-5]. 

When two areas interact, ideas flow in both directions. Ideas from topology have en
tered singularity theory, where algebraic problems have been understood as topological 
problems and solved by topological methods. (In fact, often the crudest invariants of an 
algebraic situation are topological.) Conversely, ideas of singularity theory have traveled 
in the reverse direction into topology. Algebraic geometry supplies many interesting ex
amples both easily and not so easily understood, and these provide a convenient testing 
ground for topological theories. 

^That I have attempted to do this at all is due to the prodding of my conscience and a list suggested by W. 
Neumann of some recent areas where topology has had an effect on singularity theory. He added, though, that 
"the task becomes immense ... other people would probably come up with almost disjoint lists". The randomness 
of my efforts here should be readily apparent, and my apologies to those whose work is not mentioned. 

HISTORY OF TOPOLOGY 
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2. Knots and singularities of plane curves 

In the 1920's and 30's there was much activity in knot theory as the new tools of alge
braic topology were being applied; the fundamental group of the knot complement was 
introduced, as were the Alexander polynomial, branched cyclic covers, the Seifert surface, 
braids, the quadratic form of a knot, linking invariants, and so forth. Many clearly-written 
wonderful papers were produced on these subjects. 

At the same time in algebraic geometry there was interest in understanding complex 
algebraic surfaces, in particular by exhibiting them as branched covers of the plane. This 
method is analogous to the method in one dimension lower of projecting a curve to a line. 
The discriminant locus in the latter case is a set of points and it is easy to understand the 
branching. For surfaces the branching is more complicated since the discriminant locus is a 
curve. (The reader is referred to [16] for a detailed historical account of these interactions.) 

A method of examining the branching problem for surfaces was proposed by Wilhelm 
Wirtinger in Vienna, who gave some seminars on this subject beginning in 1905. He di
vided branch points into two types: At a smooth point of the discriminant curve, the branch
ing group ("Verzweigungsgruppe") of the surface is cyclic, like that of a curve. These 
points were called "branch points of type V\ Singular points of the discriminant curve 
were called "branch points of type 11". He also worked out a simple example. 

The classification and the example were recorded by his student Karl Brauner in the 
beginning of his paper "On the geometry of functions of two complex variables" [6]. 
Wirtinger's example is the smooth surface in C^ given by the equation 

z^ - ?>zx + 2y = 0. 

When this is projected to the (x, };)-plane, the discriminant curve is 

x^ - / = 0. 

There is one point in the surface over the origin in the (x, 3;)-plane, two points over the 
remaining points of the curve x'^ — y'^ = 0, and three points over the rest of the plane. 

To understand the type II branching of the surface near the origin, a three-sphere S,? 
of radius r about the origin in the plane was mapped to real three-space by stereographic 
projection. The image of the intersection of this three-sphere with the discriminant curve 
was then exhibited as a trefoil knot F (Fig. 1). It sufficed to understand the branching of 
the surface over T c S^. Let A/, for / = 1, 2, 3, be the branching substitution produced 
by traveling around the loop labelled At in the figure. The A, must satisfy the (now well-
known) Wirtinger relation 

A-^ iAoA-^ = 1 

at the left-hand crossing point of the knot projection in the figure. The only possibility for 
the permutation of the sheets of the covering is thus AQ = (12), A\ = (23) and A2 = (13). 
Hence the branching group in the neighborhood of (0, 0) is not cyclic (as it is for plane 
curves), but the symmetric group on three elements. 

Brauner concluded "Wir haben aus obigem erkannt, dass es die topologischen Verhalt-
nisse der Kurve F sind, welche dieses merkwurdiger Verhalten der Funktionen in der 
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A, = (23) 
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(13) 

Fig. l̂ ^The discriminant intersected with the sphere ([6], p. 5). 

Umgebung der Verzweigungsstellen II. Art bedingen." (We thus have learned that the topo
logical form of the curve F determines this remarkable behavior of the function in the 
neighborhood of a type II branch point.) 

There are thus two problems, he said. The first is to determine the topology of the (dis
criminant) curve in the neighborhood of a singular point, i.e. the knot F. The second is to 
determine the group given by the Wirtinger relations (in modern terminology, the funda
mental group of the complement of the knot F). These two problems were solved in his 
paper. He remarked that there are three more problems. The first is to determine the branch
ing group of a function locally in the neighborhood of a point. (This group is of course a 
quotient of fundamental group of the complement of the knot F.) Next, one should deter
mine the global branching group of a function. Finally, given a group, is there a function 
which has this group as branching group? These problems, he said, would form the subject 
of two further papers. 

He then continued with a systematic study of the links of curve singularities and their 
fundamental groups. He first looked at the curve 

ax" + by"" = 0 

with the gcd (n,m) = 1, parameterizing it by setting jc = at^ and y — ̂ t^, where a and 
P were suitably chosen constants. He wrote the complex number t as pt^^ with p and 0 
real and worked out parametric equations for the intersection of the curve with the sphere. 
Taking its image under the equations for stereographic projection, he observed that the 
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image curve lay on a torus, winding n times in the direction of the meridian and m times 
in the direction of the equator, and hence was a torus knot. 

He then went on to look at two such curves as above and described their Unking. He then 
examined the curve parameterized by jc = f\atn + f̂lm+i H ) and y = t^ and showed 
that the hnk is a compound torus knot formed by taking a torus knot on a small tube about 
the first torus knot and iterating this procedure. He also showed that only a finite number 
of terms (the characteristic pairs) in the (possibly infinite) power series parameterization 
of the curve determined the topological type of the knot. He continued by analyzing the 
case of curves with two branches. Brauner concluded by computing the fundamental group 
of the complement of these compound torus knots in terms of Wirtinger's generators and 
relations. 

The next work in this area was done by Erich Kahler [24] in Leipzig, who remarks at 
the beginning of his paper that "Obwohl die betreffenden Fragen zum grossten Teil bereits 
von Herrn Brauner beantwortet sind, habe ich mir erlaubt den Gegenstand auf dem etwas 
anschauhcheren Wege ... darzustellen." (Although this question has been for the most part 
already answered by Mr. Brauner, I have allowed myself to explain it in a somewhat clearer 
fashion.) 

Kahler replaced Brauner's sphere, the boundary of the "round" four-ball {|xp + | j p ^ 
r^} in C? by the boundary of the "rectangular" four-ball [\x\ ^ ci} fl {|}̂ | < C2}. This is 
a simpUfication since a curve tangent to the x-axis (say) intersects this boundary only in 
[\x\ ^ c\] r\ [\y\ = C2}, one of its two sides {c\ <^ C2). He noted that the two pieces of 
the boundary could be mapped easily into three-space where they formed a decomposition 
into two solid tori. He then looked at the curve y = ax'"/" and observed that the image of 
the intersection of this curve with the boundary of the rectangular four-ball is obviously a 
torus knot or link. He then continued to obtain Brauner's results in easier fashion. 

Thus the topological nature of the link could be computed from analytic data. The con
verse result, that the characteristic pairs could be determined from the topology of the knot, 
was proved simultaneously by Oscar Zariski at Johns Hopkins University and Werner Bu-
rau in Konigsberg. 

Zariski [61] started with a singular point of the curve X and again derived a presentation 
of the local fundamental group of its complement. He then found a polynomial invariant 
F(t) of this group which he later identified as the Alexander polynomial of the knot, and 
showed that the first Betti number of the /:-fold branched cyclic cover of a punctured neigh
borhood of the origin in C^ with branch locus X is the number of roots of F(t) which are 
A:-th roots of unity. (This was later recognized to be a purely knot-theoretic result.) 

Burau [10], on the other hand, used James Alexander's recent work to compute the 
Alexander polynomial of compound torus knots. He derived a recursive formula for these 
polynomials and showed that they were all distinct. He later treated the case when the 
polynomial had two branches at the origin, i.e. when the link had two components [11]. 

A survey of the above work was given later by John Reeve [53], who also showed that 
the intersection number of two branches of a curve at the origin equals the linking number 
in the three-sphere of their corresponding knots. He gave two proofs. The first, following 
Lefschetz, notes that the algebraic intersection multiplicity of the curves is their topological 
intersection multiplicity, which is the finking number of their boundaries. The second proof 
uses Reidemeister's definition of linking number in terms of the knot projection. 

Now let us move forward in time to the present. The computation of knot invariants of 
the link of a curve singularity becomes increasingly messy as the number of branches of 



Singularities 421 

the curve increases. A diagrammatic method for these computations (for the Alexander 
polynomial,the real Seifert form, the Jordan normal form of the monodromy and so forth) 
has been developed in [15]. 

The link of a singularity of a curve has a global analogue, the link at infinity KQO of a 
curve Z C C^, which is defined to be the intersection of X with a sphere Ŝ  of suitably 
large radius r. Walter Neumann has shown that if the curve is a regular fiber of its defining 
equation (i.e. if the map is a locally trivial fibration near this value), then the topological 
type of the curve is determined by the knot type of Koo C S^. Also, Neumann and Rudolph 
have used these techniques to give topological proofs of a result of Abhyankar and Moh 
(that up to algebraic automorphism, the only embedding of C in C^ is the standard one) 
and similar results of Zaidenberg and Lin [54]. 

The knot type of the link of a singularity in higher dimensions has received some atten
tion; see for instance [13, 42, 43]. 

3. Three-manifolds and singularities of surfaces 

It is useful at this point to introduce some terminology. An (affine) algebraic variety X C 
C'^ is the zero locus of a collection of complex polynomials in m variables. If X is a 
hypersurface, and hence the zero locus of a single polynomial / (x i , X2,. . . , Xm), then a 
point p is singular if df/dx\ = • • • = df/dx,n = 0 at /?. The set of nonsingular points is 
a complex manifold of dimension m — 1. A point which is not singular is called smooth. 
(The definition of singular point for arbitrary varieties can be found, for example, in [38, 
Section 2], and similar results hold.) 

If p e X C C"\ the link of /? in X is defined to be 

K = xr\sf'-\ 

where Ŝ "̂ ~̂  is a sphere of sufficiently small radius s about p in C"\ If p is an isolated 
singularity of X, then the link is a compact smooth real manifold of dimension one less 
than the real dimension of X at p. Understanding the topology of the variety X near p is 
the same as understanding the topology of K and its embedding in the sphere; in fact, X 
is locally homeomorphic to a cone on K with vertex p [38, 2.20]. (This fact is implicit in 
the work of Burau and Kahler, but not explicitly stated.) The local fundamental group of 
the singularity is the fundamental group of the link. This is particularly interesting for an 
isolated singular point of an algebraic surface (complex dimension two) where the link is 
a three-manifold. 

Some time elapsed before the topological investigation of curve singularities chronicled 
in Section 1 was extended to higher dimensions. In the early 1960's the following result by 
David Mumford confirmed a conjecture of Abhyankar [40] (see also the Bourbaki talk of 
Hirzebruch [21]): 

THEOREM 3.1. Ifp is a normal point of a complex surface X with trivial local fundamen
tal group, then p is a smooth point ofX. 

The condition "normal" comes from the algebraic side of algebraic geometry; in partic
ular it implies that the singularity is isolated and that its link is a connected space. 
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He proved this theorem by resolving the singularity, a technique which in the case of 
surfaces is old and essentially algorithmic. The process of resolution removes the singular 
point p from X and replaces it by a collection of smooth transversally-intersecting complex 
curves Eu ..., E^ so that the new space X is smooth. 

He showed that the Hnk could be obtained from the curves £/ by a process called plumb
ing: The tubular neighborhood of £"/ in X is identified with a 2-disk bundle over the curve 
£(. If Ei and Ej intersect in a point q e X, the two-disk bundles over £/ and Ej are glued 
together by identifying a fiber over q in one with a disk in the base centered at q in the 
other. This makes a manifold with corners. If the corners are smoothed (so that the result 
looks rather like an plumbing elbow joint), the boundary is diffeomorphic to the link. 

The graph of a resolution of a normal singularity of an algebraic surface is as follows: 
The i-ih vertex corresponds to the curve £"/, labelled by the genus of £", and the self-
intersection Ei • Ei. The i-th and 7-th vertices are joined by an edge if Ei • Ej ^ 0, and the 
edges are weighted by Ei • Ej. The resolution graph thus determines the topological type 
of the link. 

Mumford used Van Kampen's theorem and the plumbing description of the link to give a 
presentation of the local fundamental group of the singularity and thus prove the theorem. 

The local fundamental group of a singularity of an algebraic surface turned out to be 
a a useful way to classify these singularities. For instance, Brieskorn [9], using earlier 
work of Prill, showed that if the local fundamental group is finite, then the variety X is 
locally isomorphic to a quotient C^/G, where G is one of the well-known finite subgroups 
of GL{2, C). He Hsted all such subgroups G together with the resolution graph of the 
minimal resolution of the corresponding singularity C^/G. 

Phihp Wagreich [59], inspired by work of Peter Orlik [46], used Mumford's presenta
tion to find all singularities with nilpotent or solvable local fundamental group. Thus the 
local fundamental group became closely connected with the local analytic structure of the 
singularity. 

Neumann showed that the topology of the link K determines the graph of the minimal 
resolution of the singularity. In fact, he showed that n\{K) determines this graph, except 
in a small number of cases [41] . 

Mumford's techniques in a global setting appeared later in work of C.P. Ramanujam 
[52]: 

THEOREM 3.2. A smooth complex algebraic surface which is contractible and simply con
nected at infinity is algebraically isomorphic to C^. 

Ramanujam showed this by compactifying the surface by a divisor with normal cross
ings, and then using the topological conditions to show that this divisor could be contracted 
to a projective line. He also showed that the condition of simple connectivity at infinity 
was essential by producing an example of a smooth affine rational surface X which is 
contractible but not algebraically isomorphic to C^. In fact, the intersection of X with a 
sufficiently large sphere is a homology three-sphere but not a homotopy three-sphere. 

Ramanujam's result implies that the only complex algebraic structure on R^ is the stan
dard one on C^, so that there are no "exotic" algebraic structures on the complex plane. 
The search for exotic algebraic structures thus continued in higher dimensions. Ramanujam 
remarked that the three-fold Z x C is diffeomorphic to C^ by the h-cobordism theorem. 
A cancellation theorem proved later had the corollary that X x C is not algebraically iso-
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morphic to C^. Hence there is an exotic algebraic structure on C-̂ . Much work followed in 
this area; for the current state of affairs one can consult [60], for example. 

4. Exotic spheres 

Egbert Brieskorn, who was spending the academic year 1965-1966 at the Massachusetts 
Institute of Technology, investigated whether Mumford's theorem extended to higher di
mensions. On September 28, 1965, he wrote in a letter to his doctoral advisor Friedrich 
Hirzebruch that he had examined the three-dimensional variety 

x^ ^xl+xj-^xl=0 

and its singularity at the origin. He explicitly calculated a resolution of the singular point, 
then used van Kampen's theorem to show that the link K of this singularity is simply-
connected and the Mayer-Vietoris sequence to show that K is a. homology 5-sphere. He 
concluded, using Smale's recent solution of the Poincare conjecture in higher dimensions, 
that K is homeomorphic to S^. Hence Mumford's result did not extend to higher dimen
sions. 

According to Hirzebruch [22, C38], "Dieser Brief von Brieskorn war eine grosse Uber-
raschung" (This letter from Brieskorn was a great surprise). Later letters followed with 
more squared terms added to the equation above. Brieskorn's final result appeared in [8]: 
For odd n ^ 3, the link at the origin of 

x ^ + x f + x | + - - - + x ^ = 0 (1) 

is homeomorphic to the sphere 5^""^ 
The attention then shifted to the differentiable structure on this link. To describe the next 

events, we first need to recall the situation with non-standard or "exotic" differentiable 
structures on spheres. The first exotic sphere, a differentiable structure on S^ which is not 
diffeomorphic to the standard structure, had been discovered only ten years earlier by John 
Milnor. Further investigations followed by Kervaire and Milnor [27]. By Smale's solution 
to the higher-dimensional Poincare conjecture, it was sufficient to look at the set 0tn of 
homotopy m-spheres (manifolds homotopy equivalent to the standard sphere S"^). The set 
©,n is an abelian group under connected sum, and Kervaire and Milnor showed that this 
group is finite (m î ^ 3). 

They also looked at the subgroup hP,n+\ C Om of homotopy spheres which are bound
aries of parallelizable manifolds (manifolds with trivial tangent bundle), and showed that 
bP,n-\-\ is trivial for m even, and finite cycHc for m j^3 odd. 

Its order could be computed as follows: If n is odd, the group bP2n has order one or two. 
It is generated by the Kervaire sphere which is the boundary of the manifold constructed 
by plumbing two copies of the tangent disk bundle to S". The Kervaire sphere may or 
may not be diffeomorphic to the standard sphere; the first nontrivial group is bPio. If i^ e 
bP2n is the boundary of an (n — l)-connected parallehzable 2n-manifold M, whether U is 
diffeomorphic to the standard sphere or the Kervaire sphere depends on the Arf invariant 
of a geometrically-defined quadratic form on M. 
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Fig. 2. The Eg graph. 

Fig. 3. The Aj^ graph {k vertices). 

If « ^ 4 is even, the order of b Pin can be calculated in terms of Bernoulli numbers. For 
example, there are 28 homotopy seven-spheres in 6)7 =bP%. Also, the order of E e bPin 
can be calculated in terms of the signature of the intersection pairing on H^{M). 

The construction of a generator of bPin for n ^ 4 even is once again bound up with 
singularity theory. In a preprint [34] of January, 1959, Milnor had constructed a generator 
by plumbing according to an even unimodular matrix of rank and index eight. This matrix 
was not the well-known one associated to the £"8 graph (Fig. 2), though, since its graph had 
a cycle. He then added a two-handle to make the boundary simply-connected and hence 
a homotopy sphere. Hirzebruch, however, was familiar with the £"8 matrix from his work 
on resolution of singularities of surfaces. He constructed a generator of the group bPin by 
plumbing copies of the tangent disk bundle to S^ according to the £"8 graph. (For more 
details, see [22, C30], [21, 20, 35].) 

At the same time in the fall of 1965 that Hirzebruch was receiving the letters from 
Brieskorn, he also received a letter from Klaus Janich, another of his doctoral students, 
who was spending the year 1965-1966 at Cornell. Janich described his work on (In — 1)-
dimensional O (n)-manifolds (manifolds with an action of the orthogonal group). In fact, he 
had classified 0(n)-manifolds whose action had just two orbit types with isotropy groups 
0 (^ — 1) and 0(n — 2), in particular showing that they were in one-to-one correspondence 
with the nonnegative integers. (These results were also obtained by W.C. Hsiang and W.Y. 
Hsiang.) 

Hirzebruch noticed the connection between the research efforts of his two students and 
showed that the link of 

4+xf - f .•.+x,? = 0 (2) 

for J ^ 2, « ^ 2 is an 0(/i)-manifold as above with invariant d, the action being given by 
the obvious one on the last n coordinates. Since the boundary of the manifold constructed 
by plumbing copies of the tangent disk bundle of the w-sphere according to the Ad-\ tree 
(Fig. 3) also is an 0(n)-manifold as above with invariant d, these manifolds are identical. 
Thus the hnk of the singularity (1) is the (2n — 1)-dimensional Kervaire sphere; in particular 
for w = 5 it is an exotic 9-sphere. 

These results were described in a manuscript "0(n)-Mannigfaltigkeiten, exotische 
Spharen, kuriose Involutionen" of March 1966. (This was not pubHshed, since it was sup
planted by Hirzebruch's Bourbaki talk [20], and the detailed lecture notes [23] from his 
course in the winter semester 1966/67 at the University of Bonn.) In a letter [22, C39] 
of March 29, 1966, Brieskorn reacted to the manuscript with "Klaus Janich und ich hat-
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ten von diesem Zusammenhang unserer Arbeiten nichts bemerkt, und ich war vor Freude 
ganz ausser mir, wie Sie nun die Dinge zusammengebracht haben. Ein schoneres Zusam-
menspiel von Lehrern und Schiilern - wenn ich das so sagen darf - kann man sich doch 
wirklich nicht denken." (Klaus Janich and I had not noticed this connection between our 
work, and I was beside myself with joy to see how you had brought these together. A more 
beautiful cooperation of student and pupil can one hardly imagine, if I may say so myself.) 

At this time the varieties 

x^«+x;^^+... + <" =0 (3) 

(at ^ 2) started to receive attention; they are now called "Brieskorn varieties", proba
bly due to the influence of a chapter heading in Milnor's book [38], although they were 
first examined in this context by Pham and Milnor as well. The corresponding (2n — 1)-
dimensional links 

K(ao, au..., an) = [x^' + x;'' + • • • + x^'^ =0}n 8^"+^, 

where S '̂̂ ^̂  is a sphere about the origin, are usually called "Brieskorn manifolds". (The 
radius of the sphere can be arbitrary since the equation is weighted homogeneous.) 

Milnor, who was in Princeton, sent a letter in April of 1966 to John Nash at MIT 
describing a simple conjecture as to when K{ao,a\,... ,an) is a. homotopy sphere: Let 
r (ao, a i , . . . , fl„) be the graph with n -h I vertices labeled 0, 1, . . . , n and with two ver
tices / and j joined by an edge if the greatest common divisor {ai.aj) is bigger than 1. 

CONJECTURE. For n ^ 3, the hnk K(ao, a\,..., an) is a homotopy (2n — l)-sphere if 
and only if the graph r((2o, « i , . . . , a«) has 
• at least two isolated points, or 
• one isolated point and at least one connected component F^ with an odd number of 

vertices such that the gcd (ai^aj) = 2 for all i ^^ j ^ F'. 

Brieskorn then chanced upon an article of Frederic Pham [50] which dealt with exactly 
the variety (3) above. In fact, Pham was interested in calculating the ramification of certain 
integrals encountered in the interaction of elementary particles in theoretical physics. To 
do this he needed to generalize the Picard-Lefschetz formulas, so let us recall these. 

Picard-Lefschetz theory can be summarized as follows (see, for example, [5, 2.1]): Let 

x, = [xl^x\ + '"-^xl = t] ce+^ 

{n ^ l).Then 
(1) The smooth variety Xt for r 7̂  0 is homotopy equivalent to an n-sphere 5". (In fact, 

it is diffeomorphic to the tangent bundle to S^.) 
(2) The homology class of this n-sphere generates the kernel of the degeneration map 

Hn{Xt) -^ Hn(Xo), hence its name of vanishing cycle. 
(3) The self-intersection of the vanishing cycle is 2 if n = 0 mod 4, —2ifn = 2(mod 

4) and 0 if n = l,3(mod4). 
(4) Starting at / = 1 in the complex plane, traveling once counterclockwise about the 

origin and returning to the starting point induces a smooth map called the monodromy of 
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Xi to itself. It is well-defined up to isotopy. Picard-Lefschetz theory gives a description 
of this map. For example, if « = 1 it is a Dehn twist about the one-dimensional vanishing 
cycle. Picard-Lefschetz theory also describes the induced maps Hn{X\) -> Hn(X\) and 
Hn(XudXi)^ Hn(Xi). 

Pham generalized this situation to the case 

and found 
(1) The smooth variety Xt for r 7̂  0 is homotopy equivalent to a bouquet 5" v 5" v 

• • • V 5*" of {ao — l)(cii — 1) • • • (an — 1) n-spheres. (This was shown by retracting Xt to a 
join ZaQ * Z«j * • • • * Za,^ where Z^ denotes k disjoint points.) 

(2) The homology classes of these n-spheres generate the kernel of the map HniXt) -> 
HniXo). 

(3) An explicit calculation of the intersection pairing on Hn(Xt). 
(4) An explicit calculation of the monodromy action on Hn(Xt). (This is induced by 

rotating each set of points Z^.) 
The article of Pham provided exactly the information Brieskorn needed. (He remarks [7] 

that "Fiir den Beweis von [diesen] Aussagen sind jedoch gewisse Rechnungen erforderlich, 
fiir die gegenwartig keine allgemein brauchbare Methode verfugbar ist. Fiir den Fall der 
K(ao,a\,... ,an) sind diese Rechnungen aber samtlich in einem vor kurzem erschienen 
Artikel von Pham enthalten, und nur die Arbeit von Pham ermoglicht den so miihelosen 
Beweis unserer Resultate." [Certain calculations, for which there are no general methods 
at this time, are necessary for the proof of these results. In the case of K{ao, a\,..., an), 
however, these calculations are contained in an article of Pham which just appeared, and 
it is only Pham's work which makes possible such an effortless proof of our results.]) 
Brieskorn used it to prove a conjecture of Milnor from the preprint [37] about the charac
teristic polynomial of the monodromy [7, Lemma 4], [38, Theorem 9.1]. He then used this 
to prove the conjecture above [7, Satz 1], [23, 14.5], [20, Section 2]. 

Brieskorn also noted that the link K(ao,a\, ... ,an), which is XQ H S^""^^ is diffeomor-
phic to Xt n Ŝ ""̂ ^ for small t ^0. This is the boundary of the smooth (n — l)-connected 
manifold Xt Pi D '̂̂ "̂ ,̂ which is parallehzable since it has trivial normal bundle. Hence 
K(ao,ai,..., an) G bP2n- The information in Pham's paper about the intersection form 
also led to a formula (derived by Hirzebruch) for the signature of Xt H D^"+^. Brieskorn 
concluded that the link of 

4^"^ +^1 +^2 +^3 + • • • + ,̂z = 0 (4) 

for even n ^ 4is k times the Milnor generator oibPin-x [7, 23]. 
Through a preprint of Milnor [37], Brieskorn also learned of a recent result of Levine 

[30] which showed how to compute the Arf invariant needed to recognize whether a link is 
the Kervaire sphere in terms of the higher-dimensional Alexander polynomial of the knot. 
The Alexander polynomial for fibered knots is the same as the characteristic polynomial of 
the monodromy on //„(F). Hence Brieskorn was able to show [7, Satz 2] that the Hnk of 
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for « ^ 3 odd is the standard sphere if d = ±1 mod 8, and the Kervaire sphere if d = ±3 
mod 8, thus providing another proof of Hirzebruch's result that the hnk of the singularity 
(1) is the Kervaire sphere. 

The expHcit representation of all the elements of b Pin by links of simple algebraic equa
tions was rather surprising. It provided another way of thinking about these exotic spheres 
and led to various topological applications. 

For example, Nicolaas Kuiper [28] used them to obtain algebraic equations for all non-
smoothable piecewise-linear manifolds of dimension eight. (PL manifolds of dimension 
less than eight are smoothable.) In fact, he started with the complex four-dimensional va
riety given by Eq. (4) above with n = 4. This has a single isolated singularity at the 
origin. Its completion in projective space has singularities on the hyperplane at infinity, but 
adding terms of higher order to the equation eliminates these while keeping (analytically) 
the same singularity at the origin. This variety can be triangulated, giving a combinatorial 
eight-manifold which is smoothable except possibly at the origin. Since obstructions to 
smoothing are in one-to-one correspondence with the 28 elements of bP^, the construction 
is finished. 

Also, the high symmetry of the variety given by Eq. (2) allowed the construction of many 
interesting group actions on spheres, both standard and exotic [20, Section 4], [23, Section 
15]. The actions are the obvious ones: The cyclic group of order d acts by roots of unity 
on the first coordinate, and there is an involution acting on (any subset of) the remaining 
coordinates by taking a variable to its negative. 

5. The Milnor fibration 

About the same time as the above events were happening, Milnor proved a fibration theo
rem which turned out to be fundamental for much subsequent work. This theorem together 
with its consequences first appeared in the unpublished preprint [37], which dealt exclu
sively with isolated singularities. (A full account of this work was later published in the 
book [38], where the results were generalized to nonisolated singularities. The earlier and 
somewhat simpler ideas can be found at the end of Section 5 of the book.) 

Let f{xo,xi,... ,Xn) fovn ^ 2 be a complex polynomial with / ( O , . . . , 0) = 0 and an 
isolated critical point at the origin. Let Ŝ ""̂ ^ be a sphere of suitably small radius s about 
the origin in C"-^K As before, let K = {/(JCQ, x i , . . . , x„) = 0} H S "̂+^ be the hnk of 
/ — 0 at the origin. The main result of the preprint is the following fibration theorem: 

THEOREM 5.1. The complement of an open tubular neighborhood of the link K in Ŝ ""̂ ^ 
is the total space of a smooth fiber bundle over the circle S^ The fiber F has boundary 
diffeomorphic to K. 

The idea of the proof is as follows: If D "̂"̂ ^ is the ball of radius e about the origin and 
5 > 0 is suitably small, then 

/ : / - i ( S ] ) n D 2 « + 2 ^ S l 

is a clearly a smooth fiber bundle with fiber 

F' = {f(xo,xu...,Xn)^8}nDl"+\ 
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The total space of this fibration is then pushed out to the sphere Ŝ ""̂ ^ along the trajectories 
p{t) of a suitably-constructed vector field. This vector field has the property that \p{t)\ is 
increasing along a trajectory, so that points eventually reach the sphere, and also has the 
property that the argument of f(p(t)) is constant and \f(p{t))\ is increasing, so that the 
images of points in C travel out on rays from the origin. Thus Milnor's proof shows that F 
is diffeomorphic to F^ The proof also shows that F is parallelizable, since F^ has trivial 
normal bundle. 

The fiber F is now called the Milnor fiber. He then gives some facts which lead to the 
topological type of the fiber F and the link K: 

(a) The pair (F, dF) is (n — 1)-connected. 
(b) The fiber F has the homotopy type of a cell complex of dimension ^ /i. In fact, it 

is built from the 2i2-disk by attaching handles of index ^ n. 
These assertions follow from Morse theory. In fact, in a lecture at Princeton in 1957 

(which was never published), Rene Thom described an approach to the Lefschetz hy-
perplane theorems which was based on Morse theory. Thom's approach then inspired 
Andreotti and Frankel [1] (see also [36, Section 7]) to give another proof of Lefschetz's 
first hyperplane theorem which used Morse theory, but in a different way: The key observa
tion is that given a «-dimensional complex variety X C C" and a (suitably general) point 
p e C" — X, then the function on X defined by \x — p\^ for x e X has nondegenerate 
critical points of Morse index < n. Thus HfdX) = 0 for k > n, which is equivalent to 
Lefschetz's first hyperplane theorem. 

Assertion (b) above follows since the function \x \ (or a slight perturbation of it) restricted 
to F' has critical points of index ^ n, and assertion (a) follows since the function — |xp 
on F^ has critical points of index ^ n. 

By (b), the complement Ŝ ""̂ ^ — F has the same homotopy groups as S "̂+^ through 
dimension n — \. Thus: 

(c) The complement S '̂̂ ^̂  — F is (w — l)-connected. 
By the Fibration Theorem, Ŝ ""̂ ^ — F is homotopy equivalent to F. Thus 

PROPOSITION 5.2. The fiber F has the homotopy type of a bouquet S" v --- v S" of 
spheres. 

Fact (a) and the above proposition combined with the long exact sequence of a pair show 
the following: 

PROPOSITION 5.3. The link K is (n - 2)-connected. 

Milnor used the notation /x for the number of spheres in the bouquet of the first propo
sition and called it the "multiplicity" since it is the multiplicity of the gradient map of / . 
However, /x quickly became known as the Milnor number. The Milnor number has played 
a central role in the study of singularities. One reason is that it has analytical as well as a 
topological descriptions, for example: 

11 = dime C{xo, XI , . . . , Xn}/(Sf/dxo, df/dxi, . . . , df/dxn) 

the (vector space) dimension of the ring of power series in « + 1 variables divided by the 
Jacobian ideal of the function (see, for example, [47]). 



Singularities 429 

The fact that the Milnor number can be expressed in different ways is extremely useful. 
For example, the topological interpretation of /x was used by Le and Ramanujam to prove 
a result which became basic to the study of equisingularity: Suppose that ^ / 2. If a family 
of functions ft: C"^^ -^ C depending on t with isolated critical points has constant Milnor 
number, then the differentiable type of the Milnor fibration of ft is independent of t. The 
proof uses the topological interpretation of jut to produce a h-cobordism which is thus a 
product cobordism; hence the restriction n 7̂  2 [31]. 

Results similar to the Fibration Theorem and the two propositions have now been ob
tained in many different situations: complete intersections, functions on arbitrary varieties, 
polynomials with nonisolated critical points, critical points of polynomials at infinity, and 
so forth. References to these results can be found in the books and conference proceed
ings cited at the beginning of this article. Also, there are now many different techniques 
for computing the Milnor number /x = rank//,t(F), the characteristic polynomial of the 
monodromy Hn{F) —> Hn{F), and the intersection pairing on Hn(F). 

The characteristic polynomial of the monodromy turned out to be cyclotomic, and a 
variety of proofs have appeared of this important fact: the geometric proof of Landman, 
geometric proofs of Clemens and Deligne-Grothendieck based on resolving the singu
larity, proofs based on the Picard-Fuchs equation by Breiskorn, Deligne and Katz, and 
analytic proofs using the classifying space for Hodge structures by Borel and Schmid. For 
a summary of these and the appropriate references, see [18]. 

The Milnor number appears in another situation. To describe this we first return to 
Thom's original observation in his 1957 lecture, as recorded in [2]: Given an n-dimensional 
complex variety X in affine space and a suitably general linear function f :X -^ C, then 
l / P has nondegenerate critical points of Morse index exactly n (except for the absolute 
minimum). This result is easily proved by writing the function in local coordinates. It 
forms the basis of Andreotti and Frankel's proof of the second hyperplane theorem of 
Lefschetz, which says that the kernel of the map on Hn-i from a hyperplane section of an 
^-dimensional projective variety to the variety itself is generated by vanishing cycles. 

Thom's original observation was applied in the local context of singularities, where it 
leads to a basic result in the subject of polar curves relating the Milnor number of a singu
larity and a plane section. This result has both topological and analytic formulations [57, 
p. 317]; [29]. 

6. Brieskorn three-manifolds 

The Brieskorn three-manifolds ^(^o, ^i, CLI)^ the Unk of 

at the origin, have provided examples figuring in many topological investigations. For ex
ample, the local fundamental group of these singularities has proved interesting. As men
tioned in Section 3, the surface singularities whose link have finite fundamental group are 
exactly the quotient singularities. If the surface is embedded in codimension one, and is 
hence the zero locus of a polynomial /(xo, x\, X2), then these singularities are the well-
known simple singularities'. 

Ak-. 4"^^+x? + x| = 0, {k^ 1) 
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Ee: 4 + ^1+-^2 = 0 ' 

Ej: XQ +xoxl +^2 = 0, 

Eg: x^+xl-^xj = 0. 

These equations have appeared, and continue to appear, in many seemingly unrelated con
texts [14]. For example, V.I. Arnold showed that they are the germs of functions whose 
equivalence classes under change of coordinate in the domain have no moduH [3]. 

More general than Brieskorn polynomials is the class of weighted homogeneous poly
nomials: A polynomial /(JCQ, x i , . . . , x„) is weighted homogeneous if there are positive 
rational numbers «o, ̂ i , . . . , «« such that 

/(C^/^OXO, C^/^lxi, . . . , cl/^"X„) = Cfixo. XI, . . . , Xn) 

for all complex numbers c. (Weighted homogeneous polynomials probably first made their 
appearance in singularity theory in the book of Milnor [38].) Brieskorn singularities are 
weighted homogeneous, with weights exactly the exponents. 

The simple singularities are weighted homogeneous. Milnor [38, p. 80] noted that their 
weights (flo, a\,a2) satisfy the inequality l/ao + l/a\ + l/a2 > 1. He also remarked that 
the links of the simple elliptic singularities 

Ee: XQ -}-x^ -\-xl = 0, 

Er. x -̂hx^ + x̂  = o, 
Ee: J C Q + X i + ^ 2 = 0 , 

have infinite nilpotent fundamental group. In this case, the sum of the reciprocals of the 
weights is 1. He conjectured that if l/ao + l/^i + 1/̂ 2 ^ 1, then the corresponding fink 
had infinite fundamental group, and that this group was nilpotent exactly when l/ao + 
l/ai + 1/̂ 2 = 1. 

This conjecture was proved by Peter Orlik [46]. In fact, Orlik and Wagreich [49] had 
already found an explicit form of a resolution for weighted homogeneous singularities 
using topological methods based on the existence of a C* action, following earlier work 
by Hirzebruch and Janich. They also noted that these links are Seifert manifolds [55] and 
hence could use Seifert's work as well as earlier work by Orlik and others. 

Topologists were interested in the question of which homology three-spheres bound con-
tractible four-manifolds (cf. [25, Problem 4.2]). In fact, topological analogues (contractible 
four-manifolds which are not simply-connected at infinity) of the example of Ramanujam 
in Section 3 (a contractible complex surface which is not simply connected at infinity) had 
been found some ten years earher by Mazur [33] and Poenaru [51]. As Mazur remarks, 
these examples provide a method of constructing many examples of odd topological phe
nomena. 

It was known (see Milnor's conjecture in Section 4) that K(a\,a2, ^3) is a homology 
three-sphere exactly when the integers ai,a2,a3 are pairwise relatively prime. (As Milnor 
remarks in [39], this result in this context of Seifert fiber spaces is already in [55].) Links of 
Brieskorn singularities were particularly easy to study, since a resolution of the singularity 
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exhibited the Hnk as the boundary of a four-manifold, and data from the resolution pro
vided a plumbing description of this manifold which then could be manipulated to even
tually get a contractible manifold. For example, Casson and Rarer [12] showed that the 
Brieskom manifolds K{2, 3, 13), K(2, 5, 7) and ^ ( 3 , 4, 5) are boundaries of contractible 
four-manifolds. Much has now happened in this area as can be seen in Kirby's update of 
his problem hst [26]. 

Brieskorn three-manifolds and their generahzations also provided interesting examples 
of manifolds with a "geometric structure". Klein proved long ago that the links of the 
simple singularities listed above are of the form S^/F, the quotient of the group of unit 
quaternions by a discrete subgroup. 

Milnor [39, Section 8] proved by a round-about method that the links of the simple 
elUptic singularities are quotients of the Heisenberg group by discrete subgroups. He then 
showed that the links of Brieskorn singularities with l/ao + l/^i + l/a2 ^ 1 are quotients 
of the universal cover of 5'L(2, R) by discrete subgroups. (Similar results were obtained at 
the same time by Dolgachev.) 

Thus many links admitted a locally homogeneous (any two points have isometric neigh
borhoods) Riemannian metric and hence provided nice examples of Thurston's eight ge
ometries [58]. These results were extended by Neumann [48]. Later he and Scherk [44] 
found a more natural way of describing the connection between the geometry on the link 
and the complex analytic structure of the singularity in terms of locally homogeneous non-
degenerate CR structures. 

The three-dimensional Brieskorn manifolds have also been central examples in the study 
of the group 0^ of homology three-spheres. This group is bound up with the question 
of whether topological manifolds can be triangulated. It was originally thought that this 
group might just have two elements. However, techniques from gauge theory were used 
to show that it is actually infinite and even infinitely generated. In particular the elements 
j^(2, 3, 6A: — 1) for /: ^ 1 have infinite order in this group, and are linearly independent. 
Brieskorn manifolds appear in this context because the three-manifolds are boundaries of 
plumbed four-manifolds upon which explicit surgeries can be performed [17]. 

Also, the Casson invariant of some types of links of surface singularities in codimension 
one (including Brieskorn singularities) was proved to be 1/8 of the signature of the Milnor 
fiber [45]. 

7. Other developments 

This last section recounts two developments which occurred outside the main stream of 
events as recounted in the previous sections. They are both applications of topology to 
algebraic geometry. The first is a theorem of Dennis Sullivan [56]: 

THEOREM 7.1. If K is the link of a point in a complex algebraic variety, then the Euler 
characteristic of K is zero. 

If the point is smooth or an isolated singular point, then the hnk is a compact manifold 
of odd dimension and hence has Euler characteristic zero. The surprising feature of this 
result is that it should be true for nonisolated singularities as well. 
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Sullivan discovered this result during his study of combinatorial Stiefel-Whitney 
classes. He recounts that initially it was clear to him that this result was true in dimen
sions one and two. He then asked Pierre Deligne if he knew of any counterexamples in 
higher dimensions, but the latter replied "almost immediately" with a proof based on re
solving the singularity. Sullivan then deduced this result in another fashion: Since complex 
varieties have a stratification with only even-dimensional strata, the link has a stratification 
with only odd-dimensional strata. He then proved, by induction on the number strata, that 
a compact stratified space with only odd-dimensional strata has zero Euler characteristic. 

Since real varieties are the fixed point set of the conjugation map acting on their com-
plexification, this result has the following consequence for real varieties: 

COROLLARY 7.2. If K is the link of a point in a real algebraic variety, then the Euler 
characteristic of K is even. 

Sullivan remarks that the result for complex varieties follows from essentially "dimen
sional considerations", but that the corollary for real varieties is however "geometrically 
surprising". This result continues to form a basis for the investigation of the topology of 
real varieties. 

The second result is one of Thom. Given a singularity of an arbitrary variety XQ C C " , 
one can ask if it can be "smoothed" in its ambient space C" in the sense that it can be made 
a fiber of a flat family Xt C C"̂  whose fibers Xt for small r 7̂  0 are smooth. For example, 
a hypersurface singularity is smoothable in its ambient space since it is the zero locus of a 
polynomial and hence smoothed by nearby fibers of the polynomial. 

The first example of a nonsmoothable singularity was constructed by Thom (see [19]). 
In fact, Thom showed that the variety X C C^ defined by the cone on the Segre embedding 
P^ X P^ -> P^ is not smoothable: If it were, the link i^^ c Ŝ ^ of X c C^ at the origin 
would be null cobordant (as a manifold with complex normal bundle) in S^^ but it is not. 
This is proved by a computation with characteristic classes. (The manifold AT̂  is odd-
dimensional and hence null cobordant, but not in S^ )̂ 
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CHAPTER 14 

One Hundred Years of Manifold Topology 

S.K. Donaldson 
Department of Mathematics, Stanford University, Stanford, CA 94305, USA 

This article makes little claim to any scholarly merit: it is merely a discussion of some 
episodes in the development of manifold theory which interest the author, partly in the 
light of contemporary research developments. This discussion might perhaps suggest some 
themes which could be dealt with more thoroughly in the future: in the present article we 
cannot come close to doing justice to these large themes. The author would like to mention, 
particularly to colleagues who know far more about these matters than he does, that the 
starting point for this article was a lecture (in St. Catherine's College, Oxford) aimed at 
a general audience, and it is thus more at the level of popular history rather than the 
scholarly study which the material deserves. 

The study of the topology of manifolds can be regarded as beginning with the renowned 
series of papers [14] by Poincare, published between 1895 and 1904. This granted, the 
subject has just past its centenary. It Poincare's papers we find the beginnings of homology 
theory, the fundamental group and the birth of the classification problem, notably of course 
in the Poincare conjecture on simply connected 3-manifolds. This classification problem; 
that is the definition of invariants of manifolds and the enumeration of the manifolds with 
given invariants (in the various categories: topological, smooth, PL, etc.) makes up one pil
lar in the century of work since then. Other pillars are formed by the interaction between 
manifold topology per se and neighbouring areas of geometry and analysis. The theme 
which we will focus on in this article is the topology of complex algebraic varieties, partic
ularly complex surfaces. This was clearly one of the main motivations for Poincare's work: 
it is the first of the three examples of the application of topological ideas which he men
tions in the introduction to [14], and it was the subject of the third and fourth complements 
in the series. 
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1. The Poincare-Picard-Lefschetz description of the topology of a complex 
algebraic variety 

The crucial role of the topology of (real) surfaces in the function theory of one complex 
variable is well-known and goes back to Riemann. In modern language we are dealing with 
compact Riemann surfaces, which have of course a single topological invariant, the genus. 
The early point of view was to think of Riemann surfaces presented as branched covers 
of the Riemann sphere. That is, we consider a branched covering map f \ E -^ CP^ 
of degree d, with branch points bi e CP^ The pair {E, f) can be recovered from data 
consisting of the configuration of points /?/ in the sphere and the monodromy homomor-
phism from 7ri(CP \̂{Z7/}) to the permutation group on d elements. The study of these 
Riemann surfaces was in large part motivated by the study of contour integrals: in modern 
language we consider meromorphic one-forms on the surface E. The importance of topo
logical ideas stems from the connection between these and the genus of the surface. More 
precisely the space of holomorphic 1-forms {ov forms of the first kind) has dimension g. 
A meromorphic 1-form with zero residue at each singularity is called aform of the second 
kind, and another important fact is that the forms of the second kind, modulo the deriva
tives of meromorphic functions, form a space of dimension 2g (isomorphic to the first real 
cohomology group of E). 

Beginning in 1882, E. Picard began the study of meromorphic forms and their integrals 
on complex algebraic surfaces [13]. This lead him naturally to topological questions which, 
as mentioned above, were taken further by Poincare and developed into a comprehensive 
theory by Lefschetz [11]. The point of view all these authors adopted was to describe a sur
face as the total space of a family of hyperplane sections: a "Lefschetz pencil". (A detailed 
modern treatment of Lefschetz' theory has been given by Lamotke [10]). This is the natural 
generalisation of the description of a Riemann surface as a branched cover. For example, 
suppose our complex surface S is embedded in projective 3-space and so, leaving out the 
points at infinity, can be described by the solutions of a polynomial equation P(x, y, z) = 0 
in three complex variables x, y, z. Then for each fixed r G C the equation P(x,y,t) = 0 
defines a complex curve Ct in the x-y space, and the main idea is to study S via this fam
ily of curves. If the polynomial is reasonably generic then Ct will be smooth for all but 
finitely many values of t, and at these exceptional values the curve will acquire an ordi
nary double point, with two branches crossing transversally. More precisely, the generic 
picture is the complex analogue of that of the Morse function in differential topology: the 
function on the affine part of the surface given by projection to the z coordinate has finitely 
many critical points, around each of which it is given by a nondegenerate quadratic form 
in suitable holomorphic local coordinates. In more abstract, and more general, language, 
we suppose that L -> 5 is an ample line bundle and that ^o. -̂ 00 are two sections of L, 
cutting out curves Co, Coo C S which we suppose meet transversally in a finite set Ain S. 
The ratio / = s\/so is a meromorphic function on S which gives a genuine holomorphic 
map / from the blow-up 5* of 5 at the points A to CP^ We suppose that this satisfies the 
Morse condition as above, interpreted in the obvious way over the point at infinity. We also 
suppose that there is a single critical point lying over each critical value. For t e CP^ the 
fibre f~^(t) is a complex curve C/ which can be identified with the curve in S cut out as 
the zero-set of the section ô — tSoo of L. 

In the picture above there are a finite number, r say, of critical values bi in CP^ and 
away from these the map / is a fibration. The structure of / around a critical value is 
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determined by a "vanishing cycle". Suppose without loss that 0 is a critical value and 
consider the family of Riemann surfaces Q as t runs over a small interval [0, e] in R C C. 
The singular fibre Co can be thought of as being obtained from the smooth fibre Q by 
collapsing a circle <5 C Q to a point. To be completely explicit we may work in local 
coordinates zi,Z2 about the critical point in which / is given by z\-\-z\. Then a model for 
the vanishing cycle is the circle given by the real solutions of the equation z\-\- z\ = s. 
This vanishing cycle 5 is well-defined up to isotopy of the generic fibre of / . 

A fundamental ingredient in the Picard-Lefschetz-Poincare theory is the monodromy 
action on the homology of the fibres. If to, t\ are points in CP \̂{Z?/} and y is a path from 
0̂ to t\ which avoids the critical values there is a monodromy map, well-defined up to 

isotopy, 0^ : Ct^ -^ Ct^ which induces a corresponding map 0^ on H\. It is striking that 
these early authors do not consider the map 0^ explicitly but pass directly to homology. In 
any case the key thing is to consider the monodromy of a path y which loops once around 
a single critical value and returns to the same base point, for example the circle \t\ = e in 
our standard model. For this path the monodromy is the Dehn twist of the fibre Q about 
the vanishing cycle 6. That is, we identify a neighbourhood Â  of 5 in Cg with the cylinder 
R/Z X [0, 1] and define a map from Q to itself to be equal to the identity outside Â  and 
by the formula {0, s) v^ {0 -{- 5, s) inside A'̂ . Again, up to isotopy, this is independent of 
choices (one needs to check orientations: the map is pinned down by an orientation of Q , 
but an orientation of 5 is not needed). This description of the monodromy leads directly to 
the famous Picard-Lefschetz formula for the action on homology 

for rjeHiiCs). 
We can now state the Picard-Lefschetz description of the homology of the surface S. 

Let us suppose for definiteness that all the critical values are contained in a large disc in C 
and that the imaginary parts of the critical values are all different. Choose two base points 
t-, /+ on the real line, with f_ <^ 0, f+ ^ 0 and fix paths y-"̂ , y.~ from the critical value bi 
to t-, r-f, respectively, which are made by slightly bending the horizontal lines Im(^) = 
constant through the critical values. By transporting the vanishing cycles along these lines 
we get a collection of curves 8'^ in C+ = Ct+ and another set 8^ in C_ = Ct_. Now define 

A:HiiC-) -^ Z^ B:Z'' ^ //i(C+) 

by 

Airj) = {{87.rj)), B(Xi) = J2^i^t • 
i 

Then the composite B o A\H\ (C+) -> H\ (C_) is zero and the homology of the complex 

0 ^ / / i (C-) ->II -^ //i(C+) ^ 0 

is given by 

kerA = H^{S) = H^^^S), ker B/Im A = C ^ / C , 

coker5 = Hx{S) = Hi{~S). 
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Here we mean by C the homology class of the fibres Ct in H2(S): this has self-inter
section 0 so is contained in its orthogonal complement C C H2(S) with respect to the 
intersection form. We should also recall that 

/ /2(^) = / / 2 ( 5 ) e z ^ 

the extra summand being generated by the fundamental classes of the exceptional curves 
in the blow-up. (At the level of differential topology, the blow-up S is the connected sum 
of S with a copies of the orientation-reversed projective plane, but again this point of view 
comes much later.) A variant of this construction is to use the fact that the vanishing cycles 
naturally define classes in Hi (C^\A) and to consider maps: 

0 -> / / i(C-) -> Z" -> //i(C+\A) -> 0 

defined as before. This gives a complex which computes the "primitive part" of H2(S), 
which is just the orthogonal complement with respect to the intersection form of the 
curve Co. 

If we choose a large semi-circle in the upper half plane joining r+, t- we can transport 
the cycles 8^ from C+ to get a second set of cycles, which we still denote by 8'^ in C_. 
These can be expressed in terms of the original set 8^_ using the monodromy formula: if 
the critical values are ordered so that the imaginary part of bi decreases with / we have: 

5+=:5f, 8^ = Ri{8-), 8^ = R2Ri{8-), . . . , 

where Rj is the endomorphism of H\(C-) given by RiXfl) = rj — (5,~, ^)^r' (Then one 
can check that the equation B o A = 0 follows from the condition RnRn-i ... R2R\ = 1 
which holds because the monodromy around a large circle is trivial.) So in sum the Picard-
Lefschetz-Poincare theory gives a complete description of the homology of the surface in 
terms of the collection of vanishing cycles 8^ in the fibre C_. 

By itself, the description above does not seem to lead to any general results about the 
homology of complex surfaces, but it gives a framework within which such results can 
be obtained by a deeper study. The first such result stated by Lefschetz is a particular 
case of what is called the "hard Lefschetz theorem" for the first homology of S. This can 
be expressed in various equivalent ways (cf. [10, 7]). In terms of cohomology (with real 
coefficients), if we let h e H^(S) be the fundamental class of one of the curves Q (i.e. the 
first Chern class of L) then the result asserts that: 

(ai, Qf2) i-> {oi\ U a2 U /z, [S]), 

defines a nondegenerate skew form on H^(S). In particular the first Betti number of S is 
even. Lefschetz observes from this ([ 11, p. 18]) that there are compact oriented 4-manifolds 
which are not homeomorphic to algebraic surfaces, in contrast to the case of complex 
curves. (Of course we would find it simpler to use the fact that the second Betti number of S 
is nonzero.) In the framework of the vanishing cycles description above, the hard Lefschetz 
assertion translates into the following: let V c H\{C-\ R) be the subspace generated by 
the vanishing cycles 8~ and V-̂  be its annihilator under the intersection form on H\. The 
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subspace V-^ consists of the "invariant cycles", fixed by the monodromy around all loops. 
According to our general statement, H^(S) can be identified with V-^ and hard Lefschetz 
is the assertion that the intersection form on H\ (C_) restricts to a nondegenerate form on 
y-^, or equivalently that V D V-^ = 0 - the invariant cycles are complementary to the 
vanishing cycles. 

Lefschetz' direct topological argument to prove that V n V"̂  = 0 is notoriously hard to 
follow. However, he also gave ([11, p. 62]) a transcendental argument to prove the asser
tion. According to results of Picard [13], there is for every nonzero invariant cycle rj e V^ 
a closed one-form a of the second kind on S (that is, a meromorphic 1-form with zero 
residues) whose integral around ?7 is 1. But then if T] lies in V it bounds in S, so the integral 
of a around r] must be zero, a contradiction. The essential point here is that a closed one 
form of the second kind defines a cohomology class, even though it has singularities. The 
fact that 

1 closed one-forms of 2nd kind 

(i-meromorphic functions 

seems likely to also have been known to Picard-Lefschetz, although I have not been able 
to trace a precise statement. 

It would be extremely interesting to reconstruct, if possible, a direct topological proof 
of the hard Lefschetz theorem. In this direction we would Hke to point out that it seems 
that one cannot prove the result using only the general properties of the pencil description. 
More precisely we consider "topological Lefschetz fibrations". By this we mean a smooth 
map d'.X -^ CP^, where X is some differentiable 4-manifold, such that ^ is a submersion 
outside a finite set of points in X and the structure around these critical points is mod
elled on the complex case. The whole discussion of vanishing cycles, etc. goes through 
to this situation, but the analogue of the hard Lefschetz theorem is not true: we can find 
4-manifolds X which admit such a topological fibration but with odd first Betti number. 
For example, suppose that S -^ CP^ is a genuine complex fibration as considered above, 
and that 7/^5) is nonzero, so we have a nontrivial decomposition 

//i(C) = y e v ^ 

of the homology of a generic fibre C. Take an element in H\{C) which does not He in 
either of the subspaces V, V^ and which can be represented by an embedded circle r in 
the Riemann surface C. The Dehn twist in r is a diffeomorphism a of C and using the 
Picard-Lefschetz formula one sees that V-^ 0 a^{V^) is the codimension one subspace 
of y-^ consisting of classes whose intersection with r is zero. In particular, the dimension 
of y-^ n a*(y-^) is odd (since that of V-^ is even). Now form a topological Lefschetz 
pencil X by taking the fibre sum of two copies of 5, gluing together the boundaries of 
the tubular neighbourhoods of copies of C, but using the nontrivial diffeomorphism a to 
identify the two copies. We get a topological Lefschetz fibration with twice the number of 
critical values as in the original pencil S and the invariant subspace V^ is V-^ Pi a*(y-^), 
so the first Betti number of X is odd. 

One can counter this example by various points. One salient point is that Lefschetz' 
argument in ([11, Chapter II, Section 13]) uses the fact that in the complex case one may 
suppose the pencil forms part of a larger linear system: that is, he uses a third section of the 
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line bundle L or in geometrical terms the existence of a holomorphic branched covering 
map from S to CP^. But in any case the discussion above perhaps highhghts further the 
interest in understanding the topological meaning of the hard Lefschetz theorem, a theme 
we will return to in Section 3 below. 

One of the features that distinguishes Lefschetz' work from his predecessors' is that he 
went on to consider algebraic varieties of all dimensions. The general set-up is the same: if 
Z is an n-dimensional complex projective manifold one considers a blow-up Z of Z along 
an axis A and a "meromorphic Morse function" 

/ : Z - > C P ^ 

with a finite number m of critical points. (In the case of Riemann surfaces we are just 
considering branched covers with simple branch points.) The generic fibre, or hyperplane 
section, Y is an (n — l)-dimensional complex manifold and the vanishing cycles are now 
embedded n — I spheres in Y. Then the homology groups Hp{Z), Hp{Y) are isomorphic 
fox p ^n — 2 (the "hyperplane theorem") and there is a complex 

0-^Hn-x {Y) -^U -^ Hn-i {Y\A) -^ 0 

which computes Hn-i{Z), its dual Hn^i(Z), and the "primitive part" of the middle-
dimensional homology of Z. This higher-dimensional theory also gives results about sur
faces. By starting with a projective space and applying the hyperplane theorem to a se
quence of intersections one deduces that any complex surface which is a complete inter
section in some projective space must be simply connected: so for example no product of 
Riemann surfaces E\ x E2 apart from S^ x 5^ can be a complete intersection: a purely 
algebro-geometric application of the topological theory. 

In the 1930's and 1940's Hodge [8] developed a completely different approach to the 
homology of complex projective varieties. Hodge's main theorem, that the cohomology of 
a compact Riemannian manifold can be represented by harmonic forms, applies to gen
eral manifolds, but the most important applications arise in the case of complex manifolds. 
These include proofs of the hard Lefschetz and "primitive decomposition" theorems (which 
express the whole homology of a complex algebraic variety as a sum of copies of the prim
itive parts, as encountered above, see [10,7]). The key notion in this theory is the existence 
of a Kahler form co on 3. complex projective manifold Z, whose de Rham cohomology 
class is the Poincare dual of the class of a hyperplane section. Thus Z is simultaneously 
a complex, symplectic and Riemannian manifold and all three structures play a role. The 
primitive decomposition, from Hodge's point of view, arises from the fact that the opera
tion of wedge product with co, which corresponds at the level of cohomology to intersecting 
cycles with a hyperplane, maps harmonic forms to harmonic forms. In a similar vein, the 
special properties of harmonic forms on a Kahler manifold were shown by Deligne et al. 
[2] to lead to further topological constraints: all the Massey products on such a manifold 
are trivial. Recall that these are higher order operations, defined on cohomology classes 
whose primary cup products vanish. In the simplest case of classes defined by holomor
phic forms this follows from the fact that the wedge product of holomorphic forms is again 
holomorphic and if the product vanishes in cohomology it does so pointwise. More gen
erally, the real homotopy type of such a manifold is "formal"; entirely determined by the 
cohomology ring and fundamental group. 
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2. Whitney discs and high-dimensional manifold topology 

In this section we change tack and discuss a result of Whitney [21] which is a milestone 
in the development of geometric topology (and, incidentally falls almost exactly mid-way 
through the century of development of that subject). The problem Whitney was considering 
was the embedding of a compact oriented w-manifold M" in Euclidean space, and the 
result he proved was that M" can be embedded in R^". Recall that the much easier result 
in this direction is that M'̂  can be embedded in R^"+^: this follows from general position 
arguments, indeed a generic map from M" to R^"+^ is an embedding. In a similar way 
one can see that a generic map from M" to R^" is an immersion, with a finite number of 
double points where two sheets cross transversally. Using the orientations we can attach 
a sign to each of these intersection points. The immersion may be chosen to have normal 
Euler number zero and then the algebraic sum of the intersections vanishes. For example, 
suppose there are just two double points p^, p- with opposite signs: the problem Whitney 
addressed is to show that the map can be modified to cancel these two intersection points. 
The argument used in an essential way a hypothesis on the dimension: n > 3. (The main 
result on embeddings is true for all n, but we use a different argument for n = 1, 2: indeed 
we know that the circle embeds in R^ and any oriented surface in R-̂ .) 

The significance of Whitney's argument is that homological conditions which are rather 
clearly necessary (algebraic intersection zero) are shown by a deeper analysis to be ac
tually sufficient to obtain a geometrical statement: removal of double points. With minor 
variants, Whitney's argument adapts to other problems involving submanifolds, or pairs of 
submanifolds, always provided suitable dimension restrictions hold, and it is this which ac
counts for the division of manifold theory into "high-dimensional" and "low-dimensional" 
topology. We will sketch a version of Whitney's argument for the case of a pair of middle-
dimensional submanifolds P ' \ 2 " C V^", where all manifolds are oriented, P and Q are 
connected and V is simply connected. (For a complete treatment, in the PL setting, see 
[17].) If P and Q are in general position they have a finite number of transverse intersec
tions: we would like to deform P and Q to remove these intersections. More precisely, we 
seek an isotopy ft of V with /o the identity and with f\{P) disjoint from Q. The obvi
ous necessary condition is that the homological intersection number P • Q is zero, and the 
main result is that if n ^ 3 this condition is also sufficient. Suppose again for simplicity 
that there are just two intersection points i;+, V- with opposite signs. Then we choose an 
embedded path yp from 1;+ to V- in P and another one YQ in Q. The loop YPYQ^ bounds 
a map of the disc D into V since V is simply connected. Now the condition n ^ 3 is used 
in three different ways. 

1. Since dim V > 4, a generic map from the 2-dimensional disc D to V is an embed
ding. 

2. Since dim V > 2 + dim P, a generic map of the disc does not meet P in its interior, 
likewise for Q. 

3. Given an embedded disc D as above, we wish to choose a framing of the normal 
bundle to D in V, (e\,..., e2n-^, fu - • -, fin-i) such that over YP the ej give a framing 
for the normal bundle of YP in P and likewise for the fj over YQ- The obstruction to being 
able to make such a normal framing lies in Tri(S0(2n — 2))/n\{S0{n — 1) x SO{n — 1)), 
which vanishes fovn ^ 3. 
Having made these three steps, the normal framing allows us to identify a neighborhood of 
D in y with a universal model: the product of a lens-shaped region in R^ with R"~ ^ x R"~ ̂ , 
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where P and Q correspond to the two boundary arcs of the lens multipUed by the different 
M"~^ factors. In this model it is then easy to write down the desired isotopy, supported 
in a small neighbourhood of D; pulling one arc of the lens boundary across the other. 
The edifice of high-dimensional manifold theory (developed principally in the 1950's and 
1960's) is in large part built on this Whitney argument. (Of course this edifice relies in 
an essential way on other developments lying closer to algebraic topology and homotopy 
theory, namely cobordism, bundle theory and characteristic classes; there is also the huge 
body of work on the relation between different categories of manifolds, but this article does 
not attempt to be a thorough account - apart from anything else because of the author's 
meager knowledge of all these subjects.) On the one hand, there is the system of ideas 
revolving around handlebody decompositions. On the other hand, there is the theory of 
surgery. Both of these constructions can be seen in the framework of Morse theory. Thus, 
if / : W^'^^ ^- R is a Morse function we can consider for each regular value r G M the 
level set V^ = f~^(T) and the manifold-with-boundary W!^~^^ = /~V(—oo, i]), with 
dWj = Vj. Let To be a critical value with just one associated critical point, of index p 
say - that is, the Hessian of / at the critical point has a maximal negative subspace of 
dimension p. Then as the parameter r increases through the critical value to we have the 
following, locally standard, descriptions. 

1. The level set Vz changes by a surgery on a (;? — 1) sphere: so Vr+e is obtained from 
Vr-e by cutting out a tubular neighbourhood D^^~P^^ x S^"^ C Vx-e and replacing it by 
^n-p ^ jr)p ^^\Y^Q\^ has the same boundary: 

9(^^i-P+i X SP-^) = d{S''-P X DP) = S^'-P X SP-\ 

2. The manifold-with-boundary Wj changes by attaching a p-handle: so Wr+e is ob
tained from W-c-e by attaching the handle DP x Z)«+i-P along a neighbourhood of the 
{p — l)-sphere considered before in the boundary VX-E-
Given any closed « + 1 manifold W we can always choose a Morse function on W and 
get a description of the manifold as a handlebody, by successively attaching handles as 
above. In fact, we get two such descriptions, one using / and one using —/. (At the 
level of homology this gives a proof of the Poincare duality theorem, essentially the same 
as that via dual cell complexes.) One fundamental problem is to simphfy the description 
as far as possible, subject to the constraints given by the homology groups. If « ^ 5 
and the manifold is simply connected one of the main results of Smale [18, 19] asserts 
that this can be done. Suppose for simpUcity that the homology groups of W have no 
torsion, then Smale constructs a handle decomposition/Morse function with the minimal 
number bp of handles/critical points of index p, where bp is the p-\h Betti number of W. 
The crucial point is this: if we start with a Morse function having excess critical points 
one reduces to the case when there are critical points a, b of adjacent indices p, p -\- I 
with f(a) < f(b) (and with no other critical values in the interval [f(a), f(b)]) which 
"cancel" from the point of view of homology. The meaning of this is that if we choose 
an intermediate level Vx with r e (f{a), f{b)) the /^-sphere in Vx used to attach the 
handle belonging to b has homological intersection number ±1 with the {n — /7)-sphere 
used to attach the handle belonging to a when we "turn the picture upside down" and 
replace / by — / in our handle decomposition. Now in this dimension range the Whitney 
disc argument allows us to deform these spheres inside the manifold Vx to have a single 
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transverse intersection point, and then one can go back to change / , in the neighbourhood 
of a path from a to b, to remove these excess critical points. 

A particular case of the discussion above is when W has the homology of the (« + 1)-
sphere: Smale obtains then a Morse function with only two critical points from which a 
proof of a version of the generalised Poincare conjecture follows immediately: a differen-
tiable manifold homotopy equivalent to S^, m ^ 6, is homeomorphic to S'^. (The result 
is true for m = 5, with a more complicated proof.) A variant for manifolds-with-boundary 
gives the /i-cobordism theorem: if VQ, V\ are simply-connected w-manifolds, n ^ 5, and 
W is a cobordism from VQ to Vi which retracts onto both Vo and Vi, then W is diffeomor-
phic to a cylinder and VQ and Vi are diffeomorphic. The point of this, of course, is that the 
existence of any cobordism from VQ to V\ is a well-understood problem, following Thom, 
and among all the cobordisms the /z-cobordisms can be readily detected algebraically, via 
their homology. 

Similar issues arise in the other fundamental construction of surgery. If P is a (p — 1)-
sphere embedded in an /i-manifold V with trivial normal bundle then one can perform a 
surgery as above, cutting out a neighbourhood SP~^ X D^~P'^^ of P in V and replacing it 
by SP X D"~^. (The construction may depend on a choice of a specific triviaUsation of the 
normal bundle in certain dimension ranges.) Under suitable conditions the new w-manifold 
will have smaller homology than the original one. By Poincare duality it suffices to work 
in dimensions p — I ^ n/2. Suppose we know that a particular homology class can be 
represented by some map of the (p — l)-sphere (i.e. lies in the image of the Hurewicz ho-
momorphism), then in the critical case of the middle dimension when p — I = /2/2 we can 
use the Whitney argument to obtain an embedded sphere. (For smaller p this comes im
mediately from general position.) The normal bundle condition can be attacked via bundle 
theory and characteristic classes. 

This sketch scarcely does justice to the vast body of work on high-dimensional mani
fold topology, but perhaps at least gives an inkling of the reasons for the differences be
tween low and high dimensions. As an illustration of the many concrete classification re
sults which have been obtained let us quote a result of Smale. Any compact, 2-connected, 
6-manifold is diffeomorphic to either S^ or a connected sum of copies of S^ x S^. This 
statement is the obvious generalisation one might hope for starting from the classification 
of surfaces (although of course the proof is much harder). More generally, Wall [20] gave 
a classification of (m — 1)-connected 2m-manifolds for m ^ 3. Optimistically, one might 
expect that something similar happens in the intermediate case when m = 2, that is, of 
simply connected 4-manifolds, but - as we shall describe in the next section - the picture 
there is quite different. 

3. Four dimensions and symplectic topology 

The algebraic topology of a simply connected 4-manifold X is straightforward: everything 
is determined by the intersection form on HiiX), a nondegenerate quadratic form over 
the integers. The naive guess would be that the manifold classification problem should 
follow the algebraic classification of forms. One of the first authors to discuss this issue 
expUcitly was Milnor [12]. The examples furnished by complex algebraic surfaces were 
prominent from this time; in particular Milnor discussed the topology of what are now 
called K'i surfaces. A K3 surface is, by definition, a compact complex surface with first 
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Betti number zero and with trivial canonical bundle. All such are diffeomorphic and have 
intersection form Es^Es^H^H^H, where £"8 is the negative definite rank 8 form 
associated to the roots of the corresponding Lie algebra and H is the standard even rank 2 
form (x,y) \-^ 2xy. The bundle theory relevant to 4-manifolds, and questions such as the 
existence of plane fields and almost complex structures, was developed by Hirzebruch and 
Hopf. One easy result is that a simply-connected 4-manifold has a spin structure if and only 
if the intersection form is even. A much deeper fact is Rohlin's theorem [16]: the signature 
of a spin 4-manifold is divisible by 16 whereas, as a matter of algebra, the signature of an 
even form need only divisible by 8 - witness the form Eg. For example, the K3 surface is 
spin and has signature —16. There cannot be a smooth simply connected 4-manifold with 
intersection form Es, nor, more generally, any sum of an odd number of copies of E^ and 
copies of//. 

Four-dimensional manifolds can be studied via handle decompositions and a detailed 
"calculus" for manipulating these was developed by Kirby and his school, through which 
experts achieve a remarkable ability to visualise 4-dimensional topology. However, in this 
dimension where the Whitney argument does not apply, general results were hard to come 
by. Substantial progress came in the early 1980's when, on the one hand, Freedman [5] 
pushed techniques from high-dimensional topology through to achieve a complete classifi
cation of simply connected topological 4-manifolds up to homeomorphism. As well as the 
general machinery of the /z-cobordism theorem, etc., Freedman's theory used a novel infi
nite construction, starting with work of Casson, to surmount the difficulties caused by the 
unwanted intersections of Whitney discs. Freedman's result (incorporating a refinement 
of Quinn) can be stated as follows: for every odd quadratic form Q there are exactly two 
homeomorphism classes of 4-manifolds, XQ, YQ say, where XQ X M can be given a smooth 
structure but YQ x W cannot; while for every even form there is just one homeomorphism 
class ZQ, where ZQ xR can be given a smooth structure if and only if the signature of 
Q is divisible by 16. A particular case of Freedman's result is the proof of the topological 
version of the 4-dimensional Poincare conjecture. 

On the other hand, starting in the early 1980's, new techniques for studying smooth 
4-manifolds were found which depended in an essential way on differential geometry and 
analysis. A landmark in the mid 1990's was the introduction of the Seiberg-Witten equa
tions [22] which seem, at the time of writing, to have brought these developments - as 
far as the foundations go - into fairly final form. There are a number of surveys of these 
developments (for example, [3, 4, 6]), so we prefer not to rehearse the details here, but 
suffice it to say that for any 4-manifold X the Seiberg-Witten theory defines a collection 
of "basic classes" K e //^(X) (along with coefficients n,^). These are differentiable in
variants but definitely not homeomorphism invariants: there are now in the literature hosts 
of examples of (simply connected) smooth 4-manifolds with the same intersection forms, 
hence homeomorphic according to Freedman, which are distinguished differentiably by 
their Seiberg-Witten invariants. The invariants are defined by counting in a suitable sense 
the solutions of a partial differential equation over X involving a connection on an aux
iliary bundle and a spinor field: the equation requires the choice of a Riemannian metric 
on the 4-manifold, although the "number" of solutions does not in the end depend on this 
choice, somewhat in the mould of the Hodge theory. Similarly, arguments with these equa
tions give obstructions, beyond Rohlin's theorem, to the reaUsation of forms by smooth 
manifolds, i.e. to smoothing many of Freedman's manifolds. 
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The Seiberg-Witten invariants, viewed as preferred cohomology classes defined by the 
smooth structure of the 4-manifold, are shghtly reminiscent of characteristic classes in 
classical manifold theory and there are indeed important connections with the first Chern 
class c\(TS) in the case of a complex algebraic surface S: the first Chern class is a basic 
class (with multiplicity 1) and, outside a small range of examples which can be listed 
explicitly, there are no other basic classes of S. The K3 surface is an important example in 
all of this theory: it appears in a sense as the "simplest" 4-manifold, despite its apparently 
complicated topology. This is connected with the fact that the K3 surface admits a hyper-
Kahler metric, and with its very high degree of symmetry: the diffeomorphisms of the K3 
surface realise an index 2 subgroup of the group of isometrics of the intersection form. 

Important results of Taubes extend the discussion of the invariants of complex algebraic 
surfaces to general symplectic 4-manifolds. If (X, co) is a symplectic 4-manifold there is a 
unique homotopy class of compatible almost-complex structures so we have a first Chern 
class ci and again this is a basic class with multiplicity 1, so in particular the Seiberg-
Witten invariants of X are nontrivial. In this case, however, there can be many additional 
basic classes. According to Taubes these are related to the "Gromov invariants" defined by 
counting the complex curves in X with respect to an almost-complex structure. 

Despite all this progress, the classification of smooth 4-manifolds (including the 
4-dimensional smooth Poincare conjecture) remains a mystery; likewise for the circle of 
questions involving the relation between the three classes 

Complex algebraic surfaces C Symplectic 4-manifolds C 4-manifolds. 

In general, one does not know if the phenomena detected by the Seiberg-Witten equations 
are the complete story or whether there is more to say. We can illustrate some of these 
points by returning to the Lefschetz pencils of Section 1. We have seen that a complex 
algebraic surface can be described by such a pencil and that this leads to a collection of 
vanishing cycles 8^ in a Riemann surface C_. These are unique modulo an equivalence 
relation generated by certain "moves" that one can describe. This data, a collection of cir
cles in a Riemann surface, is closely related to the data specifying a handle decomposition 
of the complex surface. The vanishing cycles determine the monodromy of the pencil and 
hence the whole structure of the fibration. More generally, one may consider topologi
cal Lefschetz fibrations, determined by any collection of loops 5/ in a Riemann surface 
subject to the condition that the product of their Dehn twists is the identity. As we have 
seen in Section 1 there are examples of these which do not come from complex surfaces, 
but according to unpubhshed work of Gompf, the total space always admits a symplectic 
structure. Thus one point of view on the comparison between symplectic 4-manifolds and 
complex algebraic surfaces is to say that one is asking what are the special properties of 
the patterns of vanishing cycles coming from genuine algebro-geometric fibrations. The 
hard Lefschetz theorem gives one such special property, but there must be many more. The 
difficulty of these problems arises from the fact that while the Picard-Lefschetz theory has 
to do with the homology classes of the vanishing cycles we are now asking about the full 
isotopy classes which are much less tractable. 

When we go to higher dimensions the differential topology of algebraic varieties comes 
under firm control, using the techniques discussed in Section 2. From our present point 
of view this amounts to saying that there is little extra differential topological informa
tion, beyond homology, in the patterns of vanishing cycles which arise: they can be pulled 
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around by the Whitney argument. The same is not however true when we consider symplec-
tic topology, in which "new" phenomena - loosely speaking, beyond algebraic topology -
occur in all dimensions. One can show that the vanishing cycles are naturally Lagmngian 
submanifolds of the fibre 7/ and it is reasonable to expect that questions about the sym-
plectic topology of the total space Z have to do with the problem of removing excess 
intersection points of these Lagrangian vanishing cycles by symplectic isotopies. This type 
of Lagrangian intersection problem has been the subject of tremendous developments in 
the past 20 years, along with the whole subject of symplectic topology. A particularly im
portant case occurs when one submanifold is the graph of a symplectic map and the other 
is the diagonal, so the intersection points are the fixed points of the map. Much of the 
progress in this area springs from the "Arnold conjecture" made in [1]. For simpHcity con
sider a compact symplectic manifold M with trivial first homology; then the conjecture 
asserts that if / is a symplectic map which is symplectically isotopic to the identity then 
the number of fixed points of / (assuming these are transverse) cannot be less than the 
sum of the Betti numbers of M. By contrast, for a general map which is merely isotopic to 
the identity the best lower bound is given by the Euler characteristic, which can be strictly 
smaller. A general result in this direction was proved by Floer, and the problem was one 
of the main motivations for his development (in the late 1980's) of the theory of Floer ho
mology, which also bears on more general Lagrangian intersections (see, for example, the 
papers and references in [9]). To sum up we can say that while the past century has seen 
vast developments in our understanding of manifolds there are still fundamental questions 
about which almost nothing is known, and a notable feature of many current developments 
is that they are enriched by contact with other branches of geometry and analysis in the 
spirit of Poincare original conception. Indeed, to bring our story full circle, we can ob
serve that the origins of Arnold's conjecture, and, hence, of much of the current activity in 
symplectic topology, go back to the last paper published by Poincare [15], in which - mo
tivated by the search for closed orbits in Hamiltonian systems - he discusses fixed points 
of symplectic (i.e. area-preserving) maps from an annulus to itself. 
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1. Introduction 

In this paper we discuss the development of 3-dimensional topology, from its beginnings in 
the 1880's, up until roughly 1960. The decision to stop at 1960 was more or less arbitrary, 
and indeed we will sometimes briefly describe developments beyond that date. Our account 
is very much in the nature of a survey of the literature (an internal history, if you will), an 
approach which is feasible because the Hterature is so finite. (This continues to be true 
through the 1960's, when the number of people working in 3-dimensional topology was 
still relatively small. During the last twenty years or so, not only has the actual literature 
grown tremendously, but the number of major themes in the subject has also increased.) 

The early papers that deal with 3-manifolds are few: Poincare's Analysis Situs [79] and 
his fifth complement to that paper [81], Heegaard's dissertation [44], Tietze's Habihtation-
schrift [110], and the paper of Dehn [22], is almost a complete Ust up to the end of the 
First World War, and one or two short papers of Alexander, together with Kneser's paper 
[56], then take us through the next decade. The 1930's saw an increase in activity, with the 
work of Reidemeister, Seifert, Seifert and Threlfall, and others, in Germany, and, in Eng
land, J.H.C. Whitehead, but this ended with the Second World War, and not much more 
appeared until the 1950's, when we find Moise's proof of the existence and uniqueness 
of triangulations [65], Papakyriakopoulos' proof of Dehn's lemma and the sphere theo
rem [72], and, at the end of the decade, Haken's use of normal surfaces to solve the knot 
triviality problem [42]. 

This last is an instance where it would be artificial to try to separate knot theory from 
3-dimensional topology (the discussion of Dehn surgery in [22] is another), but in general 
we have ignored papers that deal specifically with knots, such as Dehn's 1914 paper [23]. 
Another topic that we do not discuss is "wild" topology. 

My warmest thanks go to Helene Barcelo for help with Poincare's French, to Gerhard 
Burde for the useful information he gave me about the German school and its hterature, 
and especially to Cynthia Hog-Angeloni, for generously providing English translations 
of several German papers. Thanks also to Wolfgang Metzler and Alan Reid for helpful 
comments on the original manuscript. 
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2. Beginnings 

Possibly the first attempt at a systematic approach to the study of 3-manifolds is contained 
in a short note by Walther Dyck in the Report of the 1884 Meeting, held in Montreal, of 
the British Association for the Advancement of Science [27]. He says his goal is to classify 
3-manifolds: 

The object is to determine certain characteristical numbers for closed threedimensional 
spaces, analogous to those introduced by Riemann in the theory of his surfaces, so that 
their identity shows the possibility of its 'one-one geometrical correspondence'. 

He offers the following method of construction of 3-manifolds: 

We cut out of our spacê  2k parts, limited by closed surfaces, each pair being respec
tively of [genus] p\, P2^ • •' ^ Pk- Then, by establishing a mutual one-one correspon
dence between every two surfaces, we close the space thus obtained. 

The "characteristical numbers" he had in mind are the genera p\, pi, - - •, Pk of the 
surfaces and "the manner of their mutual correspondence". 

Presumably Dyck's construction was suggested by the fact that any closed orientable 
surface can be obtained by removing an even number of disjoint disks from S^ and identi
fying the resulting boundary components in pairs. Perhaps it was also this analogy that led 
him to make the rather rash claim that 

we can form all possible threedimensional spaces by [this] procedure. 

Dyck notes that his construction gives a 3-manifold containing nonseparating surfaces, 
and closed curves "which can neither be transformed into each other, nor be drawn together 
into one point". 

To illustrate his remark about closed curves, Dyck gives as examples the two 3-manifolds 
obtained by removing a pair of solid tori from S^ and identifying the resulting boundaries, 
firstly, so that meridians are identified with meridians and latitudes with latitudes,^ and 
secondly, so that meridians are identified with latitudes and vice versa. (These manifolds 
are, respectively, the connected sum of two copies of S^ x S'^, and S^ x S^.) He points out 
that in the first case a meridian of one of the solid tori cannot be shrunk to a point, while in 
the second case it can. 

Why was Dyck interested in 3-manifolds? He says his motivation was " . . . certain re
searches on the theory of functions,...", and also mentions the theory of Abelian integrals. 
Poincare is more explicit. In the introduction to his 1895 Analysis Situs paper [79], (which 
we discuss below), he gives three examples to justify his interest in manifolds of dimen
sion greater than 2. (Note that when Poincare talks about«-dimensional Analysis Situs he 
means the study of {n — l)-manifolds in W\) 

The classificadon of algebraic curves into genera depends, after Riemann, on the topo
logical classificadon of real closed surfaces. An immediate induction makes us un
derstand that the classification of algebraic surfaces and the theory of their birational 

^ Dyck explains that by this he means S^, the one point compactification of R-̂ . 
^ These suggestive terms for the two obvious isotopy classes of curves on the boundary of a solid torus became 
standard. Somewhere along the way, however, (possibly first in [121]), "latitude" mistakenly became "longitude". 
In this article we will revert to the original terminology. 
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transformations is intimately connected with the topological classification of real closed 
surfaces in 5-dimensional space. 

Again, . . . , I have used ordinary 3-dimensional Analysis Situs in the study of differen
tial equations. The same researches have been pursued by Dyck. One sees easily that 
generalized Analysis Situs would allow one to treat in the same way equations of higher 
order, and, in particular, those of celestial mechanics. 

Jordan has determined analytically the groups of finite order contained in the linear 
group of n variables. Klein has earlier, by a geometric method of rare elegance, solved 
the same problem for the linear group of two variables. Could one not extend Klein's 
method to the group of n variables, or even to an arbitrary continuous group? 

Finally, Heegaard, in the preface to his dissertation [44], explains the motivation for his 
investigations: 

The theory of functions with one independent variable is very closely connected with 
the theory of algebraic curves. The geometry of such a curve becomes therefore of 
fundamental importance. 

He recalls that one approach to this was "the topological examinations of the Riemann 
surfaces that represent the algebraic curve". He goes on to say: 

The transformations of algebraic surfaces play an analogous role in the theory of func
tions of two variables, 

but regrets that although there has been some attempt to generalize "the Riemann-Betti 
theory of connectivity numbers" to higher-dimensional manifolds (mentioning Picard, 
Poincare and Dyck in this connection), "a completely satisfactory account is nowhere to 
be found". Therefore, he says, before embarking on this approach, "we need a theory of 
correspondence of manifolds of dimension greater than 2". 

These are some of the considerations that provided the impetus for the study of mani
folds of dimension greater than 2. It was only natural that the first case, of dimension 3, 
should receive special attention. 

3. Poincare's Analysis Situs 

Three-dimensional topology was really born in Poincare's foundational paper [79], pub
lished in 1895, (the results were announced in 1892 [77]), where we find it inextricably 
linked with the origins of topology in general. Paper [79] introduces manifolds, homeo-
morphism, homology, Poincare duality, and the fundamental group, and in it 3-manifolds 
appear as examples, both to illustrate these general concepts and also with which to test the 
strength of the topological invariants (the Betti numbers and the fundamental group) that 
Poincare has defined. 

The first mention of 3-manifolds in [79] is to illustrate Poincare's definition of the Betti 
numbers of a manifold V. Having defined homology in V in terms of m-submanifolds 
bounding (m + l)-submanifolds, he then explains that homologies can be combined in 
the same way as ordinary equations, and defines the m-th Betti number fim(y) to be the 
maximal number of linearly independent m-dimensional submanifolds of V? To "clarify 

^ Actually Poincare works with Pm — ^„j + 1, but we will adopt the modern convention (which in [95] is 
attributed to Weyl). 
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these definitions", Poincare considers a submanifold V of R^ bounded by n disjoint closed 
surfaces 5 i , . . . , S„, and asserts that 

1 " 

mentioning as particular examples the region bounded by a sphere, the region between two 
spheres, the region bounded by a torus, and the region between two tori. In these formulae 
we see early hints of Poincare-Lefschetz duality. 

More important for 3-dimensional topology is Poincare's description of 3-manifolds as 
being obtained by identifying faces of 3-dimensional polyhedra. Interestingly, Poincare 
regards the 3-manifold V itself as being embedded in M ,̂ but points out that, if it can be 
decomposed into pieces that are homeomorphic to polyhedra in R^, in such a way that the 
intersections of the pieces correspond to faces of the polyhedra, then 

... the knowledge of the polyhedra P/ and the way their faces are identified provides 
us, in ordinary space, with an image of the manifold V, and this image suffices for the 
study of its properties from the point of view of Analysis Situs. 

He then gives the following five explicit examples of face identifications of a single 
polyhedron P, four with P being the cube, and one with P an octahedron. 

(1) Opposite faces of the cube are identified with no rotation, i.e. by reflection in the 
parallel plane midway between them. 

(2) Two pairs of opposite faces of the cube are identified with an anticlockwise rotation 
through 7r/2, and the third pair with a clockwise rotation through :7r/2. 

(3) Opposite faces of the cube are identified with an anticlockwise 7r/2 rotation. (There 
is a misprint in the identification of the second pair of faces, but this is clearly what is 
intended.) 

(4) Two pairs of opposite faces of the cube are identified with no rotation, and the third 
pair with a rotation through n. 

(5) Opposite faces of a regular octahedron are identified by reflection in the center of 
the octahedron. 

Poincare returns to these examples later, but let us note here that (1) is the 3-torus 7^, 
(3) is quaternionic space, (4) is the T^-bundle over S^ with monodromy [_io], and (5) is 
3-dimensional real projective space RP- .̂ 

Poincare explains that a space constructed from a polyhedron P in this way will be a 
3-manifold if and only if the link of every vertex is a sphere, and shows, using Euler's 
formula, how this can be checked from the manner of identification of the faces of P. In 
particular, this shows that all the above examples except (2) are indeed manifolds. 

The most far-reaching discussion in [79] for 3-dimensional topology, however, begins 
with Poincare considering the idea of obtaining a 3-manifold as the quotient of a properly 
discontinuous action of a group G on R-̂ , relating this to the previous definition by pointing 
out that such a manifold can be described by identifying suitable faces on the boundary of 
a fundamental domain. He says: 

The analogy with the theory of Fuchsian groups is too obvious to labour; I will restrict 
myself to a single example. 
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Despite this remark, it seems that Poincare was not aware of any examples of hyperboUc 
3-manifolds, although he had already, in his 1883 memoir on Kleinian groups [78] (see 
[105] for an EngHsh translation), described the action of P5'L2(C) on the upper half-space 
model of hyperbolic 3-space. 

At any rate, his "single example" is in fact the infinite family of examples MA, one for 
each matrix A = [" ^] € SL2(Z), the corresponding group GA being the group of affine 

transformations of R^ generated by: 

ix,y,z) I—> {x-{- l ,y ,z) , 

(x,y,z) I—> (x,y + l ,z), 

{x, y, z) I—> {ax + fiy, yx + 5 j , z -f 1). 

Thus MA is the T^-bundle over S^ with monodromy induced by the linear map A : R^ -> 
R2 . 

After describing these examples, Poincare begins the next section with the sentence: 

We are thus led to the notion of the fundamental group of a manifold. 

He introduces this with a discussion of how the values of a multi-valued function on a 
manifold V at a point may change when the point describes a loop in V. Thus the function 
undergoes a "substitution", the set of which, when we consider all possible loops, forms 
a group. He then defines the fundamental group of V as the group of (based) homotopy 
classes of loops in V, and states that a group of the first type will always be a quotient of 
this fundamental group. 

Poincare was very much aware of the importance of the fundamental group. In the 1882 
announcement [77] of some of the results which were to appear in [79], he says: 

The group G may thus serve to define the form of the surface ̂  and may be called the 
group of the surface. It is clear that if two surfaces can be transformed one into the 
other by way of continuous deformation, their groups are isomorphic. The converse, 
although less evident, is nonetheless true, for closed surfaces, so that which defines a 
closed surface from the point of view o/Analysis situs, is its group. 

By the time he wrote [79], this last claim had been downgraded to a question: 

It would be very interesting to treat the following questions: 
1. Given a group G defined by a certain number of fundamental equivalences, can it 

give rise to a closed n-dimensional manifold? 
2. How can one construct this manifold? 
3. Are two manifolds of the same dimension, which have the same group G, always 

homeomorphic? 
These questions would require difficult studies and long developments. I will not 

speak of them here. 

No doubt Poincare would have been able to answer his third question if he had thought 
about it a little longer: examples such as S^ and S'^ x 5^ would surely have occurred to 
him. But he had other things to do, and, having put the question aside, he apparently did 
not return to it. It turns out that there are even nonhomeomorphic 3-manifolds with the 
same group, namely lens spaces (see Section 7). Nevertheless, in dimension 3 Poincare's 

Recall that by a "surface" Poincare means an -̂dimensional manifold in R"+^ 
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question is very much to the point: conjecturally, any closed, irreducible 3-manifold, which 
is not a lens space, is determined by its fundamental group. 

Poincare shows how to derive a presentation for the fundamental group of a 3-manifold 
obtained by identifying faces of a polyhedron P\ there is a generator ("fundamental closed 
path") for each pair of identified faces, namely the loop defined by joining, by a pair of 
arcs, a base point in the interior of P to corresponding points in the two faces, and a 
relation ("fundamental equivalence") for each edge in the manifold, which sets the product 
of the generators corresponding to the faces around that edge equal to the identity. From 
the fundamental group, the first Betti number may be calculated simply by abelianizing: 

When one has thus formed the fundamental equivalences, one may deduce the funda
mental homologies, which differ only in that the order of the terms is immaterial. The 
knowledge of these homologies immediately lets one know the Betti number P\. 

Applying this to his earlier examples, he obtains the following presentations for the 
fundamental groups: 

(1) {a, b, c: ab = ba, ac = ca, be = cb); ^\ = 3. 
(3) {a, b, c: a^ = b^ = c^ a"^ = \, c = ab); Px = 0. 

He notes that this is a group of order 8, which acts on R^ (this action is quaternionic 
multiplication, if we identify the group with {±1, ±/, ±7, ±/:}) so as to leave invariant the 
cube with faces x/ = ±1 , 1 ^ / < 4. For this reason he suggests that it might be called the 
hypercubic group. 

(4) {a, b, c: be = cb, ca — ab, b'^a = ac); ^i = 1. 
(5) {a: a^ = 1); ^̂ i = 0 . 
Turning to the examples MA, Poincare notes that here TTI (MA) = GA- He then computes 

the Betti numbers, showing that 

(3, ifA = I, 
^1 (MA) = I 2, if trace A = 2 and A / / , 

I 1, otherwise. 

There then follows a detailed proof, by a direct group-theoretic argument, that GA = GA' 
if and only if A and A^ are conjugate in GL2(Z). (The proof distinguishes the three cases, A 
hyperbolic, elliptic, or parabolic. It is interesting to note that in terms of Thurston's eight 3-
dimensional geometries [109], these cases correspond to MA having a geometric structure 
modelled on Sol, E^, and Nil, respectively; see [92, Theorem 5.5].) In particular, Poincare 
concludes that there are infinitely many distinct closed 3-manifolds with the same Betti 
numbers. 

Poincare also remarks that the fundamental groups of his examples (3) and (5) are finite, 
of orders 8 and 2, respectively, while the group of the 3-sphere is trivial. Thus no two of 
these manifolds are homeomorphic, but, on the other hand, since their groups are finite, 
their Betti numbers are zero. In view of this, Poincare suggests that 

It would seem natural to restrict the meaning of the term simply connected and to reserve 
it for manifolds with trivial fundamental group. 

Poincare wrote five complements to Analysis Situs. The first two were in response to the 
criticisms of [79] by Heegaard, who pointed out, among other difficulties, that Poincare's 
duality theorem for the Betti numbers appeared to be false, citing as an example the man
ifold obtained by gluing together two solid tori in such a way that a meridian of one is 
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identified with a curve that winds twice latitudinally and once meridionally on the other 
(in other words, real projective space RP^). Heegaard points out that every 2-cycle in RP^ 
bounds, but there is a 1-cycle which does not. The problem is, of course, torsion: Poincare's 
definition of the Betti numbers "allows division" [82, Section XVI], in contrast to Betti's 
definition. At any rate, one of the consequences of this was that Poincare realized that one 
could work with homology "without division", and obtain additional invariants, which he 
called torsion coefficients. 

In the second complement, [80], Poincare computes the torsion coefficients of the 
3-dimensional manifolds described in [79]. In particular, his examples (3) (quaternionic 
space) and (5) (real projective space) have the same Betti numbers and torsion coefficients 
(i.e. the same first homology group, namely Z2), but have nonisomorphic fundamental 
groups. Curiously, Poincare does not explicitly mention this, nor does he note that the 
manifolds MA also provide examples of this phenomenon (although not so obviously). 

Poincare does not mention 3-manifolds again in [79], and in the first four complements, 
their only brief appearance (in the second) is the one we have just mentioned. He returns 
to them in a big way, however, in his fifth complement, which we discuss in Section 5. 

We conclude by remarking that it has become conventional to accuse Poincare of being 
obscure and sometimes lacking in rigor, but anyone who does so should reflect that things 
could have been worse. At the end of the introduction to [79] he says: 

.. . my only regret is that [this memoir] is too long; but when I have wanted to restrain 
myself, I have lapsed into obscurity; I have preferred to be considered a litde talkafive. 

4. The Heegaard diagram 

Although the term Heegaard diagram eventually acquired a quite specific meaning, Hee-
gaard's original definition of a "diagram" was considerably more general. This is given in 
his 1898 dissertation [44]. (Because of the influence this work had on Poincare, a French 
translation was published in 1916 [45]. An English translation of part of the dissertation 
has recently been made by A.H. Przybyszewska; see [83]. For a very interesting account 
of Heegaard's life, see [67].) 

In order to investigate the topology of manifolds of dimension greater than 2, Heegaard 
decides not to take as his model the Riemann-Betti theory of connectivity numbers (as 
Dyck, Poincare and Picard had done), but instead to try to generalize the puncture method 
of Petersen "which I recalled from lectures", in which one "puncture[s] the Riemann sur
face and bring[s] it by continuous deformation into normal form". He explains further: 

The quesdon that we first meet is this: how is one to cut a closed manifold to make 
it simply connected? To solve this problem we use the following procedure: the man
ifold is punctured, i.e. a 3-cell neighborhood of a point is removed. Thus a boundary 
is created, which is enlarged by a continuous deformation so as to remove more and 
more of the given manifold. We continue in this way until certain parts of the boundary 
meet others, stopping the deformation in these places when the distance between the 
parts that are meeting has become infinitely small. In this way we are led to a diagram 
consisting of a system of manifolds of lower dimension than the given one, or rather 
the neighborhood of this system, i.e. a manifold which is infinitely small in the n-ih di
mension. The system of lower-dimensional manifolds which constitutes the boundary 
of the diagram is called the nucleus. 
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Thus the nucleus is an {n — 1)-dimensional spine of the manifold, and the diagram is a 
neighborhood of the nucleus, with the cell decomposition of the nucleus as part of the data. 
In other words, a diagram is essentially a handle decomposition. 

Specializing to the 3-dimensional case, Heegaard starts with a 3-manifold obtained by 
identifying the faces of a polyhedron, the nucleus being the 2-complex resulting from the 
identifications on the boundary of the polyhedron. The diagram then consists of neighbor
hoods of the 0-cells, 1-cells, and 2-cells; these neighborhoods he CSLWS junction spheres, 
strings, and plates. 

The boundary of the union of the junction spheres and strings is a surface (which Hee
gaard allows to be non-orientable) with "connectivity number" 2p -\- 1,̂  say; Heegaard 
then states that, if the manifold is closed, there must be p plates, whose "fastening bands" 
do not disconnect the surface. 

Addressing the problem of trying to reduce a diagram to a normal form, Heegaard notes 
that, in addition to isotopy of the fastening bands, a diagram may be subjected to cer
tain moves, which, expressed in modern terminology, are: 1-handle sliding, 2-handle slid
ing, and ehminating a cancelling pair of handles. Thus Heegaard has intuitively arrived 
at the correct equivalence relation between such handle decompositions of 3-manifolds. 
Although "a lot of simplifications can be done by means of these moves", Heegaard nev
ertheless concludes that "the problem of reducing the diagram into a normal form is prob
ably very difficult". In this of course Heegaard is also completely correct. Although the 
search for a "normal form" for 3-manifolds, analogous to that for surfaces, continues to 
be mentioned in the literature as the ultimate goal, we see that it has quickly become clear 
that any such normal form, if it exists, will be considerably more complicated than in the 
2-dimensional case. 

Heegaard next gives some simple examples of diagrams of 3-manifolds. Starting with 
the case of genus 1, he gives a brief discussion of the simple closed curves on a torus 
standardly embedded in R-̂ , noting that in addition to a meridian A (which bounds a disk 
"inside" the torus), and a latitude fi (which bounds a disk "outside" the torus), there are 
also curves [nfi ± X] and [fi ± nk], defined in the obvious way. However, he states that "the 
complete classification is quite difficult". 

Heegaard's next example is the diagram of genus p in which the fastening bands are 
the meridians of the string surface (the meridian-latitude terminology is extended in the 
obvious way to handlebodies of arbitrary genus); this manifold is the connected sum of p 
copies of S^ X S'^. Regarding it as the double of a handlebody, Heegaard observes that it 
embeds in R^ (by embedding the handlebody in R^, pushing its interior into upper half 
4-space, and doubling), and also that it can be obtained by removing 2p disjoint 3-cells 
from S^ and identifying the resulting boundaries in pairs (recall Dyck's construction [27]), 
in a way analogous to Klein's normal form for surfaces. Finally, Heegaard describes a 
genus 3 diagram of the 3-torus T^, which he defines as the boundary of a neighborhood 
(the hull) of a torus T^ embedded in R"̂ , and notes that a similar diagram may be obtained 
for the hull of any surface in R"̂ ; this will be an orientable 5^-bundle over the surface. 

Heegaard observes that associated with a given diagram, there is a second diagram, 
corresponding to the dual handle decomposition: 

There is a sort of dual connecUon between the two diagrams: the strings in one of them 
correspond to the plates in the other, and vice versa. 

In the sense of Betti, i.e. with respect to homology "without division"; see Section 3. 
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Finally, he points out that a diagram expresses the manifold as the union of two solid 
handlebodies, with their boundaries identified in some way, and for this: 

. . . it is sufficient to know [on one boundary] the system of nondisconnecting annular 
cuts which corresponds to the curves ^ on the string-surface of the other, and the system 
which coiTesponds to the curves A. 

In fact there is a certain amount of redundancy here: the manifold is actually determined 
by the images on the boundary of one handlebody of the meridian curves X of the other 
handlebody. Thus a Heegaard diagram eventually came to mean two complete systems of 
curves on a closed, orientable surface F of genus /?, where a complete system is a disjoint 
union of p simple loops whose union does not separate F\ see, for example, [97]. 

The difficulties in using Heegaard diagrams to get "normal forms" for 3-manifolds be
came increasingly clear. The classification of genus 1 diagrams is relatively easy, and is 
done in [39], but the inherent complexity of diagrams of higher genus, even of 5*̂ , was 
exphcitly pointed out by Frankl [34] and Reidemeister [84]. Specifically, they gave exam
ples of Heegaard diagrams of S^, consisting of a complete system of curves K\,... ,Kp 
on the boundary of a handlebody V of genus p (where p = 3 and 2, respectively), such 
that the manifold X obtained by adding a 2-handle to V along K\ is not a handlebody. In 
Reidemeister's case (p = 2), X is the complement of the trefoil knot, and he points out 
that any knot that arises in this way will have the property that its group has a presentation 
with two generators and one relation. (In modern terminology, the knots in question are 
precisely those with tunnel number 1.) 

In addition to the problem of analyzing different diagrams of the same underlying Hee
gaard splitting, i.e. the pair (M, F ) , where the Heegaard surface F separates M into two 
handlebodies, there is also the problem of analyzing different splittings of the same man
ifold. That this was a problem, even for S^, was pointed out by Reidemeister in [84] (see 
Section 5), and Alexander gives the following discussion of these matters in his elegant 
paper [9] in the Proceedings of the 1932 International Congress of Mathematicians: 

One or two general remarks about the classification of manifolds according to Hee
gaard's program may, perhaps, be worth making. The problem divides itself naturally 
into two parts: (i) to determine in how many essenfially different ways two canonical 
regions^ of genus p can be matched together to form a manifold; (ii) to determine in 
how many essentially different ways a canonical region can be traced in a manifold. 
The first part of the problem does not seem hopelessly difficult; it is closely related to 
the problem of the number of essentially different one-one mappings of one surface of 
genus p on another. As to the second part of the problem, I have a strong suspicion that 
if S and S^ are two canonical surfaces of the same genus in a manifold M then there is 
always a continuous deformation of the manifold M into itself carrying the surface S 
into the surface 5^. It would be interesting to have a proof of this hypothetical theorem 
even for the case where the manifold M is a hypersphere. The theorem for a general 
manifold M seems to be reducible to this special case. 

With hindsight, this seems overly optimistic, with regard to both parts (i) and (ii). It 
is in fact true that all Heegaard surfaces of S^ of a given genus are isotopic; this was 
proved by Waldhausen in 1968 [114]. However it is false for arbitrary 3-manifolds; the 
first examples, for connected sums of lens spaces, were given by Engmann [31], and, for 
irreducible 3-manifolds, by Birman, Gonzalez-Acuiia, and Montesinos [14]. 

By a "canonical region" Alexander means a handlebody, and by a "canonical surface", a Heegaard surface. 
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Regarding part (i) of Alexander's comments, it does seem to be the case that it was the 
desire to understand 3-manifolds by means of their Heegaard diagrams that provided the 
initial motivation for the study of automorphisms of surfaces, by Poincare (see Section 5), 
Dehn, Goeritz, and others. 

A Heegaard splitting of genus p may be stabilized in a trivial way to give a splitting of 
genus /? + 1; this is the inverse of the handle cancellation observed by Heegaard. Reide-
meister [84] and Singer [100] showed that any two Heegaard spHttings of a given 3-
manifold are stably equivalent, i.e. become isotopic after each is stabilized some number 
of times. This result was subsequently used by Reidemeister [85] to define certain linking 
invariants of 3-manifolds. 

Reidemeister's proof of the stable equivalence theorem is rather sketchy, while Singer's, 
although quite detailed, contains a gap. The first correct pubhshed proof seems to be the 
one given by Craggs in [19]. For an interesting account of the proofs of Reidemeister and 
Singer, their difficulties, and how they can be made rigorous, see Siebenmann [99]. 

We have seen that Heegaard's diagrams for n-manifolds were motivated by the topolog
ical classification of 2-manifolds. Another 2-dimensional phenomenon that prompted the 
investigation of its higher dimensional analog was the fact that every (closed, orientable) 
2-manifold is homeomorphic to a Riemann surface, that is, a branched covering of the 
2-sphere. This led to the study of 3-dimensional Riemann spaces, in other words, branched 
coverings of the 3-sphere, the branch set being some link. 

Heegaard discusses this in his dissertation [44, Section 13]. Assuming that the branching 
index around each branch curve in the manifold is 2 (or 1), he shows how to construct a 
diagram of the 3-manifold from the covering data. (In an earlier section. Section 8, he 
has done this for Riemann surfaces.) In Section 14 he gives some examples, of w-sheeted 
coverings M of S^ with branch set L: 

(1) n = 2,L= unknot: M = S^. 
(2) n = 2, L = 2-component unlink: M = 5*̂  x S^. 
(3) L = v-component unlink: M = # S^ x S^ ("a sphere with v — n-\-l handles"). 

(4) n = 3, L = trefoil: M = 5^ 
(5) n = 2,L= trefoil: M = L(3, 1). 
(6) n = 2,L= Hopf link: M ^ L(2, 1) = RP^ 
Heegaard then applies these considerations to the subject that motivated his whole in

vestigation, namely the study of complex algebraic surfaces. (Recall that the title of his 
dissertation is "Preliminary studies towards a topological theory of connectivity of alge
braic surfaces".) If /? is a singular point of such a surface X, and M is the 3-manifold that 
is the intersection of X with the 5-sphere boundary of a neighborhood of /? in C^, then 
Heegaard observes that the corresponding neighborhood of /? in X is homeomorphic to the 
cone on M. After giving some example where M = 5^, he shows that for, e.g., the curve 
^^ = x^ — j ^ , and p the origin, the manifold M is homeomorphic to RP^, and so X is not 
a manifold near p. 

Tietze, in [110, Section 18], also gives a discussion of branched coverings of S^, exphc-
itly mentioning Heegaard's example (4) above, and the example: « = 3, L = Hopf link: 
M = L(3, 1). He says: 

.. . it is not known if each closed, orientable 3-manifold is homeomorphic to a "Rie
mann space" of this kind. 



3-dimensional topology up to 1960 459 

This was answered by Alexander in [3], in all dimensions: he showed that every closed, 
orientable «-manifold is a branched covering of the n-sphere. He concludes this short paper 
with the following remarks: 

In the 3-dimensional case, a Riemann space obtained by the above construction con
tains, in general, a network of branch lines at each of which two or more sheets coalesce. 
It is easy to show that, without modifying the topology of the space, the branch system 
may be replaced by a set of simple, nonintersecting closed curves such that only two 
sheets come together at a curve. The curves may, however, be knotted and hnked. 

Three-dimensional Riemann spaces have been discussed by Heegaard and Tietze, but 
neither of these mathematicians seems to have been aware of their complete generality. 

5. Poincare's fifth complement 

Poincare introduces this remarkable paper [81] with the words: 

I have often had occasion to apply my thoughts to Analysis Situs;... I now return to 
this same topic, convinced that one will be able to succeed only by repeated efforts, and 
that the subject is important enough to merit such efforts. 

He goes on to say: 

The final result that I have in view is the following. In the second complement I have 
shown that to chai-acterize a manifold, it is not enough to know the Betti numbers, but 
that certain coefficients which I have called torsion coefficients play an important role. 

One may then ask if the consideration of these coefficients suffices; if a manifold all 
of whose Betti numbers and torsion coefficients are trivial is simply-connected in the 
proper sense of the word, that is to say, homeomorphic to the hypersphere. 

We can now answer this question 

As we have remarked above, in Section 3, Poincare already had in hand examples of 
3-manifolds with the same homology groups but different fundamental groups. However, 
here he proposes the more specific question of whether a homology sphere is homeomor
phic to the sphere. This question had certainly occurred to Poincare earlier; in fact his 
second complement concludes with the erroneous announcement that the answer is "yes" 
[80, p. 308]. 

The example, of a homology 3-sphere with nontrivial fundamental group, which answers 
the question, comes at the end of the fifth complement. The rest of the paper is taken 
up with considerations most of which are not logically necessary for the proof that this 
example has the desired properties, but which may be described as Poincare's attempts to 
set up a theory of (his version of) Heegaard diagrams of 3-manifolds. 

The most natural setting in which to express Heegaard's definitions in modern terminol
ogy is that of piecewise linear topology. By contrast, Poincare chose to work in a smooth 
setting. In a remarkably far-sighted discussion, in [81, Section 2], he considers a Morse 
function on an m-dimensional manifold V, classifies the critical points in terms of their 
index, and analyzes the effect on the topology of V of passing through a critical point. (For 
Poincare, V is embedded in some Euclidean space R^, and the Morse function corresponds 
to a 1-parameter family of {k — 1)-dimensional "surfaces" ip{t), whose intersections with 
V express V as the union of a 1-parameter family of (m — 1)-dimensional submanifolds 
W ( 0 , possibly with singularities.) 
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In Section 5, specializing to dimension 3, Poincare considers handlebodies. Specifically, 
he shows that if V is a 3-manifold with boundary, such that the nonsingular level sur
faces W(t) are connected, orientable, and increase their genus at each critical point, then 
there are p disjoint disks in V such that cutting V along these disks results in a 3-ball. 
(Thus y is a handlebody of genus p.) He thereby proves that such a manifold V is deter
mined up to homeomorphism by p, the genus of dV. He also shows that, if ^ i , . . . , ^^ 
is a set of meridians for V, then ker(7ri(9y) -^ n\{V)) is equal to the normal closure 
([ATi],..., [Kp]), i.e. the set of products of conjugates of [Kif"^,..., [Kp]"^^. (We will 
return to this in Section 11.) 

In the next section. Section 6, Poincare considers a 3-manifold V in which W{t) is 
a connected, orientable surface, which reduces to a point at r = 0 and ^ = 1, steadily 
increases in genus at each critical point from r = 0 to ^ = ^, and then steadily decreases 
in genus from r = ^ to f = 1. Then V is the union of two handlebodies V and V'\ 
whose common boundary is the genus p surface W = ^{\), and on W we see meridians 
K[,. ..,K'p for V and K'(, •.., K^ for V^\ Thus we find Poincare arriving at the concept 
of a Heegaard diagram by a rather different route. (Although there is no mention of it, it 
is hard to imagine that Poincare was not influenced here to some extent by Heegaard's 
work. Certainly he was familiar with Heegaard's dissertation (recall that it was Heegaard's 
comments on [79] that prompted Poincare to write his first two complements to that paper), 
and Heegaard had even sent him a summary of his dissertation in French [67, Section 6].) 

Note, however, that Poincare does not claim that every closed 3-manifold has a Hee
gaard splitting. From Poincare's point of view, this would entail showing that one could 
rearrange the handles in the handle decomposition determined by the Morse function so 
that the 1-handles preceded the 2-handles. These considerations may be related to his false 
assertion in the previous section, [81, p. 90], that every closed surface in M̂  bounds a 
handlebody, since (he says) it bounds a manifold "susceptible to the same [method of] 
generation as V" (i.e. so that there are only 1-handles). Ironically, he says that this is very 
surprising, as 

the various sheets of the surface might be shuffled among themselves in a compli
cated fashion and might form knots which it is impossible to untie without leaving 
3-dimensional space. 

Continuing his discussion of a closed 3-manifold V with a Heegaard sphtting {V\ V^^), 
Poincare shows that every loop in V can be homotoped into the Heegaard surface W, i.e. 
7t\(W) -> n\{V) is onto, and that any element in ker(7ri(W) -> n\(V)) is a product of 
elements inker(7ri(H^) -^ Tti(V')) andker(7ri(W) -> 7TI(V'')). Thus 

7Ti(V) = ni(W)/{[K[l..., [^;] , [K'^l..., [K;]). 

Poincare deduces (by abelianizing) that H\{V)is the quotient of Hi (W) by the subgroup 
generated by the homology classes of the two sets of meridians, and hence that a 2/? x 2p 
presentation matrix for Hi(V) may be obtained by taking as its rows the coefficients in the 
expressions of the K- and K'/ as linear combinations of some standard basis C i , . . . , C2p 
for Hi(W). Letting A denote the determinant of this matrix, Poincare observes that if 
I A| > 1 then the Betti number ("relative to homologies by division") of V is 0; if | A| = 1 
then both the Betti number and torsion coefficients vanish; and if A = 0 then the Betti 
number is greater than zero. 
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Focusing on the case A = ± 1 , Poincare says that here one can ask if V is simply 
connected ("in the proper sense of the word", i.e. homeomorphic to 5^), and goes on: 

We shall see, and this is the principal goal of the present work, that it is not always so, 
and for this we will restrict ourselves to giving one example. 

There follows a description of Poincare's famous homology 3-sphere with nontrivial 
fundamental group. This manifold is often referred to nowadays as the Poincare dodeca-
hedral space, although the construction implied by this name in fact came later. Poincare 
defines the manifold V in terms of a genus 2 Heegaard splitting {V\ V^^), with meridi
ans K[, ^2 ^^d ^ p ^ 2 ' ^here K^^ and K2 are expUcitly drawn as unions of arcs on the 
4-punctured sphere obtained by cutting the genus 2 Heegaard surface W along K[ and K!^. 
Taking a standard system of curves Ci, C2, C3, C4 on W, with C\ = K[, C^, = K!^, 
Poincare writes down the elements of 7T\(W) represented by K^-^ and K2, in terms of 
Ci, C2, C3, C4, and in this way obtains the following presentation for TTI (V) 

{a, b: a^ba-^b = 1, b-^a'^ba'^ = l). 

Abelianizing gives the relations 

3a-\-2b = 0, -2a -b = 0, 

for which | A| == 1, showing that V is a homology sphere. 
On the other hand, adjoining to the above presentation the relation {a~^b)^ = 1, 

Poincare obtains the presentation 

{a,b: {a~^bf = a^ = b^ =:!) 

of the icosahedral group. Since this group is nontrivial, he concludes that 7ri(V) is also 
nontrivial. 

Finally, Poincare says: 

There remains one question to consider: 
Is it possible that the fundamental group of V can be trivial, and V still not be simply 

connected? 
In other words, is it possible to draw [on W] simple closed curves ATĴ  and Kj, so 

that [jTi (V) is trivial], and that meanwhile [there do not exist pairs of meridians Cj, C2 
and C'/, C^^ for V' and V'\ respectively, such that |C| H C!\ = 5/y]? 

But this question would lead us too far afield. 

This is the famous Poincare conjecture. Note, however, that although the general ques
tion (is a simply-connected (in the modern sense) 3-manifold homeomorphic to 5-̂ ?) is 
implicit here, in fact the question that Poincare asks is quite specific: is there a 3-manifold 
with a Heegaard diagram of genus 2 that is simply-connected and not homeomorphic to S^ ? 

(As Reidemeister points out in [84, footnote on p. 193], Poincare's formulation of the 
question implicitly assumes that any genus 2 Heegaard spHtting (V\ V'O of S^ has the 
property that there exist meridians C[, C^ for V and C'/, C!^ for V ' such that |C| H Cj | = 
8ij, i.e. is equivalent to the standard genus 2 splitting. This turns out to be true, but it was 
not estabUshed until 1968, by Waldhausen [114].) 

"7 My italics, C. McA. G. 
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It is clear that in order to arrive at his example of a nonsimply-connected homology 
sphere, and also in investigating his question, Poincare must have done a good deal of 
experimentation with Heegaard diagrams, of genus 2 and presumably higher genus also. 
In particular, he must have come across many nonstandard diagrams of S'^, and realized 
that they did indeed represent S^. Thus he must have been aware that such diagrams can be 
quite complicated. (The pitfalls here are illustrated by the discussion of Poincare's example 
in the Dehn-Heegaard Enzyklopadie article [25]. There, the authors attempt to show that 
Poincare's manifold is not homeomorphic to S^ by a geometric argument, by considering 
the curves on a standard genus 2 Heegaard surface for S^ that bound disks in one of the 
handlebodies. The proof, however, is not valid; in fact the diagram given in their paper is 
actually a diagram of S^, as Dehn himself realized soon afterwards [21].) 

Poincare's detailed study of curves on surfaces, in [81, Sections 3 and 4], is also clearly 
motivated by Heegaard diagram considerations. In Section 3 he shows that, if F is a closed 
orientable surface, then an automorphism of H\ (F) is induced by an automorphism of F 
if and only if it preserves the intersection form, and deduces that an element of H\ (F) is 
represented by a simple loop if and only if it is indivisible. In Section 4 he gives an algo
rithm, using hyperbolic geometry, for deciding whether or not a loop on F is homotopic to 
a simple loop, and whether or not two loops are homotopic to disjoint loops. 

So his remark: "But this would lead us too far afield", should probably be interpreted as 
indicating that his investigations of Heegaard diagrams (perhaps specifically of genus 2) 
were inconclusive, and that, realizing the difficulty of the problem, he decided not to pursue 
the matter further. 

Ironically, although of course the (general) Poincare conjecture is still open, the genus 2 
case was estabHshed in 1978, with the proof of the Smith conjecture [66, p. 6]. 

Having decided that his question would "lead [him] too far afield", Poincare never re
turned to the study of 3-dimensional manifolds. In a handful of papers, he truly created 
the field of topology, and 3-dimensional topology in particular. His achievements are all 
the more remarkable when one considers how relatively little of his time he devoted to 
the subject, despite being convinced of its importance. In his analysis of his own scientific 
works [82], for example, written in 1901, out of a total of 99 pages he devotes just over 
three to his work in topology; in Hadamard's 85 page account of Poincare's mathematical 
work [40], topology gets two pages; and of Poincare's over 500 publications, a mere dozen 
or so deal with topology, with 3-dimensional topology featuring in only two or three. 

For other accounts of Poincare's work in 3-dimensional topology see [26, 113]. 

6. Homology 3-spheres 

Poincare's example of a homology 3-sphere not homeomorphic to S^ generated a good 
deal of interest, and the construction of other such 3-manifolds (called Poincare spaces by 
Dehn in [22]), was for some time an identifiable theme in the Hterature. 

The first general construction was given by Dehn in [21]. The main purpose of this short 
note was to point out the error in describing Poincare's example in the Dehn-Heegaard 
Enzyklopadie article [25], but Dehn also took the opportunity to observe that if two copies 
of the complement of a knotted open solid torus in S^ are glued together along their bound
aries in such a way that a meridian of each one is identified with a latitude of the other, 
then the resulting manifold is a homology sphere. On the other hand, Dehn states that such 
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a manifold cannot be homeomorphic to S^, since it contains a torus (namely the common 
boundary of the two knot complements) which does not bound a solid torus on either side. 
Although it is indeed true that every torus in S^ bounds a soUd torus, this was not proved 
until later, by Alexander [4]. 

Another construction of Poincare spaces was given by Dehn in his landmark 1910 paper 
[22]. Here he shows that, again starting with the complement of a solid toral neighborhood 
of a knot K in S^,a. soUd torus may be attached to it in infinitely many ways (naturally in
dexed by the integers) so as to obtain a homology 3-sphere. Using his Gruppenbild, which 
was introduced in the same paper, he shows that for K a (2, ^)-torus knot, the manifolds 
obtained by this construction all have nontrivial fundamental group (apart from the triv
ial attachment yielding S^). In fact, except for a single attachment on the complement of 
the trefoil, the group is always infinite. In these cases the Gruppenbild is derived from 
a tessellation of the hyperboUc plane: the group modulo its (infinite cyclic) center is a 
hyperbolic triangle group. In the one exceptional case, Dehn constructs the Gruppenbild 
from the 1-skeleton of the dodecahedron, and shows that the group is finite, of order 120. 
He concludes (incorrectly, as was pointed out in [107, p. 68]) that it is isomorphic to the 
"icosahedral group extended by reflection". (The latter group maps onto Z2, while the for
mer, being the fundamental group of a homology sphere, is perfect.) In fact the group in 
question is the binary icosahedral group, the inverse image of the icosahedral group under 
the 2-fold covering S^ -> 50(3). Curiously, Dehn makes no mention here of Poincare's 
example, Mpoin, or the possible relation between it and his manifold MDehn-

The third member of this trio, the spherical dodecahedral space, Mdodeca» say, seems to 
have been first mentioned by Kneser, in a footnote to his 1929 paper [56, p. 256]. Kneser 
describes this manifold as the quotient of a fixed point free geometric action of the binary 
icosahedral group on 5^, and notes that it comes from a tiling of S^ by 120 cells. He also 
states that Mdodeca is homeomorphic to MDehn-

In the course of their determination of all 3-dimensional spherical space forms, Seifert 
and Threlfall [107] also describe Mdodecâ  ^nd show that it can be obtained from a reg
ular dodecahedron by identifying opposite faces by a rotation through 27r/10. From this 
they derive a presentation of TT 1 (Mdodeca). and show that it may be transformed to both 
Poincare's presentation for 7ri(Mpoin) and Dehn's presentation for TTI(MDehn); thus all 
three manifolds have the same fundamental group. Seifert and Threlfall also show, again 
from its description as a dodecahedron with face identifications, that Mdodeca shares an
other property with Mpoin, namely, that it has a Heegaard splitting of genus 2. 

In the text of their paper [107], Seifert and Threlfall state that they do not know whether 
or not any two of the manifolds Mpoin, MDehn. and Mdodeca are homeomorphic. However, 
in a note added in proof, they mention Kneser's reference to Mdodeca in [56], and say that he 
has shown them how to identify the complement of a certain closed curve in Mdodeca with 
the complement of the trefoil, and hence show that Mdodeca and MDehn are homeomorphic. 

Finally, in [118], Seifert and Weber showed that all three manifolds are homeomorphic, 
by showing that they are all fibered spaces in the sense of Seifert [95], and using the results 
of that paper [95, Theorem 12]. We will discuss this in more detail in Section 9. 

In [57], Kreines gave an example of a homology sphere obtained by identifying faces of 
a tetrahedron; it is also homeomorphic to Mdodeca-

The procedure of attaching a solid torus to the complement of a neighborhood of a knot 
has become known as Dehn surgery, and has been the focus of a lot of attention in recent 
years. 
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As well as being a source of Poincare spaces, Dehn regarded his construction as giv
ing a way of showing that a knot K is nontrivial: if the fundamental group of one of 
the homology spheres obtained by Dehn surgery on K is nontrivial, then it follows that 
JX\{S^ — ^ ) ^ Z, and so K is nontrivial. The converse, i.e. if K is nontrivial, then any 
manifold obtained by nontrivial Dehn surgery on K has nontrivial fundamental group, is 
known as the Property P conjecture, and is still unsettled. 

7. Lens spaces 

As we have seen, Poincare constructed an infinite family of distinct 3-manifolds with the 
same Betti numbers, but in retrospect the simplest such family is the lens spaces. These 
were first defined by Tietze [110], as the simplest possible examples of 3-manifolds ob
tained by identifying faces of a polyhedron. Namely, the equator of a 3-ball is divided 
into p equal segments, so that the upper and lower hemispheres become p-sided poly
gons. These hemispherical faces are then identified by a rotation through Inq/p, where 
0 ^ q < p and ip,q) = 1, giving a 3-manifold L{p,q). If a corner is introduced along 
the equator of the 3-ball it assumes the lens-shaped appearance that gave these manifolds 
their name, the term lens space being introduced by Seifert and Threlfall in their paper on 
3-dimensional spherical space forms [107]. 

Tietze notes that L(p,q) may also be described as the manifold with a genus 1 Heegaard 
diagram consisting of a curve on the boundary of a solid torus which winds around p times 
latitudinally and q times meridionally {[qk-\- p^] in Heegaard's notation; as we have seen, 
the cases L(2, 1) and L(3, 1) were expHcitly considered by Heegaard). For this reason, the 
lens spaces were originally referred to as torus manifolds [39, 56]. Tietze also observes 
that L{p,q) is p-fold covered by L(l, 0) = S^, and has fundamental group Zp, so that 
here we have orientable 3-manifolds with finite nontrivial fundamental group, in contrast 
to the situation in dimension 2. 

Finally, Tietze points out that the lens spaces provide interesting examples in the con
text of the main problem of topology, namely the determination of necessary and suffi
cient conditions for two manifolds to be homeomorphic. For, Poincare having shown that 
a 3-manifold is not determined by its Betti numbers and torsion coefficients, it is now nat
ural to ask if it is determined by its fundamental group. (Earlier in his paper, Tietze had 
given rigorous proofs that all the then known topological invariants of a closed, orientable 
3-manifold are determined by its fundamental group.) Tietze suggests that the lens spaces 
are potential counterexamples, and in particular raises the question of whether L(5, 1) and 
L(5, 2) (the first pair of lens spaces with the same fundamental group which are not obvi
ously homeomorphic) are in fact homeomorphic. 

In 1919 Alexander [2] showed that indeed they are not, although he seems to be unaware 
that the question had been raised by Tietze. 

Alexander's proof is homological, and goes as follows. The lens space L(5, 1) has a 
Heegaard diagram consisting of a solid torus A and a (5,l)-curve I on 9A, i.e. it is the 
union of A with another solid torus whose meridian winds around A five times latitudinally 
and once meridionally. Similarly, L(5, 2) is defined by a sohd torus A^ and a (5,2)-curve t 
on 9 A^ If there were a homeomorphism from L(5, 2) to L(5, 1), we could assume that it 
takes A' into the interior of A. Then Hi (A — AO = Z © Z, generated by a meridian a' of 
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A' and a latitude ^ of A. If ^ denotes the winding number of AMn A, then with respect to 
this basis 

[£] = Oa' + 5b, and [£'] = {5k + 2)a' ± 50b 

for some ^, the - sign allowing the possibility that the homeomorphism is orientation-
reversing. 

Since I' bounds a disk in the complement of A', we must have 

{5k -h 2)a' ± 50b = m(Oa + 5b), for some m. 

This readily gives 0^ = ±2 (mod 5), a contradiction. 
More generally, Alexander's proof shows that if L{p,q) and L{p,q') are homeomor-

phic then 

qq = ±r^ (mod p), for some r, 

the sign being + or — according as the homeomorphism preserves or reverses orientation. 
Alexander's argument was eventually formahzed into the definition of the Unking form 

T\{M) X T\{M) -^ Q/Z of a 3-manifold M, where T\{M) is the torsion subgroup of 
H\{M). This was done in [7, 8, 85, 88] and [96]. In particular, Seifert's paper [96] gives a 
set of local invariants which, in the odd order case, completely classify such forms. 

The condition qq' = ±.r'^ (mod p) did not seem to be a sufficient condition for homeo
morphism, however; for example L(7, 1) and L(7, 2) appeared to be topologically distinct. 
The combinatorial classification of lens spaces, i.e. their classification up to PL homeomor
phism, was finally achieved by Reidemeister in 1935 [86], using his torsion invariant. (This 
invariant was formalized and generalized to higher dimensions by Reidemeister's student 
Franz [35].) The result is that L(p, q) and L{p, q') are PL homeomorphic if and only if 
either q = dcq' (mod /?), ov qq' = ±1 (mod p), where as usual the zb sign corresponds 
to the orientation character of the homeomorphism. (The sufficiency of the condition is 
straightforward.) 

This became a classification up to homeomorphism with the proof of the Hauptvermu-
tung by Moise in 1952 [65]. Meanwhile, Fox had outlined an approach to the topologi
cal classification, which involved considering the Alexander polynomials of knots in lens 
spaces, which would not require the Hauptvermutung; see [30, Problem 2]. This was im
plemented later by Brody [15]. (The fact which replaces the Hauptvermutung in this proof 
is the topological invariance of simplicial homology.) 

This is a convenient place to say that although Moise's result that every 3-manifold can 
be triangulated, in an essentially unique way, is clearly of fundamental importance, we will 
not discuss it further. We remark that a simpler proof was given later by Bing [13], 

The lens spaces were also natural subjects for investigations of a more algebraic 
topological nature. In this vein, Rueff showed [91] that there exists a degree 1 map 
L{p, q) -^ L{p, q') if and only if qq' ~ r^ (mod p), for some r. The homotopy clas
sification of lens spaces was obtained by Whitehead [124]: L{p,q) and L{p,q') are ho
motopy equivalent if and only if ^^^ = ±r^ (mod p), for some r. In particular, they are 
orientation-preservingly homotopy equivalent if and only if their linking forms are iso
morphic. Franz [36] showed that the homotopy class of a map L(p, q) -> L{p, q') is 
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determined by the homomorphism it induces on the fundamental group, together with its 
degree. Together with Rueff's result, this also gives the classification up to homotopy type. 

We have seen that Tietze suspected that the lens spaces provide examples of distinct 
3-manifolds with isomorphic fundamental groups. He also drew attention to another ap
parent source of this phenomenon, at least for manifolds with boundary. In [110, pp. 96, 
97] he considers the exteriors M and M' of two spht hnks L and V in S^, where L consists 
of two copies of the right-handed trefoil K, and V consists of a copy of K and a copy of 
the left-handed trefoil — Â , the reflection of K. Thus, if X denotes the exterior of K, then 
M is homeomorphic to the connected sum X#X, while M^ is homeomorphic to X # — X. 
Tietze notes that 7t\ (M) and TTI (MO are both isomorphic to the free product 7T\ (X)^7T\ (X). 
On the other hand, it appears that there is no orientation-preserving homeomorphism of S^ 
taking K to —K, and hence no homeomorphism of S^ taking L to L\ and "hence" no 
homeomorphism from M to M\ The first assertion was later proved by Dehn [23], and an 
additional argument (which would have been available to Dehn, for example) can be given 
to conclude that indeed M and M^ are not homeomorphic. It is interesting that these two 
phenomena pointed out by Tietze, namely, lens spaces, and connected summands with no 
orientation-reversing homeomorphism, conjecturally account completely for the failure of 
a closed, orientable 3-manifold to be determined by its fundamental group. 

So the lens spaces provide simple examples of complex behavior in 3-manifolds: the 
properties of having isomorphic fundamental group, having the same homotopy type, and 
being homeomorphic, are all distinct. On the other hand, they are somewhat misleading; 
for example, it may have been that their failure to be determined by their fundamental 
group suggested that this was likely to be common among 3-manifolds, whereas in fact 
they appear to be the only irreducible examples. The lesson here seems to be: don't worry 
about simple counterexamples; they may be counterexamples only because they're simple. 

8. Kneser's decomposition theorem 

The important idea of cutting a 3-manifold along 2-spheres was introduced in the beautiful 
1929 paper of Kneser [56]. Apart from his short note [55], this seems to be Kneser's only 
paper on 3-manifolds, but it turned out to be extremely influential. 

In Section 4 of this paper, Kneser considers the operation of cutting a closed 3-manifold 
M along an embedded 2-sphere S, and capping off each of the resulting boundary compo
nents with a 3-ball, giving a (possibly disconnected) 3-manifold Mi. This process he calls 
a reduction. If S bounds a 3-ban in M, then Mi is just another copy of M together with a 
copy of S^, and the reduction is trivial. A manifold is irreducible if it admits only trivial 
reductions, i.e. if every 2-sphere in the manifold bounds a 3-ball. Kneser remarks that in 
order to justify the term "reduction". Mi should be in some sense simpler than M, but that 
there is no reasonable topological invariant which can be used to show this. Nevertheless, 
he is able to prove the following finiteness theorem: 

Associated to each 3-manifold M is an integer k with the following property: ifk-\-\ 
successive reductions are performed on M, then at least one of them is trivial. By means 
ofk (or fewer) nontrivial reductions M can be transformed to an irreducible manifold. 

Before describing Kneser's proof, we discuss a result of Alexander [4], which is funda
mental in this context, and which is needed in the proof. Alexander's theorem asserts that 
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every 2-sphere in S^ separates it into two regions, the closure of each of which is a 3-ball. 
In particular, S^ is irreducible. The corresponding statement one dimension lower, that ev
ery circle in 5^ separates it into two components whose closures are disks, is the classical 
Schonflies theorem, and it is true with no additional hypotheses. Apparently Alexander 
at one time announced (but did not publish) the same result for 2-spheres in S^ (see [5, 
p. 10]), but later constructed counterexamples; the first [6] was based on Antoine's neck
lace, and the second [5] was Alexander's famous horned sphere. Meanwhile, he gave a 
proof of the 3-dimensional Schonflies theorem for polyhedral 2-spheres [4]. He does this 
by considering the intersection of such a 2-sphere S (in M )̂ with a generic family of par
allel planes. With finitely many exceptions, these will meet S transversely, each of the 
exceptional planes containing exactly one local minimum, local maximum, or (multiple) 
saddle point of S. By considering the disk bounded by an innermost simple closed curve 
in one of the planes containing a saddle point, Alexander replaces S by two 2-spheres, 
each of which is simpler than S. The theorem now follows easily by induction. (The in
duction starts with a sphere having only a single local minimum and a single local maxi
mum.) 

By a similar argument, Alexander also proves that any (polyhedral) torus in S^ bounds 
a solid torus, a fact which was conjectured by Tietze [110]. Later, Fox [33] showed that 
Alexander's argument generalizes to show that any closed surface in S^ is compressible. 
He used this to prove that any compact, connected 3-manifold with boundary embedded in 
S^ is homeomorphic to the closure of the complement in S^ of a disjoint union of handle-
bodies. 

We now turn to Kneser's proof of his finiteness theorem. 
Fix a triangulation of M, and let 17 be a disjoint union of k 2-spheres in M such that 

no component of M — X" is a punctured 3-sphere. Kneser shows that Z may be modified 
so that each component of the intersection of Z" with any 2-simplex in the triangulation 
is an arc with its endpoints on distinct edges of the 2-simplex, and each component of the 
intersection of E with any 3-simplex is a disk. 

After this, in any 2-simplex, all but at most four of the complementary regions of 
the intersection of H with that 2-simplex have a natural product structure as quadrilat
erals, the possible exceptions being a triangle containing a single vertex, and a middle 
region meeting all three sides of the 2-simplex. Also, for each 3-simplex, if a comple
mentary region X of the intersection of E with the 3-simplex meets each face of the 
3-simplex in product regions, then this product structure extends over X, so that X is a 
prism. 

Now the number of components of M - T is at least k — r, where r is the first mod 2 
Betti number of M. It follows from the above discussion that such a component meets 
every 3-simplex in prisms, unless it contains a vertex or a middle region of a 2-simplex. 
Therefore, letting ott be the number of /-simplexes in the triangulation, if /c > r + ao + ^̂ 2, 
then one of the components of M cut along E has the structure of an /-bundle over a 
surface, and hence is either 5^ x / or a twisted /-bundle over MP^ (in other words, a 
punctured RP^). In the latter case, we can collapse the corresponding 2-sphere onto the 
RP'̂  and repeat the argument. This shows that \ik > r + ao + a2 then some component of 
M cut along U is homeomorphic to 5^ x / , contrary to assumption. Hence, we can take k 
to be r -f Qfo + oti in the theorem. 
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Kneser continues: 

If you study in more detail the different possible ways of transforming by reductions 
a given 3-manifold into irreducible 3-manifolds, the result is the following theorem, 
which reduces the topological properties of all 3-manifolds to those of the irreducible 
ones. 

Kneser then gives the following careful statement of his decomposition theorem: 

Every 3-manifold can be expressed in the following way: take k orientable asymmetric 
3-manifolds, t orientable symmetric 3-manifolds, and m non-orientable 3-manifolds 
{k,l,m ^ 0), all irreducible, and remove a 3-ball from each; from S remove k -\- i -\-
m + 2r + 25" 3-balls (where r ^ Q; s = 0 or I, and s = Oifm > 0); identify the 
boundary 2-spheres of the punctured manifolds with k -}- i -^ m boundary 2-spheres 
of the punctured S ; identify the remaining boundary 2-spheres in pairs, r pairs being 
identified in a way that is coherent with the orientation of the punctured S , and the 
last pair, if s = \, so as to give a non-orientable manifold. Two 3-manifolds generated 
in this way are homeomorphic if and only if the numbers k,l,m, r,s are the same in 
both cases, the 3-manifolds that are used are homeomorphic in pairs, and in the case of 
an orientable 3-manifold (m = 5 = 0), the orientations of the asymmetric 3-manifolds 
are connected in the same way in both cases. 

Kneser omits the details of the proof, but these were later elegantly supplied by Mil-
nor [63]; one guesses that this was very much along the lines that Kneser had in mind. For 
the non-orientable case, see [111]. 

Several interesting remarks of Kneser are relegated to footnotes to his decomposition 
theorem. First, he defines an orientable 3-manifold to be symmetric if it has an orientation-
reversing self-homeomorphism, and says that the simplest example of an asymmetric 
3-manifold is the "torus manifold" L(3, 1), or, more generally, L(k, €), provided —1 is 
a quadratic nonresidue mod k. Second, he gives as examples of irreducible 3-manifolds, 
the 3-torus T^ (presumably because its universal cover is R^), and any 3-manifold covered 
by S^. It is here that he mentions in passing that an example of a manifold of this second 
type is the homology sphere with nontrivial finite fundamental group constructed by Dehn 
from the trefoil knot. Another footnote makes a reasoned plea for the use of the term "path 
group" instead of "fundamental group", a plea that seems to have gone unheeded. 

Going back to Kneser's proof of his finiteness theorem, this beautiful argument had far-
reaching consequences in the work of Haken about thirty years later. Haken observed that 
Kneser's argument can be applied to a system of disjoint, incompressible (closed) surfaces 
in a (compact) irreducible 3-manifold M, to show that there is an integer k(M) with the 
property that the number of such surfaces, no two of which cobound a product in M, is 
at most k{M). This finiteness theorem allows him to prove that every irreducible manifold 
which contains an incompressible surface (these are now called Haken manifolds), has a 
hierarchy, in other words, it can be reduced to a disjoint union of 3-balls by successively 
cutting it along incompressible surfaces. This was used to great effect by Waldhausen, to 
prove, for example, that two Haken manifolds with isomorphic fundamental groups are 
homeomorphic [115], that the universal cover of a Haken manifold is M^ [115], and that 
the fundamental group of a Haken manifold has solvable word problem [116]. 

Again based on Kneser's idea of controlling his surfaces (spheres) by making them 
have nice intersections with the simplices of a fixed triangulation of the manifold, Haken 
developed an algorithmic theory of such normal surfaces [42]. This ultimately led, with 
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the work of Waldhausen, Johannson, Jaco-Shalen, and Hemion's solution of the conjugacy 
problem for automorphisms of surfaces, to the solution of the homeomorphism problem 
for Haken manifolds; see [117]. 

So the idea, in Heegaard's words, of "cutting a manifold until it is simply connected", is 
realized in Haken's concept of a hierarchy, and leads to a solution of the homeomorphism 
problem for a large class of 3-manifolds, although the notion of a "normal form" survives 
only as a nebulous logical construct. 

Finally, we mention that, very recently, Rubinstein [90] (see also Thompson [106]) has 
solved the homeomorphism problem for S^, also using normal surfaces, but in a very dif
ferent way. So we see how important Kneser's few pages have been for the theory of 
3-manifolds. 

9. Geometric 3-manifolds 

We have already seen how early approaches to the study of 3-manifolds naturally took the 
form of pursuing analogies with the theory of 2-manifolds. Another feature of 2-manifolds 
which was well known from the work of Klein and others was that every closed surface 
can be given a spherical, EucUdean, or hyperbohc structure. That is, it can be represented 
as the quotient of either the 2-sphere 5*̂ , the EucUdean plane E'^, or the hyperbohc plane 
//^, by a group of isometrics acting freely and properly discontinuously. This group is of 
course isomorphic to the fundamental group of the 2-manifold. 

The fact that the lens space L(p,q) is the quotient of such an action on S^ by a cychc 
group of order p is essentially in Tietze [110], and was made explicit in Hopf [47], who 
also gave other examples of spherical 3-manifolds, with noncyclic fundamental groups. In 
addition, Hopf proved that any n-manifold with a complete Riemannian metric of constant 
curvature is a quotient of 5", E'\ or / /" by a free properly discontinuous action of a group 
of isometrics. By finding all the finite subgroups of 5(9(4) that act freely on S^, Seifert and 
Threlfall, in [107, 108], gave a complete description of all spherical 3-manifolds. 

Their classification can be roughly described as follows. The quotient of S0{4) (the 
group of orientation-preserving isometrics of S^) by its center {^id} is isomorphic to 
S0(3) X S0{3), so a finite subgroup G of S0(4) gives rise to two finite subgroups Gi 
and GR of 50(3). Now the finite subgroups of SO{3) are the finite cyclic groups C,i, the 
dihedral groups D2n of order 2n, and the tetrahedral, octahedral, and icosahedral groups 
r , O, and / , of orders 12, 24, and 60. If G acts freely on S^, then GL (say) must be cyclic, 
and G can then be described as being of cyclic, dihedral, tetrahedral, octahedral, or icosa
hedral type, according to the type of GR. The groups of cyclic type are cychc, and the 
corresponding 3-manifolds are the lens spaces. The groups of dihedral, tetrahedral, octahe
dral, and iccosahedral type include the corresponding binary groups D2,j, T*, O*, and /*, 
while the dihedral and tetrahedral types include additional families D,'̂ ^ „ and r„'̂ . The gen
eral group of a given type is the direct product of any one of these with a cyclic group of 
relatively prime order. 

The 3-manifolds M with fundamental groups G of dihedral type are the prism spaces: 
if GL = Cm and G/? = D2/2, then M can be obtained by suitably identifying the faces of a 
2mn-sided prism. A special case of this is quaternionic space, m = l,n — 2, obtained by 
identifying opposite faces of a cube, as described by Poincare (see Section 3). The spherical 
dodecahedral space Mdodeca is of icosahedral type, with GL = 1 and fundamental group G 
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the binary icosahedral group /*. It is the only homology 3-sphere (apart from S^) among 
the spherical 3-manifolds. 

The lens spaces and prism spaces also appear, in a different context, in [93]. There, 
Seifert classifies the 3-manifolds that can be obtained from a solid torus by identifying its 
boundary with itself via some involution. These manifolds fall into three classes, according 
to the nature of the involution: the first are the lens spaces and S^ x 5^, the second are 
the prism spaces (including the lens spaces L(4q,2q — 1), and RP-^ #RP^, as degenerate 
cases), and the third consist of S^ x RP^ and the twisted 5^-bundle over S^. 

The question remains whether every 3-manifold with finite fundamental group G is 
spherical. A more modest goal would be to show that at least G is isomorphic to JT\ ( M ) 
for some spherical 3-manifold M. These questions are still open, but progress was made 
in 1957 by Milnor, who proved [62] that any such G has at most one element of order 2. 
Combining this with the fact that the cohomology of G must have period 4, he deduced that 
any counterexample G to the second assertion must belong to one of two infinite families 
Q(Sn, k, V) and 0 (48 r ) . The second family, and half the first family, were subsequently 
ruled out by Lee [58]. 

An important offshoot of the work of Seifert and Threlfall came from their observation 
that any finite subgroup of 50(4) which acts freely on S^ commutes with an S^ subgroup of 
50(4) , and hence this 5^ -action descends to the quotient manifold M, giving M a (singular) 
fibering by the orbits of the action. This motivated Seifert to investigate 3-manifolds which 
can be fibered by circles in this fashion, now called Seifert fibered spaces. (The special 
case of circle tangent bundles of surfaces had been studied earlier by HoteUing [50, 51], as 
the 3-manifolds of states of motion of dynamical systems.) In the introduction to his work 
[95] on fibered spaces (see also the translation by W. Heil in [97]) Seifert says: 

The question that underlies this paper is the homeomorphism problem for 
3-dimensional closed manifolds. The fundamental theorem of surface topology tells 
us how many topologically distinct 2-manifolds there are. The methods used to prove 
this have not yet been generalized to three or more dimensions. There are two ways to 
approach the 3-dimensional problem. The first is to examine the regions of disconti
nuity^ of 3-dimensional metric groups of motions. Whereas in two dimensions every 
closed surface appears as the region of discontinuity of a fixed point free group of mo
tions, there ai'e 3-manifolds for which this does not hold. The regions of discontinuity 
of 3-dimensional spherical actions are endowed with a certain fibration; the fibers are 
the orbits of a condnuous group of motions of the sphere. . . . This leads us to the sec
ond approach: instead of invesfigadng a complete system of topological invariants of 
3-dimensional manifolds, we search for a system of invariants for fiber-preserving maps 
of fibered 3-manifolds. This problem is completely solved in this paper. Of course these 
invariants refer to the fibering of the manifold, not to the manifold itself, so that the 
question remains open, whether two spaces with different fibrations are topologically 
disdnct. Moreover, there are 3-manifolds that do not admit any fibration. Nevertheless, 
in many cases the fiber invariants can be used to decide whether 3-manifolds are home-
omorphic. 

Seifert's paper is a masterpiece of content and clarity. He builds up from scratch the com
plete and rich theory of his fibered spaces, and in fact his account left little to be added for 
several decades. With the torus decomposition theorem of Johannson, and Jaco and Shalen, 
the Seifert fibered spaces emerged as one of the basic building blocks of Haken manifolds. 

I.e. quodents. 
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and this role has been further clarified and emphasized by the work of Thurston on ge-
ometrization of 3-manifolds. 

Seifert defines a 3-dimensional ^Z^^r^J space to be a closed 3-manifold M which is 
a disjoint union of circles (fibers), such that each fiber has a soHd torus neighborhood, 
consisting of fibers, which are the core of the solid torus together with curves that wind 
around the core a (^ 1) times latitudinally and v times meridionally. If a > 1 then the core 
is a singular fiber of M, of multiplicity a. The base of the Seifert fibration is the quotient 
surface obtained from M by identifying each fiber to a point. 

Seifert shows that oriented fibered spaces, up to orientation- and fiber-preserving homeo-
morphism, are classified by (F; b; (a\, P\),..., (a^, fir)), where F is the topological type 
of the base surface, («/, ^/) are the suitably normalized invariants of the singular fibers, 
1 < / ^ r, and b is the Euler number of a certain associated circle bundle over F, i.e. a 
fibered space with no singular fibers. He also gives a similar, but more involved, classifica
tion of the non-orientable fibered spaces. 

In [95,108], it is shown that the Seifert fibered spaces M with 7t\ (M) finite are precisely 
the spherical 3-manifolds. These are S^ (whose Seifert fibrations correspond to pairs of 
nonzero coprime integers m, n, the nonsingular fibers being (m, n)-torus knots); the lens 
spaces (which have Seifert fibrations with base S'^ and one or two singular fibers); and the 
Seifert fiber spaces with base 5^ and three singular fibers, whose multiplicities form one 
of the Platonic triples (2, 2, n), n ^ 2, (2, 3, 3), (2, 3, 4), or (2, 3, 5), corresponding to the 
groups of dihedral, tetrahedral, octahedral, and icosahedral type, respectively. Some of the 
prism spaces also have Seifert fibrations with base MP^ and one singular fiber. 

Turning to Poincare spaces, i.e. homology 3-spheres not homeomorphic to 5^, Seifert 
shows that for any sequence ai,... ,ar of r ^ 3 pairwise coprime integers ^ 2, there 
exists a Seifert fibered Poincare space, with base 5^ and r singular fibers of multiplicities 
a i , . . . , Qfr. Conversely, every Seifert fibered Poincare space is of this form, and two such 
are homeomorphic if and only if the corresponding sequences of multipHcities a i , . . . , a^ 
are the same, up to order, in which case they are fiber-preservingly homeomorphic. The 
only Seifert fibered Poincare space with finite fundamental group is the spherical dodeca-
hedral space, with three singular fibers of multiplicities 2, 3, and 5. 

Recalling Dehn's construction of Poincare spaces by surgery on knots, Seifert shows 
that the Poincare spaces obtained in this way from an (m, n)-torus knot are precisely those 
that have Seifert fibrations with three singular fibers of multiplicities m,n, and \qmn — 1\, 
for some q j^O.ln particular, the manifolds Moehn and Mdodeca are homeomorphic. 

Seifert also discusses branched coverings of Seifert fibered spaces, and shows that the 
Seifert fibered Poincare spaces can be realized in several different ways as branched cov
erings of S^, with branch set a collection of nonsingular fibers in some Seifert fibration of 
S^. In particular, if a i , ^2, <̂3 are pairwise coprime integers > 2, then the a/-fold cyclic 
branched covering of the {aj, a/:)-torus knot is the Seifert fibered Poincare space with three 
singular fibers of multiplicities a\,a2,oi3, where {i, j,k] = {1, 2, 3}. 

This brings us to the proof in [118] that Mpoin is homeomorphic to Mdodeca- Seifert and 
Weber start with the genus 2 Heegaard diagram of M = Mpoin given by Poincare in [81], 
expressing M as the union of two genus 2 handlebodies V and V\ with meridians K\, K2 
and K[, K2, respectively. They note that there is an orientation-reversing involution of the 
Heegaard surface, with fixed point set a simple closed curve C, which interchanges Ki and 
K-, i = 1, 2. (Interestingly, this was also observed by Poincare [81, p. 108], although he 
made no use of it.) Hence there is an involution on M, interchanging V and V\ with fixed 
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point set C. Seifert and Weber show that the quotient of the pair (M, C) by this involution 
is (5^, AT), where A' is a (3,5)-torus knot. Thus M is the 2-fold covering of S^ branched 
along K, and hence is the unique Seifert fibered homology sphere with singular fibers of 
multiplicities 2, 3, and 5. 

Turning to Euclidean 3-manifolds, these were classified by Nowacki [70], and Hantzsche 
and Wendt [43], independently. There are precisely 10 of them, 6 orientable and 4 non-
orientable. They are all covered by the 3-torus T^. Nowacki also classified the open Eu
clidean 3-manifolds; here there are 4 orientable and 4 non-orientable examples. Nowacki's 
proof is based on the classification of the 3-dimensional crystallographic groups, while that 
of Hantzsche and Wendt is more direct. 

What about the hyperbolic case, which in dimension 2 is the generic one? Hantzsche 
and Wendt conclude their paper by saying: 

The Euclidean space form problem is hereby completely settled, and the spherical case 
has been done in [107, 108]. Much harder is the question of hyperboHc space forms, of 
which one knows only a few examples. 

The first example to be given, of a discrete subgroup of PSLiiC) (the group of orien
tation-preserving isometrics of H^) with a fundamental domain of finite volume, was the 
group PSL2(Z[i]), described by Picard [76]. More generally, Bianchi studied the groups 
PSL2(R), where R is the ring of algebraic integers in an imaginary quadratic number 
field [12]. However, no-one at that time seems to have found, or looked for, torsion-free 
subgroups of finite index of these groups, which would give rise to (cusped) hyperbolic 
3-manifolds of finite volume. The first hyperbolic 3-manifold of finite volume was de
scribed in the 1912 thesis of Gieseking [38], a student of Dehn. (See also [60, Chapter V].) 
This manifold can be obtained from a regular ideal tetrahedron in //^ by suitably iden
tifying its faces in pairs. It is non-orientable, and turns out to be the unique noncompact 
hyperbolic 3-manifold of minimal volume [1]. 

The first examples of closed hyperbolic 3-manifolds were constructed by Lobell in 1931 
[59]; (in the preface to his paper he thanks Koebe for "expressing, in conversation, the 
desire that the question of the existence of such examples should be decided"). Lobell 
starts by constructing a 3-dimensional hyperbolic polyhedron whose faces are two right 
angled hexagons and 12 right angled pentagons. By suitably assembhng copies of this 
polyhedron he builds a compact hyperbolic 3-manifold, whose boundary is totally geodesic 
and consists of four isometric copies of a surface of genus 2. Taking a finite number of 
copies of this manifold, and identifying the boundary components in pairs, he then obtains 
infinitely many closed hyperbolic 3-manifolds, which can be chosen to be either orientable 
or non-orientable. 

A more symmetrical example was described by Seifert and Weber in [118]. This man
ifold, the hyperbolic dodecahedral space, or Seifert-Weber manifold, comes from a tiling 
of H^ by regular dodecahedra with dihedral angles 27r/5; it is the quotient of H^ by a fixed 
point free group of isometrics having one of these dodecahedra as a fundamental domain. 
It can be obtained from a single copy of the dodecahedron by identifying opposite faces by 
a rotation through 37r/5. They also show that it is a 5-fold cyclic branched covering of S^, 
with branch set the Whitehead hnk. 

Permitting ourselves to look ahead, some more examples of closed hyperbolic 3-mani
folds were constructed by Best in 1971 [11], using other regular hyperbolic 3-dimensional 
polyhedra. In 1975 Riley [89] showed that the complement S^ - K of the figure eight 
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knot K has a complete hyperbolic structure, by finding an explicit discrete, faithful rep
resentation of 7ti{S^ - K) in the Bianchi group P5L2(Z[e^^^/^]). Nevertheless, at that 
time it was still the case that only a few examples of hyperboUc 3-manifolds were known. 
The situation changed dramatically with the work of Thurston, however (see [109]), who 
showed that hyperbolic 3-manifolds are plentiful, and indeed presented much evidence for 
his geometrization conjecture, which would imply, for example, that any closed orientable 
3-manifold which satisfies certain obvious necessary conditions for it to be hyperboHc, 
namely that it is irreducible, and its fundamental group has no free Abelian subgroup of 
rank 2, is in fact hyperbolic. So it appears that, just as in dimension 2, hyperbolic geometry 
is "generic" in dimension 3. 

10. The state of play up to 1935 

The year 1935 is a convenient place at which to pause and take stock of the state of 
3-dimensional topology. By this time the foundations of what we would now call geo
metric topology had become sufficiently well established that a textbook could be written, 
Seifert and Threlfall's famous "Lehrbuch der Topologie", published in 1934. (An English 
translation appeared in 1980 [97].) One chapter of that book is specifically devoted to 3-
manifolds. 

Let us summarize what has been achieved. The fundamental group has emerged as an 
important invariant, although it is known that there are nonhomeomorphic 3-manifolds 
(lens spaces) with isomorphic groups. The homology of a 3-manifold is determined by 
its fundamental group, and is now seen as a very weak invariant; in particular there are 
infinitely many homology 3-spheres. There is a complete description of all 3-dimensional 
spherical manifolds, and of the handful of Euclidean ones. There are also some exam
ples of hyperbolic 3-manifolds. Seifert has given a complete description of all his fibered 
spaces, and classified them up to fiber-preserving homeomorphism. Dehn has shown how 
to construct 3-manifolds by "surgery" on knots. 

Three methods are known by which all 3-manifolds may be constructed: Heegaard dia
grams, identification of faces of polyhedra, and branched coverings of the 3-sphere. How
ever, none of these methods has led to anything approaching a classification. The situation 
is summarized well by Seifert and Threlfall [97, p. 228]: 

The construction of 3-dimensional manifolds has been reduced to a 2-dimensional prob
lem by means of the Heegaard diagram. This problem is the enumeration of all Hee
gaard diagrams. Even if the diagrams could all be enumerated, the homeomorphism 
problem in 3 dimensions would not be solved because a criterion is still lacking for de
ciding when two different Heegaard diagrams generate the same manifold. The enumer
ation has been carried out successfully in the simplest case, that of Heegaard diagrams 
of genus 1, but the problem of coincidence of manifolds, that is, the homeomorphism 
problem for lens spaces, has not been solved even here. 

Another way to attempt the enumeration of all 3-dimensional manifolds would be 
to construct all polyhedra having pairwise association of faces. This also is a 2-di
mensional problem and it has met with as little success at solution as the problem of 
enumerating the Heegaard diagrams. 

It is known from the theory of functions of complex variables that one can obtain 
any closed orientable surface as a branched covering surface of the 2-sphere, where 
the branching occurs at finitely many points. Corresponding to this result, it is possible 
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to describe each closed orientable 3-dimensional manifold as a branched covering of 
the 3-sphere. In this case the branching occurs along closed curves (knots) which He 
in the 3-sphere. Here also the enumeration and distinguishing of individual covering 
spaces leads to unanswered questions. On occasion the same manifold can be derived 
as branched coverings of the 3-sphere with quite distinct knots as branch sets; as an 
example, three different branch sets are known for the spherical dodecahedron space. 

The only general result on the structure of 3-manifolds is Kneser's existence and unique
ness of prime decompositions. 

In the introduction to their chapter on n-dimensional manifolds [97, p. 235], Seifert and 
Threlfall say: 

Because of their clear geometric significance, homogeneous complexes play a distinc
tive role among the complexes. We have given the name "manifolds" to the homoge
neous complexes in 2 and 3 dimensions and we have attempted to gain a complete view 
of their properties. Our attempt was successful in 2 dimensions. In 3 dimensions we 
did not get further than a presentation of more or less systematically arranged exam
ples. The complete classification of «-dimensional manifolds is a hopeless task at the 
present time. 

11. Dehn's lemma and the loop theorem 

Dehn's 1910 article, "On the topology of 3-dimensional space" [22], contains the following 
statement, which he refers to simply as the lemma, "because of its important place" in the 
paper. 

DEHN'S LEMMA (1). Let X be a 2-complex in the interior of an n-dimensional manifold 
M, n > 2. On X, let the curve C bound a singular disk D. If D has no singularities on its 
boundary, then C bounds an embedded disk in M. 

We will discuss the context of this rather curious statement later. 
As Dehn says, the lemma is clearly true if n > 3; the interesting case is when n = 3. In 

this case, a little thought shows that it may be restated as follows: 

DEHN'S LEMMA (2). Let C be a simple loop on the boundary of a 3-manifold M, which 
bounds a singular disk in M. Then C bounds an embedded disk in M. 

Note that the hypothesis is equivalent to the statement that C is null-homotopic in M. 
Perhaps the most natural statement of this kind, which dispenses with the assumption that 
C is simple, and asserts that if a 3-manifold contains a nontrivial singular disk (homotopical 
information) then it contains a nontrivial embedded disk (topological information), is the 
following, which might be called the 

DISK THEOREM. Let M be a 3-manifold and let F be a boundary component of M such 
that TCiiF) —̂  jTi(M) is not injective. Then M contains an embedded disk D, with dD 
contained in F, such that [dD] ^ I e 7T\{F). 

By taking F to be an open annular neighborhood of C, we see that the disk theorem 
implies Dehn's lemma. On the other, it is implied by Dehn's lemma together with the 
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LOOP THEOREM. Let M be a 3-manifold and let F be a boundary component ofM such 
that n\{F) -^ n\(M) is not injective. Then there is an essential simple loop in F which is 
null-homotopic in M. 

We will return to these statements later. But first we note that arguments with singu
lar disks in connection with the fundamental group of a 3-manifold appear in Poincare's 
work. For example, in [81], he wishes to show that if C i , . . . , Cp are (homologically in
dependent) disjoint simple loops on the boundary of a handlebody V of genus /?, which 
are null-homotopic in V, then they bound disjoint embedded disks in V. The "innermost 
disk" cutting and pasting argument that he uses to make the disks disjoint is vahd if they 
are already embedded; however, on the latter point he merely says: 

. . . an analogous argument will show that since the curves are embedded one may al
ways suppose that the disks [that they bound] are surfaces without double curves. 

This is precisely Dehn's lemma. 
This fact about embedded disks in a handlebody is not needed for the discussion of 

Poincare's homology sphere, but, as we have mentioned in Section 5, in order to compute 
the fundamental group, the following fact is: if C i , . . . , Cp is a system of meridians on 
the boundary of a handlebody V of genus p, then any element in the kernel of 7T\ (9 V) -^ 
n\{V) is a product of conjugates of [C i ]^ \ . . . , [Cp]'^^ Poincare proves this by taking 
a disk D in V bounded by a loop C on dV, and considering the arcs of intersection of 
D with disks Ai,..., Ap bounded by C\,... ,Cp. The disks A/ are certainly disjoint and 
embedded, but Poincare appears to assume that C and D are also nonsingular; however, if 
one interprets his argument as applying to the inverse image of the union of the A/s under 
a map of a disk into V, then it is in fact correct. A similar remark apphes to his proof that 
given a Heegaard splitting (V\ V̂ O of a 3-manifold, a loop on the Heegaard surface W is 
null-homotopic in the manifold if and only if it is a product of elements in the two kernels 
ker(7ri(W) -^ TTICVO) andker(7ri(W) -> 7TI{V'')). 

Dehn attempted to prove his lemma by using the cutting and pasting procedure (he 
calls the operation a switch, or Umschaltung), that is hinted at in Poincare, to remove 
the singularities of the given singular disk, but although he did give a detailed argument, 
it was, as is well known, faulty. The error was pointed out by Kneser in a footnote added 
in proof to his paper [56], and privately in a letter to Dehn dated 22 April, 1929 (see [24, 
p. 87]). Kneser himself was trying to prove the following: 

KNESER's HILFSATZ. Let F be a closed surface in a 3-manifold M such that n\ (F) -^ 
Tti(M) is not injective. Then there exists a disk D in M such that D Ci F = dD is an 
essential loop in F, and the only singularities of D are on 9 D. 

Note that by allowing singularities on 9D Kneser is taking into account the possibility 
that F is 1-sided in M. 

Kneser starts with a singular disk D in M whose boundary is an essential loop in F, 
and first shows, by considering the intersection of D with F, that one may assume that 
D n F = dD. (Modulo this simpHfication, the Hilfsatz is equivalent to the disk theorem, 
by cutting M along F.) There follows a cutting and pasting argument to eliminate the 
double arcs of D, and finally an appeal to Dehn's lemma to get a disk of the desired type. 

The model for the cutting and pasting approach to Dehn's lemma and Kneser's Hilf
satz is the case where the singular disk has only double points (i.e. no triple points), in 
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which case a proof by these methods may readily be obtained - indeed as we have seen, 
this is essentially contained in Poincare's work. More generally, a switch can be used to 
eliminate any simple double curve, i.e. one that comes from the identification of two dis
joint simple closed curves in the nonsingular preimage of the disk. But Dehn's attempt to 
carry this through when the double curves themselves have singularities is unsuccessful; 
it is not clear in general that the cutting and pasting can be done consistently in the pres
ence of these triple points. The sort of difficulty that arises is illustrated by an example 
given by Johannson in [52], which he states that Dehn was (by that time) also aware of. 
Kneser's argument for removing double arcs (which he gives in the case where there are 
no triple points, the general case being said to follow analogously), is also subject to the 
same criticism. 

Johannson [52] gave necessary conditions for the reahzability of Dehn diagrams (i.e. 
patterns of immersed circles) as the double curves of a singular disk in a 3-manifold, and in 
particular showed that the example mentioned above could not in fact be realized. He states 
that in fact in all known examples the cutting and pasting argument can be successfully 
carried out, and hence 

one can still hope that it might be possible to prove the lemma by suitably selected 
switches. 

In [53] Johannson showed that if Dehn's lemma is true for orientable 3-manifolds then 
it is also true for non-orientable ones. 

There the situation remained until the ground-breaking work of Papakyriakopoulos in 
1957. 

Before discussing this, let us briefly return to the papers of Dehn and Kneser, to see the 
uses to which they put their "lemmas". 

Starting with Kneser, as an application of his Hilfsatz, he proves that every closed surface 
F in S^ can be obtained from a 2-sphere by adding handles. In particular, this recovers (or 
would recover, if the proof of the Hilfsatz were correct) Alexander's theorem that every 
torus in S^ bounds a solid torus [4]. The argument is straightforward. If F is not a 2-sphere, 
then the map 7T\ (F) -> TTI (5-̂ ) = 1 is not injective, and hence, by the Hilfsatz, there is an 
embedded disk D in S^ such that DDF = 9D is essential in F. Compressing F along 
D gives a simpler surface F', from which F is obtained by adding a handle. The result 
now follows by induction. Here we first find explicitly the important idea of compressing a 
surface F in a 3-manifold M, using the noninjectivity of TC\ (F) -> TTI ( M ) , which Kneser 
used in his "proof" of his "conjecture" (see Section 12), and which played a central role in 
the later work of Stallings and Waldhausen. 

Turning to Dehn's paper, the last chapter consists of two sections. In the first he shows 
that every closed 3-manifold M can be obtained by sewing a 3-ball along its boundary onto 
a seam surface N2 in M. (This 2-complex Â2 is exactly Heegaard's "nucleus".) Letting Â i 
be the 1-skeleton of N2, Dehn notes that a neighborhood of Â i in M is a (possibly non-
orientable) solid handlebody, whose complement is also a solid handlebody. He concludes 
that every closed 3-manifold has a Heegaard splitting, although, oddly, he does not mention 
Heegaard here at all. He also notes that this implies that every closed 3-manifold is the 
union of four 3-balls. 

The second section is described by Dehn in the introduction to his paper (see [24]): 

Section 2 deals with the important problem of the topological characterization of or
dinary space, without, however, resolving the problem. It treats the question of how 
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ordinary space may be topologically defined through the properties of its closed curves, 
and how to make it possible to decide whether or not a given space is homeomorphic to 
ordinary space. The history of this problem began when first Heegaard (Diss. Copen
hagen 1898) and then Poincare (Pal. Rend. v. 13 and Lond. M.S. v.32) pointed out that 
in order to characterize ordinary space it does not suffice to assume that each curve 
bounds, possibly when multiply traversed. Indeed the manifolds with torsion show this. 
Then Poincare proved in Pal. Rend. 1904, by construction of a "Poincare space" that it 
is even insufficient for each curve to bound when traversed once. 

It now is natural to investigate whether it suffices to suppose that each curve in the 
space bounds a disk. This is also suggested at the end of Poincare's work. However, the 
reduction of the problem given in the present work does not appear to lead directly to a 
solution. A deeper investigation of the fundamental groups of two-sided closed surfaces 
seems to be unavoidable. 

Dehn's "reduction" of the Poincare conjecture is the following. He notes that one may 
assume that Â i consists of a wedge of circles. Since the manifold M is simply connected 
by hypothesis, each of these circles bounds a singular disk. If it were possible to choose 
these disks to have no singularities on their boundaries, then Dehn's lemma would give 
a system of embedded disks, with the same boundaries, meeting only at a single point. 
A neighborhood of the union of these disks would be a 3-ball, whose boundary S is con
tained in the solid handlebody A that is the complement of a neighborhood of A î. Dehn 
now asserts that the 2-sphere S bounds a 3-ball in A, implying that M is the union of two 
3-balls along their boundaries, and therefore homeomorphic to S^. (Of course, the fact that 
a 2-sphere in a handlebody bounds a 3-ball requires proof and was not available at the time; 
if the handlebody is orientable it follows from Alexander's theorem that a (tame) 2-sphere 
in S^ separates it into two 3-balls [4], and can be proved for non-orientable handlebodies 
by passing to the orientable 2-fold cover.) 

Although Dehn's lemma finds a very important and natural application in the theorem 
that a knot with group Z is trivial, both the title of Dehn's paper and the mention of a 
2-complex in the statement of the lemma (presumably Dehn had in mind the seam surface 
^i) suggest that Dehn's real motivation was the Poincare conjecture. Incidentally, Dehn's 
approach formed the basis for later attacks on this problem, notably by Haken. 

As we have noted above, Dehn's lemma is something of a hybrid, and it alone does not 
enable one to translate purely homotopy theoretic information into topological information. 
For this reason, Papakyriakopoulos formulated the loop theorem, which he proved in [71]. 
He explains [74] that his motivation was the following characterization of handlebodies. 

C O N J E C T U R E H. If M is a compact 3-manifold with boundary an orientable surface of 
genus g, and n\ (M, dM) = 1, then M is a handlebody of genus g. 

This is turn was apparently motivated by the Poincare conjecture: 

Some yeai*s ago I was working on the Poincare conjecture, and I tried to prove it by 
proving [Conjecture H]. But I failed, and I may say that I am now convinced that this 
is not the way to attack the Poincare conjecture. However, the loop theorem, Dehn's 
lemma, Poincare conjecture, and some results from algebraic topology imply [Conjec
ture H], see [72, Theorem (19.1), p. 297]. This was the reason I worked on the loop 
theorem, whose proof led me to the proof of Dehn's lemma and the sphere theorem. 
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The key idea that enabled Papakyriakopoulos to prove the loop theorem, Dehn's lemma, 
and the sphere theorem, was the use of covering spaces. Another, more elementary, princi
ple that is used in all three proofs is the relation between the first homology of a 3-manifold 
and that of its boundary. We have already seen a special case of this for submanifolds of 
R-̂  in Poincare's work; (see Section 3). Of more direct relevance here is the fact, proved by 
Kneser in [55], that if M is a 3-manifold such that H\ (M; Z2) = 0, then any two 1-cycles 
in 3M have even intersection number. It follows that each component of 3M is planar, i.e. 
embeds in the 2-sphere. Later, Seifert proved [94] that if M is compact and orientable, with 
boundary components of genera p\,..., pr, then ^1 (M) ^ pi H \- pr.ln particular, if 
dM does not consist of 2-spheres, then H\ (M) is infinite. 

Here is a summary of Papakyriakopoulos' proof of the loop theorem. Let C be a loop in 
a boundary component F of a 3-manifold M, which is essential in F but nuU-homotopic 
in M. Let p:M -^ M be the universal cover. Since C is nuU-homotopic in M, it lifts to a 
loop C, say, in p~^ (F). Now the crucial observation is that the singularities of C are the 
images under p of, firstly, the singularities of C, and secondly, the intersections of C with 
its translates r (C) under nontrivial elements r of the group of covering transformations of 
M. Hence, one wants to replace C by an essential loo£ C* in p~^(F) such that (i) C* is 
simple, and (ii) C* fi r(C*) = 0 for all r. Note that C* is automatically nuU-homotopic 
in M since 7Zi(M) = 1. Then C* = p(C*) will be a simple essential loop in F which is 
null-homotopic in M. Condition (i) is easy to satisfy, and Papakyriakopoulos shows, by a 
deUcate combinatorial argument, that (ii) can also be achieved. The important fact here is 
that p~^(F) is planar, by Kneser's result. 

Whitehead had earher proved a special case of the loop theorem, by a direct cutting and 
pasting argument: if C is a simple loop in the boundary of a 3-manifold M such that C" is 
null-homotopic in M for some n > 0, then C is null-homotopic in M [122]. 

As Papakyriakopoulos says in [74]: 

Having observed . . . that the loop theorem and Dehn's lemma are problems of the same 
kind, and having proved the loop theorem, the question arises naturally: can we use the 
same method, or at least a modification of it, to prove Dehn 's lemmal The answer is 
affirmative 

To prove Dehn's lemma, Papakyriakopoulos came up with his famous tower construc
tion. In this, a tower of coverings is constructed, by starting with a neighborhood VQ of the 
given singular disk Do C M = Mo, taking the universal covering M\ of Vb, and lifting 
the map of the disk into Vb to get a singular disk D\ C M\\ now taking a neighborhood 
V\ of Di, taking the universal covering M2 of Vi, and so on. Since Di has fewer singu
larities than D/_i, the tower must terminate, at Dn C Vn C Mn, say. In particular, since 
7ti(Vn) = 1, 9V„ consists of 2-spheres, by Kneser's result. 

Recall that we may assume that Do has no simple double curve, for otherwise DQ could 
be simpHfied by a Dehn switch. Papakyriakopoulos distinguishes two cases at the top of 
the tower: (1) D„ is singular, and (2) Dn is nonsingular. 

In case (1), since dVn consists of 2-spheres, 9D„ bounds a disk indVn. Papakyriakopou
los shows that this disk, when projected down the tower, gives a disk DQ in M, with 
9DQ = C, which (using the fact that Do has no simple double curves) has fewer triple 
points than DQ. 

In case (2), first Papakyriakopoulos notes that dVn-i does not consist of 2-spheres. (If 
« = 1, this is because otherwise the triple points of Do could be decreased, as in case (1) 
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above, and if n > 1, it is a consequence of the facts that Vn-\ C M„_i, ni (M„_i) = 1, 
and 7t\ (Vfi-i) ^ 1 . ) Hence Hi (Vn-i) is infinite, by the result of Seifert mentioned above, 
and it follows that there is a covering transformation r of M„ of infinite order such that 
Dn n T(Dn) ^ 0. This in turn gives rise to a simple double curve in Do, contrary to 
hypothesis. 

So in the proofs of both the loop theorem and Dehn's lemma, covering spaces are used 
to select the switches that are to be performed, on C and Do, respectively. As Papakyri-
akopoulos says of the proof of Dehn's lemma: 

Actually, looking closer at the proof of Dehn's lemma in [72], we observe that we 
actually construct the desired disc [72, 11. 34-38, p. 2], and that the construction is 
carried out by means of successive cuts. 

Arnold Shapiro suggested the use of 2-fold coverings instead of universal coverings in 
the tower construction ([74, p. 323]), and Shapiro and Whitehead gave a simplified proof 
of Dehn's lemma using such coverings [98]. (The advantage of using 2-fold coverings is 
that, under such a covering M —> M, the image F in M of a nonsingular surface F in M 
will have only double points, and so switches may be performed on F without difficulty.) 
Finally, again using 2-fold coverings, Stallings gave a proof of the disk theorem, [103] 
which, as we have noted, combines the loop theorem and Dehn's lemma, and this is the 
statement that is normally used in practice. 

In retrospect, with Stallings' proof of the disk theorem, we can see that the assumption 
in Dehn's lemma that the boundary of the disk is embedded is in a sense a red herring. 
On the other hand, it seems to have played an important metamathematical role in this 
whole development. For it led Papakyriakopoulos to consider the two statements, the loop 
theorem and Dehn's lemma, separately, and it was in trying to prove the former that the 
key idea of using covering spaces suggested itself to him, this in turn leading him to take a 
similar approach to the latter. 

The version of the loop theorem for duality spaces proved by Casson and Gordon [17, 
Theorem 4.5], shows that there are also mathematical grounds for separating the loop the
orem from Dehn's lemma. In that version, F is still a surface, but the 3-manifold M is 
replaced by any complex which satisfies 3-dimensional Poincare-Lefschetz duality over 
some field of untwisted coefficients, emphasizing the essentially 2^-dimensional character 
of the loop theorem. 

Recently, an interesting and entirely new proof of the disk theorem has been given by 
Johannson (Klaus, not Ingebrigt), using hierarchies [54]. 

Let us now make some remarks on the triviaUty problem for knots: (how) can you decide 
whether or not a given knot is trivial? This question clearly hes behind Dehn's result that 
a knot K is trivial if and only if its group 7t\{S^ — K) i^ isomorphic to Z. Ignoring the 
fact that the proof uses Dehn's lemma, this statement "reduces" the triviality question for 
a knot to an algebraic question, namely, is its group Abelian? Although Dehn did, in fact, 
refer to this as a "solution" to the knot triviality problem, he was very much aware that 
it is not at all clear that the algebraic question is any easier, or if it can be solved at all. 
In fact, it was precisely this kind of question, involving fundamental groups of 2- and 
3-dimensional manifolds, that led him to articulate and bring to the fore the word problem 
and isomorphism problem for finitely presented groups. (For a detailed account of the 

^ I.e. Dehn switches. 
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topological origins of combinatorial group theory, and in particular the influence of the 
work of Tietze and Dehn, see [18].) 

With the proofs, in the 1950's, that there are finitely presented groups with unsolvable 
word problem, and that the isomorphism problem, or even the triviality problem, for finitely 
presented groups, is unsolvable, the equivalence of the knot triviality problem to a question 
about (apparently fairly complicated) finitely presented groups made it seem more likely 
to be unsolvable. The same held for other, more direct equivalences. For example, in his 
very nice popular article [112], Turing shows, by considering elementary moves on knots 
that lie on the unit lattice in M ,̂ that the knot problem is equivalent to a problem about 
substitutions on strings of letters which does not seem to have much structure. Later, after 
listing some decision problems that have been shown to be unsolvable, he says: 

It has recently been announced from Russia that the 'word problem in groups' is not 
solvable. This is a decision problem not unlike the 'word problem in semi-groups', but 
very much more important, having applications in topology: attempts were being made 
to solve this decision problem before any such problems had been proved unsolvable. 
... Another problem which mathematicians are very anxious to settle is known as 'the 
decision problem of the equivalence of manifolds' It is probably unsolvable, but 
has never been proved to be so. A similar decision problem which might well be 
unsolvable is the one concerning knots which has already been mentioned. ̂  ̂  

In this climate, it was therefore probably something of a shock when, at the International 
Congress of Mathematicians in Amsterdam in 1954, Haken gave a short address in which 
he announced that the triviality problem for knots was solvable, using his theory of normal 
surfaces [41]. The details of the proof appeared in 1961 [42]. Later, in the mid 1970's, the 
knot problem was also shown to be solvable; see [117]. 

We have seen that the Poincare conjecture seems to have been the motivation for both 
Dehn's formulation of his lemma and Papakyriakopoulos' proof of it. It was also the prob
lem that first led Whitehead into 3-dimensional topology, with his false proof of the con
jecture in [119]. In fact this proof also implied that any contractible open 3-manifold is 
PL-homeomorphic to R-̂ . But Whitehead soon realized his mistake, and came up with his 
famous counterexample [121] (an informal description is given in [120]). This Whitehead 
manifold W is defined to be S^ — fl/^o '̂̂ ' where TQ D Ti D • • • is a certain nested 
sequence of solid tori, derived from the Whitehead link. Thus r„ is unknotted in S^, and 
Tn-\.\ is null-homotopic in r„ but does not lie in a 3-cell in Tn. It follows that TTI (W) = 1, 
H2iW) = 0, and W is irreducible. However, Whitehead shows in [121] that W is not PL-
homeomorphic to R^. In [68], the geometric arguments of [121] (recall that Dehn's lemma 
was not available) are replaced by algebraic arguments involving the fundamental group, 
and there it is proved that W is not even homeomorphic to R-̂ . 

But these influences of the Poincare conjecture are somewhat indirect, and in many ways 
it has tended to become an isolated problem, with progress in 3-dimensional topology go
ing on independently of it, although recently the work of Thurston [109], and in particular 
his geometrization conjecture, has put it in a broader context. 

^̂  The unsolvability of the homeomorphism problem for manifolds of dimension ^ 4 was established by Markov 
in 1958 [61]. 
^ ^ My italics, C. McA. G. 
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12. 7T2 and the sphere theorem 

As homotopy theory arose and developed in the 1930's, with the work of Hopf and 
Hurewicz, investigations were begun on the homotopy properties of 3-manifolds. In 1936 
Eilenberg [28] proved that if Z is a nonseparating continuum in 5^, for example a knot, 
such that TTi (5^ - X) = Z, then 5^ - X is aspherical (i.e. ni (5^ - X) = 0, / ^ 2). 

(As an aside, it is interesting to see the terminology adjusting to the unavailability of 
Dehn's lemma. Eilenberg says: 

... TC\ (5 — K) = IJ, which means, in the sense of knot theory (based on the notion of 
the fundamental group), that K is unknotted. 

Later, Whitehead [122] uses the term "ordinary circuit" to mean a knot that does not pro
vide a counterexample to Dehn's lemma, i.e. one that is either unknotted or has the property 
that its latitude is not null-homotopic in its complement.) 

Eilenberg also gave a necessary and sufficient condition for a 2-component Hnk ^ i U Â2 
to have the property that ^ i is a deformation retract of S^ — K2 (namely, 7T\(S^ — K2) = 1^ 
and the Unking number of K\ and K2 is 1). This led him to ask the following two questions, 
which turned out to be quite influential. 

(1) For which knots K in S^ is S^ — K aspherical? 
(2) For which 2-component links L in S^ is S^ — L aspherical? 
Regarding his second question, Eilenberg notes that if L is a split link then 7r2(S^ — 

L) / 0. He also shows that if 7ri(5^ - L) = Z * Z then "̂-̂  - L is not aspherical, for 
otherwise (by an earUer theorem of his) S^ — L would be deformable to a one-dimensional 
subcomplex, and hence would have 2nd Betti number equal to 0, contradicting Alexander 
duality. Finally, he shows (by considering the homology of the universal covering space) 
that a proper, connected, open subset U of S^ is aspherical if and only if TC2{U) = 0. (This 
argument of course applies to any open 3-manifold.) 

Inspired by Eilenberg's paper. Whitehead attacked the question of the asphericity of knot 
and link complements in his 1939 paper [123], (in which he thanks Eilenberg for many 
valuable suggestions). His approach is essentially algebraic. Starting with a knot K in S^, 
he considers the cell decomposition of 5^ — ^ corresponding to the Wirtinger presentation 
of 7T\(S^ — K), obtaining a 2-complex X homotopy equivalent to S^ — K.lf X denotes 
the universal covering of Z, then 7r2(X) = 7T2(X) = H2(X), the last isomorphism being 
a consequence of the Hurewicz theorem. Moreover, H2{X) = ker9, where 9 : C2(X) -^ 
Ci (X) is the boundary homomorphism. 

Note also that C2(X) and C\ (X) are the free ZTTI (X)-modules on the 2-cells and 1-cells 
respectively of X. Thus 7C2{X) = 0 if and only if 9 is injective, and in this way the as
phericity problem becomes equivalent to an assertion about a finite system of linear equa
tions over ZTTI (X). Pointing out that this works for any graph in 5"̂ , Whitehead, by expHcit 
calculation, shows that the complements of the figure eight knot, the Whitehead link [122], 
and a certain knotted wedge of two circles, are all aspherical. 

Next, Whitehead proves that if Zi , Z2 and Xi Pi Z2 are aspherical polyhedra such that 
7Ti(X\ n X2) -> 7Ti(Xi) is injective, / = 1,2, then X = Xi U Z2 is aspherical. (He 
says the proof is mainly due to Eilenberg.) He uses this to show that the asphericity of 
the complement of a hnk L is preserved by doubUng (in the sense of [122]) a component 
K of L, provided that 7T\(T) -> 7i\(S^ — L) is injective, where T is the boundary of a 
tubular neighborhood of K. Recalling that Eilenberg had remarked that the asphericity of 
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S^ — L reflects some sort of linking of the two components of L, Whitehead points out 
that his doubhng construction shows that S^ — L may be aspherical even though the two 
components of L are only Hnked in a very weak sense, specifically, for any given n, L 
may be chosen so that the components are not n-linked in the sense of Eilenberg [29]. This 
observation leads him to ask: 

If X is a closed subset ofS^, is S^ — X aspherical unless X is a disjoint union Xi [J X2, 
X\ ^Q ^ X2, where X\ is contained in a 3-cell which does not meet X2? 

He notes that this is equivalent to: 

IfU is an open subset of S^, is7T2{U) = 0provided every embedded S'^ in U bounds a 
3-cell in U ? 

Thus Whitehead has arrived at the right "conjecture" about the asphericity of submani-
folds of S^. As Papakyriakopoulos says in [74]: 

It was precisely this conjecture which stimulated the present author to prove during the 
summer of 1956 the following sphere theorem. 

In 1947 Higman took up the asphericity question [46], and used Whitehead's algebraic 
formulation to show that if L is a link in S^ such that ni(S^— L) is a nontrivial free product, 
then TC2{S^ — L) / 0, generahzing Eilenberg's result mentioned above. 

The only further progress on the question of the "asphericity of knots and links", un
til Papakyriakopoulos' complete solution in 1957, was Aumann's proof [10] that com
plements of alternating knots and Hnks are aspherical. This goes as follows. Let Z) be a 
reduced, alternating, connected diagram of a knot or Unk Â  in 5^. Shading the comple
mentary regions of the diagram alternately black and white, we see that it determines two 
spanning surfaces for K. Let F be one of these surfaces, and assume for convenience that 
F is non-orientable (in fact this can always be arranged if A' is a knot and D has a nonzero 
number of crossings); the orientable case is similar. The surface F has a neighborhood 
X\ (a twisted /-bundle over F), such that X\ and X2 — S^ — X\ are handlebodies. Then 
X, the complement of an open neighborhood of K, can be expressed as Xi U X2, where 
Xi n X2 = F is the 2-fold orientable cover of F. Clearly, the map 7ri(F) -> 7T\{X\) is 
injective, and Aumann shows, using the fact that D is reduced and alternating, that the map 
:7ri(F) -^ n\(X2) is also injective. The asphericity of X now follows from the result of 
Whitehead mentioned above. 

Appearing as it did just before [72], Aumann's result was overshadowed by that of Pa
pakyriakopoulos. However, it has a feature which was to emerge later as an important 
notion in knot theory. Namely, taking A' to be a knot, one can show that F can be chosen 
so that its boundary is not a latitude of K, and so the incompressible surface F represents 
a nonzero boundary slope of K. The potential usefulness of incompressible surfaces with 
boundary in knot complements was emphasized by Neuwirth [69], and it was later proved 
by Culler and Shalen [20], using deep results on representations of knot groups in PSL2(C), 
that every (nontrivial) knot has a nonzero boundary slope. It turns out that the boundary 
slopes of a knot K play an important role in the study of the manifolds obtained by Dehn 
surgery on K. 

Now we come to the sphere theorem, which asserts that if an orientable 3-manifold 
contains a singular homotopically essential 2-sphere then it contains a nonsingular one. 



3-dimensional topology up to 1960 483 

SPHERE THEOREM. Let M be an orientable 3-manifold such that iiiiM) ^ 0. Then M 
contains an embedded 2-sphere which is not null-homotopic. 

Papakyriakopoulos proved a "conditional" version of the sphere theorem at the same 
time that he proved Dehn's lemma [72]. In fact, his proof of the former is modelled exactly 
on that of the latter, and it is because of this that he needs an extra hypothesis, to deal with 
the case where n, the height of the tower, is 1, and the sphere ^i (which plays the role 
of the disk Di in the proof of Dehn's lemma) is nonsingular. To ensure the existence of a 
covering transformation r of M\ of infinite order such that Si HriSi) ^ 0, he needs to 
assume that //i (Vo) is infinite. This follows as before if 9 VQ does not consist of 2-spheres, 
but to take account of the possibility that it does, Papakyriakopoulos adds the hypothesis 
that M embeds in a 3-manifold Â  such that any nontrivial finitely generated subgroup of 
7T\ (N) has infinite commutator quotient group, (in other words, ni (N) is locally indicable). 
Since this condition is vacuously satisfied if 7ri(A )̂ = 1, Papakyriakopoulos' version is 
enough to prove the asphericity of knots; more generally, it proves Whitehead's conjecture 
characterizing the aspherical open subsets of S^. 

The additional hypothesis was soon shown to be unnecessary. Quoting Papakyriakopou
los [74, p. 319]: 

In October 1957 J.W. Milnor proved a more general sphere theorem. Finally in Decem
ber 1957 J.H.C. Whitehead ... proved the sphere theorem in complete generaUty. 

Whitehead [125] achieved this by making the following modifications to the definition 
of the tower. Firstly, the tower stops when niiVn) is finite, as opposed to trivial. Secondly, 
the coverings M/ -^ Vi-.\ are universal, as before, except for the first, M\ -^ VQ, which is 
defined to be that corresponding to the cyclic subgrou£of TTI (VQ) generated by a nontrivial 
covering transformation r of the universal covering VQ -^ VQ such that ^i Pi T(5'I) ^ 0, 
where 5i is a Hft of the original 2-sphere 5*0 C Vb C M to Vo- Incidentally, the papers 
[98,125] marked Whitehead's return to 3-dimensional topology after an absence of almost 
twenty years. 

As we saw in Section 11, Shapiro and Whitehead, and Stallings, showed that 2-fold 
coverings could be used to considerably simplify the proofs of Dehn's lemma and the loop 
theorem, but, interestingly, this does not work for the sphere theorem. Perhaps it is for this 
reason that StalUngs says in [104] that 

The proofs of Dehn's lemma and the Loop Theorem are an order of magnimde easier 
than is the proof of the Sphere Theorem. 

The difference between the theorems is also reflected in Johannson's approach, using 
hierarchies. While this gives a proof of the disk theorem, in the case of the sphere theorem 
it merely reduces the problem to proving that if M is a closed, orientable, irreducible, 
non-Haken 3-manifold then 7t2(M) = 0. 

The sphere theorem is false for non-orientable 3-manifolds, as the example RP^ x S^ 
shows. However, Epstein, in his Cambridge Ph.D. dissertation (see [32]), showed that the 
following version, which he calls the projective plane theorem, holds without the assump
tion of orientability: if M is a 3-manifold such that ixiiM) / 0, then there is an essential 
map S^ -> M which either is an embedding or has image a 2-sided projective plane. In the 
case that M is non-orientable, this is proved by going to the 2-fold orientable cover M of 
M, taking an essential embedded 2-sphere 5 in M (whose existence is guaranteed by the 
sphere theorem), and doing a cut and paste argument on S U r(5), where r is the nontrivial 
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covering transformation of M. So here we see another application of 2-fold coverings in 
this context, similar to the ones we have already met. 

Another line of development here is the relationship between 7t2(M) and the ends of 
7ri(M). The theory of ends was initiated in Freudenthal's 1930 Berlin dissertation (see 
[37]), and the notion of the number of ends e(G) of a group G was defined by Hopf [49], 
who proved that e(G) = 0, 1, 2, or oo. In [101], Specker used this theory to show that for 
a closed 3-manifold M, niiM) is determined by n\ (M), a fact which had been announced 
without proof by Hopf [48]; more precisely, he showed that 7t2(M) is a free Abelian group 
of rank n, where n = 0, 1, oo, according as e(7Ti (M)) is less than 2,2, or oo. This is proved 
by applying Poincare duahty (using cohomology based on finite cochains) in the universal 
cover of M. 

Applying similar considerations to 3-manifolds with boundary, Specker also showed 
that the asphericity of knots is equivalent to the assertion that the number of ends of a knot 
group is 1 or 2. In particular, since the group of a torus knot has an infinite cycUc center, it 
follows from a theorem of Hopf [49] that it has 1 or 2 ends; and, hence, that complements 
of torus knots are aspherical. But except in this special case, the equivalence established 
by Specker did not lead to progress on the asphericity question; rather, it was the other way 
round: after Papakyriakopoulos proved his sphere theorem he could deduce the fact about 
ends of knot groups. However, the direction of implication that no doubt Specker had in 
mind did eventually reappear, in the later work of Stallings [104]. 

Specker's paper also contains an application to the question of which Abelian groups can 
be fundamental groups of (compact) 3-manifolds. For closed, orientable 3-manifolds this 
was solved earlier by Reidemeister [87]. Reidemeister observes that for such a manifold 
M, TTi (M) has a finite presentation with the same number of generators as relations, and 
shows that the only Abelian groups with this property are Z, Z„ {n ^ 1), Z x Z, Z x Z„ 
{n ^ 2), and Z x Z x Z. The main part of the proof is now to rule out the possibilities 
Z X Z and Z x Z„, which is done by using duality in the cellular chains of the universal 
covering. 

Specker considers manifolds with boundary, and shows that if M is a compact, orientable 
3-manifold whose boundary is nonempty and does not consist entirely of 2-spheres, and 
whose fundamental group TTI ( M ) is AbeUan, then JTI ( M ) = Z or Z X Z . 

Finally, in [32] Epstein proves that the only finitely generated AbeHan groups that can 
be subgroups of the fundamental group of any 3-manifold (not necessarily paracompact 
or orientable) are Z, Z„, Z x Z, Z x Z2, and Z x Z x Z. (He also shows that if M is a 
compact non-orientable 3-manifold with 7T\ (M) finite, then 7T\ (M) = Z2, and in fact M is 
homotopy equivalent to RP^ x / with a finite number of open 3-balls removed.) 

The paper [126] of Whitehead is another which fits into this general end-theoretic con
text. Here he proves that if M is a 3-manifold, then ni (M) is isomorphic to Z or a nontrivial 
free product if and only if M contains an essential embedded 2-sphere. For the nontrivial 
implication. Whitehead notes that the hypothesis on TTI ( M ) implies that the number of ends 
of TTi (M) is 2 or 00, and hence, by Specker [101], 712(M) / 0. If M is orientable, the re
sult is now a consequence of the sphere theorem. Whitehead shows that the statement also 
holds in the non-orientable case. However, this follows easily from Epstein's projective 
plane theorem. 

We now go back to Kneser's 1929 paper [56]. In the last section of that paper he gives a 
proof of the following statement. 
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KNESER'S CONJECTURE. IfM is a 3-manifold such thatn{M) = Gi * G2, then M = 
Ml #M2, where 7ri(M/) = G/, / = 1, 2. 

This is another manifestation of the principle that, in dimension 3, the fundamental group 
determines the topology. 

Kneser's argument is hard to follow, but may be roughly summarized thus. First, a 
2-dimensional spine of the 3-manifold M is modified to get two disjoint 2-complexes 
X\, X2 in M, with 7C\(Xi) = Gt, i — 1,2, whose inclusions into M induce the natural 
inclusions of the factors G/ into Gi * G2 = TTI ( M ) . Next one finds a closed surface F in 
M, separating Xi and X2, such that the map 7ti{F) —> 7ri(M) is trivial. Using Kneser's 
Hilfsatz, F may be compressed to a disjoint union of 2-spheres. If two of the 2-spheres can 
be joined by a path that is null-homotopic in M, then X = Xi ]J X2 can be changed so 
that it misses this path, and then the 2-spheres can be connected by a tube to form a single 
2-sphere. Doing this as often as possible, Kneser argues that one must end up with a single 
2-sphere, separating M into two components Mj, Mj with 7ii{M-) = G/, / = 1, 2. 

It was soon after writing this paper that Kneser discovered the flaw in Dehn's proof of 
his lemma, and so he says, in a footnote added in proof, that because of this his proof 
should be considered incomplete. However, his argument is sufficiently unclear that even 
when the Hilfsatz was finally established, with the proof of the loop theorem and Dehn's 
lemma, his theorem was still not regarded as having been proved, and Papakyriakopoulos 
in [74] therefore termed it "Kneser's conjecture". Papakyriakopoulos envisages that one 
would approach this conjecture in two steps: 

This suggests that the gap between [the hypothesis] and the conclusion of Kneser's 
conjecture is so great that it has to be factored, and we first have to prove that [the hy
pothesis] implies 7T2 ^ 0, and then that 7r2 7̂  0 implies the desired conclusion. It seems 
that the first step has to be proved by algebraic topological techniques, and the second 
one by using the sphere theorem and something more, because the sphere theorem is 
not enough to provide us with the conclusions of Kneser's conjecture. Thinking now 
that the algebraic topological techniques were rather undeveloped in 1928, we easily 
conclude that it was rather hopeless, to expect to have a satisfying proof of this strong 
statement at that time. 

Nevertheless, Stallings, to whom Papakyriakopoulos had suggested the problem, gave a 
proof of Kneser's conjecture, in his 1959 Princeton Ph.D. thesis [102], which did not follow 
this scheme, but which was, in outline, very much along the lines indicated by Kneser. 

In particular, Stallings' proof did not use the sphere theorem. Note, however, that the 
conclusion clearly implies (if the groups Gi and G2 are nontrivial) that M contains an 
embedded essential 2-sphere. This leads us to Stallings' work of about ten years later, 
which brings these ideas about 7t2 and ends of TTI to a full circle. The key is Stallings' result 
[104] that a finitely generated group G has e{G) ^ 2 if and only if G is a nontrivial free 
product with amalgamation A * F ^, or an HNN-extension A^f, where the amalgamating 
subgroup F is finite. Now let M be a (say, closed, orientable) 3-manifold with 712(M) / 0. 
Applying the Hurewicz theorem and Poincare duality to the universal covering of M, it 
follows easily that e{7T\(M)) ^ 2. Hence, G = n\(M) splits as described above over 
a finite group F. Constructing a K(G, 1) space KG containing a bicollared copy of a 
K(F, 1) space Kf, we have a map f : M -^ KG inducing an isomorphism on fundamental 
groups, and we may assume by transversahty that f~^(Kf) is a 2-sided surface S in M. 
Using the disk theorem, the map / may be homotoped so that for each component SQ of 
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5, n\{So) -> 7i\{M) is injective. Since 71\{KF) = F is finite, this implies that 5*0 is a 
2-sphere. Since null-homotopic components 5o may be eliminated by a further homotopy 
of / , StalUngs concludes that M contains an essential embedded 2-sphere. 

This work demonstrates a deep relationship between the fundamental group of a 
3-manifold and its topology, and indeed Stallings sees the connection between group the
ory and 3-dimensional topology in even broader terms. In [104, pp. 1, 2] he makes the 
following remarks, which have been vindicated by recent work in geometric group theory: 

Philosophically speaking, the depth and beauty of 3-manifold theory is, it seems to me, 
mainly due to the fact that its theorems have off-shoots that eventually blossom in a 
different subject, namely group theory. Thus I tend to believe that new results in the 
theory, such as Waldhausen's [115], may eventually have relatives in group theory; the 
solution of the Poincare Conjecture [81], if it ever occurs, will have group-theoretic 
consequences of a wider nature. 
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CHAPTER 16 

A Short History of Triangulation and Related 
Matters 

N.H. Kuiper* (1920-1994) 

1. Triangulation in the work of L.E.J. Brouwer 

Real understanding in mathematics means an intuitive simple grasp of a fact. Therefore 
the urge to understand will seek satisfaction in simpHcity of stated theorems, simplicity of 
methods and proofs, and simplicity of tools. It is this simplicity which can give rise to a 
sensation of beauty that goes with real understanding. This does not exclude admiration 
for a proof that is difficult by necessity. 

Thus the specific interest of a geometrically-minded mathematician, who deals with 
figures like curves, surfaces, with structures like metric, group, and with relations Hke 
embedding, map, is influenced by this simplicity as well as by the success of methods 
and tools. Emphasis on existing tools sometimes leads to unnecessary overgrowth. As a 
consequence the historical development of mathematics is irregular like that of other forms 
of fife and creation. We can see this in the stream of developing mathematics, at the origin 
of which Brouwer's work on manifolds, related to triangulation, has a prominent place. 

Poincare [1895] developed the analysis situs (the origin of algebraic topology) of alge
braic manifolds V. He showed by examples that the Betti [1871] numbers do not suffice 
for a complete topological classification. He defined Betti groups with the help of a divi
sion of V into embedded images of convex polyhedra. Aiming at a complete classification 
of objects like algebraic varieties, by fitting together simple building stones one was led 
to take as standard parts the embedded images of straight /:-simpHces of various dimen
sions k — 0 , 1 , 2 , . . . , in number space R^. Any two ought to fit together in a simple 
way, namely by meeting, if at all in one common subsimplex. The two parametrizations by 
barycentric coordinates with respect to the common vertices ought to be the same also. The 
division of V into such simphces is called a triangulation r. It is well-defined in so far as 
it consists of objects, namely simphces, whose only property is thus the dimension /c, and 
with as relations only the incidence at certain vertices between simphces. The division can 
therefore be described by a "scheme" T consisting of the finite or countable set of vertices, 

* Editor's note: this survey, which dates from 1977, has not been updated for the present volume, although some 
very minor corrections have been made. 
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together with the set of those finite subsets that carry a simplex. Nowadays we define a 
topological (= C^) triangulation as a homeomorphism x \\T\ -> V of a simpHcial com
plex I rI , the "geometric reahsation" of a finite or countable scheme T (reaUzed say in E^, 
and consisting of affine simphces), onto a topological space V. 

If T and T' are "schemes" and /i: | r ' | -> | r | is a homeomorphism which sends every 
simplex of | r ' | linearly into a simplex of | r | , so that every vertex of T is an image of one 
vertex of ^^ and if r : | r | -> V is a triangulation, then the triangulation r oh\\T'\ -> V 
is called a subdivision of r. 

The study of the topology of a real algebraic variety or manifold V aims first of all at the 
definition of invariants of the underlying topological space top(y), and their calculation. At 
the beginning top(V) was considered too shppery to deal with. Therefore it was replaced 
by the triangulation r :\T\ -> V, or rather the "scheme" T. The dimension of T is ^, if 
« +1 is the maximal number of vertices of simplices of T. Also the Euler-Poincare number 
is defined in terms of T, and so are the Betti numbers from the incidence matrices. But are 
all properties that are invariant under subdivision of a triangulation topological properties 
of y ? They would be if the following crucial problems had a positive solution. 

The triangulation problem. Is there a triangulation for every algebraic variety? For every 
algebraic manifold? For every topological metrizable manifold? 

The Hauptvermutung. This is the affirmation of the following question. Call two trian-
gulations r i : ITil -> V and T2'.\T2\ -> V TRl-equivalent in case there are subdivisions 
hi : | r | | -> ITil and /z2 : 1̂ 2! -^ l^il for two reahsations {T^l and \T2\ of one and the 
same "scheme" T = T^ = 7̂ 2.̂  Are any two triangulations of a given V TRI-equivalent? 
(Observe that the composition of homeomorphisms 

\T;\^ irii A V ^ \T2\ ^ \T^\ 

is only required to be a homeomorphism.) 
For many years people wrote inconclusive papers on these two problems. 
In 1911 two papers of Brouwer [1911, 1912] on topology appeared, both outstanding in 

this century. In the first, only five pages long, he proves 

THEOREM (The invariance of dimension). Ifh is a homeomorphism (1-1 continuous map) 
of an open set U C M" onto an open set h(U) C M"\ then m = n. 

Brouwer's revolutionary idea and method was to approximate a continuous map / of an 
n-cube D C M" (in the case at hand f = h), into R'" by a simplicial (piecewise linear, 
(PL)) map g: i.e. a map linear on each simplex of a triangulation of D by Hnear simplices. 

In his key lemma, the cube has sides of length one, m equals «, R'" = R", and / moves 
every point of D over a distance at most J < 1/2. If g is e-near to / for small e > 0, then 
the image ofg covers completely a concentric cube D^ with sides of length l—2d—2£>0, 

^ In Dehn and Heegard [1907], the word homeomorph was still used as a synonym of TRI-equivalent between 
finite simplicial or convex-polyhedral complexes. Compare also the definition of pseudo-manifold in Seifert and 
Threlfall [1934]. 
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because, as he shows, the ''Brouwer degree", that is the algebraic number of oriented n-
simpHces covering an image point in D\ is almost everywhere one. Therefore also the 
image of / covers such concentric discs D\ A simple argument completes the proof of the 
topological invariance of dimension. 

In the second paper Brouwer defines a closed w-manifold as a topological space V with 
(in our terminology) a finite triangulation T :\T\ -^ V, of dimension n, whose simplices 
at a common vertex meet "like the linear simplices of a star in R"". This is now called 
a Brouwer-triangulated manifold. He proceeds with the method o/PL-approximation and 
define the degree of a continuous map f :M -> M' between closed orientable Brouwer 
triangulated n-manifolds. Then he proves the invariance of the degree under homotopy of 
/ , as well as the invariance under any modification of the Brouwer-triangulations of the 
topological spaces underlying M and M'. This means that the degree is an invariant of a 
homotopy class of maps between Brouwer triangulable closed oriented n-manifolds. He 
applies degree theory to obtain the Brouwer fixed point theorem. 

The notions and tools in this work were new. The papers are clear now, but they were 
found hard to understand at the time. Their influence became clear and effective only sev
eral years later.-̂  They were fundamental for later algebraic theories of topology. Brouwer 
assumed triangulations in his definitions of manifolds and he used them in an exemplary 
way to obtain purely topological results. He must have liked his definition of manifold to 
be rather constructive.^ He also must have been aware of the difficulty of the triangulation 
problem. 

It was only many years later that S.S. Cairns [1934] gave in two papers the first proof 
that a smooth n-manifold (embedded in M^, respectively, abstractly given) has a topolog
ical Brouwer-triangulation. Brouwer [1939] presented independently a proof in a lecture 
for the Wiskundig Genootschap in 1937. This paper had not much impact, also because 
it had an unusual intuitionistic terminology. It is interesting to observe that neither Cairns 
nor Brouwer showed interest in C^-triangulations nor in the Hauptvermutung. Freudenthal 
[1939], quoting Brouwer, extended the result and gave a proof of the existence of a C^-
triangulation r :\T\ -^ M (^-times continuously differentiable on each simplex of | r | ) for 
a C^-manifold M, q ^ 1. J.H.C. Whitehead [1940], went further and completed the work 
by proving uniqueness as well, obtaining the TRI-equivalence of any two C^ -triangulations 
of M,q ^ 1. So he got a kind of smooth Hauptvermutung theorem for smooth manifolds. 
All TRI-triangulations obtained here were Brouwer triangulations. We denote the class of 
C^ -equivalence classes of C^ -manifolds by C^ and the class of TRI-equivalence classes of 
Brouwer triangulated manifolds (respectively, simphcial complexes) by PL (respectively, 
TRI). Then the essence of the above theorems is expressed by the existence of a natural 
map concerning manifolds: 

Ĉ  -^ PL C TRI. (1) 

Cairns [1940a] discovered non-Brouwer triangulations of R" for n > 3, that admit 
Brouwer subdivisions. He [1940b] also proposed the smoothing problem for Brouwer-
triangulated «-manifolds and solved it for w < 3. 

^ Early, in the book of H. Weyl [1913] and in the work of J.W. Alexander [1915] who proved the topological 
invariance of the homology groups. 
^ Not quite constructive because it still cannot be decided whether the double cone 27(iJ-^) of a Brouwer-
triangulated homotopy 3-sphere (manifold) X"̂  is Brouwer-triangulated, by lack of a solution of the Poincare 
conjecture in dimension three. 
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This concludes our short commentary on Brouwer's papers of 1911 and 1939 concerning 
triangulation. 

2. Manifolds, algebraic varieties, and their triangulations 

We will recall various interesting theorems and facts more or less in the chronological 
order of their discovery. The main diagram below organizes the problems while giving 
their relations. Every arrow represents a map between one class of equivalence classes of 
spaces into another one. The main problems and discoveries concern the injectivity and the 
surjectivity of these maps. The conclusions often depend on dimension. 

We start from the topological analysis of real algebraic varieties, because this seems, 
also historically, the most natural problem. It is the study of the forget map from equiv
alence classes of real algebraic varieties to their underlying topological spaces, allowing 
singularities (as suggested in the notation by the letter S), 

ALG(S) -> TO?(S) (2) 

that arises naturally by "forgetting" part of the structure. For manifolds, for which we delete 
the above letter S in our notation, this map (2) factorizes with (1) and some natural forget 
maps to give a diagram on manifolds 

ALG -> C^ 
1̂ (1) 

PL -> TOP. (3) 

This is part of the main diagram: 

( 
compact^mani folds 

algebraic 

Nash 5 (Nash.Emb) 

1 

ALG 

PL c TRI-

Lipschitz 

topological TOP 

compact spaces 

-> 'ALG(S) rea l a l g . v a r i e t i e s ' 

-> TRI(S) f i n i t e s i m p l i c i a l 
complexes 

-> TOP(S) compact metrisable 
t o p . spaces 

For manifolds of small dimension, the expected existence and uniqueness of triangulations 
for topological manifolds was obtained for n =2 by T. Rado [1925] and for « = 3 a 
quarter of a century later by E. Moise [1952]: 

« ^ 3: PL TRI TOP bijections. 
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Papakyriokopoulos [1943] proved the uniqueness of the TRI-structure of simpHcial com
plexes of dimension 2: 

n^2: TRl(S) -^ TOF(S) is injective. 

Geometric topology of combinatorial (PL-) manifolds developed slowly. M.H.A. New
man [1926] complained that it could not even be decided whether two subdivisions of a 
given Brouwer-triangulated manifold were TRI-equivalent. He started the foundations of 
"geometric topology", a topic much developed by E.G. Zeeman [1963]. Gompare Hudson 
[1969] with important later work of M. Gohen in this field. 

In the course of time the need for triangulations and a solution of the Hauptvermutung 
decreased because new homology theories of Vietoris, Cech, Alexander and the singular 
theory permitted purely topological definitions of invariants, although subdivisions in sim-
plices or cells remained useful for calculating them. A milestone in algebraic topology 
was the axiomatic theory of Eilenberg and Steenrod [1952], which covered all older (co-) 
homology theories. Gategory and functor, notions due to S. Eilenberg and S. Mac Lane 
appeared as new powerful tools. Naturally algebraic topology, including the fast develop
ing homotopy theory, dominated the field, giving a wealth of new invariants distinguishing 
spaces, while most people hardly dreamed of the complete classification of manifolds. The 
results (1) concerning the smooth triangulation of smooth (say G^-) manifolds were iso
lated. 

Of course manifolds existed since Grassman and Riemann [1854], and for dimension 2 
the notion developed and became "more abstract" in H. Weyl's [1913] Idee der Rie-
mannschen Fldche. Veblen and Whitehead [1932] formalized the definition of «-manifold 
M with structure S as follows. M is a connected metrizable topological space covered by 
images of embedded open E"-sets given by charts hi :Ui -> M, that are related in their 
intersections hi(Ui) (1 hj{Uj) by homeomorphisms of open sets in R", hij = h~^ o hi, 
belonging to some pseudo group S. In our present day applications, S can be the pseudo-
group of homeomorphisms (TOP), G -̂ or G^- or analytic diffeomorphisms, piecewise-
linear homeomorphisms (PL), locally algebraic homeomorphisms (Nash), Lipschitz home
omorphisms, giving rise to most of the entries in our main diagram. As differentiable man
ifolds, embedded in R^ as well as abstract, became better understood, in particular under 
the influence of H. Whitney, it was not difficult to obtain a G^-structure, unique but for 
equivalence on any G^-manifold: 

G^ ^ - ^ Ĝ  is bijective. 

Manifolds being "slippery" bothered mathematicians less and less. It became also clear 
that PL-manifolds have a Brouwer triangulation, unique up to TRI-equivalence. 

J. Nash [1952] proved that every embedded (in R^) compact G^- (or G^-) manifold can 
be approximated by a diffeomorphic manifold that is also a component of a real algebraic 
variety. He also proved that any two mutually diffeomorphic embedded Nash-manifolds, 
are related by a diffeomorphism which is algebraic, and which is locally defined by poly
nomial equations: 

(Nash, embedded) <—> C^ <—> Ĝ  bijections. 
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There passed again a quarter of a century before A. Tognoli [1973] proved that every 
compact C^-manifold is diffeomorphic to a manifold that is a whole real algebraic variety: 

ALG -> C^ is surjective. 

The Veblen-Whitehead definition of manifolds gives a larger class of Nash-manifolds: 

Nash D (Nash, embedded). 

An example of a nonembeddable Nash structure on the circle is obtained by identifying 
points in R by the algebraic relation x' = x -\- \. Any function on the quotient space M 
yields a periodic function on R and cannot be algebraic unless it is constant. Hence M 
cannot be Nash-embedded in R^. It would be interesting to study all Nash structures on 
the circle. Perhaps all homogeneous ones admit compatible locally projective structures, 
as described by Kuiper [1953]. The work of J. Hubbard and Chillingworth [1971] suggests 
that there may be so many nonequivalent Nash-structures that a complete classification is 
uninteresting. Is there more than one on the two sphere? 

J. Milnor [1956] made the sensational discovery of a manifold M, which is homeomor-
phic and PL-equivalent to the usual 7-sphere 5^, without being diffeomorphic to it: 

C^ -^ PL is not injective. 

This manifold M, a certain ^'^-bundle over S^, is homeomorphic to S^ because it has a 
nondegenerate function with exacdy two critical points (maximum and minimum). In order 
to prove M not diffeomorphic to S^, Milnor used Hirzebruch's [1956] sophisticated theory 
and calculation of the index of a manifold in terms of Pontrjagin numbers with Thom's 
[1954] cobordism theory, both powerful and fundamental tools in the further development 
of manifold theory. 

R. Thom [1958] proposed an obstruction theory concerning the introduction of a dif
ferential structure (or smoothing) on a PL-manifold. The obstruction was to be in coho-
mology groups with coefficients in the group r„ of smoothings of the n-sphere with its 
usual PL-structure. As Fn = 0 for n < 1 the first obstruction turned out to be in Tv, a 
cycUc group with 28 elements. A very hard case was r4 = 0, proved by J. Cerf [1962]. For 
the groups Fn see M. Kervaire and J. Milnor [1963]. The ideas of Thom were made into a 
solid smoothing theory by J. Munkres [1960,1964] and much improved by M. Hirsch. (See 
M. Hirsch and B. Mazur [1974].) M. Kervaire [1960] was the first to produce effectively a 
PL-manifold (of dimension 10) which could not have the structure of a smooth manifold: 

Ĉ  -> PL is not surjective. 

J. Eells and N. Kuiper [1961] and Tamura [1961] gave simple examples in the lowest 
possible dimension 8. These are manifolds that can be obtained by compactifying R^ by an 
S'^, as is the case with the smooth quaternion projective plane. Although the PL-structures 
of the various exotic «-spheres are all the same, this does not mean that each has the same 
set of smooth triangulations. N. Kuiper [1965] proved that a smooth triangulation with n-\-l 
vertices of an n-sphere exists only for the customary differential structure. A triangulation 
of an exotic «-sphere requires many more vertices. 
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We mention as a side remark that the number of vertices eo of a triangulation of a closed 
surface of Euler characteristic x obeys 

eo > minimum {keZ: Ik^l •\- ^49 - 24x} 

and equality can arise for many surfaces, but not for the Klein-bottle (x = 0, eo > 7). 
Compare Ringel [1974]. For the real projective 3-space a triangulation with 11 vertices 
exists and this seems to be the minimal number possible. E. Brieskorn [1966] found that a 
complex algebraic variety with a singularity can have the topology of a manifold in some 
neighborhood of that singularity. For example, the set 

[(zi , . . . , Z6): z\^zl + zl^zl + zf-' = 0, J^^ZjZj ^ 1} C C^) 

is homeomorphic to an 8-ball, and its boundary is the seven sphere with exotic differential 
structure k-y, exotic if/: 7̂  0, where / is the generator of F^. So exotic spheres may have 
rather simple equations. N. Kuiper [1968] used Brieskorn's examples and "generalized" 
Nash [1952] to obtain algebraic equations for all nonsmoothable PL-8-manifolds. Akbulut 
[1976] following Tognoli [1973] proved that every PL-8-manifold (as well as some other 
PL-manifolds of higher dimensions), can be made into a whole algebraic variety and not 
only a component. Akbulut and Henry King at present are making progress in obtaining 
algebraic equations for many more PL-manifolds. 

Milnor [1961] disproved the Hauptvermutung for simplicial complexes: the one point 
compactifications of L(7, 1) x R"̂  and L(7, 2) x M^ (concerning lens spaces L(l,k), see 
H. Seifert and W. Threlfall [1934]) are homeomorphic without being TRI-equivalent 

TRl(S) -> TOP(5) is not injective. 

The next most important phase in the study of manifolds started with the work of 
S. Smale [1961] proving the Poincare conjecture for dimensions n ^ 5. (For n = 5 with 
the help of J. Stallings and B.C. Zeeman.) If / is a nondegenerate C^-function on a com
pact manifold M, then for increasing values of r, the manifold {x: f{x) ^ t} changes 
at critical values, and these changes can be realized by attaching handles and thickening 
them. The Morse relations (see Milnor [1963]) among the Betti numbers restrict the pos
sible numbers of nondegenerate critical points of various indices on a given manifold M. 
Smale succeeded, for a function on a manifold M of the homotopy type of S^, in cancelling 
critical points (and handles) until two remained (maximum and minimum). Therefore M is 
seen to be homeomorphic as well as PL-equivalent to S" (n ^ 5): the Poincare conjecture, 
as well as the Hauptvermutung were proved for 5", n ^ 5. 

A tremendous activity in manifold theory took place between 1960 and 1970, in which 
the merging theories for smooth, PL- and topological manifolds developed with new 
tools like surgery and handlebody theory, h- and s-cobordism theory (see Milnor [1965]), 
transversality, microbundles and via homotopy theory to algebraic problems, which were 
particularly deep and hard for non simply-connected manifolds (see C.T.C. Wall [1970]). 
It will be impossible to go into much detail. I might mention S. Novikov and W. Brow-
der as leaders. Compare the contributions on topology in the proceedings of the Interna
tional Mathematical Congress in Nice, in particular the paper of L. Siebenmann [1970]. 



498 N.H. Kuiper 

See also the proceedings of Manifolds Amsterdam [1970] and R. Kirby and L. Sieben-
mann [1977]. D. Sullivan [1967] proved the Hauptvermutung for simply connected PL-
manifolds of dimension > 6, for which 7/3 (M; Z) has no 2-torsion. R. Kirby [1969] made 
the final break-through by proving that every orientable homeomorphism of 5" onto it
self is a product of homeomorphisms, each of which is identical on some open set. This 
was the crucial and longstanding stable manifold conjecture. It carried with it the positive 
answer to the annulus conjecture. R. Kirby and L. Siebenmann [1969] (see Siebenmann 
[1970]) then solved the triangulation problem and the Hauptvermutung for manifolds of 
dimension n ^ 5. They deduced, using in an essential way results on homotopy tori of 
C.T.C. Wall and others, that there is exactly one well defined (by Siebenmann [1970] in 
a counter-example) obstruction in H^{M; TTB(TOP/0)) = H^{M\ Z2) to imposing a PL-
structure on a topologically closed /i-manifold M", « ^ 5, and, given one PL-structure, 
the equivalence (isotopy-) classes PL-structures biject onto H^(M; Z2). So for certain 
topological manifolds no Brouwer-triangulation exists, and for certain FL-manifolds the 
Vh-Haupvermutung is false. 

PL -> TOP is neither injective nor surjective. 

It may be true still, and there is hope for the conjecture, that every topological manifold 
has some triangulation, which of course cannot always be a Brouwer triangulation (PL). If 
true then one can hope for algebraic equations as well. R. Edwards [1976] constructed tri-
angulations of 5", w ^ 5, with the property that no subdivision is a Brouwer triangulation. 
So for manifolds: 

w ̂  5, PL C TRI is not bijective. 

He uses B. Mazur [1961] and V. Poenaru [1960], who constructed long ago a contractible 
4-manifold M with boundary dM that is not simply-connected, although it necessarily has 
the homology of S^. Edwards proved, and this is hard, that the (n — 3)-fold suspension 

w" = i:"-^(aM) = 5"-"^ * dM 

(obtained by joining every point of 5"""^ by a line segment to every point of 9M), for n ^ 5, 
is homeomorphic to S^. If we triangulate W then naturally S""""̂  C W is triangulated by a 
subcomplex of dimension n —A. Every {n — 4)-simplex in it has a copy of 9M (and not of 
S^) as link, which shows that the triangulation of W is not a Brouwer-triangulation. 

In the spirit of our interest in the topology of real algebraic varieties, we mention a real 
algebraic variety (which is due to C. Gordon), which is a Mazur-Poenaru 3-manifold, that 
is it bounds a contractible 4-manifold: 

dM = j (zi ,Z2,^3)eC^: z\^zl + z] = ^. J2^J^J = M-
^ 7 = 1 ^ 

Siebenmann observed, and the reader can check that the double suspension of 9 M is 

y5 = r ^ O M ) = l(zuZ2,Z3,Z4) e C^: z] + zl + zl = 0, J^zyzy = l ] , 
I 7 = 1 > 
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an algebraic variety, which is homeomorphic to S^ by Edwards, but whose natural trian
gulation is not PL for the same reasons as above. Observe that the singular curve S^ with 
equations zi = Z2 = ^3 = 0 in the topological 5-sphere V has no normal microbundle 
(compare P.S. at end of chapter). 

Let us recall here that S. Lojaciewicz [1964] was the first to give an accepted proof that 
every real algebraic variety can be triangulated. In order to define uniqueness one first of 
all has to distinguish certain triangulations of an algebraic variety to be natural, like smooth 
triangulations for smooth manifolds, and then to show that any two such natural triangu
lations are TRI-equivalent. Such a kind of uniqueness proof does not exist in the Uterature 
for /2 ^ 3, although there is some hope that it could be deduced from Lojaciewicz's work. 
(For n ^ 2: Papakyriokopoulos [1943].) 

It should be noted that the natural singular version of the triangulation conjecture is false: 
Siebenmann [1970], §3 gave explicit examples of compact locally triangulable spaces that 
are not triangulable. His example are even locally real algebraic. 

Very recently (as I learned from L. Siebenmann and R. Stern) the triangulation prob
lem for topological manifolds has again much advanced. J. Cannon showed, generalising 
Edwards [1976], that the double suspension E'^W^ of every homology 3-sphere W^ is 
homeomorphic to S^. With Siebenmann's work this implies that all orientable topological 
5-manifolds are triangulable, and there are many of them without any PL-structure. 

D. Galewshi and R. Stern, and independently T. Matumoto, even define an obstruction 
element r G H^{M\ p) such that the topological manifold M", n > 5, is triangulable if 
and only if T == 0; and if M is triangulable there are \H^{M\ p)\ such triangulations up to 
"concordance". 

Unfortunately, although the group p is well defined it is also completely unknown. Even 
so we can conclude that every simply connected topological 6-manifold can be triangu
lated. It is also known now that necessary and sufficient for triangulability of all manifolds 
of dimension ^ 5 is the existence of a smooth closed homology 3-sphere (manifold) with 
Rohlin invariant 1 (that is, bounding a parallehzable 4-manifold of index 8) such that the 
connected sum / / # / / bounds a homology 4-disc. 

Not every compact simplicial complex is homeomorphic to a real algebraic variety. 
Hardly anything is known about this question. D. Sullivan [1971] discovered that in ev
ery triangulation of a real algebraic variety the link of a vertex or simplex has even Euler 
characteristic. For example, a double cone on the real projective plane cannot be a real al
gebraic variety. Compact simplicial complexes of dimension one are algebraic if and only 
if an even number of edges meet at every vertex. Sullivan's condition is perhaps also suf
ficient to decide which simplicial complexes of dimension two are algebraic. For higher 
dimensions the problem is completely open. 

Smooth as well as PL-manifolds are Lipschitz manifolds: they can be covered with 
charts for which the transition functions hij (see above) obey the condition that locally 

\\hij{x)-hij{y)\\ 

\\x-y\\ 

is bounded away from 0 and from oo. D. Sullivan [1977] proved that the structure of every 
topological manifold can be strengthened as much: every closed topological manifold of 
dimension ^ 4 has a Lipschitz structure, and it is unique up to equivalence. 
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Every PL-structure on S"^ has a unique smoothing and visa versa, but it still remains un
decided whether there are more nonequivalent PL-structures on S^ or closed 4-manifolds 
in general: The Hauptvermutung and the triangulation conjecture remain open for 4-
manifolds. With the Poincare conjecture for dimensions 3 and 4, the subject of the clas
sification of 3- and 4-manifolds is active, but the main interest in geometry and topology 
has shifted since 1970 to structures on manifolds like foliations, vector fields, differential 
equations, Riemannian metrics, functions and maps, their topology and their singularities. 
The topology of complex algebraic varieties remains very active too. 

I mentioned that it was hard for me to do justice to all mathematicians involved in the 
subject. As it seems appropriate, I will go into some more detail concerning the tremendous 
development between 1960 and 1970. Several people helped me again to clarify points. 

In this decade, 1960 and 1970, the emerging theories of smooth, PL- and topological 
manifolds were developed using new tools such as surgery and handle body theory (see 
Milnor [1965]), transversality, microbundles, and block bundles to transfer geometric ques
tions to homotopy theory and to algebraic questions, which were particularly deep for non 
simply-connected manifolds. Following the work of Kervaire and Milnor mentioned above, 
the powerful general theory of simply connected manifolds was developed by Browder and 
Novikov, and the overall non simply-connected theory was put into place by Wall. 

In a short space one cannot describe all the outstanding contributions made by the many 
talented mathematicians who worked in this area. Perhaps the most significant achieve
ment was the resolution of the Hauptvermutung and triangulation problem for manifolds. 
S.P. Novikov contributed the first striking step when he proved the topological invariance 
of rational Pontrjagin classes. Together with the surgery exact sequence (the "Sullivan se
quence"), this already implied the Hauptvermutung for some special cases. By developing 
a canonical version of Novikov's argument (with the aid of Siebenmann's thesis) Lashof-
Rothenberg and Sullivan were then able to prove the Haupvermutung for 4-connected man
ifolds of dimension ^ 6. But, Casson and Sullivan (independently) had developed such 
penetrating (and complete in the case of Sullivan) analyses of the classifying space G/PL 
that appears in the surgery sequence that they were able to extend the proof to cover all 
simply connected manifolds for which H^iM; Z) has no 2-torsion. 

The final breakthrough began when R. Kirby showed how to reduce the stable home-
omorphisms conjecture to some questions about homotopy tori. This conjecture says that 
every homeomorphism of R" to itself is the product of homeomorphisms, each of which 
is the identity on some open set, and it also implies the well-known annulus conjecture. 
But Hsiang-Shaneson and Wall had just classified homotopy tori, and so they could easily 
resolve the questions of Kirby in the affirmative. 

With the same ideas plus topological immersion theory (Lashof and Rothenberg [1968], 
Lashof [1971]), Kirby and Siebenmann [1969] and Lashof and Rothenberg [1969] solved 
the triangulation and Hauptvermutung problems for n ^ 5. Kirby and Siebenmann 
then deduced, still using the results on homotopy tori in an essential way, that there is 
exactly one well-defined (by Siebenmann [1970] in a counter-example) obstruction in 
H^{M\ 713(TOP/0)) = H^{M; Z2) to imposing a PL-structure on a closed topological 
n-manifold, n ^ 5 and, given one PL-structure, the equivalence (isotopy) classes of PL 
structures biject onto H^{M\ Z2). So for certain topological manifolds no Brouwer trian
gulation exists, and for certain PL-manifolds (e.g., the torus itself) the FL-Hauptvermutung 
is false. 



A short history of triangulation and related matters 501 

RS. Here are equations of Siebenmann of a topological 5-manifold that can be triangu
lated, but has no Brouwer-triangulation or PL-structure: 

Ui,Z2,^3,Z4): z\^- z\^ z]^ e\y^ZjZj\ =0 , ZAZA = 1 C C ^ 

; = i 
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The origins of graph theory are humble, even frivolous. Whereas many branches of 
mathematics were motivated by fundamental problems of calculation, motion, and mea
surement, the problems which led to the development of graph theory were often little 
more than puzzles, designed to test the ingenuity rather than to stimulate the imagina
tion. But despite the apparent triviality of such puzzles, they captured the interest of 
mathematicians, with the result that graph theory has become a subject rich in theoreti
cal results of a surprising variety and depth. 

So begins the book Graph Theory 1736-1936by Biggs, Lloyd and Wilson [1998], which 
outlines the history of graph theory from Euler's treatment of the Konigsberg bridges prob
lem in the 1730s to the explosion of activity in the area in the 20th century. This book 
contains extracts (translated into English where necessary) from many original writings in 
the subject, including several discussed below. 

This chapter largely follows the account of the above-mentioned book. Also of sub
stantial use has been an extensive unpublished manuscript Origins of Graph Theory by 
P.J. Federico, who spent many years working on the history of graph theory but who died 
before his book was completed. 

1. Traversability 

In this subsection we describe Euler's solution of the Konigsberg problem and mention 
some subsequent related work on diagram-tracing puzzles, leading to the concept of an 
Eulerian graph. We also describe some other traversability problems that led to the idea of 
a Hamiltonian graph. 

1.1. Euler and the Konigsberg bridges 

On 26 August 1735 Leonhard Euler presented a paper on 'the solution of a problem relat
ing to the geometry of position' to the Academy of Sciences in St. Petersburg, where he 
had worked since 1727. In his paper, Euler discussed the solution of a problem, which he 
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believed to be widely known, of the Konigsberg bridges problem, which asks whether it 
is possible to find a route crossing each of the seven bridges of Konigsberg once and once 
only (Fig. 1); more generally, given any division of a river into branches and any arrange
ment of bridges, is there a general method for determining whether such a route is possible? 

Fig. 1. 

In 1736 Euler communicated his solution of the problem to his friend Carl Ehler, Mayor 
of Danzig, and the Italian mathematician Giovanni Marinoni; an extract of his letter to 
Marinoni, showing Euler's own drawing of the arrangement of bridges, is shown in Fig. 2 
(see Sachs, Stiebitz and Wilson [1988]). Euler also wrote up his solution for publication 
in the Commentarii Academii Scientiarum Imperialis Petropolitanae under the title 'Solu-
tio problematis ad geometriam situs pertinentis'. Although dated 1736, it did not appear 
until 1741 and was later republished in the new edition of the Commentarii (Nova Acta 
Commentarii...) which appeared in 1752. 

^ * ^ • O >• 

' 1^ a/? 

it/in A^r ^/^J^^ /c^/ir^ ^'ii^c^mc(r^fwt,^^.4.j^\,4i4 ^i^iw Jl,B,(^l 

Fig. 2. 
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Euler's paper is divided into twenty-one numbered paragraphs, of which the first nine 
show the impossibiUty of solving the Konigsberg bridges problem and the rest are con
cerned with the general situation. Euler first described the problem as relating to the ge
ometry of position (geometria situs), a branch of mathematics first mentioned by Leibnitz 
and concerned solely with aspects of position rather than the calculation of magnitudes; 
the various interpretations that have been put on this phrase are discussed in [Pont, 1974]. 
He then reformulated the problem as one of trying to find a sequence of eight letters A, B, 
C or D (the land areas) such that the pairs AB and AC are adjacent twice (corresponding 
to the two bridges between A and B and between A and Q, and the pairs AD, BD and CD 
are adjacent just once and showed that this is impossible. 

In discussing the general problem, Euler observed that 

'the number of bridges written next to the letters A, B,C, etc. together add up to the 
twice the total number of bridges. The reason for this is that, in the calculation where 
every bridge leading to a given area is counted, each bridge is counted twice, once for 
each of the two areas that it joins.' 

This is the earliest statement of what graph theorists now call the handshaking lemma. The 
paper continues with Euler's main conclusions: 

'If there are more than two areas to which an odd number of bridges lead, then such a 
journey is impossible. If, however, the number of bridges is odd for exactly two areas, 
then the journey is possible if it starts in either of these two areas. If, finally, there are 
no areas to which an odd number of bridges lead, then the required journey can be 
accomplished starting from any area.' 

Finally, Euler noted the converse result, that if the above conditions hold, then a route 
is possible, and gave a heuristic reason why this should be so. However, his discussion 
does not amount to a proof, presumably because he considered the result self-evident, and 
a vaHd demonstration did not appear until a related result was proved by C. Hierholzer in 
1873. Hierholzer's discussion was given in the language of diagram tracing, to which we 
now turn. 

1.2. Diagram-tracing puzzles 

In 1809 the French mathematician Louis Poinsot wrote a memoir on polygons and polyhe-
dra (Poinsot [1809-10]), in which he described the four non-convex regular polyhedra and 
posed several geometrical problems, including the following: 

'Given some points situated at random in space, it is required to arrange a single flexible 
thread uniting them two by two in all possible ways, so that finally the two ends of the 
thread join up, and so that the total length is equal to the sum of all the mutual distances.' 

For example, we can arrange a thread joining seven points in the order 

0-1-2-3-4-5-6-0-2^-6-1-3-5-0-3-6-2-5-1-4-0 

(see Fig. 3). In fact, there are many millions of such arrangements, as was subsequently 
observed by M. Reiss [1871-73] in the context of determining the number of ways that one 
can lay out a ring of dominoes; the above ordering corresponds to the ring of dominoes 
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0-1, 1-2, 2 - 3 , . . . , 1-4, 4-0. Poinsot noted that a solution is possible only for an odd 
number of points, and gave an ingenious method for joining the points in each such case. 

Fig. 3. Fig. 4. Fig. 5. 

Puzzles that require one to draw a given diagram in the smallest possible number of 
connected strokes have been of interest for many hundreds of years; see, for example, the 
early African examples in [Ascher, 1991]. In particular, as Poinsot observed, the diagram 
in Fig. 4 has four points at which three adjacent lines meet and so cannot be drawn with 
fewer than two strokes; similarly, four separate strokes are needed to trace all the edges of 
a cube. A few years later, T. Clausen (1844) observed that four strokes are needed to draw 
the diagram in Fig. 5. 

In 1847 Johann Benedict Listing wrote a short treatise entitled Vorstudien zur Topologie, 
in which he investigated a number of non-metrical geometrical problems and discussed the 
solution of diagram-tracing puzzles; these included Clausen's example and the comphcated 
diagram in Fig. 6 which can be drawn in a single stroke. His treatise is noteworthy for being 
the first place that the word 'topology' had appeared in print; Listing had coined the word 
in 1836 in a letter to a friend. 

Fig. 6. 

As mentioned above, C. Hierholzer [1873] was the first to give a complete account of 
the theory of diagram-tracing puzzles, proving in particular that 

'If a line-system can be traversed in one path without any section of line being traversed 
more than once, then the number of odd nodes is either zero or two' 

and, conversely, that 

'if a connected line-system has either no odd node or two odd nodes, then the system 
can be traversed in one path.' 

The precise connection between Euler's bridge-crossing problems and the tracing of di
agrams was not noticed until the end of the 19th century. Euler's discussion of such prob
lems had been popularized through a French translation of E. Coupy [1851] that included 
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an application to the bridges over the River Seine, and by a lengthy account in Volume 1 of 
E. Lucas' Recreations Mathematiques [Lucas, 1882], but it was W.W. Rouse Ball [1892] 
who first represented the four land areas by points and the bridges by lines joining the 
appropriate pairs of points, thereby producing the well-known diagram in Fig. 7. 

Fig. 7. 

Such a diagram is now called a connected graph, the points are vertices, the lines are 
edges, and the number of edges appearing at a vertex is the degree of that vertex; thus, the 
above graph has three vertices of degree 3 and one vertex of degree 5. It follows from the 
above results that a connected graph has a path that includes each edge just once if and 
only if there are exactly 0or2 vertices of odd degree. When there are no vertices of odd 
degree, the graph is called an Eulerian graph, even though the concept of such a graph did 
not make its first appearance until over 150 years after the paper by Euler that originally 
inspired it. 

1.3. Hamiltonian graphs 

A type of graph problem that is superficially similar to the Eulerian problems described 
above is that of finding a cycle that passes just once through each vertex, rather than just 
once along each edge; for example, if we are given the graph in Fig. 8, then it is impossible 
to cover each edge just once, because there are eight vertices of degree 3, but we can find 
a cycle (shown with heavy lines) passing through each vertex just once. Such graphs are 
now called Hamiltonian graphs although, as we shall see, this is perhaps not the most 
appropriate name for them. 

Fig. 8. 
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An early example of a Hamiltonian-type problem is the celebrated knighfs-tour prob
lem. The problem is to find a succession of knight's moves on a chessboard visiting each 
of the 64 squares just once and returning to the starting point. The connection with Hamil-
tonian graphs may be seen by regarding the squares as vertices of a graph, and joining two 
squares whenever they are connected by a single knight's move. 

Solutions of the knight's-tour problem have been known for many hundreds of years, 
including solutions by De Montmort and De Moivre in the 17th century, but it was not 
until the mid-18th century that it was subjected to systematic mathematical analysis, by 
Leonhard Euler [1759]; Euler showed in particular that no solution is possible for the 
analogous problem on a chessboard with an odd number of squares. Shortly afterwards, 
A.-T. Vandermonde [1771] discussed the original problem, obtaining the knight's tour in 
Fig. 9 and remarking that 

'whereas that great geometer presupposes that one has a chessboard to hand, I have 
reduced the problem to simple arithmetic' 
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Fig. 9. Fig. 10. 

Many mathematicians have since attempted to generalize the problem to other types of 
board, or to find solutions that satisfy extra conditions; for example, Jaenisch [1862-63] 
wrote a 3-volume account of the knight's tour problem, and included the ingenious solution 
in Fig. 10 where the successive knight's moves yield a semi-magic square in which the 
entries in each row or column add up to 260. 

In 1855 the Royal Society of London received a paper by the Revd. Thomas Penyng-
ton Kirkman that asked/or which polyhedra can one find a cycle passing through all the 
vertices just once?\ for example, a cube has the cycle given (in flattened form) in Fig. 8. 
Kirkman claimed to have a sufficient condition for the existence of such a cycle, but his 
reasoning was faulty; however, he did prove that any polyhedron with even-sided faces and 
an odd number of vertices has no such cycle, and gave as an example the polyhedron ob
tained by 'cutting in two the cell of a bee' (see Fig. 11). In 1884 RG. Tait asserted that every 
3-valent polyhedron has a cycle passing through every vertex; if true, this assertion would 



Graph theory 509 

have yielded a simple proof of the four colour theorem (see Section 4), but it was eventually 
disproved by W.T. Tutte [1946], who produced the 3-valent polyhedron in Fig. 12. 

Fig. 11. Fig. 12. 

Another mathematician who was intrigued with cycles on polyhedra was Sir WilUam 
Rowan Hamilton. Arising from his work on quaternions and non-commutative algebra, 
Hamilton was led to the icosian calculus, in which he considered cycles of faces on an 
icosahedron or, equivalently, cycles of vertices on a dodecahedron; such a cycle is given in 
Fig. 13. Hamiltonian subsequently invented the icosian game, a solid or flat dodecahedron 
with holes at the vertices and pegs to be inserted along paths and cycles according to certain 
instructions that he had written (see Fig. 14). He sold the game to a games manufacturer 
for £25 who marketed it under the name A voyage round the world, with the vertices 
B,C, D,... ,Z, standing for Brussels, Canton, . . . , Zanzibar; it was not a commercial 
success. 

Fig. 13. 

Because of Hamilton's influence, his name has become associated with such cycle prob
lems and with the corresponding Hamiltonian graphs, even though Kirkman, who consid
ered these problems in greater generality, had preceded him by a few months. Unlike the 
Eulerian problem, no necessary and sufficient condition has been discovered for the exis
tence of a Hamiltonian cycle in a general graph, although a number of sufficient conditions 
have been found - most notably by G.A. Dirac [1952] and O. Ore [I960]. A survey of 
results on Hamiltonian graphs appears in a survey by J.-C. Bermond [1978]. 
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Fig. 14. 

2. Trees 

A tree is a connected graph with no cycles; for example, Fig. 15 illustrates the six possible 
trees with six vertices. 

. 1 1 , I , , ^ 

Fig. 15. 

The concept of a tree appeared implicitly in the work of Gustav Kirchhoff [1847], who 
used graph-theoretical ideas in the calculation of currents in an electrical network. In this 
section, however, our concern is mainly with the enumeration of certain types of chemical 
molecule. Such problems can be reduced to the counting of trees and were investigated 
by Arthur Cayley and James Joseph Sylvester. We outline their contributions and indicate 
how their ideas were developed in the first half of the 20th century. 

2.1. Chemical trees 

By 1850 it was already known that chemical elements combine in fixed proportions, and 
chemical formulae such as H2O (water) and C2H5OH (ethanol) were well estabhshed. But 
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it was not understood exactly how the various elements combine to form these substances. 
The breakthrough occurred in the 1850s when August Kekule (Germany), Edward Frank-
land (England), A.M. Butlerov (Russia) and A.S. Couper (Scotland) proposed what is now 
the theory of valency (see the book by Russell [1971]); in this theory, each atom has several 
bonds by which it is linked to other atoms: carbon atoms have four bonds, oxygen atoms 
have two, and hydrogen atoms have one. 

As the idea of valency became established, it became increasingly necessary for chemists 
to find a method for representing molecules diagrammatically. Various people tried and 
failed, including some of those mentioned above, but it was not until the 1860s that Alexan
der Crum Brown [1864] proposed what is essentially the form we use today. In his system, 
each atom is represented by a circled letter, and the bonds are indicated by lines joining the 
circles. Fig. 16 shows: 

(a) Crum Brown's representation of ethanol, 
(b) the present-day representation with the circles omitted, 
(c) the associated chemical tree with vertices corresponding to atoms and edges repre

senting bonds. 

1 1 
H — C — C — o — H 

I I 
H H 

(b) (c) 

Fig. 16. 

Crum Brown's 'graphic notation', as it came to be called, was quickly adopted by Fran-
kland [1866], who used it in his Lecture Notes for Chemical Students. Its great advantage 
was that its use explained, for the first time, the phenomenon of isomerism, whereby there 
can exist pairs of molecules {isomers) with the same chemical formula but different chemi
cal properties. Fig. 17 shows a pair of isomers, each with chemical formula C4H10; the dif
ference between them is that the atoms are arranged in different ways inside the molecule. 
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Fig. 17. 

This idea leads naturally to problems of isomer enumeration, in which we determine 
the number of different molecules with a given chemical formula. The most celebrated of 
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these problems is that of enumerating the alkanes (paraffins), with formula C„H2n+2; the 
following table gives the numbers of such molecules for « = 1, 2 , . . . , 8. 

Formula CH4 C2H6 C3H8 C4H10 C5H12 CgHn C7H16 CgHig 
Number 1 1 1 2 3 5 9 18 

2.2. Counting trees 

In 1874, Arthur Cayley observed that the diagrams corresponding to the alkanes all have a 
tree-like structure, and that removing the hydrogen atoms yields a tree in which each vertex 
has degree 1, 2, 3 or 4 (see Fig. 18); thus, the problem of enumerating such isomers is the 
same as counting trees with this property. 

H 

^-C-C-C^C-H > • 1 • • 
1 1 1 

H H H H 

Fig. 18. 

Cayley had been interested in tree-counting problems for some time. In 1857, while 
trying to solve a problem inspired by Sylvester relating to the differential calculus, he 
managed to enumerate all rooted trees - that is, trees in which one particular vertex has 
been singled out as the 'root' of the tree (see Fig. 19). 

Fig. 19. Fig. 20. 

Cayley's method was to take a rooted tree and remove its root, thereby obtaining a 
number of smaller rooted trees, as in Fig. 20. If An is the number of rooted trees with n 
branches, then this reduction enables one to express A„ in terms of certain of the numbers 
Ak, where k is less than n. Specifically, Cayley considered the generating function 

1 + A i x +A2Jc^ + A3X^H 

and proved that it is equal to the product 

( l - . ;c) -^ '(l-x^)-'^' . ( l - x ^ ) - ^ 2 . . . . , 
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Using this equality he was then able to calculate the coefficients Ai, A2, A3 , . . . one at a 
time. 

It was not until several years later, in 1874, that Cayley found a systematic method for 
counting unrooted trees - a much more difficult problem. He applied this method to the 
enumeration of various isomers, building up the molecules step by step from their 'cen
tres', and succeeded in finding the numbers of alkanes with up to 11 vertices. However, his 
methods were cumbersome and impractical, in spite of improvements suggested indepen
dently by Sylvester and Camille Jordan involving a redefinition of the 'centre' of a tree, 
and it was not for many years that any substantial progress was made on the counting of 
chemical molecules. 

At around the same time that Cayley was enumerating isomers, his friends James Joseph 
Sylvester and William Kingdon Clifford were trying to establish a link between the study 
of chemical molecules and the algebraic topic of invariant theory. Each chemical atom was 
to be compared with a 'binary quantic', a homogeneous expression in two variables such 
as 

ax^ + 3bx^y H- 3cxy^ -\- dy^, 

and a chemical substance composed of atoms of various valencies was to be compared 
with an 'invariant' of a system of binary quantics of the corresponding degrees. Indeed, 
profoundly influenced by Frankland's Lecture Notes, Sylvester was later to write [1878]: 

'The more I study Dr. Frankland's wonderfully beautiful little treatise the more deeply 
I become impressed with the harmony or homology . . . which exists between the chem
ical and algebraical theories. In travelling my eye up and down the illustrated pages of 
"the Notes", I feel as Aladdin must have done in walking in the garden where every tree 
was laden with precious stones . . . ' . 

Both Cayley and Sylvester had made important contributions to the theory of invariants, 
and Sylvester and CHfford tried to introduce the 'graphic notation' of chemistry into the 
subject (see Fig. 21); indeed, the use of the word graph for such a diagram arose from one 
of Sylvester's papers [1877-78] in this area. 

J^ig.ja Tig.iM Fif.iit Tig.lS Tig, ±6 Fifi^ 

A U A. A 
rif./S -^<f<? Tiff. 20 Tiff,Zi Tig, 2 St Tig, 23 

/ r OCX 

C 2> C J> % ^ 

Fig. 21. 

Unfortunately, the 'chemico-algebraic' ideas of Sylvester and Clifford proved to be less 
useful than their originators had hoped - two largely unrelated ideas Hnked by a notation 
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that was only superficially similar. Invariant theory quickly became submerged in the work 
of David Hilbert and others, while the theory of graphs increasingly took on a life of its 
own. Perhaps Sylvester feared this all along; in a letter to Simon Newcomb, he nervously 
admitted that: 

1 feel anxious as to how it will be received as it will be thought by many strained and 
over-fanciful. It is more a 'reverie' than a regular mathematical paper... [Nevertheless,] 
it may at the worst serve to suggest to chemists and Algebraists that they may have 
something to learn from each other.' 

In 1889, Cayley tackled another tree-counting problem - that of determining the number 
t (n) of labelled trees with n vertices; for example, if n = 4, the number of such trees is 16 
(see Fig. 22). Unlike the earlier problems we considered, this one has a very simple answer 
- namely, t(n) = n""-^. Cayley stated this result and demonstrated it for n = 6, but Priifer 
[1918] was the first to pubHsh a complete proof. 
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It was not until the 1920s and 1930s that any substantial theoretical progress was made 
in the counting of chemical molecules. In 1927, J.H. Redfield produced a paper that fore
shadowed the later work of George Polya, but it was written in obscure language and over
looked for many years. Shortly afterwards, A.C. Lunn and J.K. Senior [1929] recognized 
that the theory of permutation groups was appropriate to the enumeration of isomers, and 
their ideas were considerably developed in a fundamental paper of Polya [1937] in which 
the classical method of generating functions was combined with the idea of a permutation 
group. Polya's main result was a powerful theorem that enables one to enumerate certain 
types of configuration under the action of a group of symmetries; his results have been 
used to enumerate both graphs and molecules and many other configurations arising in 
mathematics. An English translation of, and commentary on, Polya's paper appears in the 
book by Polya and Read [1987]. 

3. Topological graph theory 

In this section we investigate the origins of Euler's polyhedron formula for both polyhedra 
and planar graphs, and show how one of its generalizations led to the work of Listing 
and, ultimately, Poincare. We also study the structure of graphs embedded on the plane or 
sphere, and describe some work on the embedding of non-planar graphs on surfaces other 
than the sphere. 
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3.1. Euler's polyhedron formula 

Although the Greeks were familiar with the five regular solids (the tetrahedron, cube, octa
hedron, dodecahedron and icosahedron) and several other polyhedra, there is no evidence 
that they knew the simple formula relating the numbers of vertices, edges and faces of such 
a polyhedron - namely, 

(number of vertices) - (number of edges) + (number of faces) = 2. 

In the 17th century, Rene Descartes also missed the formula. He obtained a formula for the 
sum of the angles in all the faces of a polyhedron, from which the above formula can be 
deduces, but he never made the deduction. 

It was Leonhard Euler [1750] who first stated the above result, in a letter to Christian 
Goldbach. Euler considered a solid polyhedron and obtained various equalities and in
equalities relating the numbers of faces, solid angles (vertices) and joints where two faces 
come together (edges) to other quantities; in particular, denoting them by H, S and A, 
respectively, he asserted that 

'6. In every solid enclosed by plane faces the aggregate of the number of faces and the 
number of solid angles exceeds by two the number of edges, orH-^S = A-\-2 ... 
11. The sum of all plane angles is equal to four times as many right angles as there are 
solid angles, less eight, that is = 45 — 8 right angles ... 
I find it surprising that these general results in solid geometry have not previously been 
noticed by anyone, so far as I am aware; and furthermore, that the important ones. 
Theorems 6 and 11, are so difficult that I have not yet been able to prove them in a 
satisfactory way' 

Euler verified these results for several families of polyhedra and two years later produced 
a dissection proof, but his proof was deficient. The first vaUd proof was a metrical one given 
byA.M. Legendre[1794]. 

Euler's formula also holds for any planar graph - the map obtained by stereographi-
cally projecting the polyhedron onto the plane (see Fig. 23) - provided that we remember 

Fig. 23. 
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to include the 'infinite' (unbounded) face. In 1813, Augustin-Louis Cauchy used a triangu-
lation process to give topological proofs of both versions of Euler's formula, and deduced 
that there are only four regular non-convex polyhedra, as Poinsot had predicted. 

Around the same time, Simon-Antoine-Jean Lhuilier [1811] gave a topological proof 
that there are only five regular convex polyhedra and anticipated the idea of duality by re
marking that four of them occur in reciprocal pairs; he also found three types of polyhedra 
for which Euler's formula fails - those with an interior cavity, those with indentations in 
their faces, and ring-shaped polyhedra drawn on a torus (that is, polyhedra containing a 
'tunnel'). For ring-shaped polyhedra, he obtained the formula 

(number of vertices) — (number of edges) + (number of faces) = 0. 

Lhuilier then extended this discussion to prove that if g is the number of 'tunnels' in a 
surface on which a polyhedral map is drawn, then 

(number of vertices) — (number of edges) + (number of faces) = 2 — 2g. 

The number g is now called the genus of the surface, and the quantity 2 — 2^ is its Euler 
characteristic; these numbers depend only on the surface on which the polyhedron is 
embedded, and not on the map itself. 

Lhuilier's result was the starting point for an extensive investigation by Listing [1861-
62], entitled Der Census rdumliche Complexe, which proved to be influential in the sub
sequent development of topology; these 'complexes' are built up from simpler pieces, and 
Listing studied the question of how their topological properties affect the above general
ization of Euler's formula. 

Listing's ideas were soon taken up by other mathematicians. In particular, Henri 
Poincare developed them in his papers of 1895 to 1904 that laid the foundations of al
gebraic topology. Like Listing, Poincare developed a method for constructing complexes 
from basic 'cells', such as 0-cells (vertices) and l-cells (edges). In order to fit the cells 
together, he adapted a technique of Kirchhoff from the theory of electrical networks, re
placing sets of linear equations by matrices. These matrices could then be studied from an 
algebraic point of view. 

Poincare's work was an instant success, and appeared in M. Dehn and P. Heegaard's 
article [1907] on analysis situs (topology) in the Encyklopddie der Mathematischen Wis-
senschaften. His ideas were subsequently developed further by Oswald Veblen in a series 
of colloquium lectures for the American Mathematical Society on analysis situs; these lec
tures were delivered in 1916 and pubUshed in book form six years later. 

3.2. Planar graphs 

Like many other aspects of graph theory, the origins of the study of planar graphs can be 
found in recreational puzzles. One such puzzle was given by August Mobius in his lectures 
around the year 1840: 

'There was once a king with five sons. In his will he stated that after his death the sons 
should divide the kingdom into five regions so that the boundary of each region should 
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have a frontier line in common with each of the other four regions. Can the terms of the 
will be satisfied?' 

This question asks whether it is possible to find five mutually neighbouring regions in the 
plane. We can turn this into a graph theory problem by 'dualizing' it, replacing regions by 
capital cities and frontier lines by connecting roads, as follows: 

'There was once a king with five sons. In his will he stated that after his death the sons 
should join the five capital cities of his kingdom by roads so that no two roads intersect. 
Can the terms of the will be satisfied?' 

Note that if there had been only four sons, then both problems would have been easily 
solved; Fig. 24 gives the solutions and the dual connection between them. Note that each 
region on the left corresponds to a vertex on the right, each vertex on the left corresponds 
to a region on the right, and there is a one-one correspondence between the edges on the 
left and those on the right. 

Fig. 24. 

A little experimentation, or use of Ruler's formula, shows that Mobius' original problem 
is insoluble. If we define the complete graph Kn to be the graph obtained by drawing 
edges connecting n vertices in all possible ways, then our result is that the graph K5 is 
non-planar (see Fig. 25). 

K, 

Fig. 25. 

A related problem is the 'gas-water-electricity' problem. The origins of this problem 
are obscure, but in 1913 H.E. Dudeney presented the problem as follows, describing it as 
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'as old as the hills': 
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/C: 
'The puzzle is to lay on water, gas, and electricity, from W, G, and E, to each of the three 
houses. A, B, and C, without any pipe crossing another. Take your pencil and draw lines 
showing how this should be done. You will soon find yourself in difficulties . . . ' . 

This problem is also impossible, although Dudeney claimed to have solved it by running 
a pipe through one of the houses. If we define the complete bipartite graph Kr,s to be 
the graph obtained by connecting each of r independent vertices to each of s independent 
vertices in all possible ways, then our result is that the graph K32 is non-planar (see 
Fig. 26). 

K 3,3 

Fig. 26. 

In 1929, Kazimierz Kuratowski proved the surprising result that the graphs in Figs. 25 
and 26 are the 'basic' non-planar graphs, in the sense that every non-planar graph must 
contain a subdivision of at least one of them (see Kuratowski [1930]); this result was ob
tained independently by O. Frink and P.A. Smith. 

For some time mathematicians had tried to find characterizations of planar graphs that 
depended on combinatorial considerations rather than topological ones. The clue to solv
ing this turned out to be through duality; note that only planar graphs have (geometrical) 
duals. In 1931, Hassler Whitney formulated an abstract definition of duality that is purely 
combinatorial, involving the cycles and cutsets of two graphs, and that agrees with the ge
ometrical definition of dual graph when the graph is planar. He then proved that, with this 
abstract form of dual, a graph is planar if and only if it has an abstract dual. Extending 
these ideas led him eventually to the concept of a matroid, which generalizes ideas of in
dependence in both graphs and vector spaces (Whitney [1935]); in particular, the dual of 
a matroid is a natural concept that extends and clarifies the duality of planar graphs. In-
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terest in matroids took time to develop, but in the 1950s Tutte obtained a Kuratowski-type 
condition for a matroid to arise from a graph (Tutte [1959]). 

In recent years, much attention has been paid to extending these results to graphs embed
ded on surfaces other than the plane, or equivalently the sphere. We have seen that Euler's 
polyhedron formula extends to such graphs, but the problem of determining whether there 
is a set of 'forbidden subgraphs' for non-planar graphs, analogous to the graphs ^5 and 
^̂ 3,3 for the sphere, remained elusive for a long time. We say that a graph has genus g 
if it can be embedded on a surface of a sphere with g handles but not on the surface of a 
sphere with fewer handles; for example, the complete graph K5 is of genus 1 since it can be 
embedded on a torus but not on a sphere (see Fig. 27). In a remarkable series of papers in 
the 1980s, Neil Robertson and Paul Seymour proved that for each genus g, there is 3. finite 
set of forbidden subgraphs; however, for g > 0, the number of forbidden subgraphs may 
be large - even for g = 1 there are over a hundred of them. For non-orientable surfaces 
there is a similar result, and H.H. Glover, J.P. Huneke and C.S. Wang [1979] obtained a set 
of 103 forbidden subgraphs for the projective plane. A survey of this area can be found in 
Robertson and Seymour [1985]. 
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Fig. 27. 

A natural question is to ask for the genus of certain important families of graphs. For the 
complete graphs Kn, the answers came after a long and difficult struggle involving many 
people. In 1968 Gerhard Ringel and Ted Youngs proved that the genus of Kn is 

r ( « - 3 ) ( n - 4 ) / 1 2 1 

(see the book by Ringel [1974]). This result is closely related to the Heawood conjecture 
discussed in the next section. Their proof involved the ingenious use of a related 'electrical 
current graph', and spUt up into no fewer than twelve separate arguments, depending on 
the residue class oin modulo 12. Some of these cases were particularly intransigent, and 
three values of n that did not fit into the general pattern proved to be too difficult for math
ematicians and were eventually sorted out by Jean Mayer [1969], a professor of French 
hterature! 

4, Graph colouring 

In this section we describe the origins of the celebrated four colour problem and outline 
its solution. We also indicate other types of graph colouring problem. 
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4.1. Map colouring 

The earliest known reference to the four colour problem occurs in a letter dated 23 October 
1852, from Augustus De Morgan to Sir William Rowan Hamilton. In this letter, De Morgan 
described how one of his students had asked him whether every map can be coloured 
with only four colours. The student was later identified as Frederick Guthrie, who claimed 
that the problem was due to his brother Francis; Francis Guthrie had formulated it while 
colouring the counties of a map of England. 

In his letter, De Morgan observed that four colours are needed for some maps; for exam
ple, if there are four neighbouring countries, then each country must be differently coloured 
from its neighbours. But four colours may be needed even if four neighbouring countries 
do not appear. An example is given in Fig. 28. 

Fig. 28. 

De Morgan quickly became intrigued by the problem and communicated it to several 
other mathematicians, so that it soon became part of mathematical folklore. In 1860 he 
stated it, in rather obscure terms, in an unsigned book review in the Athenaeum, a scien
tific and literary journal; it is likely that this is the first printed reference to the problem 
(De Morgan [I860]). This review was read in the USA by the logician and philosopher 
C.S. Peirce, who subsequently presented an attempted proof to a mathematical society at 
Harvard University. 

It was not until after De Morgan's death in 1871 that any progress was made in solving 
the four colour problem. On 13 June 1878, at a meeting of the London Mathematical So
ciety, Arthur Cayley enquired whether the problem had been solved, and soon afterwards 
he wrote a short paper (Cayley [1879]) for the Royal Geographical Society in which he 
attempted to explain in simple terms where the difficulties lie. He also proved that one can 
make the simplifying assumption that exactly three countries meet at each point. 

In 1879 there appeared one of the most famous fallacious proofs in mathematics. Its 
author was Alfred Bray Kempe, a London barrister who had studied with Cayley at Cam
bridge and had become well known for his work on linkages. On learning of this proof, 
Cayley suggested that Kempe submit it to the American Journal of Mathematics, newly 
founded and edited by J.J. Sylvester (Kempe [1879]). 

Although Kempe's argument contained a fatal flaw, it also included some important 
ideas that were to feature in many subsequent attempts on the problem. His proof was in 
two parts. He first showed, using Ruler's polyhedron formula, that every map necessarily 
contains a digon, triangle, quadrilateral or pentagon (see Fig. 29); since at least one of these 
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configurations must appear, we call such a set of configurations an unavoidable set. 

digon 
triangle 

quadrilateral pentagon 
Fig. 29. 

Kempe then took each of these configurations in turn and showed that any colouring 
containing it can be extended to the whole map; a configuration for which this is true is 
called a reducible configuration. Now, it is simple to prove that the digon and triangle are 
reducible configurations. To prove that a quadrilateral is reducible, Kempe looked at a two-
coloured piece of the map - for example, the part of the map containing countries coloured 
red and green - and he was able to interchange the colours so as to enable the colouring to 
be extended to the whole map as required. To prove that a pentagon is reducible, Kempe 
simply repeated the process, making two colour interchanges simultaneously. Since all 
possible cases have been considered, the proof is complete. 

Kempe's proof was greeted with enthusiasm, and he published two further papers indi
cating various simpUfications. In 1880 the natural philosopher P.G. Tait reformulated the 
result in terms of the colouring of boundary edges (rather than countries), beheving that 
such considerations would simplify the proof still further (Tait [1878-80]). The headmaster 
of a famous school set the problem as a challenge problem to his pupils, Frederick Temple 
(Bishop of London, later Archbishop of Canterbury) produced a 'proof during a lengthy 
meeting, and Lewis Carroll reformulated the problem as a game between two players. 

In 1890, Percy Heawood, who had learned of the problem while a student at Oxford 
University, published a paper that pointed out Kempe's error (Heawood [1890]). In this pa
per Heawood gave a specific example (see Fig. 30) to show that, whereas one colour inter-

Fig. 30. Fig. 31. 
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change is always permissible, one cannot carry out two interchanges at the same time; thus, 
Kempe's treatment of the pentagon was deficient. Heawood managed to salvage enough 
from Kempe's proof to prove that every map can be coloured with five colours - itself a 
remarkable result - but he was unable to fill the gap. 

In fact, the gap took another eighty-six years to fill. In 1904 P. Wernicke proved that 
the pentagon can be replaced by a pair of adjacent pentagons and a pentagon adjacent 
to a hexagon, thereby obtaining a more complicated unavoidable set that could be tested 
for reducibility. A few years later, G.D. Birkhoff [1913], who learned of the four colour 
problem from Veblen while studying at Princeton University, showed that various other 
configurations, such as the 'Birkhoff diamond' of four adjacent pentagons (see Fig. 31), 
are reducible. By this means he was able to prove that if there were a map that required 
five colours, then it could not contain a ring of four or five regions; from this, he deduced 
that any such map must have at least 13 countries. 

This two-pronged attack of contructing unavoidable sets and proving configurations to 
be reducible would eventually prove successful. On the one hand, one would replace the 
pentagon by more and more complicated unavoidable sets. For example, in 1922 Philip 
Franklin proved that every map must have at least twelve pentagons, and must contain 
either a pentagon adjacent to two other pentagons, a pentagon adjacent to a pentagon and a 
hexagon, or a pentagon adjacent to two hexagons; using this unavoidable set he proved the 
four colour theorem for maps with up to 25 countries. Unavoidable sets were also given by 
C.N. Reynolds, Henri Lebesgue and others, and over the years the number of countries in 
a map that required five colours continued to grow. 

On the other hand, one could try to obtain larger and larger lists of reducible configura
tions. The ultimate aim was to find an unavoidable set of reducible configurations, since 
every map would have to contain at least one such configuration, and whichever it was, the 
colouring of the configuration could then be extended to the whole map. 

Around 1970, H. Heesch believed, for probabilistic reasons, that di finite unavoidable set 
of reducible configurations must exist, and that the number of such configurations need not 
exceed 9000. In addition, Heesch developed a technique for constructing unavoidable sets, 
called the discharging method, and noticed that there are certain features that seem to pre
vent a configuration from being reducible. These ideas were developed by Kenneth Appel 
and Wolfgang Haken, who spent several years developing computer programs that would 
help in the search for unavoidable configurations and assist in the testing of reducibility. 
By this means they were eventually able to produce after some 1200 hours of computer 
time, an unavoidable set of almost 2000 reducible configurations, thereby completing the 
proof of the four colour theorem (see Appel and Haken [1977a, 1977b] and Appel, Haken 
and Koch [1977]). Indeed, since they had constructed many thousands of such unavoidable 
sets, they had thousands of proofs of the theorem, and if any individual configuration were 
subsequently to be proved irreducible, this would not invahdate their work. 

Since then, the technical details of the proof have been simplified somewhat, and the 
configurations have been checked on other computers, but no easily verifiable proof has 
yet been found. Because of this, and because Appel and Haken's work raised a number of 
interesting philosophical questions about the nature of mathematical proof, the mathemat
ical world was slow to acclaim their magnificent achievement. 
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4.2. Maps on other surfaces 

The above discussion on the colouring of maps drawn on the plane applies equally well to 
maps drawn on a sphere, and this leads us to ask how many colours are needed for maps 
drawn on a torus. Indeed, in the 1890 paper in which he demoHshed Kempe's 'proof, 
Heawood raised this very question, proving that seven colours are sufficient for maps drawn 
on a torus and that for some such maps seven colours are actually needed. A example of 
such a map is given in Fig. 32. 

Fig. 32. 

Heawood also extended the idea to the colouring of maps on a sphere with g handles 
where, by using Lhuilier's result on the Euler characteristic of such a surface, he was able 
to show that the appropriate number of colours is 

L(7 + yi+48g)/2j. 

Unfortunately, he omitted to prove that there are maps that actually require this number of 
colours, and the result became known as the Heawood conjecture. It took almost eighty 
years for the gap to be filled. The proof splits up into no fewer than twelve separate argu
ments, depending on the residue class of g modulo 12, and some of these cases turned out 
to be particularly intransigent. 

A related question is to ask how many colours are needed for maps drawn on non-
orientable surfaces. For a surface of non-orientable genus g (a sphere with g cross-caps), 
the Euler characteristic is 2 — ^, and the appropriate number of colours becomes 

[(7 + y i + 2 4 g ) / 2 j , 

as proved by Heinrich Tietze [1910]. In 1935 I. Kagno proved that there are maps that 
require this number of colours when g = 3,4 or 6, but in the previous year Philip Franklin 
[1934] showed that for the Klein bottle, where g = 2, the correct number of colours turns 
out to be 6, rather than the value 7 given by the above formula. Eventually, Ringel obtained 
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the complete solution, proving that the above formula does indeed give the correct number 
of colours, with the single exception of the Klein bottle (see Ringel [1974]). 

4.3. Other colouring problems 

As stated, the four colour map problem is not a problem in graph theory. However, as 
Kempe pointed out in his 1879 paper, the problem can be dualized to give a problem on 
the colouring of vertices (see Fig. 33); in this formulation, we are required to colour the 
vertices of a planar graph in such a way that adjacent vertices are differently coloured; this 
reformulation was the version in which Appel and Haken's solution was presented. 

\ planar 
[graph 

Fig. 33. 

This idea of colouring the vertices of a graph so that adjacent vertices are differently 
coloured developed a life of its own in the 1930s, mainly through the work of Whitney who 
wrote his Ph.D. thesis on the colouring of graphs, R.L. Brooks [1941], who obtained a good 
upper bound on the number of colours required, and G.A. Dirac [1952], who introduced 
the idea of a critical graph. Whitney developed for graphs an idea of G.D. Birkhoff [1912]; 
this is the chromatic polynomial of a map, where the number of possible colourings is a 
polynomial function of the number of colours available. Such a polynomial can be usefully 
studied in its own right, as has been done to great effect by G.D. Birkhoff and D.C. Lewis 
[1946], W.T. Tutte [1970] and others. 

The above-mentioned contribution of Tait [1878-80], in which one colours the edges of 
a graph in such a way that any two edges that meet are differently coloured, also developed 
a life of its own. It is clear that if we have a graph with maximum vertex degree k, then we 
need at least k colours to colour its edges. Denes Konig proved in 1916 that for bipartite 
graphs k colours are sufficient; for example, the edges of the bipartite graph in Fig. 34 
can be coloured with 3 colours. In 1949, Claude Shannon formulated a problem involving 
electrical relays as an edge-colouring graph problem. Then, in a pair of fundamental papers, 
V.G. Vizing [1964, 1965] proved that /: -j- 1 colours are always sufficient, leading to the 
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classification problem of trying to decide which graphs need only k colours and which 
graphs need k + I colours. 

The study of such colouring problems blossomed throughout the 1970s and 1980s; fur
ther information about these developments can be found in Fiorini and Wilson [1977] and 
Jensen and Toft [1995]. 

4.4. Factorization 

A graph is A:-regular if each of its vertices has degree k. Such graphs can sometimes be 
split into regular subgraphs, each with the same vertex set as the original graph. For exam
ple, the complete graph ^ 5 , which is 4-regular, can be spHt into two 2-regular subgraphs 
(see Fig. 35), and the 3-regular bipartite graph in Fig. 34 can be spUt into three 1-regular 
subgraphs. An A:-factor in a graph is a /:-regular subgraph that contains all the vertices of 
the original graph; for example, the graphs in Figs. 34 and 35 split into three 1-factors and 
two 2-factors, respectively. Note that, if we assign a different colour to each 1-factor in 
Fig. 34, then we obtain the above 3-colouring of the edges of the graph. 

Fig. 34. Fig. 35. 

In 1891 JuHus Petersen wrote a fundamental paper on the factorization of regular graphs, 
arising from a problem in the theory of invariants. In this paper he proved that ifk is even, 
then any k-regular graph can be split into 2-factors. He also proved that any 3-regular 
graph possesses a I-factor, provided that it has not more than two 'leaves'; a leaf is a 
subgraph joined to the rest of the graph by a single edge. A few years later, he produced a 
trivalent graph (Petersen [1898]) with no leaves, now called the Petersen graph (Fig. 36), 
which cannot be split into three 1-factors; it can, however, be split into a 1-factor (the 
spokes) and a 2-factor (the pentagon and pentagram). 

Fig. 36. 
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5. Algorithmic graph theory 

Graph theory algorithms can be traced back over one hundred years to when Fleury gave 
a systematic method for tracing an Eulerian graph and G. Tarry [1895] showed how to 
escape from a maze. During the 20th century such algorithms increasingly came into their 
own, with the solutions of such problems as the shortest and longest path problems, the 
minimum connector problem, and the Chinese postman problem. In each of these problems 
we are given a network, or weighted graph, to each edge (and/or vertex) of which has been 
assigned a number, such as its length or the time taken to traverse it. 

There are several efficient algorithms for finding the shortest path in a given network, 
of which the best known is due to E.W. Dijkstra [1959]. Finding a longest path, or critical 
path, in an activity network also dates from the 1950s, with PERT (Program Evaluation 
and Review Technique) used by the US Navy for problems involving the building of sub
marines and CPM (Critical Path Method) developed by the Du Pont de Nemours Company 
in order to minimize the total cost of a project. The Chinese postman problem, for finding 
the shortest route that covers each edge of a given weighted graph, was solved by Meigu 
Guan (Mei-Ku Kwan) [I960]. The greedy algorithm for the minimum connector problem, 
in which we seek a minimum-length spanning tree in a weighted graph, can be traced back 
to O. Boruvka [1926] and was later rediscovered by J.B. Kruskal [1956]. 

A related problem is the travelling salesman problem, in which a salesman wishes to 
to make a cycHc tour of a number of cities in minimum time or distance. This problem 
appeared in rudimentary form in a practical book written for the Handlungsreisende (see 
Voigt [1831]), but its first appearance in mathematical circles was not until the early 1930s, 
at Princeton. It was later popularized at the RAND Corporation, leading eventually to the 
fundamental paper of G.B. Dantzig, D.R. Fulkerson and S.M. Johnson [1954] which in
cluded the solution of a travelling salesman problem with 49 cities. Over the years the 
number of cities was gradually increased, and in the 1980s a problem with 2392 cities 
was settled by Padberg and Rinaldi [1987]. An extensive survey of the travelling salesman 
problem can be found in E.L. Lawler et al. [1985]. 

The travelling salesman problem was not the only significant combinatorial problem 
studied at the RAND Corporation in the mid-20th century. In particular, algorithms were 
developed by Ford and Fulkerson [1956] for finding the maximum flow of a commodity be
tween two nodes in a capacitated network, and by Gomory and Hu [1961] for determining 
maximum flows in multi-terminal networks. Algorithms for solving matching and assign
ment problems were developed, where one wishes to assign people as appropriately as pos
sible to jobs for which they are qualified; this work developed from the above-mentioned 
work of Konig and from a celebrated result on matching due to Philip Hall [1935], later 
known as the 'marriage theorem' (see Halmos and Vaughan [1950]). 

These investigations led eventually to the subject of polyhedral combinatorics, and were 
combined with the newly emerging study of hnear programming. Further information can 
be found in a historical article by Dantzig [1982] and in a lengthy survey of matching 
theory by L. Lovasz and M.D. Plummer [1986]. 

6. Conclusion 

Our aim in this article has been to survey the development of the main themes in graph 
theory, tracing them from the earhest times and showing how current research has evolved 
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from earlier problems. Inevitably some important topics have had to be partly or com
pletely overlooked, and some mathematicians have been sUghted by the omissions of their 
contributions; nevertheless, we hope that we have been able to convey some idea of the 
nature and content of graph theory, both past and present. 
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CHAPTER 18 

The Early Development of Algebraic Topology* 

Solomon Lefschetz (1884-1972) 

1. Early history 

The beginnings of algebraic topology share this with the beginnings of any important chap
ter of mathematics that its roots are more or less obscure. Those of algebraic topology are 
found mostly in geometry and did not contain the promise of a major field. Since my 
proposed excursion has nothing archeological and hardly any historical aspect, I will con
centrate on the following major points. First Ruler's characteristic, then the Mobius strip 
and its significance for orientability. I will conclude (for special reasons) with a section on 
knots. 

1.1. Euler's characteristic 

This is certainly one of the earliest manifestations of algebraic topology. Let a convex 
polyhedron 77 in a 3-space have F faces, E edges and V vertices. Ruler's formula asserts 
that always 

F - £ + y = 2. (1.1) 

The expression at the left is the characteristic x (^) of n. 
Let 0 be an interior point of the polyhedron and S a sphere of center 0. Project 77 onto S 

from 0. This results in a partition of the sphere into F polygonal regions, with E sides and 
V vertices and (1.1) still holds. It is interesting, however, to observe that it is known to 
hold for any partition of a sphere into a finite number of polygonal regions. In other words 
it represents actually a property of the sphere S itself: topological property. In fact it holds 
as well, for example, for an ellipsoid, or for any "like" figure. 

In order to calculate this fixed value of x (Ff) one may, therefore, take any simple decom
position, for example: a great circle made into a polygon with one vertex and one arc plus 
the two hemispheres. Thus there are one vertex, one edge and two faces, so that x (E[) = 2. 
Ruler's proof was a la old geometry, but his proof is easily topologized, as done much later 
byPoincare(1895). 

•Extracted from Bol. Soc. Bras. Matem. 1 (1970), 1^8. 
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Fig. 1. Fig. 2. 

1.2. The Mobius strip (1850) 

Let ABCD be a plane rectangle. Match AD with BC so that A coincides with C and B 
with D. One sees then readily that one cannot match the orientation of AD with that of BC 
so that any side common to two triangles is oppositely oriented to both. Intuitively one 
finds that a small oriented circuit on the strip may be so displaced as to return to its original 
position with reversed orientation. Poincare described this as the return upside down of a 
fly crawling on the strip. 

A smooth surface is orientable when it contains no part like a Mobius strip, and it is 
nonorientable when it does contain a part like this strip. Thus a 2-sphere is orientable, but 
the projective plane is not. The second statement is not quite obvious, but is easily proved 
along the following fines. An open line L in an ordinary plane is orientable (evident) and 
remains so when its two end points are made to coincide turning the line into a circle C. 
Take now an origin 0 in a plane and a circular region of center 0 bounded by a circle D 
(Fig. 4). Let any diameter have end points AA' on the circle D. The open interval (A, AO 
is the perfect image of the line L. One closes it by bringing the two points A and Â  
into coincidence. The operation on the circle D has for effect to bring all diameter pairs 
of points into coincidences and then one has the perfect image of a projective plane. Let 
(A, A!) and (B, BO be two terminal pairs of points. Upon joining A to B̂  and Â  to B one 
finds that the projective plane contains the perfect image of a Mobius strip and so it is 
nonorientable. 

Fig. 3. Fig. 4. 
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1.3. On knots 

This is assuredly the most curious and most perplexing chapter of algebraic topology. One 
may also say of it that while it has borrowed enormously from the rest of algebraic topology 
it has returned very scant interest on this "borrowed" capital. It is, however, full of problems 
sui generis with some of the simplest, in formulation, as yet unsolved. In this respect it 
resembles considerably number theory. 

Our main reason for placing "something about knots" in this early location, is the im
possibility to give more than a faint notion of this topic in a reasonable space. We shall 
therefore merely indicate a very few saHent points and refer for knots to the highly inter
esting and thorough exposition given in the recent monograph Introduction to Knot theory 
by R.H. Crowell and R.H. Fox, Ginn & Co., Boston, 1963. (Hereafter referred to as CF.) 
This book contains also a good guide to the literature, an extensive bibhography and a 
wealth of figures. For the few points to be discussed here, no better source of references 
can be found. It is not possible to touch knot theory at any point without utilizing many ad
vanced topological concepts. For most of these brief indications will be found in Sections 3 
and 4. 

DEFINITION 1.1. A knot is merely a graph in 3-space €3 which as a point-set is the home-
omorph of a circle. 

As a graph then the knot K consists of a finite set of points Ai, A2 , . . . , A;t, which are 
joined, consecutively, by arcs (A„ joined to Ai). The arcs may be assumed differentiable 
(the complications a la sophisticated Jordan curves are avoided). 

We will assume that ^ , as a Jordan curve, is oriented. K designates the knot with a 
definite orientation; - K will denote it with the opposite orientation. 

Let K, Ki be two knots in the same (H3. We consider them as equivalent: K c:^ K\, 
whenever there exists a homeomorphic deformation of (̂ 3 into itself under which K\ goes 
into K, 

To illustrate the perversity of knots. Trotter has proved recently (by an infinity of rather 
simple examples) that there exist knots A!̂  not ĉ  —K (thus solving a long outstanding 
problem). 

A knot invariant is a knot character which is the same for all equivalent knots. 
The central problem of knot theory is to find a collection of knot invariants which guar

antee that if they are the same for two knots AT, K\ then K '::^ K\ {K and K\ are assumed 
imbedded in the same (£3). Although this central problem has been attacked, in our century 
at least, by many very eminent mathematicians, it is doubtful if we are nearer to a solution 
than a century ago. 

The most important invariant of a knot K is the group of paths 77(€3 — AT) of its com
plement. However, Trotter's example shows that this is not a "decisive" invariant. 

The following "knottists" J.W. Alexander and R.H. Fox, will be mainly mentioned. 
Alexander attacked knots in the twenties, Fox belongs to the forties to date. We owe 
to Alexander two noteworthy but related sources of invariants: Alexander matrices and 
Alexander polynomials. Both center around the concept of projection of a knot onto a 
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plane. The projection is a plane graph whose sides may intersect, but one may organize the 
situation so that (a) the self intersections are never nodes of the graph; (b) they are always 
double points with distinct tangents. 

The mere penetration of Knot theory requires a formidable amount of modem algebra, 
far more than I can go into here. A little of it is, however, indispensable even for a bare 
description of a few main concepts. 

Let G = {g} be a multiphcative group. Let J be the ring of integers. With G there is 
associated the group ring 7G, defined as the set of mappings v.G -^ J such that v{g) = 0 
except for at most a finite set of g's eG. Addition and multiplication in JG are defined by 

(vi + V2)g = vig + V2g; (viV2)g = Y^(vih){v2h~^g) 

for any vi, V2 of JG and any g of G. One may easily verify that JG is a ring under these 
operations; also that ifn is any integer then (nv)g = n{vg). 

Thtfree calculus, introduced by Fox, yields a most powerful technique for calculating 
knot invariants. The basis of this calculus is this definition of a derivative D as the unique 
Hnear extension to JG of any mapping D:G -^ JG which satisfies for ^i , g2 in G: 

D( î<^2) = Dgl +giDg2. 

For further information see CF, Chapter VII. 
The weight of algebra in Knot theory is best indicated by this: in CF out of eight chapters 

five are on pure algebraic questions (mainly general group theory). I should like to recom
mend to the advanced reader and to any one interested in new and up to date problems, the 
Guide to the literature at the end of CF. 

1.4. On braids 

If one severs a knot at one joint one obtains a braid (Emil Artin 1925). The group of braids 
(Artin) is defined as: 

0-1,(72, . . . , a „ ; a-i(j/+ia/= a/4-ia/(7/+i, / = 1, 2 , . . . , « - 1 ; 

GiGj=GjOi, (i-j)^l. 

These groups have been completely classified by Artin - they do not offer the compUca-
tions of Knot groups. 

2. Riemann and Riemann surfaces. Construction. Number of integrals of 
first kind. The work of Scorza 

2.1. Puiseux's theorem 

This is really the initial place of algebraic topology. Not that Riemann himself thought of 
it that way, but this will cause no argument. 
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The problem attacked by Riemann, (around 1850) among many others, was the nature, 
as geometry, of a complex plane algebraic curve 

F{x,y)=0, (2.1) 

where F is a complex irreducible polynomial. Much was known about the geometry of real 
curves - since the period was post-Plucker - but "as geometry" complex curves remained 
obscure. Important information was contained in the Theorem of Puiseux. But even this 
theorem did not offer any information in the large about the curve F. However, we shall 
need the material provided by Puiseux. 

Let X = a be a value for which the roots of F = 0 in }̂  remain finite. Let 3̂1 {x) be such a 
root. As X describes a small circle around x = am its complex plane the root 3̂1 (x) varies 
continuously and at all times say around x = JCQ on C it is holomorphic around XQ as a 
function of JC. Hence, as x describes C once y\{x) returns to a value which is still a root 
of F in J but not necessarily the same root y\{x). Let it return to a different root yi^x), 
etc. There arises a set of say q roots y\{x),.,., yq{x) which are circularly permuted as 
X describes C. This impHes that these q roots are represented by q series in powers of 
(jc — a)^/^ or as 

y{x) = b^a{x- aY'/'i + ^{x - a)P^^'^ + • • •. (2.2) 

The q roots of the circular system may be jointly represented by a unique series in t: 

x^a-^t^, y = b + atP' + î r̂ ^ + • • •, \t\ <p (2.3) 

where q, p\, 772,..., have no common factor. 
Since the number of values x = a with true circular representations is finite the points 

corresponding to 0 < \t\ < p, are ordinary points of the curve. That is: (a) to any such 
point there corresponds only one solution y(a)\ (b) the corresponding q = I. 

We have assumed that a is finite. The points at infinity are taken care of by the standard 
transformation 

, 1 ^ y 
X ==-, y =-. 

X X 

If m is the degree of F in >̂  there are at most m such points and hence at most m series 
{x\t), y\t)}. The transformation just introduced merely means that the true space of the 
curve F is a projective plane. It was well known (as an analytical artifice) to the mathe
maticians preceding Riemann: Abel, Jacobi, Pliicker, Weierstrass, and many others. 

The set K = {pair of series in t, point t = 0, number p] is called a place of F and 
f = 0 is the center of the place. The number p, the convergency radius of the series, is 
the extension of the place. It is agreed that the change in p, provided that it does not reach 
another singular place, does not affect jr. (Singular place is one which is the center of 
several distinct places, or of a single place around which more roots than one yj{x) are 
permuted.) 

(The concepts related to places have been clearly set down by Hermann Weyl in the 
monograph: Die Idee der Riemannschen Fldche, Springer, Berlin (1913).) However, there 
are well founded reasons to believe that "places" were no strangers for Riemann. The main 
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reason would go something like this. Let (a, b) be a center of several places ni,... ,ns.In 
his construction of the Riemann surface, Riemann always represents the TTH by s distinct 
points. 

2.2. Construction of the Riemann surface 

Suppose that m is the degree of F iny. Take the sphere S of the variable x and mark on it 
two diametral points A and B so disposed that no great circle through them contains more 
than one of the critical points ai, a 2 , . . . , <3„ which are centers of singular places. Mark 
on S arcs of great circles Aan and cut S along these arcs. Choose now one sphere Sh for 
each root yhM of F. Mark on Sh the cuts Aan which do permute yhix). The comple
ment ^h of the cuts on Sh is a 2-cell and the value yh (§) at § 6 ^/^ is uniquely determined 
by the value yh(^{B)). We look now at the 2-cell Qh and at its boundary the polygon nh. 
Let all the TTH be positively oriented, that is let the Qh all be oriented in the same way. It 
follows at once that if A'j- and Aj[ are the two sides of a cut Ahj then in that cut their 
orientations are opposite. 

Suppose then that Ahj is a cut permuting y^ with yj. Then there correspond to it two 
cuts i4^^ in Qk and A^̂  in Qj and those two are oppositely oriented. Hence, if we bring 
them back into coincidence, and similarly for all permuted pairs yr, ys the result is a closed 
surface 0(F): the Riemann surface of the curve F. The construction has obtained these 
fundamental consequences: 

(a) 0(F) is covered by a finite collection of 2-cells £ 1 , . . . , Em, one for each root 
yj(x) of F = 0. 

(b) If the polygons Ec, Ed have a common side then they are oppositely oriented 
relative to it. 

(c) (less evident) Each point P of 0(F) has a neighborhood in the surface which is a 
union of closed polygonal regions each making up a 2-cell. 

(d) The surface 0(F) is connected. This is a ready consequence of the irreducibility 
of the polynomial F. For if 0 ( F ) is not connected the roots y\(x),... ,ym(x) may be 
divided into at least two collections say y i , . . . , >̂r and j r + i , . . . , ym whose elements are 
not permuted under the variation of x. Hence the symmetric functions of the yh, h ^ r, are 
meromorphic in x and so satisfy a relation Fi (x,y) — 0, where F\ is like F, but of smaller 
degree in y, and hence it is a proper factor of F. Since this contradicts the irreducibility 
of F, the surface 0 ( F ) is connected. 

(e) Property (b) imphes that 0(F) is orientable. 

CONCLUSION 2.1. The preceding properties imply that 0(F) is an orientable compact 
two dimensional manifold (in the sense of modern topology). 

We notice also: 
(f) Under an appropriate definition of place-continuity the collection of places [n] is 

turned into a surface homeomorphic with 0 (F). 
The statement just made impUes the following important result: 

THEOREM 2.2. The Riemann surface is a birational invariant. 

For the places have birational character and hence this holds also for their surface. 
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CHARACTERISTIC. A particular case of a very general property (Euler-Poincare charac
teristics) asserts the following property: Let the polygons of the decomposition of ^(F) 
consist of Qf2 polygons, with ofi sides and oio vertices then whatever this decomposition we 
have the relation 

X{0) =ao-ai-\-ah = 2-2p. (2.4) 

This is a classical formula due to De Jonquiere. 
The number p is the well known genus of the curve F. It will be shown later that the 

characteristic has topological character. Hence the genus p is a topological invariant of 
the Riemann surface and therefore of the curve F. 

A direct calculation of X(0) is of interest. Let JSQ, i^i, ̂ 2 be the analogues of the a 
for (p. Evidently if a/ are the same numbers for a 2-sphere, then from Euler's result 

0CQ—a\-\-a2 = 2. 

Also ̂ \ = ma\, ^2 = nia2. But for each place with q permuting roots y{x) we lose q — \ 
vertices. Hence if Â  = ^ ( ^ — 1) then j6o = mao - A'̂ . From this follows 

PQ-Pi-^P2 = 2m-N = 2-2p. 

Hence this formula due to Riemann 

N = 2{p^m-\). (2.5) 

2.3. Topological models of a surface 

After Riemann, in the latter part of the 19th century, his surfaces, or more generally their 
topological type was deeply studied by a number of geometers (Klein, Clifford and oth
ers). Clifford showed that a surface of genus p was homeomorphic to a 2-sided disk with 
p holes. This model is identical to a sphere with /^-handles (Fig. 5). 

Fig. 5. 
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Fig. 6. 

From the Clifford model one may obtain with little difficulty the most significant model 
of all: a polygonal region with sides matched in a certain way (Fig. 6). Draw on a plane a 
4/7-sided regular polygonal region whose boundary polygon 77 is to be described so that 
the successive sides are labelled (with their orientations) 

(4p-sides). Let the 2-cell bounded by 77 be ^ . 
The labels are such that for instance d~^ means d described in the opposite direction. 

Let now all the Ap vertices be brought into coincidence, and match for instance d with d~^ 
so that (7"Ms merely d described in the opposite way. 

From the new polygonal boundary, still called 77, say to the Clifford model is but a step 
and conversely. Hence the new model is a general model for a surface of genus p. 

2.4. Analytical application 

One might get the impression from what precedes that the Riemann surface is a pure geo
metrical instrument without further ado. This would be entirely misleading. For Riemann, 
like all his mathematical contemporaries was strongly under the influence of the theories 
created and developed by Cauchy. His surfaces show this plainly: it is at least through 
analysis that he obtained some of his most beautiful results. However, in expounding them 
I shall not endeavor to follow in Riemann's footsteps and shall not hesitate to utilize later 
results especially if they come under "early algebraic topology". 

Consider then a function f{z) on the Riemann surface 0{F) which is uniquely defined 
on <P{F) or perhaps on a region Tl c ^{F). We assume this property: If P is a point of 7?, 
there is a place TT of center P and parameter ^ (|^| < yo) whose points are all in TZ. On 77 
the function f{t) is holomorphic in t. One defines / as holomorphic in 71, whenever it is 
holomorphic throughout Tl. 
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2.5. Extended Cauchy theorem 

THEOREM 2.3. Let TZbea 2-cell with boundary 77. Let f{z) be holomorphic at all points 
oflZ (TZplus 77). Then 

f f{z)dz = 0. 
Jn 

Let L be a line dividing Tl into two similar regions TZ\ and TZi with boundaries 77i 
and 772. Then 

Jn Jrii Jn2 /7i ^772 

It is sufficient therefore to prove the theorem for 77i and 7^2. 
Consider the original decomposition of 0{F) into polygons (one for each sheet of the 

surface). Let A be a vertex of one of the polygons. The set U consisting of all the open 
polygons and edges together with A, with vertex A - called the star of A, written St A, is 
an open set of 0 (F ) . In fact it is a place of center A and say parameter r (̂  = 0 at A). The 
collection U = {U} of all St A, is SL finite open covering of 0 (F ) . We recall that such a 
covering has a Lebesgue number X(U) > 0 with the property that if a set H on 0 ( F ) is of 
diameter < X{U) then 77 is contained in some set U. 

Now upon carrying the subdivision process far enough we shall obtain sets 7?.o all of 
diameter < A, hence each contained, with its boundary 77o in a set UQ of U. Let t be 
the uniformizing parameter of UQ. In UQ the function / is holomorphic in t. Hence by 
Cauchy's theorem 

f f{t)=0 
Jno 

and this implies the theorem. 
In the preceding proof it has been implicitly shown that an integral 

r f(z)dz 
JZQ 

of a holomorphic function f{z) at all points of a path /x in a region of holomorphism of 
the function is well defined. 

Let Q{z) htdi rational function on the surface 0 (F ) : a function represented at all points 
of the curve by a rational function 

Ajx.y) 

B{x,y) 

where locally the rational function is always represented by a convergent power series 
t^{a -\- ^t -\ ), k2i positive integer. The integral along any path of 0 ( F ) 

u = I S(x, y)dx 
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is then uniquely defined and represents a holomorphic function on the entire Riemann 
surface. Such an integral is said to be of the first kind. We refer to it briefly as (ifk). 

Let y be a closed path on 0(F). The value 

I du = I S(x,y)dx = CO 
Jy Jy 

is then uniquely defined and called a period of w. 
Going back to the model of a 4p sided polygonal plane region plus its boundary 

aba~^, b~^cd..., set 

/ du = co^, / du=(jOp-^^, /x ^ p. 

Take now two (ifk) u\ and ui and define their periods as 

(^ifi,cop-{-^^ i = 1,2. 

Then we have this all important 

THEOREM 2.4 (Theorem of Riemann) 

E 0. 

PROOF. The proof is very simple. 
Since u\ and U2 are holomorphic throughout 0 ( F ) we have 

/ Ml dU2 = 0. 

Jn 

This integral is the sum of p terms each of the same type as the sum 

Ja Jb Ja-^ Jb-^ 

The first and third term combine to 

[uiiP) - (wi(F + a;i2))]dW2 = -0)210)12. 

The second and fourth term combine Hke 

[u\(Q) - {u\(Q) - o)u)]du2 = o)no)2i. 

b 

b 
Hence the sum (*) is 

0)u 0)12 

0)2\ 0)22 

(*) 
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The jLt-th set of four terms has the sum 

541 

Hence 

I u\ du2 = 2^ = 0. 

This proves Riemann's equaUty. D 

Let now u = w' + iw '̂ be a nonconstant (ifk) and let a;(̂ , a;Ĵ , 0 < JJL < 2/?, be the 
respective periods of the real integrals u\ u". By Cauchy's inequality over <^(F) we have 

L u du > 0. 

Hence if we reason as before we obtain Riemann's inequality: 

E ^11 ^p-\-ll > 0, fi ^ p. (2.6) 

CONSEQUENCE 2.5. There are at most p linearly independent (ifk) mod constants. 

For if say there were p + I: u\,..., Up^\ then there would exist a linear combination 

u = Xiui + • • • + Xp^iUp^i 

such that every co^ = 0, p. ^ p. That is co'^ = co^^ = 0, which contradicts the inequality. 

THEOREM 2.6 (Digression). There are exactly p linearly independent (ifk) modulo con
stants. 

That is one may find p linearly independent {duh}, Uh is an (ifk) but no more. 

PROOF. We have already seen that the number p' in question is ^ p. There remains to 
prove that p' ^ p. 

There are two distinct approaches to this property: 
(a) A proof by Riemann using highly complicated analytical properties of the well 

known theorem of existence of potential functions. See Hermann Weyl loc. cit. 
(b) A proof of a more algebraic nature based upon a reduction of singularities theorem 

of much more geometric nature, due in part to Max Nother (around 1870) which states: 

THEOREM 2.7. An irreducible plane curve F may always be birationally transformed into 
a plane curve G whose only singularities consist of a finite number of double points with 
distinct tangents. 
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We have already seen that the genus p has birational character. It is also evident from 
the definition of the (ifk) that each of them has individual birational character. Hence the 
number p' of linearly independent (ifk) mod constants has the same character. Therefore 
to study their hnear dependence we may freely replace the curve F by the curve G. That is 
we may assume that F has only the singularities just ascribed to G. This is the procedure 
that we shall follow. 

Consider the most general curve of degree m — 3 passing through all the double points: 
adjoint of degree m — 3, also called canonical curve. 

The curves of degree m — 3 have ((m — l)(m — 2))/2 arbitrary coefficients. Those passing 
through the 8 double points satisfy that many linear equations. Hence they have at least 

irn-\){m-2) 

2 ^ 

arbitrary coefficients. Now from an earlier Riemann formula 

7V = 2(/? + m - 1 ) 

since Â  is the class of F and it has only double points with distinct tangents 

N = m{m-\)-26. (2.7) 

Thus 

( m - l ) ( m - 2 ) 
P^ ^ 5. 

This expression is actually the classical definition of the genus by Pliicker. 
Let us ask now for the dimension ji of the system of adjoints of degree m — 3. Since they 

are merely the curves of degree m — 3 through the double points 

( m - l ) ( m - 2 ) 
II ^ ^̂  6 = p. 

Now given such an adjoint Qm-'i we may write the integral 

I F' 
y 

and we prove easily that it is an (ifk). It follows that the 

ix = p' ^ p. 

But we have already proved that p. ^ p. Hence JJL = p. This proves the Theorem 2.6. D 

Let then M i , . . . , Wp be a system of p linearly independent (ifk). Form their period matrix 

^ = [o)jvl 7 = 1, 2 , . . . , /7, y = 1, 2 , . . . , /7. 
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Let T] = Xiui -\- •' • -\- XpUp, r]v, rjp-^v, v ^ p. Owing to Riemann's inequality the rj 
cannot all be zero, whatever the choice of the X's. Hence 

is of rank p. We may therefore apply a linear transformation such that this matrix becomes 

a unit matrix. That is 

[(Oj^] = [ l ,[r j^]] , ix^ p. 

The corresponding (ifk), written usually Vj are the normal (ifk). 
Let 

r = r ' + iT^ 

From Riemann's equality and inequality we infer at once that: 
(a) the matrix r is symmetrical; 
(b) it is the matrix of a positive definite quadratic form 

2_^TjkXjXk-

2.6. Scoria's theory ofRiemann matrices (1915) 

The preceding results have been strongly generalized and at Scorza's hand given rise to a 
very interesting new theory. We will say a few words about it. 

The basic scheme of Scorza was not to take special bases for the cycles and the (ifk). 
We take then p hnearly independent (ifk) and 2p independent one-cycles y\,.. ..yip and 
write down their period matrix as a p x 2p matrix Q\. We then define 

Q = 
^ 1 

A more or less simple calculation shows then that the Riemann equality and inequal
ity combined are equivalent to the existence of a unimodular skew symmetric matrix C 
(|C| = 1) such that i^P^TQ = M is of the form 

i2p 0 A 
A* 0 

where A is a /? x p matrix, A* = (A)', \A\ ^0, so that M is a Hermitian positive definite 
matrix. 

So far we only have a "clever" reformulation of Riemann. Scorza's departure is this: 

DEFINITION 2.8. A Riemann matrix is a p x 2p matrix of type 

exists a skew-symmetric rational matrix C such that 

Qi 
Qi 

such that there 
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0 A 
A* 0 

No condition is placed on A. Whenever 

i2p 0 A 
A* 0 = M 

Q is said to be a principal matrix. 

Given a Riemann matrix ^ there may be many matrices C which merely satisfy the 
definition (no Hermitian matrix condition imposed). The number/: of Hnearly independent 
matrices C is the singularity index of Q (Scorza had I + k where we have k, but the latter 
yields much simpler formulas). 

Still another index h: multiplication index was introduced by Scorza, when the only 
condition imposed on C is that C need not be skew symmetric. Both indices have highly 
important applications in the theory of algebraic varieties. 

3. Henri Poincare and algebraic topology 

3.1. Poincare: the founder of algebraic topology 

Presentday topology consists of two distinct parts: point set topology and algebraic topol
ogy. The first has mainly been the prerogative of Poland plus a strong American compo
nent: the school of R.L. Moore (of Austin, Texas). At all events, I shall only deal with 
algebraic topology. 

The enormous impetus given by Poincare to our field deserves to call him its founder. 
His contribution is contained in his paper Analysis Situs (1895) together with its five com
plements (till 1909), two on applications to algebraic surfaces. 

Incidentally Poincare did not say "topology" but "Analysis Situs", a beautiful but awk
ward term at best. Since the midtwenties "topology" has been generally adopted (much 
earUer I believe in Germany). 

My purpose in this section is to develop Poincare's basic concepts, but as seen by a mod
ern: with algebra, especially group theory, in evidence. No doubt Poincare himself, had he 
lived long enough, would have adopted this mode of exposition. Where simpler proofs than 
his have appeared, I do not hesitate to outline them. It must be said that simplifications have 
largely been due to the injection in topology of group theory by Emmy Noether (through 
Alexandroff). 

In conformity with modern usage I generally omit the term "dimensional" and say: n-
space, ^-manifold, etc. for n-dimensional space, manifold, etc. 

3.2. Manifolds in the sense of Poincare 

The whole of Poincare's first Analysis Situs paper is devoted to manifolds. However, as is 
often the case with him, he is never too precise about what meaning he attaches to the term 
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(in French, variete). I have therefore endeavored to extract a more precise meaning from 
his description. 

Let 6r denote a real Euclidean r-space referred to coordinates x = {x\,X2,. -., x,). By 
an absolute n-manifold Mn C €r (n < r) I shall understand a compact, connected subset 
of (Br without boundary, represented by the equations 

fp{x) = 0, (3.1) 

where the/p(x) are of class C^,^ > 2, and Jacobian rank r—n in some bounded set D M„. 
It is then known that any point § of M„ has in M„ a neighborhood U(^) which is an «-cell 
differentiably parametrized by n local coordinates u\, ..., Un with the condition that if two 
such neighborhoods say U(^), U'{^) overlap at f with respective parameters Uk, ŵ  then 
each set is differentiable in the other with a Jacobian say 

3(^0 ^ 

and continuous at f. 
Notice that compactness of M„ impHes that it has a finite open covering {[ / (^ j . If the 

Jacobians J have a fixed sign over M„ then Mn is orientable, otherwise nonorientable. 
One may equally define Mn directly as possessing a finite open covering by parametric 

n-cells {L̂ } with the above overlapping property. This is the modern definition of "differ
entiable manifold". However, while Poincare indicates its equivalence with the definition 
by the system (3.1), it is the latter upon which he always falls back. 

I called "absolute" the manifolds just defined. This mention, however, will usually be 
omitted. 

Suppose that Mn is orientable so that the Jacobians have a fixed sign. We may then 
orient Mn by choosing a given order of the parameters Uk in some U{^) and use that 
ordering, modulo an even permutation, as determining the Jacobian sign and hence the 
orientation of M„. One refers then to U(^) as indicatrix of M„. 

EXAMPLE 3.1 {Some examples of absolute Mn). In ^3, a sphere, a torus, in (S4 a Rie-
mann surface are examples of orientable Mn. On the other hand a projective plane is a 
nonorientable M2. 

Relative or open manifolds. In an M„ let Mp be a connected and compact subset 
contained in an open subset W of M„. Thus W is a neighborhood of Mp in M„. Set 
V = U r^ Mp. The collection [V] is a finite open covering of Mp and Mp C W. The 
set Mp — Mp = dMp is the boundary of Mp. We will assume that every point f of Mp has 
a neighborhood V(^) parametrized by p parameters v\, ... ,Vp with the same overlapping 
property as for M„. Orientability, indicatrices, etc. are defined as for M„. 

An additional hypothesis is 

dMp consists of a finite set of closures of manifolds M^_-^. 

Let K, G M^_i and let f i , . . . , Vp-\ be local parameters for ^ on M^_y Since ^ is a point 
of a parametric p-cell of Mp, whose intersection with M ^ j contains a small parametric 
{p — l)-cell Xp-\, one may choose the parameters Xj of the latter so that together with 
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one local parameter D of M^ at f, they make up a set of p local parameters of M^ at f. We 
shall use this property in a moment. 

We refer to Mp as an open p-manifold. 

EXAMPLE 3.2. Let 53 be a sphere in ^4. A solid cube in ^3 is an open M3. Here 9M3 
consists of the surface of the cube. The faces of the cube are manifolds M2 C 9M3. 
Together with the edges and vertices of the cube they make up 9M3. 

3.3. Boundary relations. Homologies 

The situation remaining the same write for the present Mp-\ for M|J_j. Suppose that 
£p{v, x i , . . . , Xp-i) and 6p-i(xi,..., Xp-\), {Sp and Sp-x = ±1) represent indicatrices 
for Mp and Mp-i. The product [Mp : Mp-i] = SpSp-x = ±1 is the incidence number 
of Mp and Mp-\. 

More generally if Mp and M^_j are all oriented p- and {p — l)-manifolds in M„ then 

one defines the incidence number [Mp : M'^_J] as 0 or ± 1 : 0 when M^_j is not in 9Mp, 

and ±1 according to the preceding rule when M^_j is in dMp. 
Call for the present (temporarily) p-chain of Mn a finite expression 

Cp = J2'^J^P' 

(The feUcitous term "chain" is due to Alexander.) I define a chain-boundary dcp under 
the rule 

(a) dMJ, = Z^A^i-^p-iWp_v aMo = 0(Moisapoint); p - H p-
J. (b) dcp = J2mjdM'p', 

(c) if in the last sum M^_j occurs with a total coefficient /x/̂  we define 

dCp = J2l^hM^p-i-

Following Poincare, if one is not interested in the special dCp at the right then one expresses 
it by a homology 

Such homologies do combine like linear equations. We also note: 

DEFINITION 3.3. A chain Cp such that dCp = 0 is called a p-cycle. 

One proves that 

dMp is a (p — \)-cycle; hence every dCp is a (p — l)-cycle; boundary cycle. 

In operator symboHsm 

aa = o. (3.2) 
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A set of p-cycles y^,... ,yp is independent whenever they satisfy no homology. The 

maximum number of independent p-cycles is the p-th Betti number R^p(Mn)> 

REMARKS 3.4. (I) R^ has no topological pretension since it depends strictly upon the 
differential structure of Mh. No such distinction was ever made by Poincare. 

(II) The notation [: ] is taken from Tucker's thesis (Princeton, 1931) and will be widely 
utilized later. 

(III) The notion of cobordism, developed by Thom, and in full vogue nowadays finds its 
origin in the ideas of Poincare. 

(IV) Poincare said "one or two sided (unilatere or bilatere)" where one says today 
"nonorientable or orientable", suggested by Alexander. His just criticism of Poincare's 
terminology was that it referred really to a relationship with the ambient space, whereas 
orientability or nonorientability characterize an intrinsic property of the space (of the man
ifold Mn). 

3.4. Complex analytic manifolds 

These are the M2n whose 2n-cells are "complex analytic", that is parametrized by n com
plex variables {x/̂  | 1 ^ /z ^ n} with the condition that if U{x) and U(y) are two of the 
2w-cells overlapping at the point f then near f the complex variables y are holomorphic 
functions of the X. 

Let Xh = Xj^ H-i-̂ /j'- (The x\ x" are real.) Agree to orient U{x) by naming the parameters 
in the order {x[, Xp . . . , x'^). Then the Jacobians 

9(^;,...,o 

are diW positive. Hence analytic manifolds are all orientable, and this in a unique manner. 

EXAMPLE 3.5. A nonsingular algebraic variety is always an orientable M2«. 

In M2n the analytic manifolds Mip are likewise oriented by the scheme just given. How
ever, the arbitrary different!able submanifolds have perfectly arbitrary orientations. 

3.5. Intersection of orientable manifolds 

Let Mp and Mn-p be orientable submanifolds of an orientable M„. Let § be a common 
isolated intersection of the two submanifolds with parameters {jc/̂  | 1 ^ /i ^ /?} and 
[x'- \\ ^ j ^n — p), and such that [xh\ x'-] is a set of parameters for M„ at §. 

Suppose now that £{xh], £'{x'-] and eQ[xh\ x'-] all in their proper natural order, with 
eo, ^, ^' = ± 1 , are indicatrices of Mn, Mp, Mn-p, Then we assign to ^ the coeffi
cient eo6£^ = ±1 to be counted as algebraic intersection of Mp, Mn-p in M„. Let § be 
described as a simple intersection of Mp and Mn-p. 



548 S. Lefschetz 

Let Mp, Mn-p have only isolated intersections ^ i , . . . , ^̂  all simple with coefficient Sh 
for ^h' By the intersection number, (Mp, Mn-p) is meant the sum 

{Mp,Mn-p) = Y.^h. (̂ -̂ ^ 

Note that 

{Mn-p. Mp) = {-l)P^^+^\Mp, Mn-p). (3.4) 

By approximations one may extend the meaning of {Mp, Mn-p) when dMp and dMn-p 
are disjoint. By a far from simple argument Poincare proved: 

THEOREM 3.6. N.a.s.c. in order that Mp[Mn-p] ^ 0 is that {Mp, Mn-p) = Ofor every 
Mn-p[Mpl 

REMARK 3.7. All the preceding results were obtained by Poincare in his first paper Anal
ysis Situs (§9). However, he had recourse to his first definition of a manifold together with 
a very subtle analytical argument. 

The treatment which I have given is essentially parallel to that of chain intersections in 
a manifold, of my 1930 book on topology (LT), Chapter 4. 

3.6. Duality in manifolds 

Let now {M^ | 1 ^ /z ^ /?^} and {M;(_^ I 1 ^ 7 ^ ^ft-p) he maximal independent 
sets relative to ^ of Mp's and Mn-p's of M„. Let p be the rank of the intersection matrix 
[{M^p,Mi_p)l 

Applying Theorem 3.6 we find at once that R^ = p = R^-p- This is the 

THEOREM 3.8 (Duality theorem of Poincare). The Betti numbers R^p {Mn) and Rf^_p {Mn) 
for an orientable Mn are equal 

3.7. Group of paths 

Let X be an arc wise connected metric space and let A be a given point of X. Let / be the 
directed segment a ^ x ^ p, a < fi, and let (p map / -> Z so that (/>(«) = 0()S) = A. 
The image X = (/>(/) is a loop from A to A. Take the collection A = {X} with the following 
conventions: (a) if A, is homotopic to A in X write X = 1; (b) A. described in the opposite 
sense is written X~^; (c) if ^1/ maps / in a second loop A,' then A followed by A,' is a loop 
written A,'A. Under these conventions A is a group g{A). If 5 is a second point of X 
and p. = BA a. directed arc from 5 to A the operations of g{B) may be represented by 
{/>t~̂ A/x} where A is any operation of g. Hence the groups g{A) and g{B) are similar. 
Upon identifying the operations X and p~^Xp, for all points B e X, there results an 
abstract group 7r(Z), the Poincare group, or group of paths of X. It is generally non-
commutative. It is also (obviously) a topological invariant of the space X. In the ulterior 
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investigations of Poincare this group plays a very important role. For a reason to appear in 
a moment its general designation is 7t\ (X), and it is also called first homotopy group of the 
space X. 

3.8. Homotopy groups and homotopy type ofHurewicz 

The group n\ has been generalized (around 1935) in a very fortunate way. Let X, A be 
as before and let Sn be an n-sphere (generally n > 1) on which a certain point P is 
designated as fixed. Let i/r be a map Sn -> X such that xj/P = A. The collection of the 
maps (T/T, A , P) may be made into a group, more or less as done by Poincare for 7T\ . The 
only point, not obvious, is the mode of combination of these operations. Let me merely 
say that \lf\ and \l/2 are combined additively, as the combination is commutative, except 
for the Poincare group 7T\. The new groups are freed from dependence upon A and P and 
called n-th homotopy groups ofX, written 7r„(X). This explains the ni designation for the 
Poincare group. 

Hurewicz groups have occupied a central position in modern algebraic topology. Al
though they are commutative, they do not have the rather simple properties of homology 
groups. This has greatly enhanced their importance. 

Homotopy type. This is another noteworthy concept introduced by Hurewicz. Two topo
logical spaces Z, F are of the same homotopy type whenever there exist mappings 
0 : X ^- y and xj/ :¥ -^ X such that i/̂ 0 is homotopic to the identity as a mapping 
X -> X and (/>V̂  is homotopic to the identity as a mapping Y -> Y. This is not quite 
homeomorphism, but the closest approach to it and assuredly much more elastic. This is 
why it has been in much favor among modern topologists. 

3.9. Examples 

In Analysis Situs Poincare constructed eight examples of 3-spaces by matching appropriate 
faces of a cube (first four examples) or of a regular octahedron. His purpose was to obtain 
explicit 3-manifolds whose Betti numbers and groups n\ could be computed. The second 
example is to be rejected as not corresponding to an M3. 

Of particular interest is his fifth example for his reason. Poincare desired to settle the 
question whether Betti numbers alone were sufficient to characterize an M,|, n > 2. The 
examples in question enabled him to answer in the negative. For he obtained a whole 
family of 3-manifolds with the same Betti numbers but different groups 7T\ and hence 
topologically distinct. In fact a careful study of these manifolds have produced RQ = R3 = 
1, R\ = R2 = {1, 2, 3} and yet there are an infinity of distinct groups 7t\ (see Analysis 
Situs, p. 83). 

3.10. Complexes 

Soon after Poincare's first Analysis Situs paper the Danish mathematician Heegard criti
cized his approach, more particularly for having missed torsion. In the Introduction to his 
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first Complement Poincare answered in part Heegard, but perhaps did not realize that his 
general "homology" description failed to cover a variety of cases. It was also clear to him 
that his general method was far from suitable for deriving, for example, his very general 
formula for the characteristic. 

The upshot was that he introduced an entirely new approach to algebraic topology: the 
concept of complex and the highly elastic algebra going so naturally with it. 

While Poincare's complexes were formally only appUed by him to manifolds, they have 
a far broader range. Moreover, his complexes were made up of quite general cells. It has 
been found more and more expedient to base everything on simplicial complexes, and their 
easy proofs. 

Simplexes. Take (n + 1) Unearly independent points (vectors) in ^n+p, P ^ n, say 
Ao, A\,.... An. The set of points 

A = ^oAo + ^iAi H \-knAn\ 0 < /:„ < 1, y^kh = \, 

constitutes an ^-simplex a^. It is, and will always be, assumed oriented, by the order of 
naming the Ah, modulo an even permutation. 

By replacing n — p of the "< 1" by "= 0" one obtains a /7-face ap of a„ with a suit
able orientation. Given a„_i let en, £n-i = ±1 be such that 6n{AiQ... AiJ = a„, and 
6n-i {A/Q . . . A/,j_j} = cTn-l' Then £n£n-i = dzl = [an I CTn-i] is the incidence number of 
the two simplexes. 

Simplicial complex. K = {a} is a finite collection of disjoint simplexes such that if 
a e K then every face of cr e K. 

For any Op and ap-\ of K there is an incidence number [ap : cfp^\] = 0 or ± 1 , 0 when 
cfp-\ is not a face of Op, and ±1 according to the above rule when ap-\ is a face of a p. 

I will now follow the modern treatment, rather than the very details contained in the 
second and third Complements. Let ap denote the number of p-simplexes of K. 

A /?-chain is a linear integral expression 

Cp = Y^mhCfp, I ^h ^ap. 

One defines a boundary (p — l)-chain of ap as 

and the boundary of Cp by Hnear extension as 

dcp = Y^mhdap. 

It is then easily shown that 

dd = 0. (3.5) 

A Cp with dcp = 0 is a p-cycle. Hence: 
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Every dcp is a (p — l)-cycle called a bounding cycle. 
Evidently the collections Cp, Zp, Bp of chains, cycles, bounding cycles are additive 

groups. Moreover 

y-y p Jj ZJ p ZJ t>p^ 

where each term is a subgroup of its predecessor. 
From this follows that Hp = Zp/Bp is likewise an additive group: integral p-th homol

ogy group of K. 

From a fundamental result of Frobenius, rediscovered by Poincare (2nd Complement) 
we have: 

THEOREM 3.9. The group Hp has the following structures: 

Hp-hehe-'-eiRpeTp 

where the Ih are infinite cyclic and Tp is finite. More precisely 

Tp 2:: 6)i e .. • e 6), 

where the Gh are finite cyclic. Iftp is the order ofSh then tp divides tp'^^. 

The tp are the torsion coefficients of Poincare and Rp is the /7-th Betti number of K. 
By a fairly simple calculation one obtains the relation 

Rp=ap- rp+i - rp (3.6) 

where r/̂  is the rank of the incidence matrix 

Hence 

THEOREM 3.10 (Theorem of Poincare). The characteristic x(^) = ZK""!)^^/? satisfies 
the relation 

xiK) = j2(-^y^P' 

Barycentric subdivision. A subdivision Ki = [^} of K, with simplexes f, is defined by 
the condition that every a e ^ is a union of ^ 's. The barycentric type is particularly 
simple. 

Letn = dimK. 
Let the derived of K to be defined, be denoted by ^ ' . If « = 0 (a finite set of points) let 

K^ = K.lf K has v simplexes suppose that K' has been defined for v — 1. 
Let a be an n-simplex of K and let Â i = K - o. Thus K[ is known. Call P the 

barycenter of a. Join P by arcs to all the points of {da)'. Replacing a by the resulting new 
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simplexes, including P yields a'. The orientations are defined by the condition that in a 
they are determined so that 

d{a)' = {da)'. 

Once K' is defined, one determines the derived sequence K', K",..., K^^\ . . . , by the 
condition ^("+i) = K^^"^. One proves then easily 

Mesh K^''^ -^ 0 with \/n. (3.7) 

This is the most important property of {Â '̂̂ }̂. 

Special case of manifolds. When K is an Mn one may construct a dual complex A'* which 
has the same Betti numbers and torsion coefficients as Kn itself but with complementary 
dimensions. 

The construction of AT* is simple enough. Let K[^ be the first derived of Kn and let {f} 
be its simplexes. Given Op e Kn the simplexes ^ with a single vertex (centroid) of Gp and 
all others exterior to Op make up an {n — /?)-cell (7,*_̂  and /T* = [(y^_p). 

The relation between Kn and AT* leads to Poincare's famous duahty relations 
(a)/(9r Betti numbers 

Rp(Mn) = Rn-p(Mn) (3.8) 

(b)for torsion numbers 

h _.h 
^p ~~ ''n-p-l 

(for details see LT, Chapter 1). 

REMARK 3.11. We recall again the origin of "homology". When two chains Cp, c' dif
fered by a boundary 9c^"^^ Poincare wrote Cp ~ c' or Cp — c^ ^ 0. These relations, 
called homologies combined like linear relations. In other words they form groups: homol
ogy groups. 

Various types of coefficients. While Poincare only dealt with integral chains, cycles, etc., 
wide extensions were soon made to other types. I just mention: mod 2, Tietze; mod m 
(m prime) Alexander; rational coefficients, Lefschetz; (these are the same as Poincare's: 
^ with division allowed: my later homologies ^ ) ; any number system (real or complex) 
which is a field, Pontrjagin. These last led Pontrjagin to his famous duality: simultaneous 
in the complex and the coefficients. 

3.11. Subdivision invariance 

In the first Complement Poincare dealt at length with subdivision and barycentric subdi
vision of a complex and proved that under them his Betti numbers, characteristic relation, 
torsion numbers, and for manifolds the manifold property and duality relations were sub
division invariant. He seems never to have attacked topological invariance. 

Problems posed by Poincare will be discussed at the end of Section 4. 
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4. Algebraic topology after Poincare 

4.1. A touch of topological history 

After 1904 Poincare turned his attention to some arduous problems suggested by his pre
vious work. He attacked appHcations to algebraic geometry (see my note "A page of math
ematical autobiography") and to dynamics, more particularly to the famous theorem of 
Poincare-Birkhoff discussed below. 

Three important events mark the period before 1910 and immediately after: (a) the intro
duction by Tietze (1909) of chain coefficients mod 2, the first departure beyond Poincare; 
(b) the advent on the scene of the powerful figure of L.E.J. Brouwer the advocate par ex
cellence of strict rigor. Curiously in his early years the Poincare concepts played little role 
in his work; (c) the definition by Lebesgue of dimension for compact metric spaces. Fi
nally the most salient features of the period before 1923 (I omit my own work on algebraic 
geometry) are the appearance of Oswald Veblen and J.W. Alexander at Princeton. 

Beyond 1923 we find my extensive work on coincidences and fixed points together with 
their extensive and necessary ramifications; the related work of Hopf (Berlin); various con
tributions by Alexander notably on knots already mentioned; the contributions of Morse 
on critical points and applications to the calculus of variations; the research of Alexan-
droff (Moscow) on compact and dimension theory. This will take us more or less to 1930: 
roughly my intended terminal point. 

4.2. The Poincare-Birkhoff theorem 

This is the last partly topological question that occupied Poincare. In a long memoire (Cir-
colo di Palermo) he stated the theorem, exposed his unsuccessful endeavors to prove it and 
motivated his publication with the expressed hope that perhaps a younger man would be 
more successful. This hope was fulfilled with the solution of young Birkhoff which ap
peared in the Transactions (1912) soon after Poincare's death! In a sense this marked the 
entrance of the US into the new world of topology. 

The problem consists in this: - Let T be a topological mapping, area preserving, of a 
plane closed annular ring between two circles sending the two into opposite directions. 
To prove that T has at least one fixed point. Birkhoff's solution is not only brilliant but 
very short. It marks the beginning of his extensive work on celestial mechanics: his later 
research. Birkhoff not only proved the theorem but completed it by showing that if T is 
not area preserving then either there is a fixed point or else some Jordan curve in the ring 
surrounding the inner circle is mapped by T into its interior or else into its exterior. This is 
a strictly topological property - which is not the case for the theorem itself. 

The initial theorem has many apphcations to dynamics, notably in the study of the vari
ous periodic solutions near one such solution. 

4.3. Henri Lebesgue and his definition of dimension 

Let X be a compact metric space and let F = {f^} be a finite closed covering of X. The 
order of F, written (o(F), is the least number of sets F^ minus unity which have a common 
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point. Lebesgue defines the dimension of X, written dim X, as the least order of F of mesh 
< £ as e -> 0 and this for all possible F. This is the first appearance of the concept of 
"order of a covering", found so useful later. This dimension was identified later with the 
Menger-Urysohn classic by Brouwer. 

4.4. The early work of L.E.J. Brouwer 

This work was done around 1910. One of his early contributions was a rather short proof of 
the Jordan curve theorem (the second accurate proof; the first was given several years ear
lier by Veblen). He also gave a proof of the invariance of regionality. That is if Q^n, ^n are 
two Euclidean regions, with m ^ n, then they could not be homeomorphic. In more mod
ern language assuming that Q^ and Qn could correspond under an homeomorphism r,„ 
of f2tn and Qru their local Betti numbers (defined later) would have to be equal. But those 
Rh of Qm are zero for 0 < /z < m, with R^ = 1; similarly for Qn'- Rh = 0 for 0 < h < n 
and Rfi = 1, which contradicts m ^ n. 

The more striking result of Brouwer coming a lot closer to our topic is this: 
- Let Mn, Ml^ be two absolute orientable, manifolds. Let T be a mapping M„ -> M,̂ . 
Assuming the two manifolds simplicial a suitable subdivision of M/̂  has its n-simplexes 
covered the same algebraic number fi of times by images of those of M„ and t̂ is a topo
logical invariant of the triple (M„, M/̂ , T). In terms of more modern topology the result is 
readily obtained. For if y,̂ , y,J are the fundamental /t-cycles of the manifolds: Tyn ^ fiyl^ 
in M^ and /x is known to be a topological invariant. It is called degree of the mapping. 

Noteworthy corollaries for mappings of spheres were obtained by Brouwer. 
Many other striking topological results are due to Brouwer but we cannot deal with them 

here. 

4.5. Oswald Veblen as topologist 

He really began his work in the early part of the century. He was as much a rigorist as 
Brouwer, but operated first out of Chicago with E.H. Moore as mentor (under whom he 
took his doctorate). Moore was likewise given to full rigor, but less exclusively than the 
early Veblen. At any rate Veblen, perhaps under Moore's influence, or under the appearance 
of David Hilbert's (Gottingen): Uber die Grundlagen der Geometric, was early launched 
into geometry. For some years he studied polyhedra - source of his proof (first correct) 
of the Jordan curve theorem. He then launched into his major work: Projective geome
try: 2 volumes, close to 1000 pages, first volume coauthored by J.W. Young. The second 
volume already shows leanings towards topology. This occupied him till about 1913. As a 
professor at Princeton he was fortunate to have as a disciple J.W. Alexander the outstanding 
topologist. Their collaboration led to a significant but short paper in the Annals of Mathe
matics of 1913 in which their aim - fully accomplished - was to present Poincare's main 
ideas in Analysis Situs and complements, in strict rigorous manner. This led to Veblen's 
monograph "Analysis Situs" (Colloquium Lectures 1921; lectures given in 1916), which 
had the same objective as the short note, but with far more details. Noteworthy in it is a 
proof of the invariance of the homology groups for an ^-complex (first for a 3-manifold is 
due to Alexander). 
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4.6. J.W. Alexander as topologist 

As a mathematician and above all as topologist Alexander was distinguished by exceptional 
originality. At first he was attracted by the many questions left pending by Poincare. Thus 
in 1915 when he was still a graduate student he gave the first proof of the topological 
invariance of the Betti numbers of a 3-manifold M3. During a one-year visit to Italy he 
also showed that the algebraic invariant of Zeuthen-Segre had really topological character 
(proof by extension of the Riemann surface concept). 

The invariance proof of the numbers R3 introduced the first ideas of the future classical 
deformation theorem. 

Thereupon World War I produced a 3-years interruption. In the early postwar period 
Alexander produced several noteworthy results. I mention particularly: 

(a) Poincare had already produced two orientable M3 's with equal Betti numbers but 
with different group of paths hence topologically distinct. Therefore homology groups 
were insufficient to characterize 3-manifolds. Alexander went further and produced a very 
simple example of two topologically distinct Ma's but with the same group of paths and 
therefore equal Betti numbers (and no torsion). Hence homology and group of paths iden
tity were insufficient to distinguish two Ms's. The example is simple enough. Two sohd 
tori (in ^3) could be identified at their bounding surfaces so that the characters just men
tioned be the same. However, this could be done so that one obtains two topologically 
distinct Ma's (so-called lens spaces). 

(b) The generalized Jordan curve theorem. One may presume a 2-sphere 52 in ^3 has for 
(bounded) complement a 3-cell. Alexander gave an example where the complement has an 
infinite group of paths. On the other hand he proved also that if ^2 is analytical then the 
complement was effectively a 3-cell. 

(c) A remarkable result of Alexander was his famous duality theorem (1922), the first 
beyond Poincare. Given a complex immersed in an n-sphere Sn the Betti numbers satisfy: 

Rp(Sn - K) = Rn-p-\{K) -\-6pQ - 5p,„_i, 

where the 5's are Kronecker indices: 5// = 1, 5/̂  = 0 for / ^ j . As an application 

R^{Sn-K)=^Rn-i{K) + \ 

which expresses the number of components oi Sn — K (the number RQ) in terms of the 
Betti number Rn-\{K). 

Actually Alexander's result holds for any, say compact subset of Sn- It is also a special 
case of my, more general duality theorem proved several years later. 

(d) From 1926 on Alexander dealt at considerable length with an improved organization 
of complexes and in particular obtained a new proof of the topological invariance of ho
mology groups of a complex. Given two homeomorphic simplicial complexes K, K\ht 
interprojected their derived sequences (using his deformation theorem). He then showed 
that the limit of the corresponding homology groups of the sequence is merely the corre
sponding ones oi K, ^1 so that the two are the same. (It is actually not necessary to pass 
to the limit - one may show that 

H{K) = H^P\K) = H^'^\KI) = H{Ki), 



556 S. Lefschetz 

where H stands for homology groups of same type: equal dimension and same coefficient 
system.) 

(e) Singular Theory. This scheme is actually implicit in part in Alexander's first topo
logical invariance proof of a Betti number (for an M3). I have since organized it -into a 
highly elastic theory, which, together with a deformation theorem of Alexander (see LT) 
is applicable to a large number of topological invariance properties. I will say a few words 
about this singular theory. 

Let X be an arcwise connected metric space and let 0 map a rectilinear closed p sim
plex dp into X. The pair (0, ap) is, by definition a singular p-simplex in X. One agrees, 
however, that if Xp is another rectilinear p-simplex and / is a rectilinear homeomorphism 
Xp -> Gp then (0/, Gp) = (0, Gp). 

Orientation of (0, Gp) is copied from that of Gp. Hence if Gp-\ e dGp one defines 
(0, Gp-i) e d((t),Gp) with the same incidence number. Hence, if 

then 

= ^mh{(l)h,G^^), 

dcp = Y2^hS{(f>h,cfp)' 

The definitions of singular cycles, bounding cycles, homology groups is then automatic. 
I merely mention that one may prove: 

THEOREM 4.1. The collection of singular p-cycles, is isomorphic with the special sub-
collection (identity, cycles of K). 

COROLLARY 4.2. Since the singular cycle collection has obvious topological character 
this holds also for the homology groups ofK. 

For Alexander's central contributions to knot theory see Section 1. 

4.7. Marston Morse: Critical point theory 

In the twenties and later Morse initiated his classical work based on the study of critical 
points of functions and applications, most particularly to the calculus of variations. The 
results for the period in question are developed in his Colloquium Lectures, vol. 18, 1934. 
The particular point of interest for us is Chapter 6. This volume contains also an extensive 
bibliography. 

The results of Morse are far more general than what we describe, but it seems preferable 
for the short space at our disposal to lean more to clarity than to generality. 

Let then R be a real (closed) bounded region on an analytical manifold referred to 
Euclidean coordinates x i , . . . , x,|. Consider also on R another analytic function g{x) — 
g{x\,... ,Xn), likewise analytic and such that on R: a ^ g ^ b, a < b. The critical 
points in R of g are its extreme points and the points where 

1 ^ = 0 , l^i^n. (4.1) 
OXi 
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Assume that they are all isolated. Moreover, grant that at the critical points all the Hes
sians 

aV 
dxhdxk 

/ 0. (4.2) 

These are all simplifying assumptions, which Morse has abandoned. 
Let ^1, ^72,..., {bi = g{ai)) be the successive critical values. The problem dealt with 

by Morse is to find the variation of the Betti numbers of the region bi ^ g < bh with 
increasing /z as g crosses bh. This has been determined in terms of certain integers, the 
type numbers tj which are defined in the following manner. 

Corresponding to the critical point bk the Hessian H{bk) determines a nondegenerate 
quadratic form 

0(-^) = Y^hjkXjXk. (4.3) 

This quadratic form reduced to normal form has say m negative roots. The number th is the 
total number of critical points where (4.3) has m negative signs in its canonical form. As 
Morse showed the Betti numbers Rh of the region and the type numbers satisfy 

0̂ ^ Ro, 

tQ-h < Ro- Ru 
k 

"=' (4.4) 

n 

h=l 

The last relation for /t = 2 is due to Poincare. 
As given by Morse these relations were proved by him only for coefficients mod 2, but 

the proofs for integral coefficients or coefficients in a field is the same. 
In his book Morse deals directly with the most general case but the proof for the simpler 

case is found in his paper. 
In the same book Morse treats a great many appUcations, which cannot be discussed here 

as they usually involve a large amount of analytical technique, especially of the Calculus 
of Variations type. I merely mention by way of example: 

(a) information about the number of normals to a variety V in EucHdean space from a 
point of the space; (b) the number of chords to V normal at both end points; (c) information 
about closed geodesies on V. 

In all this research Morse rarely imposes analyticity and freely accepts C^ or C^ classes 
of functions. This of course adds considerably to the difficulties. 

4.8. The work of A. W. Tucker 

In his thesis (Princeton, 1932) Tucker algebraized the Poincare scheme to the last degree, 
yet preserving a strong contact with algebraic topology. Briefly speaking, he considered a 
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complex as a finite collection of unspecified elements and assigned "dimensions" from o 
to p. Let a^, I ^ h ^ aq,be the (^-elements. There were introduced incidence numbers 
[a^"^^: a^] under the sole condition that there takes place the general matrix relation 

[KV:W]]-[K-i-.]] = o. 
One may define chains, their boundary relations, cycles and homology groups in the 

standard way. The boundary relation is given by 

and for a chain Cq by standard Unear extension. This leads to the usual functional relation 
99 = 0. Betti and torsion numbers arise in the usual way. Briefly then the whole theory of 
complexes follows. The same holds for manifolds and their duality provided one specifies 
that every St a has the homology groups of a point. 

What attracted me most to Tucker's work is an extremely simple derivation of my fixed 
point formula (see the next chapter). Tucker's attack was not to be excelled for single-
valued transformations. It did not seem to go over to multiple valued transformations. 
Here my early intersection method had the best of it. 

4.9. The work of Walter Mayer 

This author went to the extreme of abstraction. His first contribution was simply to take 
a finite sequence of additive groups: chain groups Go, Gi, . . . , Gp with homomorphism 
Tg : G^+i -> Gq (boundary relations) satisfying T^+IT^ = 0. One may then define the 
boundary subgroups r^G^+i C Gq, cycle subgroups, homology groups. I will not enter 
into a description save to say that Mayer's scheme has had quite a vogue later. 

Another contribution of Mayer was most curious. Having defined the boundary operators 
- call them just r for simplicity - he had the interesting idea of subjecting them to a relation 
x^ = 0. It was proved later by Spanier (Michigan Thesis) that the resulting scheme was 
reducible to the standard type. 

4.10. Some open problems left by Poincare 

One of the problems that evidently occupied Poincare was to what extent the integral Betti 
numbers plus the group of paths n sufficed to characterize a manifold (let alone a complex). 
He actually showed by an example that a sphere ^3 and an M3 with the same homology 
groups but with different IT could be distinct. Furthermore, we have already observed that 
Alexander showed by an example that two M3 with the same homology theory and same n 
need not be homeomorphic. 

There the question has rested, except that nowadays one excepts much more, namely 
identity of all homotopy groups in addition to the identity of the homology groups. In fact 
whenever a new topological character is discovered one asks if it suffices to distinguish 
two given complexes. No such character has been discovered at the present time. 
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Let our discourse be limited to compact differentiable manifolds. An absolute M„ is 
dijferentiable whenever it admits a finite open covering Z// = [Uh} such that: (a) each Uh is 
parametrizable by variables Xhj, 1 ^ 7 < M, (b) whenever Uh and Uj overlap say at a 

point P then about P the x^ are differentiable functions of the x/ with a nowhere zero 
Jacobian. 

Now the question arises for a given M„, with one system of differentials, is it unique? 
This has been answered in the negative, in 1956, by John Milnor, by exhibiting a 7-sphere 
^7 with two distinct (unrelated) differential systems. This has been extended by Stallings 
and Smale up to 55. Several authors have even computed for some of these spheres the 
exact number of "disjoint" differential systems. 

One may also raise this question: given a polyhedron 77 with two covering com
plexes K, K\ (say simphcial), do they possess subdivision ^*, ^ * with the same 
(algebro-geometric) structure? In 1960 Milnor gave an example which showed that in gen
eral this did not hold. 

[Editor's note: these lectures have been only lightly edited: they give an idea of how one 
of the pioneers saw the early development of algebraic topology.] 
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CHAPTER 19 

From Combinatorial Topology to Algebraic 
Topology 

I.M. James 
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX 1 3LB, UK 

Topology, or analysis situs as it used to be called, is largely a creation of the twentieth 
century. The early history of the subject, up to end of the nineteenth century, has been 
carefully studied by J.-C. Pont [39] and others. However, twentieth century topology has 
not received the same attention as yet. It should be possible to investigate the development 
of the subject in the first half of the century, at least, in the same kind of way as has been 
done for the eariier period. The number of individuals involved is not great, the literature 
not extensive, and in many respects the subject was still at a pioneering stage. In the second 
half of the century, however, the subject has expanded so much and the pace of develop
ment has been so rapid that a different approach is called for. In this article I do not propose 
to say anything about this later period. And rather than attempt to discuss everything that 
happened in the earlier period I will describe what seem to me to be some of the most 
significant developments. 

During the nineteenth century topology hardly existed as a separate discipline. After the 
last part of Poincare's 'Analysis Situs' was published in 1905 it was clear that topology, as 
a subject, had arrived. Before long a few mathematicians started to specialize in this area of 
mathematics. Others, although their main research interests lay elsewhere, were not slow 
to recognize its importance. For example Hadamard, in a lecture at Columbia University 
in 1911, said 

'Analysis situs is connected ... with every employment of integral calculus. It consti-
tute(s) a revenge of geometry on analysis. Since Descartes, we have been accustomed 
to replace each geometric relation by a corresponding relation between numbers, and 
this has created a sort of predominance of analysis. Many mathematicians fancy that 
they escape that predominance and consider themselves as pure geometers in opposi
tion to analysis; but most of them do so in a sense I cannot approve: they simply restrict 
themselves to treating exclusively by geometry questions which other geometers would 
treat, in general quite easily, by analytical means; they are of course, very frequently 
forced to choose their questions not according to their true scientific interest, but on 
account of the possibihty of such treatment without intervention of analysis. I am even 
obliged to add that some of them have dealt with problems totally lacking any interest 

HISTORY OF TOPOLOGY 
Edited by I.M. James 
© 1999 Elsevier Science B.V. All rights reserved 

561 



562 I.M. James 

whatever, this total lack of interest being the sole reason why such problems have been 
left aside by analysts.' 

It is interesting to compare this with the following extract from an address (translated into 
English by Abe Shenitzer) given by Dehn at Frankfurt in 1928: 

'As the last case we consider analysis situs or topology, the branch of mathematics that 
deals with the most general properties of the shape of a figure. It was developed only 
in the 19th century, and largely through the work of the Gottingen mathematician Rie-
mann, who identified the topological core of many function-theoretic questions. At the 
end of the 19th century Henri Poincare gave topology another strong impulse. At the 
present time there appear very many topological papers, but when it comes to funda
mental problems we have hardly gone beyond Poincare or, strictly speaking, Riemann 
- this in spite of the fact that such progress would be of great significance for, among 
other things, the theory of algebraic functions of two variables. Here the failure is not 
due to the fact that - as in number theory - the problems cannot be tackled, but to the 
fact that they are so intricate that the power of the human intellect, the ability to imagine 
different things at the same time, is not sufficient for mastery.' 

In the early part of the twentieth century topology was regarded as having two main 
branches. The first, which was known as set theoretic analysis situs, treated spaces as sets 
of points. The other was known as combinatorial analysis situs, the term introduced by 
Dehn and Heegard in their article [24] of 1907 in the Enzyklopadie der Mathematischen 
Wissenschaften. Today the term 'combinatorial topology' is obsolescent; when it is used 
at all it seems to be thought of as equivalent to 'piecewise-linear topology'. In the early 
part of the century, however, the term 'combinatorial analysis situs' had a much broader 
meaning. Spaces were treated as being made up of cells, usually simplexes. The topology 
of the cells was regarded as well-understood; the interest lay in the way they were fitted 
together to form the space. Although this viewpoint was implicit in the work of Poincare it 
was Dehn and Heegard who made it explicit. The story behind the writing of this important 
article is told in the biographies of the authors elsewhere in this volume. 

In their article, Dehn and Heegard seem mainly concerned with trying to place some 
of the earlier work on a more satisfactory foundation. They divide their article into three 
parts: Complexes, Nexus, and Connexus. In the first they consider the intrinsic properties 
of complexes, as in the four colour problem. In the second they consider those which are 
invariant under certain transformations, as in the classification of surfaces. In the third 
they consider properties of a relative nature, for example, surfaces embedded in Euclidean 
space. They look back to Listing and Mobius; one feels that the full impact of Poincare's 
work has not yet been felt. 

However there are some significant pointers to the future. Notably they introduced the 
term 'homotopy'. Before long this came to mean simply 'continuous deformation', but 
originally it was used in a somewhat different sense, which still survived in Veblen's mono
graph 'Analysis Situs' [46] of 1922. In later volumes of the Enzyklopadie their article was 
superseded by one by Tietze and Vietoris [42], dated 1929. Tietze and Vietoris divided the 
subject into three branches, namely general topology, the theory of manifolds and combi
natorial topology. By this time the term 'topology' has superseded the term 'analysis situs'. 
Let us see what had happened in the intervening period of over twenty years. 

There was much that was unclear in Poincare's mainly geometric reasoning, and its was 
some time before his often intuitive arguments had all been made secure. One of the first 
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specialists in topology who started to build on Poincare's researches was Tietze, who in 
a lengthy paper [14] of 1908 settled a number of outstanding questions. For example, he 
completed previous work on the relationship between the fundamental group of a space 
and what would soon be called the first homology group. 

The fundamental group was studied intensively, in these early years, but otherwise it 
is difficult to find any results which might be regarded as belonging to homotopy theory 
until Brouwer, in the Netherlands, began to introduce entirely new ideas. In two miraculous 
years, between 1910 and 1912, he wrote an amazing series of papers, decisively advancing 
topology into a new era. His methods were unlike anything seen previously. Simphcial 
approximation, for example, was said to be akin to witchcraft. Although Brouwer himself 
was always more interested in the foundations, and published little on topology later, the 
influence of his innovative methods can scarcely be exaggerated. In contrast to that of 
Poincare his expository style was exceedingly rigorous. He showed no interest in homology 
theory, going to great lengths to avoid using it, and yet Brouwer has a claim to be regarded 
as the founder of homotopy theory. 

Naturally, other mathematicians who were studying topology were attracted to Blaricum, 
the village outside Amsterdam where Brouwer lived and held court. Those who came to 
work there at various times included Aleksandroff, Freudenthal, Hopf, Hurewicz, Reide-
meister and Vietoris, each of whom made a great contribution to the development of the 
subject. 

Meanwhile on the other side of the Atlantic research in topology was not slow to de
velop. At Austin, Texas, R.L. Moore was starting to build what became the American 
school of point-set topology. At Harvard the senior Birkhoff succeeded in settling the main 
problem posed by Poincare in the final instalment of his Analysis Situs. Other American 
universities, especially Princeton, were also becoming known for research in the new sub
ject. 

Until early in the twentieth century, when Woodrow Wilson became President of the 
University, Princeton could not have been described as an important academic institution. 
However, in a determined effort to make it so, Wilson recruited some young men of ex
ceptional quality, one of whom was Veblen. Veblen in turn recruited a strong team to the 
mathematics department, including some of his own former students, one of whom was 
Alexander. He also played an important part in the appointment of Lefschetz and other 
able mathematicians, and in the establishment of Fine Hall, where the facilities were of an 
unusually high standard. 

While still only a graduate student, Alexander had seen how to use Brouwer' methods to 
establish the topological invariance of homology, another of the questions which Poincare 
had left open. The story is told in detail by Dieudonne in 1.3 of [25]; it might be added 
that Alexander's paper, which treated only the three-dimensional case, received only a per
functory review from Blaschke in the Forschritte. Alexander used the singular approach, 
pioneered by Dehn and Heegard, but, unfortunately, he left much unclear. However, the 
essential point is that Alexander saw that the Hauptvermiitung could be avoided by using 
a method which is essentially that by which the homotopy invariance of homology groups 
would be proved today. Later he and others clarified and generalized the argument, and pro
duced alternative arguments, but it took almost thirty years before all the misconceptions 
were cleared up. 

As well as the research papers which appeared in a number of journals the issues of 
the Jahresbericht in this period contain other articles which help to give a picture of how 
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topology was seen in those days, such as the historical note by Feigel [27] and the semi-
expository papers by Kneser [34] and by Van der Waerden [45]; the last of these contains a 
valuable bibliography. It is also interesting to read what was said at the 1932 International 
Mathematical Congress in Zurich [22], the first at which topologists had much of an op
portunity to try to explain what they were doing. Alexander gave a lecture which included 
the following passage: 

'Broadly speaking, we may say that analysis situs, or topology, deals with the properties 
of geometrical figures that remain invariant when the figures are subject to ai'bitraiy 
continuous transformations. There are, however, several distinct kinds of analysis situs, 
because there are several distinct ways of interpreting the physical notion of continuity 
in mathematical language. For example, there is what we call point-theoretical analysis 
situs, which is different in spirit as well as in content from the sort of analysis situs 
originally proposed by Leibnitz. This branch of the science is essentially an outgrowth 
of function theory, whereas what Leibnitz had in mind was a new and independent type 
of mathematics, especially designed to avoid the complications of function theory and 
to deal directiy with the purely qualitative aspects of geometrical problems. No doubt 
combinatorial analysis situs is more nearly a development of Leibnitz's original idea.' 

The vogue for point theoretical analysis situs seems to be due, in large part, to the 
predominating influence of analysis on mathematics in general. Nowadays we tend, al
most automatically, to identify physical space with the space of three variables and to 
interpret physical continuity in the classical function theoretical manner. But the space 
of three real variables is not the only possible model of physical space, nor is it a satis
factory model for dealing with certain types of problems. Whenever we attack a topo
logical problem by analytic methods it almost invariably happens that to the intrinsic 
difficulties of the problem, which we can hardly hope to avoid, there are added cer
tain extraneous difficulties in no way connected with the problem itself, but apparently 
associated with the particular type of machinery used in dealing with it.' 

Menger, speaking later in the same Congress, emphasized that while it was good for some 
purposes, other methods were necessary to obtain a proper understanding of the topology, 
even in the case of compact metric spaces. For a long time the combinatorial point of view 
was to predominate in Western Europe and the set theoretical in Eastern Europe. 

Until the late twenties homology was always discussed in terms of Betti numbers and 
torsion coefficients. That was the case, for example, in Veblen's influential textbook, al
though he remarks that the abelianized fundamental group 'may well be called the ho
mology group'. The first mention of Betti groups in print occurs in Vietoris' paper [15] 
of 1927. However, this important conceptual development seems to have occurred a lit
tle before this. Emmy Noether, early in 1925, gave a talk at a meeting of the Gottinger 
Mathematische Gesellschaft in which she showed how to replace the theory of elemen
tary divisors for modules over the integers by the structure theorem for abehan groups. 
This is reported on page 104 of the 1926 Jahresbericht. Now Aleksandroff relates, in his 
autobiography [20]: 

Tn the middle of December (1925) Emmy Noether came to spend a month in Blaricum. 
This was a brilliant addition to the group of mathematicians around Brouwer. I remem
ber a dinner at Brouwer's in her honour during which she explained the definition of the 
Betti groups of complexes, which spread around quickly and completely transformed 
the whole of topology.' 
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In his Memorial address of 1935 for Emmy Noether Aleksandroff gave a somewhat 
different version: 

'In the summers of 1926 and 1927 she went to the courses on topology which Hopf 
and I gave at Gottingen. She rapidly became oriented in a field which was completely 
new to her, and she continually made observations, both deep and subtle. When in the 
course of our lectures she first became acquainted with a systematic construction of 
combinatorial topology, she inmiediately observed that it would be worthwhile to study 
directly the groups of algebraic complexes and cycles of a given polyhedron and the 
subgroup of the cycle group consisting of cycles homologous to zero. This observation 
now seems self evident. But in those years (1925-1928) this was a completely new 
point of view, which did not immediately encounter a sympathetic response on the part 
of many authoritative topologists. Hopf and I immediately adopted Emmy Noether's 
view in this matter, but for some time we were among the small number of mathe
maticians who shared this viewpoint. These days it would never occur to anyone to 
construct combinatorial topology in any way other than through the theory of abelian 
groups; it is thus all the more fitting that it was Emmy Noether who first had the idea of 
such a construction. At the same time she noticed how simple and transparent the proof 
of the Euler-Poincare formula becomes if one makes systematic use of the concept of 
Betti group. Her remarks in this connection inspired Hopf completely to rework his 
original proof of the well known fixed point formula, discovered by Lefschetz in the 
case of manifolds and generalized by Hopf to the case of arbitrary polyhedra. Hopf's 
work 'Eine Verallgemeinerung der Euler-Poincareschen Formel', published in Gottin
gen Nachrichten in 1928, bears the imprint of these remarks of Emmy Noether.' 

The notion of degree, originally due to Kronecker, takes a particularly simple form in the 
case of maps of a sphere into itself, and Hopf had shown that such maps are classified by 
the degree. It was also known that every map of a sphere into a sphere of higher dimension 
was nomotopic to a constant. Reputedly Lefschetz held the opinion that the same would 
be true in the case of a sphere of lesser dimension, as is certainly the case for maps into a 
circle. This conjecture, if that is what it amounted to, was demolished by Hopf in a paper 
which constitutes a landmark. In this paper [7] of 1930 in the Annalen he considered maps 
of a 3-sphere into a 2-sphere, the simplest case where the classification was unknown. He 
found a map, the celebrated Hopf map, for which the preimages of points were circles, and 
for which the preimages of distinct points were linked with coefficient unity. He showed 
that this linking coefficient could be defined for maps generally, and that homotopic maps 
have the same coefficient. In this way he was able to show that the number of homotopy 
classes is infinite. The history of this important paper is described by Samelson elsewhere 
in this volume. Hirosi Toda and George Whitehead, in their respective accounts [43,48] of 
the first fifty years of homotopy theory, take Hopf's paper as their starting point. 

Five years after it appeared another topologist, with a background in set-theoretic topol
ogy rather than geometry, was publishing the first fruits of research which would open up 
entirely new lines of investigation. This was Hurewicz, who had made his reputation in 
Vienna by completing the development of modem dimension theory initiated by Brouwer 
and Menger. When Menger left Vienna to join Brouwer in Amsterdam, Hurewicz followed 
him, and joined the group of topologists who had gathered around Brouwer. However, the 
master himself had turned away from topology long before, and was only publishing work 
on the foundations. It would be interesting to know more about what Hurewicz was work
ing on in the years following his arrival in the Netherlands when there was a lengthy period 
during which he hardly published at all. 
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It is now sixty years since Hurewicz published his four famous Beitrage (usually ren
dered as research notes) in the Proceedings of the Royal Scientific Academy of Amster
dam [9]. These notes, which total 35 pages, contain many of the seminal ideas of homotopy 
theory. For example, Hurewicz introduced the concept of homotopy type, in which spaces 
are classified with respect to homotopy equivalence rather than topological equivalence. 
However, the notes are mainly concerned with the higher homotopy groups. 

To quote Veblen's Analysis Situs [46] again 

'Whether there exist generalizations of the fundamental group, and whether, in particu
lar, these generalizations can be made in such a way as to bear a relation like the one just 
described to the /i-dimensional Betti numbers and coefficients of torsion is a problem 
on which nothing has yet been published.' 

The first pubHc statement of the definition of these invariants was given by Cech at 
the 1932 International Congress in Zurich, although the idea had been around for some 
time. Cech showed that they were commutative, unlike the fundamental group, and in 
the discussion which followed his talk it seems to have been held by Aleksandroff and 
others that therefore they could not give any information which was not already given by 
homology. Discouraged by this Cech did not pursue the idea further, and it was left to 
Hurewicz to follow up his initiative and to establish some of their fundamental properties. 

In these four research notes Hurewicz acknowledges the assistance of Freudenthal and 
Hopf right from the start, and it seems rather surprising that it is only in the second of 
the notes that he refers to Cech's talk, given at a session of the Congress presided over 
by Brouwer himself and attended, in all probability, by Aleksandroff and Hopf. However, 
Cech's definition was not the same as Hurewicz's and it may not have been immediately 
clear that they were equivalent. 

In the notes Hurewicz not only introduced - or reintroduced - the higher homotopy 
groups but he opened up the possibility of calculating them through what became known 
as the Hurewicz theorem, which provides a fundamentally important connection between 
the homotopy groups and the homology groups. In the last of the notes he drew attention to 
the special properties of aspherical spaces, where all the higher homotopy groups vanish, 
and thereby initiated the discipline which became known as homological algebra. 

By this time it was already clear that the problem of calculating the homotopy groups 
of spheres posed a special challenge. Rather than try and describe the subsequent develop
ment of homotopy theory generally I will now focus on this particular problem. First Hopf 
generahzed and extended his earUer work in 1935 with another key paper [8] in which he 
introduced the concept of fibration. He described the families of fibrations where the fi
bres are spheres, the total spaces are spheres, and the base spaces are projective spaces. As 
special cases there are the fibrations where the base spaces are projective lines, therefore 
also spheres, and it is these which are usually called the Hopf fibrations. The map of the 
3-sphere to the 2-sphere he considered in [7] is one of these special cases, as is the corre
sponding map of the 7-sphere to the 4-sphere and of the 15-sphere to the 8-sphere. Within 
the next few years the concept of fibration was further developed by Eckmann, by Ehres-
mann and Feldbau, and by Hurewicz and Steenrod, working more or less independendy. 
Full details will be found elsewhere in this volume. 

The special cases studied by Hopf turned out to be of exceptional interest. Using the 
same idea as in his 1930 paper Hopf assigned a numerical invariant, soon to be known as 
the Hopf invariant, to each map of a (2n — l)-sphere into an w-sphere. After a preliminary 
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deformation, if necessary, the invariant is just the Unking number of the preimages. For odd 
values of n Hopf showed that the Hopf invariant is always zero. For even values of n he 
constructed maps with any given even integer as Hopf invariant. He raised the question of 
whether, for particular values of n, there existed maps with odd Hopf invariant, and showed 
that this was indeed the case for n = 1, 2, 4 and 8, using the fibrations mentioned above. It 
was to be over twenty years before Hopf's question could be answered completely. 

The next major advance in homotopy theory was due to Hopf's student Freudenthal, 
who in 1937 introduced [4] the concept of Einhangung or suspension. For a space X, the 
suspension SX is the join of X with a pair of points. A similar construction applies to maps 
and homotopies. In the case of a sphere the suspension is a sphere of one dimension higher. 
By this method Freudenthal constructed a homomorphism 

now called the Freudenthal suspension, and was able to show that this is injective for 
r < n — \, surjective for r < n. The method he used to prove this was very geometric 
in character; it has been summarized in rather more modern language by Dieudonne [25]. 
In fact Freudenthal also showed that when r = In the kernel of the suspension consists 
precisely of the elements of Hopf invariant zero. Freudenthal's paper is labelled T. Grosse 
Dimensionen'. Apparently the sequel was withdrawn after Hopf found an error in it, but 
unfortunately an announcement [5] had already appeared, in which Freudenthal asserted 
the existence of maps of Hopf invariant one from the {In — l)-sphere into the n-sphere for 
all even values of n. As the American mathematician George Whitehead showed not long 
afterwards [16] this is untrue, but it was not until 1958 that Adams succeeded in proving 
that the only values of n with this property were those found by Hopf. 

The Freudenthal theorems constituted a major advance. They showed that if one con
tinues to suspend, all the homotopy groups beyond a certain point are isomorphic, so that 
there is essentially just the one group to consider, the stable group of the r-stem. The groups 
before that stage is reached are called the non-stable groups. When r = 0, for example, 
the stable range is reached immediately and the stable group of the 0-stem is just the cyclic 
infinite group Z. When r = 1, however, the first group is 0, the second Z and the stable 
group Z/2Z. Maps of the 3-sphere into the 2-sphere suspend trivially if the Hopf invariant 
is even. 

Techniques for calculating homotopy groups were still in their infancy. A new fine of 
attack was developed by Pontryagin, involving what would nowadays be called the framed 
cobordism groups of smooth manifolds. Although the method is important its early ap
plications were not free of error. Thus Pontryagin himself claimed the stable group of the 
2-stem to be trivial; in fact it is Z/2Z, as shown later by Pontryagin and by G.W. Whitehead 
[17]. Also Pontryagin's student Rokhlin announced that the stable group of the 3-stem was 
Z/12Z. In fact the correct value is Z/24Z, as shown by Barratt and Paechter in Oxford, by 
Toda in Osaka and by Rokhhn himself, all about the same time (1952). 

Let us now cross the Atlantic again and see what had been happening at Princeton during 
the thirties. Even before the foundation of the Institute for Advanced Study in 1930 Prince
ton was beginning to rival the best European universities as a centre for mathematical re
search, notably in topology. In 1932 Veblen migrated from the University to the Institute, 
where he was largely responsible for the selection of its early mathematics faculty. This in
cluded Einstein, Morse, von Neumann, and Weyl, who where later joined by Alexander and 
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Whitney, amongst others. Many of the mathematicians who visited the Institute came from 
Europe and not a few stayed on in the United States. The Hnks between the Institute and 
the University were quite close, particularly where the visitors were concerned, and taken 
together the two institutions provided a centre of excellence in mathematics which out
shone any others in the United States. As the international situation worsened and leading 
European universities such as Gottingen suffered an eclipse, Princeton went from strength 
to strength. 

Shaun Wylie has kindly given me his recollections of Princeton in those days. After 
explaining that he went there in 1934 for three years on Henry Whitehead's advice he goes 
on: 

'At that time the University Mathematics Department and the Institute for Advanced 
Study cohabited in Fine Hall, and I had only the vaguest idea of who belonged to what. 
The topological luminaries were Veblen and Alexander, of the Institute, and Lefschetz, 
of the University. Veblen had recendy published his book Analysis Situs' but did not 
in my time lecture on Topology. Alexander at least twice announced a series of lectures 
and each time abandoned it fairly early on. There were, however, satisfying lectures 
from Lefschetz and from Tucker, and after tea there were one-off seminar presentations, 
generally by research students. 

Lefschetz's lectures were highly instructive. Of course he knew what mattered and what 
it was all about, but was bad at detail. There was a great deal of audience participation 
(which he was entirely happy with) and details were hammered out democratically. 
People learnt a lot. Lefschetz also contributed personally to audience participation at 
the seminars; he asked frequent questions, sometimes pretending not to understand and 
sometimes to illuminate. 

Tucker was quite different. His lectures were quietly elegant, and he communicated (at 
least to me) a relish for the subject. Lefschetz passed me on to him, and he shepherded 
me helpfully through my research. 

At that time homology was central, cohomology being mentioned as an algebraic step
sister. Lefschetz had established his duality theorem for manifolds, and Alexander his 
for polyhedra embedded in spheres; and Pontryagin's duality theorem was around. Peo
ple knew about the fundamental group and covering spaces. The available homology 
theories for general spaces were singular homology and Cech homology; and there were 
rumours that Alexander was proposing something based on what he called gratings. I do 
not remember anyone being actively involved in Analytic Topology at Princeton. 

During my time there (1934-1937) the great new excitements were the cohomology 
product and Hurewicz's higher homotopy groups. Among the advances (but less semi
nal) was Reidemeister's combinatorial invariant. 

Princeton was a splendid place to be. Cech was there for a year and Hurewicz. Among 
the graduate students were Dowker and Steenrod and Wallman. Most people turned up 
for tea and were ready to talk; and the lecturers were highly available.' 

In the textbooks of the thirties, such as that of Aleksandroff and Hopf [21], the exposition 
of homology theory is a mixture of algebraic and geometric arguments. In the next ten 
or twenty years it became accepted that it was better to separate out these two types of 
argument. The concept of chain complex was not new but it became standard practice to 
develop the homology theory of chain complexes before dealing with the geometry, of 
which there tended to be less and less. An essential ingredient in this process is the notion 
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of exact sequence, another of the ideas of Hurewicz. This first appeared in an abstract [10] 
of 1941 in which he rather incidentally introduced the notion of exact sequence. Essentially 
the same notion appears in Eckmann's 1941 paper [2] on fibrations. The idea was taken up 
by Henri Cartan [1] in his set of axioms for the cohomology of locally compact spaces and 
by Eilenberg and Steenrod [3] who used it in their axiomatic approach to homology. It is 
interesting that, writing in 1945, they thought it necessary to comment 'At first glance this 
axiom may seem strange even to one familiar with homology theory'. 

Hurewicz could not have realized that the idea of exactness would come to be seen as 
practically indispensable. In the abstract he only refers to the special case of the cohomol
ogy sequence for a pair of spaces, states the result without proof, and does not use the term 
'exactness'. As a result the general application of this extremely useful notion was held up 
while those who wanted to use it waited in vain for a proper account to appear. In the end 
it was Kelley and Pitcher [12] who provided this, but it is not entirely clear who invented 
the term 'exact sequence' as distinct from the concept. 

Of course set-theoretic topology was developing at the same time as combinatorial topol
ogy. For example, the theory of absolute neighbourhood retracts, described elsewhere in 
this volume, was in some ways a rival to combinatorial homotopy theory. In Poland the 
set-theoretic tradition was particularly strong, as the following extract from a note by Peter 
Hilton on a visit he made in 1955 well illustrates. 

'Kuratowski had been very largely responsible for reviving Polish mathematics after 
the devastation wrought by the second World War, and his influence was immense. As 
a consequence, topology was one of the most active fields of mathematical research 
in Poland at that time. Borsuk was undoubtedly the leader of the Warsaw school of 
topology - and remained so until his death; generally speaking his influence was very 
positive indeed, since he was a wonderfully inventive mathematician with superb geo
metrical insight and intuition, but there was one surprising consequence of his domi
nance in the field, as I will explain. 

The structure of academic life and the traditions of Eastern Europe ensure that the influ
ence of leading scholars in any field is very strong and sharply focused. Thus Borsuk's 
students (and Kuratowski's) would continue to work on problems within the domain of 
special interest to their teachers long after they had creased to have any formal rela
tionships with them. Thus not only would their research areas continue to reflect their 
teachers' special concerns, but so would their methods. Now Borsuk was not comfort
able with algebraic methods in topology; and his mathematical taste communicated 
itself unmistakeably to his students, his 'school'. Let me give two examples. 

Borsuk had, just before the outbreak of war, invented the cohomotopy group of a space 
X. Now at the time of my visit Borsuk had recently published a paper on his new idea 
of the dependence of maps. Among his results was one concerning the dependence 
of maps of an M-dimensional polyhedron K into S^, in which the /i-th cohomology 
group of K appeared in the statement of the criterion. I was very much interested by 
Borsuk's idea of the dependence of maps; and on studying his paper I was able to point 
out that this particular result could be extended to polyhedra K of dimension up to 
In — 2, provided the role of the /i-th cohomology group was replaced by that of the 
n-th cohomotopy group. 'Yes, you are probably right' said Borsuk 'but, unfortunately, 
I never really understood the cohomotopy groups'. 

My second example is closely related. Borsuk had asked whether, when two maps 
f, g: X -> y are dependent on each other, it must follow that / is homotopic to ug. 
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for some self-equivalence uofY.l was fortunate to find a counterexample during my 
stay in Warsaw. A year later the Rumanian topologist Tudor Ganea visited Warsaw and 
found an erstwhile student of Borsuk working on the quoted question of Borsuk. 'But 
surely', said Ganea, 'Hilton answered that question in the negative?' 'Yes, replied the 
Polish mathematician', but Hilton's answer was algebraic'.' 

It should not be forgotten, however, that two of the leading figures in the development 
of algebraic topology, Eilenberg and Hurewicz, came from Poland and were originally set-
theoreticians. Also algebraic topology has been strongly represented in Poland for many 
years now. 

As we have seen, algebraic topology evolved from combinatorial topology during the 
late twenties. However, as far as I can discover the first appearance in print of the term 
'algebraic topology' is not until the end of 1936 when Lefschetz, in an address which he 
gave at Duke University began: 

'The assertion is often made of late that all mathematics is composed of algebra and 
topology. It is not so widely realized that the two subjects interpenetrate so that we 
have an algebraic topology as well as a topological algebra.' 

Lefschetz went on to use the term as the title of his Colloquium volume of 1942 and 
today it is standard terminology. The term homotopy theory does not seem to have be
come accepted until after the second world war. Although the two terms are often used 
interchangeably, because the methods of homotopy theory tend to be algebraic in nature, 
there are parts of algebraic topology, such as fixed-point theory, where homotopy-theoretic 
methods are used but which are not part of homotopy theory itself. The term combinatorial 
topology seems obsolescent. Although combinatorial homotopy theory, as developed by 
J.H.C. Whitehead, is in widespread use the terminology is not. 

When a subject is developing as rapidly as topology was during the first half of the twen
tieth century it is hardly surprising that at first there were only a few successful attempts 
to organize the material in the form of a textbook. Veblen's Analysis Situs of 1922, based 
on lectures he gave in 1916, has already been mentioned. This was the first to give an in
troduction to combinatorial topology, especially homology theory, and became a standard 
work. Kerekjarto's Vorlesungen iiber Topologie [33], which appeared the following year, 
was more concerned with the set-theoretic and geometric side of the theory. Lefschetz' 
Topology [36] of 1930 was to some extent an up-date of Veblen; his earlier Borel tract 
[35] of 1924 was more concerned with his own work. Reidemeister's Einfiihrung in die 
Kombinatorische Topologie [40], which appeared in 1932, was mainly concerned with the 
fundamental group and covering spaces. 

In the mid-thirties, however, two books were published which were of lasting impor
tance. The first was Seifert and Threlfall's Lehrbuch der Topologie [41] of 1934, which 
gave an admirable account of the more geometric theory. The second, which appeared the 
following year, was the first (and only) volume of Alexandroff and Hopf's Topologie [21], 
which, after providing the student with all the relevant algebra and general topology, went 
on to give a beautiful account of homology theory. The introduction provides a valuable 
historical overview. 

There were also several projected books on topology which, unfortunately, never ap
peared. One was the sequel to [33], which was intended to deal with higher-dimensional 
topology. For some years there was correspondence about this between Kerekjarto, Kneser 
and Reidemeister. In the end, after Kneser had done quite a lot of work on it, the project 
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was abandoned. In the case of [21] the plan was for two more volumes, but neither of these 
appeared. For many years Hurewicz was preparing a textbook on homotopy theory, but 
the rapid development of the subject meant that there was always new material he felt he 
must include. The work seems to have ground to a halt soon after the end of the war, and 
the typescript perished in a fire not long after Hurewicz' death. Another abandoned project 
was the second volume of Eilenberg and Steenrod's Foundations of Algebraic Topology. 
This is described in some detail in the preface to the first (and only) volume. 

For the history of algebraic topology up to (but not including) the time of Poincare it 
would be difficult to improve on the monograph [39] of J.-C. Pont, now unfortunately out 
of print. The little-known article 'Topologie' [31] by Guy Hirsch provides a well-informed 
overview of the development of topology generally, including algebraic topology of course, 
until about twenty years ago. Several accounts have been published which describe the de
velopment of algebraic topology or, more specifically, homotopy theory, over a particular 
period of years, although they are in the nature of historical surveys, taking the reader 
through the literature but not adding much historical background. Thus both Hirosi Toda 
[43] (in Japanese) and George Whitehead [48] have treated the half-century 1930-1980, 
while Hans-Werner Henn and Dieter Puppe [30] extended their treatment to the century 
1890-1990. To these accounts must be added Dieudonne's book 'A History of Algebraic 
and Differential Topology 1900-1960' [25] which contains a great deal of material, and 
his long article 'Une breve histoire de la topologie' [26], which in some ways serves as a 
summary of the book. In [37] Lefschetz gives a rather more personal view of the develop
ment of the subject up to 1935; part of this is reprinted in the present volume. There are in 
addition a number of articles on particular topics, such as MacLane's on the cohomology 
of groups [38]; the second section of the list of references includes a selection of these. 
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CHAPTER 20 

jt3(S\ H. Hopf, W.K. Clifford, F. Klein 

H. Samelson* 
Department of Mathematics, Stanford University, Stanford, CA 94305, USA 

E-mail: samelson@gauss.Stanford.edu 

In 1931 there appeared the seminal paper [2] by Heinz Hopf, in which he showed that 
7t2>{S^) (the third homotopy group of the two-sphere S^) is nontrivial, or more specifically 
that it contains an element of order oo. (His language was different. Homotopy groups had 
not been defined yet; E. Czech introduced them at the 1932 Congress in Zurich. Interest
ingly enough, both Paul Alexandroff and Hopf persuaded him not to continue with these 
groups. They had different reasons for considering them as not fruitful; the one because 
they are Abehan, and the other (if I remember right) because there is no mechanism, like 
chains say, to compute them. It was not until 1936 that W. Hurewicz rediscovered them 
and made them respectable by proving substantial theorems with and about them.) 

There are two parts to the paper: The first one is the definition of what now is called 
the Hopf invariant and the proof of its homotopy invariance. The second consists in the 
presentation of an example of a map from S^ to S^ that has Hopf invariant 1 and thus 
represents an element of infinite order of 713(5^); it is what is now called the Hopf fibration; 
the inverse images of the points of S^ are great circles of S^. Taking S^ as the unit-sphere 
ki 1̂  + k2p = 1 in C^, these circles are the intersections of S^ with the various complex 
lines through the origin. 

Hopf knew the example from non-Euclidean Geometry and puzzled for years over the 
question whether it is an "essential" map, i.e. one that is not homotopic to 0, until (so he 
told me once) one day in 1927 or so, while he was walking along the Spree river in Berlin, 
the idea "Any two of these circles are linked in 5*̂ " came to him; the rest is history. 

This note is concerned only with the second part, the example - where did it come from? 
Hopf, on p. 655 of the paper (Selecta p. 53), calls it a Clifford parallel congruence, and in a 
footnote refers to p. 234 of Felix Klein's (posthumous) book [5] on non-Euchdean Geom
etry. On looking up the reference one finds the very brief statement that these "parallels" 
had been introduced by CHfford in a talk to the British Association in 1873. (It is not stated 
which British Association is meant, and there is no reference to any pubhcation.) A lit
tle later in the book the Clifford parallels are described with the help of quaternions; and 
earlier in the book they had been introduced by geometric considerations as families of 

* Support by NSF grant DMSD91-02078 is acknowledged. 
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lines in the three-dimensional space of non-Euclidean geometry with spherical metric, that 
allow a continuous family of motions shifting each line in itself. 

In the preface to [5] one learns that Hopf played a substantial role in the preparation of 
the book, particular in the part that had to do with his own research. It seems quite clear 
that it was he who put in the reference to Chfford and the description of his parallels. But 
where did he get it from? First I looked at Chfford's collected works [1], but I could not 
find any paper that had to do with the parallels (but see below). I started looking through the 
literature, through earlier books on non-EucHdean Geometry and on Projective Geometry 
in general, to no avail. I looked through the references to Clifford in the Enzyclopaedie der 
Mathematischen Wissenschaften (there are very many and I could not check all of them, 
but they all seemed to refer to other things). 

Finally Felix Klein came to the rescue, with two publications. One, [6], is a set of notes 
of a course on non-Euclidean Geometry that he had given in 1890. It is not exactly a book, 
although it has a hard cover. It is a dittoed ("autographed") copy of handwritten notes, 
carefully prepared by one of the listeners (this was Klein's way at that time of making his 
lectures available to the world at large). The other one is a paper, [7], which amplifies the 
last few pages of the lecture notes. In both Klein tells of a visit that he made to England in 
1873. At that visit he went to a meeting of the British Association for the Advancement of 
Science in Bradford. He met the young Clifford there, listened to a talk by him, and dis
cussed the content with him afterwards, together with R.S. Ball and others. Unfortunately, 
he says, the talk was never published; only the title of the talk was published in the Report 
on the meeting, as "A Surface of Zero Curvature and Finite Extent". Clifford had become 
interested in elliptic geometry and had found certain interesting congruences in elliptic 
space (projective 3-space MP-̂  with elliptic metric) or in the 3-sphere S^ (a congruence is 
a 2-parameter family of disjoint projective lines (or great circles) that covers the space). 
Each of Clifford's congruences has the property that there exists a one-parameter group of 
rigid motions of the space that shifts each line of the congruence along itself. In fact there 
exist two such families of congruences, say "left" and "right". (Each line in space belongs 
to a left and also to a right congruence.) By taking a line in a left congruence and moving 
it along the lines of a right congruence by the one-parameter group of motions associated 
with the latter, Clifford constructed a surface whose induced metric is flat and which thus 
has Gaussian curvature 0 and which is of finite extent (read compact); it is in fact clearly 
a torus. This was the first example of what became known as Clifford-Klein space forms. 
(The name was introduced by Killing in [3], p. 257, [4], p. 314, to denote those space 
forms, i.e. spaces of constant curvature, that are different from the prime examples sphere 
and projective space [positive curvature], hyperbohc space [negative curvature], Euchdean 
space [curvature zero]; the latter are the cases distinguished by free mobility - the isometry 
group is transitive on the orthonormal frames. As Klein puts it in [7], p. 559, respectively, 
367: Just try to turn Clifford's surface around one of its points.) 

Klein derives all the formulae needed; he says that he does not know how Clifford pro
ceeded. As pointed out by him, the best way to understand the congruences is probably 
with quaternions, for the three-sphere formed by the unit-quaternions: A left [respectively, 
right] congruence consists of the orbits on S^ under left [respectively, right] multiplica
tion by the elements of a one-parameter group cost -\- sint - u with any unit-quaternion 
w; in other words, the right [respectively, left] cosets of the subgroup. With u = i this is 
precisely the Hopf fibration, and this must be where Hopf became acquainted with it. 
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Klein makes a point of saying how glad he was to be able to present these very interesting 
results of Clifford to the mathematical world, particularly since Clifford died a few years 
after their meeting prematurely; as noted, Clifford's talk was published by title only; there 
are only very brief indications of the matter in some of his papers ([1], items XX, XXVI, 
XLI, XLII, XLIV). 

Thus one might wonder: Where would 7:3(8^) be today, if Klein had not gone to the 
meeting of the BAAS in 1873 or if he had not listened to CHfford's talk? 

As an appendix we reproduce, with I.M. James's permission, a letter from Hopf to Hans 
Freudenthal which throws some light on the timing of Hopf's result; the letter was com
municated to James by W.T. van Est who has the original. 

Princeton, N.J., 30 Murray Place, den 17. August 1928. 

Lieber Herr Freudenthal! 

Fiir den Fall, dass Sie sich noch fiir die Frage nach den Klassen der Abbildungen der 
3-dimensionalen Kugel S^ auf die 2-dimensionale Kugel S^ interessieren, mochte ich Ih-
nen mitteilen, dass ich diese Frage jetzt beantworten kann: es existieren unendUch viele 
Klassen. Und zwar gibt es eine Klasseninvariante folgender Art: x, y seien Punkte der 
5^; dann besteht bei hinreichend anstandiger Approximation der gegebenen Abbildung 
die Originalmenge von x aus endlich vielen einfach geschlossenen, orientierten Polygo-
nen P\, P2,..., Pa und ebenso die Originalmenge von 3; aus Polygonen Qi, Q2, - • ^ Qh-
Bezeichnet vtj die VerschUngungszahl von P/ mit Qj, so ist J^i j ^U = Y unabhangig 
von X, y und von der Approximation und andert sich nicht bei stetiger Anderung der Ab
bildung. Zu jedem y gibt es Abbildungen. Ob es zu einem jeden y nur eine Klasse gibt, 
weiss ich nicht. Wird nicht die ganze S'^ von der Bildmenge bedeckt, so ist y = 0. Eine 
Folgerung davon ist dass man die Linienelemente auf einer 5"̂  nicht stetig in einen Punkt 
zusammenfegen kann. 

Es bleiben noch eine Anzahl von Fragen offen, die mir interessant zu sein scheinen, 
besonders solche, die sich auf Vektorfelder auf der S^ beziehen und mit analytischen Fra
gen zusammenhangen (Existenz geschlossener Integralkurven). Wenn Sie sich dafiir in
teressieren, so schreiben Sie mir doch einmal. Meine Adresse ist bis 20. Mai die oben 
angegebene, im Juni und Juli: Gottingen, Mathematisches Institut der Universitat, Ween-
der Landstrasse. 

Mit den besten Griissen, auch an die ubrigen Bekannten im Seminar, 

Heinz Hopf. 

Translation: 
Princeton, N.J., 30 Murray Place, Aug 17 1928 

Dear Mr. Freudenthal! 

In case you are still interested in the question of the [homotopy] classes of maps of the 3-
sphere S^ onto the 2-sphere 5^ I want to tell you that I now can answer this question: there 
exist infinitely many classes. Namely there is a class invariant of the following kind: \eix,y 
be points of 5*̂ ; then for a sufficiently decent approximation of the given map the counter 
image of x consists of finitely many simple closed oriented polygons Pi, P2,..., Pa and 
likewise the counter image of y consists of polygons Q\, Q2, • - -, Qb-^^ ^ij denotes the 
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linking number of Pi and Qj, then ^ - vtj = y is independent of x, >' and of the ap
proximation and does not change under continuous change of the map. For every y there 
exist maps. Whether to every y there is only one map, I do not know. If the whole S'^ is 
not covered by the image, then y is = 0. A consequence is that one cannot sweep the line 
elements on S'^ continuously into a point. 

A number of questions that seem interesting to me remain open, in particular those that 
have to do with vector fields on 5*3 and are related to analytic questions (existence of closed 
integral curves). If you are interested in this, then do write me. My address till May 20 is 
the one given above, in June and July: Gottingen, Mathematical Institute of the University, 
Weender Landstrasse. 

With the best wishes, also to the other acquaintances in the seminar, 

Heinz Hopf. 

(Note: Freudenthal was Hopf's first student, in Berhn. Hopf told me once that Freuden-
thal was the "easiest" doctoral student he ever had. One day Freudenthal came to Hopf and 
said: "Dr. Hopf, I would like to have you as my thesis adviser. And here is my thesis.". It 
was Freudenthal's work on the ends of topological spaces and groups, in which he proved 
that a topological group (with suitable conditions, e.g., a connected Lie group) has at most 
two ends.) 
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CHAPTER 21 

A History of Cohomology Theory 

William S. Massey 
Department of Mathematics, Yale University, New Haven, CT 06520-8283, USA 

1. Introduction 

Today we take cohomology for granted and even teach it in a beginning course on alge
braic topology. But this was not always so. In fact, it took approximately forty years after 
the introduction of homology theory in 1895 by Poincare before cohomology theory ap
peared on the scene. Undoubtedly one reason for this was the fact that the early algebraic 
topologists were not much interested in homology groups p^r se. Rather, they seemed to be 
more interested in such things as the Betti numbers and torsion coefficients of finite com
plexes, their incidence matrices, etc. As long as this point of view held sway, there was not 
much point in introducing cohomology groups. There were, however, several precursors of 
cohomology before 1935. We will now consider some of these. 

1.1. The chains on a dual subdivision of a manifold 

Assume M" is a closed, orientable /t-manifold with a given triangulation. By barycentri-
cally subdividing, and amalgamating these smaller simplices in a new way, it is possible 
to define what is called the dual subdivision of the original triangulation (the process is 
nicely described in Chapter X of Seifert and Threlfall [46]). This dual subdivision has the 
property that its /:-cells can be put in 1-1 correspondence with the (n — A;)-simplices of 
the original triangulation in such a way that the intersection number of an oriented k-cc\\ 
and its dual oriented (n — /:)-simplex is -|-1, while its intersection number with any other 
{n — /:)-simplex is 0. Thus there is defined a pairing of the integral /c-chains of the dual sub
division and the integral (n — /:)-chains of the original triangulation to the additive group 
of integers. The boundary operator of the dual subdivision and the boundary operator of 
the original triangulation are adjoint Hnear operators with respect to this pairing (up to a 
plus or minus sign). 

The modern reader will recognize that the /:-chains of the dual subdivision play the same 
role as (n—/:)-dimensional cochains of the original triangulations. This process was used to 
prove the version of the Poincare duality theorem that was common before the introduction 
of cohomology groups; see Seifert and Threlfall [46], loc. cit. for details. 
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1.2. Lefschetz 's pseudo-cycles 

Unfortunately, the dual subdivisions just described exist only for orientable manifolds. To 
get something analogous for an arbitrary finite simplicial complex, Lefschetz in his 1930 
book [37] introduced what he called "pseudo-cycles". Given a finite simphcial complex K, 
one can consider it as a subcomplex of a triangulated w-sphere S^ for sufficiendy large 
values of n. One can then consider the dual subdivision of 5", as described above. The 
pseudocycles are certain cycles on this dual subdivision in a certain neighborhood of K 
in 5", the details can be found in [37]. 

Although these pseudocycles are frequently referred to as forerunners of the notion of 
cocycles, they suffer several obvious disadvantages. Most importantly, they are cycles on 
another space which is not uniquely associated with the given complex K. 

1.3. Intersection theory of cycles in a manifold 

This theory, which was introduced by Lefschetz and Alexander in the middle 1920's, is a 
precursor of cup products in cohomology. The basic idea is very simple and has great ap
peal to one's geometric intuition. In an oriented ^-manifold, two cycles, of dimensions p 
and q, respectively, should intersect in a cycle of dimension p -\- q — n, provided they 
are in "general" position and the intersection is non-empty. If they are not in general 
position, one should be able to replace them by a pair of homologous cycles which are 
in general position. Finally, this operation should lead to a multiplication of homology 
classes, 

which is a topological invariant of the given orientable manifold M'̂ . The multiplication 
of homology classes thus defined is associative and commutative (up to a plus or minus 
sign). This program was actually carried out in more or less detail by the topologists of 
the era from about 1925 to 1940; but the details are long and tedious. See, for example, 
[26, 37]. 

1.4. De Rham's theorem (see [17]) 

This famous theorem is usually stated today in terms of cohomology: The cohomology 
groups of a smooth manifold (with real coefficients) may be computed by using exterior 
differential forms as cochains. But cohomology groups had not yet been defined in 1931 
when De Rham's paper was published, so he was forced to state his theorem in terms of 
homology and the integration of differential forms over smooth chains. When De Rham 
wrote this paper, cohomology groups defined using exterior differential forms were prac
tically staring him in the face, and he could have gone ahead and made the definition with 
very little additional effort. But this probably seemed pointless to him at the time, given 
the state of algebraic topology in 1931. 

In a rather brief paper [18] pubhshed in 1932, De Rham outHned a proof that the product 
of closed differential forms gives rise to the same information about a manifold as the 
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intersection theory of cycles. Re-interpreted from a modern point of view, he showed that 
the product of cohomology classes determined by the product of closed differential forms 
corresponds under Poincare duality to the product of homology classes determined by the 
intersection of cycles. 

Apparently the first modern statement and proof of De Rham's theorem (in terms of 
cohomology) was in mimeographed notes of lectures by H. Cartan [12, 13]. According to 
Andre Weil, [67] he communicated this proof to Cartan in 1947. 

1.5. Hopf's umkehrunghomomorphismus 

Simple examples show that if / : Mi -> M2 is a continuous map from one orientable 
manifold to another, then the induced homomorphism 

/*: /f*(Mi)-^/ /*(M2) 

cannot preserve the multiplication of homology classes defined by intersection theory. This 
statement is true even if Mi and M2 are of the same dimension. If Mi and M2 are of 
different dimensions, then the intersection of a /^-dimensional cycle and a ^-dimensional 
cycle will obviously have different dimensions in Mi and M2. 

This deficiency was repaired by Hopf in a rather novel way in 1930 [27]. Assuming that 
the manifolds Mi and M2 are of the same dimension, Hopf showed how to associate with 
the continuous map / : Mi -^ M2 a homomorphism 

(p:Hp(M2)-^ Hp(Mi), p ^ O , 

going in the opposite direction; hence the name, which means "reverse homomorphism". 
The homomorphism cp does preserve intersection products, i.e. 

(p(u ' v) = ((fu) • ((pv), 

for any u e Hp (M2) and v e Hg (M2). This reverse homomorphism (p is a. precursor of the 
homomorphism induced by the continuous map / on cohomology groups. 

In modern terms, Hopf's umkehrhomomorphismus corresponds under Poincare duality 
to the homomorphism / * induced by / on cohomology; and intersection of homology 
classes corresponds to cup product of cohomology classes. 

1.6. The struggle to find more general and natural statements of the duality 
theorems of Poincare and Alexander 

Today we usually state these duality theorems by saying that certain homology and coho
mology groups are isomorphic. Before 1930 these theorems were usually stated as equal
ities between certain Betti numbers and torsion coefficients. For example, in Seifert and 
Threlfall [46], the Poincare duahty theorem is stated as follows: the /:th Betti number of 
a closed, orientable ^-manifold is equal to the {n — /c)th Betti number; the torsion co
efficients of dimension k are equal to those of dimension n — k — I. Once the group 
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theoretic point of view came to dominate homology theory, there must have been a nat
ural impulse to try to reformulate these duality theorems as some kind of relation be
tween various homology groups. This eventually culminated in two papers published by 
L. Pontrjagin in the Annals of Mathematics in 1934. In the first paper [40] he stated and 
proved his famous duality theorem for the case of compact groups and discrete groups. 
Then in the second paper [41] he applied this to give the desired general statement of 
the Alexander duaUty theorem. The first step in this general statement is to define for 
any compact space X and any compact topological group G the appropriate homology 
groups Hk{X\ G). These are the homology groups in the sense of Vietoris or Cech; they 
are compact topological groups. Let G denote the character group of G; it is a discrete 
abehan group. Then the desired general statement of the Alexander duality theorem is 
the following: For any compact subset X of the ^-sphere 5", the (reduced) homology 
groups 

HkiX'.G) and Hn-k-i{S^ - X\G) 

are the character groups of each other. The product of an element u e Hk{X\G) and 
i; e Hn-k-\(S^ — X\ G) is the "linking coefficient" of these two homology classes. 

Similarly, the Poincare duality theorem can be stated as follows: For any closed, ori-
entable n-manifold M, the homology groups 

Hk(M;G) and Hn-k{M',G) 

are character groups of each other. The product between a homology class of Hk{M\ G) 
and one of Hn-k{M\ G) is the "intersection coefficient" of these two homology classes. 

As we will see later, the cohomology group H^(X; G) is the character group of the 
homology group Hk{X\ G). Thus the introduction of cohomology groups made it unnec
essary to consider homology groups with compact coefficients. However topologists were 
so impressed by Pontrjagin's results that for several years after the introduction of coho
mology theory, homology with compact coefficients still appeared in various books and 
papers. For a well-known example of this, see [24, Chapter IX] (the fact that homology 
groups with compact coefficients are superfluous was pointed out by H. Cartan in his re
view of this book in Mathematical Reviews). 

In the remainder of this chapter we will discuss the development of cohomology theory, 
including cup products and primary cohomology operations. We will not discuss sheaf 
theoretic cohomology, cohomology with local coefficients, spectral sequences, or extraor
dinary cohomology theories, such as ^-theory. We will try to use modern terminology 
and notation throughout, for the benefit of the reader; the terminology and notation in the 
original papers were often quite different. 

In a short chapter such as this it is impossible to take notice of every paper on cohomol
ogy theory pubHshed during the period under consideration. We hope that the authors of 
papers which are not discussed will understand our reasons. 

The reader should note that biographies of many of the mathematicians discussed here 
are provided in other chapters of this book. 

The author acknowledges with gratitude the kind assistance of Paul Lukasiewicz, librar
ian of the Yale Mathematics Library, in helping him find various references, etc. 
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2. The first papers on cohomology theory. The 1935 Moscow conference 

An International Conference on Topology was held in Moscow, September 4-10, 1935. 
One of the American participants was Hassler Whitney, then only three years past his 
Ph.D. degree. Fifty three years later he published his rather vivid reminiscences of this 
conference [75]. Seldom in the history of mathematics has a conference occurred at such a 
propitious time, or marked the initiation of so many new basic hues of research. Hurewicz 
introduced his homotopy groups and described some applications. Hopf and Whitney lec
tured about vector fields and sphere bundles, thus starting in motion the study of fibre 
bundles. And Alexander and Kolmogoroff independently introduced cohomology theory, 
along with cup products. The official proceedings of the conference were published in 
Math. SborniK Vol. 43 (1936), pp. 619-793. 

According to Whitney, Kolmogoroff spoke before Alexander; he described his theory 
of products in the cohomology of a simplicial complex. When he had finished, Alexander 
announced that he also had essentially the same results; both had papers in press. Each 
of them published two papers, and their papers were amazingly similar. Indeed, if it were 
not for the fact that all the evidence indicates otherwise, the casual reader of these papers 
would be incHned to suspect that they were written in collaboration! 

Alexander published his two papers in Vol. 21 (1935) of the Proceedings of the National 
Academy of Sciences (see [4, 5]). These papers were submitted to the Proceedings before 
the Moscow conference, on July 8, 1935. Each is a very brief announcement of results, 
only two pages long. Kolmogoroff's two papers were pubUshed in Vol. 43 (1936) of Math. 
Sbornik (see [31, 32]). No dates of submission are given; however in a footnote to the first 
paper, Kolmogoroff says he reported some of his results at an international conference on 
tensor analysis in May, 1934. Kolmogoroff's paper are over twice as long as Alexander's, 
6 pages and 5 pages, respectively, but still they are essentially announcements of results, 
with few detailed proofs. 

The first paper of each author is concerned with what we would call today "finite cell 
complexes". It is assumed that the reader is familiar with such concepts as the chains of a 
cell complex, the boundary operator, homology groups, etc. In each case, the author then 
"dualizes" this procedure, to describe what we would today call cochains, the coboundary 
operator, and cohomology groups. Thus the major point of each of these two papers was 
concerned with what are essentially algebraic formalisms. Both authors pointed out that for 
any finite complex K, and any compact abelian group G, the homology group Hr{K\ G) 
and the cohomology group H^ (K; G) are character groups of each other. Indeed, in view of 
the above mentioned results of Pontrjagin on duality theorems, this fact must have been one 
of the main motivations leading these authors to define cohomology groups. Kolmogoroff 
also includes in this paper statements of the Poincare and Alexander duality theorems using 
both homology and cohomology groups, such as is common today. 

While these first papers were concerned with defining cohomology groups for finite cell 
complexes, these authors' second papers were more ambitious. It was the authors' aim 
to define cohomology for general spaces, and to introduce cup products into cohomology 
theory. 

When faced with the question of defining cohomology groups for general spaces, most 
topologists today would instantly think of singular cohomology. In 1935 this was not a 
likely option, because singular homology theory as such was not well developed. The 
singular simplexes which were used then included certain degenerate singular simplexes 
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which gave rise to elements of order two in the singular chain groups. Thus the singular 
chain groups were not free abelian groups. We will come back to this question later when 
we discuss singular cohomology theory. 

Another option might have been to dualize the Cech homology theory, thus defining 
Cech cohomology theory. For some reason, neither Alexander nor Kolmogoroff chose to 
do this. Perhaps they were not sufficiently familiar with the properties of direct and inverse 
limits (which then were relatively new) to carry out the dualization. Instead, they chose to 
dualize the Vietoris homology theory. 

First we will discuss Alexander's second paper [5]. Like Vietoris, Alexander limited his 
considerations to compact metric spaces. On such a space C, he defined a p-cochain to be a 
skew-symmetric function f(xo,... ,Xp) of p-\-l points in C with values in a given abelian 
coefficient group A. Such a function is said to be locally zero if there exists a number e > 0 
such that / vanishes whenever the distances between any two of the points XQ, ... ,Xp is 
less than s. Presumably Alexander wanted to factor out the subgroup of all p-cochains 
which are locally zero, but he was not quite precise about this. It is at this stage that the 
topology of C enters the picture. The coboundary of a /?-cochain is defined as a multiple 
of the usual coboundary 

Sf(xo, ...,Xp+i) = ^ ( - l ) ' / ( x o , . . . ,x /_i ,x /+i , . . . ,Xp+i). 

With this definition, one can define cocycles, coboundaries, and the cohomology group 
HP{C\ A) as usual. Alexander asserts that if A is the character group of the compact 
abelian group B, then HP(C; A) is the character group of the Vietoris homology group 
Hp(C; B). 

Next, he wishes to define a product in this cohomology theory. Therefore he assumes that 
the coefficient group A is a ring and defines the product of a j[7-cochain / and a ^-cochain 
g to be Si (p -{- q -\- l)-cochain defined by the following peculiar formula: 

( / X g)(xo, . . . , Xp+^+i) = ^ _^ Yl (-l)^^"V(-^«(0), . . • , Xaip)) 

where the sum is over all permutations a of the integers from 0 to p + ^ + 1, and N{a) 
is 0 or 1 according as the permutation is even or odd. 

The reader will immediately recognize that there are several things wrong with this for
mula. First of all, the factor in front of the summation sign requires that A should be an 
algebra over the rational numbers, which was not assumed initially. Secondly, the dimen
sion of the product is wrong, it is p + ^ -|- 1 rather than p-hq. Alexander goes on to assert 
that the product of cochains is commutative, up to a ± sign; this would require that the ring 
A should be commutative, which is not mentioned. He gives the following coboundary 
formula: 

8{fxg) = (8f)xg = ±fx(8g) 

from which he concludes that the cocycles constitute an ideal in the ring of cochains, and 
the coboundaries form an ideal in the ring of cocycles. Thus the product of cohomology 
classes is well-defined. Alexander goes on to assert that the cohomology ring thus defined 
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is a stronger invariant than the cohomology groups alone. However, he gives no examples 
to show this. 

In a footnote to his second paper [32], Kolmogoroff stated that Alexander erroneously 
assumed that the product of cocycles can be non-zero! In another footnote, he says that 
at the Moscow conference he learned that Alexander had found another product similar 
to the one he (Kolmogoroff) has in his paper. In footnote number 7 of [6], Alexander 
states that "The definition of the product announced by the author in the second of the two 
Proceedings notes . . . is not the significant one, as was noticed by him while the note was 
in press. His revised definition was equivalent to Kolmogoroff's." 

This second paper of Alexander appears to have been rather hastily written, with little 
attention to detail. In addition to the difficulties with the product he defined, there are other 
obscurities and/or errors which we have not cited. 

In Kolmogoroff's second paper [32], he first considers finite simplicial complexes. He is 
concerned with introducing products in the cohomology with rational coefficients of such 
a complex. First he defined the following product of a p-cochain / and a ^-cochain g: 

(/•<^)(i^o, ..-.^(p+^+i)) 

where the summation is over all permutations a of the integers from 0 to p + ^ + 1 . Thus the 
product is again a cochain of dimension p -{- q -\- I. The reader will note that this formula 
is similar to that given by Alexander. After various manipulations with this formula, he 
concludes that the product of two cocycles is always zero! One wonders why he bothered 
to introduce such a product. 

To get something of significance, he now introduces a second product of cochains. As 
before, let / be a p-cochain, and g a (^-cochain. The new product is defined as follows: 

where again the sum is over all permutations a of the integers from Otop-hq. This new 
product has dimension ;? H- ^, as we know it should have. He now derives the following 
coboundary formula for this product: 

(p + ^ + l)8[f, g] = (p + 1)[5/, g] + ( - l )^(^ + 1)[/, 8g] 

which is the formula we are familiar with today, except for the extraneous numerical fac
tors. 

With this formula one can define the product of rational cohomology classes as usual, 
and hence define the rational cohomology ring of a simplicial complex. 

Kolmogoroff next devotes a couple of paragraphs to defining the rational cohomology 
ring of a locally compact space. Here he refers to a Comptes Rendus note [33] for some 
of the relevant definitions. His definition of a p-cochain on such a space is essentially the 
same as that of Alexander, but he imposes a couple of extra conditions on his cochains. 
These extra conditions are complicated, and it is difficult to comprehend the reason for 
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introducing them. Probably they were introduced to insure that his cochains would have 
compact supports, in the language of today. Like Alexander, he factors out the subgroup of 
cochains which are locally zero. 

He then points out that the formulas for the product of cochains on a simplicial complex 
apply equally well to these cochains on a locally compact space, hence one can define the 
rational cohomology ring of such a space. 

In the last paragraph of [32], the author considers products in the rational cohomology 
ring of a triangulable closed orientable w-manifold, M. As mentioned above, Kolmogoroff 
pointed out in his first paper that Poincare duality for such a manifold can be stated as 
an isomorphism //^(M; Q) ^ Hn-p{M\ Q). He now asserts that the products he has just 
defined in cohomology correspond under Poincare duality to the products in homology 
defined by intersection of cycles, up to a constant multiple which depends only on the 
dimensions of the two cohomology class involved. No proof, or hint of a proof, is given. 

It should be pointed out that Kolmogoroff published three additional Comptes Rendus 
notes on cohomology in 1936 [34-36]. One theorem in these papers asserts that if /? is a 
compact metric space, G is a compact abelian group, and G is its character group, then the 
Vietoris homology group Hp{R\G) and the cohomology group //^(/?; G) are character 
groups of each other. As was mentioned above, this result probably motivated Kolmogo
roff's definition of cohomology groups for a general space. He also considers relative co
homology groups HP{R, Q), where Ris3. locally compact space and Q is a closed subset. 
Since he has defined cohomology groups with compact supports, he can prove that the 
relative group HP{R, Q) is isomorphic to the group HP{R — Q). Then he asserts that if 
HP{R) = 0 = HP-HR), the groups HP-\Q) and HP{R - Q) are isomorphic - a re
sult we would derive today by using the exact cohomology sequence. Indeed, it is very 
plausible that thinking about the proof of this result led Hurewicz to introduce the exact 
cohomology sequence in 1941. Another result is the Poincare duality theorem for open, 
triangulable, orientable manifolds in the form Hp{M^) ~ H^~P{M'^); again, this depends 
on the fact that his cohomology groups have compact support. Finally, he puts these last 
two isomorphisms together to get the Alexander duality theorem. 

In his reminiscences, Whitney described his reaction to the Moscow lectures of Alexan
der and Kolmogoroff and their definition of cup products as follows: 

"From the reputation of these two mathematicians, there must be something real going on; 
but it was hai'd to see what it might be. I digress for a moment to say what happened to this 
product. Within a few months, E. Cech and I both saw a way to rectify the definition. We 
each used a fixed ordering of the vertices of a simplicial complex K, and defined everything 
in terms of this ordering." [75] 

It is not difficult to see why Whitney and the other participants at the Moscow conference 
must have been mystified when Kolmogoroff and Alexander wrote down their definitions 
of a product of cochains. These definitions were pure ad hoc formulas, presented with no 
motivation. It is hard to guess how Alexander and Kolmogoroff arrived at them. It must 
have seemed like numerology or magic. It was not until several years later that Lefschetz 
gave a geometric motivation for cup products. 

That J.W Alexander, a well-established algebraic topologist, should be one of the 
founders of cohomology theory is not surprising. But as Hassler Whitney remarked in 
his reminiscences of the Moscow conference, "Kolmogoroff [was] an unlikely person at 
the conference." Andrei Nikolaevich Kolmogoroff was justly more reknown for his work 
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in other branches of mathematics, such as probabiUty and analysis. In 1936 and 1937 he 
pubUshed ten short papers on algebraic topology; six of these are Usted in the bibliography 
of the present paper. There is a lengthy obituary of Kolmogoroff together with discussions 
of his work in various areas of mathematics in Vol. 22 (1990) of the Bulletin of the London 
Mathematical Society. 

In 1936 Alexander published a more lengthy and corrected version of his second Pro
ceedings paper (see [6]). He adopted the correct definition of Cech and Whitney for cup 
products in a simpHcial complex, based on the use of a choice of a fixed linear order of 
the vertices. Much of the paper is concerned with proving that the resulting product of 
cohomology classes is independent of the order chosen. 

It is interesting to note that exact sequences of groups and homomorphisms first made 
their appearance in the context of Kolmogoroff's cohomology theory for locally compact 
spaces. In 1941 Witold Hurewicz published a brief abstract (of a paper that was never 
published) with the rather cryptic title "On Duality Theorems" (see [29]). In this abstract, 
Hurewicz described the exact cohomology sequence of a pair consisting of a locally com
pact space and a closed subspace. He made expUcit reference to the work of Kolmogoroff. 
Of course Hurewicz could not have guessed that some day exact sequences would become 
ubiquitous in algebraic topology and related branches of mathematics. The exact homol
ogy sequence of a pair consisting of a space and subspace did not appear in the literature 
until about four years later, just before the end of World War II, almost simultaneously on 
both sides of the Atlantic: in America, in a note of Eilenberg and Steenrod [25], and in 
France, in a paper by H. Cartan [11]. 

3. The more comprehensive treatment of cohomology and cup products by 
Cech and Whitney 

Unfortunately, neither Alexander nor Kolmogoroff gave a full and complete exposition of 
cohomology and cup products after the Moscow conference. In fact, after 1936 Kolmogo
roff turned to other branches of mathematics in his research. Alexander published a few 
more papers on cohomology after the 1936 paper just mentioned; but most of them treated 
cohomology in terms of rather abstract concepts, and apparently had httle influence on his 
contemporaries. 

This gap in the Hterature was quickly filled by E. Cech and H. Whitney. Cech was the 
first of these two authors to publish on cohomology, with a paper which appeared in the 
Annals of Mathematics in 1936 [16]. He confined his treatment of cohomology to finite 
simplicial complexes. In order to define cup products, he first defines what he called "an 
auxiliary construction", which is an operation assigning to ^-cocycle and a p-simplex a 
(P + ^)-chain; this operation is required to satisfy several conditions. He then proves that 
auxiliary constructions always exist. Using such an auxiliary construction, cup products of 
cocycles are defined. Different auxiliary constructions give rise to different products, but 
the cohomology class of the product is unique, independent of the choice of the particular 
auxiliary construction, and only depends on the cohomology classes of the cocycles one 
started with. One particular auxiliary construction gives rise to the usual formula for cup 
product of cochains based on a choice of a chosen linear order of the vertices. Cech then 
quickly proves the basic properties of cup products of cohomology classes, i.e. bilinearity, 
associativity, and commutativity. 
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In a similar manner Cech uses an auxiliary construction to define the cap product of a 
cycle and a cocycle, and proves that this gives rise to a product of homology classes with 
cohomology classes, which has all the expected properties. This is the first appearance of 
the cap product in the mathematical literature. 

Cech now uses this cap product to prove the Poincare duahty theorem for oriented, tri
angulated, closed combinatorial manifolds. The Poincare duality isomorphism is defined 
by means of the cap product with the fundamental top-dimensional homology class of the 
manifold. The proof, which operates in one fixed triangulation of the manifold, is rather 
lengthy. Finally Cech proves that in an orientable manifold of the type he is considering, 
the Poincare duality isomorphism takes the cup product of cohomology classes to the in
tersection product of homology classes. 

This paper of Cech has a somewhat different character from the publications of Kol-
mogoroff and Alexander which we have mentioned previously (except for Alexander [6]). 
The definitions are precise, and the theorems are given complete proofs. Although the dis
cussion is limited to simplicial complexes, it must have been much more accessible to 
topologists of the 1930's. The main thing that is missing is a discussion of the homomor-
phism on cohomology groups induced by a continuous map. Also, there is no motivation 
for the definitions that Cech makes. 

Whitney's pubHcation followed rather quickly after Cech's. An outhne of his results 
appeared in Vol. 23 of the Proceedings of the National Academy of Sciences in 1937 [71] 
and the complete paper was published in the Annals of Mathematics in 1938 [74]. Whitney 
covered all the ground which had been covered by Cech, but he had several additional 
results. 

Whitney worked with cell complexes which are more general than simplicial complexes. 
What he called "a complex admitting a product theory" is essentially a finite cell complex 
such that each closed cell has the homology groups of a point. For such a complex, he 
shows how to define the cup product of two cochains, and the cap product of a chain and 
a cochain. These products are required to satisfy several conditions. They always exist for 
such complexes, but they are not unique. However, the products obtained on passage to 
homology and cohomology classes are unique. The proofs of existence and uniqueness are 
somewhat involved. 

Whitney was apparently the first to explicitly define the homomorphism induced on 
cohomology groups by a continuous map, and to explicitly state how the cup and cap 
products behave under such homomorphism. He also proved that the products defined in 
the homology and cohomology of a cell complex are actually topological invariants of the 
underlying space of the complex. Finally, he gave the formulas for cup and cap products in 
a product space in terms of the cup and cap products in the factors. 

To summarize, this paper of Whitney is even more comprehensive than the preceding 
paper of Cech. The definitions are clear and precise, and the proofs are completely given. 
It is surprisingly modern in tone, compared to all the earlier papers on cohomology. Ap
parently Whitney introduced the modern terms "coboundary", "cocycle", "cohomology", 
"cup product" and "cap product". Since he was dealing only with finite complexes, he 
identified chains and cochains; in fact, the term "cochain" never appears in this paper. 

The main difficulty with this paper is that the proof of existence and uniqueness of 
products in a cell complex is unmotivated. It is difficult to guess how Whitney found his 
proofs. 
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This question of a satisfactory motivation for the definition of cup and cap products 
was finally settled in Lefschetz's 1942 Colloquium Volume [38]. The reader is referred to 
pp. 38-41 of an article by Steenrod [58] for an excellent description of Lefschetz's ideas 
on this subject using the diagonal map d'.X -^ X x X of any space X into the product 
space X X X. This idea of Lefschetz has since been used in several of the most influential 
textbooks on algebraic topology to introduce the reader to cup and cap products. It should 
be pointed out that De Rham used the diagonal map in the case where X is a differential 
manifold for a somewhat similar purpose in 1932; see [18]. 

4. Early applications of cohomology theory 

The papers we have discussed put cohomology groups and cup products on a firm foun
dation. Undoubtedly many contemporary topologists were impressed, but before they put 
forth the effort to learn this new theory, they wanted to be convinced that it was good for 
something. In other words, they would have liked to see evidence that some problems could 
be solved more easily with cohomology theory that with homology theory. Fortunately, ex
amples of such problems were soon forthcoming. We will consider some of these. 

4.1. The classification of maps of an n-dimensional complex into an n-sphere 

In 1932, H. Hopf published a beautiful paper discussing the homotopy classification of 
continuous maps of an ^-dimensional complex K into an w-sphere S^ [28]. The statements 
of the theorems in this paper were in terms of the homomorphism induced by a given map 
f '.K -^ S^ on the ^-dimensional homology groups; in general, it is necessary to use 
many different coefficient groups for these homology groups. In 1937 Whitney gave a new 
treatment of this homotopy classification problem using cohomology instead of homology 
(see [73]). The final result is very simple to state: The homotopy classes of maps f : K ^^ 
S", (where K is an n-dimensional complex) are in 1-1 correspondence with the elements 
of the integral cohomology group H"(K). The correspondence is established by assigning 
to each such map / the element f*(dn), where dn is a generator of the infinite cychc 
cohomology group H'\S^). 

To see why Whitney's version of this theorem is superior, recall that if ^ is a finite 
n-dimensional complex, the integral cohomology group H^(K) is isomorphic to the direct 
sum of the integral homology group Hn(K) (which is a free abelian group) and the torsion 
sub-group of Hn-\{K). The only way the torsion subgroup of Hn-\{K) can come into 
play in the homomorphism /* : //„ (5") -^ Hn (K) is to use different coefficient groups for 
homology. Not only is the precise statement of the theorem simpler using cohomology, but 
Whitney's proof is shorter and simpler than that of Hopf. 

4.2. The theory of obstructions to extensions and homotopies of continuous maps 

The first more or less systematic exposition of this theory was by Eilenberg [22]. However, 
the basic idea was used in papers of Whitney, Pontrjagin, and perhaps others about this 
time, without ever calling the cocycles they defined "obstructions". It is difficult to imagine 
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anybody trying to fit the ideas involved into homology theory; it is clearly a cohomological 
theory. 

4.3. Characteristic classes of sphere bundles and more general fibre bundles 

At the 1935 Conference in Moscow, Hopf lectured on the work of his student, E. Stiefel. 
Stiefel's paper appeared the next year [61]. In modern language, Stiefel defined certain 
homology classes in a differentiable manifold which are the Poincare duals of the Stiefel-
Whitney characteristic classes of the tangent bundle. His method was to construct repre
sentative cycles for these homology classes by a very geometric process. 

Whitney gave a talk at the Moscow conference entitled "Sphere spaces" (sphere spaces 
are now called "sphere bundles"), see H. Whitney [70]. These two talks, and the corre
sponding papers, marked the start of work on the general subject of fibre bundles. The 
most important invariants of fibre bundles are usually various characteristic classes, which 
are always cohomology classes. 

4.4. Pontrjagin 's classification theorem for mappings of a 3-dimensional 
complex K into a 2-sphere 

In 1941 in the dark days of World War II, L. Pontrjagin pubUshed a paper giving the ho-
motopy classification for continuous maps of a 3-dimensional complex into a 2-sphere 
(see [43]). He had previously announced the results of this paper in a brief note with
out any proofs (see [42]). (Unfortunately, this 1938 note contains an erroneous statement 
about the homotopy classification of maps of an {n + l)-complex into an n-sphere for the 
case n > 2.) The statement of Pontrjagin's classification theorem is in terms of cohomol
ogy, and requires the use of cup products; there is no way to avoid these cup products. 

In spite of these examples of the possible advantages of cohomology over homology 
in certain situations, some topologists were hesitant to use the new cohomology theory. 
Probably the main reason was the difficulty of relating cohomology classes to one's geo
metric intuition. By contrast, most algebraic topologists felt that they had a good geometric 
intuition about cycles, homologous cycles, etc. 

5. Cohomology theory for general spaces 

The papers we have discussed so far developed cohomology theory and cup products for fi
nite simpUcial complexes and a more general type of finite cell complexes. Also, Alexander 
and Kolmogoroff independently introduced a cohomology theory for more general spaces 
in which the p-cochains were skew-symmetric functions of p -f 1 points of the space with 
values in the coefficient group. 

It would seem that it would not have been difficult to "dualize" the definition of Cech 
homology groups for compact spaces, and thus define Cech cohomology groups. Probably 
the first person to do this in a pubhshed paper was Steenrod in his thesis [51]. The exact 
timing here is rather interesting. Steenrod published a preliminary announcement of the 
results of his thesis in 1935 in the Proceedings of the National Academy of Sciences [50]. 
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This was the same volume of the Proceedings in which Alexander's first two short notes on 
cohomology appeared [4, 5], but Steenrod's paper was submitted before those of Alexan
der, and appeared earlier in that volume of the Proceedings. Presumably Steenrod was 
not aware of the contents of Alexander's two short notes when he submitted his paper. In 
any case, there is no hint of cohomology in Steenrod's preliminary announcement. On the 
other hand, when the thesis was actually pubUshed a year later in the American Journal of 
Mathematics, Steenrod was well aware of Alexander's two short notes; he explicitly refers 
to [4] in his bibhography, and he discusses the Cech cohomology theory of a compact 
space (although he called it the "dual homology theory"). In the introduction to his thesis, 
he stresses the future importance of cohomology theory. 

Cech cohomology theory based on infinite coverings of a non-compact space was in
troduced by C.H. Dowker. He published a brief announcement of his results in 1937 in 
the Proceedings of the National Academy of Sciences [20]. Unfortunately, he did not get 
around to publishing the details of his work until a decade later (see [21]). In these papers, 
Dowker extended the Hopf classification theorem mentioned previously to a theorem giv
ing a homotopy classification of maps of a non-compact n-dimensional topological space 
into an n-sphere. 

Singular cohomology theory did not arrive on the scene until 1944 (see Eilenberg [23]). 
Eilenberg described the difficulties with the earlier singular homology theory as follows in 
the introduction to his paper: 

"The best treatment of the singular homology theory so far has been given by Lefschetz. He 
defines a singular simplex in a space X as a pair (s,T), where s is an oriented simplex and 
T :s -> X is a continuous mapping. If B :s -> 5"Ms a barycentric map of s onto another 
oriented simplex of the same dimension as 5, then 

is,T)^±{s\TB-^), (*) 

where the sign is -F or — according as B preserves or reverses the orientation. Following 
a suitable definifion of boundary and incidence numbers, Lefschetz arrives at what he calls 
the "total singular complex" S{X) of the space X. In this closure finite complex homologies, 
cohomologies, and products can be constructed. 
The main difficulty with using the complex S(X) is that it is not a bona fide abstract complex. 
Unfortunately, relation (*) causes elements of order 2 to appear in the group of chains, while 
in an abstract complex the group of chains ought to be free. There is the possibility of leaving 
out the elements of order 2 as degenerate, but this would make the use of the complex S(X) 
cumbersome." 

Eilenberg's solution of the problem posed by these difficulties is now well-known 
and standard: he omitted the equivalence relation (*) in the above quotation. A singular 
n-simplex is now a continuous map T :s —> X, where the proto-type standard n-simplex s 
is fixed once for all. There is no question of comparing this singular n-simplex with a map 
of another n-simplex s^ into X. This change leads to a much larger total singular complex 
S(X), but now there are no elements of order two in the chain groups; they are free abelian 
groups. 

Parallel to this new definition of the singular chain complex of a space, Eilenberg intro
duced a new chain complex for a simplicial polyhedron. This new chain complex is now 
usually called the "ordered chain complex" of the given polyhedron, in contrast to what 
was then the more usual chain complex, which is now called the "oriented chain complex" 
of the given polyhedron. Eilenberg gives no clue as to his thinking, but these two new chain 
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complexes are closely related. It is difficult to imagine somebody thinking of one of them 
without thinking of the other. 

The oriented chain complex of a simplicial polyhedron had been more or less standard 
(although not under that name) since the earliest days of algebraic topology. It has great 
appeal to one's geometric intuition, and is closely connected with the integration of differ
ential forms. By contrast, the ordered chain complex of a simphcial polyhedron has little 
geometric appeal, and it is surprising that it gives the correct homology groups. How did 
Eilenberg hit on this new idea? He gives no motivation whatsoever in his paper. In any 
case, it greatly simphfied the exposition of homology and cohomology theory for succeed
ing generations of mathematicians. 

Once Eilenberg had this new singular chain complex, it was a routine matter to define 
singular cohomology groups. These new chain complexes also simphfied the introduction 
of cup products, because it was no longer necessary to choose an ordering of the vertices. 
The vertices of a simplex were already ordered. 

The type of cohomology theory that Alexander and Kolmogoroff had proposed (for com
pact metric and locally compact spaces respectively) was modified and given a clear and 
complete exposition by the late Edwin H. Spanier in his thesis [49]. Spanier considers 
cohomology groups for an arbitrary topological space X with coefficients in an arbitrary 
abeUan group G. A p-cochain is a function f(xo,xi,... ,Xp) of (p H- 1) points of X 
with values in the group G. Unlike Alexander and Kolmogoroff, Spanier allows arbitrary 
functions, they need not be skew-symmetric. This corresponds to Eilenberg's innovation in 
the definition of singular homology and cohomology: one uses ordered p-simplexes rather 
than oriented /?-simplexes. One has to factor out by the subgroup of p-cochains which are 
locally zero, as did Alexander and Kolmogoroff. 

In the introduction to his paper, Spanier acknowledges that his definition followed a 
suggestion of A.D. Wallace. The exact nature of Wallace's suggestion is not made clear, 
but one presumes that it was to drop the condition of skew-symmetry for the cochains. 

Spanier gives a comprehensive treatment of the resulting cohomology theory. He proves 
that this theory satisfies the Eilenberg-Steenrod axioms for a cohomology theory, and that 
it is "continuous" under passage to inverse limits for compact Hausdorff spaces; as a conse
quence, this cohomology theory agrees with the Cech type cohomology theory on compact 
Hausdorff spaces. Finally, he proves directly that on locally finite simplicial complexes, 
his cohomology theory is the same as the simphcial theory based on infinite cochains. In 
an appendix, cup products are defined. Recall that Alexander in [6] had to linearly or
der all the points of a topological space in order to define the cup product of two of his 
skew-symmetric cochains. That is unnecessary with the definitions Spanier uses. 

This cohomology theory that Spanier described in his thesis is now generally known 
as the "Alexander-Spanier Theory" (at least in America). Perhaps this is due to the fact 
that Spanier makes no reference to the work of Kolmogoroff in his thesis. In view of the 
historical record, it is clear that it should be called the 'Alexander-Kolmogoroff-Spanier 
Theory". 

In 1948, the cohomology groups defined by Spanier and the general Cech type coho
mology groups (using infinite open coverings) were shown to be isomorphic for a rather 
general class of topological spaces (see Hurewicz, Dugundji and Dowker [30]). 

As we mentioned earlier, the cohomology groups Kolmogoroff defined for a general 
locally compact Hausdorff space were based on cochains with compact support. Kolmogo
roff did not consider any other kind of cohomology groups for general spaces. On the other 
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hand, the cohomology groups for general spaces defined by Eilenberg, Dowker and Spanier 
were definitely not based on cochains with compact support. Apparently the first person to 
simultaneously consider cohomology of two types - that based on cochains with compact 
support and that based on cochains with arbitrary support - was H. Cartan in lectures he 
gave at Harvard University in the spring of 1948. Mimeographed notes of these lectures 
and of lectures he gave at the Ecole Normale Superieur in Paris were widely circulated 
and very influential (see [12, 13]). In these notes, he explicitly introduced the two types of 
singular cohomology and the two types of Alexander-Kolmogoroff-Spanier cohomology. 
Cartan acknowledged receiving inspiration from two later papers by J.W. Alexander [7, 8] 
and from the work of J. Leray. This is the only case the author knows of reference being 
made to these later papers of Alexander concerned with what he called gratings. 

6. The Pontrjagin squaring operation 

In 1942 Pontrjagin published a brief note concerned with the problem of determining the 
third homotopy group of a simply connected space in terms of homology and cohomology 
invariants of the space (see [44]). Because World War II was going on at this time, this 
paper did not receive the attention it deserved until several years later. It was noteworthy 
because it introduced the first cohomology operation other than cup products, namely, the 
Pontrjagin squaring operation. 

Before Pontrjagin got around to writing up a detailed account [45] of his results, the 
subject was taken up by J.H.C. Whitehead (see [68, 69]). Since the Pontrjagin squaring 
operation is not very well known, we will give a more detailed exposition of Pontrjagin's 
results, following the papers of J.H.C. Whitehead. 

Pontrjagin's first step in defining his squaring operation was to define a new product 
of cochains, which was later called the cup-1 product. Let /iT be a simplicial complex; as 
in the Cech-Whitney definition of cup products, we must choose a linear ordering of the 
vertices of A'. If / is an integral /7-cochain and g is an integral ^-cochain, / Ui g is an 
integral (/? + 1 — l)-cochain defined as follows: 

( / U i g)(i;o, . . . , U p + ^ - i ) 

p-\ 

where the vertices uo, f i , . . . must be written in the chosen order. This product satisfies the 
following coboundary formula: 

Hf Ui g) = ( - 1 ) ^ + ^ - ^ / Ug- (-l)^^g u / ) + 5 / Ui ^ + ( - 1 ) ^ / Ui Sg. 

.Now define 

Vif) - / U / + / Ui V. 
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It can now be proved that if / is a cocycle modulo 2r, then V{f) is a cocycle modulo 4r, 
for any positive integer r. Moreover, the cohomology class of V{f) only depends on the 
cohomology class of / . Thus V defines a mapping 

V: HP{K\ Z2r) -> H^P(K; Z^r). 

which J.H.C. Whitehead called the Pontrjagin square. It is not a homomorphism; instead, 
it satisfies the following two conditions: 

V{u + u) = V{u) + V{v) + w U u, 

V{~u) = V(u). 

For this reason, it is called a quadratic map. It is a natural cohomology operation, in the 
sense that it commutes with the homomorphisms induced by continuous maps. Later on it 
was proved that if the degree p is odd, P is a composition of other cohomology operations. 
This is not true if p is even. 

In his 1942 note Pontrjagin gave some motivation for his squaring operation. In more 
modern terms, such a motivation can be described as follows (for the sake of simplicity, we 
will consider only the case r = 1 in the above formulas. The case where r > 1 is entirely 
similar). 

Consider the short exact sequence of coefficient groups: 

0 ^ Z2 ^ Z4 -^ Z2 -> 0. 

This gives rise to a corresponding long exact sequence of cohomology groups: 

> H"(K;Z2)-^ H''(K;Z4)-^ H'\K \ Z2)-^ /f"+i(/^; Z2). 

The so-called "Bockstein homomorphism" P satisfies the following formula vis-a-vis 
mod 2 cup products: 

Using commutativity of cup products and the fact that we are computing mod 2, it follows 

that 

y^(wUw) = 0. 

Thus by exactness, there exists a mod 4 cohomology class x such that 

p{x) = uUu. 

The Pontrjagin square V{u) is a way of making a "natural" choice for the cohomology 
class X. As a matter of fact, this is one of the basic properties of the Pontrjagin square: 
p[Vu] = uU u. 
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We will now try to explain the connection of the Pontrjagin squaring operation with the 
3-dimensional homotopy group. Let 

hn:nn{K)-> Hn(K), n = 1 ,2 ,3 , . . . , 

denote the Hurewicz homomorphism. For a simply connected space A', /z2 is an isomor
phism, and it can be proved that /13 : 7t3(K) -^ H^iK) is an epimorphism. Thus the main 
problem is to determine the kernel of /13. One way to construct elements in the kernel of 
/13 is as follows. Let rj e TTBC^ )̂ denote the homotopy class of the Hopf map S^ -^ S^\ it 
is a generator of the infinite cychc group 713(5^). Given any element a e 7T2(K), we can 
compose it with r] to form the element a or] £ n^iK)', obviously a orj belongs to the ker
nel of the homomorphism h^. J.H.C. Whitehead's results show that we can obtain a set of 
generators of the kernel of /z3 by this process; but actually they prove a much more precise 
result than this. The situation is complicated by the fact that the operation a -^ a o rj is 3. 
mapping 7T2(K) -> n3(K) which is not a homomorphism; instead we have the formula 

(a -\- P) o T] =: a o rj + P o r] -j- [a, P] 

for any elements a, p e 7T2(K) (the square brackets denote the Whitehead product). We 
also have 

{—a) o T] = a o T]. 

Thus this mapping TC2(K) -> 713(AT) is also a quadratic mapping. 
The exact sequence mentioned in the title of [69] is a natural long exact sequence defined 

for any simply connected space X which has the Hurewicz homomorphisms hn : TZn (X) -^ 
Hn {X) as every third homomorphism in the sequence. Whitehead defined a new sequence 
of groups FniX), n > 0, and wrote his exact sequence as follows: 

• • • -> Hn+liX) H r„{X) - ^ nniX) ^ HniX) ^ . . • . 

Unfortunately, the new groups FniX) are very difficult to determine in general. However, 
since X is assumed to be simply connected, 

r2(X) = ri(X) = o 

and J.H.C. Whitehead showed that the structure of F^iX) may be described as follows. 
If A and B are abelian groups (written additively), a function q : A -> JB is called a 

quadratic map if it satisfies the following two conditions: 
(1) The map (a, b) -> q(a -i-b) — q{a) — q(b) is a bilinear map A x A ^^ B. 
(2) q(—a) = q(a) for all a e A. 

We had two naturally occurring examples of quadratic maps in the preceding paragraphs. 
For any abehan group A, J.H.C. Whitehead pointed out that one can define another abeUan 
group F(A) and a quadratic map q : A ^^ /"(A) which is a universal object for quadratic 
maps from A to any other abelian group. To be precise for any abelian group B and any 
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quadratic map q' \ A -> B, there exists a unique homomorphism (p: r(A) 
the following diagram is commutative: 

B such that 

r(A) 

As usual with universal mapping problems, r(A) is unique up to isomorphism. If A is 
cyclic of order m, then r{A) is also cycUc, and is of order m or 2m according as m is 
odd or even. If A is infinite cychc, then so is r(A). Finally we have the following rule for 
direct sums: 

r(A eB) = r(A) © r(B) e (A 0 B). 

Thus we can easily determine the structure of r{A) for any finitely generated abelian 
group A. 

In view of the above described quadratic map 

r]:7T2(X)-^7t3(X), 

there is a natural homomorphism cp : r(n2(X)) -^ 7T2,(X) such that the following diagram 
is commutative: 

r(n2(X)) 

TTliX) 

nsiX) 

Whitehead showed that for simply connected spaces X, the group F^iX) is naturally iso
morphic to r(n2(X)), and the isomorphism makes the following diagram conmiutative: 

nm ri7t2ix)) 

TTSW 
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In other words, we can substitute r{7Z2(X)) for TsCX) and the homomorphism cp for 3̂ 
in J.H.C. Whitehead's exact sequence. The result is the following: 

. . • ̂  H4(X) -^ r(jt2(X)) —^ 7T3iX) —> H3(X) -> 0. 

Thus the principal remaining problem is to determine the homomorphism Z?4. J.H.C. White
head showed that this homomorphism is determined by the Pontrjagin squaring operators 
in the space X. In order to accomplish this, Whitehead showed that for any abelian group A, 
the definition of the Pontrjagin square can be extended so it is a quadratic map 

P : / / " ( X ; A) -> H^''{X; r{A)). 

(Pontrjagin originally defined it for the case where A is a cyclic group of even order.) Then 
the homomorphism Z?4 is determined by the following sequence of homomorphisms (we 
have abbreviated HiiX) and niiX) to H2 and 1x2, respectively): 

Hom[//2,712] ^ H'^{X\ 1x2) -^ H\X\ r(7t2)) -> Hom[//4(^), r(7r2)]. 

Recall that the Hurewicz homomorphism /z2 :712 -> H2 is an isomorphism. J.H.C. White
head's result is that the element /i^^ of the left most group in the above sequence is sent to 
the element b^. in the right most group in the sequence. Thus the homomorphism Z?4 is de
termined by the Pontrjagin squaring operation V. It follows that the homotopy group n^ {X) 
is also determined up to a group extension by V. Actually, Whitehead also showed that if 
X is a finite, simply connected polyhedron, the group extension can also be determined. 

Whitehead gave the following interesting example of two simply connected 4-dim-
ensional CW-complexes which have isomorphic cohomology rings (with any coefficients) 
but are not of the same homotopy type. Let X'RP^ denote the suspension of the real projec
tive plane and ^0 = i^MP^ v S"^. Using the results of J.H.C. Whitehead quoted above, it is 
readily seen that 7r3(X'IRP^) is a cyclic group of order 4; let K2 denote the space obtained 
by adjoining a 4-cell to iJRP^ by a map representing twice a generator of 7r3(X'RP'̂ ). 
Then KQ and K2 have isomorphic homology and cohomology groups, and all cup prod
ucts of positive degree cohomology classes are zero, with any coefficients. But they can be 
distinguished by the Pontrjagin square 

V: H^(Ki; Z2) -> //^(/^/; Z4), / = 0, 2. 

For ^0, this Pontrjagin square is zero, but it is non-zero for K2. Also, the third homotopy 
groups are different. 

After this initial work by Pontrjagin and J.H.C. Whitehead, the Pontrjagin square found 
various other applications. The most spectacular of these was the proof by W.T. Wu that 
the Pontrjagin classes reduced mod 4 of a differentiable manifold are invariants of the 
homotopy type of the manifold (see [79]). Another application was a simpHfied proof by 
the present author of the following theorem of M. Mahowald: If a closed, connected, non-
orientable ^-manifold (n even) is embedded differentially in M?^\ the reduction mod 4 of 
the twisted Euler class of the normal bundle is the same for all embeddings (see [39]). In 
general, the twisted Euler class of the normal bundle of an embedding of a non-orientable 
manifold varies with the embedding. For n ^ 4, this theorem is best possible. 
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7. Steenrod squares and reduced pth-powers 

After the Pontrjagin square, the next natural cohomology operations to be discovered were 
the Steenrod squares. Steenrod's original paper on this subject was published in 1947 
(see [52]). In this paper, Steenrod was concerned with the problem of the homotopy clas
sification of mappings of an {n + 1)-dimensional complex into an ^-dimensional sphere. 
As we have just seen, Pontrjagin introduced his squaring operation to solve the case n = 2 
of this problem. As Steenrod mentions in the introduction of his paper, Pontrjagin in 1938 
and H. Freudenthal in 1939 had announced (without proof) results on this homotopy clas
sification problem which were incorrect. 

Steenrod defined his new cohomology operations by means of rather ad hoc cochain for
mulas. Let ^ be a simplicial complex. For any p-dimensional cochain u and <7-dimensional 
cochain i; on AT he defined a (/? 4- ̂  — /)-dimensional cochain w U/ D, called the cup-/ prod
uct of u and V. For / = 0, this is just the usual cup product of Cech and Whitney; for / = 1, 
it is the operation on cochains defined by Pontrjagin. In general, the cup-/ product is de
fined by a formula similar to that for the cup-1 product, but for / > 1 it is more complicated. 
Steenrod proved that this product satisfied the following coboundary formula: 

8{u U/ v) = {-\)P'^^-'u U/_i i; + (-l)/^^+^+^u U/_i u + 8u U/ v 

+ (-l)^wU/(5u. 

Using this formula, Steenrod was able to prove that if w is a j9-dimensional cocycle mod 2, 
then u U/ w is a {2p — /)-dimensional cocycle mod 2 whose cohomology class only depends 
on the cohomology class of u. Thus there is defined an operation 

3qi:HP{K\Z2)^ H^P-\K\Z2) 

which is a homomorphism. This operation commutes with the homomorphism induced by 
a continuous map of one space into another, and is a new invariant of topological spaces. 
Later on it was found more convenient to denote these operations by the notation 

Sq"": HP{K\ Z2) -> HP'^^'iK; Z2), 

i.e. the superscript "n" denotes the amount by which it increases the degree. 
Steenrod used this new cohomology operation to give his solution of the homotopy clas

sification problem for maps of an (n + 1)-dimensional complex into an n-sphere. Other 
topologists quickly saw that this new cohomology operation offered interesting possibili
ties for research and jumped on the band wagon. Particularly striking were the results an
nounced in 1950 in Vol. 230 of the Comptes Rendus de VAcademie des Sciences de Paris 
by Rene Thom and the Chinese mathematician Wu Wen Tsun (then visiting in France; 
see [62, 63, 76, 77]). In these notes, Wu gave his well-known formulas for the result of 
applying a Steenrod squaring operation to a Stiefel-Whitney class of a sphere bundle and 
his formulas for computing the Stiefel-Whitney classes of a closed manifold in terms of 
the Steenrod operations on the mod 2 cohomology of the manifold. Thom introduced the 
Thom space of a sphere bundle, and the Thom class of such a bundle; then he showed that 
the Stiefel-Whitney classes of the bundle are determined by applying Steenrod squares to 
the Thom class. These two authors published complete proofs of their announced results a 
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few years later (see [64, 78]). Additional striking results were announced by J.P. Serre in 
1952 [47]. In the late 1940's and the early 1950's, one of the most pressing problems in al
gebraic topology was to determine the homology and cohomology of Eilenberg-MacLane 
spaces. Serre completely solved this problem in 1952 for cohomology with mod 2 coef
ficients; his methods relied heavily on the properties of the Steenrod squaring operations 
(of course they also depended on the clever use of spectral sequences of fiber spaces). 
Complete proofs were pubUshed in [48]. In this paper, Serre also gave for the first time 
the precise, general definition of a (first order, natural) cohomology operation with arbi
trary coefficient groups. In addition, he pointed out that such cohomology operations are 
in a natural, one-to-one correspondence with cohomology classes in Eilenberg-MacLane 
spaces. 

Soon after Steenrod described his new squaring operations, other mathematicians proved 
some of their basic properties. One of the first examples of this was the discovery by 
H. Cartan of his well-known formula 

Sq"(xyjy) = Y,{Sq'x)^{Sqh), 

where the sum is over all pairs (/, j) such that i -^ j = n (see [14]). Two years later Jose 
Adem, Steenrod's Mexican Ph.D. student, published an announcement of the relations on 
iterated Steenrod squares which are now referred to as "the Adem relations" (see [1]). 

As explained above, Steenrod defined his squaring operations by means of the cup-/ 
products, / = 0, 1, 2 , . . . . At the time, it seemed possible that one should be able to derive 
additional invariants from the cup-/ products in addition to the Steenrod squares. Unfor
tunately, not much ever came of this line of research. Another observation was that the 
Steenrod squares were associated with mod 2 cohomology; was it possible that there ex
isted "cubing" operations associated with mod 3 cohomology, fifth power operations asso
ciated with mod 5 cohomology, etc.? This line of research was pursued by Steenrod himself 
soon after the discovery of the squaring operations. Steenrod described his trials and er
rors which eventually led to success at the end of a lecture on the work of Lefschetz, [58]. 
Recall that Lefschetz clarified and provided motivation for the cochain formulas for cup 
products of Alexander, Kolmogoroff, Cech and Whitney by considering the diagonal map 
K -^ K X K for any complex K (see Section 3 above). After fruitless experimenting with 
various formulas for possible cup-/ products, Steenrod reahzed that he must try to gener
alize this idea of Lefschetz, and apply it to this new problem. To generalize from squaring 
operations to nth power operations, it is necessary to replace Ĵ  x ^ by the product K^ of 
n factors K. In the case of the squaring operation, it is necessary to consider the action of a 
cycHc group of order two on KxK, where the action is by interchanging the two factors. In 
the general case, one must consider the action of the symmetric group of degree n on K^, 
operating by permuting the factors. In addition, it is necessary to bring into the picture an 
acycHc complex on which the symmetric group of degree n operates freely. For details, 
we refer the reader to the lecture notes by Steenrod and Epstein [59]. One can follow the 
evolution of Steenrod's ideas by perusing the series of papers he published, starting with 
a very brief announcement at the International Congress of Mathematicians in Cambridge, 
Mass. in 1950, and culminating in the above mentioned lecture notes by Steenrod and Ep
stein, pubhshed in 1962. This series of research papers is noteworthy in that it was almost 
entirely a solo effort by Steenrod himself. The only case where he had a collaborator was 
one paper in 1957 that he wrote jointly with his former student, Emery Thomas. 
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In May, 1951 Steenrod gave a series of lectures at the College de France in Paris on 
his new cohomology operations. This served to pubhcize them to the mathematical com
munity in France, with the result that other mathematicians quickly found applications of 
these operations. Perhaps the most notable example of these applications was the work of 
A. Borel and J.P. Serre; their results were announced in 1951 [9] and complete details were 
pubHshed in 1953 [10]. These authors showed how to compute the reduced pih power 
operations in the mod p cohomology of any of the classical Lie groups or their classify
ing spaces. Then they made various applications of these calculations. For example, they 
proved that for n ^ 8, the ^-sphere does not admit an almost complex structure, no mat
ter what the differentiable structure. Also, they determined the /7-primary components of 
certain homotopy groups of the classical groups using these calculations. 

The relations satisfied by the iterated reduced power operations were soon determined by 
Jose Adem; his results were announced in 1953 [2] and he published complete proofs in [3]. 
These relations were also determined by H. Cartan, using a different method; see [15]. 

8. The generalized Pontrjagin powers 

Just as the Steenrod squares could be generaUzed to pth power operations for every odd 
prime p, so it seemed reasonable to hope that the Pontrjagin squaring operation could 
be generalized to some kind of p\h power operation for primes p > 2. This hope was 
reaUzed by Emery Thomas, a student of Steenrod, in his 1955 Ph.D. thesis. He pubhshed 
an announcement of his results in 1956 (see [65]) and the complete details in 1957, [66]. 
In their simplest form, these operations are functions defined in the cohomology of any 
CW-complex K for any odd prime p, as follows: 

Vp : H^'^iK; Zpm) -^ H^P\K^ Z^iJ. 

This function is not a homomorphism; as the name implies, it behaves like raising to the /7th 
power. In order to explain its algebraic properties more concisely, Emery Thomas found 
it convenient to recast the entire theory of these operations in terms of rings with divided 
powers. 

Unlike the case of the Pontrjagin squares and the Steenrod operations, no applications 
of these newest cohomology operations were forthcoming. One can only speculate as to 
the reason for this. Was it something basic in the nature of the universe of mathematics and 
its applications? Or was it because very few topologists ever bothered to become familiar 
with Pontrjagin j^th powers? 

9. Are there any more cohomology operations? 

At this stage in the history of algebraic topology (about 1957) topologists had at hand a 
rather extensive list of cohomology operations: cup products, Pontrjagin squares, Steen
rod squares and reduced p\h powers, and Pontrjagin pth powers. In addition, there were a 
couple of more simple minded operations which had been known for many years: namely, 
the operation determined by a homomorphism of coefficient groups, and the Bockstein 
coboundary operator determined by a short exact sequence of coefficient groups. From 
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this list of rather basic operations, one can construct new ones by iterating the known 
ones, adding two or more operations, etc. The question naturally arises, does one obtain 
all natural, first order cohomology operations in this way? The answer is affirmative at 
least in the case of finitely generated coefficient groups. This was proved by John Moore 
(unpubhshed) and by Albrecht Dold [19]. The proof ultimately depends on the correspon
dence pointed out by J.-P. Serre between cohomology operations and cohomology classes 
in Eilenberg-Mac Lane spaces (see Section 7 above). 

10. Conclusion 

This result of J.C. Moore and A. Dold brought to a close a chapter in the history of alge
braic topology. Between the years 1935 and 1959 cohomology theory was first defined, the 
main details of the various types of cohomology theory were worked out, cup products, 
Pontrjagin powers and Steenrod reduced powers were developed, and it was proved that 
there are no more cohomology operations left to be discovered. All this was accomplished 
in this rather short time span in spite of the world-wide depression of the 1930's and the 
extreme destruction and disruption wrought by World War II. 

Of course there has been interesting research on cohomology theory since 1959. New 
and better methods of exposition of various aspects of the theory have been published. 
Numerous applications of cohomology to homotopy theory and other parts of mathematics 
have been described. Although there are no more primary cohomology operations to be 
discovered, the field of second order and higher order cohomology operations is still open 
(although it does not seem to be a fertile field for research). 

One of the most interesting observations about the history of cohomology operations is 
that often the first definition of an operation was by ad hoc, unmotivated formulas; they 
often seemed like magic formulas, because they worked. This was true in the case of cup 
products, the Pontrjagin square, and the Steenrod squares. It was only later that a more 
conceptual, well-motivated method of definition for these operations was developed. Is this 
something which is common in the history of mathematics, or is the history of cohomology 
operations rather unusual in this respect? 
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Fibrations today form one of the basic notions in topology and are considered as a rather 
simple structure, easy to define and to think about, even if one can read, in a paper by 
Norman E. Steenrod [55]: The concept of fibre bundle is somewhat complicated. 

There are essentially two points of view in this topic, both starting from a continuous 
map p: E -^ B where p is called the projection, E the total space, B the base and, for 
any x e B, p~^ (x) the fibre over x. 

In the first one, finding its origin in differential geometry one requires that p be a locally 
trivial map. More precisely, these are given an open covering U = (Ui)iei of a space B, 
a space F called the fibre, and homeomorphisms cpt: p~^(Ui) -^ Uj x F over Ut. For 
any given x e Ui H Uj, ij e / , the formula gij(x)(y) = cpj o (pj~ (x,y), y e F, 
defines an automorphism gij(x) of F satisfying the relations gikM = gjk(x) o gij(x) for 
X e UiD Uj n Uk, the relation of a 1-cocycle. It is generally required that the values of the 
gij{x) all belong to the same topological transformation group G of F, and that the maps 
gij : Ui CMJj^^G be continuous. In that case the collection (E, p, B, F, G) is called a 
fibre bundle with structure group G. 

The second point of view results from homotopy considerations. Given a commutative 
diagram of topological spaces and continuous maps. 

X X {0} - ^ ^ E 

X X 

(*) 

0, 1] - 7 7 - B 

does there exist a continuous map V : X x [0, 1] ^- E such that /?o V = v and V |X x {0} = 
u? If such a map V always exists for any space X of a given class A' of topological spaces 
and any maps u and v, then p is said to satisfy the covering homotopy property (= CHP) 
for the class A*. With this perspective in mind one would like to define a fibration by 
a property general enough to get many "interesting" fibrations but also allowing an easy 
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proof of the CHP for a large class of spaces. The most natural idea, viz. to call a fibration 
a map such that the CHP holds for any space, came the last (1955). 

It took many years to allow all these notions to emerge, to clarify among the works of 
many geometers and topologists. The common ancestor of both points of view consists in 
the theory of coverings, and almost all authors until 1950 or 1951 will set their hearts on 
verifying that their definitions include coverings. Already in 1922, Oswald Veblen in §36 
of his Analysis Situs constructs the universal covering of a complex as a complex on which 
the fundamental group of the given complex operates, and probably it is possible to find, 
in particular cases, earher constructions of this kind, for example in Hermann Weyl's Die 
Idee der Riemannschen Fldche (1913). 

The first point of view appeared in the early twenties, but did not reach its present state 
before the late forties; the second one came later, in 1940. At that time the second world 
war had begun, making communications between mathematicians almost impossible. As a 
consequence, the same kind of theories, leading to the same theorems, appeared in different 
places almost simultaneously. 

The Brussels colloquium (1950) devoted to fibre bundles, marks the end of this age 
during which this concept was being elaborated, and the beginning of the modern era, when 
it can be studied for itself and through its applications in many branches of mathematics. 

1. First approaches 

One of the first - if not the first - fibrations appeared in the mathematical world on May 
19th, 1879, in a short note by the young Emile Picard, 23 years old at the time, and entitled 
Sur unepwpriete desfonctions entieres [48]. In this brilUant paper, a model of conciseness 
and accuracy, Picard proved that a holomorphic function, defined on C, and with values in 
C with two points removed, is a constant ("little Picard theorem"). Here is his aigument, 
where only the notations and vocabulary have been modernized. Let H be the Poincare 
half-plane. Let A C W be the set of all points of the form gi or gexp2i7r/3, where g 
is running over the modular group PSL(2, Z) acting on H in the usual way. Finally let 
X:H -^ C be the modular function A, = g^/A, some combination of Eisenstein series. 
Then the restricted map induced by X, H — A -^ C — {0, 1} is a covering, and so any 
continuous map / : C -> C — {0, 1} has a lifting / : C —> H, and / is holomorphic if 
/ is. In that case, being holomorphic and bounded, exp / must be a constant (Liouville's 
theorem), and so must be / and / . Half of the paper is devoted to a proof of Liouville's 
theorem. Then for having identified a particular property of the function k - the hfting 
property for some maps - and having used, in order to prove a great theorem, a typical 
argument of a theory that would only appear some 50 years later, I suggest we should 
consider Picard as one of the founder fathers of the fibration concept. 

The other founder father is Elie Cartan. In a long series of papers published between 
1922 and 1925, [2-7], in relation to differential geometry and connections, the author en
gaged himself in computations which may seem a little repetitive today but where one can 
however see how E. Cartan was endeavouring to associate, in a more and more precise 
way a vector, affine or projective space with each point of a manifold, providing a coherent 
system of relations in order to link all these spaces together. It is difficult in front of these 
texts not to see E. Cartan there describing for us, from this already distant past, the fibre 
bundles in the language of the time, since ours did not exist yet. 
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As an example, here is what he wrote in his paper Sur les varietes a connexion affine et 

la theorie de la relativite generalisee [4, §28]: 

Faisons correspondre par la pensee a chaque point m un espace affine contenant ce point et 
soient ei,e2,ei, trois vecteurs formant avec m un systeme de reference pour cet espace. La 
variete sera dite a connexion affine lorsqu'on aura defini, d'ailleurs d'une maniere arbitraire, 
une loi permettant de reperer Vun par rapport a Vautre les espaces affines attaches a deux 
points infiniinent voisins quelconques m etm' de la variete. 

The same idea is found a Uttle further (§29) in a shorter sentence: 

Les lois de la connexion affine definissent en quelque sorte le raccord des espaces affines 
tangents en deux points infiniment voisins. 

In another paper [7] he introduced the ancestor of the structure group of a fibre bundle, 
giving the feeling that he was close to understanding its role in the existence of global 
structures: the future theorems about the reduction of structure groups. How to understand 
differently the following sentence? 

A tout espace a connexion euclidienne on peut attacher un sous groupe du groupe des de-
placements euclidiens qui joue, vis a vis de I 'espace considere, un role analogue a celui du 
groupe de Galois d'une equation algebrique. De mime en effet... 

It is true, however that Cartan was still far away from the modern concept of a fibration, 
and this for many reasons; the main of these being that he always kept a local point of view 
although the future builders of that new object would have from the very beginning the 
ambition to construct it globally, another one is that he never distinguished, or not clearly, 
the local product structure from the extra datum of a connection; both notions are nearly 
always ambiguously intertwined. 

It fell to the next generation to isolate the precise concepts from Elie Cartan's intuitive 
ideas. 

We must note, however, that at the same time, in October 1924, Harold Hotelling sub
mitted a paper [38] where he constructed 3-dimensional manifolds as circle-bundles on a 
2-dimensional manifold. His work came from studies on dynamical systems and results 
by Birkhoff where these manifolds appeared naturally. Using Heegard's diagrams the au
thor determined their fundamental group. That approach without explicit topology, very 
geometric and elegant used beyond doubt some explicit bundles but Hotelling never ab
stracted any general idea, and the techniques involved are different. 

2. The elaboration of a new concept 

2.1.1. It is Herbert Seifert who created the term gefaserter Raum (fibre space) in his 
1932 paper Topologie drei-dimensionale gefaserter Railme [52]. That work, still moti
vated by the study of 3-dimensional manifolds, contains a definition of fibre spaces, some
times called Seifert fibrations, through seven axioms, entirely self-contained, and per
fectly stated. Axiom 1 is nothing but the definition of topological spaces (from neighbour
hoods, and satisfying the Hausdorff axiom). The next three are devoted to the definition of 
3-dimensional topological connected manifolds, such that any covering by neighbourhoods 
is reducible to a countable covering. Axioms 5 and 6 provide the manifold with a partition 
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into subspaces, CdMtdfasern (fibres) homeomorphic to a circle. Axiom 7 is the most orig
inal, the newest. It gives a model for neighbourhoods of the fibres. Let B2 x [0, 1] be a 
cylinder in R-̂  where B2 stands for the unit disk of R^ = C, and let two relatively prime 
integers, /x and y, be given. Then, for any x and y belonging to B2, one identifies (x, 0) 
and (y, 1) iff y = X exp(2i7ry//x). Let S^^v be the quotient space. Axiom 7 states that any 
fibre has a neighbourhood homeomorphic to a S^l^y for some (/x, y), through a fibrewise 
homeomorphism sending the given fibre onto the image of the cylinder axis. Seifert next 
provides the Zerlegungsfldche - that is to say the space of fibres - with a topology for 
which it is a 2-manifold and the natural projection from the given space to that manifold is 
continuous. That projection is not in general what we now call a fibration: this occurs iff 
we have /x = y for every fibre. The typical example Seifert gave is the 3-sphere S^ fibred 
by the circles defined by the following equations: 

t \-^ (zi exp2i7r^r,Z2exp2i7rmO, ^ ^ [0, 1], 

where (zi, Z2) € C^ is a point in 5^, i.e. satisfies the relation |zi p + 1̂ 2!̂  = U and where 
m and n are relatively prime integers. The projection onto the space of fibres is a fibration 
iff m = n and in that case it is nothing but the map introduced in 1931 by Heinz Hopf in his 
famous paper Uber die Abbildungen der dreidimensionalen Sphdre aufdie Kugelfldche. 

Seifert's paper is doubly interesting for the history of fibrations. To begin with, it intro
duces, explicitly for the first time, a new structure quite close to the one we are studying 
here, and secondly it provides us with definitions and proofs of great rigour and accuracy, 
where nothing is left in the shadow - that will not always be the case for some papers in 
the years to come! 

2.1.2. Almost at the same time, in 1931, during a lecture at a colloquium in Leipzig, 
William Threlfall - he too was motivated by the study of 3-manifolds - constructed such 
manifolds as the bundle - in our language - of projective fines associated to the tangent 
bundle of a surface. In the corresponding paper [62] he observed in a short footnote that 
these manifolds belong to the framework of Seifert fibrations [52]; below (on p. 95) he 
explained in a long sentence using everyday words what this could mean. 

Though the beginning of the paper reveals some kind of bitterness - here is its first 
sentence: 

Die Topologie ist noch keine klassische Disziplin wie die Funktionentheorie 

it also measures - unintentionally justifying the preceding opinion - the degree of abstrac
tion allowed at that time. Thus he proves carefully some results which are today considered 
as perfectly trivial: we shall meet again this phenomenon later. For example when the sur
face is a torus, Threlfall starts with a definition of the product of two topological spaces 
and refers to Steinitz for a proof that the torus is homeomorphic to 5^ x 5^ He still needs 
a long proof to conclude that the associated 3-manifold is homeomorphic to 5^ x 5^ x S^ 
and that its fundamental group is 

Near the end of the paper, Threlfall indicates that he was told by Hopf that Hotelhng 
had been at work on a matter very close to his own some eight years before [38]. Com
munications were still sporadic, and topologists formed a few isolated islets more than an 
international community. The second world war would soon make the communications 
still more difficult, a reason, as we shall see later, for some misunderstandings. 
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2.1.3. In 1935, Seifert brought another contribution to the theory of fibrations in a paper 
published in 1936 [53], and where he studied differentiable compact submanifolds M" of 
class C^ of R'". He begins by proving - and his proof is the one we still know today - that 
such a manifold has a tubular neighbourhood whose boundary - he called it Umgebungs-
Mannigfaltigkeit - is a sphere-bundle with base M". In the case m = n + 2 the previous 
result allows him to prove the existence of a normal unit vector field along the manifold M" 
since the sphere bundle in that case has a cross-section, introducing en route the present 
terminology (Schnitt). In order to prove that last statement, Seifert assumes the existence 
of a triangulation on M" and then he embarks, perhaps for the first time, on an obstruction 
calculus where the principal argument comes from a duality property strongly related to 
the fact that M" is embedded in an Euclidean space. 

With Seifert and Threlfall, as with Picard, the total space, the base and the projection, 
subject to some properties, are given data. It will be Hassler Whitney's and Charles Ehres-
mann's task to adopt the opposite process - coming from differential geometry - which 
consists in the construction, from a given base and a given fibre, of a total space according 
to Elie Cartan's intuition. 

2.2. Between 1935 and 1940, Whitney pubhshed three papers crucial for the nascent 
theory. In opposition to Seifert's flawless writing, Whitney's papers look like seminar lec
tures, or announcements of work in progress. And this is really what those papers are, in 
which we can see Whithey's ideas developing and acquiring accuracy all along those years. 

From the very first lines he gives us, in Sphere spaces [63] published in 1935, the fibre 
bundle philosophy: 

Locally, sphere spaces are product spaces, but in the large, this may no longer hold. 

In that very short paper, Whitney introduced many fundamental topics among which the 
characteristic classes soon called Stiefel-Whitney classes. But many important details were 
still remaining in the shadows, and would only be made precise in [64]. It is in [63] that the 
following classical terminology appeared for the first time: the base, the total space; coor
dinate systems are defined in [63] but they only got their name in [64]. There also appear 
the tangent space of a differentiable manifold, the normal space of an embedded manifold, 
and in particular the case of an ^-manifold embedded in R"+^: in that case the second char
acteristic class of the normal bundle vanishes, so the bundle is trivial. Concerning that last 
result, as he was proof-reading his paper [53], Seifert, who had made himself acquainted 
with Whitney's work, observed in a footnote that it was nothing but his own theorem 1, 
emphasizing however that Whitney did not give any proof! It would appear in [64]. 

In order to define his characteristic classes, Whitney introduced the space - he denoted it 
by 2^ - of all sequences of ^ pairwise orthogonal vectors of unit length in R^^^ and stated, 
without proof, the following lemma (with today's notations for the homology groups and 
the group of integers): 

Ifs = \ or I -\- \ ~ s is even, then ///+i_^(Q^) = Z; 
ifs>\andl + \ - s is odd, then Hi^i_s{Qi) = ^/2^-

Meanwhile ("Sphere spaces" was submitted to the editors on June 12th and [57] on Au
gust 20th) Stiefel finished writing his account of the characteristic classes (for differen
tiable manifolds). The first third of the paper studies, in "European style" with all the 
details to be wished for, some spaces precisely called Stiefel manifolds soon after its pub-
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lication. The lemma above can be found in [57, p. 320] (Stiefel named, as we shall do, 
Vn,m the space of m-frames in W^). Thus in 1935, Seifert, Stiefel and Whitney were re
ally approaching the same kind of problems: Seifert's and Stiefel's approaches were more 
specific, and Whitney's more universal. 

In his next paper [64], published in 1937, Whitney first makes all the topics he introduced 
in the previous one more precise. No doubt, Elie Cartan's philosophy is at work: 

To each point p e K there corresponds a v-sphere S(p); if p :^ q we assume that S{p) and 
S{q) have no common points. 

(here K is a. complex). But the underlying space in which all these spheres live was left 
hazy, and it would be the same in [65]: it is only in 1941 that Ch. Ehresmann and J. Feldbau 
[28] will really make Cartan's idea clear. In the same way the topology of the total space 
S{K) - the union of all the spheres S(p) for p running over ^ - is not exphcidy given 
although everywhere present: we have to wait until [65] to settle that detail. To each closed 
cell a in A' and each point p e a is associated a homeomorphism ^a(p) • SQ -> S(p) 
called a-coordinate system where SQ stands for the unit sphere in the Euchdean space 
R^+^. It is impUcitly required that the map ^^ • cr x VSQ -> S(K) defined by the equality 
?a(p, ^) = ^a(p)(^) should be continuous. When p belongs to an intersection of two 
cells a and a\ Whitney requires the composite ^~f^(p) o ^a(p): SQ -> SQ to be an or
thogonal transformation (for p e a H a^) and the map §~/ o ^̂^ : a H a^ -^ 0(v + 1) 
thus defined, to be continuous (in fact he writes G^+^ for the orthogonal group 0(v -\-1)). 
Owing to the ^a he is able to define orthogonality in the spheres S(p). What he calls a 
sphere space S(K) in [63, 64], and a sphere bundle in [65] is the data consisting of K, and 
for each point p in the cell a, of the S(p) and ^a subject to the previous conditions: the 
concepts introduced by Hotelling, Seifert and Threlfall are all sphere bundles. 

A few pages in [64, 65] are enough for Whitney to outline many concepts and the main 
theorems of the nascent theory: 
• The equivalence between two sphere space [64]: S{K) and S'{K) are equivalent if there 

exists a homeomorphism / : S{K) -> S'{K) such that, for any p e K, the restricted 
map f\S(p) induces an orthogonal transformation S(p) —> S\p). 

• The Whitney sum of two sphere spaces (he called it their product) is defined in [64] and 
the duality formula which gives the characteristic classes of the Whitney sum in terms of 
the characteristic classes of the given sphere bundles, appears in [65] with the following 
comment: 

The proof is very difficult if r ^ 4. 

• The sphere space induced by a map f : K -> K^ is defined in [64] in connection with 
the next point. 

• The classification of sphere spaces. After giving the definition of a universal sphere 
space [64], Whitney writes that any sphere space (with base K, let us say) can be ob
tained as the sphere space induced by a suitable map from X to the base of the universal 
one. A proof is sketched for 1-sphere spaces. 

• The theory of coverings fits into the theory of sphere bundles [65]. 
• As an example of appHcation of the duahty formula, Whitney proves the following the

orem: the complex projective plane cannot be embedded in R^. 
Finally, in order to show the richness of these papers, unfortunately difficult to read 

today, let us point out that between two other brilliant ideas, Whitney introduced the formal 
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series X]r>o ^'^^ ^^^^ ̂ ^ ^^^ ^^^ characteristic classes) and computed its inverse: a topic 
of great promise some 15 years later. 

2.3. Advances are now coming from Strasbourg (and Clermont-Ferrand) with Charles 
Ehresmann and Jacques Feldbau. Already in the early 30's Ehresmann had obtained various 
results which appeared later as being relevant to fibration theory [20, p. 477]. But it was 
in May 1939 on the brink of Word War II that Feldbau pubUshed his note entitled Sur la 
classification des espaces fibres [30] explicitly devoted to this topic, and communicated by 
EHe Cartan, like most of Ehresmann's and Feldbau's papers. 

2.3.1. Feldbau who intended to extend Seifert and Whitney's works [52, 64], to the case 
of a "general bundle" is assuming however as they did, that the total space and the base 
are manifolds, and that the fibres are compact manifolds, thus revealing his vocation to be 
a geometer. His definition is very close to Seifert's (a fibration is a space with a partition 
for which it is locally a product) and the generalisation comes, in addition to the choice 
of a more general manifold than a circle or a sphere for the fibres, from the introduction 
of a family of homeomorphisms H(x): Fx -> F from the fibre over a point x in the base 
into the generic fibre F. This is the first step in the direction of the concept of a structure 
group for a bundle, the next step will be achieved two years later in [28], where the same 
notations are kept. 

Beyond the previous definitions, [30] contains two important results: 
• Theorem A, which states that a bundle whose base is a simplex must be trivial, is cleverly 

proved, after a suitable subdivision of the base via the following gluing lemma: if A and 
B are two simphces with a common face, and if a fibre bundle E -^ AU B is trivial 
when restricted to A and B, then it is trivial. 

• Theorem B which is nothing but the classification theorem for bundles with base 
the n-sphere and fibre F: they are classified by 7r„_i(AutF) modulo the action of 
7ro(Aut F). Feldbau infers at once from theorem B the non vanishing of n2n-\{SO{2n)) 
- with today's notations - since the sphere-bundle with fibre ^^"~^ and structure group 
S0(2n) associated to the tangent bundle of the sphere 5^" is non-trivial. 
In fact Feldbau did not use the action of 7ro(Aut F) on :n:„_i (Aut F), nor did he justify 

the substitution for Aut F of a subgroup G of Aut F, for example SO(2n) when F = 5^""^ 
Both corrections will appear, with partial proofs, in [31], a paper published in 1942, under 
the name of J. Laboureur, where one can also find interesting results on the parallelisability 
of spheres, making use of the art of killing the first non-trivial homotopy group of a space. 
The first complete proof of the "corrected" theorem B is Steenrod's: [56, theorem 18-5, 
p. 99]. 

2.3.2. 1941 saw first the beginning of the homotopy theory of fibrations, after the simul
taneous discovery of the CHP by five people, and secondly the first general definition of a 
fibre bundle with structure group. 

This last definition appears in [21, 28]. Feldbau was Ehresmann's first research student 
(there were 76 of them). He co-signed ''Sur les proprietes d'homotopie des espaces fi
bres'' [28], he should have co-signed ''Espace fibres associes'' [21] too, as we learn from 
his adviser who wrote at the beginning of the note: 

Les resultats qui vont etre exposes sont dus a la collaboration de I 'auteur et de I 'un de ses 
eleves. 
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After the Occupation by the Nazis of the northern half of France in 1940, the Univer
sity of Strasbourg had withdrawn to Clermont-Ferrand in non-occupied France. Although 
in principle not directly under Hitler's power, Marechal Petain's government soon passed 
antisemitic laws, and especially forbade Jewish professors to teach in French universities. 
Feldbau was probably afraid to see his name at the top of a paper to be published in Paris. In 
1942 and 1943 he published in fact under the name of Jacques Laboureur (in German, feld
bau means ploughing, in French laboumge, however not a French patronymic; laboureur 
instead (= ploughman) is one). He was arrested in June 1943, and kept prisoner in Drancy 
before his internment in Auschwitz concentration camp, then in Canaker where he died on 
April 22, 1945. The interested reader can consult [20], the unnumbered pages following 
page XXIV, in order to be better acquainted with his short mathematical life. 

War still had other consequences, fortunately less dramatic: to suppress or only delay 
the communications between mathematicians mainly as far as we are concerned, between 
the United States, France and Switzerland, as we shall soon notice. 

2.3.3. But let us go back to mathematics. In the two notes [21, 28], Ehresmann and 
Feldbau gave a definition of bundles with structure groups which would remain almost 
unchanged afterwards. They also resolved, finally, the problem sketched in [30, 64]: to 
construct a bundle with a given base and fibre; it is indeed the objective of the first para
graph of [21] entitled: 

/. Methode de construction d'lin espace fibre. 

Given two topological spaces B and F, a group G of automorphisms of F, and an 
open covering 0 of B, they indeed defined an equivalence relation on the disjoint union 
space Uf/g0 L̂  X F by means of maps W^y^ '1^1(^112^^ G. These maps, already met 
in a less satisfactory presentation in [30], took their inspiration from Whitney's coordinate 
systems ^^ and would be called coordinate transformations by Steenrod [56]. The maps 
(L̂ i n U2) X F —> {U\ n U2) X F defined by (JC, y) i-> (jc, tjj^UiMiy)) are homeomor-
phisms (by definition), but since G does not carry any topology, there are no questions 
about continuity for the /^, u^^ at this stage. That is the reason why Steenrod in The Topol
ogy of Fibre Bundles [56] distinguished his definition, where G is always a topological 
group, from the one given by Ehresmann-Feldbau, and insisted the two definitions were 
distinct from each other. However, a few lines down in [21], one assumes the group G to 
be a topological group, so Steenrod's objection seems aimless. It is true, however, that the 
passage from discrete to topological group remains rather unclear - as remained unclear 
in Whitney's papers some aspects in his construction of sphere bundles - but a few years 
later (and Steenrod admitted this in [56, p. 20]) Ehresmann entirely cleared his definition 
of bundles in his talk at the 1947 Algebraic Topology colloquium in Paris where he in
troduced for the first time a transformation pseudogroup [25]. It is worth reporting Andre 
Haefliger's opinion concerning that concept [34]: 

Uelegance et la concision de la presentation contraste avec la lourdeur des premieres pages 
du livre de Steenrod publie en 1951. 

23A, Let us come now to the CHP almost simultaneously discovered, in chronological 
order, by Hurewicz-Steenrod, Ehresmann-Feldbau and B. Eckmann. 

The deformation lemma in [28] establishes the CHP for the class of finite complexes 
and its proof, although only sketched, is quite convincing (a complete proof would appear 
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in [24] for the class of all complexes, finite or not, in 1944). The authors immediately 
deduced the exact homotopy sequence of a bundle from the lemma, or more precisely, they 
deduced that which took the place of an exact sequence at a time when exact sequences 
did not yet exist: some subgroups are isomorphic to some quotients. Only one of the three 
isomorphisms is explicitly given, and the proof that it is really an isomorphism is only 
sketched, but correctly. Some applications, considered today as being very elementary, are 
given: homotopy groups of a covering in terms of those of the base, homotopy groups of 
Pn (C) in terms of those of 5^"-^ 

Their next paper [21] is mainly concerned with the definitions of associated and princi
pal bundles. After introducing the notion of isomorphisms between two bundles (without 
expressing the corresponding conditions in terms of cocycles), they prove that two bundles 
with the same group, base and fibre are isomorphic iff so are their associated principal 
bundles: in particular a bundle is isomorphic to a trivial bundle iff the associated principal 
bundle has a section (sections are called systeme continu de representants in this paper. 
Ehresmann only introduced the word section in 1944). 

2.3.5. The important problem of reducing the structure group of a bundle (Ehresmann 
spoke about recherche d'une structure plus precise) was discussed a year later in [22]. 
Here we find all the classical results of the theory including the reduction of that prob
lem to the search for a section of a suitable bundle, a problem Ehresmann knows how to 
solve in the case when the homotopy groups of the fibre vanish up to degree n — 1, if the 
dimension of the base is n (after Stiefel [57], he said). In May 1943 he applied all these 
results to the study of differentiable manifolds; we find in [23] a very elegant definition of 
these manifolds making use of local charts and atlases, and the definition of the tangent 
bundle; former results [22] allow him to prove that a differentiable manifold always has 
a Riemannian structure. He also shows that neither 5"̂  nor P4(R) could be a universe for 
Einstein's general relativity: a result which must have impressed the academic world at the 
time. 

2.3.6. Such are Ehresmann's contributions to the theory of fibrations during the years 
1941-1944. Later, in 1947, he would prove [26] that a submersion from a compact man
ifold onto another is a fibration (Hurewicz and Steenrod [43] pubHshed a very similar 
theorem in 1941) and the same year in [25] he would pose the problem of knowing when 
there exists an almost-complex structure on an even dimensional differentiable manifold. 
Making use of his knowledge concerning the reduction of the structure group he proves 
that 5"̂  does not carry such a structure, but that S^ does. A. Kirchoff would soon give an 
exphcit almost complex structure on S^, using Cay ley numbers. 

Ehresmann's and Feldbau's work clarified many fundamental notions concerning bun
dles, and brought to our knowledge many basic and classical theorems. However, they 
suffered - in addition to the French isolation during the war - from a lack of topological 
tools: the compact open topology for example. There was also a lack of rigour in some ar
guments, as when Ehresmann applies the CHP to more general spaces than those for which 
he proved it to hold. Things are still not completely settled in the theory of fibrations. 

2,4. On June 17th 1941, a few days after the day [28] was pubhshed (June 4th), Beno 
Eckmann communicated his dissertation entitled Zur Homotopietheorie gefaserter Rdume. 
We are now leaving the underlying differential geometry present until now in all works 
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on fibrations, to join homotopy theory; more precisely we are leaving Elie Cartan's school 
(for, perhaps, Heinz Hopf s school). 

2.4.1. Eckmann was endeavouring to compute as many homotopy groups of spaces pro
vided by geometry as possible: spheres, Stiefel manifolds, orthogonal groups, and he was 
going much further than the Strasbourg mathematicians in this direction, the latter giving 
the feehng, by comparison, that they only wanted to show that their theory was able to 
work. Eckmann was also trying to solve some problems, related to these computations, 
like, for example, under which conditions on an odd integer n does (or does not) the n-
sphere admit a continuous tangent 2-field?, and he proved that the 5-sphere does not admit 
such a 2-field. 

Since the spaces he was working with were all compact metric spaces, Eckmann re
stricted himself naturally to a theory involving only such spaces. He was also looking for 
a theory able to give easily a theorem on the CHP which is at the origin of almost all 
his results. In consideration of which, he propounded a nice definition of a kind of fiber-
ings - he called them retrahierbare Zerlegungen - fitting his purpose perfectly (Ehres-
mann translated in [24] this German name into partition contractible: partition retractable 
would be better). For him a fibering is the data consisting of two compact metric spaces 
R and Z {R for Raum = space and Z for Zerlegung — partition) and of a surjective 
continuous map F \R -> Z, the projection. Let p stand for the metric in Z and for the 
Hausdorff metric on the space of compact subspaces of R. Then one assumes that for any 
pair (A, B) of points in Z the equality p(A, B) = p(P~HA), P~H^)) holds (it is good 
to think of the points A G Z as the elements of a partition of R given by the closed sub
sets P~^ (A)). It is assumed moreover that for any point A e Z there is given a retraction 
(2(A): U{P~^{A), r) -> P~^{A), (r is a fixed real positive number and U(K, s) is the 
open neighbourhood of all points of /? at a distance from K less than r). Let E c R x Z 
be the set of pairs (/?, A) satisfying the relation p(P(b), A) < r. For such a pair one gets 
b e U(P~^(A), r) and consequently Q{A){b) is well defined. One requires that not only 
the map Q{A) be continuous but also the map Q: E -^ R defined by Q(b, A) = Q(A)(b). 
If E' is the subspace of E such that (b, A) e E' iff p(P(b), A) ^ / < r, then Q\E' is 
now uniformly continuous. 

2.4.2. With these definitions, Eckmann proves very carefully the CHP for all compact 
spaces [19, Lemma 3.d, p. 155] and deduces from it a perfect flawless proof of what stood 
for the homotopy exact sequence of a fibration, as in [28]. It is nothing else, he said, than 
the natural generalisation (Weitgehende Verallgemeinerung) of Hurewicz's theorem con
necting the homotopy groups of a Lie group G, of a closed subgroup H C G, and of the 
quotient G/H. Indeed we can find, in the first paper Hurewicz wrote in 1935 about homo
topy groups, such a theorem in [41, pp. 118-119], stated without proof and in a way which 
Ehresmann and Feldbau would hardly change in [28]. 

About the previous projection G -^ G/H Eckmann pointed out, without any real proof, 
that it is a "retrahierbare Zerlegung", referring to [41] where, he said, Hurewicz stated a 
property analogous to the "retrahierbare Zerlegung" - and that is true (conditions a and ^ 
[41, p. 116]) - but in [41] there are no proofs! In [43], pubHshed before [19], there is a 
"minimum" proof of an analogous result. Ehresmann in [22] made use of the same fibration 
without references. In the very interesting notice about his works which he wrote as he 
was applying for a professorship at the Faculte des Sciences de Paris in 1955, Ehresmann 
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said [20, p. 477] that he proved that result in his thesis {Topologie de certains espaces 
homogenes, Ann. of Math. 35 (1934), 396-443): as a matter of fact there is a short proof 
in p. 398. As for Steenrod [56] he refers to Chevalley's Topology of Lie groups (Princeton 
University Press, 1948) for the same topic. 

Beno Eckmann of course produced many other "retrahierbare Zerlegungen". At first he 
generahsed the previous example, considering fibre bundles whose total space and fibre 
are sufficiently differentiable manifolds. The proof is only sketched in the general case, but 
the retraction Q is explicitly given in all the examples he would consider later: the Hopf 
maps between spheres, the classical fibrations involving Stiefel manifolds. 

2.4.3. In a footnote (p. 141) Eckmann pointed out that when he was proof reading his 
paper it had come to his knowledge that ''Sur les proprietes d'homotopie des espaces fi
bres'' [28] contained - he said ohne Beweis (= without proof) - many of his own results. 
He was too harsh since, as we have seen, the proofs in [28] are quite satisfactory, at least 
for the modern reader who already knows the results, but it is true that there is a huge dif
ference between an announcement draft and a perfectly written paper. On the other hand, 
Ehresmann never mentioned [19] until 1944 although he went to Zurich for a lecture in 
1942 (but Feldbau mentioned it in [31]!). 

2.4.4. Before using homotopy groups, Eckmann introduced some extra conditions on 
the space R, assuming it to be connected and locally contractible (and then Z satisfies the 
same properties). These hypotheses shed light on a mysterious footnote in [28]: 

On suppose que tous ces groupes dliomotopie existent. 

As a matter of fact, the only reference in 1941 for these homotopy groups consists in 
Hurewicz's original paper [41] where it is always assumed that the spaces are metric com
pact, connected and locally contractible. 

2.5. The most innovative paper from that time about homotopy theory and fibrations 
comes a httle earlier than [19, 28]: Homotopy relations in fibre spaces [43] by Hurewicz 
and Steenrod dates from November 1940. For them, a fibre space (and it is the first oc
currence of these words) is given by a topological space E, a metric space B with dis
tance p, and a continuous map n : E -> B such that there exists a continuous func
tion 0, called a slicing function, with values in E, and defined on the following subspace 
A C E X B: A = {(x,b) \ p{7i{x),b) < SQ], where SQ is a given positive real number. 
Finally one requires 0 to satisfy the following two conditions: 

(i) 71 o (j){x, b) = b for any (jc, b) e A, 
(ii) 0(x, 7r(;c)) = x for any x e E. 

The examples of fibre spaces given in the paper are, roughly speaking, the same as those we 
have already seen: product spaces, coverings, submersions from one differentiable mani
fold onto another (with a proof making use of Riemannian structures on the manifolds, as 
would be done by Eckmann in a similar situation [19]), the projection of a compact Lie 
group onto its quotient by a closed subgroup. It is also said (without proof) that Whitney's 
sphere bundles are fibre spaces. Let us also remark that that concept of fibre space is more 
general than Eckmann's "retrahierbare Zerlegungen" which suppose both E and B to be 
compact metric spaces (take 0 = Q). 
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Theorem 1 is nothing but the CHP for any space, but where it is assumed that the ho-
motopy i;: X X [0, 1] ^- B (notations of diagram *) is uniformly continuous, which is 
not a restriction if X is a compact metric space as in [19]. Its proof is quite easy since 
the slicing function provides an explicit covering homotopy. Hurewicz and Steenrod first 
deduced from theorem 1 that all fibres have the same homotopy type if the base is arcwise 
connected (a result Eckmann also found in [19], but he relegated it to a footnote as if he 
did not realize its theoretical importance), then, like Eckmann they proved that the Hopf 
maps S^ -> S^, S^ -> S^ and S^^ -> S^ are essential maps. What a simpHfication, if one 
compare this homotopical proof with Hopf's difficult original homological argument! 

2.5.1. The homotopy exact sequence of a fibre space is not exphcitly given in their pa
per, but on the other hand, Hurewicz and Steenrod introduce a fundamental ingredient for 
all future proofs of this exactness: as a matter of fact, theorem 2 asserts that the projection 
Tc: E -> B induces an isomorphism from ni (E, n~\bo)) onto TTI (B, bo) for any bo € B. 
By the way it is in that paper that the relative homotopy groups are defined for the first 
time and that the restrictive conditions imposed on spaces to define homotopy groups are 
released (but the authors did not point it out!). Owing to a nice purely homotopic theorem 
(if F is a proper arcwise connected closed subset of a sphere S^ then there is an isomor
phism TTj (5", F) ^ Tti {S'^)^7Ti-\(F)), they prove the following direct sum decomposition: 
7r/(5") ^ 7r/(5^""~ )̂ e 7r/_i (5"~^) for n = 2, 4, 8, and deduce from it some results on the 
homotopy groups of spheres, including some special cases of Freudenthal's theorem and 
results also found by Eckmann [19] with a completely different argument. After some com
putations of homotopy groups concerning the fibration SO(n — 1) -> SO{n) -> 5"""^ they 
prove that only S^^^~^ can be a proper sphere space over the sphere S^^ (with fibre 5""^). 
Feldbau would later, 1942, recover the same theorem [31] with an argument based on the 
parallelisability of spheres (of course [43] was unknown to him). 

Finally the paper comes to an end with an example of a fibre space which is not a fibre 
bundle (a full right-angled triangle projected on one of its sides). For Henri Poincare^ a nice 
function should be regular and be useful in the proof of nice theorems, like the function X in 
Picard's theorem. The others were banished from the universe of nice mathematics (see, for 
example, the entry ''Peano'' by G. Glaeser in Encyclopaedia Universalis). What would he 
have thought of such an example whose interest consists only in showing that two theories 
are not quite the same? 

2.5.2. Recently, at the colloquium "Materiaux pour I'histoire des mathematiques au 
X^eme ^]^Q\Q ^^ I'honneur de Jean Dieudonne" held at Nice (January 6-8,1996) Eckmann 
gave a lecture where he returns to these old times. In the corresponding paper, entitled 
Naissance des Fibres et Homotopie, to be published with the proceedings of the collo
quium,^ he recalls how amazing it was, for him and the four other discoverers of the CHP, 
to work with the new homotopy objects we described above, in order to recover Hopf's 
theorems and to prove much other interesting new results: 

le lemme et la suite exacte d'homotopie etablis, les resultats tombaient du del! 

he wri tes . 

^ "Autrefois, quand on inventait une fonction nouvelle, c'etait en vue de quelque but pratique; aujourd'hui on 
les invente tout expres pour mettre en defaut les raisonnements de nos peres, et on n'en tirera jamais que cela". 
^ Added in proof: published in the series Seminaires et Congres 3, Soc. Math. France (1997). 
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2.5.3. The object of the fundamental Hurewicz-Steenrod definition wrote Ralph H. Fox 
at the beginning of On fibre spaces I in 1943 is to state a minimum set of readily verifiable 
conditions under which the covering homotopy theorem holds. 

Since this definition depends on the metric of the base JB, it is not topologically invariant. 
That is the reason why Fox proposes a purely topological definition as follows. Let n : E -^ 
B be the projection, and let us denote - as he does -by n : E x B -> B x B the map 
7z(x,b) = (n(x), b). Finally, let t/ be a neighbourhood of the diagonal of B. Then he calls 
a continuous map (p:n~^(U) -> E a. slicing function if it satisfies the same two conditions 
as above, and n is called a fibre mapping relative to U if there exists a slicing function. In 
the case when the base ^ is a compact metric space, it is not hard to see that this definition 
is equivalent to the previous one. Fox's theorem is concerned with the case of a metrizable 
base and asserts that if TT :£" -> 5 is a fibre mapping, then, there exists a metric on B for 
which TT is a fibre space. This nice result, important at that time for the development of the 
fibration concept lost of course a part of its interest when in the late 50's the notion of fibre 
space advanced once again. 

In fact. Fox fell into a paralogism (as one says in Aristotelean logic) that is worth 
pointing out in order to show how topics very well known today, if not considered as 
being completely trivial, could at their beginning give rise to hidden traps. Let B be 
a metric space, and let C{B, [0, 1]) be the space of all continuous functions from B 
into [0, 1], with the uniform convergence topology. In order to construct a continuous 
function 0 : B -^ C(B, [0, 1]) such that 0(x)(x) = 0 for x E 5 and 0ix)(y) = 1 if 
(x.y) ^ U where U is an open neighbourhood of the diagonal of B, Fox apphes Urysohn's 
lemma to get a continuous function f : Bx B -> [0, 1] satisfying the relations f{x,x) = 0 
and f(x, y) = lforx€B and {x, y) ^ U, and then he defines 0 by 0{x)(y) = f(x, y). 
But if / is not uniformly continuous, 0 may not be continuous! In fact such a function 
0 always exists, but a correct construction is more elaborate than the one above, and uses 
partitions of unity which did not yet exist in 1943. 

2.6. Whether every fibre bundle is a fibre space is not yet determined wrote Steenrod 
the same year in [55]. To answer this question or similar questions with other definitions 
of fibre spaces would be the task of many topologists after 1950. 

2.6.1. In 1943 Steenrod was "only" concerned in [55] with an easier problem. He 
proved there that a fibre bundle whose base is a normal space satisfies the CHP for the 
class of compact spaces: it was the first general and precise result in a subject where 
the CHP was often proved under restrictive hypotheses but applied without worrying 
about them. The real aim of the paper is however the classification of sphere bundles. 
Its principle had already been introduced by Whitney [64] as early as 1937, leaving 
a tremendous task to be accomplished by those who undertook to make the forerun
ner's ideas precise and generalise them. That is what Steenrod did in this almost self-
contained paper which begins with a nice definition of a fibre bundle. But what a sur
prise to read that Steenrod, like Whitney, Ehresmann or Feldbau does not give the struc
ture group a topology until he specifies it to be a classical group coming from geom
etry! Another surprise comes from the references at the end which show that commu
nications in 1943 between Europe and the United States were not as bad as one could 
expect. 
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2.6.2. Shiing-Shen Chern and Yi-Fone Sun [8] extended in 1949 Steenrod's work by 
classifying the fibre bundles with one of the following classical groups SO(n), Gl^{n), 
U(n), Spin) as structure group and whose base is a compact metric ANR space (instead 
of a complex as in [55]). Like Steenrod they went back to the beginning of the theory and 
wrote in a very poUshed style. Curiously they were the first to consider morphisms between 
bundles which they called admissible mappings and which would later be called more sim
ply bundle maps by Steenrod [56]. Thus they were able to state and prove a variant of the 
CHP for bundle maps (Steenrod [56] would call it the first covering homotopy theorem, 
the usual one being the second) which on its own provides part of the classification: two 
bundles induced by homotopic maps are equivalent. But when Steenrod imposed a hypoth
esis on the base of the target bundle (it has to be a normal space), here instead there are 
no hypotheses on that base, but the base of the source bundle must be compact. Curiously 
the proofs are similar, as will be the proof of the generalisation to Ccr-spaces by Steenrod 
in [56] where he also extends the existence of universal bundles to any compact Lie group. 

It is worth remarking that that paper, forgotten by Jean Dieudonne in his History of Al
gebraic and Differentiable Topology 1900-1960, Birkhauser 1989, contains an interesting 
observation, which passed unnoticed at the time when it was published. Let f \ B ^^ Bg 
be the classifying map of a given G-bundle with base B. Then the image of the coho-
mology ring H'^(BG) under the homomorphism H'^if) is a subring of H'^(B). Chern and 
Sun called it the characteristic ring of the bundle. They seemed aware of its importance 
although unable to prove it is independent of the choice of a universal G-bundle. 

2.6.3. A way to prove at little cost that a bundle is always a fibre space consists in 
locaHzing the notion of a fibre space. That is what Sze Tsen Hu did [39] in 1949. For him 
a fibre space over B relatively to a map jr is a space X with a continuous map n :X -^ B 
such that for any point b e B there exist an open neighbourhood U of b and a continuous 
function 0u \7Z~^{U) x U -^ X satisfying the two conditions of slicing functions (see 
Section 2.5). Then it is clear, and Hu proved it very well after giving an impeccable and 
simple definition of fibre bundles, that a fibre bundle is a fibre space. Unfortunately what 
he has just gained, Hu loses immediately since, in order to prove the CHP (for the class of 
compact spaces and normal base B) he can only resort to Steenrod's proof in [55]. Globally 
this whole work sounds a little hollow today, although it had a positive effect in its day. 
William Huebsch [40] used it to prove the CHP for the class of paracompact spaces by 
means of a difficult transfinite induction, a considerable improvement on Hu's proof (or 
Steenrod's in [55]). Later E. Fadell [29] was probably inspired by Hu's paper when he 
proposed an interesting generalisation of fibre spaces. 

2.7. During the topology colloquium held in Brussels from the 5th to the 10th of June 
1950, and especially concerned with fibre bundles (and in which only European mathe
maticians took part), when a lecturer recalled the definition of a bundle, it was only to fix 
the notations. Two of them, Henri Cartan and Charles Ehresmann each with a different 
aim, defined and used connections in differentiable fibre bundles. Thus, the loop Elie Car-
tan opened in 1924 was finally closed 26 years later by his own son and one of his students. 
What a dehght for symbol lovers! No doubt a period had come to an end. It was time to 
bring the new structure out of the specialized reviews; indeed a little later the first book 
on bundles was published: the famous Theory of Fibre Bundles [56] by Steenrod. Despite 
a few criticisms addressed to it, this book had a considerable influence on the students of 
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the 50's: there they learned, beyond the definition of a bundle, some topology, homotopy 
and homology, and also a few nice theorems. 

3. The modern era 

After the notion of fibre bundle and the leading part of the CHP have been well understood, 
around 1950, the theory of fibrations would progress along two axes: to know the relations 
between fibre bundles and fibre spaces defined by a CHP-condition thoroughly, and to 
extend the classification theorems. The notion of fibre homotopy equivalence, introduced 
by Rene Thom [61] would enrich the research in both directions. 

3.1. But before, let us note an interesting presentation of a fibre bundle with structure 
group by Friedrich Hirzebruch [35] in 1956. If B stands for a topological space (respec
tively a differentiable manifold, respectively a complex analytic manifold) and if G is a 
topological group (respectively a Lie group, a complex Lie group), then Hirzebruch de
notes by Gc (respectively G^, Goj) the sheaf of germs of continuous (respectively dif
ferentiable, holomorphic) functions from B into G. With these notations, the homotopy 
classes of principal bundles with group G and base B are in bijection with the cohomol-
ogy set H^(B, Gc), as one easily sees from the definitions and the interpretation of the 
coordinate transformations gtj as a 1-cocycle. Taking Gj or G ĵ in place of G^ one gets 
differentiable or holomorphic bundles, notions already considered before, but which find 
their natural definition here, allowing us by analogy to define, after the same model, for 
example algebraic bundles. Hirzebruch presents in a few pages the essential part of the 
theory up to and including Chern and Pontryagin characteristic classes of vector bundles 
with structure group U{n) or 0{n), about which he gives a pleasant axiomatic definition 
and proves the formulas giving the characteristic classes of a Whitney-sum or a tensor 
product of two vector bundles using a purely algebraic method, based on Armand BOrel's 
algebraic theorems on spectral sequences [1]. Further, in 1960 Bernard Morin [47] would 
give in the Seminaire Cartan a similar presentation, but self-contained, avoiding having to 
resort to the difficult theorems on the cohomology of classifying spaces in [ 1 ] (however, 
easier to prove at that time after J.C. Moore). 

3.2. Jean-Pierre Serre in his thesis [54], resolutely got out of the notion of a locally triv
ial map: a fibration for him is a continuous map satisfying the CHP for all finite polyhedra 
(cubes are sufficient). That condition is enough to imply that all fibres have the same weak 
homotopy type provided the base is arcwise connected, and that the usual homotopy ex
act sequence holds. The existence of the homology and cohomology spectral sequences is 
more difficult to prove: Serre must introduce cubical singular homology and cohomology 
groups in order to obtain the result; a "readable" proof using the usual singular simplexes 
would appear much later in 1967, by A. Dress [18]. Serre fibrations considerably enlarge 
the range of applications of fibrations. To begin with, it is clear that all previously defined 
fibrations are Serre fibrations: that comes almost from the very definition for those of Eck-
mann or Hurewicz-Steenrod and Fox and from [28] for fibre bundles. On the other hand, 
the fibre space of paths starting at a given point and sending such a path to its end point 
- for which Serre constructed his theory - is the source of countless works in homotopy 
theory. 
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3.3. The restriction contained in the definition of a Serre fibration is not strongly con
straining since it is easy to prove that these fibrations satisfy the CHP for the class of 
all CW-complexes (and even a stronger condition as we shall see in Section 3.3.3), al
ready a large class of topological spaces. On the other hand, what can be said about-maps 
p\E-^B satisfying the CHP for all topological spaces, as is the case for the fibre space 
of paths, the definition of which was recalled above? 

3.3.1. At the end of the year 1955, M.L. Curtis [19] gave a criterion for a continuous 
map p:E -> B io satisfy the CHP for all spaces. Let C be the fibred product of the 
diagram 

where q sends any path to its starting point. Curtis proved that if the map p satisfies the 
CHP for C, then it satisfies the CHP for all spaces. Using this result and the work of 
Huebsch [40], he proved then that if p is a locally trivial map and E and B are metric 
spaces - hence C also - then p verifies the CHP for all spaces. 

3.3.2. Curtis does not seem to know Hurewicz's lecture at the Institute for Advanced 
Study in January 1954, nor his paper [42] pubhshed in August 1955. The subject of both 
was precisely the study of those maps for which the CHP for all spaces holds, and soon 
called Hurewicz fibrations or, even shorter, fibrations. In fact, Hurewicz's definition is 
slightly different, although equivalent to the former. He is using the same fibred prod
uct as Curtis's - probably one of the first fibred products in topology but this name does 
not appear yet - that he called ^p. Let p\ E^^'^^ —> Qp be the map which assigns to 
each path r of £" the pair (r(0), p o r); then Hurewicz called the triple (E, B, p) 2i fi
bre space if the map p has a section (called a lifting function). It is necessary of course 
to show that the class of these fibre spaces is rich enough, in order to give some value 
to the previous definition. And that is the case, since the property to be a Hurewicz fi
bration is a local property, provided a suitable condition on the base holds. To be more 
precise, let us call, as Hurewicz does, an open covering U = {U,-} of B normal if, for 
any r there exists a continuous function f'.B -> [0, oc[ such that Ur = /;-"~ (̂]0, oo[). 
Then he proves the following fundamental theorem: suppose that B admits a locally finite 
normal open covering U = [Ur], such that for any r, the map p~^(Ur) -^ Ur induced by 
p, is a Hurewicz fibration; then /? is a Hurewicz fibration. As a corollary he got his uni-
formization theorem: if p is locally a fibre space over a paracompact base, then it is glob
ally a fibre space. Thus every locally trivial map over a paracompact space is a Hurewicz 
fibration, and every fibre bundle (over any base) satisfies the CHP for the class of para
compact spaces: we recover Huebsch's theorem [40], with an easier and more conceptual 
proof. 

The proof of the theorem is beautiful and would serve as a pattern for all those on similar 
questions which would come later: let us only note the use of a partition of unity associated 
to an open covering (even if this name does not appear in the paper). 

Hurewicz also brought an elegant solution to the comparison between all previously 
defined kinds of fibrations: when the base is a compact metric ANR, then the fibrations of 
Hurewicz-Steenrod [43], Fox [32], Hu [39] and Hurewicz [42] are all the same. 
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3.3.3. A homotopy v:Xx[0,l]-^Bis said to be stationary (for example, in [55]) on 
a subspace A C X if v(x,t) is independent oft G [0, 1] for any x e A.lt suffices to read 
a little carefully the proofs of the CHP for fibre bundles to allow oneself to be convinced 
that if the homotopy i;, stationary on A, can be lifted, then there exists a lifting stationary 
on the same subspace A. This property is not true anymore for Hurewicz fibrations, so that 
Hurewicz introduced the concept of a regular fibration which is a fibration for which this 

property is always true. When the base ^ is a metric space, he proved that every Hurewicz 
fibration is regular. The proof of the uniformization theorem shows that the property of 
being a regular fibration is also a local property. 

More generally let us consider a commutative diagram (in continuous lines) where X is 
a subspace of y: 

and let us call (if there exists) diagonal map a map V such that V\y = u and p oV = v. 
In particular, if A is a closed subset of X, ^ = X x [0, 1] and 3̂  = X x {0} U A x [0, 1] 
then if v is stationary on A, a diagonal V : X x [0, 1] ^- £" would be stationary on A. 
In 1952 I.M. James and J.H.C. Whitehead [44] showed that such a diagonal always exists 
if /? is a Serre fibration, X a CW-complex and A a sub complex of X. Arne Str0m [58] 
in 1966 would extend this result to the case where the inclusion A -̂> X is any closed 
cofibration and p a Hurewicz fibration; two years later in [59] he proved more generally 
that the diagonal V always exists, provided that p be a Hurewicz fibration and the inclusion 
y ^-^ X 3. closed cofibration and a homotopy equivalence at once. Meanwhile, in 1967, 
Daniel G. Quillen [51] defined a homotopy theory in general categories axiomatically, by 
means of what he called a model category: a category together with three classes of maps 
called fibrations, cofibrations and homotopy equivalences, satisfying a list of axioms: one 
of these is exactly the existence of a diagonal for the diagram above under the hypotheses 
given by Str0m (one half of axiom Ml in [51]). It was proved later that Quillen's axioms 
are all satisfied in the category of topological spaces, so that it is a model category [60]. 

3.4. Let us recall that given two maps p: E -> B, p' \E' -> B {= spaces over B), 
a map f: E -> £̂ ' is called a map over B (and written f: p -> p') if p' o f = p. 
A homotopy in the category of maps over B is called a fibre homotopy. Fibre homotopy 
equivalences are defined in the same way. 

3.4.1. It is easy to see that if p and p^ are two fibre homotopy equivalent spaces over B, 
then p might be a Serre or Hurewicz fibration but not p\ That remark motivated Edward 
Fadell [29] to modify the definition of ^ fibre space in order to obtain an object invariant 
under fibre homotopy equivalences. 

In his interesting work of 1957 he began by proving now classical properties of Hurewicz 
fibrations: for example all fibres have the same homotopy type if the base is arc wise con
nected; all arcwise connected components of a fibre have the same homotopy type when the 
total space is arcwise connected; for a regular fibration, if the fibre p~^ (b) is contractible 
to a point in the total space, then the fibre is naturally an //-space (a similar result was 
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also proved by Sugawara); if the open subspace U of B is contractible in B onto a point 
b e U, then the induced fibration p~^{U) -> t/ is fibre homotopy equivalent to the trivial 
fibration U x p~^(U) -> U. It follows from that last result that a Hurewicz fibration is 
fibre homotopy equivalent to a locally trivial map provided that, for any point b e B, there 
exists an open neighbourhood U of b, contractible into bin B (Fadell said then that B was 
weak locally contractible). 

That last property led Fadell to call a fibre space a triple p: E -^ B such that there 
exists a space F and an open covering {Ua] ofB such that for any a, the restriction map 
p~^ (Ua) -> Ua is fibre homotopy equivalent to the product bundle Ua ^ F ^^ Ua- Then 
for example a Hurewicz fibration with a weak locally contractible base is a fibre space in 
the preceding sense. However it is clear from the definition that Fadell fibre spaces are 
invariant under fibre homotopy equivalences. 

In order to prove that these fibre spaces satisfy the homotopy exact sequence of a fi
bration and the usual spectral sequences, it suffices to prove that they satisfy a suitable 
modified CHP: indeed it is the case. With the notations of the diagram * one can lift the 
homotopy u : Z x [0, 1] -> 5 to a homotopy V : X x [0, 1] -^ £" such that V\Xx {0} = u\ 
but instead of an equality between the two maps p oV and v, one has only a homotopy, 
stationary on X x {0} and X x {1}. Fadell proves that theorem only when the space X is 
compact; a dehcate proof, inspired by Steenrod's in [56] but much more difficult. He said 
that 

by fitting homotopies together 

one can extend the above result to Co spaces. But if, as he also said, for any fibre space p 
there would exist a Hurewicz fibration q fibre homotopy equivalent to /?, then the theorem 
would be true for every space. It would result from later theorems by Albrecht Dold [13] 
that it is indeed the case subject to some hypotheses on the base. These theorems show 
also that Fadell fibrations satisfy his modified CHP for all paracompact spaces without 
any hypothesis on the base (in Dold's terminology a Fadell fibration satisfies the WCHP 
for paracompact spaces). Fadell's paper contains also many results on section extension 
properties under technical hypotheses. 

With this work a step was got over, new prospects for future research were opened but it 
would fall to Dold [13] to define the good concepts and prove the main theorems. 

3.4.2. Dold introduced two new topological ingredients in his paper entitled Partitions 
of unity in the theory of fibrations [13], both shedding a new fight on the theory of fibra
tions: the notions of numerable covering and of halo. 

A (not necessarily open) covering {VA.}A6A of B is called numerable if there exists a 
locally finite partition of unity [ny : 5 -> [0, l]}yGr (called a numeration of[Vx]xeA such 
that for any y s F there exists a X e A with 7T~\0,1] C V;.. That notion is then very 
close to the concept of a normal covering introduced by Hurewicz [42]. 

A halo around A C B (called Hof in German, for example, in [11]) is a subspace V 
of B such that there exists a continuous function z : B -> [0, 1] with A c r " ^ ! ) and 
B -V C r -^O) . 

Dold introduced also two new properties for a map p: E -> B: 
• The section extension property (— SEP): p has the SEP if every partial section over 

A C B which can be extended to an halo around A can be extended over B. 
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• The weak covering homotopy property {= WCHP) also called h-Faserung in [11] or 
weak-fibration: p has the WCHP (for X) if it has the usual CHP for every homotopy 
v:X X [0,1] -^ B such that i;(jc, t) = v{x, 0) for any t e [0, 1/2]. That property is 
equivalent [13, Proposition 5.13] to the following: every homotopy v:X x [0,1] -> B 
can be lifted to a homotopy V : X x [0, I] -^ E such that the equahty p oV = v holds 
and the two maps V\X x {0} and u are homotopic over B. That property involves the 
CHP in the sense of Fadell and is stable under fibre homotopy equivalences. 

3.4.3. In a first series of theorems, Dold shows that the SEP, the CHP and the WCHP 
are local properties: if they are satisfied for all maps p~^{Vx) -^ Vx induced by /?, where 
{VxlxGyi is a numerable covering of B, then they are satisfied by p also. If the maps 
P"^ (yx) -^ Vx satisfy the CHP or the WCHP for all Vx of an open covering of B, then 
p satisfies the same condition for the class of paracompact spaces. Finally if p: E -^ B 
and p' \E' -^ B are two spaces over 5 , then a continuous map f '. p -^ p' over 5 is a 
fibre homotopy equivalence, provided the restricted maps p~^ {Vx) —> p'~^(Vx) are fibre 
homotopy equivalences over V̂  for every element V̂  of a numerable covering of B. 

All these results, proved by starting from the SEP - the simplest case - and reducing the 
other to the first, recover all previous results on similar topics, unifying them and giving 
them the right degree of generalization. 

3.4.4. In a second series of theorems, in a completely new spirit, A. Dold gives condi
tions for a morphism f : p -^ p' between two maps satisfying the WCHP over the same 
base i5 to be a fibre homotopy equivalence, justifying, if there would be need, the choice 
of the WCHP to weaken when necessary the notion of fibration. 

Already in 1955, Dold had studied a similar problem [12], and proved the following 
theorem: let p : £ -> B and p' :E' -^ 5 be i^NO fibre bundles with locally compact fibres, 
over the same polyhedron 5 ; let / : p -> p^ be a continuous map over B (and not a bundle 
map!); then if for every point x e B the map p~^{x) -> p^~^{x) induced by / is a 
homotopy equivalence, / itself is a fibre homotopy equivalence. Hypotheses on the fibres 
came from the proof making use of the functional spaces F^ and F '^ (with the compact 
open topology) and of the adjunction of the two functors exponentiation and product. A few 
years later in [12] he states the two following theorems where, with the same notations as 
above, p and p^ are now satisfying the WCHP. The first is called fundamental theorem 
of homotopy theory in [11], the second is a natural generalisation of the above theorem 
in [12]: 
• The map / over J5 is a fibre homotopy equivalence iff, considered as a map f '.E -^ E' 

it is an ordinary homotopy equivalence. 
• \f B has a numerable covering {Vx}A.eyi with each V̂  contractible to a point in B, then / 

is a fibre homotopy equivalence iff for any x e B, the map p~^ (x) -> p'~^{x) induced 
by /? is a homotopy equivalence. 

3.4.5. Between 1955 and 1958 B. Eckmann and P. Hilton had popularized through many 
colloquia and lectures at seminars the idea of a duality in the category of topological spaces 
which allows, starting from a given notion to get another one by reversing the arrows in 
diagrams, by changing the functor "product by a space" to the functor "exponentiation by 
this space", and vice versa: so that the reduced suspension corresponds to the loop space, 
the reduced cone to the space of paths with a fixed origin and fibrations to cofibrations. 
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That duality is at the origin of many researches just by trying to prove propositions known 
to be true in the dual situation. 

One of the first haloes met in topology, long before this word appeared, comes from 
the following context. Let (Z, zo) be a pointed space and let [0, 1] be pointed by 0. Dieter 
Puppe [49] in 1958 denoted by Z the space Z v [0, 1] pointed by the image of 1, and he 
called the point ZQ nicht ausgeartet Grundpunkt {— non-degenerate base point) when Z and 
Z have the same pointed homotopy type. He introduced that concept since he was able to 
prove that if (Z, XQ) and (F, jo) are pointed spaces, both with non degenerate base points, 
then the cone of the inclusion X w Y ^^ X x Y and the smash product X AY have the 
same pointed homotopy type. It is equivalent to say that the point zo e Z \^ non degener
ate, and that zo has a contractible halo [49, Hilfsatz 14, p. 332], or to say that the inclusion 
{̂ o} ^^ Z is eine h-cofaserung = /z-cofibration [11, Satz 3.13]. However /z-cofibrations 
and /z-fibrations - another name for the WCHP - correspond under Eckmann-Hilton dual
ity. 

The same mathematicians have often worked on both sides of the duality. So, for exam
ple, in a series of lectures on homotopy theory and half exact functors he gave in October 
1963 at the University of Amsterdam, Dold decided from the beginning to study both the
ories simultaneously, after he had given a precise and clear definition of the duality. Later 
T. tom Dieck, K.H. Kamps and D. Puppe would do almost the same when writing their 
Homotopietheorie [11]. Let us note also that in Quillen's Homotopical Algebra [51], fibra-
tions and cofibrations are not only simultaneously defined, but also each through the other. 
In order to show the influence a theory may have on its dual let us indicate the following 
result [15] where the HEE = Homotopieerweiterungseigenschaft stands for the dual of the 
CHP: let {V;L}AGyi be a numerable covering of the space B, and let A C i5 be a subspace 
such that for any X e Aiht inclusion AC^Vx^-^ Vx has the HEE; then so does A ^-> B. 

On the other hand, contrasting with the past, there are more and more exchanges be
tween topologists for the best benefit of topology, exchanges which are made possible at 
once since it becomes easy to travel from one University to another - at least in the Western 
World - and the same time, as a consequence of the growing of the number of professor
ships in Universities after the war, since it occurs that more than only one mathematician 
is working in the same field in the same University. A good example, as far as topology is 
concerned, is Heidelberg. For example, during a lecture at Amsterdam, Dold gave a suffi
cient condition for an inclusion to be a closed cofibration. Talking about that result once 
back in Heidelberg, he was told by Puppe that in fact the condition is necessary also: that 
is the way Satz 3.14 in [14] was estabhshed. 

3.5. The existence of ^-universal bundles - that is to say [56] principal bundles with an 
{n — 1)-connected total space, was known for all compact Lie groups after the works of 
Chern-Sun and Steenrod (cf. Section 2.6.2). 

3.5.1. In January 1955 John Milnor upset that landscape completely through two short 
papers [45, 46] where he got results, vahd for all topological groups and all n. Serre [54] 
had constructed a fibration with a given base, a contractible total space and an //-space 
as fibre. After modifying slightly that construction John C. Moore got for every space 
X 3. loop space Q(X) provided with the structure of a stricdy associative /7-space; its 
singular complex Sf2(X) then is a simphcial monoid, to which it is possible to apply the 
W-construction. He proved in that way the existence of a kind of oc-universal principal 
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bundle in the simplicial category with base WSQ{X) having the same homotopy type as 
the singular complex S{X) of X (Seminaire Cartan 1954-1955 exposes 18 et 19). In [45] 
Milnor was going much further since he proved here the existence of a true oo-universal 
fibre bundle with a given base provided that base was a connected countable simplicial 
complex in the weak topology, or a space of the same homotopy type. In [46] he went back 
to a more classical approach which consists in the search of an oo-universal fibre bundle 
with a given structure group (instead of a given base) and he proved that such a bundle 
always exists. 

What is noteworthy about both constructions of Milnor, is that both are very simple 
and explicit at once. The group G{X) in [45] having the homotopy type of the loop 
space of the complex X with base point XQ consists of the set of all stationary sequences 
{xo, x i , . . . , A:„, ...} such that xt and Xi^\ belong to the same simplex for any / ^ 0, and 
satisfying the equality Xn = XQ for n big enough, modulo a suitable equivalence relation 
which ensures that the quotient is a group (for the concatenation of sequences as operation). 
The total space of the oo-universal fibre G-bundle is the infinite join [46] GoGo- - oGo- -
with a suitable modified topology so that right translations by G is continuous on that 
space. 

Since the constructions are explicitly given it is (relatively) easy to make use of them. So 
Milnor shows that every principal G-bundle with base a countable complex X, is induced 
by a continuous homomorphism G(X) -^ G; he shows also that - if pc'. EG -> Be 
denotes the oo-universal principal G-bundle - then the E^ term of the homology spectral 
sequence with coefficients in a field is given by 

< ^ = 0 Hi,iG)0.-.®Hi„{G) 
i\-\ \-in=q 

a formula where the bar-construction appears, and which would be crucial later for the new 
proofs of Borel's theorems on the cohomology of the classifying spaces by S. Eilenberg 
and J.C. Moore and for their generalisations to //-spaces (R.J. Milgram, J. Shasheff). 

To any //-space H is associated via the Hopf construction its projective plane Piifi). 
If the //-space is homotopy associative it is possible to go further and to construct an ex
tension P2(H) C P3(//). The more the product of H is homotopically nice, the more is 
it possible to push further the sequence of these projective spaces PiiH) C P3(H) C 
• • • C Pk(H) C • • •. In fact, the Milnor construction BG is modelled on that for an infi
nite projective space Poo{G), and so this construction will serve as a pattern for the later 
generalisations. 

3.5.2. We have already seen that Steenrod proved in addition to the existence of an 
/t-universal principal G-bundle (for G a compact Lie group), a classification theorem for 
principal G-bundles with base a polyhedron of dimension ^ n, and that Chern-Sun, using 
a delicate result by Hu extended that theorem to bundles with base any compact ANR space 
of dimension ^ «. In Milnor's papers [45, 46] there are no indications that he worked in 
that direction too, unlike what Jean Dieudonne (op. cit.) asserts who credited him a result 
close to a theorem which would be stated and proved only eight years later by Dold. As 
a matter of fact, the end of his paper [13] is devoted to that problem. Adopting Alexander 
Grothendieck's point of view of representable functors, he defined, for each topological 
group G, a functor kG from the category of topological spaces up to homotopy into the 



626 M Zisman 

category of sets which assigns to any space X the set of isomorphism classes oi numerable 
principal G-bundles with base X (a fibre bundle is called numerable if there exists a 
numerable covering { VXIAGTI of the base such that the restriction of the bundle over V̂  is 
a trivial bundle for any X e A). Dold proves that the functor kc is representable, i.e. that 
there exists a space Be, unique up to homotopy, and a functorial bijection (in X) of sets 
[X, BG] -^ kciX). The proof consists of showing that Milnor's cx)-universal G bundle 
is in fact a numerable bundle and that its total space is contractible (and not only weakly 
contractible as Milnor proved). The theorems on the SEP allow him to complete the proof. 
Later he would extend these results in [14]. 

3.6. In 1957 A. Dold and R. Thom [17] working at the time on infinite symmetric prod
ucts encounter the following situation. For some continuous map (p\X -^ Y and a cov
ering of Y by subspaces U, they know that for some U the restricted map (p~^(U) -> U 
is a Serre fibration, but for others all that is known is that the usual exact homotopy se
quence of a bundle holds. What can be said about (pi That leads them to define, after a 
first attempt which H. Cartan thought was too complicated, a quasi-fibration as follows: 
it is a continuous surjective map p: E -^ B such that for each point b e B iht map 
TTiiE, p~^{b), y) -^ 7Ti{B, b) is an isomorphism, for any / ^ 1 and any y e p~^{b)\ for 
/ = 0 one requires to the sequence no{p~^{b)) -> 7ro(£') -> no{B) -> 0 to be exact as 
a sequence of pointed sets. So quasi-fibrations retain only the minimal property one could 
ask for a fibration in homotopy theory. 

The success of that concept comes from three fundamental properties which allow us 
to construct non-trivial quasi-fibrations: a gluing property, and good behaviour towards a 
particular kind of deformations and towards direct limits. To prove the last two properties 
is an easy exercise, but the first constitutes a difficult theorem. These properties allowed 
Dold and Thom to show that the maps they studied were quasifibrations so that they would 
apply the exact homotopy sequence to them. 

3.6.1. A little after (in 1958) quasifibrations were once more able to prove their effi
ciency via the Dold-Lashof construction [16] which is a generalisation of the classical 
Hopf construction for //-spaces. Dold and Lashof are starting from an //-space H with 
a two sided unit such that left multiplications are weak homotopy equivalences (which 
occurs for example when H is arc wise connected), and a quasi-fibration p:E -> ^ on 
which H is acting on the right, i.e. there exists a continuous map m: E x H -^ E over 
B such that the unit of H acts as the identity of E, and such that for any y e E ihQ map 
{y} X H ^ p~^{p(y)) induced by m, is a homotopy equivalence. They construct in that 
situation, inspired by the Milnor construction [46], a quasi-fibration DL(p) (a notation due 
to J. Stasheff) and a commutative square 

DL{p) 

where / and / are inclusions and where / is null homotopic. When, in addition, the 
//-space H is associative and is acting "associatively" on the quasi-fibration p: E -^ B, 
i.e. one has, in addition to the previous conditions, the equality jn(m(y, h), W) = m(y, hh') 
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for any y e E, h,h' € / / , then p is called a principal //-quasi-fibration. In that 
case, it turns out that DL{p) itself is a principal //-quasi-fibration, so by iterating the 
DL-construction infinitely many times and taking the direct Hmit one gets a principal 
//-quasi-fibration DLooip) • £̂ 00 -^ ^00, and the space Eoo is weakly contractible. (In 
fact, the topology of £"00 is not the direct limit topology: as in [46] that topology must 
be modified in order to ensure that H acts continuously on £"00-) In the particular case 
where we start with the quasi-fibration H ^^ pt, for an associative //-space H such that 
left translations are weak homotopy equivalences, we obtain in fine a principal //-quasi-
fibration denoted by EH -> BH with a weakly contractible total space EH. James Stasheff 
is very enthusiastic with regard to this result, and he writes in H-Spaces from a Homotopy 
Point of View (Lecture Notes in Mathematics vol. 161, Springer, 1970): 

This theorem is the result of considerable evolution. A restricted version appears in Steen-
rod's Topology on Fibre Bundles. Such a space BH "^as constructed by Milnorfor arbitrary 
topological groups and then by Bold and Lashofin the present generality. 

3.6.2. Let F be a locally compact space, G be a group of automorphisms of F and 
H be the //-space of all homotopy equivalences of H into itself. The inclusion G ^^ 
H is continuous provided the two functional spaces are equipped with the compact open 
topology. By functoriality one gets a commutative square 

EG ^ EH 

BG—T^BH 
<p 

Since it is proved in [16] that for groups the DL-construction and Milnor construction are 
the same, it then follows that fibre bundles with fibre F structure group G and base X 
are classified by the set [X, Bo]- Considering now two fibre bundles (£", p, X, F, G) and 
(£'^ /7^ X, F, G) with the same base space, fibre and group, classified respectively by / 
and f '.X —> BG, then, they are fibre homotopy equivalent iff the two maps ip o f and 
(̂  o / ' are homotopic. In fact, the theorem was proved in [16] only for X a polyhedron 
since in 1958 the results of [13] were still unknown; in addition the definition of a fibre 
homotopy equivalence given in [16] is stronger than the usual one, however equivalent if 
Z is a paracompact space (still a consequence of [13]). 

As early as 1955 Dold got a similar result in [12] for spheres as base of the bundles. 
In that case the fibrations are classified via the theorem of Feldbau [30, 31]. Using recent 
- at the time - results of Serre on homotopy groups of spheres, he produced families of 
fibrations with base 5"̂  fibre 5*", structure group On-^\ fibre homotopy equivalent but not 
equivalent. The lowest case appears for m = 4 and n = 3. 

3.6.3. Stasheff (op. cit.) states the existence theorem of the principal //-quasi-fibration 
EH -> BH (notations of Section 3.6.1) as the following: under the above hypotheses 
on / / , there exists a space BH and a weak homotopy equivalence H -^ f2BH, compatible 
with the multiplications up to homotopy. Then the statement appears as a particular case 
of a theorem by Graeme Segal (Categories and cohomology theories, Topology 13 (1974), 
293-312) about simplicial spaces. The connexion between the remark and our study comes 
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from a preprint of that paper, entitled Homotopy everything H-spaces where Segal said 
(without proof) that the proof proceeds from quasi-fibrations and their properties. Soon 
after, Volker Puppe who wrote at the beginning of his paper [50]: 

This note reflects part of the attempt to understand the main theorem in G. Segal famous 
preprint, 

shows, roughly speaking, that one can prove Segal's theorem using maps satisfying the 
WCHP (called Dold fibration in this paper), which allows him to obtain statements more 
pleasant and more precise than those using quasi-fibrations. By the way he had to use, 
following Martin Fuchs [33], a modified Dold-Lashof construction with Dold fibrations 
too, instead of quasi-fibrations. 
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CHAPTER 23 

A History of Spectral Sequences: Origins to 1953 

John McCleary 
Department of Mathematics, Vassar College, Poughkeepsie, NY, USA 

E-mail: mccleary@vassar.edu 

To the memory of Samuel Eilenberg 

In December 1946 Princeton University held a conference to celebrate its bicentennial. The 
sessions on mathematics were titled "The Problems of Mathematics''. Princeton enjoyed a 
leadership role in topology and a problem list [57], prepared by S. Eilenberg (1913-1998), 
came out of the conference, received at the Annals of Mathematics on July 1, 1947 and 
published in volume 50 (1949). The problems were chosen to give a "birds-eye view of 
some of the trends of present day Topology". This paper is concerned with a particular 
entry in this list: 

PROBLEM 17. What are the relations connecting the homology structure of the bundle, 
base space, fiber and group? 

Eilenberg mentions briefly recent results of Jean Leray (1906-) announced in the 1946 
Comptes Rendus [123-126]^ without proof and "indicating interesting new methods". 

Less than seven years later, May 3-7, 1953, Cornell University hosted an international 
conference titled Fiber bundles and differential geometry. This conference led to two prob
lem sets in algebraic topology; one [82] was prepared by F. Hirzebruch (1927- ) and treats 
questions of differential topology, especially characteristic classes; the other [141]^ was 
prepared by W.S. Massey (1920-) and treats questions of homotopy theory. There Massey 
writes 

It is now abundantly clear that the spectral sequence is one of the fundamental algebraic 
structures needed for dealing with topological problems. 

This paper describes the development of the spectral sequence and its impact on alge
braic topology during these years. Because we are discussing an algebraic technique, a 

^ Eilenberg reviewed these notes for the Mathematical Reviews - MR #8,49d; 8,49e; 8,166b; 8,166e. 
^ Received at the Annals of Mathematics on February 12, 1955. 
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key role is played by the problems against which these ideas are developed rather than the 
parallel development of theories where such a technique might apply (contrast [138]). We 
begin by establishing the background for the development of spectral sequences by tracing 
the roots of Eilenberg's Problem 17 and the other lines of research that were affected by 
the work of Leray, Koszul, Cartan, Serre, and Borel. This discussion splits into three parts, 
divided conveniently if not naturally, by events before, during, and after the Second World 
War. 

The sketch of algebraic topology before and during the war sets the scene. The problems, 
prevailing frameworks, and dominant figures determined the audience for the arrival of 
spectral sequences. 

Leray introduced spectral sequences (then called Vanneau d'homologie) in 1946. The 
middle third of this history treats Leray's work-̂  leading up to and describing his devel
opment of spectral sequences. The reception, transformation, and elaboration of Leray's 
work by Henri Cartan (1904- ) and Jean-Louis Koszul (1921- ) is also described in this 
section. 

The last part of the paper, beginning in 1950, concerns the Paris theses of Jean-Pierre 
Serre (1926- ) and Armand Borel (1923- ). The changes in algebraic topology brought 
about by their work demonstrate the considerable depth of Massey's remark. It marks a 
remarkable moment in the history of topology. The paper closes with a discussion of the 
spread of these developments. 

1. Algebraic topology before the Second World War 

Looking back from 1940, the then recent developments in algebraic topology display a 
remarkable vitality. New homology theories were being developed for larger and larger 
classes of spaces. The simplicial theory for polyhedra had produced a set of powerful 
results (e.g., fixed point theorems, Poincare duality) that set benchmarks for the newer 
approaches. The theories of J.W. Alexander (1888-1971) [1], E. Cech (1893-1960) [38], 
and S. Lefschetz (1884-1972) [115] offered successful extensions of the simplicial theory 
that functioned as tools for new applications of topological ideas. 

In 1935-1936 the higher homotopy groups were introduced by W. Hurewicz (1904-
1956) [100]."^ A central problem for algebraic topology was (and still is) the computation 
of these groups for well-understood spaces. Beginning with the first nontrivial example of 
an essential map between spheres of differing dimension [88], Heinz Hopf (1894-1971) 
extended his study of linking invariants to obtain nontrivial homotopy classes of mappings 
S^ri-i _^ ^in |-9Q-| Further progress was obtained by Hans Freudenthal (1905- ) [71] 
who proved his landmark suspension theorem. However, precious little more was known 
or even conjectured about the homotopy groups of spaces, even up to 1950 when Hopf 
addressed the Cambridge, Massachusetts International Congress of Mathematicians [96], 
asking "Wie kann man einen Uberblick iiber sie gewinnen . . . ? " 

Hurewicz's higher homotopy groups could be seen to be denumerable for a polyhedron 
by an application of the simplicial approximation theorem. In some cases, such as the space 

^ For more detail, see also C. Houzel's history of sheaf theory [98], and A. Borel's introduction to the forthcom
ing selected papers of Leray [17]. 
^ E. Cech had already defined the higher homotopy groups at the 1932 International Congress of Mathematicians 
in Zurich. However, these groups were treated then as a mere curiosity. 
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5 V 5^, the higher homotopy groups are not finitely generated. How the fundamental group 
influenced such cases and the general question of the higher homotopy groups of a simply-
connected space being finitely generated was still open in 1950. Hurewicz had also shown 
many connections between the homotopy groups and other invariants - the Hurewicz The
orem for homology, the fact that the Hopf fibration r]: S^ -^ S'^ leads to an isomorphism 
for / > 2, Tri(S^) = 7r/(5^), and a study of aspherical spaces (spaces for which the higher 
homotopy groups vanish) showing that their homotopy type and homology groups are de
termined solely by the fundamental group. 

In the mid 1930's the newly defined cohomology^ ring was also developed. Furthermore, 
Hassler Whitney (1907-1989) had introduced the notion of sphere spaces [201] and had 
made progress toward a classification of them using characteristic classes, introduced in
dependently by Whitney and E. Stiefel (1909-1978), a student of Hopf [182]. The Stiefel-
Whitney classes of manifolds are obstructions to the extension of famihes of vector fields. 
The combination of cohomology and homotopy groups (the lower-dimensional homotopy 
groups of Stiefel manifolds in this case) Hes at the heart of seminal work of Eilenberg [53] 
giving a general obstruction theory for the extension of mappings. The ideas of simple 
spaces (where the fundamental group acts trivially on the higher homotopy groups), local 
coefficients (introduced by K. Reidemeister (1893-1971) [152]), Hopf invariants, and the 
various classification theorems of Hopf [89] and Whitney [203] are all encompassed by 
Eilenberg's general method. 

Outside the centers of Princeton and Vienna, another approach to topological questions 
was being developed in France and Switzerland during the 1920's and 1930's. Recalling 
the differential methods of Poincare, Elie Cartan (1869-1951) published a series of pa
pers [22-24] in which the topology of a Lie group is used to deduce its global analytical 
properties. In his study of the linear independence of differential forms on a Lie group up 
to coboundary [22], Cartan conjectured that the resulting numbers ought to be the Betti 
numbers, that is, combinatorial invariants of a manifold could be deduced from the dif-
ferentiable structure. In 1931, Georges de Rham (1903-1990) proved Cartan's conjecture 
[153] establishing differential forms as a subtle tool for the study of algebraic topology. 
For Cartan the topology of Lie groups could be studied beginning with differential forms 
on the underlying manifold then restricting to left invariant forms, arriving finally at the 
exterior powers of the dual of the Lie algebra which represent such forms [23]. Applying 
these ideas, R. Brauer (1901-1977) carried out the computation of the Betti numbers of 
the classical groups [21]. The Cartan program of deducing the topology of Lie groups al
gebraically via the Lie algebra was completed in the work of Weil, Chevalley, Koszul, and 
Henri Cartan to be discussed below.^ 

2. Some algebraic topology during the war 

The interruption caused by the Second World War damped the vitahty of research in alge
braic topology but in no way did it stop it. Though communication became difficult during 
the war, considerable advances in topology appeared in these years. In countries at war, 

^ See Massey's article in this volume. 
^ See also the third volume of the series Connections, Curvature, and Cohomology by Greub, Halperin and van 
Stone, Academic Press, New York (1976). 
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mathematicians were by and large involved in the war effort. Without graduate students 
and communication with other mathematicians, progress slowed. 

Isolated from the war, Switzerland represents a notable exception. Four papers came out 
of the Swiss school of Hopf and his students during these years that are central to this 
account. 

The first and most important appeared in the 1941 Annals of Mathematics when the war 
had stopped pubhcation of Compositio Mathematica. In [92] Hopf introduced a general
ization of compact Lie groups, his notion of a P-Mannigfaltigkeit, which today is called 
an H-space? An H-space (or H-manifold in Hopf's case) is a space endowed with a con
tinuous multiplication and a unit with respect to this multiplication. The main application 
of this idea is to prove a generaHzation of a result of L. Pontryagin (1908-1988) [146] who 
had computed the rational homology of the classical Lie groups. Pontryagin proved that 
the homology was isomorphic to the rational homology of a product of odd-dimensional 
spheres by the direct construction of representing cycles for the homology classes together 
with a study of the mapping induced by the multipUcation on homology. Hopf showed 
that Pontryagin's result followed from the structure of an H-space and not the special case 
of having a Lie group. To establish his generalization of Pontryagin's theorem, Hopf an
alyzes the Pontryagin product on homology together with his Umkehrshomomorphismus 
which expresses the dual of the cup product by using Poincare duaUty. Hopf was mindful 
of Cartan's work [24]. The methods he introduced are global and obtain that the rational 
cohomology of the exceptional groups is that of a product of spheres, a result left open by 
the case-by-case analysis of Pontryagin and Brauer.^ Hopf acknowledged that he could not 
obtain the closed form of the Poincare polynomials for the exceptional groups in this way, 
but the corollaries (for example, fixed point arguments) followed directly. This paper is a 
landmark in algebraic topology. Hopf had shown how to reverse the flow of ideas to go 
from the topological to the analytic, thus demonstrating the potential of certain fundamen
tal topological and algebraic structures. 

The algebra generators of the rational homology ring of an H-space satisfy certain dual 
generating hypotheses set out by Hopf (his minimale, maximale Elemente) who conjectured 
that the minimale elements (primitives) span a generating set. Hans Samelson (1916-) 
[155] proved Hopf's conjecture by studying the duality between the Pontryagin ring and 
the intersection product ring. In modern terms, the duality is between indecomposables in 
cohomology and primitives in homology. Samelson appHed these results to study homo
geneous spaces G/U for U a closed subgroup of G, a compact Lie group. Viewing the 
subgroup as a cycle in G, one can ask if it bounds or not. A subgroup U of G is said to 
be not homologous to zero in G (nicht homolog 0) if a nonbounding cycle of U does not 
bound in G. Equivalently, the inclusion homomorphism U C G induces an injection on 
homology H^(U) -^ H^{G). Samelson proved that if U is not homologous to zero in G, 
then H*(G; Q) is isomorphic to //*([/; Q) 0 H^{G/U\ Q). 

Though Samelson's theorem treats the homological properties of the fibre space G -^ 
G/ U, it was not expressed in this generahty. Whitney's work on sphere spaces had unified 
many of the applications of topology to geometric questions and so their structure came to 
be taken as fundamental. A natural question is to express the relation between the various 
topological invariants of the base, fibre and total space of a sphere space. A major step in 

' The terminology H-space (for Hopf space) is due to Serre [165, p. 476]. 
^ Chih-Tah Yen computed the Poincare polynomials for the exceptional groups using techniques similar to 
Brauerin 1949 [213]. 
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solving this problem is taken in the thesis of Werner Gysin (1915-) [76], again a student 
of Hopf in Zurich. Gysin studied the homology structure of a sphere space composed 
of manifolds via a construction associated to a simpHcial mapping, say / : M -> B.li 
^ is a cycle on B, suppose that (f*(^^^))^^, the cycle Poincare dual to the image in 
C*(M) of the cocycle Poincare dual to f (this is the Umkehrhomomorphismus of Hopf) 
bounds in M. Then (/*(C^^))^'^ is in Cpj,d{M\ Q). Let dC = (/*(?^^))^^ and define 
h{0 = f(C) e Cp^d+\(B\ Q). If / is a sphere space with fibre S^, then h{^) is a cycle. 
The construction of Gysin takes the subgroup of Hp{B\ Q) of classes whose Poincare duals 
map to zero under / * to the quotient of Hpj^d+\{B\ Q) by the image of Hp^ci-\-i(M; Q) 
under /*. Gysin showed that this construction is well-defined and homotopy invariant. It 
follows that if the correspondence [^] h^ [h(^)] is nontrivial, the mapping / is essential. 
This fact generahzes one of Hopf's constructions of the Hopf invariant [91]. 

In modern parlance, Gysin had identified a form of the transgression homomorphism 
which, in the case of sphere spaces, is reaUzed as a long exact sequence called the Gysin 
sequence: 

. •. -> Hp{M', Q) -> Hp{B', Q) -> Hp-d-\{B- Q) -> //p-i(M; Q) -> • • •. 

Because Whitney's theory of sphere spaces was central to the application of topology to 
geometric questions, the results of Gysin mark a major advance. Like the fixed point the
orems of simplicial homology, Gysin's theorem set a benchmark for any new approach to 
the computation of the homology of fibre spaces and his paper [76] is among the most cited 
papers of the post-war research on fibre spaces. The Gysin sequence was taken up after the 
war by Norman Steenrod (1910-1971) in [176] who gave a cohomological proof. Andre 
Lichnerowicz (1915- ) gave a de Rham interpretation of the sequence [135] where the 
Gysin construction is realized as integration along a fibre. In another landmark paper [41], 
S.S. Chern (1911- ) and E.H. Spanier (1921-1996) removed the manifold hypotheses of 
Gysin and constructed the Gysin sequence for a fibre space of CW-complexes. 

The fourth important paper to appear during the war is again by Heinz Hopf [94].^ 
Whitney reviewed it for Mathematical Reviews stating, 

This paper is, in the reviewer's mind, one of the most important contributions to com
binatorial topology in recent years. It gives far reaching results concerning the rela
tions between the fundamental group, the first and second homology and cohomology 
groups, and the products between these groups, with beaudful and simple methods. 

Hopf proved a remarkable relation: For a polyhedron Z, let /i: ni {X) -> Hi {X) denote the 
Hurewicz homomorphism; then 

H2{X)/h{7i2{X)) ~Rn[F, F]/[F, Rl 

where Tt\ {X) = F/R with F, a free group and R, the relator subgroup for 7T\ (X). This the
orem advances to higher dimensions Poincare's relation, H\ (X) = 7t\ {X)/[Tt\ (X), TTI (X)]. 
Hopf goes on to extend this relation for spaces with ni (X) = {0} for 1 < / < n, for which 

^ In the Proceedings of the University of Michigan Conference of 1940 [208], a two page announcement of the 
results of this paper appears, dated May 14, 1940, and "arriving from Zurich too late to have been presented at 
the conference". 



636 J. McCleary 

the fundamental group determines the quotient Hn{X)/h{7Tn{X)). The manner in which 
the quotient is determined was left unsaid except in the case of « = 2. 

These results mark the beginning of the study of the homological study of groups, a sub
ject founded simultaneously during the war by Hopf and Beno Eckmann (1917- ) [47] 
in Switzerland, by Freudenthal [73] in the Netherlands, by D.K. Faddeev (1907- ) in 
the former Soviet Union [68], and by Eilenberg and Saunders Mac Lane (1909- ) in the 
United States. Hopf's work was the basis of the famous wartime collaboration of Eilen
berg and Mac Lane whose resulting stream of papers introduced the cohomology of groups, 
Eilenberg-MacLane spaces, the bar construction, and other important notions in algebraic 
topology. In Section 17 of their paper [60,1], the spaces K{n, m) are introduced to prove 
that if 7r/(X) = {0} for 1 ^ / < m and m < i < r, then /f/(X; G) = Hi{K(n, m); G), 
where 77 = 7r,„(X) and i < r, and Hr(X)/h(nr(X)) = Hr{K{n,m)). This general
izes the scheme observed by Hopf to higher dimensions. Thus the homology groups of the 
K{n, m) measure the failure of the Hurewicz homomorphism to be an isomorphism in 
these dimensions. The computation of the homology groups of the K (ff, m) later becomes 
an important ingredient in the analysis of homotopy groups. 

Outside Switzerland, other developments were published during the war. Early on 
Hurewicz [100] had appreciated the relations between homotopy groups implied by a map
ping with the homotopy lifting property. In an effort to clarify this relation, Hurewicz and 
Steenrod [102] gave a broad definition of fibre space ̂ ^ from which the homotopy lifting 
property follows. As corollaries of this definition they prove the homotopy equivalence of 
fibres over different points and the long exact sequence of homotopy groups. ̂ ^ The def
inition is based on the idea of a slicing function that satisfies certain properties stated in 
terms of a metric space structure on the base. The examples given in [102] include covering 
spaces, the Hopf maps, and homogeneous spaces. 

Others sought to isolate the foundations of the bundle structure. In a more geometric con
text Ch. Ehresmann (1905-1979) and Jacques Feldbau (1914-1945) took as fundamental 
the notion of a connection on a manifold. They studied Whitney's sphere spaces and ex
tracted the role of the structure group. This led to classification theorems, in particular, the 
theorem of Feldbau [70] which reduces the problem of classification for bundles over 5" 
to the computation of the {n — l)-st homotopy group of the structural group. Eckmann, 
another student of Hopf, studied the homotopy Hfting property in the case of G -> G/U, 
where [/ is a closed subgroup of a compact Lie group G [44]. 

During the war Steenrod carried out a program of research that culminated in his cele
brated book. The Topology of Fibre Bundles [179]. In [173] he considered tensor bundles 
over a manifold M. The obstructions to the existence of tensor fields on a manifold are 
found in an extension of Whitney's theory of characteristic classes to non-Abelian funda
mental groups using local coefficients. Steenrod returns to local coefficients in [174] to 
explore these more sophisticated tools as an extension of ordinary homology. 

In [175] Steenrod investigated Whitney's sphere bundles, admitting that the "concept of 
fibre bundle is somewhat complicated". His definition for this paper follows Ehresmann 
and Feldbau [51]. He included an interesting section in his opening discussion on the anal
ogy between extensions of groups and fibre bundles and likened the classification of bun
dles to the classification of group extensions. The main result of the paper is that if 5 is a 

'^ See the paper of M. Zisman in this volume. 
' ' Exact sequences were not part of the mathematical parlance of the time, however. 
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complex and / ^ dim B, then the sphere bundles over B are in one-to-one correspondence 
with the homotopy classes of maps of 5 to a space MJ^, the space of great /c-spheres on the 
{k + l-\- l)-sphere. The homotopy theoretic classification of bundles via classifying spaces 
emerges as a major theme in topology after these developments. 

We next take up our main story, the work of Leray during and after the Second World 
War. 

3. Leray 

Before the war, Jean Leray had made substantial contributions to the mathematical study 
of fluid dynamics. He had participated in the mathematical circle around Elie Cartan.^^ 
Among those contributions is a paper [134] written with JuUus Schauder (1899-1943) 
in which they extend the fixed point methods of Brouwer to Banach spaces in order to 
establish the existence of solutions of certain classes of differential equations. 

At the outbreak of the war, Leray was an officer in the French Army. After France was 
occupied by the Germans he was arrested by the Germans and was taken to an officers' 
prison camp in Austria, OFLAG XVIIA, where he spent the remaining war years. Une 
universite en captivite was organized with Leray as director for which the captors provided 
library access from the University of Vienna. Leray feared that his specialty of applied 
mathematics might lead to forced support of the German war effort, and so he admitted 
only his experience in topology as his focus of research and teaching. 

Leray's fixed point work with Schauder [ 134] utiUzed an approximation procedure based 
on the classical Brouwer theorem that, in a limit, proved the desired result for a Banach 
space. Leray sought to avoid having to go through the simplicial theory and so chose to 
work solely at the level of the topological: From his course [122]: 

Mon dessein initial fut d'imaginer une theorie des equations et des transformations 
s'appliquant directement aux espaces topologiques. J'ai du recourir a des precedes nou-
veaux, renoncer a des precedes classiques, et il m'est impossible d'exposer cette theorie 
des equations et des transformations, sans, d'une part, donner une nouvelle definition 
de I'anneau d'homologie et d'autre part, adapter les raissonnements cites de M. Hopf a 
des hypotheses plus generates que les siennes. 

The results of his work appeared in four Comptes Rendus notes in 1942 [118-121] and the 
complete Cours de Topologie Algebrique professe en captivite was published in Liouville's 
Journal in 1945 [122]. 

Among the sources Leray acknowledges in his introduction are the papers of de 
Rham [153], Alexander [2], Kolmogoroff [106], Alexandroff [4], and Cech [38] on co-
homology, as well as Hopf's seminal paper on H-spaces [92]. Leray takes the cohomol-
ogy ring as the fundamental topological invariant of study and names his theory I'anneau 
d'homologie, reserving the term groupes de Betti for the homology groups (following 
Alexandroff and Hopf [5]). 

Leray's basic object is the couverture}^ To define a couverture Leray begins with an 
abstract complex, a graded module K over a ring /?, required to be finitely generated and 

^ Leray had written up Cartan's lectures leading to the book, La Methode du Repere Mobile, la Theorie des 
Groupes Continus et les Espaces Generalises, Hermann (1935). 
^^ Borel writes in [17]: "I do not know of any translation of couverture in the mathematical literature". In his 
reviews of these papers, Eilenberg uses cover for couverture, but this is obviously inadequate. I follow the notation 
of [17] in this survey of Leray's work. 
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equipped with a differential d of degree 1. An abstract complex K is made concrete over a 
space X if there is an assignment to each nonzero keKofa. nonempty subset of X, called 
the support of k, written \k\ C X, and required to satisfy \d(k)\ C \k\. A basic operation 
on concrete complexes is that of taking a section over a subspace of X. Let F c X and K 
a concrete complex over X, then one obtains a new concrete complex FK with supports 
|F/:| = F n |A;|. It is necessary to modify K to ignore elements of K whose supports do 
not meet F. Let KX-F = {k e K: \k\r\ F = 0}. Then KX-F is a submodule of K, closed 
under the differential. One defines the complex FK = K/KX-F- When F = {jc}, we 
write xK for {x}K. Given two concrete complexes K and K^ over X and a point jc G Z, 
consider 

rjc'.K ^R K' -> xK^RxK' 

givenbythetensorproductofthequotients. If/zisin7^(8)Ar',let |/z| = [x e X\ rx(h) ^0}. 
This defines a concrete complex KOK\ the intersection of Â  and A'̂  

A couverture is a concrete complex jfiT for which all supports are closed and ;c ̂  is acyclic 
for all X eX, that is HP(XK) = {0} for all p > 0 and H^(xK) = R with generator the 
unit cocycle, K^ = J^^ x^'", the sum of the generators of degree zero. 

If X is normal, then the collection of all couvertures on X is a differential graded 
/^-algebra with product given by O. Its cohomology is Leray's anneau d'homologie of 
Z, H{X, /?). If a couverture has acychc supports, then H{X, R) may be computed from 
that of the underlying abstract complex. 

Having set up his cohomology theory, Leray turns to applications. Most are the classical 
theorems of fixed point sort (his theorie des equations), thus giving a new way to obtain 
his results with Schauder [134]. Leray draws particular attention to his abihty to prove the 
main theorems of Hopf on manifolds with multiplication [92] in this context. 

As pointed out later by H. Cartan [28] and by Borel [13], for locally compact 
spaces, Leray's homology ring agrees with Alexander-Spanier cohomology, introduced by 
Alexander in [2] and extended in the Ph.D. thesis of Spanier [172]. In his 1950 basis-free 
exposition of couvertures [130], Leray points out that Cech, Alexander-Spanier, singular 
and de Rham cohomology theories all admit a description as un anneau d'homologie (see 
also [17]). 

At the heart of Leray's development of his cohomology theory there is an argument, his 
Lemme 2 of No. 4 in [122], in which he proves that the product of a given complex with an 
acyclic complex has the same homology as the given complex. The lemma shows that the 
product of point sections of two couvertures xKOxK' is again acyclic. This result is key 
to Leray's proof of the Kiinneth theorem [122, Theorem 9]. The argument is an induction 
on the weight of a cocycle, which, in this case, is the maximal degree of an element of the 
acyclic complex. The same argument occurs in four places in [122] and it is the precursor 
of what will become the underlying structure of a spectral sequence. 

Leray's work drew the attention of Henri Cartan who returned to Strasbourg at the end 
of the war. Cartan, like Andre Weil^^ (1906-1998), saw the need for the consolidation of 
the main results of algebraic topology. His first paper on algebraic topology [26] is based 
on Lefschetz's extension of Cech theory for locally compact spaces. He makes the observa
tion that, after setting up the basic properties of the homology theory, "subsequent results 

^̂  Weil reports in [190, Vol. 2, p. 527] that Bourbaki was seriously considering a treatise on "topologie combi-
natoire" in July 1945. 
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are deduced from these properties alone, thus avoiding any additional use of complexes or 
assumptions about triangulability".^^ Around this time Eilenberg and Steenrod pubUshed 
their axioms for a homology theory [65] in which the panoply of homology theories devel
oped since Poincare were seen to compute uniquely the homology of reasonable spaces. 
This result that ought to have put an end to the development of homology theories in the 
face of the generahty of Lefschetz-Eilenberg singular theory was met with a cool reception 
by Weil. He [190, Vol. 2, p. 526] reports meeting with Eilenberg in New York in 1944 and 
discussing the work on axiomatic homology of Eilenberg and Steenrod: 

ma premiere question fut pour demander si celle-ci rendait compte des theoremes de de 
Rham; ma deception fut grande d'apprendre qu'il n'en etait rien. 

Weil goes on further to record having met Leray in July 1945 and hearing about Leray's 
"cohomologie a coefficients variables", the next step in Leray's research. 

Already in [122, p. 114] Leray had studied the effect of a mapping (representation) 
(p: E^ -> £ at the level of the couvertures. Let 0"^ be the inverse transformation of 0, 
generally multivalued, and define (j)~^{k) when k is ^ forme de E, that is, a class of an 
element in a couverture on E. The mapping 0 effects a change of supports for a concrete 
complex with |0~^(/:)| = 0~^(|/:|), and hence, defines a new concrete complex on E\ 
Though one obtains a complex in this way, a couverture need not go over to a couverture. 
The generahzation of Steenrod [174] of homology to local coefficients offered a model for 
Leray that could be extended and incorporated into his cohomology theory. The result was 
a series of remarkably original notes appearing in Comptes Rendus in 1946, where Leray 
introduced sheaves ifaisceaux^^) and spectral sequences. 

These developments are aimed at the study of fibre spaces, though the methods apply 
more generally to any continuous mapping of locally compact spaces. A sheaf (faisceau) B 
of modules over a ring R over a space X associates to each closed subset F C X a module 
B(F), and to each inclusion of closed subsets Fi C F2 C X, a homomorphism of modules 
^(^2) -^ ^3(F\), subject to certain axioms. The pairing of a sheaf with a couverture gives 
rise to a complex KOB leading to cohomology with coefficients in the sheaf //(X, B). The 
forms are expressions £_^Q, baka where bo( E ;B(|/̂ Qr |). The main example of Leray associates 
to a mapping (/>: E^ -^ F , the sheaf of /^-modules F i-> H^{(j)~^ (F), R) for each closed 
subspace F C F. Leray sought to analyze the cohomology of F ' as approximated by the 
cohomology / / ( F , {F h-> / / (0 - i (F ) , /?)}). 

The relation between the approximation and the target is expressed by a sequence of 
subquotients of the approximation: In [124] Leray described a family of submodules 

0= Ĝ f c Q',' c ••• c Ĝ L̂  c p;;̂  c ••• c Pf̂  

C HP{E, {F h-> H^{(I)~\F), R)}). 

There also exist submodules 

0 = £-1'/^+^+! c F^'^+^ C • • • C F^+^-^'^ C F^+^'^ = HP-^^{E\ R) 

^^ From Steenrod's review, MR#7,138a. 
^̂  Weyl, in his 1954 ICM address on the work of the Fields Medal winners, Kodaira and Serre, remarked that 
"Princeton has decreed that 'sheaf should be the English equivalent of the French 'faisceau'." 
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along with isomorphisms 

Leray refers to all of this structure as Vanneau d'une representation. The definition of the 
modules bears a resemblance to the weight argument of [122]: Classes of total degree /7-|-^ 
may come from classes in H"\E, {F \-^ ^"(0~^(F) , /?)}) for any m -\- n = p -\- q and 
so may be assigned a weight m. Relating the weights to classes of HP'^^(E\ R) as well as 
determining the subquotients of the cohomology of E in the sheaf of cohomology rings of 
the inverse images is the technical triumph that appeared, rather obscurely, in the sketchy 
Comptes Rendus notes. 

The immediate applications of this structure that Leray announced in this note are to 
obtain the Gysin sequence [75] and the results of Samelson [155] on the action of a compact 
group acting on a sphere. The third and fourth notes treat further applications: the Poincare 
polynomial of a mapping, Poincare duahty among the modules P/ '^ , product formulas, 
and the identification of the Gysin homomorphism with Ad, and finally, an analysis of the 
cohomology of a homogeneous space given by a Lie group modulo a subgroup of maximal 
rank. 

Eilenberg^^ reviewed Leray's 1946 Comptes Rendus notes very briefly and somewhat 
cryptically. The next year, however, Leray's work was transformed at the hands of Jean-
Louis Koszul and Henri Cartan. In an elegant note in the Comptes Rendus of 1947 [107], 
Koszul extracted from Leray's description of the homology ring of a mapping an algebraic 
construction that gives rise to all of the structure. He begins with a Z/2Z-graded differential 
ring (A, J) , together with a decreasing multiplicative filtration 

'(ZBP(Z BP-^ C ••• C A, 

that is, the collection {BP} 
(1) satisfies B^ • ^^ c 5^+^, 
(2) has trivial intersection, 
(3) has union all of A, and 
(4) the BP are preserved under the differential. 

To such a structure Koszul associates subrings 

Cf :=^{xeBP \d{x)eBP^'] 

and D? = diC?'')- Let CP = B^ (1 kcrd and DP = BP H d(A). This gives a sequence 
of inclusions 

'•'DC^ DC^^^D"-DCP DDPD'-'DD^^^DD^ D-". 

Koszul sets £r^ = C^/{D^_^ + C,^+/) and SP = CP/(DP + C^"^). The differential 
induces a differential d,-: £f -^ ^r ^ on each 8r and the main result of the note is that 
£r+\ = H{£r,dr)> The sequence {Er) is called la suite d'homologies of A. Furthermore, 
Koszul identifies a decreasing sequence of submodules of H{A,d), HP, defined as the 

^'^ MR#8,49d; #8,49e; #8,166b; #8,166c. 
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collection of homology classes containing a cycle in BP and £P = HP/HP'^K Koszul 
ends the note with remarks on the morphisms between such filtered differential rings. 

In a subsequent note [108], Koszul considered an additional grading on A by degree 
giving everything in sight a bigrading. The main example is the exterior algebra generated 
by the dual of the Lie algebra associated to a compact, connected Lie group. When U C G 
is a closed connected subgroup of G, then a filtration may be defined from the left invariant 
forms on G that come from U. Koszul notes that 

le calcul de la suite d'homologies (Sr) de A donne I'anneau d'homologie a coefficients 
reels de 1'application canonique p dc G sur G/U ainsi que sa structure. 

He identifies in a footnote £r'^ = P^^[lQ^/\ in Leray's notation. Koszul's main apphca-
tions of this structure are to the determination of relations among Poincare polynomials and 
to the case of U, a one-dimensional subgroup. The expHcit decomposition of the cochain 
complex in this case allowed Koszul to classify via the filtration the possible cases in terms 
of Lie theory. This theme was explored thoroughly in his thesis [109]. 

June 26 to July 2, 1947, the Collogue International de Topologie Algehrique took place 
in Paris. The participants included H. Cartan, Leray, Ehresmann, Freudenthal, Hirsch, 
Hodge, Hopf, Koszul, de Rham, Stiefel, J.H.C. Whitehead, and Whitney. The published 
papers of Cartan [28] and Leray [127] differ considerably from their delivered talks. By 
this time Cartan had received a letter from Weil, then in Brazil, in which he sketched his 
celebrated proof of the de Rham theorem [190, Vol. 2]. Cartan, in his pubHshed short report 
to the conference, offered his criticism of the work of Eilenberg and Steenrod axiomatizing 
homology: 

Je voudrais neamoins tenter de caracteriser ici en quelques lignes la tentative qui avait 
fait Tobjet de mon expose du 27 join 1947.... Cette theorie differe de celle d'Eilenberg 
et Steenrod ... sur plusieurs points importants. Tout d'abord, elle ne vise a axiomatiser 
que la cohomologie au sens de Cech, ou au sens d'Alexander ... au contraire, la theorie 
d'Eilenberg-Steenrod se donnait pour but d'englober toutes les theories de I'homologie 
ou de la cohomologie. Precisement a cause de sa generalite, la theorie d'Eilenberg-
Steenrod ne pouvait comporter de theoreme d'unicite que pour des espaces de nature 
tres particuliere; tandis que I'interet principal de notre theorie reside dans ses theoremes 
d'unicite. 

The potential for application of the methods of algebraic topology to questions in analysis 
rested on having analytic means apparent and accessible at the level of cohomology, as 
in the de Rham theory. Furthermore, the unique properties of spaces such as manifolds, or 
polyhedra, leading to duality theorems, are glossed over in the global approach of Eilenberg 
and Steenrod. Cartan had recognized the potential of Leray's theory of couvertures and 
faisceaux and he began a program^^ to clarify the foundations. Between the lecture in 
Paris and the publication of the proceedings, Cartan gave a course on algebraic topology at 
Harvard (Spring 1948) in which he presented a version of Leray's complexes with supports. 
In the proceedings paper Cartan sketched his program, naming the relevant topological 
structure carapace. 

Koszul^^ recalls Leray's lecture treating the action of a discrete group on a topolog
ical space in which the Cartan-Leray spectral sequence is introduced. He writes: "Cela 

In a lengthy footnote in [17], Borel discusses Cartan's various versions of these foundations. 
^̂  Letter of April 30, 1997. 
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etait tout inattendu et a fait sensation". A short note coauthored by Cartan and Leray [34] 
sketching this appHcation appeared in the proceedings. Leray's proceedings paper is based 
on his courses at the College de France 1947/48. Already in this paper, he has adopted 
the algebraic refinements of Koszul [107] and the "perfectionnements" of Cartan on dif
ferential graded and filtered algebras. Leray here uses the terminology Vanneau spectral 
d'homologie de Vanneau filtre for the present-day spectral sequence. 

Cartan published two important notes in the 1947 Comptes Rendus [27]. In them he 
introduced formally the definition of a filtered differential graded algebra and the asso
ciated spectral sequence, here called une suite de Leray-Koszul. In the second note he 
introduced the spectral sequence of a double complex in the case of a group acting on a 
space to obtain the Cartan-Leray spectral sequence. This spectral sequence has as £'2-term 
//*(G, //*(A)), where (A, d) is a differential graded algebra on which G acts, and it con
verges to //*(G, A). In the case of a group G acting properly discontinuously on a space £", 
then the £^2-term is H*(G, H*(E; R)) and the spectral sequence has anneau terminal the 
associated graded ring for a filtration of H*(E/G; R). Cartan claims results of Hopf [94], 
Eilenberg-MacLane [60], Eckmann [47], and Freudenthal [73] as consequences, espe
cially in the case of the fundamental group acting on the universal cover. Of interest in 
these notes is the emphasis on the algebraic structures, coming from the known cochain 
algebras, but here presented in considerable generality. Furthermore, the spectral sequence 
of a double complex is introduced as well as the passage from the homology of a differ
ential graded object for coefficients to coefficients in that differential graded object via a 
spectral sequence. 

Around this time some new tools emerged in the study of algebraic topology, and, 
in particular, for fibre spaces. The terminology of the exact sequence, found first in 
Hurewicz [101] and Eilenberg and Steenrod [65], was formalized in [104]. In [189] 
H.C. Wang (1918-1978) solved another special case of the Eilenberg's Problem 17: Let X 
be a fibre space over 5" with fibre F. Then there are isomorphisms Hr{X) = Hr{S^ x F) 
when F has dimension less than n, and if F has dimension n — \ with Hn-i(F) = Z, 
then either Hr(X) = HriS"" x F) for all r, or Hn(X) = {0}, Hn-i(X) = Z/mZ, and 
Hr(X) = H,iS^ X X) for r j^ n,n — I. The integer m is interpreted by Wang at the 
level of homotopy groups. The result may be summarized in an exact sequence (the Wang 
sequence) 

. . . ^ Hn^k(X) -> Hk(F) -^ Hn-^k-i(F) ^ Hn+k-i(X) ^ .. •. 

The analysis is based on the properties of the homology of pairs. 
In a 1948 Comptes Rendus note [78], Guy Hirsch (1915-1993) introduced another piece 

of structure into the study of fibre spaces - the transgression. Hirsch considered the map
pings induced by the projection P : E -^ B and the inclusion of a fibre I: F -^ E on 
homology with rational coefficients. If a class z in Hp(F; Q) lies in the kernel of /*, con
sider a cycle representative for z, say Z, and a chain c on £" with d{c) = Z. The chain on 
B given by P* (c) is a cycle and the choices made in this process can be rendered irrelevant 
by considering the class of P*(c) in Hp-^i(B; Q)/P^Hp-^i(E : Q). The homomorphism 
determined by (ker/* C HpiF; Q)) -^ / /p+i(5; Q)/P*/fp+i(£ : Q) is the (homology) 
transgression?^ Hirsch also relates this homomorphism to dual classes in the cohomology 

^^ The term is introduced in [109]. 
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of B and proves that the characteristic cocycle of Whitney [202] and Steenrod [175] is 
obtained by this construction; this is defined as a cohomology class representing a map
ping Hh-ir\{B\ Q) -> Hh{F\ Q). A different formulation of characteristic cocycles appears 
earlier in the paper [39] of Chern in the context of differentiable forms. Chern gives three 
definitions of basic characteristic classes, the third of which is a dual to Hirsch's definition. 
Both Cartan and Koszul take up the transgression in later work. 

In 1948 Claude Chevalley (1909-1984) and S. Eilenberg pubhshed [43] an algebraic 
treatment of the cohomology of Lie groups, taking the Lie algebra as basic object and 
extracting a cohomology theory for Lie algebras based on EHe Cartan's algebraic charac
terization [23] of the de Rham complex of left invariant differential forms. Chevalley and 
Eilenberg sought to place this cohomology theory of Lie algebras in the same framework 
as Hochschild's cohomology theory of algebras. The underlying complex for this investi
gation is an exterior algebra with basis the dual of the given Lie algebra, together with a 
differential. The doctoral thesis of Koszul [109], submitted in June, 1949, takes off from 
this point to explore the potential of this algebraic rendering of the cohomology of Lie 
groups for the study of homogeneous spaces. The main sources of Koszul's study, rec
ommended to Koszul by Henri Cartan, are [23] of E. Cartan, [92] of Hopf, and [155] of 
Samelson. 

After giving algebraic derivations of the theorems of Hopf and Samelson, Koszul stud
ied the relative cohomology algebra for pairs of Lie algebras, b C a. This was defined 
by E. Cartan in [23] using the cochains on a that are said to be orthogonal to b, that is, 
in the algebra of linear functions on a that vanish on b. A cochain is called b-invariant, 
if, for all Z? e b, the algebra extension of the homomorphism a \-^ [b,a] vanishes on the 
cochain. The subalgebra of cochains orthogonal to b and b-invariant make up the relative 
cochains, and they form an exterior algebra, closed under the differential. This gives the 
relative cohomology H*(a; b). Koszul observed that there is a filtration of the cochains on 
a by ideals B^ of cochains of degree at least p, decomposable as a product with at least p 
cochains of degree 1 orthogonal to b. The subsequent spectral sequence is analyzed from 
the filtered differential graded algebra (chez Cartan [30]) through £"0 and E\ to identify, 
for b a reductive subalgebra of a, £2 = //*(b) (8) //*(a; b) with Valgebre terminale the 
associated graded for the filtration of //*(a). The immediate application of the spectral se
quence is to the case when the inclusion b C a is nonhomologous to zero, that is, when the 
homomorphism induced by the inclusion, //*(a) -> //*(b), is surjective. Koszul proves 
the analogue of Samelson's theorem [155] for Lie algebras. The next step is the analysis of 
the general case, when /* : //*(a) -> //*(b) is not onto. In the cadre of spectral sequences, 
this is the case of nontrivial differentials. Koszul introduces the term transgressive for co-
cycles z of b whose image among the cocycles of a is a coboundary lying in the relative 
cocycles for the pair (a, b). The linear mapping ^ :{TP C HP{h)) -> T/^+Ha; b)/Mi, 
where TP is the ideal of transgressive elements of degree p and M\ is the ideal of coho
mology classes which contain a cocycle in the invariant coboundaries of the first filtration. 
Koszul shows that ker ^ = im /* and that, for a reductive subalgebra b in a, all primitive 
elements of //*(b) are transgressive. In the last few pages of the thesis, Koszul thoroughly 
analyzes the edge homomorphism thus identifying the image of //*(a) in //*(b) via the 
spectral sequence. In a footnote Koszul recalls Hirsch's analogous results [78] on charac
teristic cocycles. 

The powerful use of algebra in Koszul's thesis demonstrated that purely algebraic ob
jects, together with their apparent additional structure and associated objects like the spec-
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tral sequence, gave a detailed picture of the workings of geometric phenomena, in par
ticular, the topology of homogeneous spaces. In the framework of Lie groups, where Lie 
algebras are available, the first nontrivial cases of fibre spaces, homogeneous spaces, had 
been analyzed. The next step in a more general direction was taken by Cartan. 

It is important to recall that the Lie algebra methods work over the field of coefficients M. 
In the late 1940's, Steenrod introduced the Steenrod squares and reduced powers for sin
gular cohomology with coefficients in F^, p a prime [176, 180]. By 1951, Wen-Tsun Wu 
(1919-) and Rene Thom (1923-) had shown the relevance of the squaring operations for 
characteristic classes and Steenrod had demonstrated their use in detecting essential map
pings. The computation of the mod p cohomology of spaces together with their squaring 
or reduced power operations for fibre spaces and Lie groups held considerable promise. 

Cartan had spent the spring of 1948 at Harvard where he lectured on topology. Once 
back in Paris, Cartan established his famous seminar,-̂ ^ the Seminaire Cartan which met 
from 1948 to 1964. The first three years of topics dealt with algebraic topology. In the first 
year, the topics were foundational, dealing with simplicial, singular, and Cech theories. The 
last few lectures of Cartan, numbered 12-17, were not pubHshed in the 1955 reissue of the 
notes by the Secretariat mathematique. These dealt with the theory of sheaves and cara
paces, drawing from his lectures at Harvard, but still in a preliminary form for Cartan.^^ 
Among the first participants of the 1948/1949 seminar were J.-P. Serre, J. Cerf, P. Samuel, 
J. Dixmier, and J. Frenkel. The second year of the seminar treated fibre spaces and homo-
topy groups and contains lectures by Serre, A. Borel, A. Blanchard, and Wen-Tsiin Wu. 
The final lectures of this year dealt with Cartan's work on principal bundles and homo
geneous spaces, extending the results of Leray, Hirsch, Koszul, Chevalley, and Weil to be 
discussed below. The lectures of the Cartan Seminars remain among the clearest exposi
tions of certain topics in algebraic topology. The role of this level of exposition is crucial 
in this account. The atmosphere of consolidation of a growing subject and the wealth of 
challenging problems open to the initiated made the proceedings of the Seminaire Cartan 
a window of opportunity to a maturing field. 

4. The Summer of 1950 

The summer of 1950 began with a major conference event in the history of topology, the 
Colloque de Topologie (espaces fibres), which took place in Brussels, 5-8 June, organized 
by Guy Hirsch. This conference provides a glimpse of the state of progress on the problem 
of the homology of fibre spaces. The proceedings^^ opens with a note of appreciation to 
Elie Cartan "whose works had opened the way for much of the research presented in the 
course of the meeting". The pubHshed speakers were Hopf and Eckmann from Switzerland, 
H. Cartan, Leray, Ehresmann, Koszul from France, and Hirsch from Belgium. 

In two landmark papers given at this conference Cartan [30] gave his penetrating anal
ysis of the transgression for homogeneous spaces and principal fibre spaces. A principal 
fibre space E -^ B with structure group G as fibre, is a G-space E with B as its orbit 
space. Based in part on Koszul's thesis and work of Chevalley [42] and Weil,-̂ "̂  Cartan ex-

^̂  See [160], volume 3 for a review of the seminar. 
•̂̂  See [69], the Ph.D. thesis of Florence Fasanelli for an analysis of the contents of these lectures. 

2^ Colloque de Topologie (espaces fibres), Bruxelles (1950), CBRM, Liege (1951). 
^^ See [190] and Weil's endnotes for a version of his unpubUshed work on this subject. 
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posed an algebraic formalism on which the structure of the cohomology of a differentiable 
principal bundle may be founded. This approach takes as fundamental differential graded 
algebras along with operators on such. The basic construction is the so-called Weil alge-
bra^^ which extends the Chevalley-Eilenberg complex (yl(0*), J) , the exterior algebra on 
the dual of the Lie algebra g, to a tensor product (71(0*) 0 5'[g*], 8) with 5[0*] the sym
metric algebra on g*. The differential 8 is defined explicitly from the bracket on the Lie 
algebra. Weil had introduced the Weil algebra to expUcate how a connection together with 
the transgression could relate certain cohomology classes to the Chern classes in the par
ticular case of unitary bundles. Chevalley had shown, using Koszul's work, that primitive 
elements in the Weil algebra were transgressive in the reductive case. Cartan elegantly set 
out this framework in his papers. If ^* (£ ) denotes the differential forms on E, then the 
invariant forms in f?*(£') determine its cohomology and furthermore, the basic elements 
of ^*(£') determine the cohomology of B. (Cochains are basic if they are invariant and 
also vanish under interior products with all elements of g.) 

Chevalley writes in his review^^ 

At this stage, the topology may be thrown out, leaving only the algebraic facts in evi
dence. 

The principal result is that the Weil algebra is acyclic, and so 

the Weil algebra may be considered as the algebra of cochains of a (nonexistent) fiber 
space which would be classifying in all dimensions. 

Cartan analyzed the case of a homogeneous space and identified the transgression in this 
context. The invariant elements Is of the symmetric algebra on g* play a prominent role. 
One of the main results, referred to as being part of Hirsch-Koszul theory, is a cochain 
equivalence between //*(£") 0 /^ endowed with a differential and the cochains on B. This 
identifies Is with the cohomology of a classifying space when //*(£") is trivial in a range. 

Though spectral sequences do not figure in Cartan's Bruxelles papers, the success of his 
methods put the underlying algebra of differential forms at the forefront of topology and it 
was this work that was planned as the basis of Bourbaki's version of algebraic topology. '̂̂  
However, all this would soon be overtaken. 

The talks of Hopf and Eckmann emphasized the homotopy-theoretic approach to fibre 
spaces. In his talk Eckmann^^ reported some progress on a question of Deane Montgomery 
(1909-1992) and Samelson [142] as to whether Euclidean n-space R" can be the total space 
of a fibre space with compact fibre. In the first issue of the Proceedings of the American 
Mathematical Society, April 1950, Gail S. Young (1915- ) [214] pubUshed partial results 
on this problem. Borel and Serre decided to apply Leray's ideas to this problem and quickly 
came up with a complete solution - there is no fibration of M" with a compact fibre that 
does not reduce to a point. The proof is ''une application simple" [18] of the ideas of Leray: 
Since the £2-term of the Leray spectral sequence {suite de Leray-Koszul in this paper) is 
//*(5) (8) //*(F) (for real coefficients in Leray's cohomology theory), /f "(R") = R, and 
B has dimension less than or equal to w — 1, HP(B) ^ 0 for some minimal p ^ n — \. 
When F is connected, //*(F) has a unit 1. Let y e HP{B) be nonzero, then \^ y e E^ 

^̂  Weil preferred the nomenclature "universal algebra associated to a Lie algebra". See [190,1, p. 568]. 
26 MR# 13, 107e,f. 
^'^ See [190], endnotes to Vol. II. 
2̂  Letter of A. Borel, May 5, 1997. 
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is of minimal total degree and cannot be a coboundary. Since it is already a cycle for 
all differentials in the spectral sequence, HP(W) 7̂  0, a contradiction. When F is not 
connected, each connected component of the fibering determines a fibering of R" and so 
we are reduced to the previous argument, unless F is a finite set. Then the fibering is a 
covering space and an argument using group cohomology yields the result. 

In the fall of 1950, Serre introduced a new spectral sequence (un anneau spectral in 
this paper) for the cohomology of groups. Based on KoszuFs example for Lie algebras 
and Cartan's notion of a filtered differential graded ring, Serre announced [163] a filtered 
differential graded ring of cochains on which the quotient G/g by a normal subgroup g 
of G acts. The resulting spectral sequence has £'2-term H*(G/g, H*(g, A)) and terminal 
ring H'^iG, A) for coefficients in an Abehan group A. This gave a new orientation of the 
results of Roger C. Lyndon (1917-1988) [131] whose use of subquotients to compute co
homology of groups may be viewed as a precursor to the use of spectral sequences (without 
differentials). Serre applied the spectral sequence to acyclic spaces on which a group acts, 
to Galois cohomology, and particular cases known to G.P. Hochschild (1915- ) [83] and 
Eilenberg and Mac Lane [62]. Shortly after the pubhcation of [163], he received a letter 
from Hochschild who described an explicit filtration of the cochains. They agreed to pub
lish together and the complete exposition of these results appeared in 1953 Transactions of 
theAMS[S4l 

In the late summer of 1950 (August 30-September 6) another major conference, the In
ternational Congress of Mathematicians in Cambridge, Massachusetts, took place. Leray 
spoke [133] twice, on fixed point theory,^^ and on Uemploi, en topologie algehrique, du 
formalisme du calcul dijferentiel exterieur, which dealt with his cohomology theory. Some 
of the major papers on homotopy theory treated fibre spaces and homotopy groups, with 
a major address by George Whitehead (1918- ) who gave a survey of known results on 
the homotopy groups of spheres, including his result that 7r„+2(5") = Z/2Z for n > 1, 
correcting a computation of Pontryagin [150]. Global questions about homotopy groups 
are noticeably absent in his talk. J.H.C. Whitehead (1904-1960) described his program 
to devise an algebraic homotopy theory solving classification problems with the appropri
ate algebraic input [200]. Whitehead had recently proved the Whitehead Theorem, that a 
map of simply-connected CW-complexes inducing an isomorphism of homology groups 
induces an isomorphism of homotopy groups [197]. Other reports of interest to this his
tory were given by Hirsch (on the homology of fibre spaces), by Hurewicz (on relations 
between homotopy and homology), by Chern (on the transgression in differential geome
try), by Spanier (on the Gysin sequence for CW-complexes), by Massey (on the homotopy 
groups of triads), and by Morse (on variational problems and topology). 

Post-war topology was thriving. The directions of research in place before the war were 
being played out successfully with the addition of new questions, new methods and new 
researchers. The task of consoHdation was undertaken by the leaders of the field (Cartan in 
France, Eilenberg and Steenrod in the US). This remarkable time presented a rich field of 
opportunity for new and able researchers. The next two years realized that opportunity and 
changed the field of algebraic topology dramatically. 

^^ The dedication of this note reads, "A la memoire du profond mathematicien polonais Jules Schauder, victime 
des massacres de 1940". 
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5. Serre's thesis 

After the successful application of Leray's spectral sequence to the question of Mont
gomery and Samelson [18], Serre turned to other possible applications of these ideas. An 
example of a fibre space that was well known in 1950 is given by the limit of the finite-
dimensional complex projective spaces, S^ -̂> S^ -^ CP(cx)). Since S^ is an Eilenberg-
MacLane space, KCZ, 1), and S^ has trivial homotopy groups, this fibre space identifies 
CP(oo) as a K{Z, 2). The algebre spectrale of Leray for this case was clear and suggested 
the possibility that an induction might lead to the computation of the cohomology of the 
higher Eilenberg-Mac Lane spaces from this initial case. Serre writes [160, Vol. 1, p. 585]: 

J'avais remarque que la theorie de Leray permet d'aborder ce calcul en procedant par 
recurrence sur n, pourvu que Ton dispose d'un espace fibre E ay ant les proprietes 
suivantes: (a) E est contracfile, (b) la base de E est un K{7T, n), ce qui entraine (c) les 
fibres de E sont des A (̂7r, /i — 1). 

The identification QK{n, n) :^ K(7T, n — I) soon led Serre to consider the sequence of 
spaces QX ^-^ PX -> X where PX = {continuous maps A : (/, 0) -^ (X, JCQ)} and the 
mapping P X -^ X is evaluation atl ,A-i->A.(l). 

If you assume that such a space is a fibre space, and that Leray's theory applies (even 
though his hypotheses do not), this gives a route to the computations of / /*(A'(Z, n); Q) 
by induction. The first hurdle to clear was the right notion of fibre space for the path 
space evaluation map. This came from the homotopy Ufting property, emphasized by Eck-
mann [48] in his Bruxelles lecture. Serre, in [164,1], defined a fibre space to be a mapping 
that verifies the homotopy lifting property with respect to mappings of polyhedra to the 
total space. This notion generalized the fibre spaces of Hurewicz and Steenrod [102] and 
hence included the geometric examples of fibre bundles. Furthermore, such a fibre space, 
now called a Serre fibration, gives rise to a homotopy equivalence of fibres at various 
points, and the long exact sequence of homotopy groups 

. . . - ^ miF) -^ mXE) -^ 7Ti(B) -^ 7r,_i(F) - > . - . . 

Finally, and perhaps most importantly, the path space evaluation map satisfied this property. 
Though this admitted more general spaces as fibre spaces, it did not settle the question 

of applicability of Leray's methods. The singular theory of Lefschetz and Eilenberg [54] 
offered the best properties for the study of homotopy-theoretic constructions, especially 
via the Hurewicz homomorphism. However, there lacked an analogue of Leray's theory 
for singular homology. At a Bourbaki meeting in the fall of 1950, Serre discussed this 
problem with Cartan and Koszul. He writes [160, Vol. 1, p. 585]: 

. . . fort heureusement, J.-L. Koszul et H. Cartan m'ont suggere une certaine filtration 
du complexe singulier . . . qui s'est revelee avoir toutes les vertus necessaires. 

The suggestion led to the technical part of Serre's thesis [165, Chapter II] which is based 
on cubical singular theory for which ([165]) the cubes 

se pretent mieux que les simplexes a 1'etude des produits directs, et, a fortiori, des 
espaces fibres qui en sont la generalisation. 

Having overcome the technical difficulties, the consequences were announced in a series 
of three Comptes Rendus notes. In the first note [164,1] the term spectral sequence {suite 
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spectrale) makes its appearance. It applies to the homology spectral sequence for which 
the terms spectral ring or spectral algebra of Leray and Koszul did not apply. The iden
tification of the initial term of this spectral sequence with H^{B\ H^{F)), here homology 
with local coefficients, is made and the role of the simple system acknowledged. This note 
also shows how the transgression and suspension may be identified with differentials in 
the spectral sequence. Serre states that Leray's results may be transferred to the singular 
setting and that the Wang sequence may be proved from the spectral sequence. 

In the second note [164, II] the path evaluation map is identified as a fibre space. If X is 
a space for which there is field k and an w > 0 with Hn{X\ k) / {0} and Hi{X\ k) = {0} 
for / > n, then the nontriviality of Hi{QX\ k) for infinitely many / follows. This settled a 
question of Morse [145], to establish topological conditions for a Riemannian manifold to 
satisfy in order to show, using Morse theory, that any pair of distinct points in the manifold 
are joined by infinitely many geodesic segments. From the finite generation of ///(Z) for 
all /, the finite generation of Hi{QX) for all / follows. Serre also recognizes <r2X as an 
H-space to which Leray's extension [122] of Hopf's theorem appUes giving the rational 
cohomology of ^ X as a tensor product of polynomial and exterior algebras. 

In the third note [164, III] the consequences for the computation of homotopy groups are 
presented. The main tool is an iterative construction: If X is path-connected, let XQ = X 
and T\ = XQ, the universal cover of XQ. Let X\ = QT\, and finally, let T2 = X\, etc. If 
such a sequence is possible to construct, then it has the property that n\ (X„) = iin-^i {X). 
Furthermore, H\(Xn) = 7t\{Xn). Using the Cartan-Leray spectral sequence, one could 
make the passage of homology data from Xn-i to Tn, and using the new homology spec
tral sequence, one could pass data from Tn to Z„. From this construction, Serre proved 
that a space, for which the fundamental group acts trivially on the higher homotopy 
groups, and for which Hi(X) is finitely generated for all /, has 7r/(X) finitely gener
ated for all /. This result opened up new territory for homotopy theory - a global result 
about homotopy groups improving the sparse evidence of 1950 and admitting algebraic 
refinements that were unknown at the time. Using homology with field coefficients, Serre 
showed that ///(X; k) = {0} for 0 < / < n implied 7r/(Z) (g) /: = {0} for / < n and 
that 7Tn(X) <S) k = Hn{X\k). Since a finitely generated group G is finite if and only if 
G (g) Q = {0}, this leads to a global result for the homotopy groups of spheres: 7tn-\-kiS'^) is 
finite for /: > 0 except in the case 7r4/_i(5'̂ ^) which is isomorphic to Z direct sum a finite 
group. For p an odd prime, Serre showed that TViiS^^) <S^ ¥ p = {0} for n < i < n -\-2p — 3 
and 7Tn-^2p-3iS^) 0 Fp = Z/pZ when p is an odd prime. Finally, results on the homology 
of Eilenberg-MacLane spaces were announced following the heuristic inductive argument 
that started the research. 

The thesis was finished in the spring of 1951 and sent to Steenrod for the Annals of 
Mathematics at the advice of Eilenberg. Steenrod gave it priority and it appeared at the end 
of 1951. The thesis is a remarkable mix of technical detail and simple direct argument. The 
plan follows the Comptes Rendus notes. Among the details one might view as technical are 
proofs of the simplicity of H-spaces, the development of cubical singular theory, and the 
identification of a condition (ULC, uniformement localement contractile) which implies 
the existence of universal covering spaces and which is passed on to the based loop space. 

The abihty to compute the homology of Eilenberg-MacLane spaces led to new com
putations in homotopy theory. In particular, Cartan and Serre introduced a new homotopy-
theoretic construction giving fibre spaces susceptible to analysis with the Serre spectral 
sequence. In [35], they introduced the method of killing homotopy groups: To each path 
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connected space X there is a sequence of spaces (Z, n) with (Z, 1) = Z, together with a 
sequence of mappings / , i : (Z, n +1) -> (Z, n), so that (Z, w) is ^-connected, the mapping 
/„ induces an isomorphism 7r/((Z, ẑ + 1)) ^- 7r/((Z, n)) for / > n, and further, /„ is a 
fibration with fibre a Ar(:nr„ (Z), n — I), base space (Z, n) and total space homotopy equiv
alent to (Z, n +1) . The construction answered in the affirmative Problem 32 of Eilenberg's 
Princeton hst [57]. 

Dans la mesure ou Ton connait les groupes d'Eilenberg-MacLane d'un groupe n 
donne, on obtient une methode de calcul (partial)... des groupes d'homotopie de X. 

In degrees out to twice the connectivity, the spectral sequence gives a long exact sequence 
mixing homology groups of the nth homotopy group of Z with the homology of the 
spaces (Z, n). Analysis of this sequence with computations of certain homology groups 
of Eilenberg-MacLane spaces allowed them to compute that the p-component of7T2p{S^) 
is Z/pZ, that 7r7(5^) and 7T^(S^) are 2-primary and that 719(8^) is the direct sum of Z/3Z 
with a 2-primary group. 

George Whitehead [193] independently considered such a tower of spaces as the (Z, n). 
The common source of background was the so-called Eilenberg complex, 5(Z, x, q), ob
tained by considering that part of the singular complex with simplices whose (q — l)-faces 
are at a point X. Eilenberg [54] had shown that//^ (Z, X, ̂ ) = Hq{S{X,x,q)) =7Xq(X,x). 
The killing homotopy groups construction of Cartan and Serre obtains a space {X,n) with 
Hj{(X, n)) = Hj(S(X, X, n)) for all j . Whitehead discovered the same long exact se
quences as Cartan and Serre from the relative homology of consecutive Eilenberg com
plexes, which is isomorphic to the homology of K(7in(X), n). At around the same time 
M.M. Postnikov (1927- ) introduced a dual construction, the Postnikov tower [151], us
ing the simplicial methods of Eilenberg in an effort to understand the degree to which the 
homology of a space is determined by its homotopy groups. 

In the spring of 1952, Serre announced his complete computation of the mod 2 cohomol-
ogy of the Eilenberg-MacLane spaces [166]. The expected inductive argument was suc
cessful with the introduction of the idea of a simple system of generators, due to Borel [10]. 
The transgression, which commutes with Steenrod operations, allows the identification of 
polynomial generators between consecutive K(Z/2Z, n)'s. By studying the limit with re
spect to suspension, Serre computed A*(Z/2Z) whose ^-th degree elements may be iden
tified with //""^^(^(Z/2Z, n); ¥2) for n large. Since stable mod 2 cohomology operations 
are identified with A*(Z/2Z), Serre had computed the complete set of primary mod 2 co
homology operations. When the complete proofs of this note appeared [169], it included 
another global result about the homotopy groups of finite complexes. By a subtle argument 
involving the convergence of Poincare series for the Eilenberg-Mac Lane spaces and the 
killing homotopy tower of spaces, Serre proved that a path-connected, simply-connected 
space whose integral homology is of finite type in all degrees and whose mod 2 homology 
is nontrivial in some positive degree and vanishes after a certain degree, has infinitely many 
homotopy groups nt (Z) containing Z or Z/2Z. Such a result would have been unthink
able only three years earlier when even the finite generation of homotopy groups for finite 
CW-complexes was open. It showed decisively how the behavior of the homotopy groups 
is not at all like the homology groups. A new era of computation and structure opened up. 

The final major paper of this period takes off from the proof of the finitude of the homo
topy groups of spheres. By using homology with coefficients in a field k, Serre proved a 
Hurewicz theorem for the Hurewicz map tensored with /c, 7Tn(X) 0 /c ^- Hn(X; k). Since 
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tensoring with the field of p elements destroys q torsion for q prime and ^ / p, a kind of 
fracturing of homotopy problems is possible, one version for each prime p. A comprehen
sive approach to this fracturing is the subject of [168]. Serre introduced the general notion 
of a class ofAbelian groups: C is a class of AbeHan groups if 

(a) every trivial group belongs to C; 
(b) every group isomorphic to a subgroup or a quotient group of a group in C is in C, 

and 
(c) every extension of two groups in C is in C. 

Examples include the class of finitely generated Abelian groups, all finite Abelian groups, 
all finite groups whose order is divisible only by primes belonging to a given set. By ne
glecting groups appearing in this class, one could prove "mod C" versions of the clas
sical results, including the Hurewicz theorem and the Whitehead theorem. More sub
tle applications include expressions of homotopy results mod C. For example, if C is 
the class of finite groups of order a power of 2, then 7ti(S^"^) is isomorphic mod C to 
71/-1 (5^'"~^) 0 7Ti(S^"^~^). For compact Lie groups, Hopf's theorem can be considered as 
a homotopy equivalence mod C between G and a product of odd spheres, when C is the 
class of all torsion groups. A prime p is called regular for the Lie group G if the same 
result holds mod the class of finite groups of order prime to p. Serre determined conditions 
for a prime to be regular for the classical groups. 

Throughout this period of productive homotopy theory, Serre made many other contri
butions, particularly to algebraic geometry [160, Vol. 1]. We discuss the impact of Serre's 
work in later sections. We next turn to the work of Armand Borel. 

6. Borel's thesis 

Borel spent the academic year 1949/50 in Paris at the CNRS and attended Leray's 
course [131] at the College de France, in fact, he helped to complete the exposition in 
a note appearing at the end of Leray's paper [8]. Borel's thesis begins with the substance 
of the course of Leray in 1949/50. Since Lie groups and homogeneous spaces are locally 
compact, and Leray's methods are general enough to include both de Rham cohomology 
and singular cohomology with coefficients in any ring, they became his tool of choice. 
In particular, the basic methods were topological and the analytic structure of Lie groups 
played a minor role. 

All of the strands of research up to 1950 concerning the topology of Lie groups find a 
place in Borel's thesis. In particular, Hopf's theorem, Samelson's thesis, the transgression 
of Hirsch, Koszul, and Cartan, and the characteristic classes of Stiefel, Whitney, Chern, 
and Steenrod all find a topological context and algebraic methods for their generalization 
and development. 

Borel published a series of Comptes Rendus notes in 1951 outlining his results and meth
ods. In the first [9] he investigated an analogous situation to the question of Montgomery 
and Samelson - which spheres are the total space of a fibre space with products of spheres 
as fibre? In the associated spectral sequence the differentials must be nontrivial: Suppose 
(F, £", J5) is a fibre space with E a sphere, F a product of spheres, and B a finite complex. 
Then the spheres making up the fibre must be of odd dimensions [rrij) and the algebra 
generators of / /*(F; k) must transgress to the base making the cohomology of the base 
H^ (B; k) ^ (k[u\, U2, •.., Us]y with the deg wy = my + 1. The main theorem of the note 



A history of spectral sequences 651 

is a new proof of a theorem of Eckmann, Samelson and G. Whitehead [49] that, in fact, 
only a single sphere can appear in the fibre. 

In [10] Borel introduced the notion of a simple system of generators over the field 
F2: An algebra A over F2 has a simple system of generators / ^ i , . . . , h,n if the products, 
/i/j/i/2 • • • hi^ with ii < i2 < ''' < is, form a basis for A over F2. If H*{X; ¥2) has a 
simple system of generators and X is connected, then the mod 2 Poincare polynomial of X 
is given by 

(1+r^O(l+^'') •••(!+^'0' 

where deg/i/ = r/. With this definition, the mod 2 cohomology of the various Stiefel 
manifolds (real, Vn,p\ complex, Wn,p\ quaternionic, Un,p) may be expressed easily. The 
torsion in the integral cohomology of Spin(n) and the exceptional groups G2 and F4 is 
also described in this note. 

In [11] Borel described the cohomology of a classifying space by considering the trans
gression for E(n,G) -^ i5(n, G), the universal bundle for each dimension n which, 
as defined by Steenrod in [179], is a principal G-bundle for which E(n, G) is at least 
n-connected. The algebra that emerges in his analysis of fiberings of a sphere by products 
of spheres goes over more generally as a compact Lie group G has cohomology with coef
ficients in a field k like that of a product of spheres when G has no torsion divisible by the 
characteristic of A:. Furthermore, when /c = F2, a simple system of universally transgressive 
generators go by the transgression to a basis for a polynomial algebra. Borel remarks at the 
end of the note that the action of the mod 2 Steenrod squares together with the formula of 
Wu [210] determine the product structure for //*(S0(/2); F2) completely because the Sq^ 
commute with the transgression. 

In the final note mentioned in the thesis [12], the full power of the previous methods 
come to bear on the problem of computing H*(G/U; k). A new construction is introduced, 
now called the Borel construction: If (U, X, Y) is a locally compact principal [/-bundle, 
then one forms the space Eu x ̂  Z which is the quotient of the product of E(n,U) (for n 
large enough) and X by the relation {s,t)^{u'S,u-t), where u e U. This space comes 
equipped with two fibrations; one with base Y gotten by projection from the second fac
tor, and the other with base By, the classifying space B{n,U) and fibre X. It follows that 
there is a spectral sequence {un anneau spectral in [12]) with £'2-term H*(Bu', H*(X; k)) 
and converging to H*(Y; k). When U is discrete, this is the Cartan-Leray spectral se
quence and when X = G, and [/ is a closed subgroup of G, then the spectral sequence 
goes from / /*(J5G; / / * ( G / ^ ; k)) to / /*(B^; k). For the case of ^ = T, a maximal 
torus of G, under the assumption that G and G/T are without p-torsion, W^BG', F ^ ) 

can be identified via the mapping induced hy BT -^ BG with the invariant ring in 
H'^iBT; ¥p) = Fp[x i , . . . , JC/] under the action of the Weyl group, where / is the rank 
of G. When S is the maximal torus of U, then there is a fibration {U/S, G/S, G/U) and 
these methods lead to conditions under which U/S is totally nonhomologous to zero in 
G/S with respect to F^ coefficients. These results generahze considerably the formula of 
Hirsch which is for rational coefficients. The note ends with a remark on Hopf's theorem -
when G is a connected, compact. Lie group, then H*{G; ¥p) has a j9-simple system of gen
erators, that is, a set of classes xi,X2, - - -, Xs such that products of the form x j ̂  ̂ 2^ • • • Xs', 

where 0 ^ n < p^' and x[' = 0, but xf'~^ 7̂  0. 



652 J. McCleary 

On March 25,1952, Borel submitted his thesis before a committee of Leray (President), 
Cartan and Lichnerowicz to obtain his doctorate from the Universite de Paris. The paper 
appeared in the 1953 Annals of Mathematics. It explicates the Comptes Rendus notes in all 
details. The heart of the thesis is algebraic and turns on the extension to mod p coefficients 
of Hopf's theorem on the structure of a finite dimensional Hopf algebra and on the alge
braic necessity of a nontrivial transgression in a spectral sequence of algebras with trivial 
£"00-term. The topological inputs are principally the Borel construction and the use of the 
maximal torus. 

The topological properties of compact Lie groups at a prime p were inaccessible by 
the methods of Cartan, Chevalley, Koszul, and Weil. New results followed quickly from 
Borel's point of view. He and Serre [20] analyzed the discrete Abelian subgroups of com
pact Lie groups to show, among other things, a technique for determining the torsion in the 
exceptional groups G2 and F4. 

Another test of the topological methods was the new set of invariants given by the Steen-
rod operations at each prime. Wu and Thom had demonstrated the importance of these 
operations mod 2 for characteristic classes by 1950. The computation of the mod p coho-
mology of compact Lie groups was amply demonstrated in Borel's thesis. After a lecture 
series by Steenrod in May 1951, Serre and Borel tackled the question of the mod p oper
ations and successfully determined the action of the reduced powers on U{n), the unitary 
groups. Spin), the symplectic groups, and SO(n), the special orthogonal groups [19]. This 
computation brought the Chern classes into the framework of Wu and Thom, and also 
setded many cases of the nonexistence of sections of certain fibre spaces given by homo
geneous spaces. In particular, Borel and Serre settled a problem of Hopf [98] as to which 
spheres possessed an almost-complex structure. They show that only 5^ and S^ can have 
such a structure, a surprising result at the time. 

In a later paper [15], Borel's methods were so refined as to obtain significant inte
gral cohomology results for the entire class of simple compact Lie groups. Applications 
of Borel's work changed the study of the topology of Lie groups. Samelson's survey of 
1952 [155] presents a mix of techniques with which to attack questions of the topol
ogy of Lie groups that includes analytic, algebraic, and topological means. Borel's sur
vey of 1955 [16] showed how topological methods, together with the algebra of spectral 
sequences, were sufficient to uncover and unite the invariants of Lie groups and homoge
neous spaces. 

The role of Borel's computations in the study of cobordism, of algebraic geometry 
(Hirzebruch [81]), and of manifold theory is a subject for another history. The removal 
of a topological impediment, the lack of a method of computation, opened enormous op
portunities for the application of algebraic topology to other areas of mathematics. 

7. Reception 

The method of spectral sequences did not spread rapidly after its initial appearance. Leray's 
1946 Comptes Rendus notes led Koszul and Cartan in Strasbourg to extract the algebraic 
essence from which further constructions could be made, notably by Koszul in his thesis, 
by Cartan in his work on the transgression, by Cartan and Leray for finite groups acting 
on a space, and by Serre in his note on the cohomology of groups. However, little interest 
outside of France was evident before Serre's thesis. 
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Several missed opportunities present themselves - Mac Lane-̂ ^ reports visiting Paris in 
1947 and discussing sheaves and spectral sequences with Leray. Lyndon's thesis [136] 
under Mac Lane is founded on a filtration of the cohomology of a group H'^(G; M) relating 
the associated graded to subquotients of H*(Q; H'^iK, M)) when 

\ ^ K ^ G ^ Q-^ \ 

is a group extension and M a G-module. Mac Lane admits not making the connection 
between Lyndon's work and Leray's work - "Leray was obscure!" 

Another near miss is the work of Tatsuji Kudo in Japan. In [111], published in the 1950 
Osaka Journal, Kudo analyzed a fibre space with CW-complex as base by considering the 
preimages of the skeleta and the resulting long exact sequences of pairs. In a subsequent 
paper, published in 1952 [112], Kudo began to work with Leray's ideas and recast his 
previous analysis in this language. With the appearance of Serre's thesis, the potential of 
spectral sequences was explored by others in Japan interested in homotopy theory, espe
cially Hiroshi Toda (1928-) [188] whose computations of the homotopy groups of spheres 
went far beyond the state of the art in 1953. 

Whitehead, Massey and others in the United States did try to understand Leray's work af
ter its appearance, in order to get at the source of the "marvelous results he claimed .. .".̂ ^ 
The exact sequence was a fundamental tool of expression by this time. Massey soon gave 
a new algebraic reformulation of spectral sequences, his exact couples [139]. He claims 
two papers as the sources for his idea. In [199] J.H.C. Whitehead introduced the so-called 
Whitehead groups. One first needs a formalism to handle sequences of Abelian groups: For 
each n, suppose there are homomorphisms j : A„ -> C„, and ^'.Cn -^ An-i leading to a 
sequence 

...—^r>i^A—^r^A 1 - ^ . . . 
^ ^ / 7 + l ^ ^n ^ ^n ^ ^n — \ ^ 

Suppose further that j (A^) = ker yS, but that P(Cn) need not be the kernel of j . Whitehead 
identified a differential d = jfi, satisfying dod = 0, and the groups Fn = ker 7 : A„ -^ Cn, 
Tin = An/^Cn+\ and Hn = Hn{C^,d), together with the sequence of homomorphisms 
[7]: Hn -^ Hn, m ' Hn -> Fn-i and [k]: Fn -> Hn, where [j]: /7„ -> Hn is defined by 
j on a representative a e An of a -\- pCn-\-i in /7„ followed by the mapping induced by 
the quotient from cycles of d to Hn', the homomorphism [fi]: Hn-\-\ -^ Fn is induced by 
taking a cycle z ^ Cn of d which satisfies jP(z) = 0 and mapping it to ;S(z) e Fn', finally, 
[k]: Fn ^^ Hn is induced by the composite Fn C A„ -^ Fin — An/pCn-{-\- The main 
result is the exactness of the sequence 

> Hn+\ -> Fn -^ Hn ^ Hn -> ' ' . 

An exact couple (D, E,i, j,k) is given by a similar algebraic setup - the sequence of 
homomorphisms, i: D ^^ D, j : D -^ E, and k'.E-^D form a long exact sequence: 

>D-^D->E-^D-^ ••. 

^^ Letter of August 11, 1997. 
^̂  Whitehead, letter of November 6, 1996. 
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It follows that the composite J = 7 o /: is a differential. Massey shows in [139] that an 
exact couple can be derived to give another exact couple (/D, //(£", d), /^ / , k'), where 
the derived homomorphisms arise in a manner analogous to Whitehead's scheme. The 
algebraic analysis carried out by Chern and Spanier in [41] to prove the Gysin theorem for 
CW-complexes gave a model for the bigraded case of an exact couple. 

Massey developed exact couples around the time Serre's thesis was being written and the 
appearance of this new algebraic apparatus added to possible appUcations of these ideas. 
The simplicity of the algebraic notion also led some to experiment with other constructions, 
especially with homotopy groups. The paper [139,1, II] ends with a construction of an exact 
couple with D — 7tn(KP, K^), where K'' denotes the r-skeleton of a CW-complex K. 
Massey identified parts of the £^-term of the spectral sequence; for example, E2 j = 
r(7T2(K)), one of the Whitehead groups which is isomorphic to 7/4(AT(712(^), 2)). In 
subsequent papers [139, II-V], Massey introduced a spectral sequence in cohomotopy, 
similarly based on the skeleta. The method of exact couples offered a tidy algebraic object 
with which one could construct and investigate many topological invariants. This work was 
the subject of Massey's talk at the 1953 Cornell conference on fibre spaces. 

With the arrival of Serre's thesis at the Annals of Mathematics Steenrod^^ spread 
the word in the United States of some "earth-shaking results on the homotopy groups 
of spheres". He also sent it out to George Whitehead (then at Brown) and to Henry 
Whitehead (at Oxford), both among the few world's experts on the homotopy groups of 
spheres. 

In contrast to the perception of Leray's papers, Serre's work was "brilliantly clear" 
in exposition^-^ and its effect was immediate. In France, the methods to compute homo
topy groups played an important role in the work of Rene Thom, then in Strasbourg. 
Thom's earliest Comptes Rendus notes [185, 187] explore the relations among the ho
mologies of a sphere space and a general notion of characteristic classes associated to such 
bundles. Thom related the Stiefel-Whitney classes to the action of the then new mod 2 
Steenrod algebra ([176]). The development of the structure of manifolds and their embed-
dings led Thom to his results on cobordism theory. The methods of Serre's thesis gave the 
key to computations of the homotopy groups 7Tn-\-k{M0{n)) of the so-called Thom spaces 
which Thom had shown to be isomorphic to the cobordism group of /^-dimensional man
ifolds [187]. The rich field of beautiful mathematics that cobordism opened is the subject 
for another history. 

From Henry Whitehead's group, Peter Hilton (1923- ) took immediately to spreading 
Serre's and Borel's work, in particular, to his seminar in Cambridge where he had ar
rived from Manchester in 1952. Among some of the early participants were J.F. Adams, 
M.F. Atiyah, B.C. Zeeman, D.B.A. Epstein, and C.T.C. Wall. At Oxford, Whitehead held 
lectures on Serre's results and invited him to visit. I.M. James recalls this visit and the 
impact of Serre's thesis on his work in [103]. 

In the United States Eilenberg had followed the development of spectral sequences from 
the beginning. In the Seminaire Cartan of 1950/1951, Eilenberg presented his version of 
spectral sequences in two lectures January 22 and February 5, 1951. In these reports he 
described another construction of spectral sequences that is featured in the classic book 
with Cartan Homological Algebra [36]. A Cartan-Eilenberg system is built on a partially 
ordered set (5, <) and a functor H that associates to an pair A < B 2i group H(A, B) 

•̂ ^ Letter from George Whitehead of September 6, 1997. 
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subject to the axioms that generaUze the case of pairs of subspaces of a space, that is, 
A < B when 5 C A c X. In the second of the lectures Eilenberg appUes this alge
braic technology to the case of a fibre space with the filtration resulting from the skeletal 
filtration of the base space. The Kunneth theorem allows one to analyze the subsequent 
Cartan-Eilenberg system and to identify the E^-term of the associated spectral sequence 
with the homology of the base with local coefficients in fibres, as in the case of Serre's 
thesis. 

At Brown, George Whitehead's first Ph.D. student John C. Moore (1926- ) immedi
ately took up Serre's methods in his thesis. The main result of the paper [143] (received 
September 19, 1952) is an extension of Serre's results on 7tq{S'^) (g) F^, in particular, that 
TtqiS^) ®¥p = {0}ifn-\-2p-3<q<n-\-4p-6mdn-^4p-5<q<n-h6p-9. 
The technical advances Moore introduced included a version of the Serre spectral sequence 
for pairs and an isomorphism theorem ([143, Theorem 2.2]) which shows how an isomor
phism of spectral sequences can be used to prove an isomorphism of their targets. He 
goes on to apply these methods to obtain information about triad homotopy groups that 
had been introduced by Blakers and Massey in [6]. In [144] (received March 31,1953, re
vised January 14, 1954) Moore extended the computation of homotopy groups to a class 
of spaces, suggested by Steenrod and already considered by Serre [167], with prescribed 
homology - a space X is of homology type (G, n) if X is simply connected and has trivial 
homology except in dimension n, where Hn(X) = G. Moore makes use of the method 
of Cartan-Serre-Whitehead and the sequence of universal covers of loop spaces found in 
Serre's thesis in his analysis, as well as the Hopf algebra results of Borel's thesis that had 
appeared by this time. Moore had frequent contact with Borel and Serre in the fifties. Borel 
visited the Institute for Advanced Study during the years 1952-1954 and became a perma
nent member in 1957. Serre visited the Institute for Advanced Study in the years 1955, 
1957, and 1959. Moore visited often in Paris - the Seminaire Cartan of 1954/1955 is often 
nicknamed the Seminaire Cartan-Moore. 

In the former Soviet Union, leadership in topology was changing around the time of 
Serre's and Borel's work. In Moscow, a seminar was held on Serre's thesis only in 1956 led 
by Albert S. Schwarz (1934- ), M.M. Postnikov (1927- ) and V.G. Boltyanskii (1925-). 
The participants of the seminar included S.P. Novikov, D.B. Fuks, A.G. Vinogradov, and 
others who went on to make up the next generation of Soviet topologists. 

By the late 1950's Leray's sheaf theory and homotopy theory had reached a stage that 
expository accounts of the subject were possible. The first book length account is the set of 
lectures by Borel of 1951 at the EPF Zurich [13]. Subsequent influential accounts that treat 
spectral sequences include the classic Homological Algebra of Cartan and Eilenberg [36], 
Topologie algebrique et theorie des faisceaux by R. Godement [74], which treats the fi
nal version of sheaf theory developed by Cartan; Homotopy Theory by S.-T. Hu [99], and 
Homology Theory by Peter Hilton and Shaun Wylie [77] which treats homology theory 
especially as it has an impact on questions in homotopy theory. Among the most influen
tial papers extending these ideas is the celebrated 1958 Tohuku Journal paper of Alexan
dre Grothendieck (1928- ) which provided a categorical framework in which spectral se
quences arise naturally (and much more). By this time spectral sequences were standard 
in the topologists' toolbox and had moved into the working language of other branches of 
mathematics. 
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8. Closing remarks 

In Steenrod's report [181] of the Spring 1953 conference on Fiber bundles and differential 
geometry at Cornell University he writes of the "upheaval within topology itself resulting 
from the use of fiber space techniques . . . . The most striking feature of the conference 
was the frequent use of the same apparatus in two or more widely separated disciplines, 
with strong suggestions of a probable unification of geometry on some higher level". That 
apparatus was the spectral sequence. The landscape of homotopy theory had changed rad
ically and central to this change was the appearance and application of spectral sequences, 
in particular, of Serre's and Borel's Paris theses. 

The two problem sets resulting from the Cornell conference signal the rapid acceptance 
of spectral sequences. The first set by Hirzebruch [82] dealt with differentiable and com
plex manifolds and is influenced by the work of Borel and the new progress by Thom. The 
other by Massey singles out spectral sequences among the preferred tools whose develop
ment would shape progress in algebraic topology. Furthermore, Massey marks the passing 
of the immediate post-war state of the subject with an appendix describing the progress on 
the Eilenberg list of problems. 

How was topology different after the introduction of spectral sequences? It is certain 
that the algebraic content in algebraic topology increased. However, this may be under
stood more subtly as a kind of algebraization of the subject. Several currents support this 
development. The program of Elie Cartan to extract the topology of Lie groups and ho
mogeneous spaces from the algebraic properties of Lie algebras opened up a fundamental 
role for algebra in topology when it was carried on by the work of Chevalley, Weil, Koszul, 
and Henri Cartan. One of the most profound computations in homotopy theory, Cartan's 
determination of the homology of the Eilenberg-Mac Lane spaces [25] using his construc
tions, is clearly based on his use of Weil algebras in [30]. These computations have not 
been superseded in the literature of algebraic topology and have been the source for many 
new developments.-̂ -̂  

Borel's thesis carried on the program initiated by Hopf in his introduction of H-spaces. 
The topological properties of compact Lie groups and homogeneous spaces were acces
sible by topological means in a manner that was unified by the application of general 
theorems like Borel's extension of Hopf's structure theorem for Hopf algebras and general 
machinery like the transgression and spectral sequences. 

Serre's thesis did more than establish the utility of spectral sequences for singular theory. 
The general nature of the input, the Serre fibration, admitted methods of construction more 
like the underlying algebra than previously possible, as shown, for example, in the method 
of killing homotopy groups. In contrast, consider the definition fibre spaces of Hurewicz 
and Steenrod [102] which relies on a metric structure and Serre's definition [165] which 
relies on the homotopy Hfting property alone. The threads for further algebraization may be 
found in Serre's and Borel's work - mod C theory is a precursor to localization and rational 
homotopy theory; the potential of the singular complex of a space as the fundamental object 
of study (not the space) is hinted at in Serre's thesis and reahzed later in the semi-simplicial 
theory of Moore and Kan; and the study of cobordism via Hopf algebra methods together 
with the Steenrod algebra action is based on the early computations of Borel for classifying 
spaces. 

^^ See May's article in this volume. Also, Browder's investigations of the Bockstein spectral sequence hinge on 
input due to Cartan. 
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The period of development of algebraic topology examined in this brief history is re
markable. The rich atmosphere of difficult problems and untested methods around 1950 
was ripe for the sudden realignment that occurred. Among the factors making these 
changes possible pedagogy played an unexpectedly important role - the spread of the cru
cial ideas was made possible by the high standard of exposition of the Seminaire Cartan 
and the subsequent clarity of the doctoral theses of Serre and Borel. 

Throughout this period, there is a recognizable tension between competing points of 
view that might be characterized as analytic and combinatorial. The achievements of Leray 
in relative isolation revolve around a model of algebraic topology exemplified by the work 
of de Rham, close to the differentiable underpinning and free of the simplicial trappings. 
The combinatorial approach, exemplified by the work of Eilenberg and Henry Whitehead, 
beat a path to the homotopy theoretic invariants of spaces - a cruder but still powerful ap
proach to geometric and topological questions. This essential tension is vital in the history 
of topology - Morse theory before and after the Second World War is a prime example and 
this history of spectral sequences must be taken as another example. 
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Stable algebraic topology is one of the most theoretically deep and calculationally power
ful branches of mathematics. It is very largely a creation of the second half of the twentieth 
century. Roughly speaking, a phenomenon in algebraic topology is said to be "stable" 
if it occurs, at least for large dimensions, in a manner independent of dimension. While 
there are important precursors of the understanding of stable phenomena, for example in 
Hopf's introduction of the Hopf invariant [Hopf35, FS], Hurewicz's introduction of homo-
topy groups [Hur35], and Borsuk's introduction of cohomotopy groups [Bor36], the first 
manifestation of stability in algebraic topology appeared in Freudenthal's extraordinarily 
prescient 1937 paper [Fr37, Est], in which he proved that the homotopy groups of spheres 
are stable in a range of dimensions. 

Probably more should be said about precursors, but I will skip ahead and begin with 
the foundational work that started during World War II but first reached print in 1945. 
Aside from the gradual development of homology theory, which of course dates back at 
least to Poincare, some of the fundamental precursors are treated elsewhere in this volume 
[Ma, BG, Mc, We]. However, another reason for not attempting such background is that 
I am not a historian of mathematics, not even as a hobby. I am a working mathematician 
who is bemused by the extraordinarily rapid, and perhaps therefore jagged, development 
of my branch of the subject. I am less interested in who did what when than in how that 
correlated with the progression of ideas. 

My theme is the transition from classical algebraic topology to stable algebraic topology, 
with emphasis on the emergence of cobordism, ^-theory, generalized homology and coho-
mology, the stable homotopy category, and modern calculational techniques. The history 
is surprising, not at all as I imagined it. For one example, we shall see that the introduction 
of spectra was quite independent of the introduction of generalized cohomology theories. 
While some key strands developed in isolation, we shall see that there was a sudden coa
lescence around 1960: this was when the subject as we know it today began to take shape, 
although in far from its final form: I doubt that we are there yet even now. 

Younger readers are urged to remember the difficulty of communication in those days. 
Even in 1964, when I wrote my thesis, the only way to make copies was to type using 
carbon paper: mimeographing was inconvenient and the Xerox machine had not been in-
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vented, let alone fax or e-mail. Moreover, English had not yet become the lingua franca. 
Many relevant papers are in French or German (which I read) and some are in Russian, 
Spanish, or Japanese (which I do not read); further, the Iron Curtain hindered communica
tion, and translation from the Russian was spotty. On the other hand, the number of people 
working in topology was quite small: most of them knew each other from conferences, and 
correspondence was regular. Moreover, the time between submission and publication of 
papers was shorter than it is today, usually no more than a year. 

I have profited from a perusal of all of Steenrod's very helpful compendium [StMR] 
of Mathematical Reviews in algebraic and differential topology published between 1940 
and 1967. Relatively few papers before the mid 1950's concern stable algebraic topology, 
whereas an extraordinary stream of fundamental papers was published in the succeeding 
decade. That stream has since become a torrent. I will focus on the period covered in 
[StMR], especially the years 1950 through 1966, which is an arbitrary but convenient cut
off date. For the later part of that period, I have switched focus a little, trying to give a 
fairly complete indication of the actual mathematical content of all of the most important 
relevant papers of the period. I shall also point out various more recent directions that can 
be seen in embryonic form during the period covered, but I shall not give references to the 
modern literature except in cases of direct follow up and completion of earlier work. I plan 
to try to bring the story up to date in a later paper, but lack of time has prevented me from 
attempting that now. 

References to mathematical contributions give the year of publication, the only excep
tion being that books based on lecture notes are dated by the year the lectures were given. 
References to historical writings are given without dates. 

1. Setting up the foundations 

A great deal of modern mathematics, by no means just algebraic topology, would quite 
literally be unthinkable without the language of categories, functors, and natural trans
formations introduced by Eilenberg and MacLane in their 1945 paper [EM45b]. It was 
perhaps inevitable that some such language would have appeared eventually. It was cer
tainly not inevitable that such an early systematization would have proven so remarkably 
durable and appropriate; it is hard to imagine that this language will ever be supplanted. 

With this language at hand, Eilenberg and Steenrod were able to formulate their axiom-
atization of ordinary homology and cohomology theory. The axioms were announced in 
1945 [ES45], but their celebrated book "The foundations of algebraic topology" did not 
appear until 1952 [ES52], by which time its essential ideas were well known to workers 
in the field. It should be recalled that Eilenberg had set the stage with his fundamentally 
important 1940 paper [Eil40], in which he defined singular homology and cohomology as 
we know them today. 

I will say a httle about the axioms shortly, but another aspect of their work deserves im
mediate comment. They clearly and unambiguously separated the algebra from the topol
ogy. This was part of the separation of homological algebra from algebraic topology as 
distinct subjects. As discussed by Weibel [We], the subject of homological algebra was set 
on firm foundations in the comparably fundamental book "Homological algebra" of Cartan 
and Eilenberg [CE56]. 
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Two things are conspicuously missing from Eilenberg-Steenrod. We think of it today as 
an axiomatization of the homology and cohomology of finite CW complexes, but in fact 
CW complexes are nowhere mentioned. The definitive treatment of CW complexes had 
been published by J.H.C. Whitehead in 1948 [Whi48], but they were not yet in regular 
use. Many later authors continued to refer to polyhedra where we would refer to finite CW 
complexes, and I shall sometimes take the liberty of describing their results in terms of 
finite CW complexes. 

Even more surprisingly, Eilenberg-MacLane spaces are nowhere mentioned. These 
spaces had been introduced in 1943 [EM43, EM45a], and the relation 

H"(X;7r) = [X,K(7r,n)] (1.1) 

was certainly known to Eilenberg and Steenrod. It seems that they did not believe it to 
be important. Nowadays, the proof of this relation is seen as one the most immediate and 
natural applications of the axiomatization. 

However, there was something missing for the derivation of this relation. Despite their 
elementary nature, the theory of cofiber sequences and the dual theory of fiber sequences 
were surprisingly late to be formulated expHcitly. They were impHcit, at least, in Barratt's 
papers on "track groups" [Ba55], but they were not clearly articulated until the papers of 
Puppe [Pu58] and Nomura [Nom60]. The concomitant principle of Eckmann-Hilton du
ality also dates from the late 1950's [Eck57, EH58] (see also [Hil65]). The language of 
fiber and cofiber sequences pervades modern homotopy theory, and its late development 
contrasts vividly with the earlier introduction of categorical language. Probably not coin-
cidentally, the key categorical notion of an adjoint functor was also only introduced in the 
latel950's,byKan[Kan58]. 

Although a little peripheral to the present subject, a third fundamental text of the early 
1950's, Steenrod's "The topology of fiber bundles" [St51] nevertheless must be mentioned. 
In the first flowering of stable algebraic topology, with the introduction of cobordism and 
7^-theory, the solidly established theory of fiber bundles was absolutely central to the trans
lation of problems in geometric topology to problems in stable algebraic topology. 

2. The Eilenberg-Steenrod axioms 

The functoriality, naturality of connecting homomorphism, exactness, and homotopy ax
ioms need no comment now, although their economy and clarity would not have been 
predicted from earlier work in the subject. Remember that these are axioms on the homol
ogy or cohomology of pairs of spaces. The crucial and subtle axiom is excision. A triad 
(X; A, B) is excisive if X is the union of the interiors of A and B. In homology, the exci
sion map H^(B, AHB) -^ //*(X, A) must be an isomorphism. One subtlety is that I have 
stated the axiom in the form that Eilenberg and Steenrod verify it for singular homology. 
With a view towards other theories, they state the axiom under the stronger hypothesis that 
B is closed in X. 

Conveniently for later developments, the dimension axiom was stated last. The funda
mental theorem is that homology and cohomology with a given coefficient group is unique 
on triangulable pairs or, more generally, on finite CW pairs. 
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Several important extensions of the axioms came later. First, one wants an axiom that 
characterizes ordinary homology and cohomology on general CW pairs. For that Milnor 
[Mil62a] added the additivity axiom. It asserts that homology converts disjoint unions to 
direct sums and cohomology converts disjoint unions to direct products. It implies that 
the homology of a CW complex X is the coUmit of the homologies of its skeleta X". In 
cohomology, it implies lim^ exact sequences 

0 -^ X\m^m-\r') -> //^(X) -> limH^(X") -^ 0. (2.1) 

This allows the extension of the uniqueness theorem to infinite CW pairs. 
One next wants an axiom that distinguishes singular theories from other theories on gen

eral pairs of spaces. I do not know who first formulated it; it appears in [Swi75] and may 
be due to Adams. This is the weak equivalence axiom. It asserts that a weak equivalence of 
pairs induces an isomorphism on homology and cohomology. Any space is weakly equiv
alent to a CW complex, any pair of spaces is weakly equivalent to a CW pair, and any 
excisive triad is weakly equivalent to a triad that consists of a CW complex X and a pair 
of subcomplexes A and B with union X. Here B/A D B = X/A as CW complexes, which 
neatly explains the excision axiom. The weak equivalence axiom reduces computation of 
the homology and cohomology of general pairs to their computation on CW pairs. Thus it 
implies the uniqueness theorem for homology and cohomology on general pairs. 

Finally, one wants an axiom system for the reduced homology and cohomology of based 
spaces. The earliest pubHshed account is in the 1958 paper [DT58] of Dold and Thom, who 
ascribe it to Puppe. They use it to prove that the homotopy groups of the infinite symmet
ric products SP'^X of based spaces X can be computed as the reduced integral homology 
groups of X. There are several slightly later papers [Ke59, BP60, Hu60] devoted to sin
gle space axioms for the homology and cohomology of both based spaces and, curiously, 
unbased spaces. 

For the reduced homology of nondegenerately based spaces, the axioms just require 
functors kq together with natural suspension isomorphisms 

i:,:k,(X) = k,^i(i:X) (2.2) 

that satisfy the exactness, wedge, and weak equivalence axioms. Here the exactness axiom 
requires the sequences 

kq(X) ^ kg{Y)-> kg(Cf) (2.3) 

to be exact for a map f :X ^^ Y with cofiber Cf = Y Uf CX. The wedge axiom requires 
the functors kq to carry wedges (1-point unions) to direct sums. The weak equivalence 
axiom requires a weak equivalence to induce isomorphisms on all homology groups. Given 
such a reduced homology theory, one obtains an unreduced homology theory by setting 
kq{X) = kq(X^), where Z-f. is the union of X and a disjoint basepoint, and 

kq(X,A) = k(Cf), 

where / : A —> X is the inclusion. For an unreduced homology theory /:*, one obtains a re
duced homology theory by setting kq (X) = kq (X, *). Thus reduced and unreduced homol-
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ogy theories are equivalent notions. The same is true for cohomology theories. The sum
mary in this paragraph makes no reference to the dimension axiom and appHes in general. 

In view of (2.2), all of ordinary homology and cohomology theory is actually part of 
stable algebraic topology. As an informal rule of thumb, when thinking in terms of clas
sical algebraic topology, one uses unreduced theories. When thinking in terms of stable 
algebraic topology, one wants the suspension axiom to hold without qualification in all de
grees and one therefore works with reduced theories. In fact, in a great deal of recent work, 
it is an accepted convention that A:* means reduced homology, and one writes /c*(X+) for 
unreduced homology. I shall not take that point of view here, however. 

This summary of the axioms is skewed towards singular homology and cohomology. 
The viewpoint of someone working in, say, algebraic geometry would be quite different. 
However, there are two footnotes to the axioms that are not well known and may be worth 
mentioning. To characterize Cech cohomology on compact Hausdorff spaces, Eilenberg 
and Steenrod add the continuity axiom. Keesee [Kee51] observed that this axiom implies 
the homotopy axiom. 

More substantively, let us go back to (1.1) above. If X has the homotopy type of a 
CW complex, then the square brackets denote homotopy classes of based maps. Huber 
[Hu61] proved that if X is a paracompact Hausdorff space, then the Cech cohomology 
group //"(X; TT) is isomorphic to the set of homotopy classes of maps X -> K{n,n). In 
contrast, for the general representation of singular cohomology in the form (1.1), we must 
understand [X, K(Tt, n)] to be the set of maps in the category that is obtained from the 
homotopy category of based spaces by adjoining formal inverses to the weak equivalences; 
equivalently, we must replace X by a CW complex weakly equivalent to it before taking 
homotopy classes of maps. 

3. Stable and unstable homotopy groups 

Another important precursor of stable algebraic topology was a substantial increase in the 
understanding of the relationship between stable and unstable homotopy groups and of cer
tain fundamental exact sequences relating homotopy groups in different dimensions. I am 
here thinking of what was achieved by bare hands work, in the early to mid 1950's, using 
CW complexes and homotopical methods rather than the contemporaneous and overlap
ping progress that came with the introduction of spectral sequences. 

We have seen that the critical axiom for homology is excision. In the early 1950's, Blak-
ers and Massey [BM51, BM52, BM53] made a systematic study of excision in homotopy 
theory, proving that homotopy groups satisfy the excision axiom in a range of dimensions. 
This gave a new proof of the Freudenthal suspension theorem and considerably clarified 
the conceptual relationship between homology and homotopy. The proofs were quite dif
ficult, and it soon became fashionable to prove versions of their results using homology 
and spectral sequences. However, Boardman later came up with a quite accessible direct 
homotopical proof, which is presented in [Swi75], for example. It is worth emphasizing 
that the homotopical proof gives a stronger result than can be obtained by homological 
methods. 

The Freudenthal suspension theorem establishes the stable range for homotopy groups, 
roughly twice the connectivity of a space. It was shown by G.W. Whitehead [Wh53] that 
there is a metastable range for the homotopy groups of spheres. The suspension homomor-
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phism E fits into the EHP exact sequence 

when q ^3n — 2. Here / / is a (generahzed) Hopf invariant that Whitehead had introduced 
earher [Wh50] and P is the (J.H.C.) Whitehead product. There were many extensions and 
refinements of these results. For example, Hilton [Hil51] gave a definition of the Hopf 
invariant in the next range of dimensions, q < 4n, in the sequence above. The extrap
olation of calculations and understanding in stable homotopy theory to calculations and 
understanding in the metastable range, and further, has been a major theme ever since. 

James [Ja55, Ja56a, Ja56b, Ja57] and Toda [To62a] went much further with this. James 
proved that, on 2-primary components, there is an EHP exact sequence that is valid for 
all values of q, and Toda proved an appropriate analogue for odd primes. James intro
duced the James construction JX for the purpose. Here JX is the free topological monoid 
generated by a based space X. For a connected CW complex X, James proved that JX is 
homotopy equivalent to ^ i7X. The space JX comes with a natural filtration, and its simple 
combinatorial structure allows direct construction of suitable Hopf invariant maps. Milnor 
[Mil56b] proved that EJX splits up to homotopy as the wedge of the suspensions of its 
filtration quotients. These arguments were the prototypes for a great deal of later work in 
which combinatorial approximations to the n-fold loop spaces Q^E^^X have been used to 
obtain stable decompositions of such spaces, leading to a great deal of new calculational 
information in stable homotopy theory. However, this goes beyond the present story. 

The power and limitations of such direct homotopical methods of calculation are well 
illustrated in Toda's series of papers [To58a, To58b, To58c, To59] and monograph [To62b]; 
while cohomology operations, spectral sequences, and the method of killing homotopy 
groups are used extensively, most of the work in these calculations of the groups 7in-\-k(S^) 
for small k consists of direct elementwise inductive arguments in the EHP sequence. Later 
work of this sort gave these groups for a few more values of k, but it was apparent that this 
was not the route towards major progress in the determination of the homotopy groups of 
spheres. 

4. Spectral sequences and calculations in homology and homotopy 

Although the credit for the invention of spectral sequences belongs to Leray [Le49, Mc], for 
algebraic topology the decisive introduction of spectral sequences is due to Serre [Se51]. 
For a fibration p\E->B with connected base space B and fiber F, the Serre spectral 
sequence in homology has £^ = Hp{B; Hq{F, n)), where local coefficients are un
derstood, and it converges in total degree p H- ^ to //*(£"; TI). The analogous cohomology 
spectral sequence with coefficients in a commutative ring TT is a spectral sequence of differ
ential algebras, and it converges to the associated graded algebra of H*(E;7T) with respect 
to a suitable filtration. 

With the Serre spectral sequence, algebraic topology emerged as a subject in which 
substantial calculations could be made. While its applications go far beyond our purview, 
many of the calculations that it made possible and ideas to which it led were essential 
prerequisites to the emergence of stable algebraic topology. 
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Work of Borel [Bo53a, Bo53b] and others gave a systematic understanding of the ho
mology and cohomology of the classical Lie groups and of their classifying spaces and 
homogeneous spaces. The basic characteristic classes had all been defined earlier, but the 
precise detailed analysis of the various cohomology algebras and their induced maps was 
vital to future progress. 

Serre's introduction of class theory [Se53a], and his use of the spectral sequence to prove 
the finiteness of the homotopy groups of spheres, save for 7Tn(S^) and n4n-i(S^"), were to 
change the way people thought about algebraic topology. Earlier calculations had generally 
had as their goal the understanding of homology and cohomology with integer or with real 
coefficients. In the years since, calculations have largely focused on mod p homology and 
cohomology, especially in stable algebraic topology where the rational theory is essentially 
trivial. Moreover, this change in point of view led ultimately to the study of all of homotopy 
theory in terms of localized and completed spaces. 

The method of killing homotopy groups introduced by Cartan and Serre [CS52a, CS52b] 
was also profoundly influential. It provided the first systematic route to the computations 
of homotopy groups. The idea is easy enough. Let Z be a simple space. Inductively, by 
killing homotopy groups and passing to homotopy fibers, one can construct a sequence of 
fibrations 

Pn : X[n + 1, oo) -> X[n, oo) 

with fibre K(jTn{X), n — 1), where X\n, oo) is iri — l)-connected and its higher homotopy 
groups are those of X. The initial map p\ is just the universal covering of X. Assuming 
that one knows the first n homotopy groups of Z, one should have enough inductive control 
on the space X\_n, oo) to use the Serre spectral sequence to compute //,24.i(X[n + 1, oo)), 
which by the Hurewicz isomorphism is 7r„+i (X). This is closely related to Postnikov sys
tems [Pos51a, Pos51b, Pos51c], which were not yet available to Cartan and Serre and so 
were implicitly reinvented by them. If in : X -> X^ is the n-\k\ term of the Postnikov tower 
of X, then in induces an isomorphism on 7iq for ^ ^n and the higher homotopy groups of 
Xn are zero; X\n + 1, oo) is the homotopy fiber of/Vi. 

An interesting companion to this method was given in Moore's study [Mo54] of the 
homotopy groups of spaces with a single nonvanishing homology group, which are now 
called Moore spaces. This work led later to the introduction of the mod p homotopy 
groups of spaces. Cohomotopy groups with coefficients were introduced and studied ear-
her, by Peterson [Pe56a, Pe56b]. Moore also gave a functorial, semi-simplicial, construc
tion of Postnikov systems, in [Ca54-55] and [Mo58], which are sometimes called Moore-
Postnikov systems as a result. This and related work of Moore in [Ca54-55], Heller in 
[He55], and especially Kan in [Kan55] and many later papers (see [May67]), began the 
modern systematic use of simplicial methods in algebraic topology. 

5. Steenrod operations, K(ii, n)'s, and characteristic classes 

For the method of killing homotopy groups to be useful, one must know something about 
the cohomology of Eilenberg-MacLane spaces. The problem of calculating these coho
mology groups was intensively studied by Eilenberg and MacLane, notably in [EM50], 
and was solved a few years later by Cartan [Ca54-55], using methods of homological al
gebra. However, Cartan's original answer was not in the form we know it today. In fact. 



672 J.P. May 

in mod p cohomology for odd primes /?, it is still not obvious how to correlate Cartan's 
calculations with the definitive calculations in terms of Steenrod operations. 

I will not say anything about the invention and development of the basic properties of 
the Steenrod operations [St47, St52, St53a, St53b, St57, ST57] since that is interestingly 
discussed in [Ma, Whl]. Steenrod and Epstein [SE62] published a systematic account of 
the results. Epstein [Ep66] later showed how to construct Steenrod operations in a general 
context of homological algebra. In fact, simply by separating the algebra from the topology, 
Steenrod's original definition can be adapted to a variety of situations in both topology and 
algebra [May70]. 

An essential point is that the Steenrod operations are stable, in the sense that the follow
ing diagrams commute, where Z2 is the field Z/2Z. 

HHX. Z2) — ^ H^+^'(X; Z2) 

L* 

m-^\i:x\ Z2) — ^ 5^+i+ ' ( i ;x ; Z2). 

(5.1) 

The analogous diagram commutes for odd primes, where P' has degree 2i{p — 1). 
Serre [Se53b] computed H*(K(7T2, n); Z2), where 712 is cyclic of order 2, in modern 

terms: it is the free commutative algebra on suitable composites of Steenrod operations 
acting on the fundamental class i„ e H"(K(7T2, n)\ Z2). The analogue for odd primes was 
worked out by Cartan in [Ca54-55], in later exposes that are in fact independent of his 
original calculations pubUshed in the same place. 

Formulas for the iteration of the Steenrod operations were first proven by Adem 
[Adem52] at the prime 2 and by Adem and Cartan [Adem53, Adem57, Ca55], indepen
dently, at odd primes. However, it was Cartan who first defined the Steenrod algebra Ap 
and determined its basis of admissible monomials. 

In the paper [Se53b], Serre also formulated the modern viewpoint on cohomology op
erations. A cohomology operation 0 of degree / is a natural transformation k'^ -> t^^^ 
for some fixed q, where /:* and £* are any cohomology theories. When A:* is ordinary co
homology with coefficients in 71 and £* is ordinary cohomology with coefficients in p, 0 
is determined by naturality by the element 0(t^) G H^'^^(K(JT, q)\ p). Observe that, by 
(1.1), this element may be viewed as a homotopy class of maps K{n, q) ^^ K{p,q -\- i). 

A crucial point quickly understood was the calculation of the Steenrod operations in 
the cohomologies of Lie groups and their classifying spaces and homogeneous spaces. In 
particular, already in 1950 [Wu50a, Wu53], Wu proved his basic formula for the calculation 
of the Steenrod operations on the Stiefel-Whitney classes: 

(e r -\- t 1\ 
jWr-tWsH fovs > r ^0. (5.2) 

Borel and Serre made a systematic study shortly afterwards [BS51, BS53]. 
Also in 1950 [Wu50b], Wu proved his formula giving an algorithm for the calculation 

of the Stiefel-Whitney classes of the tangent bundle of a manifold directly in terms of 
its cup products; see Section 12. Wu was a close collaborator of Thom, and his work 
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was dependent on work of Thorn, announced in part in 1950 [Thom50a, Thom50b] and 
published in 1952 [Thom52]. In that paper, Thorn proved the Thorn isomorphism theorem 
and used it to give the now familiar description of Stiefel-Whitney classes in terms of 
Steenrod operations. Since [Thom52] was later overshadowed by Thom's great work on 
cobordism, it is well worth describing some of its original contributions. 

Thom considered locally trivial fiber bundles p: E -^ B with fiber S^~^, with no as
sumptions about the group of the bundle. Working sheaf theoretically and resolutely avoid
ing the use of spectral sequences, which were available to him, Thom proved the Thom 
isomorphism 

0 : HHB) -> H'^'^^iMp, E), (5.3) 

where Mp is the mapping cylinder of p. He worked with twisted integer coefficients, thus 
allowing for nonoriented fibrations, before studying the mod 2 case. Observe that, in the 
motivating example of the unit sphere bundle E = S(E^) of a ̂ -dimensional vector bundle 
p^: E' -^ B with a Riemannian metric, the quotient space Mp/E is homeomorphic to 
the quotient space D{E')/S{E'), where ^(£"0 is the unit disk bundle of E\ This quotient 
space is called the Thom space of p' and now usually denoted Tp' or T{E'). 

Using mod 2 coefficients in the Thom isomorphism, Thom defined the Stiefel-Whitney 
classes of E by 

u ; , = 0 - ^ 5 ^ > ( l ) , (5.4) 

and he proved that, in the case of vector bundles, these are the classical Stiefel-Whitney 
classes of £̂ . He rederived the properties of Stiefel-Whitney classes, in particular the Whit
ney duality theorem, from the new definition. This gave an elegant new proof of Whitney's 
result [Whit41] that the Stiefel-Whitney classes of the normal bundle of an immersion / 
are invariants of the induced map / * on mod 2 cohomology. In particular, they are inde
pendent of the choice of the differentiable structures on the manifolds in question. It is 
worth emphasizing that Whitney's foundational work in [Whit41] and other papers, for 
example on embeddings and immersions of smooth manifolds, was an essential prereq
uisite to virtually all of the later applications of algebraic topology to geometric topol
ogy-

Thom then generalized to obtain results of this form for purely topological immersions, 
with no hypothesis of differentiability. It should be remembered that this paper appeared 
four years before Milnor's discovery of exotic differential structures on spheres [Mil56a]. 
For an embedding / , he went further and showed that the homotopy type of a tubular 
neighborhood of / is independent of the differentiable structure on the ambient manifold. 
He then introduced the notion of fiber homotopy equivalence and proved that the fiber 
homotopy type of the tangent bundle of a manifold is independent of its differentiable 
structure. He observed that the Stiefel-Whitney classes are invariant under fiber homotopy 
equivalence, and asked what other such classes there might be. The determination of all 
characteristic classes for spherical fibrations evolved over the following two decades. That 
is a long story, intertwined with the theory of iterated loop spaces, and is well beyond our 
present scope. 
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6. The introduction of cobordism 

In the last chapter of [Thom52], Thorn set up the modern theory of Poincare duahty for 
manifolds with boundary and explained the now familiar necessary Euler characteristic 
and index conditions for a differentiable manifold to be the boundary of a compact dif-
ferentiable manifold. The emphasis he placed on the index was a precursor of things to 
come. He also recalled Pontryagin's fundamental observation [Pon42, Pon47] that, for M 
to be such a boundary, it is necessary that all of its characteristic numbers be zero. He went 
on to observe that the vanishing of Stiefel-Whitney numbers is still a necessary condition 
when M is not assumed to be differentiable. He observed that "la recherche de conditions 
suffisantes est un probleme beaucoup plus difficile". 

Two years later, as announced in [Thom53a, Thom53b, Thom53c] and pubhshed in his 
wonderful 1954 paper [Thom54], he had solved this problem for smooth compact mani
folds. The importance to modern topology, both geometric and algebraic, of his introduc
tion and calculation of cobordism cannot be exaggerated. For example, Milnor's construc
tion of exotic differentiable structures on S^ begins with Thom's theory and in particular 
with Thom's result that every smooth compact 7-manifold is a boundary. 

Cobordism theory was not wholly unprecedented. In 1950, Pontryagin [Pon50] showed 
that the stable homotopy groups of spheres, in low dimension at least, are isomorphic to 
the framed cobordism groups of smooth manifolds. His motivation was to obtain methods 
for the computation of stable homotopy groups, and he used this technique to prove that 
^/7+2('^") = Z/2Z, thus correcting an earher mistake of his. While that motivation seems 
misguided in retrospect, it was an imaginative attack on the problem. Pontryagin's paper 
was in Russian, never translated, and it is not quoted by Thom. However, Thom does 
quote earlier papers of Pontryagin [Pon42, Pon47] in which the idea of pulling back the 
zero-section in Grassmannians along a smooth approximation to a classifying map plays a 
prominent role. 

Thom's paper [Thom54] reads a little surprisingly today. Its main focus is not cobordism, 
which does not appear until the last chapter, but rather the realization of homology classes 
of manifolds by submanifolds. It seems that it was this that first motivated Thom to a 
detailed analysis of the cohomology and homotopy of Thom complexes, not just in the 
stable range relevant to cobordism but also in the unstable range. Moreover, the existence 
of a stable range for the homotopy groups of TSO{k) and TO{k) is proven by direct methods 
of algebraic topology, rather than as a consequence of the isomorphism between homotopy 
groups and cobordism groups. 

For a closed subgroup G of 0{k), Thom lets T{G) be the Thom space of the universal 
bundle EG -> BQ with fiber S^~^. He considers a compact oriented manifold V" and 
asks when a homology class x e Hn-kiV) is reaUzable as the image of the fundamental 
class of submanifold W^^~^ of codimension k. He duaUzes the question as follows. For any 
space X, say that a class y e H^{X) is G-realizable if there is a map / : Z -> T{G) such 
that /*(/x) = y, where /x G H^{T{G)) is the Thom class. Let y e H^(V) be Poincare 
dual to X. Then "le theoreme fondamental" asserts that x is realizable by a submanifold 
W such that the structure group of the normal bundle of \y in V can be reduced to G if 
and only if 3̂  is G-reahzable. Of course, the analogue with mod 2 coefficients does not 
need orientability. As we shall see in Section 16, Atiyah explained this result conceptually 
almost a decade later. 
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Taking G to be the trivial group, it follows from a result of Serre [Se53a] that x is 
realizable if k is odd or if /t < 2k and that Nx is reaUzable for some integer Â  that 
depends only on k and n. However, the main focus is on G = 0{k) and G = SO(k). Here 
Thorn shows directly that 7tk-\-i(T0{k)) is independent of k when / < k, and similarly for 
TSO{k). Moreover, crucially, he proves that TO(k) has the same 2k-typt as a precisely 
specified product of Eilenberg-MacLane spaces K(Z2, k-\-i). The Wu formula (5.2) is the 
key to the calculation. He goes on to study H''{TO{k)\ Z2) in low dimensions beyond the 
stable range fork ^ 3. For the reahzability problem, he deduces that x e Hi{V^^\ Z2) is 
realizable for / < [n/2], with further information in low codegrees n — i. 

The problem for TSO{k) is much harder, and 7tk+i{TS0ik)) is only determined com
pletely for / ^ 7; more detailed information is obtained for A; ^ 4. However, Thom 
shows that TSO(k) has the rational cohomology type of an explicitly specified product 
of Eilenberg-MacLane spaces K{Z,k -{- i). For the reahzability problem, he deduces that 
some integer multiple of any x e HiiV^; Z) is reaUzable, and that any x is reahzable if 
/ ^ 5 or /I ^ 8. 

Before turning to cobordism, Thom studies the problem posed by Steenrod of determin
ing which homology classes x 6 Hr{K) of a finite polyhedron K are realizable as /*(z), 
where z is the fundamental class of a compact manifold M^ and f : M^ -^ AT is a map. 
By embedding AT as a retract of a manifold with boundary M and taking the double V of 
M to obtain a manifold without boundary, Thom reduces this question to the reahzability 
question already studied. He thereby proves that, in mod 2 homology, every class x is re
alizable. In retrospect, of course, this presages unoriented bordism and its relationship to 
ordinary mod 2 homology. Similarly, he proves that, in integral homology, some integer 
multiple of every class x is realizable. Remarkably, he then proves that every class x is 
realizable if r < 6, but that there are unrealizable classes in all dimensions r ^ 1. 

Only after all of this does he prove the cobordism theorems. Let Mn be the set of cobor
dism classes of smooth compact n-manifolds, where two n-manifolds are cobordant if their 
disjoint union is the boundary of a smooth compact (n4- l)-manifold with boundary. Define 
f2n similarly for oriented n-manifolds. Under disjoint union, J\fn is a Z2-vector space and 
Qn is an Abelian group; any boundary is the zero element. Under Cartesian product, A/î  
and ^* are graded rings. Moreover, the index defines a ring homomorphism I: f2^ -> Z. 
The fundamental geometric theorem is the Thom isomorphism: J\fn is isomorphic to the 
stable homotopy group nk^n{TO{k)) and Qn is isomorphic to the stable homotopy group 
7Zk^n{TS0{k)). 

While modern proofs are easier reading than Thom's, the basic ideas are the same. In 
slightly modernized terms, an isomorphism (j)\J\fn -> nk-^n(JO{k)) is constructed as fol
lows. Embed a given «-manifold M in R^+" for k large, let v be the normal bundle of 
the embedding, and construct a tubular neighborhood V of M in R^"^". Define a map / 
from 5^+^ to the Thom space T{v) by identifying V with the total space of v and map
ping points not in V to the basepoint. This is the Pontryagin-Thom construction. Classify 
V and compose / with the induced map of Thom spaces T{v) -^ TO(k) to obtain (j){M), 
checking that the homotopy class of the composite is independent of the choice of M in its 
cobordism class and of the embedding. To construct an inverse isomorphism V̂  to 0, view 
the classifying space BO(k) as a Grassmannian manifold of sufficiently high dimension. 
Up to homotopy, any map g : 5^"^" -> TO{k) can be smoothly approximated by a map 
that is transverse to the zero-section. Define ylr{g) to be the cobordism class of the inverse 
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image of the zero section, checking that this class is independent of the homotopy class 
of g. Transversality is the crux of the proof, and Thorn was the first to develop this notion. 

From here, the earlier calculations in the paper immediately identify the groups Afn-
Using this identification, Thom proves that two manifolds are cobordant if and only if they 
have the same Stiefel-Whitney numbers. By calculating the Stiefel-Whitney numbers of 
products, this allows him to determine the ring structure of A/"*: it is a polynomial algebra on 
one generator of dimension n for each n^l not of the form 2^ — 1. The even dimensional 
generators can be chosen to be the cobordism classes of the real projective spaces RP^". 

Similarly, the groups i?„ are identified modulo torsion by the earlier calculations. Using 
this, Thom proves that if all Pontryagin numbers of an oriented manifold are zero, then 
the disjoint union of some number of copies of that manifold is a boundary. This allows 
determination of the ring Q^ 0 Q: it is a polynomial algebra on generators of dimension 
An for n ^ 1. The generators can be chosen to be the cobordism classes of the complex 
projective spaces CP^". 

Dold [Dold56a] soon after identified odd-dimensional generators of J\f^. The Wu for
mula for the computation of Stiefel-Whitney classes of manifolds give restrictions on 
which collections of Stiefel-Whitney numbers actually correspond to the cobordism class 
of a manifold, and Dold [Dold56b] proved that these relations are complete: a collection 
of Stiefel-Whitney numbers that satisfies the Wu relations corresponds to a manifold. In 
modern invariant terms, the Stiefel-Whitney numbers of manifolds define a monomor-
phism A/** -^ Hom(//*(50; Z2), Z2), and its image consists of those homomorphisms 
that annihilate the subgroup generated by the Wu relations. 

7. The route from cobordism towards iif-theory 

Hirzebruch [Hirz53] had already introduced multiplicative sequences of characteristic 
classes before Thom's paper. However, cobordism theory provided exactly the right frame
work for their study and allowed him to prove the index theorem [Hirz56]: the index 
of a smooth oriented 4^-manifold M is the characteristic number {L(T), [ M ] ) , where 
L is the L-genus and r is the tangent bundle of M. Here L(r) is a polynomial in 
the Pontryagin classes of M determined in Hirzebruch's formalism by the power series 
L(x) = x/tanh(x). Using Thom's observation that the index defines a ring homomor-
phism Q^ -> Z, Hirzebruch's formahsm shows that the index formula must hold for some 
power series L, and L(jc) is the only power series that gives the correct answer on complex 
projective spaces. 

The purpose of Hirzebruch's monograph [Hirz56] was to prove the Riemann-Roch the
orem for algebraic varieties of arbitrary dimension. It would take us too far afield to say 
much about this, and a quite detailed summary may be found in Dieudonne [Dieu, pp. 580-
595]. Suffice it to say that Hirzebruch's essential strategy was to reduce the Riemann-Roch 
theorem to the index theorem. One key ingredient in the reduction should be mentioned, 
namely a method for splitting vector bundles that led later to the splitting principle in K-
theory. 

Another nice discussion of [Hirz56] may be found in Bott's review [Bott61] of the sec
ond part of Borel and Hirzebruch's deeply influential work [BH58, BH59, BH60]. The 
Riemann-Roch theorem showed that the characteristic number {T(TC), [M]) of any pro
jective nonsingular variety M is an integer, namely the arithmetic genus of M; here Zc is 
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the complex tangent bundle of M and T is the Todd genus, which is determined by the 
power series T{x) = x/l — e~^. Borel and Hirzebruch sought and proved an analogous in
tegrality theorem for arbitrary differentiable manifolds. The A-genus is related to the Todd 
genus by the formula T(x) = e^^'^A{x), and it satisfies A{x) = A{—x). As Bott explains 
clearly, this makes it plausible that the A-genus should satisfy a similar integrality relation 
on arbitrary compact manifolds, as Borel and Hirzebruch prove. More precisely, they prove 
it up to a factor of 2 that was later eliminated by Milnor's proof (imphcit in [Mil60]) that 
the Todd genus of an almost complex manifold is an integer. 

Milnor and Kervaire [Mil58b, KM60] gave an important application of the integrality of 
the A-genus. In 1942 [Wh42], G.W. Whitehead introduced the stable 7-homomorphism 

n large. Writing ic^ = TZq-^niS'^) for the ^-th stable homotopy group of spheres and letting 
n go to infinity, this can be written J : TUq (SO) -> n^. Milnor and Kervaire used the inte-
graUty theorem to prove that, when q = 4A: — 1, the order jn of the image of J is divisible by 
the denominator of Bk/4k, where Bk is the /c-th BernoulU number. This result gave the first 
sign of regularity in the stable homotopy groups of spheres, and their proof showed that the 
7-homomorphism is of considerable relevance to geometric topology. In fact, although this 
is a result in stable homotopy theory, they derive it from a generalization of a theorem of 
Rohlin in differential topology. Rohlin's theorem [Ro51, Ro52] states that the Pontrjagin 
number pi(M) of a compact oriented smooth 4-manifold M with W2(M) = 0 is divisi
ble by 48. Milnor and Kervaire mimic his arguments to prove that the Pontrjagin number 
Pn (M) of an almost parallelizable smooth 4«-manifold is divisible by (2n — 1 )\jnCin, where 
Gn is 2 if n is even and 1 if n is odd, with equality for at least one such manifold M. 

For the historical story, one striking feature of the work of Borel and Hirzebruch is 
its systematic use of multiplicative functions Fc(X) -> //**(Z; R) and F^{X) -> 
//**(X; R), where F^(X) and Fc(X) are the semi-groups of equivalence classes of com
plex and real vector bundles over X and H'^'^iX; R) is the direct product of the real co-
homology groups of X. A multiplicative function is one that converts sums to products. 
The authors are tantalizingly close to AT-theory. Two things are missing: the Grothendieck 
construction and Bott periodicity. 

The first was introduced by Grothendieck [BS58], who needed it to formulate his 
generalized, relative, version of the Riemann-Roch theorem in algebraic geometry. 
Grothendieck is the inventor of the general subject of A'-theory, and his ideas played a 
centrally important role in the introduction of topological /^-theory. 

As to the second, as Bott notes in his review, the work of Borel and Hirzebruch led them 
to an exact sequence 

0 -> Zni -^ n2n{U(n)) -> JT2n{U(n + 1)) -> 0. (7.1) 

More precisely, they proved the sequence to be exact modulo 2-torsion. As Bott writes: 

The exact sequence conflicted, at the time of its discovery, with computations of homo
topy theorists and led to a spirited controversy. At present it is known the sequence is 
exact even with regard to the prime 2. 

What he neglects to say is that the sequence also follows from Bott periodicity, and the 
conflict for some time held up publication of that result. 
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8. Bott periodicity and X -̂theory 

One version of the Bott periodicity theorem asserts that there is a homotopy equivalence 
BU -^ QSU. The periodicity is clearer in the equivalent reformulation BU x Z :^ 
Q^{BU X Z). The real analogue gives 5 0 x Z :^ Q^{BO x Z). Bott's original proof 
of these beautiful results is based on the use of Morse theory. Before proving the periodic
ity theorem, Bott had clearly demonstrated the power of Morse theory by using it to prove 
that there is no torsion in the integral homology of QG for any simply connected compact 
Lie group G [Bott56]. Bott announced the periodicity theorem in [Bott57], and he gave 
two somewhat different proofs, both based on Morse theory, in [Bott58, Bott59a]. 

It immediately became a challenge to reprove the periodicity theorems using the stan
dard methods of algebraic topology. In the complex case, a proof was given by Toda 
[To62b], together with a rederivation of the Borel-Hirzebruch exact sequence (7.1), but 
his proof did not show that BU and QSU have the same homotopy type. The space BU 
is an //-space under Whitney sum, and Bott's proofs led to simple and explicit //-maps 
that give the equivalences. In the real case, there are actually six maps that must be proven 
to be equivalences. These explicit maps were exploited by Dyer and Lashof [DL61] and 
Moore (written up by Cartan [Ca54-55]) to give direct calculational proofs. Actually, there 
is a curious simplification to be made: comparison of the proofs in [DL61] and [Ca54-55] 
shows that each finds particular difficulty in proving one of the required equivalences, but 
they find difficulty with different maps: combining the best of both proofs gives a quite 
tractable argument. 

Finally, in their announcement [AH59], submitted in May, 1959, Atiyah and Hirzebruch 
introduce the functor K(X) for a finite CW complex X: it is the Grothendieck construction 
on the semi-group Fc(X), and it is a ring with multiplication induced by the tensor product 
of vector bundles. They define KO(X) similarly. They noticed a striking reinterpretation of 
Bott periodicity: tensor product of bundles induces a natural isomorphism fi that fits into 
the commutative diagram 

K{X) (g) K{S^) ^ K{X X S^) 

ch ch 

/^**(Z; Q) (g) //**(52; Q) -—^ //**(Z x S^\ Q), 

where ch is the Chern character and a is the cup product isomorphism. 
They observe that, for connected X, the kernel K{X) of the dimension map s : K{X) -> 

Z can be identified with the set of homotopy classes of maps X -^ BU. In principle, 
modulo a lim^ argument not yet available, this leads to a homotopy equivalence from BU 
to the basepoint component of Q^BU. However, their reinterpretation of Bott periodicity 
was by no means an obvious one. In [Bott58], Bott related his explicit maps to tensor 
products of bundles and so proved that his original version of the periodicity theorem really 
did imply the version noticed by Atiyah and Hirzebruch. Moreover, he gave the analogous 
reinterpretation in the real case, where a direct proof of the new version was less simple. 

Jumping ahead to 1963 for a moment, Atiyah and Bott together [AB64] then found a di
rect and elementary analytic proof of the complex case of the periodicity isomorphism in its 
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tensor product formulation, using clutching functions to describe bundles over XxS^ ex
plicitly. Their proof actually gives a more general result, namely a Thom isomorphism, and 
important refinements and generaUzations are given in their lecture notes [At64, Bott63]. 
The analytic proof is relevant to the Atiyah-Singer index theorem, which was already 
announced in 1963 [AS63] and which generalizes Hirzebruch's index theorem. The first 
published proof appeared in 1965 [Pa651, based on seminars in 1963/64. 

In their 1959 announcement [AH59] and also in [Hirz59], Atiyah and Hirzebruch give 
a Riemann-Roch theorem relative to a suitable map / : M -> Â  of differential manifolds; 
see Section 12 for the statement. They observe that their theorem can be rewritten for 
holomorphic maps between complex manifolds in the same form as Grothendieck's version 
of the Riemann-Roch theorem. Their results imply a new proof of the integrality of the 
A-genus, together with a sharpening in the case of ^j^Z/i-manifolds of dimension congruent 
to 4 mod 8 that had been conjectured by Borel and Hirzebruch. They also rederive and 
give a conceptual sharpening of Milnor's result on the /-homomorphism. 

In [AH59], nothing is said about K{X) being part of a generahzed cohomology theory. 
Moreover, it is clear that the authors as yet have no hint of AT-homology and Poincare 
duality: their statement of the Riemann-Roch theorem involves a pushforward map /i , as 
it must, but that map was not well understood. They remark that "It is probable that f\ is 
actually induced by a functorial homomorphism K(Y) -> K(Xy\ 

Rather than proceed directly to 1960 and the first published account of /^-theory as a 
generalized cohomology theory, I shall interpolate a discussion of several quite different 
lines of work that were going on in the late 1950's. 

As preamble, Milnor [BM58, Mil58c] saw immediately, in February 1958, that Bott's 
results led to the solution of two longstanding problems; [BM58] is a pair of letters be
tween Milnor and Bott on this subject, and [Mil58cl fills in the details. The relevant result 
of Bott is that the image of the Hurewicz homomorphism 7T2n(BU) -> H2n{BU) is divis
ible by exactly {n — 1)!. This is closely related to the exact sequence (7.1). What Milnor 
deduces from this is: 

(1) The vector space E" possesses a bihnear product without zero divisors only for n 
equal to 1, 2, 4, or 8. 

(2) The sphere 5""^ is parallelizable only for w — 1 equal to 1, 3, or 7. 
The latter result was also proven at about the same time by Kervaire [Ker58]. 

9. The Adams spectral sequence and Hopf invariant one 

Milnor's results just cited are also among the many implications of Adams' celebrated 
theorem that 7i2n-i C*̂ ") contains an element of Hopf invariant one if and only if « is 1,2, 
4, or 8 [Ad60]. This result was announced in [Ad58b], which was submitted in April 1958. 
This work was a sequel to and completion of work begun in [Ad58a], submitted in June 
1957, in which Adams first attacked the Hopf invariant one problem and introduced the 
Adams spectral sequence. 

Fix a prime p, let A be the mod p Steenrod algebra, and let X be a space. In its original 
form in [Ad58a], the Adams spectral sequence satisfies 

El'' :=Ext'^'{H*{X),Zp), 
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where s is the homological degree, / is the internal degree, and / — 5 is the total degree, so 
that £"2'̂  = 0 if 5- < 0 or r < s. The differentials are of the form 

There is a filtration of the stable homotopy groups iTniX) such that 

The intersection of the filtrations consists of the elements of n^^ {X) that are of finite order 
prime to p. When X = S^, {£"*'*} is a spectral sequence of differential Zp-algebras and 
converges as an algebra to the associated graded algebra of the ring of stable homotopy 
groups of spheres under the composition product. 

The Adams spectral sequence can be thought of in several ways: it is a sophisticated 
reformulation and generalization of the Cartan-Serre method of killing homotopy groups, 
and it is an extension and systematization of the method of studying homotopy groups by 
considering higher order cohomology operations. 

The idea of higher order operations first appeared with Steenrod's introduction of func
tional cohomology operations [St49]. Let / : 7 -> X be a map. Steenrod showed how to 
construct an element x U/ x' in H'^iY) from a pair of elements x,x' m //*(X) such that 
X U x̂  = 0 and /*(JCO — 0. He defined functional mod 2 Steenrod operations similarly. 
These operations are defined on a subspace of //*(Z), and they are well-defined up to inde
terminacy. Adem [Adem56] made a systematic study of functional cohomology operations 
associated to stable cohomology operations, and Peterson [Pe57] gave a presentation in 
terms of Postnikov systems with stable /^-invariants. Although a few low dimensional ex
amples had appeared earher, Adem [Adem58] gave the first systematic study of secondary 
cohomology operations, building on his earlier proof of the Adem relations for the iter
ated Steenrod operations. He related secondary and functional cohomology operations in 
[Adem59]. Peterson and Stein [PS59] then gave a treatment of secondary and functional 
operations in terms of two-stage Postnikov systems. 

It was this kind of treatment that Adams had in mind. Secondary and higher operations 
come from relations between relations, and homological algebra is the natural tool for the 
study of relations between relations. The essential idea of the construction of the Adams 
spectral sequence is to construct a realization of a free resolution of the A-module //*(Z) 
(in a range of dimensions) by means of a resolution of the space X. This gives a kind of 
exact couple of spaces that leads to an exact couple giving the desired spectral sequence on 
passage to homotopy groups. Implicitly, as became much clearer with a later reformulation 
in terms of the homology of spectra rather than the cohomology of spaces, the fundamental 
points are the representation (1.1) of cohomology and the calculation of the cohomology 
of Eilenberg-MacLane spaces in terms of Steenrod operations. 

The relationship to the Hopf invariant one problem comes about as follows. There is 
an element of Hopf invariant one in nm-x^S^^) if and only if there is a (stable) two-cell 
complex such that the Steenrod operation Sq^^ connects the bottom cell to the top cell 
in mod 2 cohomology. If n is not a power of two, then Sq^ is decomposable as a linear 
combination of iterated Steenrod operations, by the Adem relations, and no such two-cell 
complex is possible. Now, for any connected Z^-algebra A, Ext^'^(Zp, Z^) is isomorphic 
to the dual of the vector space of degree t indecomposable elements of A. Take A to 
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be the mod 2 Steenrod algebra and consider the Adams spectral sequence for X = S^. 
1 2' 9' 

Then we have elements hj € Ej dual to the Steenrod operations Sq At is direct from 
the construction of the spectral sequence that there is an element of Hopf invariant one 
detected by Sq-^ if and only if hi is a permanent cycle in the spectral sequence. 

The element ho corresponds to the Bockstein Sq^ = p, and multiplication by ho in the 
spectral sequence detects multiplication by 2 in the stable homotopy groups of spheres. 
Adams computes enough of E2*, s = 2 and s = 3, to see that the elements hohj are 
nonzero in E2 for i ^ 3. The only way that hohj can be a boundary is if ^2(^/+i) = hohj. 
If / > 3 and both hi and /zz+i are permanent cycles, we conclude that hi represents an odd 
dimensional homotopy class Xi such that 2xf is nonzero. This is impossible since n^ is a 
graded commutative ring. This implies the main theorem of [Ad58a]i if both 1x211--\ iS'^) and 
n4n-i (5^") contain elements of Hopf invariant one, then n ^ 4, which was tantalizingly 
close to the expected answer. 

This line of argument does not work to solve the problem. However, the method of proof 
implies that Sq^^, although indecomposable in A, admits a decomposition in terms of 
composites of primary and secondary operations, taking into account the relevant domains 
of definition and indeterminacy. In [Ad60], Adams constructs such a decomposition of 
Sq-^ for all / ^ 4. While the argument makes no use of the Adams spectral sequence, it 
implies the differential diihi^i) — hohj for / ^ 3. 

The arguments in [Ad60] are very long, and I won't attempt a complete summary. They 
require a more thorough exposition of the foundations of graded homological algebra than 
was needed in [Ad58a], and this work has been used ever since. They also require an 
axiomatization and construction of secondary cohomology operations in terms of universal 
examples, together with a detailed study of how to relate the homological algebra to the 
analysis of the operations. Finally, particular operations relevant to the problem at hand are 
constructed, a putative decomposition formula for Sq^" is proven formally by means of the 
general theory, and the coefficient of Sq^" in the decomposition is proven to be nonzero by 
explicit calculation in a specific example. 

There are two crucially important ingredients in the work that must be singled out. 
First, the work of Milnor and Moore [MM65] on graded Hopf algebras plays a key role 
in the relevant homological algebra. Although [MM65] was not published until 1965, a 
mimeographed version was distributed much earlier and was an essential prerequisite to 
the higher level of algebraic sophistication that Adams introduced into algebraic topology. 

Second, Adams needed to make some calculations of £2 beyond those of [Ad58a], and 
for this purpose he made substantial use of Milnor's remarkable analysis of the structure of 
the Steenrod algebra [Mil58a]. This analysis has played a central role in a great many later 
calculations in stable algebraic topology. The Steenrod algebra A is a Hopf algebra. Its 
coproduct is determined by the Cartan formula and is cocommutative. Therefore the dual 
Hopf algebra, denoted A*, is commutative as an algebra. Milnor proved that it is a free 
commutative algebra in the graded sense. Explicitly, for an odd prime p, it can be written 
as a tensor product 

A^ = E{Ti \i^O}^P{^i | / > 1} (9.1) 

of an exterior algebra on odd degree generators r/ and a polynomial algebra on even degree 
generators ^/. Moreover, the coproduct on the generators admits a simple explicit formula. 
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in principle equivalent to the Adem relations but far more algebraically tractable. The dual 
B of P{^i I / ^ 1} can be identified both with the subalgebra of A generated by the 
Steenrod operations P^ and with the quotient of A by the two-sided ideal generated by the 
Bockstein ^. Note that, in quotient form, B also makes sense when p = 2. We shall come 
back to it later. 

Shortly after Adams' work, the techniques he developed were adapted to solve the ana
logue of the Hopf invariant one problem at odd primes p, showing that there can be a 
two-cell complex with P" connecting the bottom cell to the top cell in mod p cohomol-
ogy if and only if ^ = 1. This work was done independendy by Liulevicius [Liu62a] and 
by Shimada and Yamanoshita [SY61]. 

Using the structure theory for mod p Hopf algebras of Milnor and Moore and Milnor's 
analysis of the Steenrod algebra, I later developed tools in homological algebra that allowed 
the use of the Adams spectral sequence for explicit computation of the stable homotopy 
groups of spheres in a range of dimensions considerably greater than had been known 
previously [May65a, May65b, May66]. Correspondence initiated in the course of this work 
led Adams and myself to a long friendship, and I have given a brief account of all of 
Adams' work in [May2] and a eulogy and personal reminiscences in [Mayl]. 

10. 5-duality and the introduction of spectra 

Setting up the Adams spectral sequence as Adams did it originally is a tedious business, the 
reason being that one is trying to do stable work with unstable objects: one should be using 
"spectra" rather than spaces. Similarly, the representabihty of ordinary cohomology and the 
introduction of cobordism and AT-theory must eventually have forced the introduction of 
spectra, which appear naturally as sequences of Eilenberg-MacLane spaces, as sequences 
of Thorn spaces, and as sequences of spaces featuring in the Bott periodicity theorem. 

Nevertheless, the fact is that the introduction of spectra had nothing whatever to do with 
these lines of work. Rather, it grew out of the work on ^-duality of Spanier and Whitehead. 
I will be brief about this since it is also treated in [BG] in this volume. 

In 1949, Spanier [Sp50] reconsidered Borsuk's cohomotopy groups [Bor36]. For a 
(nice) compact pair (X, A), where dimX < 2/2 — 1, Spanier defined 7r"(^, ^) to be 
the set of homotopy classes of maps (X, A) -^ (5", *). As in Borsuk [Bor36], these 
are Abehan groups, and Spanier showed that these cohomotopy groups satisfy all of 
the Eilenberg-Steenrod axioms for a cohomology theory, except that they are only de
fined in a range of non-negative degrees depending on the dimension of X. He also 
showed that the cohomotopy groups map naturally to the integral Cech cohomology 
groups and that, for a CW complex X with subcomplex A, 7r"(J'" U A, X'"~^ U A) 
is isomorphic to the cellular cochain group C'"(X, A; 7r„2(5")). These were puzzling 
results. The real explanation, that these cohomotopy groups are the terms in a posi
tive range of dimensions of a cohomology theory whose coefficients are nonzero in 
negative dimensions, would come later. With hindsight, the cellular cochain isomor
phism just mentioned is the first hint of the Atiyah-Hirzebruch spectral sequence for 
stable cohomotopy theory. Spanier also observed that the Hurewicz isomorphism the
orem for [S'\ X] and the Hopf classification theorem for [X, S'^] are dual to one an
other. 
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To make a home for such duaUty phenomena in all dimensions, Spanier and Whitehead 
devised the S-category in [SW53, SW57]. Its objects are based spaces, and the set {X, Y] 
of S-maps X -^ Y is 

{X,Y} = colimn^o[^''X,E''Y]. 

That is, homotopy classes of based maps f'.r'X-^ E"Y and g: T^X -> E^Y define 
the same S-map if E^ f and E"~'^'^^g are homotopic for some k ^ 0. The 5-category is 
additive, and E : {Z, Y} -> {EX, EY) is a bijection. 

Although obscured by their language of "carriers", in retrospect a most unfortunate 
choice of technical details, Spanier and Whitehead introduce graded morphisms by setting 
{X, Y}q = {r^X, F} if ^ ^ 0 and {X, E'^} if q < 0. They prove that, for CW com
plexes X and Y with X finite, the Abehan groups {X, Y}q satisfy all except the dimension 
axiom of the Eilenberg-Steenrod axioms for a homology theory in Y when X is fixed and 
for a cohomology theory in X when Y is fixed. They even set up the Atiyah-Hirzebruch 
spectral sequences for stable homotopy and stable cohomotopy. 

However, they do not take the step of describing their results in a language of homology 
and cohomology theories, and none of their later papers return to this point of view. With 
their definitions, the wedge axiom would not be satisfied in cohomology for infinite X, 
and only homology and cohomology theories represented by suspension spectra of spaces 
would be obtained. Thus this would not have been the right way to set up generalized ho
mology and cohomology theories, and that was far from their intention. The useful version 
of the Spanier-Whitehead category is its full subcategory of finite CW complexes. This 
category is far too small to form a satisfactory foundation for stable homotopy theory, but 
it is appropriate for the study of duality between finite CW complexes, which is the main 
point of the papers [SW55, SW58] and the expository notes [Whi56, Sp56, Sp58]. 

The 1956 note [Sp56] of Spanier, reviewed by Hilton, gives a nice description of dual 
theorems in algebraic topology and seems to have been a forerunner of Eckmann-Hilton 
duality. The 1956 survey of Whitehead [Whi56] looks more towards the past, based as it 
was on Whitehead's presidential address to the London Mathematical Society. Prior to this 
point, it had been common practice to discuss duality in ordinary homology and cohomol
ogy in terms of Pontryagin duality of groups. Whitehead gives an interesting exposition of 
this point of view on duality, the role of colimits in understanding singular homology and 
Cech cohomology, and various other aspects of duality theory in algebraic topology. At 
that stage in our story, it is not very surprising that Whitehead understands the Eilenberg-
Steenrod axioms solely in terms of ordinary homology and cohomology theories. 

In retrospect, it is more surprising that Spanier in his 1959 paper [Sp59b] still under
stands the axioms this way. In a footnote, he refers to the Eilenberg-Steenrod axioms to 
specify what he means by homology and cohomology, and of course he means all of the 
axioms. There is no hint of generalized homology and cohomology theories in the paper, 
although one of its main points is the convenience and importance of spectra in the study 
of duality theory. Nevertheless, the work of Spanier and Whitehead, especially the work in 
[Sp59b], was soon to lead to duality theorems in generalized homology and cohomology. 

Before saying more about [Sp59b], I should mention the interesting paper [Sp59a] that 
Spanier wrote a year earlier. In it, he returns to the Dold-Thom description [DT58] of 
integral homology as the homotopy groups of the infinite symmetric product, and he shows 
how this can be related to the S-category and Spanier-Whitehead duality. Function spaces 
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are used heavily in the comparison, and it seems that their use may have led to the idea of 
spectra. 

In any case, Spanier's student Lima introduced spectra in his 1958 thesis, pubhshed 
in [Lima59]. In Lima's work, a spectrum is a sequence of based finite CW complexes L/ 
and 5-maps Xi: ELi -> L/4.1. Lima also considers inverse spectra, with structure maps re
versed. He uses spectra to give an extension of the 5-category and an extension of Spanier-
Whitehead duality from polyhedra embedded in spheres to general compact subspaces of 
spheres. In a sequel, Lima [Lima60] develops Postnikov systems in his category of spec
tra. He also gives a curious dual theory whose dual Postnikov invariants lie in homology 
groups with coefficients in cohomotopy groups. 

In Spanier's paper [Sp59a], he redefines spectra X to be sequences of based spaces 
Ti and based maps, not ^-maps, a,;: ETi -> TJ-̂ i that satisfy certain connectivity and 
convergence conditions. These conditions have the effect of giving his spectra a stable 
range analogous to the one impUed for the suspension spectrum {X"X} of a based space 
X by the generalized Freudenthal suspension theorem, which was first proven in [SW57]. 
His intent is to recast Spanier-Whitehead duality in terms of smash products X /\Y and 
function spectra F(X, F), where X and Y are based spaces and F(X, Y) has /-th space the 
function space F(X, X"' Y). Curiously, he does not define general function spectra F(X, T). 
He writes F(X) for F(X, S^) and calls it the functional dual of X, and he observes that 
H~^(X) — Hg(¥(X)). He defines stable maps {X, T} from a space to a spectrum and 
shows that there are canonical duahty isomorphisms 

[X, F(y, 5")} ^ {X A F, 5"} = {y, F(Z, S")}. 

(Actually, his statement of this has F(—, 5") replaced with the /2-fold suspension of the 
functional dual, but his definition of suspension disagrees with the modern one.) While the 
asymmetry between spaces and spectra is clearly unsatisfactory, this was a step from the 
5-category towards the true stable homotopy category. 

He then redefines what it means for spaces X and Y to be /i-dual to one another. Let 
in e //'^(5") be the fundamental class. A map 8 : F A Z -> 5'Ms said to be an n-duality 
map if the homomorphism fe : Hq{Y) -^ H'^~^{X) defined by fs(y) = £^{in)/y is an 
isomorphism, where / is the slant product. He proves that s determines and is determined 
by a weak equivalence § from the suspension spectrum of Y to F(Z, S") such that the 
following diagram of spaces commutes in the 5-category: 

F A X ! i^^! i -^F(X.5 ' ' )AX 

This gives an intrinsic characterization of the A7-dual of X that leads to all of the proper
ties proven in the earlier work of Spanier and Whitehead [SW55]. The earlier work shows 
that if X is embedded in S"~^^ and Y is embedded in the complement of X in such a way 
that the inclusion Y -> S^^^^ — X induces an isomorphism of all homology groups, then 
there is a duality map £ : 7 A Z -> 5". This unfortunately means that Spanier's new notion 
of an /i-duality is what in the earlier work was called an (n + l)-duality. The new notion rel
egates the role of the embeddings to the verification of a more conceptual defining property 
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and makes it much simpler to determine when spaces X and Y are n-dual to one another. It 
is equivalent to the modern homotopical definition of a duality map in the stable homotopy 
category. 

All of this work of Spanier and Whitehead was independent of the work on cobordism, 
integrality theorems, and ^-theory that was going on at the same time. In [MS60], submit
ted a month after [Sp59a], Milnor and Spanier show that if a smooth compact n-manifold 
M is embedded in the pair M"+^ with normal bundle v, then the Thom space T{v) is (n-{-k)-
dual (new style) to M+. Moreover, they show that if k is sufficiently large, then v is fiber ho
motopy trivial if and only if there is an S-map S'̂  -> M of degree one. They also make the 
nice observation that Adams' solution to the Hopf invariant one problem implies that the 
tangent bundle of a homotopy n-sphere is fiber homotopy trivial if and only if n is 1,3, or 7. 

A year later, in [At61c], Atiyah made a systematic study of the relationship between 
Thom complexes and S-duality. In particular, he proved the Atiyah duality theorem, which 
identifies the (/2+^)-dual of the cofibration sequence 9 M+ -> M-^ -> M/9 M of a smooth 
compact n-manifold M with boundary 9M as the cofibration sequence 

T{vidM)) -> T{v{M)) -> T{v(M))/T{v(dM)) 

associated to the normal bundles of a proper embedding of the pair (M,9M) in (M"+^-ix 
[0, oo), R"+^~^ X {0}). He also proved that, for any bundle § over a smooth compact 
manifold M without boundary, the Thom complex T(^) is 5-dual to the Thom complex 
T(v © ^-^), where ^ 0 §-̂  is trivial. We will return to this paper when we discuss the 
J-homomorphism. 

11. Oriented cobordism and complex cobordism 

With the aid of the Adams spectral sequence, the work of Thom on the oriented cobor
dism ring could be completed. Although slightly ahistorical, the language of spectra will 
clarify how this came about. Using the structural maps a \ETn -> Tn+\, the homotopy, 
homology, and cohomology of a spectrum T = {Tn] can be defined as follows: 

7iq{T) = colim7r„+^(r,0, (11.1) 

Hq{T) = COlim Hn+cj(Tn) (11.2) 

and 

HHT) = lim W'-^HTn), (11.3) 

where the last definition is only correct when lim^H"'^^~^(r„) = 0. As Adams noted 
in 1959 [Ad59], the Adams spectral sequence generalizes readily to a spectral sequence 
for the computation of 7r*(r) in terms of the mod p cohomology H*(r) , regarded as a 
module over the Steenrod algebra A. The £2-term is given by 

E'/ =Exi'/ {H*(T),Zp), 

and everything said earlier applies, with simpler proofs, in this more general setting. 
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For each of the familiar sequences of classical groups G(/7), namely G = 0,S0, U,SU, 
Sp, and Spin, the Thom spaces TG(n) of the universal bundles give a Thom spectrum MG. 
A uniform method of attack on the problem of computing T[^{MG) is to first compute the 
mod p cohomology of MG for each prime p and then compute the mod p Adams spectral 
sequence. 

A key reason that Thom was able to compute A/"* completely was that the mod 2 co
homology //*(MG) is a free module over the mod 2 Steenrod algebra A. A quick direct 
proof of this fact, using Hopf algebra techniques, was given by Liulevicius [Liu62b] in 
1962. 

For an Abehan group n, the sequence of spaces K(Tt,n) gives a spectrum Hn such 
that 7TQ{Hn) = n and the remaining homotopy groups of Hn are zero. The mod p co
homology of Hljp is the mod p Steenrod algebra, as Cartan had implicitly shown [Ca55]. 
The representation of cohomology (1.1) generalizes to spectra. Representing generators of 
//*(M0) as maps from MO to suspensions of if Z2, one obtains a map from MO to a prod
uct of suspensions of //Z2 that induces an isomorphism on mod 2 cohomology. Since one 
knows that 7T^{M0) is a Z2-vector space, one readily deduces that this map is an equiva
lence of spectra, allowing one to read off 71 ̂ {MO). However, a good homotopy category of 
spectra in which to make such a deduction only appeared later. 

Using spectra and the Adams spectral sequence, Milnor [Mil60] in 1959 proved that 
Q^ — TT^iMSO) has no odd torsion. This was proven independently by Averbuh [Av59] 
and, a little later, Novikov [Nov60]. These are announcements. Averbuh's proofs never ap
peared and Novikov's proofs [Nov62] seem never to have been translated from the Russian. 

Also in 1959 [Wall60], but without using spectra or the Adams spectral sequence. 
Wall determined the 2-torsion in ^^. In particular, he proved that ^* has no elements 
of order 4 and that two oriented manifolds are cobordant if and only if they have the 
same Stiefel-Whitney and Pontryagin numbers. These results were both conjectured by 
Thom [Thom54]. A nice deduction from the explicit form of the generators Wall found is 
that the square of any manifold is cobordant to an oriented manifold, and he remarked the 
desirabihty of a direct geometric proof; we shall return to this in Sections 16 and 17. 

After calculating the 2-torsion in Q:^, by other means. Wall used this calculation 
to prove that the mod 2 cohomology H*(MSO) is the direct sum of suspensions of 
copies of A and of A/ASq^. He remarks "It seems that a direct proof . . . would be 
extremely difficult", but he found such a direct proof not long afterwards [Wall62]. 
That allows a more direct calculation of ^*. In fact, the mod 2 cohomology of HZ 
is A/ASq^. As Browder, Liulevicius, and Peterson observed later [BLP66], it fol
lows that there is a map / from the spectrum MSO to a product of suspensions of 
copies of HZ and HZ2 that induces an isomorphism on mod 2 cohomology. In a 
good homotopy category of spectra, one readily deduces that / is a 2-local equiv
alence. Of course, the foundations for such an argument only came later, but the 
calculation of homotopy groups is easily made by use of the Adams spectral se
quence. 

Milnor [Mil60] and Novikov [Nov60, Nov62] also introduced and calculated complex 
cobordism 7T^{MIJ). Although the geometric interpretation was not included in Milnor 
[Mil60], this is the cobordism theory of weakly almost complex manifolds, namely man
ifolds with a complex structure on their stable normal bundles. The explicit calculation, 
carried out one prime at a time and then collated algebraically, showed that n^ (MU) is a 
polynomial ring on one generator of degree 2/ for each / > 1. Interestingly, there is no 
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known geometric reason why the complex cobordism ring should be concentrated in even 
degrees. The analogue for symplectic cobordism is false. The cited papers of Milnor and 
Novikov raise the question of determining TT:^ (MG) for other classical groups G and give 
some information. We will return to this in Sections 16 and 17. 

12. ^-theory, cohomology, and characteristic classes 

In their 1960 paper [AH61a], Atiyah and Hirzebruch expHcitly introduce A^-theory as a 
generalized cohomology theory. Whether or not the idea of taking a generalized coho
mology theory seriously occurred to anyone before, this paper is the first pubUshed ac
count. They restrict attention to finite CW complexes X for convenience, but they are fully 
aware of both represented A'-theory and inverse limit ^-theory, namely the inverse limit of 
Ar*(Z") as X" runs over the skeleta of X. Using Bott periodicity, they prove that Z-graded 
A^-theory satisfies all of the Eilenberg-Steenrod axioms except the dimension axiom and 
they introduce Z2-graded A^-theory. Regarding ordinary rational cohomology as Z2-graded 
by sums of even and odd degree elements, they prove that the Chern character extends to a 
multiplicative map of cohomology theories ch: K*(X) -^ //**(X; Q) which becomes an 
isomorphism when the domain is tensored with Q. 

They also introduce what is now called the Atiyah-Hirzebruch spectral sequence. It 
satisfies 

and it converges to A'*(X). Since it is compatible with Bott periodicity, it may be regraded 
so as to eliminate the grading q. It collapses, E2 = EQQ, if //*(X; Z) is concentrated in 
even degrees or, using the Chern character, if //*(X; Z) has no torsion. They state without 
proof that d^ can be identified with the integral operation Sq^, and they give partial infor
mation about the product structure. They also state without proof that the spectral sequence 
generalizes to a Serre type spectral sequence for the AT-theory of fibre bundles. 

The Riemann-Roch theorem of their earlier paper [AH59] is generalized to the coho
mology theory j / ^ * , but still with no hint of AT-homology and a genuine pushforward map 
in A^-theory. The theorem states that if / : M -> Â  is a continuous map between compact 
oriented differentiable manifolds and if there is a given element c\(f) e H^{M\ T) such 
thatciC/) = W2{M) - rw2{N) mod 2, then, for x e K*{M), 

fi{ch(x)Q''^^^^^ • A{M)) = ch{Mx)) • A{N) (12.1) 

in H*(N; Q). On the left f\ is the pushforward in rational cohomology determined by 
Poincare duality and /*; a posteriori, f\ is defined similarly in A'-theory. 

Using both the Riemann-Roch theorem and the spectral sequence, they study the 
A'-theory of certain differentiable fiber bundles and compute K*(G/H) explicitly when 
/ / is a closed connected subgroup of maximal rank in a compact connected Lie group 
G. Moreover, when //*(G; Z) has no torsion, they prove that the natural map R{H) -^ 
K{G/H) is surjective. Calculations with the maximal rank condition dropped came much 
later. 

Taking JC{BG) to be the inverse limit A'-theory of BG, they define a homomorphism 
a : R(G)^ -> IC(BG) and prove that it is an isomorphism when G is a compact connected 
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Lie group. They also prove that K} (BG) = 0 for such G. The proof is by direct calculation 
when r is a torus and by comparison with the result for a maximal torus in general. They 
conjecture that this result remains true for any compact Lie group G. 

In [At61b], which appeared in 1961, Atiyah proves the same result for finite groups G. 
The proof is by direct calculation when G is cyclic, by induction up a composition series 
when G is solvable, and by application of the Brauer induction theorem to pass from solv
able groups to general finite groups. The second step depends on a Hochschild-Serre type 
spectral sequence that satisfies E^'^ = HP{G/N; K^iBN)) and converges to 1C(BG), 
where Â  is a normal subgroup of G. The last step depends on the transfer homomorphisms 
in ^-theory associated to finite covers. Atiyah claims in a footnote that the result does re
main true for general compact Lie groups. However, a proof did not appear until the 1969 
paper [AS69] of Atiyah and Segal, which is based on the use of equivariant J^-theory. This 
was developed in lectures at Harvard and Oxford in 1965, but the first pubHshed accounts 
appeared later [At66a, Seg68]. 

In 1961 [AH61c], Atiyah and Hirzebruch make use of real 7^-theory KO to obtain a num
ber of interesting results on characteristic classes in ordinary mod p cohomology. These 
are less well-known than they ought to be, perhaps because [AH61c] is written in German; 
some of its results were later reworked by Dyer [Dyer69]. Atiyah and Hirzebruch greatly 
extend and clarify observations Hirzebruch had already made in 1953 [Hirz53], and they 
improve results in the expository paper [AH61c], also in German, which was written a bit 
earher and contains a nice general overview of the authors' results on ^-theory, including 
some that I will not discuss here. 

In [AH61c], using Milnor's analysis of the Steenrod algebra, Atiyah and Hirzebruch first 
determine the group of natural ring isomorphisms X: //**(Z) -> //**(Z). The obvious 
examples are A = 5^ = X! ^^^ if p = 2 and A. = P = J ] P '̂ if p > 2. For a Zp-oriented 
vector bundle ^ with Thom isomorphism 0, they define k(^) = 0"^ A0(1). Thus Sjq is the 
total Stiefel-Whitney class and P_ is the total Wu class. They observe that, for a finite CW 
complex X, X extends to a natural homomorphism from KO{X) to the group G**(X) of 
elements of //**(Z) with zeroth component 1 and, if p > 2, odd components zero, where 
the multiplication in G**(Z) is given by the cup product. Write Wu(X,^) = X~^X(^). 
Then, when /? = 2, 

Wu(Sq,^) = J2^^Ti{wm,...,Wi(^)), 
/>0 

where the Ti are the Todd polynomials. Here the right side makes sense since 2^7/ is a 
rational polynomial with denominator prime to 2. When p > 2, let / = p^^P~^ and let P/ 
be the i-th Pontryagin class. Then 

Ww(P,§) = ^ / ' ' L , ( P i ( ? ) , . . . , P/(?)) = ^ / 2 ' A / ( P i ( ? ) , . . . , P/(§)^ 

In both cases, there is an implied analogue for complex bundles, with Chern classes ap
pearing on the right-hand sides of the equations. 

These formulas suggest a relationship between the differential Riemann-Roch theorem 
and Wu's formulas for the characteristic classes of manifolds. Let / : M -> Â  be a contin-
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uous map between differentiable manifolds M and Â . Atiyah and Hirzebruch prove that, 
for any X G / / * ( M ) , 

fs{X{x) . Wu{k-\ TM)) = A(/!(x)) . Wu{k-\TN). (12.2) 

where f\ is the pushforward map determined by Poincare duality and /*. When Â  is a 
point, this reduces to 

{X(y)dM]) = {{yWu(k,rM))dM]). 

Taking X = Sq if p = 2 or X = P if p > 2, this is Wu's formula for the determination of 
the Stiefel-Whitney or L-classes of M in terms of Steenrod operations and cup products 
in //*(M). 

It should be remarked at this point that Adams [Ad61b] proved the Wu relations for 
not necessarily differentiable manifolds in 1961. In 1960 [Ad61a], he proved an integrality 
theorem for the Chern character. Atiyah and Hirzebruch [AH61c] observe that (12.2) is 
an analogue of the differentiable Riemann-Roch theorem (12.1), and they show that this 
is more than just an analogy by using Adams' integrality theorem to derive important 
cases of (12.2) from (12.1). In a noteworthy remark, they point out that one can ask for 
such a Riemann-Roch type theorem whenever one has a natural transformation from one 
generalized cohomology theory to another, provided that both theories satisfy an analogue 
of Poincare duality that allows pushforwards to be defined. This still precedes Poincare 
duality in ^-theory. 

Even without j^-homology, Atiyah in 1962 [At62] found an ingenious and influential 
proof of a Kunneth theorem for ^-theory, obtaining a short exact sequence of the expected 
form 

0 -> K*{X) ® A:*(r) A A:*(Z xY)-i TOV{K^X), K^Y)) -> o. 

13. Generalized homology and cohomology theories 

The work of G.W. Whitehead [Wh60, Wh62a] and Brown [Br63, Br65] defined and charac
terized represented generalized homology and cohomology theories in close to their mod
ern forms. We have seen that A'-homology is nowhere mentioned in the work of Atiyah and 
Hirzebruch. However, Whitehead's announcement [Wh60] of his definition of represented 
homology was already submitted in February 1960, and appeared that year, although the 
full paper [Wh62a] was not submitted until May, 1961, and appeared in 1962. More sur
prisingly, [Wh62a] makes no mention of either ^-theory or bordism and contains no ref
erences to Atiyah and Hirzebruch, although the Bott spectrum is mentioned briefly. There 
seems to have been little mutual influence. 

It seems that the main influence on Whitehead was his own earlier work on the homotopy 
groups of smash products of spaces [Wh56] and the work on duahty of Spanier and J.H.C. 
Whitehead [SW55] and its further development by Spanier [Sp59b]. Whitehead defines 
a spectrum £ to be a sequence of spaces Ei and maps a/: EEi -> £"/+!, dropping the 
convergence conditions that Spanier imposed. He says that E is an ^-spectrum if the 
adjoint maps a : Ei -> ^Ei^\ are homotopy equivalences. Actually, he insists on spaces 
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Ei for all integers /, rather than for / ^ 0 as is now more usual. He defines a map / : £ • - > 
E' to be a sequence of maps / / : Ei -^ E'. such that the diagrams 

EEi 

^fi\ 

Ei+i 

I fi+\ (13.1) 

EE', — U £; /+i 

commute up to homotopy, and he says that two maps / and g are homotopic if /(• :^ gi for 
all/. 

Taking the obvious steps beyond Spanier [Sp59b], Whitehead defines the function spec
trum F(X, E) and the smash products E A X ^ X A E between a based space X and a 
spectrum £. As an unfortunate choice, he restricts X to be compact in these definitions, 
and his homology and cohomology theories are only defined on finite CW complexes. 
Remember that the additivity axiom came a bit later. In particular, these definitions give 
f2E = ¥(S^, E) and EE = E A S^ (except that he writes the suspension coordinate on 
the left). Defining the homotopy groups of spectra as in (11.1), he proves that suspension 
gives an isomorphism E^ : TtgiE) -> 7Tg-^i{EE). 

For finite based CW complexes X and a spectrum E, Whitehead defines 

H,{X;E) = 7r,{EAX). 

This is suggested by the more obvious cohomological analogue 

HHX;E)=7T-,{E(X,E)). 

(13.2) 

(13.3) 

In retrospect, this definition of homology is correct for general CW complexes X, but 
this definition of cohomology is only correct for general CW complexes X when E is an 
<f2-spectrum. 

Much of [Wh62a] is concerned with products in generalized homology and cohomology 
theories. These are induced by pairings {D, E) -> F of spectra, which are specified by 
maps 

Ofii A tjfi —> -Tm-j-zi 

that are suitably compatible up to homotopy with the structure maps o of D, £", and F. 
Starting from such pairings of spectra, Whitehead defines and studies the properties of 
external products 

H,„(Z; D) 0 Hn{Y\ E) -> ^.,+„(X A 7; F), 

H''\X\ D) (8) W'\Y\ E) -> ^'"+"(X A F; F) 

and slant products 

\ : Hn{X A F; D) 0 H"\X', E) -> Hn-m{Y\ F), 

I: Hn(X A F; D) 0 ^,„(F; E) -^ H"-"\X; F). 
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He obtains cup and cap products by pulling back along diagonal maps. By now, all of this 
is familiar standard practice. 

Similarly, the familiar duality theorems are proven. Whitehead defines a ring spectrum 
E in terms of a product (E, E) —> E and unit S -^ E, where S is the sphere spectrum, 
namely, the suspension spectrum of S^. He defines an £"-orientation of a compact con
nected n-manifold M in terms of a fundamental class in Hn{M\ E), and he proves a ver
sion of Alexander duality for dual pairs embedded in M. This specializes to give Poincare 
duality for M. Taking M = 5"^^ which is f-oriented for any £", it speciahzes to give 
Spanier-Whitehead duality in any theory. 

When [Wh62a] was written, Brown [Br63] had already proven his celebrated represen
tation theorem. That paper also gave an incorrect first approximation to Milnor's additivity 
axiom [Mil62a]. In fact, James and Whitehead [JW58] had exhibited homology theories 
that fail to satisfy the additivity axiom and whose existence contradicted one of Brown's 
results. The correction of [Br63] noted this and pointed out simpler axioms for the repre-
sentability theorem. Brown later published the improved version in a general categorical 
setting [Br65]. That version is one of the foundation stones of modern abstract homotopy 
theory. 

Let /: be a contravariant set-valued homotopy functor defined on based CW complexes. 
The functor k is said to satisfy the Mayer-Vietoris axiom if, for a pair of subcomplexes 
A and 5 of a CW complex X with union X and intersection C, the natural map from 
k{X) to the pullback of the pair of maps k{A) -^ k{C) and k(B) -^ k{C) is surjective; 
k is said to satisfy the wedge axiom if it converts wedges to products. Brown in [Br65] 
proves that k{X) is then naturally isomorphic to [X, Y] for some CW complex Y. If k 
is only defined on finite CW complexes. Brown reaches the same conclusion but with a 
countability assumption on the k(S^). Adams [Ad71a] later showed that the countability 
assumption can be removed when the functor k is group-valued. 

Applied to the term k^i—) of a (reduced) generalized cohomology theory k*, Brown's 
theorem gives a CW complex En such that ^"(X) = [X, £„] for all CW complexes X. 
The suspension axiom on the theory leads to homotopy equivalences En -> ^ £ ^ + 1 . Thus 
a cohomology theory k* gives rise to an i7-spectrum E. Whitehead [Wh62a] followed up 
by using Spanier's version [Sp59b] of duahty theory to show that a homology theory gives 
rise to a cohomology theory on finite CW complexes. Applying Brown's theorem for finite 
CW complexes (and using Adams' variant to avoid countability hypotheses), it follows that 
a homology theory on finite CW complexes is also representable by a spectrum. 

Since the Brown representation is natural, a map of cohomology theories gives rise to a 
map of i?-spectra. Defining the category of cohomology theories on spaces in the evident 
way, we see that it is equivalent to the homotopy category of i?-spectra E whose spaces 
En are homotopy equivalent to CW complexes. We call this the Whitehead category of 
^-spectra. Milnor's basic result [Mil59] that the loop space of a space of the homotopy 
type of a CW complex has the homotopy type of a CW complex is relevant here. 

Via the suspension spectrum functor and a functor that converts spectra to ^-spectra, 
one can check that the ^-category of finite CW complexes embeds as a full subcategory 
of the Whitehead category. Thus the Whitehead category is an approximation to stable 
homotopy theory that substantially improves on the 5-category by providing the proper 
home for cohomology theories on spaces. However, as we shall see in Section 21, this is 
not yet the genuine stable homotopy category. 
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In the summer of 1962, there was an International Congress in Stockholm, preceded by 
a colloquium on algebraic topology at Aarhus. The proceedings of the latter contain brief 
expositions of generalized cohomology by Dold [Dold62], Dyer [Dyer62], and Whitehead 
[Wh62b]. Dold was the first to make the important observation that rational cohomology 
theories are products of ordinary cohomology theories, and he gave the first general ex
position of the Atiyah-Hirzebruch spectral sequence. Making systematic use of Brown's 
representability theorem, his later book [Dold661, in German, gave a complete treatment 
of these matters and much else. Dyer was the first to write down a general treatment of the 
Riemann-Roch theorem, although already in 1962 he described the result as a folk theorem 
known to Adams, Atiyah, Hirzebruch and others. His later book [Dyer691 gave a complete 
treatment, along with an exposition of much of the work of Atiyah and Hirzebruch de
scribed in the previous section. He still avoids use of K^, but this appears implicitly in the 
form of Atiyah duality, which allows an appropriate definition of pushforward maps. 

Not everything in cohomology theory was to be done using its represented form. For 
example, working directly from the axioms, Araki and Toda [AT65] made a systematic 
study of products in mod q cohomology theories and of Bockstein spectral sequences in 
generalized cohomology. Nevertheless, most work was to be simplified and clarified by 
working with represented theories. 

14. Vector fields on spheres and J{X) 

In the proceedings of the 1962 Aarhus and Stockholm conferences, Adams [Ad62d] de
scribed his solution of the vector fields on spheres problem [Ad62b, Ad62c] and outlined 
his work on the groups 7 (X), which appeared gradually in [Ad63, Ad65a, Ad65b, Ad66a]. 
I summarized these papers in [May2], emphasizing their impact on later work and the re
formulations that became possible with later technology. These applications of ^-theory 
have been of central importance to the development of stable algebraic topology. 

The key new idea was the introduction of the Adams operations i/̂ ^ in real and com
plex ^-theory. These play a role in ^-theory that is of comparable importance to the 
role played by Steenrod operations in ordinary mod p cohomology. It was clear from 
Grothendieck's work [Gro57] how to extend the exterior power operations X^ from vec
tor bundles to /^-theory. The "Newton polynomials" Qk that express the power operations 
x\-\ \-x^^ in a polynomial ring IJ[X\ , . . . , X,|] as polynomials in the elementary symmet
ric polynomials Ok were familiar to topologists from their role in the study of characteristic 
classes. Adams' ingenious idea was to define 

Here X is a finite CW complex, x e K{X), and n is large. 
Either by a representation theoretical argument, as in [Ad62c], or by use of the split

ting principle and reduction to the case of line bundles, one finds that the xj/^ are natural 
ring homomorphisms that commute with each other. They are easily evaluated on line bun
dles and on the ^-theory of spheres, and their relationship to the Chern character and the 
Bott isomorphism are easily determined. They greatly enhance the calculational power of 
AT-theory. 

Adams discovered these operations after first trying to solve the vector fields on spheres 
problem by use of secondary and higher operations in ordinary cohomology in [Ad62a], 
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a paper that was obsolete by the time it appeared. The idea that a problem that required 
higher order operations in ordinary cohomology could be solved using primary operations 
in A^-theory had a strong impact on the directions taken by stable algebraic topology. 

The vector fields on spheres problem asks how many linearly independent vector fields 
there are on 5^^"^ The answer is p(n) —I.Here p(/i) = 2^ + 8(i, where/t = (2^ + 1)2^ and 
b = c+4<i, 0 ^ c ^ 3. It had long been known [Eck42] that there exist p{n) — l such fields. 
Adams proved that there are no more. Work of James [Ja58a, Ja58b, Ja59] had reduced the 
problem to a question about the reducibility of a certain complex. Up to suspension, Atiyah 
[At61c] identified the 5-dual of that complex with a stunted projective space. This reduced 
the problem to the question of the coreducibility of Z = EF^'+^^^VlRP"'"^ for a suitable 
m. Here coreducibility means that there is a map f: X ^^ 5*"̂  that has degree 1 when 
restricted to the bottom cell S'^ of X. Adams proves that X is not coreducible, thus solving 
the problem. 

For the proof, Adams starts with the calculation of K(Cr') and /<:(CP^/CP'^), which 
was first carried out by Atiyah and Todd [AT60]. He next calculates ^(RP") and 
A: ( ]RP" /RP"0- Finally he calculates KO{R¥'') and KO{RF"/RW''). In each case, he ob
tains complete information on the ring structure and the Adams operations. The main tools 
are just the Atiyah-Hirzebruch spectral sequence and the Chern character. For X as above, 
the existence of a coreduction / and the naturality relation /*V^^ = V^^/* lead to a con
tradiction. 

For a connected finite CW complex X, define J(X) to be Z ® J(X), where J{X) is the 
quotient of K{X) obtained by identifying two stable equivalence classes of vector bundles 
if they are stably fiber homotopy equivalent. Let J : K {X) -> J (X) be the evident quotient 
map. Atiyah in [At61b] (where J{X) means what we and Adams call J{X)) proved that 
the bundle 0(n)/0(n— /c) -^ S^~^,n ^ 2/c, admits a section if and only if î is a multiple 
of the order of / ( I — §), where ^ is the canonical line bundle over RP^~^ Thus the vector 
fields problem can be viewed as a special case of the problem of determining J(Z). In 
fact, as Bott first observed [Bott62, Bott63], Adams' calculations in [Ad62c] imply that 
/^0(RP") = y(RP"). While Adams was aware of the relationship between the vector 
fields problem and the study of 7, he chose not to discuss this in [Ad62c]; he published a 
proof of the cited isomorphism in [Ad65a]. 

The results just discussed have complex analogues, using U(n)/U{n — k) and CP^~^ 
The bundle :/r„,/t: [/(n)/[/(/!— /:) -> S^^~^ admits a section if and only if n is divisible by 
a certain number M^. The necessity was proven first, by Atiyah and Todd [AT60], and the 
sufficiency was then proven by Adams and Walker [AW64]. For the proof, they compute 
KO{CW) and /i:0(CP"/Cr"), use the methods and results of [Ad63, Ad65a] to study 
7 :7^0(CP") -> /(CP'^), and deduce that the order of 7(1 - ^) is Mk. where ^ is the 
canonical line bundle over CP^~^ 

Many of the results of Atiyah [At61b] and Adams [Ad62c] on stunted projective spaces 
have analogues for stunted lens spaces, and these were worked out by Kambe, Matsunaga, 
andToda[Ka66, KMT66]. 

The papers [Ad63, Ad65a, Ad65b, Ad66a] carry out the general study of J{X) for a 
connected finite CW complex X. The overall plan is to define two further, more com
putable, quotients J\X) and J^'{X) of K{X) such that the quotient homomorphisms from 
K{X) factor to give epimorphisms J"{X) -> J{X) -> J'{X) and then to prove that 
J\X) = J"{X). Thus J'{X) is a lower bound and J"{X) an upper bound for 7 (X), and 
these two bounds coincide. 
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That J''{X) really is an upper bound depends on the Adams conjecture: 

If k is an integer, X is a finite CW complex and y e KO{X), then there exists a non-
negative integer e = e{k, y) such that k^i-i//^ — \)y maps to zero in JiX). 

Adams [Ad63] proved this when j is a linear combination of 0(1) or 0(2) bundles and 
when X = 5^" and y is a complex bundle. His proof is based on the "Dold theorem 
mod k'\ which asserts that if / : ^ -> ^ is a fiberwise map of sphere bundles of degree ±k 
on each fiber, then k^rj and k^^ are fiber homotopy equivalent for some ^ > 0. For k = I, 
this is a result of Dold [Dold63]. 

The groups J\X) and ^ ( X ) are defined and calculated in favorable cases in [Ad65a]. 
In particular, the image of J in 7r4^_i is shown to be either the denominator of Bk/4k, as 
expected, or twice it; the expected answer would follow from the Adams conjecture. The 
group J^'(X) is KO(X)/W(X), where W(X) is the subgroup generated by all elements 
k^ik)^^k _ j ^ ^ ^Qj. ^ suitable function e. The content of the Adams conjecture is that J"{X) 
is indeed an upper bound for J{X). 

To define J\X), Adams needs certain operations p^ which he calls "cannibaUstic 
classes". They are related to the -^^ as the Stiefel-Whitney classes are related to the Steen-
rod operations. That is, p^ = 0 " V^0(1). where 0 is the ATO-theory Thom isomorphism. 
This definition and calculations based on it require good control on ^0-orientations of 
vector bundles. While Adams developed some of this himself, the published version of 
[Ad66a] relies on the paper [ABS64] of Atiyah, Bott, and Shapiro, and I shall say more 
about that in the next section. This definition only works for Spin(8«)-bundles, in which 
case the operations p^ were introduced by Atiyah (unpubHshed) and Bott [Bott62, Bott63], 
who denoted them Ok. Adams shows that the operations can be extended to all of KG(X) if 
one localizes the target groups away from k. If sphere bundles r] and ^ are fiber homotopy 
equivalent, then p^(?) = P^(r])[\//^(1 + y)/(l + 3̂ )] for some y € KO{X), independent 
of k. The group J'(X) is KO{X)/V{X), where V(X) is the subgroup of these elements 
X such that p^(x) = TA^(1 + y)/(\ + y) in KO(X) 0 Z[l/k] for all ^ / 0 and some 
y e KO(X). 

Adams gives the proof that J\X) = J'\X) in [Ad65b]. This entails a good deal of 
representation theory, some of it involving the extension to the real case of arguments used 
by Atiyah and Hirzebruch [AH61a] in their comparison between R{G)^ and K(BG) for 
a compact connected Lie group G. This is used to construct a certain diagram between 
AT-groups, the motivation for which is the heuristic idea that I -{- y = p^x is a solution of 
the equation p^iij/^ — l)x = T//" (̂1 + y)/(l H- y). This diagram is then proven to be a weak 
pullback by calculational analysis. To get a more precise hold on J'(X), Adams proves 
that the yj/^ are periodic in the sense that, for any positive integer m, there is an exponent 
e, depending only on X, such that, for any x e KO(X), \l/^(x) = il/^ix) mod m if /: = 
I mod m^. He uses this to characterize which elements (vk) e O^T^O^^ + KO(X)[l/k]) 
are of the form Vk = pHx)if^[{l + y)/(l + y)] for some x e KSpm(X) and y e KO(X). 

Modulo the Adams conjecture, Adams proves in [Ad66a] that 7(5"") is a direct summand 
of 7T^^. He does this by studying invariants d and e that are associated to maps / : S^'^^ -> 
S^; there are two variants, real and complex. The real invariant du(f) is just the induced 
homomorphism / * on KO, and it is zero unless r = 1 or 2 mod 8, when it detects 
certain well-known direct summands Z2 of n^. When d]^(f) = 0 and d]^(Ef) = 0, 
the cofiber sequence S^ ^^ Cf -^ ^q+r-\-i giy^g ^ gĵ ort exact sequence on appHcation 
of KO, and ej^if) is the resulting element of the appropriate Ext̂  group of extensions. 
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Here Ext̂  is taken with respect to an Abelian category of Abelian groups with Adams 
operations that commute with each other and satisfy the periodicity relations. Building in 
that much structure allows direct computation of the relevant Ext̂  group, which in the cases 
of interest is an explicitly determined subgroup of Q/Z. Adams' algebraic formaUsm leads 
to an analysis of how ^^ relates Toda brackets in homotopy theory to Massey products in 
Ext groups, and these relations are the key to many of Adams' detailed calculations. 

The real ^-invariant is essential to the proof of the splitting of 71^. The complex 
^-invariant ec admits a more elementary description in terms of the Chern character and 
was introduced and studied independently by Dyer [Dyer63] and Toda [To63]. Adams, 
Dyer, and Toda all show that e£ can be used to reprove the Hopf invariant one theorem, at 
all primes p. Adams [Ad66a] also uses CQ to prove that if Y is the mod p^ Moore space, 
p odd, with bottom cell in a suitable odd dimension, and \fr = 2{p—\)pf~^, then there is 
a map A.Z^Y -^ Y that induces an isomorphism on K. Iterating A s times, by use of sus
pensions, and first including the bottom cell and then projecting on the top cell, there result 
elements a^ e 7r^^_p and Adams uses ec to prove that these maps are all essential. This 
generalized and clarified a construction of Toda [To58a] and was a forerunner of a great 
deal of recent work on periodicity phenomena in stable homotopy theory. When / = 1, 
Toda himself [To63] showed how to use ec to detect these elements as Toda brackets. 

Once the Adams conjecture was proven, various classifying spaces not available to 
Adams were constructed, and the theories of localization and completion were devel
oped, the proof that J\X) = J"{X) could later be carried out in a more conceptual 
homotopy theoretic way. The speculative last section of [Ad65b] anticipated much of 
this. Adams showed that, once appropriate foundations were in place, one would be able 
to deduce that, for any ^0-oriented spherical fibration § of dimension 8/t, the sequence 
p^(§) = 0~^T/r^(/)(l) would be of the form cited above. This would imply that, for any x 
in the group K{F\ KO)(X) of ^0-oriented stable spherical fibrations, there is an element 
x' e KSpin{X) such that p^{x) = p^{x') for all k. In retrospect, this was headed towards 
localized splittings of the classifying space for A'O-oriented spherical fibrations, with one 
factor being BSpin and the other a space BCokerJ whose homotopy groups are essentially 
the cokemel of J : n^ (BSpin) ~> 7r|. 

Adams asked, among other things, whether or not the J(X) specify a natural direct 
summand of some other functor of X, and he observed that, since the J(X) do not give 
a term in a cohomology theory on X, they cannot be direct summands of a term of a 
cohomology theory. We now fully understand the answers to his questions. The process of 
reaching that understanding was to have major impact on geometric topology and algebraic 
AT-theory, as well as on many topics within algebraic topology. 

15. Further applications and refinements of A"-theory 

The need for K and KO orientations of suitable vector bundles was apparent from the mo
ment A^-theory was introduced. Such orientations were essential to the work of Adams just 
discussed and were first studied in detail by Bott [Bott62, Bott63]. However, the definitive 
treatment was given in the beautiful paper [ABS64] of Atiyah, Bott, and Shapiro, which 
was written by the first two authors after Shapiro's untimely death. 

The authors first give a comprehensive algebraic treatment of Clifford algebras and their 
relationship to spinor groups. Let Q be the Clifford algebra of the standard negative defi-
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nite quadratic form — ^ x? on M̂  and let M(Q) be the free Abelian group generated by 
the irreducible Z2-graded Q-modules. The inclusion of Q in Q+i induces a homomor-
phism M{Ck+\) -^ M(Ck). Let Ak be its cokernel. Then the groups Ak are periodic of 
period 8 and are isomorphic to the homotopy groups TCk{BO). Their complex analogues 
A^ are isomorphic to the homotopy groups of BU. Under tensor product, the Ak and A^ 
form graded rings isomorphic to the positive dimensional homotopy groups of KO and KU. 
These facts are far too striking to be mere coincidences. 

They next give an account of relative ^-theory in bundle theoretic terms, proving that, 
for any n, a suitably defined set L„(X, Y) of equivalence classes of sequences of vector 
bundles over X, exact over Y and of length any fixed n ^ I, maps isomorphically to 
K{X, Y) under an Euler characteristic they construct. The proof depends on a difference 
bundle construction that is important in many applications. 

Combining ideas, they view the algebraic theory as a theory of bundles over a point 
and generalize it to a theory of bundles over X. Starting from a fixed Euclidean vector 
bundle V over X, they construct an associated Clifford bundle C(V) over X whose fiber 
over X is the Clifford algebra C(Vx). They define M(V) to be the Grothendieck group 
of Z2-graded C(y)-modules over X and define A(V) to be the cokernel of the homo-
morphism M(V 0 1 ) ^ - M(V). Using their exphcit description of relative A'-theory, an 
elementary construction gives a natural homomorphism 

XV : A(V) -> KO{B{V), S(V)) = KO{TV), 

It is multiplicative on external sums of bundles in the sense that 

Xv{E) • xw{F) = XV®w(E (8) F). 

If V is the associated bundle V = P ^spin{k) ^^ of a principal 5p/n(/:)-bundle P and M 
is a Q-module, then E = P xspin{k) M is a C(V)-module. This gives a homomorphism 
PP : Ak -> A{V) and thus a composite homomorphism ap = ^v^p : Ak -> KO{TV). 
Taking X to be a point and P to be trivial, there results a homomorphism of rings 

a:A^^ Y,KO-%t). 

The beautiful theorem now is that a and its complex analogue are isomorphisms of rings. 
This suggests that a proof of Bott periodicity based on the use of Clifford algebras should 
be possible. Using Banach algebras, Wood [Wood65] and Karoubi [Kar66, Kar68] later 
found such proofs. 

Now consider a 5;?m-bundle V = P xspin{n) ^ ' \ where n = Sk. Define /xy = ap(X^) e 
KO{TV). Then /xy restricts on fibers to the canonical generator of the free KO*(pt)-
module KO'^(S^). That is, it is an orientation of V, and so it induces a Thom isomor
phism (l)\KO*{X) -^ KO*(TV). It follows that a Spin(Sk)-bundle V is i^O-orientable 
if and only wiiV) = 0 and W2iV) = 0. The orientation is multipHcative in the sense 
that IJLV^W = Mv • Mw- The authors prove that the orientation they construct coincides 
with that constructed earlier by Bott [Bott62, Bott63]. Similarly, they obtain an orientation 
fj.y e KU{TV) for a Spin^-bundle of dimension n = 2k. They state that the agreement 
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of their orientations with Bott's gives additional good properties, but they do not say what 
these properties are. 

In [Ad65a], Adams explained some of these properties, since he needed them for compu
tation. Note first that, since U{k) -^ S0{2k) lifts canonically to Spirf{2k), the orientations 
of 5/7m* -̂bundles give orientations of complex bundles. The complexification of the orien
tation of a ̂ pm-bundle V is the orientation of V 0 C. According to Adams, the Todd and A 
classes are given in terms of the AT-theory and rational cohomology Thom isomorphisms 
by the formulas 

e^^^^)T-\^)=cj>-'ch^Ji'y 

for a complex bundle V and 

for a 5/?m-bundle V. According to Adams "It is well known that this is the way A enters 
the theory of characteristic classes". That is, A{M) = A(r) = (j)~^chii^^^^, where r is the 
tangent bundle of a manifold M with normal bundle v. 

We have noted the analogy between Adams operations and Steenrod operations. In the 
1966 paper [At66a], Atiyah went further and showed that this analogy could be made into a 
precise mathematical relationship, at least for complex A^-theory. He redefined the Adams 
operations by constructing a homomorphism of rings 

j:R^ = ^ H o m z (/?(r^), Z) -^ Op(/^). 

Here Ek is the k-\h symmetric group, R{Ek) its character ring, and Op{K) is the ring of 
natural transformations from the functor K to itself. This makes essential use of equivariant 
AT-theory and the isomorphism ATGC^) = K(X)<S>R{G) for a finite group G andaspaceX 
regarded as a G-space with trivial action. The k-th tensor power of a vector bundle over 
X is a I7/:-bundle over Z, and this gives a k-th power map K{X) -^ K(X) (g) R(IJk)', 
composing with homomorphisms R(IJk) -> Z, we obtain the k-th component of j . As a 
matter of algebra, there is a copy of the polynomial algebra generated by certain elements 
that deserve to be denoted i//^ sitting inside /?*, and the images of the xl/^ under j are the 
Adams operations. 

Making essential use of the construction of relative A'-theory in [ABS64], this allows 
Atiyah to relate the Adams operations to Steenrod operations by a direct comparison of 
definitions. The A:-theory of a CW complex X is filtered by KqiX) = KCY{K(X) -> 
K(X^)) with associated graded group EQK(X). Suppose that //*(X) has no torsion 
and let p be a prime. The Atiyah-Hirzebruch spectral sequence implies an isomorphism 
H^HX; Zp) = EI'^K(X) (8) Zp. Atiyah proves that, for x e K2q{X), there are elements 
Xi e K2q+2iip-\)(X) such that II/P(X) = Yfi=o P^'^^i- Writing x for the mod p reduc
tion of X and letting P' = 5^^' when /? = 2, he then proves the remarkable formula 
JP' (jc) = Xi. The idea of introducing Steenrod operations into generaUzed homology the
ories along the lines that Atiyah worked out in the case of AT-theory has had many subse
quent appHcations. 



698 J.P. May 

In another influential 1966 paper, Atiyah [At66b] introduced Real i^-theory KR, which 
must not be confused with real AT-theory KO. In the paper, real vector bundles mean one 
thing over "real spaces" and another thing over "spaces", which has bedeviled readers ever 
since: we distinguish Real from real, never starting a sentence with either. A Real space is 
just a space with a Z2-action, or involution, denoted x -^ x. h Real vector bundle p: E -^ 
X is a complex vector bundle E with involution such that cy = cy and p(y) = p(y) for 
c e C and y e E. There is a Grothendieck ring KR(X) of Real vector bundles over a 
compact Real space X. 

Atiyah shows that the elementary proof of the periodicity theorem in complex AT-theory 
that he and Bott gave in [AB64] transcribes directly to give a periodicity theorem in KR-
theory. The wonderful thing is that this general theorem specializes and combines with 
information on coefficient groups deduced from Clifford algebras to give a new proof of 
the periodicity theorem for real AT-theory. An essential point is to introduce a bigraded 
version of KR-theory, as was first done by Karoubi [Kar66] in a more general context. In 
more modern terms, KR is a theory graded on the real representation ring ROi^Li), and 
it is the first example of an /?0(G)-graded cohomology theory. Such theories now play a 
central role in equivariant algebraic topology. 

In Atiyah's notation, define groups 

KRP^^. A) = KR{X X 5^'^, X X 5^'^ U A x 5^'^), 

where 5^'^ and 5^'^ are the unit disk and sphere in W 0 iW. In the absolute case, these 
are the components of a bigraded ring. There is a Bott element fi € KR^'^ (fi^'^ 5^'^), and 
multipHcation by ^ is an isomorphism. Setting KR^iX, A) = KRP'^{X, A), it follows that 
KRP^HX, A) = KRP'HX, A), and it turns out that this is periodic of period 8. When the 
involution on X is trivial, KR(X) = KO(X), and this gives real Bott periodicity. Complex 
A^-theory K and self-conjugate i^-theory KSC, which is defined in terms of complex bun
dles E with an isomorphism from E to its conjugate, are also obtained from A7?-theory 
by suitable specialization. This leads to long exact sequences relating real, complex, and 
self-conjugate AT-theory that have been of considerable use ever since. The self-conjugate 
theory had been introduced by Green [Gr64] and Anderson [An64], who first discovered 
these exact sequences. The ideas in [At66b] have found a variety of recent applications. 
This is the paper of which Adams wrote in his review: "This is a paper of 19 pages that 
cannot adequately be summarized in less than 20". 

In contrast, we come now to the definitive proof by AT-theory of the Hopf invariant one 
theorem, for all primes p, that was given in the paper [AA66] of Adams and Atiyah. They 
give a complete proof of the Hopf invariant one theorem for /7 = 2 in just over a page (see 
also [Mayl]). The essential idea is to apply the relation xj/'^xl/^ = xj/^il/^ in the AT-theory 
of a two-cell complex 5" U/ e^^, n even. If the Hopf invariant of / is one, then a simple 
calculation shows that this relation leads to a contradiction unless n is 2, 4, or 8. The proof 
at odd primes takes only a little longer. 

16. Bordism and cobordism theories 

We now back up and return to the story of cobordism. Immediately after the introduction 
of ^-theory, in 1960, Atiyah [At6la] introduced the oriented bordism and cobordism theo
ries, denoted M^O^CX) and MSO*(X), for finite CW complexes X. Just as K* was the first 
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explicitly specified generalized cohomology theory, MSO^ was the first explicitly specified 
generaUzed homology theory. 

For a finite CW pair (Z, A) and any integer ^, Atiyah defines 

MSOHX, A) = colim[i:"~^Z/A, TSO(n)] (16.1) 

and verifies that these groups satisfy all of the Eilenberg-Steenrod axioms except the di
mension axiom. This is the theory represented by the spectrum MSO, but Atiyah's work 
precedes Whitehead's paper [Wh62a], and that language was not yet available. 

He defines oriented bordism groups geometrically. He proceeds a little more generally 
than is currently fashionable, but with good motivation. He considers the category B of 
pairs (X, a), where Z is a finite CW complex (say) and a is a principal Z2-bundle over 
X, that is, a not necessarily connected double cover. Maps and homotopies of maps in B 
are bundle maps and bundle homotopies. For a smooth manifold M (with boundary), let y 
denote the orientation bundle of M. Then MSOq (X, a) is defined to be the set of "bordism 
classes" of maps / : (M, y) -> (X, a), where M is a ̂ -dimensional closed manifold. Here 
/ is bordant to /^ : (M^ y) -^ (X, a) if there is a manifold W such that 9 W = M JJ M' 
together with a map g : (W, y) -> (X, a) that restricts to / on M and to / ' on M\ When 
a is trivial, / is just a map M -> X, where M is an oriented ^-manifold, and Atiyah 
writes MSOq(X) for the resulting oriented bordism group. He observes that MGq(X) can 
be defined similarly for the other classical groups G. 

One virtue of the more general definition is the observation that, for large n, 

MSOq{RF\^)=Afq, (16.2) 

where ^ : 5" ^- MP'̂  is the canonical double cover. More deeply, Atiyah proves that, 
for an /i-manifold M without boundary MSOq{M, y) is isomorphic in the stable range 
2q < n to a certain group Lq (M) introduced by Thom [Thom54] and used in the proof 
of his "theoreme fondamental". This allows Atiyah to show that Thom's theorem directly 
implies Poincare duality: for a finite CW pair (X, A) such that X — A is a closed oriented 
«-manifold 

MSOHX, A) ^ MSOn-q(X - Y, y). (16.3) 

Taking Y to be empty and X to be oriented, this specializes to 

MSOHX)=MSOn-q(X). 

Although he does not go into detail, Atiyah was aware of the expected interpretation in 
terms of cup and cap products induced from the maps 

TSOim) A TSO(n) -> TSO(m + n). 

For n large and even, so that y = §, (16.2) and (16.3) imply that 

Afq = MSd^''-'^ (MP^"). (16.4) 
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One of Atiyah's main motivations was to understand certain exact sequences relating 
oriented and unoriented cobordism groups, in particular the exact sequence 

Qn^ ^n^ Mn. (16.5) 

due originally to Rohlin [Ro53, Ro58] and also proven by Dold [Dold60]. These exact 
sequences play a central role in Wall's computation of Q^. Using (16.4), Atiyah shows 
that they are just long exact sequences obtained by applying the theory M^O* to pairs of 
projective spaces. 

Conner and Floyd [CF64a] followed up Atiyah's work with a thorough exposition and 
many interesting applications of the theories MO^ and MSO^, Atiyah did not give a ge
ometric definition of the relative groups MSO^{X, A). Conner and Floyd do so carefully, 
and they prove that MSO^(X, A) so defined satisfies 

MSOg (X, A) = TZn+q {X/A A TSO{n)) ifn^q+2. 

This shows that the geometrically defined theory agrees with the theory given by White
head's prescription. They construct the bordism Atiyah-Hirzebruch spectral sequence con
verging from //*(X, A; Q^) to MSO^{X, A). For the unoriented theory, they show that 

MO*(X, A) = //*(X, A; Z2) 0 A/"*, (16.6) 

as we see from the splitting of MO as a product of Eilenberg-MacLane spectra. Similarly, 
they show that, modulo the Serre class of odd order Abelian groups, 

M50*(X,A) = / /*(X,A;^*). 

Using this, they reinterpret and generalize Thom's work on the Steenrod representation 
problem. For example, they show that the natural map MSO^{X, A) -> //*(X, A; Z) is 
an epimorphism if and only if the oriented bordism spectral sequence for (X, A) collapses 
and that this holds if //*(X, A; Z) has no odd torsion. They also generahze (16.5) to an 
exact sequence 

MSOn(X, A) - i MSOniX, A) -> MOn{X, A). 

However, the main point of Conner and Floyd's monograph [CF64a] was the use of 
cobordism for the study of transformation groups of manifolds. The cohomological study 
of group actions was initiated in the remarkable early work of RA. Smith [Sm38]. The 
use of cohomological methods in the study of transformation groups was systematized in 
the seminar [B06O] of Borel and others, including Floyd. In its introduction, Borel had 
pointed out the desirability of making more effective use of differentiability assumptions 
than had been possible previously. Conner and Floyd introduced equivariant cobordism as 
a follow up, and they found many very interesting applications of it to the study of fixed 
point spaces of differentiable group actions. I shall only indicate a litde of what they do. 

They define oriented and unoriented geometric equivariant cobordism groups for any 
finite group G with respect to group actions on manifolds with isotropy groups constrained 
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to lie in any set of subgroups of G closed under conjugacy. Write M^ and Q^ for these 
groups when all subgroups are allowed as isotropy groups. Conner and Floyd focus on 
the case of free actions (trivial isotropy group). Here the geometric description of bordism 
theory directly implies that the cobordism groups of smooth compact manifolds with free 
G-actions are isomorphic to the bordism groups MO^{BG). Restricting to oriented mani
folds and orientation preserving actions, the resulting cobordism groups are isomorphic to 
the bordism groups MSO^(BG). This opens the way to calculations. As in Atiyah's work 
on K*(BG), transfer homomorphisms play a significant role. 

In the unoriented case, MO^{BG) is calculated in terms of H^{G\ Z2) by (16.6). As an 
elementary application, Conner and Floyd give a geometric proof of Wall's observation 
that the square of a manifold is cobordant to an oriented manifold. However, the main 
applications concern the fixed point space F of a nontrivial smooth involution on a closed 
w-manifold M, which for clarity we assume to be connected. Let F'̂ ^ be the union of the 
components of F of dimension m. If the Stiefel-Whitney classes of the normal bundle of 
F^ in M are trivial for 0 ^ m < n, then F"^ is a boundary for 0 ^ m < /t. This is a 
substantial generahzation of the fact that F cannot have exactly one fixed point, a fact that, 
with its odd primary analogue, motivated their entire study. 

Remarkably, although they did not have a description of A/"* ^ as the homotopy groups 
of a space, Conner and Floyd were able to compute these cobordism groups in terms of 
bordism groups; precisely, they obtained a split short exact sequence 

n 

0 -^ Nf^ -> Yl ^Om{BO(n - m)) -^ M0n-i(BZ2) -> 0. 
m=0 

For an odd prime p, Conner and Floyd calculate the bordism groups MSO^{BZp) 
completely and give partial information on MSO^{BIjpk) fork > 1. They also study 
MSO^{{B{Ijp)^)), ending with a conjecture on annihilator ideals that was only proven 
much later. In this connection, they obtained partial information on a Kunneth theorem 
for the computation ofMSO^{X x Y). Landweber [Lan66] later gave the complete result, 
along with the easier analogue for MU^. Conner and Floyd went on to study the equivari-
ant complex bordism groups MU^(BG) for free G-actions in [CF64b]. This work has been 
very influential in the development of both equivariant geometric topology and equivariant 
stable algebraic topology, which recently has become a major subject in its own right. 

17. Further work on cobordism and its relation to ^-theory 

We have seen that Milnor [Mil60, Mil62b] and Novikov [Nov60, Nov65] raised the prob
lem of determining the cobordism groups Q^ = 7T:^(MG) of G-manifolds for G = SU, Sp 
and Spin. They were aware that only the question of 2-torsion was at issue. Liulevicius 
[Liu64] described H'^iMG, Z2) as a coalgebra over the Steenrod algebra for various G 
and began the study of the relevant mod 2 Adams spectral sequences. In particular, he cal
culated E2 and showed that E2 7̂  Foo for MSU and MSp. He also computed 7i^{MSp) in 
low dimensions. The calculation of the 2-torsion in iT^(MSp) has been studied extensively 
over the last 30 years, and a complete answer is still out of sight. I shall say no more about 
that here. However, the remaining cases were all completely understood by the end of 1966. 
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The literature in this area burgeoned in the mid 1960's, and I will mention only some of 
the main developments. Stong [Sto68], unfortunately out of print, gives an excellent and 
thorough survey of results through 1967, with a complete bibliography. Foundationally, he 
starts from the systematic treatment of the geometric interpretation of n^{MG) that was 
given by Lashof in 1963 [Las63]. 

As a preamble to explicit calculations, Milnor [Mil65] and others gave some attractive 
conceptual results concerning the squares of manifolds. As a consequence of their work 
on fixed points of involutions in [CF64b], Conner and Floyd had observed that if VR is the 
real form of a complex algebraic variety Vc and both are nonsingular, then Vc is unori-
ented cobordant to VR x V^. Milnor [Mil65] showed that this implies that an unoriented 
cobordism class contains a complex manifold if and only if it contains a square. He also 
explained in terms of Stiefel-Whitney numbers when a manifold is unoriented cobordant 
to a complex manifold. Further, he conjectured and proved in low dimensions that the 
square of an orientable manifold is unoriented cobordant to a 5/?m-manifold. P.G. Ander
son [And66] proved that the square of a torsion element of Q^ is unoriented cobordant to 
an 5"t/-manifold, and he deduced Milnor's conjecture from that. Stong [Sto66b] later gave 
a simpler proof. 

In their monograph [CF66a], Conner and Floyd worked out the analogue of their de
velopment of geometric and represented oriented cobordism theory in the complex case, 
together with its SU variant. Although the details are a good deal more compHcated, they 
follow the methods used by Wall [Wall60] and Atiyah [At61a] in the case of oriented 
cobordism to determine the additive structure of the iS/7-cobordism ring Q^^. The essen
tial point is to determine the torsion, and they prove that the torsion subgroup of Q^^ is 
zero unless q = 8n + 1 or ^ = 8« -j- 2, in which cases it is a Z2-vector space whose di
mension is the number of partitions ofn. Wall [Wall60] later completed the determination 
of the multiplicative structure of ^l^. 

In concurrent work, Anderson, Brown, and Peterson [ABP66a] calculated the mod 2 
Adams spectral sequence for n^{MSU). They use a result of Conner and Floyd [CF66a] 
to determine the differential d2, and they deduce that £3 = £"00- This is a more sophisti
cated application of the Adams spectral sequence than had appeared in earlier work, and 
it was the first significant example in which the Adams spectral sequence was determined 
completely despite the presence of nontrivial differentials. Moreover, they prove that an 
^[/-manifold is a boundary if and only if all of its Chern numbers and certain of its (nor
mal) J^O-characteristic numbers are zero. 

To define A^O-characteristic numbers, they make one of the first explicit uses of Poincare 
duality in ATO-theory, relying on the Atiyah-Bott-Shapiro orientation to obtain canoni
cal ^0-fundamental classes of 5f/-manifolds. Another interesting feature of their work is 
the complete determination of the image of the framed cobordism groups Q^^, that is the 
stable homotopy groups of spheres, in Qf^. This allows them to connect up their calcula
tions with the Kervaire surgery invariant and the realization of Poincare duality spaces as 
^L^-manifolds up to homotopy equivalence. 

Soon afterwards, Anderson, Brown, and Peterson [ABP66b] followed up their work 
on Q^^ with a calculation of Q/"\ which is a good deal harder. Let bo{n) denote the 
spectrum obtained from the real Bott spectrum by killing its homotopy groups in dimen
sions less than n. They construct a map / from MSpin to an appropriate product of copies 
of spectra bo {In) and suspensions of //Z2 and prove that / induces an isomorphism on 
mod 2 cohomology. A posteriori, / is a 2-local equivalence. 
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The essential input that makes this calculation possible is Stong's calculation [Sto63] of 
the mod 2 cohomology of the bo {In) as modules over the Steenrod algebra. These mod
ules are of the form A/A{Sq ^, Sq^) or A/ASq^, and this allows calculation of the relevant 
Adams spectral sequences. However, a good deal of work, most of it dealing with the 
algebra of modules over the Steenrod algebra, is needed to go from this input to the fi
nal conclusion. Incidentally, working on the space level, Adams had earlier calculated the 
mod p cohomologies of the bu{ln) for all primes p [Ad61a]. 

Similarly to the case of Q^^, a 5pm-manifold is a boundary if and only if all of its 
Stiefel-Whitney numbers and certain of its ATO-characteristic numbers are zero. Moreover, 
a manifold is cobordant to a 5/?/n-manifold if and only all of its Stiefel-Whitney numbers 
involving w\ or u;2 are zero. The image of in QJ^^^ is determined by comparison with 
the case of ^l^. A result of Stong [Sto66a] determines the ring structure on the torsion 

free part of Q/"\ 
In their monograph [CF66b], Conner and Floyd give a general exposition of the rela

tionship between AT-theory and cobordism, starting from a variant of the orientation theory 
of Atiyah, Bott, and Shapiro. They construct compatible natural transformations of multi
plicative cohomology theories 

and 

fMc:MU\X) -^ /^*(X) 

fMr'MSU\X)->KO\X) 

on finite CW complexes X. Thinking of an element of MU^(X) as a homotopy class of 
maps / : S^^~^ A X -> TU{k), k large, they obtain /Xc(/) by transporting the Thom class 
along the composite 

K{TU(k)) ^ K{S^^-'' A Z) = ^"(X) . 

Up to sign, pic : ^ ^ —> Z gives the Todd genus r [M] of ^/-manifolds. Since pic is a ring 
homomorphism, it gives Z a structure of M[/*-module, where MW = ^ ^ „ . Conner and 
Floyd prove the remarkable facts that complex cobordism determines complex A^-theory 
and symplectic cobordism determines real A'-theory. Precisely, the maps pic and /x̂  induce 
isomorphisms 

M/7*(Z, A) ^MU* K\pt) = K\X, A) 

and 

MSp\X, A) ^MSp* KO^'ipt) = KO\X, A) 

on finite CW pairs (X, A). The reason that MSp comes in is clear from the proof, which 
makes heavy use of the Atiyah-Hirzebruch spectral sequence and relies on the fact that 
H^'iBSp) is concentrated in even degrees. Along the way, considerable information about 
characteristic classes in cobordism theories is obtained. 
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There is a last part of [CF66b] that deserves to be better known than it is. In slightly 
modernized terms, Conner and Floyd consider the cofiber MU/S of the unit S -> MU. 
They give a cobordism interpretation of 7T^{MU/S) in terms of ^/-manifolds with stably 
framed boundary, or ((7,/r)-manifolds. The cofiber sequence gives rise to a short exact 
sequence 

U fr 

for each « > 0. The Todd genus defines a homomorphism T .Q^'' -> Q, and it turns 
out that there is a closed ^/-manifold with the same Chern numbers as a given {UJr)-
manifold M if and only if T{M) is an integer. Therefore T induces a homomorphism 
^2n-\{S) = ^2n-\ ~^ Q/^- Conner and Floyd show that this homomorphism coincides 
with Adams' complex ^-invariant. This allows the use of Adams' complete determination 
of the behavior of ec to obtain geometric information. Using ^L^ in place of U, they obtain 
a similar interpretation of Adams' real ^-invariant Tr^n+3 (S) -^ Q/^, and they use explicit 
manifold constructions modelled on Toda brackets appearing in Adams' work to reprove 
the result of Anderson, Brown, and Peterson on the image of ^J in ^ f ^. 

The work of Conner and Floyd uses a basic theorem of Hattori [Ha66] and Stong 
[Sto66b]. The tangential characteristic numbers of a L^-manifold M^" determine a ho
momorphism H^''(BU; Q) -> Q. Let /^" be the subgroup of H^''(BU; Q) consisting of 
all elements that are mapped into Z by all such homomorphisms. The Riemann-Roch the
orem of Atiyah and Hirzebruch shows that the 2n component of ch{x)T is in /^" for all 
X e K(BU), where T is the universal Todd class. Atiyah and Hirzebruch [AH61c] conjec
tured that these Riemann-Roch integrality relations are complete, in the sense that every 
element of 7"̂ " is of this form. 

This is the theorem of Hattori and Stong. It can be rephrased in several ways. Stong uses 
methods of cobordism to show that all homomorphisms Q^ -^ Z are integral linear com
binations of certain homomorphisms given by AT-theory characteristic numbers. Hattori 
shows that the conjecture is equivalent to the assertion that, for large k, the homomorphism 

a : K{TU(k)) -> Hom (;r2„+2^(m(^)), K{S^''^^^)) 

given by a{y)(x) = x'^(y) is an epimorphism. He proves that the AT-theory Hurewicz 
homomorphism 

7r2n+24rf/(/:)) ^ K2n+2k{TV{k))^ 

which is induced by the unit 5 -> AT of the J^-theory spectrum, is a split monomor-
phism. He then deduces the required epimorphism property by use of Poincare duality in 
^-theory. Adams and Liulevicius [AL72] later gave a spectrum level reinterpretation and 
proof of Hattori's theorem, viewing it as a result about the connective AT-theory Hurewicz 
homomorphism of MU. 

18. High dimensional geometric topology 

The period that I have been discussing was of course also a period of great developments 
in high dimensional geometric topology. There was a closer interaction between algebraic 
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and geometric topology throughout the period than there is today, and some of the most 
important work in both fields was done by the same people. Cobordism itself is intrinsi
cally one such area of interaction. It would be out of place to discuss such related topics 
as /i-cobordism and ^-cobordism here. However, some geometric work was so closely in
tertwined with the main story or was to be so important to later developments that it really 
must be mentioned, if only very briefly. 

First, there is the work of Kervaire and Milnor [KM63] on groups of homotopy spheres. 
This gives one of the most striking reductions of a problem in geometric topology to a 
problem in stable homotopy theory, albeit in this case to the essentially unsolvable one of 
computing the cokernel of the y-homomorphism. 

As we have already mentioned, the starting point of modern differential topology was 
Milnor's discovery [Mil56b] of exotic differentiable structures on 5^. Kervaire and Milnor 
classify the differentiable structures on spheres in terms of the stable homotopy groups of 
spheres and the 7-homomorphism. Let Gn be the group of /z-cobordism classes of homo
topy n-spheres under connected sum. By Smale's /z-cobordism theorem [Sm62], 0n is the 
set of diffeomorphism classes of differentiable structures on 5" when n 7̂  3 or 4. Ker
vaire and Milnor show that every homotopy sphere is stably parallelizable. The proof uses 
Adams' result [Ad65a] that J : 7i^{S0) -> nl maps the torsion classes monomorphically. 
They then show that the homotopy spheres that bound a parallelizable manifold form a 
subgroup bPn-\-\ of On such that Qn/bPn+i embeds as a subgroup of nfj J(jtn(SO)). This 
embedding is an isomorphism ifn=4k-\-l. 

In the 1960's, geometric topologists began to take seriously the classification of piece-
wise linear and topological manifolds, and the appropriate theories of bundles and classi
fying spaces were developed. A few of the important relevant papers are those of Hirsch 
[Hir61], Milnor [Mil64], Kister [Ki64], Lashof and Rothenberg [LR65], and Haefliger 
and Wall [HW65]. We point out one conclusion that is particularly relevant to our theme, 
namely a theorem of Hirsch and Mazur that is explained in [LR65] and that is closely re
lated to the work of Kervaire and Milnor just discussed. If M is a smoothable combinatorial 
manifold, then the set of concordance classes of smoothings of M is in bijective correspon
dence with the set of homotopy classes of maps M -> PL/0. Part of the explanation is 
that PL(n)/0{n) -> PL/0 induces an isomorphism of homotopy groups through dimen
sion n, which converts an unstable problem into a stable one. Williamson [Wi66] proved 
the analogue of Thom's theorem for PL-manifolds, showing that the cobordism ring f2^^ 
of oriented PL-manifolds is isomorphic to n^iMSPL), and similarly in the unoriented case. 

These results raised the question of computing characteristic classes for PL and topo
logical bundles and of computing the PL-cobordism groups. These calculational questions, 
which turn out to be closely related to the questions raised by Adams in [Ad65b], would 
later motivate a substantial amount of work in stable algebraic topology. A 1965 paper 
of Hsiang and Wall [HsW65] discussed the orientability of nonsmooth manifolds with re
spect to generalized cohomology theories. A year or two later, Sullivan discovered [Sull70] 
that PL-bundles admit canonical A^O-orientations (away from 2). That fact has played an 
important role in answering such questions. 

Although almost nothing was known about these questions in 1966, a useful conceptual 
guide to later calculations was published that year by Browder, Liulevicius, and Peterson 
[BLP66]. By then, classifying spaces BF{n) for spherical fibrations were also on hand, 
by work of Stasheff [Sta63c] and later Dold [Dold66]. The authors consider a system of 
spaces BG(n), where G(n) may have no a priori meaning, and maps BO(n) -> BG{n) —> 
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BF(n), BG(n) -^ BG(n + 1) and BG(m) x BG(n) -^ BG(m + n) satisfying some evident 
compatibility conditions. They define the Thom space TG{n) by use of the pullback of 
the universal spherical fibration over BF(n) and have a Thom spectrum MG. They have a 
Thom isomorphism H*(BG) -^ H*(MG) in mod 2 cohomology, and they define Stiefel-
Whitney classes as usual. 

With this set up, they observe that theorems of Milnor and Moore [MM65] imply that 
H*(MG) is a free A-module and there is a Hopf algebra C(G) over A such that 

//*(5G) = //*(5(9)(8)C(G) 

as Hopf algebras over A and 

7r*(MG) = 7r*(MO)(g)C(G)* 

as algebras. Letting BSG be the 2-fold cover of BG determined by ifi, they also observe that 
H*(MSG) is the direct sum of a free A-module and suspensions of copies of A/ASq^, so 
that, a posteriori, MSG splits 2-locally as a product of corresponding Eilenberg-MacLane 
spectra, just as MSO does. Moreover 

H*(BSG) ~ H*(BSO) (g) C(G) 

as Hopf algebras over A, and at least the additive structure of 7i^{MSG), modulo odd tor
sion, is determined by C(G) and the Bockstein spectral sequence of H*(BSG). 

Intuitively, this means that the mod 2 characteristic classes for "G-bundles" com
pletely determine the unoriented G-cobordism ring and the 2-local part of the oriented 
G-cobordism ring. The proofs require no geometry, but when one has a manifold inter
pretation of 7r*(MG), for example when G = PL, it follows directly that a G-manifold 
is a boundary if and only if all characteristic numbers defined in terms of H*(BG) are 
zero. 

For an odd prime p, they prove that H*(BSG; Zp) is a free ^-module, where B is the sub 
Hopf algebra of A generated by the P^, but the calculation of the odd torsion in 7r*(MG) 
requires use of the Adams spectral sequence and is thus of a quite different character than 
the determination of the 2-torsion. 

19. Iterated loop space theory 

So far I have focused on the mainstream of developments through 1966, but there are some 
other directions of work that were later to become important to stable algebraic topology. 
This section describes one stream of work that was later to merge with the mainstream. 
Although the connection was not yet visible in 1966 and won't be made visible here, the 
relevant later work was to provide key tools for the calculations called for in the previous 
section. 

Let X be an //-space. One can ask whether or not X has a classifying space F, so that 
X ~ ^ y . If so, one can ask whether Y is an //-space. If so, one can ask whether Y has 
a classifying space. Iterating, one can ask whether X is an n-fo\d loop space, or even an 
infinite loop space. One wants the answers to be in terms of internal structure on the space 
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X. The answers are closely related to an understanding of the spaces Q^E^X, which 
play a role roughly dual to the role of Eilenberg-MacLane spaces in ordinary homotopy 
theory. Such questions were later to be a major part of stable algebraic topology, but some 
important precursors were on hand by 1966. 

Recall that a topological monoid X, that is an associative //-space with unit, has a clas
sifying space BX and X 2^ QBX if jro(X) is a group under the induced multipUcation. This 
result has a fairly long history, which would be out of place here. 

In 1957, Sugawara [Su57a] gave a fibration-theoretic necessary and sufficient condition 
for a space X to be an //-space, or to be a homotopy associative //-space. In the same 
year [Su57b], he followed up by giving necessary and sufficient conditions for X to have 
a classifying space. Obviously, X must be homotopy associative, but that is not sufficient. 
Sugawara described an infinite sequence of higher homotopies that must be present on loop 
spaces and showed that the existence of such homotopies is sufficient. Three years later 
[Su60], he took the next step and displayed an infinite sequence of higher commutativity 
homotopies such that a loop space Q Y has such homotopies if and only if Y is an //-space. 
Stasheff [Sta63a, Sta63b] later reformulated Sugawara's higher associativity homotopies in 
a much more accessible fashion, introducing A„ and Aoo-spaces. The latter are Sugawara's 
//-spaces with all higher associativity homotopies, and Stasheff reproved the result that 
such an //^-space has a classifying space. 

Systematic computations of / / * ( ^ " r " Z ; Zp) began in 1956 with the work of Araki and 
Kudo [AK56]. Using higher commutativity homotopies, they mimic Steenrod's original 
construction of the Steenrod squares in mod 2 cohomology in terms of U/ -products to ob
tain mod 2 homology operations for n-io\d. loop spaces. They use these operations to com
pute //*(^"5"'+^; Z2). To compute / / * ( ^ " r " X ; Z2) for general spaces X, bracket opera
tions of two variables are needed. These were introduced by Browder [Br60]. He reproved 
the results of Kudo and Araki by mimicking Steenrod's construction of Steenrod opera
tions in terms of the homology of the cyclic group Z2, and he computed H^{Q^ E^X\ Z2) 
as a functor of //>,= (X; Z2). The functoriality is a calculational fact, not something true 
for general theories. For example, K{Q^E^X) is not a functor of K{X). It is related to 
Dold's earlier, but noncalculational, result [Dold58b] that the homologies of the symmetric 
products of X are determined by the homology of X. 

Dyer and Lashof [DL62] studied homology operations for n-io\d loop spaces at odd 
primes p, mimicking Steenrod's definition of Steenrod operations in terms of the homol
ogy of the symmetric group Ep. These operations are now generally called Dyer-Lashof 
operations. This method of construction does not give enough operations to compute 
/ / * ( ^ " r " X ; Zp). Dyer and Lashof define QX = \J Q^'E^'X, where the union is taken 
over the inclusions r?"i;"X -^ -T '̂̂ +^r'̂ +^X obtained by suspending a map ^" -> X A 5 " 
to a map 5""̂ ^ -^ X A S^^^. They then prove that their operations, plus the Bockstein, are 
sufficient to compute H^{QX\ Zp) as a functor of //*(Z; Z^). 

In 1966, Milgram [Mil66] generalized the James construction to obtain a combinato
rial model JnX for Q^E^X, where X is a connected CW complex. The spaces 7„X are 
themselves CW complexes with cellular chain complexes identified in terms of the cel
lular chains of X. This allows a computation of H^(Q^E^X), but Milgram's work was 
not connected up with homology operations until much later. This is analogous to Car-
tan's original computation of the homology of Eilenberg-MacLane spaces without use of 
Steenrod operations. The later theory of operads led to a simpler, but equivalent, model for 
Q^E^X and allowed the specification of sufficiently many homology operations to com-
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pxxit H^{Q^ E^X\ Zp) as a functor of//*(^; Zp). It also made it clear that Milgram's work 
and Stasheff's work on Aoo-spaces are closely related, something that was not apparent at 
the time. 

20. Algebraic 7^-theory and homo topical algebra 

The cohomology of groups, homological algebra, algebraic ^-theory, and category the
ory are algebraic areas of mathematics that developed simultaneously with stable algebraic 
topology and gradually evolved into separate subjects. All remain closely connected to sta
ble algebraic topology. I shall mention some directions that seem to me to be of particular 
interest or to have been important forerunners of later developments. 

I will point to just a few relevant papers concerning the cohomology of groups. Of 
course, with trivial coefficients, the homology of a discrete group G agrees with the homol
ogy of its classifying space BG. At about the same time that Dyer and Lashof were com
puting H^iQX), Nakaoka [Na60, Na61] was computing the homologies of the symmetric 
groups and in particular the homology of the infinite symmetric group. With X = S^,it 
would later turn out that these were essentially the same computation. 

The equivariant homology and cohomology groups of spaces that were studied by Borel 
and others in [Bo60] are H^{X) = H^{EG XG X) and H^{X) = //*(£G XG X). Swan 
[Sw60a] in 1960 introduced the Tate cohomology of spaces HQ(X). Just as in group the
ory, he gave a long exact sequence relating H^(X), H^{X) and HQ(X). It has been shown 
recently that one can replace ordinary homology and cohomology by the theories repre
sented by any spectrum and still get such a long exact sequence. 

Although a litde off the subject, the early appHcations of algebraic /<r-theory to algebraic 
topology deserve brief mention. Swan [Sw60b] used his study [Sw60c] of projective mod
ules over group rings to show that any finite group with periodic cohomology acts freely 
on a homotopy sphere. This led to Wall's AT-theoretic finiteness obstruction [Wall65] that 
determines whether or not a finitely dominated CW complex is homotopy equivalent to a 
finite CW complex. Applications of algebraic ^-theory in surgery theory also began in the 
1960's, but are beyond our scope. 

There are several papers in algebraic A'-theory and what later became known as ho-
motopical algebra that may be viewed as harbingers of things to come in stable algebraic 
topology. The feature to emphasize is the evolution from analogies between similarly de
fined objects in different subjects to direct mathematical connections and fruitful common 
generalizations. These topics were to have much direct contact with iterated loop space 
theory, but that could not have been visible in 1966. Their connections with the main
stream of stable algebraic topology were visible from the beginning, although the forms 
these connections would eventually take could not have been anticipated. 

Topological AT-theory grew directly out of Grothendieck's work, and the analogy with 
algebraic ^-theory was thus visible from the outset. Swan [Sw62] gave the analogy math
ematical content by proving that, for a compact space X, K{X) is naturally isomorphic 
to the Grothendieck group of finitely generated projective modules over the ring C{X) of 
continuous real-valued functions on X. The isomorphism sends a vector space § to the 
C(X)-module r (§ ) of sections of §; r ( ^ ) is a finitely generated projective C(X)-module 
since § is a summand of a trivial bundle. 

As Adams wrote in his review of a paper of Bass [Bass64]: 
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This leads to the following programme: take definitions, constructions and theorems 
from bundle-theory; express them as particular cases of definitions, constructions, and 
statements about finitely-generated projective modules over a general ring; and finally, 
try to prove the statements under suitable assumptions. 

With this analogy clearly in mind, Bass defines and studies K^ (following Grothendieck) 
and K^ of rings in the cited paper. Higher algebraic ^-groups came later, and their study 
would lead to substantial developments in stable algebraic topology that would be closely 
related to both high dimensional geometric topology and infinite loop space theory. 

There are many other areas where analogies between algebra and topology have been 
explored. For example, starting with Eckmann-Hilton duality [Eck57, Hil58], there was 
considerable work in the late 1950's and early 1960's exploring the idea of a homotopy 
theory of modules, or, more generally, of objects in Abelian categories, by analogy with 
the homotopy theory of spaces. I shall say nothing about that work. 

Rather, I shall say a little about the analogy between stable homotopy theory and differ
ential homological algebra. Differential homological algebra studies such objects as dif
ferential graded modules over differential graded algebras and is a natural tool in both 
algebraic topology and algebraic geometry. The analogy between homotopies in topology 
and chain homotopies in homological algebra was already clear by 1945. However, the 
structural analogy between stable homotopy theory and differential homological algebra 
goes much deeper. It later led both to an axiomatic understanding of homotopy theory in 
general categories and to concrete mathematical comparisons between such categories in 
topology and algebra, beginning with the fundamental work of Quillen [Qu67]. 

Dold and Puppe gave important precursors of this in the early 1960's. The first sys
tematic exploration of the analogy was given by Dold [Dold60], in 1960. He develops 
cofiber sequences of chain complexes of modules over a ring, a Whitehead type theo
rem for such chain complexes, Postnikov systems of chain complexes, and so forth. The 
next year [DP61], Dold and Puppe gave a remarkable and original use of simpHcial meth
ods in algebra by defining and studying derived functors of non-additive functors between 
Abelian categories. Unlike the additive case, these functors do not commute with suspen
sion. This fact is analyzed by use of a bar construction defined in terms of cross-effect 
functors that measure the deviation from additivity. 

In 1962, Puppe [Pu62], motivated by the need for a good stable homotopy category, 
gave an axiomatic treatment of exact triangles. That paper precedes the introduction of the 
derived category of chain complexes over a ring in Verdier's 1963 thesis (which was pub-
fished much later [Ver71]). Verdier's axioms for exact triangles give the notion of a "trian
gulated category". Algebraic topologists and algebraic geometers have developed several 
areas of differential homological algebra independently, with different details, nomencla
ture, and, of course, assignment of credit. The definition of triangulated categories is a case 
in point. 

About the same time as Stasheff's work on AQO spaces, and with mutual influence, 
MacLane [Mac65] in 1963 introduced coherence theory in categorical algebra. This ex
plains what it means for a category to have a product that is associative, commutative, and 
unital "up to coherent natural isomorphism". The coherence isomorphisms are analogues 
of higher homotopies in topology. In familiar examples, like Cartesian products and tensor 
products, the isomorphisms are so obvious that they hardly seem worth mentioning. In less 
obvious situations, they require serious attention. The analogy between coherence isomor-
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phisms and higher homotopies was later to be given mathematical content via infinite loop 
space theory, with extensive appUcations to algebraic i^-theory. 

Also around the same time, Adams and MacLane collaborated in the development 
and study of certain algebraic categories, the "PROPs" and "PACTs" discussed briefly in 
[Mac65]. Their goal was to understand coherence homotopies in differential homological 
algebra. I have gone through a box full of correspondence between Adams and MacLane 
and can attest that this was one of the largest scale collaborations never to have reached 
print. When later translated into topological terms, their work was to be very influential 
in infinite loop space theory; the original algebraic motivation reached fruition much more 
recently. 

21. The stable homotopy category 

In our discussion of the Adams spectral sequence and of cobordism, we have indicated the 
need for a good stable homotopy category of spectra, and we have discussed the ^'-category 
of Spanier and J.H.C. Whitehead [SW57] and the category of G.W. Whitehead [Wh62a] as 
important precursors. We begin this section by discussing a very important 1966 paper for 
which such foundations are needed. 

We have seen that the quotient B = A/(P) of the Steenrod algebra appears naturally 
in the study of cobordism. For all classical groups G and for G = PL, ^{MG'.Ijp) is 
a free J5-module for each odd prime /?, where we think of 5 as a sub-Hopf algebra of 
A. In the classical group case, but not in the case of PL, H''{MG\ Z) is torsion free. For 
each prime p. Brown and Peterson [BP66] construct a spectrum, now called BP, such that 
H*(BP', Zp) = 5 as an A-module. They then prove that any spectrum X whose mod p 
cohomology is a free 5-module and whose integral cohomology is torsion free admits 
a map / into a product of suspensions of BP that induces an isomorphism on mod p 
cohomology. A posteriori, / is a /?-local equivalence. Since Brown and Peterson compute 
the homotopy groups of BP, one can read off the homotopy groups of X, modulo torsion 
prime to p. The method of proof is to use Milnor's results on the structure of A to write 
down a free resolution of A/(^) as an A-module and then to realize the resolution by an 
inductive construction of a generalized Postnikov system whose inverse limit is BP. 

This was the first time that a spectrum with desirable properties was tailor made. The 
spectra studied earlier had been ones that occurred "in nature" as sequences of spaces. For 
the foundations of their work. Brown and Peterson write 

We will make various constructions on spectra, for example, forming fibrations and 
Postnikov systems, just as one does with topological spaces. For the details of this 
see [-]. 

The reference they give in [-] is Whitehead [Wh62a]. However, the Whitehead category 
is not designed for this purpose and is not triangulated. Intuitively, one needs a category 
that is equivalent to the category of cohomology theories on spectra, not just spaces. 

Moreover, it would later be seen that BP, like S, K, KO, and the MG is a "commutative 
and associative ring spectrum". To attach a satisfactory meaning to this notion, one needs a 
smash product in the stable homotopy category of spectra that is associative, commutative, 
and unital up to coherent natural isomorphism. A ring spectrum R is then a spectrum with 
a product A. R A R -^ R and unit S -> R such that the appropriate diagrams commute in 
the stable homotopy category. 
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The minimal requirements of a satisfactory stable homotopy category Sh include the 
following very partial Hst. 

(1) It must have a suspension spectrum functor X"^ : Cu -^ Sh, where Ch is the homo
topy category of based CW complexes. 

(2) It must have a suspension functor Z \Sh -^ Sh such that UE^ = Z^U, 
(3) Z^ must induce a full embedding of the 5-category of finite CW complexes, so 

that Spanier-Whitehead duality makes sense. 
(4) Sh must represent cohomology theories: isomorphism classes of objects E of Sh 

must correspond bijectively to isomorphism classes of cohomology theories E* in such a 
way that, 5/,(i:^X, E) = E^iX) for based CW complexes X. 

(5) Sh must be triangulated; in particular, Sh must be an additive category and 
E :Sh -^ Sh must be an equivalence of categories. 

(6) Sh must be symmetric monoidal under a suitably defined smash product. 
It is not an easy matter to construct such a category, and a rigorous development of 

modern stable algebraic topology would not have been possible without one. 
Adams made several attempts to construct such a category, first in a very brief account 

in 1959 [Ad59] and then in more detail in his 1961 Berkeley notes [Ad61c]. There he gave 
an amusing discussion of the approaches a hare and a tortoise might take. In retrospect, 
his decision to come down on the side of the tortoise was misguided: a more inclusive 
and categorically sophisticated approach was needed. In [Ad66b], Adams assumed the 
existence of a good stable category and sketched the development of an Adams spectral 
sequence based on connective AT-theory. This was the first attempt at setting up an Adams 
spectral sequence based on a generalized cohomology theory. However, convergence was 
not proven and the approach was still based on cohomology rather than homology. 

More fruitful approaches would come a little later, with the development of the Adams-
Novikov spectral sequence [Nov67], namely the Adams spectral sequence based on MU 
or, more usefully, BP. This, together with Quillen's observation of the relationship between 
complex cobordism and formal groups [Qu69], would lead later to the realization that MU 
and spectra constructed from it are central to the structural analysis of the stable homotopy 
category. 

Adams' version [Ad61c] of the stable homotopy category and the slightly later version 
of Puppe [Pu67], following up [Pu62], were based on the use of spectra T such that Tn is a 
CW complex and UTn is a subcomplex of Tn-\-\. Connectivity and convergence conditions 
were imposed. In Adams, these had the effect that all spectra were (—l)-connected. In 
Puppe, they had the effect that all spectra were bounded below. The specification of maps 
was a little complicated. Roughly, the basic diagrams (13.1) were required to commute 
on the point-set level rather than only up to homotopy, as in Whitehead's category, but 
maps were not required to be defined on the whole spectrum, only on some cofinal part of 
it. Puppe's category was triangulated, and his discussion of exact triangles has been quite 
influential. 

Kan [Kan63a, Kan63b] introduced simplicial spectra in 1963 and began the development 
of the stable homotopy category in terms of them. Simphcial spectra are not defined as 
sequences of simplicial sets and maps, but rather as generalized analogues of simphcial 
sets that admit infinitely many face operators in each simplicial degree. 

Neither Adams nor Puppe addressed the crucial problem of constructing a smash prod
uct. Kan's original papers did not address that problem either, but Kan and Whitehead 
[KW65a] constructed a smash product of simplicial spectra not much later. They proved 
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that their smash product is commutative, but they did not address its associativity. In 
[KW65b], they used this product to discuss ring and module spectra and to study de
grees of orientability, defined in terms of higher order cohomology operations, but still 
without addressing the question of associativity. In particular, they defined the notion of 
a commutative ring spectrum without defining the notion of an associative ring spectrum. 
Further study of simplicial spectra was made in a series of papers by Burghelea and De-
leanu [BD67, BD68, BD69]. While they proved some additional properties of the smash 
product, they too failed to address the question of its associativity. In fact, as far as I know, 
that question has never been addressed in the literature. 

Although simplicial spectra have not been studied much in recent years, the simpli
cial approach does lend itself naturally to the study of algebraically defined functors. This 
was exploited in the papers [KW65a, KW65b] of Kan and Whitehead and in the paper 
[BCKQRS66] of Bousfield, Curtis, Kan, Quillen, Rector, and Schlesinger. That paper gave 
a new construction of the Adams spectral sequence in terms of the mod-/? lower central 
series of free simplicial group spectra. For the sphere spectrum, the £i-term given by their 
construction is the "yl-algebra", which is a particularly nice differential graded algebra 
whose homology is the cohomology of the Steenrod algebra. It would become apparent 
later that the yl-algebra is closely related to the Dyer-Lashof algebra of homology opera
tions on infinite loop spaces. 

The first satisfactory construction of the stable homotopy category was given by Board-
man in 1964 [Bo64]. Although mimeographed notes were made available [Bo65, Bo69], 
Boardman never pubHshed his construction. An exposition was given by Vogt [VogtVO]. 
Boardman begins with the category T of based finite CW complexes. He constructs from 
it the category J^s of finite CW spectra by a categorical stabilization construction. Its homo
topy category Tsh is equivalent to the category obtained from the ^-category by adjoining 
formal desuspensions. As Boardman notes, this is the right category in which to study 
Spanier-Whitehead duality since here the pesky dimension n in Spanier's definition can be 
eliminated: a duality between finite CW spectra X and Y is specified by a suitably behaved 
map £\Y AX -> S. 

Freyd [Fre66] studied the category Tsh categorically. He observed that any additive cat
egory C with cofiber sequences, such as Tsh, embeds as a full subcategory of an Abelian 
category A, namely the evident category whose objects are the morphisms of C. Moreover, 
A has enough injective and projective objects, its injective and projective objects coincide, 
and the objects of C map to projective objects in A. He observed further that idempotents 
induce splittings into wedge summands in C for suitable C, such as Tsh, and deduced that C 
is then the full subcategory of projective objects of A. Although he was not in possession 
of 5/2, it satisfies the hypotheses he makes on C. Focusing on Tsh^ he posed a provocative 
question, "the generating hypothesis", which asserts that a map between finite CW spectra 
is null homotopic if it induces the zero homomorphism of homotopy groups. Despite much 
work, it is still unknown whether or not this is true. 

Boardman next constructs a category S = Tsw of CW spectra by a categorical ad
junction of colimits construction. Thus his spectra are the coUmits of directed systems of 
inclusions of finite CW spectra. The homotopy category Sh is the desired stable homotopy 
category. The most interesting feature of his work is his construction of smash products. 
He constructs a category S(U) similarly for each countably infinite dimensional real inner 
product space, and he constructs an external smash product A : S{U) x S{V) -^ S{U © V). 
He shows that any linear isometry f \U -^ U' induces a functor /* '.S(U) -^ S{U'), 
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and he proves that, up to canonical isomorphism, the induced functor Sh(U) -^ Sh{U') 
on homotopy categories is independent of the choice of / . An internal smash prod
uct on 5 = <S(R^) is a composite /* v A: 5 x 5 -> <S for any linear isometry 
/ : R ^ X W^ -> E ^ . Any two such internal smash products become canonically equiva
lent after passage to homotopy, and this allows the proof that Sh is symmetric monoidal. 

This was very much the hare's approach and it has greatly influenced later hares (such 
as myself), who have needed vastly more precise properties of a good category of spectra 
than would have seemed possible in 1966. In particular, for much current work of interest, 
it is essential to have an underlying symmetric monoidal category of spectra, before pas
sage to homotopy categories. However, perhaps for the benefit of the tortoises, Boardman 
[Bo69] gave a precise comparison between his construction of Sh and earlier approaches, 
and he explained how to modify the approaches of Adams and Puppe to obtain a category 
equivalent to Sh. He wrote "the complication will show why we do not adopt this as defini
tion". Nevertheless, Adams soon after gave an exposition along these lines [Ad71b] which, 
in the absence of a published version of Boardman's category, has served until recently as 
a stopgap reference. 

In other parts of our story, definitive foundations were in place by 1966. The axioms for 
generalized homology and cohomology theories and the understanding of the representa
tion of homology and cohomology theories were firmly established. So were the basics of 
AT-theory and cobordism and much of the basic machinery of computation. Of course, the 
calculations themselves, once in place, are fixed forever: the answers will not change. The 
development of the stable category seems now also to have reached such a level of full 
understanding, and I ask the reader's indulgence in offering the monograph [EKMM97] as 
evidence. 

My arbitrary stopping point of 1966 has the effect both of allowing me to document the 
invention of a marvelous new area of mathematics and of throwing into high relief how 
very much has been done since. There are truly vast areas of stable algebraic topology 
that were barely visible over the horizon or well beneath it in 1966. But that is a story for 
another occasion. 
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[Nov65] S.P. Novikov, Â v̂v ideas in algebraic topology K-theory and its applications, Uspekhi Mat. Nauk 
20 no. 3(123) (1965), 41-66; English translation: Russian Math. Surveys 20(3) (1965), 37-62. 

[Nov67] S.P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, Izv. 
Akad. Nauk SSSR Ser. Mat. 31 (1967), 855-951 (in Russian); English translation: Math. USSR 
-Izv (1967), 827-913. 

[Pa65] R.S. Palais (with contributions by M.F. Atiyah, A. Borel, E.E. Floyd, R.T. Seeley, W. Shih and R. 
Solovay), Seminar on the Atiyah-Singer Index Theorem, Ann. of Math. Stud. vol. 57, Princeton 
Univ. Press, Princeton, NJ (1965). 

[Pe56a] P.P. Peterson, Some results on cohomotopy groups, Amer. J. Math. 78 (1956), 243-258. 
[Pe56b] P.P. Peterson, Generalized cohomotopy groups, Amer. J. Math. 78 (1956), 259-281. 
[Pe57] P.P. Peterson, Functional cohomology operations. Trans. Amer. Math. Soc. 86 (1957), 197-211. 
[PS59] P.P. Peterson and N. Stein, Secondary cohomology operations', two formulas, Amer. J. Math. 81 

(1959), 281-305. 
[Pon42] L.S. Pontryagin, Characteristic cycles on manifolds, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 

(1942), 34-47. 
[Pon47] L.S. Pontryagin, Characteristic cycles on differentiable manifolds. Mat. Sb. N.S. 21 (63) (1947), 

233-284; EngHsh translation: Amer. Math. Soc. Translation 32 (1950). 
[Pon50] L.S. Pontryagin, Homotopy classification of the mappings of an {n + 2)-dimensional sphere on 

an n-dimensional one, Dokl. Akad. Nauk SSSR (N.S.) 70 (1950), 957-959. 
[Pos51a] M.M. Postnikov, Determination of the homology groups of a space by means of the homotopy 

invariants, Dokl. Akad. Nauk SSSR (N.S.) 76 (1951), 359-362. 
[Pos51b] M.M. Postnikov, On the homotopy type ofpolyhedra, Dokl. Akad. Nauk SSSR (N.S.) 76 (1951), 

789-791. 
[Pos51c] M.M. Postnikov, On the classification of continuous mappings, Dokl. Akad. Nauk SSSR (N.S.) 

79 (1951), 573-576. 
[Pu58] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen I, Math. Z. 69 (1958), 299-344. 
[Pu621 D. Puppe, On the formal structure of stable homotopy theoiy. Colloquium on Algebraic Topology, 

Aarhus Universitet (1962), 65-71. 
[Pu67] D. Puppe, Stabile Homotopietheorie I, Math. Ann. 169 (1967), 243-274. 
[Qu67] D.G. Quillen, Homotopical Algebra, Lecture Notes in Math. vol. 43, Springer, Berlin (1967). 
[Qu69] D.G. Quillen, On the formal group laws ofunoriented and complex cobordism theory. Bull. Amer. 

Math. Soc. 75 (1969), 1293-1298. 
[Ro51] V.A. Rohlin, Classification of mappings of S''^^ onto S'\ Dokl. Akad. Nauk SSSR 81 (1951), 

19-22 (in Russian). 
[Ro52] V.A. Rohlin, New results in the theory of4-manifolds, Dokl. Akad. Nauk SSSR 89 (1952), 221-

224 (in Russian). 
[Ro53] V.A. Rohlin, Intrinsic homologies, Dokl. Akad. Nauk SSSR 89 (1953), 789-792 (in Russian). 
[Ro58] V.A. Rohhn, Internal homologies, Dokl. Akad. Nauk SSSR 119 (1958), 876-879 (in Russian). 
[Seg68] G.B. Segal, Equivariant K-theory, Pub. IHES 34 (1968), 129-151. 
[Se51] J.-P. Serre, Homologie singuliere des espaces fibres. Applications, Ann. of Math. (2) 54 (1951), 

425-505. 



Stable algebraic topology, 1945-1966 721 

[Se53a] J.-P. Serre, Groupes d'homotopie et classes de groupes Abeliens, Ann. of Math. (2) (1953), 258-
294. 

[Se53b] J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 

27(1953), 198-232. 
[Sm62] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. 
[SY61] N. Shimada and T. Yamanoshita, On triviality of the mod p Hopf invariant, Japan J. Math. 31 

(1961), 1-25. 
[Sm38] RA. Smith, Transformations of finite period, Ann. of Math. 39 (1938), 127-164. 
[Sp50] E. Spanier, Borsuk's cohomotopy groups, Ann. of Math. (2) 51 (1950), 203-245. 
[Sp56] E. Spanier, Duality and S-theory, Bull. Amer. Math. Soc. 62 (1956), 194-203. 
[Sp58] E. Spanier, Duality and the suspension category, Sympos. Internacional de Topologica Alge-

braica, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City (1958), 259-272. 
[Sp59a] E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math. (2) 69 (1959), 

142-198; erratum, 733. 
[Sp59b] E. Spanier, Function spaces and duality, Ann. of Math. (2) 70 (1959), 338-378. 
[SW53] E. Spanier and J.H.C. Whitehead, A first approximation to homotopy theory, Proc. Nat. Acad. Sci. 

USA 39 (1953), 655-660. 
[SW55] E. Spanier and J.H.C. Whitehead, Duality in homotopy theory, Mathematika 2 (1955), 56-80. 
[SW57] E. Spanier and J.H.C. Whitehead, The theory of carriers and S-theory. Algebraic geometry and 

topology, A Sympos. in Honor of S. Lefschetz, Princeton Univ. Press, Princeton, NJ (1957), 330-
360. 

[SW58] E. Spanier and J.H.C. Whitehead, Duality in relative homotopy theoiy, Ann. of Math. (2) 67 
(1958), 203-238. 

[Sta63a] J.D. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 108 (1963), 275-
292. 

[Sta63b] J.D. Stasheff, Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc. 108 (1963), 293-
312. 

[Sta63c] J.D. Stasheff, A classification theorem for fibre spaces. Topology 2 (1963), 239-246. 
[St47] N.E. Steenrod, Products of cycles and extensions of mappings, Ann. of Math. 48 (1947), 290-320. 
[St49] N.E. Steenrod, Cohomology invariants of mappings, Ann. of Math. (2) 50 (1949), 954-988. 
[St51] N.E. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, NJ (1951). 
[St52] N.E. Steenrod, Reduced powers of cohomology classes, Ann. of Math. 56 (1952), 47-67. 
[St53a] N.E. Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. 

Acad. Sci. 39 (1953), 213-217. 
[St53b] N.E. Steenrod, Cyclic reduced powers of cohomology classes, Proc. Nat. Acad. Sci. 39 (1953), 

217-223. 
[St57] N.E. Steenrod, Cohomology operations derived from the symmetric group. Comment. Math. Helv. 

31(1957), 195-218. 
[SE62] N.E. Steenrod, Cohomology Operations, Lectures by N.E. Steenrod written and revised by D.B.A. 

Epstein, Ann. of Math. Stud. vol. 50, Princeton Univ. Press, Princeton, NJ (1962). 
[StMR] N.E. Steenrod, Reviews of Papers in Algebraic and Differential Topology, Topological Groups, 

and Homological Algebra, Amer. Math. Soc, Providence, RI (1968). 
[ST57] N.E. Steenrod and E. Thomas, Cohomology operations derived from cyclic groups, Comment. 

Math. Helv. 32 (1957), 129-152. 
[Sto63] R.E. Stong, Determination of H*iBO{k,... ,oo),Z2) and H* (BUik,... ,oo),Z2), Trans. 

Amer. Math. Soc. 107 (1963), 526-544. 
[Sto65] R.E. Stong, Relations among characteristic numbers I, Topology 4 (1965), 267-281. 
[Sto66a] R.E. Stong, Relations among characteristic numbers II, Topology 5 (1966), 133-148. 
[Sto66b] R.E. Stong, On the squares of oriented manifolds, Proc. Amer. Math. Soc. 17 (1966), 706-708. 
[Sto68] R.E. Stong, Notes on Cobordism Theory, Princeton Univ. Press, Princeton, NJ (1968). 
[Su57a] M. Sugawara, On a condition that a space is an H-space, Math. J. Okayama Univ. 6 (1957), 

109-129. 
[Su57b] M. Sugawara, A condition that a space is group-like. Math. J. Okayama Univ. 7 (1957), 123-149. 
[Su60] M. Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Colloq. Sci. 

Univ. Kyoto Ser. A Math. 33 (1960/1961), 257-269. 



722 J.P. May 

[SuinO] D. Sullivan, Geometric topology. Part /. Localization, periodicity, and Galois symmetry. 
Mimeographed notes (1970). 

[Sw60a] R.G. Swan, A new method in fixed point theory, Comment. Math. Helv. 34 (1960), 1-16. 
[Sw60b] R.G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552-

578. 
[Sw60c] R.G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267-291. 
[Sw62] R.G. Swan, Vector bundles and projective modules. Trans. Amer. Math. Soc. 105 (1962), 264-

277. 
[Swi75] R.M. Switzer, Algebraic Topology - Homotopy and Homology, Springer, Berlin (1975). 
[Thom50a] R. Thorn, Classes caracteristiques et i-carres, C. R. Acad. Sci. Paris 230 (1950), 427-429. 
[Thom50b] R. Thorn, Varietes plongees et i-carres, C. R. Acad. Sci. Paris 230 (1950), 507-508. 
[Thom52] R. Thom, Espaces fibres en spheres et carres de Steenrod, Ann. Sci. Ecole Norm. Sup. (3) 69 

(1952), 109-182. 
[Thom53a] R. Thom, Sous-varietes et classes d'homologie des varietes dijferentiables. Le theoreme general, 

C. R. Acad. Sci. Paris 236 (1953), 453-^54 and 573-575. 
[Thom53b] R. Thom, Sur un probleme de Steenrod. Resultats et applications, C. R. Acad. Sci. Paris 236 

(1953), 1128-1130. 
[Thom53c] R. Thom, Varietes differentiate cobordantes, C. R. Acad. Sci. Paris 236 (1953), 1733-1735. 
[Thom54] R. Thom, Quelques proprietes globales des varietes differentiables. Comment. Math. Helv. 28 

(1954), 17-86. 
[To56] H. Toda, On the double suspension E'^, J. Inst. Polytech. Osaka City Univ. Sen A. 7 (1956), 

103-145. 
[To58a] H. Toda, p-primary components of homotopy groups /, Mem. Colloq. Sci. Univ. Kyoto Ser. A 

Math. 31 (1958), 129-142. 
[To58b] H. Toda, p-primaiy components of homotopy groups II, Mem. Colloq. Sci. Univ. Kyoto Ser. A 

Math. 31 (1958), 143-160. 
[To58c] H. Toda, p-primary components of homotopy groups III, Mem. Colloq. Sci. Univ. Kyoto Ser. A 

Math. 31 (1958), 191-210. 
[To59] H. Toda, p-primaiy components of homotopy groups IV, Mem. Colloq. Sci. Univ. Kyoto Ser. A 

Math. 32 (1959), 297-332. 
[To62a] H. Toda, A topological proof of theorems ofBott and Borel-Hirzebruch for homotopy groups of 

unitary groups, Mem. Colloq. Sci. Univ. Kyoto Ser. A Math. 32 (1962), 103-119. 
[To62b] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud. vol. 49, 

Princeton Univ. Press, Princeton, NJ (1962). 
[To63] H. Toda, A survey of homotopy theory, Sugaku 15 (1963/1964), 141-155 (in Japanese); English 

translation: Adv. in Math. 10 (1973), 417^55. 
[Ver71] J.L. Verdier, Categories Derivees, Lecture Notes in Math. vol. 569, Springer, Berlin (1971). 
[Vogt70] R. Vogt, Boardman 's Stable Homotopy Category, Lecture Notes Series vol. 71, Aarhus Universitet 

(1970). 
[Wall60] C.T.C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311. 
[Wall62] C.T.C. Wall, A characterization of simple modules over the Steenrod algebra mod 2, Topology 1 

(1962), 249-254. 
[Wall65] C.T.C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69. 
[Wall66] C.T.C. Wall, Addendum to a paper of Conner and Floyd, Proc. Cambridge Phil. Soc. 62 (1966), 

171-175. 
[We] C.A. Weibel, History of homological algebra. History of Topology, I.M. James, ed., Elsevier, 

Amsterdam (1999), 797-835. 
[Wh42] G.W. Whitehead, On the homotopy groups of spheres and rotation groups, Ann. of Math. (2) 43 

(1942), 634-640. 
[Wh50] G.W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. (2) 51 (1950), 192-237. 
[Wh53] G.W. Whitehead, On the Freudenthal theorems, Ann. of Math. (2) 57 (1953), 209-228. 
[Wh56] G.W. Whitehead, Homotopy groups of joins and unions. Trans. Amer. Math. Soc. 83 (1956), 

55-69. 
[Wh60] G.W. Whitehead, Homology theories and duality, Proc. Nat. Acad. Sci. USA 46 (1960), 554-556. 
[Wh62a] G.W. Whitehead, Generalized homology theories. Trans. Amer. Math. Soc. 102 (1962), 227-283. 



Stable algebraic topology, 1945-1966 723 

[Wh62b] G.W. Whitehead, Some aspects of stable homotopy theory, Proc. Internal. Congress of Mathemati
cians, Stockholm (1962), Inst. Mittag-Leffler, Djursholm (1963), 502-506; see also Colloquium 
on Algebraic Topology, Aarhus Universitet (1962), 94-101. 

[Whl] G.W. Whitehead, The work of Norman E. Steenrod in algebraic topology. An appreciation. Lec
ture Notes in Math. vol. 168, Springer, Berlin (1970), 1-10. 

[Wh2] G.W. Whitehead, Fifty years of homotopy theory. Bull. Amer. Math. Soc. 8 (1983), 1-29. 
[Whi48] J.H.C. Whitehead, Combinatorial homotopy. Bull. Amer. Math. Soc. 55 (1948), 213-245, 453-

496. 
[Whi56] J.H.C. Whitehead, Duality in topology, J. London Math. Soc. 31 (1956), 134-148. 
[Whit41] H. Whitney, On the topology of differentiable manifolds. Lectures in Topology, Univ. of Michigan 

Press (1941), 101-141. 
[Wi66] R.E. Williamson, Jr., Cobordism of combinatorial manifolds, Ann. of Math. (2) (1966), 1-33. 
[Wood65] R. Wood, Banach algebras and Bott periodicity. Topology 4 (1965/1966), 371-389. 
[Wu50a] W.-T. Wu, Classes caracteristiques et i-carres d'une variete, C. R. Acad. Sci. Paris 230 (1950), 

508-511. 
[Wu50b] W.-T. Wu, Les i-carres dans une variete Grassmannienne, C. R. Acad. Sci, Paris 230 (1950), 

918-920. 
[Wu53] W.-T. Wu, On squares in Grassmannian manifolds. Acta Sci. Sinica 2 (1953), 91-115. 



.
This Page Intentionally Left Blank



CHAPTER 25 

A History of Duality in Algebraic Topology 

James C. Becker and Daniel Henry Gottlieb 
Department of Mathematics, Purdue University, West Lafayette, IN 47907-1968, USA 

E-mails: becker@math.purdue. edu, gottlieb @math.purdue. edu 

1. Introduction 

Duality in the general course of human affairs seems to be a juxtaposition of complemen
tary or opposite concepts. This frequently leads to poetical sounding uses of language, both 
in the common language and in the precision of mathematical theorems. Thus the duality of 
Projective Geometry: Two points determine a line; two lines determine a point. Gergonne 
first introduced the word duahty in mathematics in 1826. He defined it for Projective Ge
ometry. By the time of Poincare's note in the Comptes Rendus of 1893, duality was very 
much in vogue. 

There are many dualities in algebraic topology. An informal survey of some topologists 
has revealed the following names of duality in current use. There are Poincare, Alexan
der, Lefschetz, Pontrjagin, Spanier-Whitehead, Hodge, Vogell, Ranici, Whitney, Serre, 
Eckmann-Hilton, Atiyah, Brown-Comenetz: These are a few whose names reflect those 
of their discoverers. There are the dual categories, the duality between homology and co-
homology and that between homotopy and cohomotopy. There is a duality between cup 
products and cap products, and between suspension and looping. 

The remarkable things are: First, a great many of these seemingly separated dualities 
are intimately related; and second, those workers who tried to extend or generalize various 
of these dualities were led to invent widely important notions such as infinite simplicial 
complexes or spectra; or they discovered remarkable new relationships among important 
classical concepts. Such a story demands a point of view. Fortunately, one has been pro
vided by A. Dold and D. Puppe with their concept of strong duality. So we will jump 
forward to 1980 and explain their work. Then the remainder of this work will describe in 
chronographical order the theorems and discoveries which led from Poincare's first men
tion of Poincare duality up to 1980 and the unifying concept of strong duality. 

In Section 2, we cover very briefly Eckmann-Hilton duality and then describe Dold 
and Puppe's approach, which illuminates the main subject of our paper, the develop
ment and unification of Poincare, Alexander, Lefschetz, Spanier-Whitehead, homology-
cohomology duality. This material is not as widely known as it should be, so we must give 
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a somewhat technical sketch; but one indicator of the success of their point of view is that 
we now have a name for all those interrelated duahties: namely, strong duality. 

In Section 3 we take up the early days up to 1952. We give a modern statement of 
the Poincare-Alexander-Lefschetz duality theorem; and then describe the origins of all 
the elements of the theorem. Our main sources are J.P. Dieudonne [1989] and WilHam 
Massey's article in this volume. 

Section 4 deals with Spanier-Whitehead duahty; Section 5 with Atiyah duahty, which 
clarifies 5-duality for manifolds; and Section 6 outlines the story of how Poincare-
Alexander duahty was extended to generalized cohomology and homology theories by 
means of iS-duality. 

In Section 7 we take up Umkehr maps. Here the Eckmann-Hilton type duahty of re
versing the direction of maps interfaces with the strong dualities arising from compact
ness. These Umkehr homomorphisms played a decisive role in the generalization of the 
Riemann-Roch theorem and the invention of AT-theory. A special class of Umkehr maps, 
the Transfers of Section 8, apparently at first involving only reversing direction in the 
Eckmann-Hilton manner (and actually first discovered by Eckmann), enjoyed increasing 
generalization and unifications by means of various duality concepts until at last they in
spired Dold and Puppe's categorical picture of strong duality. 

With Dold and Puppe we must break off our narrative, as we are too close to recent times. 
We deeply regret we had neither the time, energy, knowledge, or space to do justice to the 
many results inspired by or reflecting upon duality. We especially regret the omissions 
of Eckmann-Hilton duality and Poincare Duality spaces and surgery. See [Hilton, 1980], 
[Wall, 1970], respectively. 

2. Categorical points of view 

There are two major groupings of dualities in algebraic topology: Strong duality and 
Eckmann-Hilton duality. Strong duality was first employed by Poincare [1893] in a note 
in which "Poincare duahty" was used without proof or formal statement. The various in
stances of strong duality (Poincare, Lefschetz, Alexander, Spanier-Whitehead, Pontrjagin, 
cohomology-homology), seemingly quite different at first, are intimately related in a cate
gorical way which was finally made clear only in 1980. Strong duality depends on finite-
ness and compactness. On the other hand, Eckmann-Hilton duality is a loose collection 
of useful dualities which arose from categorical points of view first put forward by Beno 
Eckmann and P.J. Hilton in [Eckmann, 1956, 1958]. 

A very good description of how this duality works, and some eyewitness history is given 
in [Hilton, 1980]. Instead of being a collection of theorems, Eckmann-Hilton duality is a 
principle for discovering interesting concepts, theorems, and questions. It is based on the 
dual category, that is, on the duality between the target and source of a morphism; and also 
on the duality between functors and their adjoints. 

In fact it is a method wherein interesting definitions or theorems are given a description 
in terms of a diagram of maps, or in terms of functors. Then there is a dual way to ex
press the diagram, or perhaps several different dual ways. These lead to new definitions or 
conjectures. Some, not all, of these definitions turn out to be very fruitful and some of the 
conjectures turn out to be important theorems. 
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A very important example of this duality is the notion of cofibration with its cofiber, C/, 
written 

A-^ B ~U Cf 

which is dual to to the notion of fibration with its fibre F, written 

F ^ E -^ B. 

The word cofibration, and thus the point of view, probably first appeared in [Eckmann, 
1958]. (But see [Hilton, 1980], p. 163 for a rival candidate.) Puppe [1958], obtained a 
sequence of cofibrations in which the third space is the cofiber of the previous map 

A-l^ B -^ Cf^ SA-^ SB-^ SCf-^ "' . 

This is known as the Puppe sequence. 
The dual sequence for fibrations, in which every third space is the fiber of the previous 

fibration, 

is also frequently called the Puppe sequence, although it was first published by Yasutoshi 
Nomura [I960]. 

Eckmann-Hilton duality was conceived as a method based on a categorical point of 
view in the early 1950's. The challenge was to use the point of view to generate interesting 
results. 

The interrelated dualities of Poincare, Alexander, Spanier-Whitehead, homology-
cohomology, developed haphazardly from 1893 into the 1960's. They formed a collection 
of quite interesting results which were somehow intimately related. The challenge was to 
find a coherent categorical description of this phenomenon. It took a long time coming, 
perhaps because the challenge was not articulated. Then in a paper published in an obscure 
place with sketchy proofs, Albrecht Dold and Dieter Puppe [1980] laid down a framework 
for viewing duality. Even now, 17 years later, the name strong duality given to this type of 
duality, is not as current as it should be. 

Dold and Puppe conceived their categorical description of strong duality by organiz
ing a seminar to study a much more concrete problem: How exactly are the Becker-
Gottlieb transfer and the Dold fixed point transfer related to each other? Using notation 
which invokes the duality of a number and its reciprocal, they define duahty in a symmet
ric monoidal category C with multiplication (g) and a neutral object I. One has, therefore, 
natural equivalences 

A<S)(B<S)C) = (A (g) 5) (g) C, 
I ^A = A = A(S)L 

y :A(8)5 = B <S> A. 
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(Here y : A ® B -^ 5 ( 8 ) A i s a natural equivalence, whose choice is really part of the 
definition of the monoidal category C. The explicit noting of y is an important novel feature 
of Dold and Puppe's point of view.) 

An object DA is the weak dual of A if there is a natural bijection with respect to objects 
X of the sets of morphisms 

C ( X 0 A , / ) = C ( X , D A ) . 

We get a definite morphism £ : ZM 0 A -> / called the evaluation. Now from this another 
morphism 5 : A -> DDA can be constructed. If 8 is an isomorphism (so the dual of the 
dual is the original object), then DA is called reflexive. If in addition DA 0 A is canonically 
self dual to itself, then DA is called a strong dual of A. Strong duals come equipped with 
coevaluations r]\I^^A^ DA. 

Now one important example is the category of /^-modules for a commutative ring R. 
The unit / is R, and DM = Hom/?(M, R) is the weak dual. It is clear that every finitely 
generated projective module is strongly duahzable. 

For stable homotopy, strong duahty is Spanier-Whitehead duality, and for the stable 
category of spaces over a fixed base B, strong duals can be introduced in a fibrewise way. 

Now the other half of Dold and Puppe's framework is to inquire how duality is preserved 
under functors. A monoidal functor T :C -^ C' between two monoidal categories is a 
functor together with transformations TA0TB -^ T(A<S^B). The dual D is an example of 
a contravariant monoidal functor. The homology functor from chain complexes to graded 
groups gives rise to a monoidal functor. 

Unfortunately, T(A)<S^T(B) -> T(A<S)B) is not always an isomorphism, as the Kiinneth 
theorem shows. So we must say that A is T-flat if A is strongly duahzable and T{A) is 
strongly duahzable to T{DA). Subtleties arise here because sometimes we have to examine 
whether A is T-flat on an object-by-object basis. 

Now the point of view given by these considerations is that strong duality takes place in 
various categories, and the duality theorems are expressed in terms of functors which carry 
strong duality from the objects of the source category to the objects of the target category. 
Thus the classical way to think about Poincare duality, for example, is that it is an isomor
phism between homology and cohomology of a closed manifold M, whereas the Dold-
Puppe point of view is that a closed manifold and its Spanier-Whitehead dual are carried 
from the stable homotopy category by the homology functors to self dual graded rings, 
which means in this case the isomorphism between homology and cohomology comes 
from the Thom isomorphism and Atiyah duality. 

Now strong duality seems to depend upon finiteness or compactness properties. In finite 
situations, one can define a notion of rank or trace. A particular triumph of the Dold-Puppe 
point of view is the notion of the trace of an endomorphism / : A -> A of a strongly 
duahzable object. 

7? y id® f £ 

af:I-^ A^DA-^DA^A ^ DA (g) A - ^ /. 

In the category of /^-modules erf (I) is the usual trace. For chain complexes, 0-/(1) is 
the Lefschetz number, and for graded abelian /^-modules, it is the Lefschetz number. Now 
if r is a monoidal functor and A is a T-flat object, then T{af) = a(Tf). For T the 
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homology function, we get Hopf s result that the Lefschetz number of the chain complex 
is the Lefschetz number for homology. Some formal properties of trace are 

G{Df) = of (trace of / = trace of / transpose), 
a(f o g) = a(g o f) (trace preserved by commutation). 

Using these results, Dold and Puppe can prove the Lefschetz fixed point theorem. 

3. Poincare-Alexander-Lefschetz duality 

In the text books of Spanier [1966], Dold [1972], Massey [1980], and Bredon [1993] we 
see, essentially, the final forms of the Poincare-Alexander-Lefschetz duality theorem. 

We choose the description of G. Bredon as our text, and then we shall detail the process 
by which the ideas necessary for the statement occurred, and the many important byprod
ucts of the effort to understand duality. 

THEOREM 3. L Let M^ be an n-manifold oriented by i^, and let K D L be compact sub
sets of M. Then the cap product 

r\^ : HP{K, L; G) -^ Hn-p{M -L,M- K; G) 

is an isomorphism, and it gives rise to an exact ladder relating the cohomology sequence 
of the pair (K, L) to the homology sequence of the pair (M — L, M — K). 

Henri Poincare [1893] first mentions Poincare duality in a note in Comptes Rendus. The 
goal was to "prove" that an odd-dimensional closed oriented manifold has zero Euler-
Poincare number. Poincare duality, expressed in terms of Betti numbers, is mentioned as if 
everyone should know it. The earlier note, [Poincare, 1892], which is considered the first 
of Poincare's papers on topology does not seem to mention duality. See [Bollinger, 1972, 
Dieudonne, 1989, Henn and Puppe, 1990]. 

In this note, Poincare first mentions what we now call Poincare duality. In the note, 
Poincare "shows" that a closed odd dimensional oriented manifold has Euler-Poincare 
number equal to zero. He says, "It is known" that the alternating sum of the Betti numbers 
is the same as the generalized Euler characteristic. On the other hand, he merely states the 
fact that the Betti numbers in complementary dimensions are equal, which is his version 
of Poincare duahty, with the same fanfare which one uses to state 1 + 1 = 2, as if it were 
widely known. But Poincare's argument is exactly what one would give today to a student 
knowledgeable about the Euler characteristic and Poincare duahty. 

When Poincare next refers to his duality, it is in his famous paper Analysis Situs, 
[Poincare, 1895]. There he states: "ce theoreme n'a, je crois, jamais ete enonce; il etait 
cependant connu de Plusieurs Personnes qui en ont meme fait des applications", [Bollinger, 
1972], see p. 124. 

Poincare elected not to point out any of the several people who knew of it and have even 
made appHcations with it, including himself and his note [Poincare, 1893]. So it is not 
surprising that the Editors of Poincare's Oeuvres misplaced the note in Volume 11, instead 
of placing it in Volume 6 right before Analysis Situs; and that various scholars dealing 
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with Poincare duality may have, for this reason, omitted mentioning it in their works. 
According to [Bollinger, 1972], Poincare concludes Analysis Situs with the very theorem 
he announced in his 1893 note: odd-dimensional manifolds have zero Euler characteristics. 
In fact he gives two different proofs of it. 

In Analysis Situs, [Poincare, 1895], "Poincare endeavored to prove his central theorem 
on homology, the famous duality theorem...", Dieudonne [1989], formulated in terms of 
Betti numbers. To do this, he invented the concept of intersection numbers, which were 
finally made precise in the work of Lefschetz [1926] and of De Rham [1931]. 

Now P. Heergard, in his dissertation in Danish in 1898, came up with a counterexample 
to Poincare duahty: A three-dimensional manifold whose Betti numbers were b\ =2 and 
b2 = \\ 

When Poincare examined Heergard's paper, he found that his notion of Betti numbers 
was not the same as that of Betti's, contrary to his behef. And worse, his "proof" worked 
just as well with this contradictory version. So, Poincare came up with a new proof in two 
complements to Analysis Situs in 1899 and 1900 (see [Poincare, 1895], pp. 290-390). 

In this proof, Poincare assumes his manifold is triangulated, finds an algorithm for cal
culating the Betti numbers, defines barycentric subdivision of the triangulation, shows that 
the Betti numbers do not change under subdivision, and defines the dual triangulation. He 
shows the dual triangulations have complementary Betti numbers, since the incidence ma
trices he uses to compute the Betti numbers are transposes of the incidence matrices in the 
complementary dimensions. 

The incidence matrix algorithm also gave rise to torsion coefficients, which Poincare in
troduced. Poincare extended the duality theorem to the torsion coefficients. He did not use 
the fact that invariant factors of a transposed matrix are the same as those of the original 
matrix. Instead he showed the torsion coefficients were related by inventing the construc
tion of the join. 

Thus, at 1900 we have Theorem 3.1 for the case K = M and L = 0 where M is a closed 
manifold (but with a finite triangulation structure attached), no homology groups and no 
cohomology. The concept of compactness was not made explicit until 1906 by Frechet. 
Frechet also introduced the abstract notion of metric space. In 1914, Hausdorff gave four 
axioms for neighborhoods, so topological spaces became a well-defined concept, and the 
standards of rigor became much higher in topology. 

Another thread of duality begins with the duality of inside vs. outside. The intuitively 
obvious but difficult Jordan curve theorem, that a closed curve in a plane divides the plane 
into two parts was generahzed by L.E.J. Brouwer [1976] (pp. 489-494) for subsets of R" 
homeomorphic to 5""^ 

J.W. Alexander [1922] attacked the Jordan-Brouwer separation theorem. He gave a new 
proof and generaUzed the result to what we call Alexander duality: d\mHp{X\ Z2) = 
dimHn-p-\{S^ — X\ Z2) where X is a subcomplex of 5". In this work, Alexander in
troduced coefficient groups Z2, and considered the homology of nonfinite complexes. This 
paper became the starting point of investigations of homology for more general spaces than 
merely finite complexes or open subsets of R". On the other hand, it led Lefschetz [ 1926] to 
introduce the idea of relative homology, that is the homology of K mod L, which he wrote 
as Hp{K, L) in his book [Lefschetz, 1930]. If K and A' - L are orientable combinatorial 
manifolds, Lefschetz proved that bp{K*) = bn-p(K, L) where ^ * is the "complement" 
of L in Â  defined by dual cells which do not intersect L. Also he had the torsion coefficient 
relations, for indeed he showed the relevant incidence matrices were transposes of one an-
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Other. By an argument which essentially is part of the exact sequence of the pair (5", L), 
Lefschetz proved Alexander duality. 

Two other events occurred during the 1920's which improved the duahty theorem. 
The first event was the proof of the invariance of homology for different triangulations. 
J.W. Alexander [1915] and [1926] showed that homology was independent of the trian-
gulation. But his first proof had difficulties, so a satisfactory proof must be dated around 
1926. Thus Poincare duahty held for combinatorial manifolds, instead of merely mani
folds with a specific triangulation. The question of which manifolds can be triangulated 
then becomes important in order to assess the domain of applicability of Poincare duality. 
S. Cairns [1930] showed that C^ manifolds were triangulable. Much later, it was discov
ered that there are some topological manifolds which cannot be triangulated. 

The second event was the description of homology in terms of group theory. The ho
mology group H^{X) was the cycles modulo the boundaries. This was factored into the 
free part, called the Betti group, and the torsion group. Thus /// = Ft 0 T/, and Poincare 
duality was expressed as F/ = F„_/ and Ti = Tn-i-\. The Betti group persisted into the 
1950's as a commonly used concept. We now know that the Betti groups were not really 
natural, that is the splitting of homology into free and torsion parts is not functorial, and the 
duahty with cohomology demands homology groups instead of Betti and torsion groups. 
But in the absence of the concept of cohomology, there is no better way to express Poincare 
duality than by means of isomorphisms of suitable Betti groups and torsion groups. 

One can see this change clearly by comparing the two books [Lefschetz, 1930] and 
[Lefschetz, 1942]. In "Topology", [Lefschetz, 1930], the absolute Poincare duahty theorem 
appears on p. 140 stated solely in terms of Betti numbers and torsion coefficients. On 
p. 203 of "Algebraic Topology", [Lefschetz, 1942], the theorem is headlined as the "Duality 
Theorem of Poincare" and is stated in terms of Betti groups and torsion groups. Above it, 
on the same page is the untitled result that cohomology is isomorphic to homology in 
complementary dimensions. 

In the 1930's, seemingly different kinds of duahties were studied which led to coho
mology. In the first section of his history of cohomology in this volume, William Massey 
discusses "The struggle to find more general and natural statements of the duality theorems 
of Poincare and Alexander" [Massey, 1999]. 

We will report very briefly on this story and, since Massey has told it so well, we will 
only mention the main points. We particularly want to note that Massey argues that Pon-
trjagin developed his duality between a discrete abehan group G and its compact group 
of continuous characters G to study Poincare and Alexander duality, Pontrjagin [1934]. 
Here Poincare duality can be stated: Hk{M\ G) is Pontrjagin dual to Hn-ki^\ G). And 
Alexander duality can be stated: Hk(X; G) is Pontrjagin dual to Hn-k-\{S^ — X; G). 

At the Moscow conference of 1935 both Kolmogoroff and Alexander announced the 
definition of cohomology, which they had discovered independently of one another. Both 
authors quickly published papers in which they both point out that for any finite complex 
K and any compact abehan group G, the homology group Hr{K\ G) and the cohomol
ogy group H^{K\ G) are Pontrjagin dual to one another. Kolmogoroff explicitly notes the 
duality theorems in terms of cohomology being isomorphic to homology. 

Alexander and Kolmogoroff suggested the possibihty of a product structure in coho
mology. E. Cech [1936] and H. Whitney [1937] and in [1938] provided the correct details. 
Cech made precise the cup product and proved its basic properties. He also defined the 
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cap product. Using the cap product, Cech proves the Poincare duahty theorem for closed, 
oriented, combinatorial manifolds. 

The fact that the cap product with the fundamental class of a manifold exphcitly gives the 
duality isomorphism adds concreteness to Poincare duahty and has played a very important 
role in apphcations. For example, on the chain level, the cap product with the fundamental 
cycle gives a chain homotopy equivalence. This plays an important role in the study of 
Poincare spaces. Or again, W.V.D. Hodge [1941] defined the Hodge duahty between a p 
form a and em n — p form *Qf on R'̂ . In modern terms, de Rham cohomology, defined 
by the differential forms on a smooth oriented closed manifold M is isomorphic to real 
cohomology, and the Hodge dual * can be regarded as the Poincare duahty isomorphism. 
Hodge duahty shows up in the modern formulation of Maxwell's equations: 

dF = 0, *J*F = j . 

H. Whitney covered even more ground than Cech. He defined the induced homomor-
phism / * of a map / and gave its relations with U and fi, introducing these symbols and 
the names cup and cap product. 

The Cech cohomology which appears on the left in our Theorem 3.1 was first defined 
by Steenrod [1936] in his thesis. It was, of course, the dual of Cech homology, and it 
was defined only for compact spaces. Dowker [1937] pubhshed a brief announcement for 
Cech cohomology defined for arbitrary spaces. Meanwhile, Alexander-Spanier homology 
was being developed by Alexander and Kolmogoroff and was modified and perfected by 
Spanier [1948]. Then Hurewicz, Dugundji and Dowker [1948] showed that Cech cohomol
ogy and Alexander-Spanier cohomology were equivalent for a general class of spaces. 

The history of singular homology theory actually begins way back in 1915 with Alexan
der [1915] in his first attempt to prove the topological invariance of topology. There were 
several attempts to implement the idea. But it was not until Eilenberg [1944] gave the 
correct definition that singular homology theory was satisfactorily defined. 

Both singular homology and Cech-Alexander-Spanier cohomology are valid for pairs 
of topological spaces. So by 1948 we have the homology and cohomology groups used 
in Theorem 3.1. Now the orientation class depends on the fact that H^(M, M — x) ~ 
//*(5'0- In 1947, Henri Cartan realized that Sheaf theory provided a mechanism to localize 
orientation. In the Seminaires Henri Cartan of 1950-1951, he defined the orientation sheaf 
in the context of a generalized cochain complex of sheaves, and with this he could prove 
Poincare and Alexander duality for C^-manifolds (see [Dieudonne, 1989], p. 211). 

The sheaf theory language of the proof was eliminated in mimeographed notes of Mil-
nor in 1964. But there are versions of Poincare and Alexander duality for homology and 
cohomology of sheaves, for local coefficients, for cohomology with compact supports; all 
of which play very important roles in various branches of mathematics besides topology. 

Finally we discuss the book of Eilenberg-Steenrod [1952], which does not mention 
Poincare duality, and yet it sets in motion several ideas which improve the theorem. 
In [Eilenberg and Steenrod, 1945], the axioms for homology and cohomology theory were 
published. The proofs were deferred to the book. With the axioms, we see that for (finite) 
CW complexes at least, the particular versions of homology and cohomology do not really 
matter in the statement of Theorem 3.1. Also, the axioms gave rise in the 1950's to the 
concept of generahzed homology and cohomology, in which duality plays an even more 
important role. 
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It is clear that in their note of [1945], Eilenberg and Steenrod did not have all the de
tails written down, because they stated that Cech homology satisfied the axioms. This is 
false and was rectified in their book. But the fact that Cech homology did not satisfy the 
axioms led to the devaluation of Cech homology, and one does not see it used today in 
algebraic topology. It is ironic that Cech's name is given to a cohomology theory he did 
not define, yet the fact that Cech first realized that the Poincare duality isomorphism could 
be expressed by the cap product has all but been forgotten. 

Eilenberg and Steenrod's book [1952] effected a revolution in mathematical notation. 
Perhaps not since Descartes' La geometric has a book influenced how we write Mathe
matics. One knew they were looking at mathematics before 1600 because of the geometric 
diagrams with vertices and sides labeled by alphabetic letters. La geometric in 1637 gave us 
nearly modern forms of equations, especially the notation of the exponent, i.e. a^. The dia
grams of Eilenberg-Steenrod not only made algebraic topology intelligible, but eventually 
swept out to other parts of mathematics, providing an efficient way to express complex, 
functorial relationships and giving us powerful methods of proofs by means of diagram 
chasing. 

So, at last, we can talk about that quintessential diagram, the exact ladder, in the last 
part of Theorem 3.1, its proof and utility depending upon the five-lemma of Eilenberg-
Steenrod. 

4. Spanier-Whitehead duality 

In 1936, K. Borsuk [1936] showed that under certain conditions the set of homotopy classes 
of maps from a space X to a space Y, denoted by [Z; Y], could be given a natural abehan 
group structure. About a dozen years later E. Spanier [1949] returned to this idea and made 
a thorough investigation of these groups when F is a sphere. He denoted [X; S^] by 7r"(X) 
and called it the n-th cohomotopy group of X. The group is defined when the dimension of 
X is less than 2n — I. Spanier showed that the cohomotopy groups satisfied the Eilenberg-
Steenrod axioms for cohomology to the extent that they could be formulated given that the 
groups are not defined for all n. He then went on to give a group-theoretic formulation of 
Hopf's classification of maps of an ^-complex into S'^ and Steenrod's classification of maps 
of an (n + 1)-complex into S'\ noting in the introduction an apparent "duality" between 
Hopf's theorem for cohomotopy groups and Hurewicz's theorem for homotopy groups. 

In order to bypass the difficulty that [Z; Y] is not always an abelian group, Spanier and 
J.H.C. Whitehead [1953, 1957] defined what they called the suspension category, giving 
birth to what is now called stable homotopy theory. They defined by means of suspension 
the 5-group 

{X;Y}=\im[S^X;S^Y]. 

They generalized Freudenthal's suspension theorem as follows: If Y is (w — 1)-connected, 
the suspension map from [X; Y] to [SX; SY] is bijective if dim(Z) < 2 « - 1 , and surjective 
if dim(X) = 2n — I. Consequently, when the abelian group structure on [X; Y] is defined, 
the natural inclusion from [X; Y] to {X; Y] is an isomorphism. 

They also established exactness and excision properties for the ^-groups. Defining 
{X; Y}q to be {5^X; Y} if q > 0, and {X; S'^} if q < 0, they pointed out that for fixed 
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X the Eilenberg-Steenrod homology axioms are satisfied whereas for fixed Y the coho-
mology axioms are satisfied (except of course for the dimension axiom). As with Spanier's 
paper on cohomotopy, their interest in these formal properties reflected the profound influ
ence that the Eilenberg-Steenrod axiomatic approach was having upon the subject. 

Shortly after introducing the 5-category, Spanier and Whitehead [1955] developed their 
duality theory. Given a polyhedron X in S^\ an n-dual D„X of X is a polyhedron in S^ — X 
which is an 5-deformation retract of 5" — X (i.e. some suspension of DnX is a deformation 
retract of the corresponding suspension of 5" — X). They defined for polyhedra X and Y 
in S^ a duality map 

Dn:[X;Y]->{DnY-DnX]. 

To do this they first consider the case where there are inclusions i.X ^^ Y and i' .DnY -^ 
DnX. Then /)„({/}) is defined to be [i'). For a general ^-map from Z to 7 they reduce 
to the case of an inclusion by means of the mapping cylinder construction. Eventually 
they show that this leads to a well defined isomorphism. They establish a number of basic 
properties of the duality map Dn including its relation with Alexander duahty. In particular, 
they make precise the duality between the Hopf and Hurewicz maps which Spanier had 
noted earlier. 

In 1959, Spanier [1959] gave a new treatment of Spanier-Whitehead duahty in which 
he shifted attention from the concept of a dual space to that of a duahty map. The way in 
which this approach came about appears to be as follows: Let F{X\ 5") denote the space 
of maps from X to 5", CD'.X A F(X; S^) -> 5" the evaluation map, and y e H^iS"") 
a generator. John Moore [1956] had shown that slant product defines an isomorphism 
a ;*(y) /_ : / /^ (F(X;5 '0 -> H'^-HX), q < 2(n - dim(Z)). So the function space 
F(X; S") appears to be (n + l)-dual to X at least through a range of dimensions. In 
order to remove the dimensional restriction, Spanier formed the spectrum F(Z) whose 
n-th space is F(X; 5"). The connecting maps h : SF(X; 5") -> F(X; 5"+^) are given by 
h(t, f){x) = (r, fix)). He called F(Z) the functional dual of X. Spectra had been intro
duced earlier by E. Lima [1959], a student of Spanier, in order to study duality for infinite 
complexes. A spectrum Y = {y„; Sn] is simply a sequence of spaces Yn, n e Z, together 
with maps en : SYn -^ Fn+i. If X is a finite complex and Y is a spectrum, 

{X;Y} = lim[5"Z;y,^]. 

Let X* be a deformation retract of 5""+̂  — Z, hence an (n + l)-dual of X. To make pre
cise the duahty between X and F(X), Spanier wished to construct a weak equivalence of 
spectra X* -> S^F(X), where S^¥(X) is the n-fo\d suspension of F(X). It was apparently 
well known by this time that Alexander duality could be described by means of a slant 
product. Specifically, by removing a point of 5""̂ ^ which is not in Z or X*, one can regard 
X and X* as subspaces of 7?"+ .̂ Define /z: X x X* -> ^^ by /x(jc, x*) = (x-JC*)/|JC-X*|. 
Its restriction to X v X* is null homotopic so it induces a map /x: X A X* -> 5". Then 
fi^iy)/ : Hq(X) -^ //"~^(X*) realizes the Alexander duality isomorphism. Spanier 
had used this description in an earlier paper [1959a] in which he studied the relation be
tween infinite symmetric products and duality. Now the map /x : X A X* ^- 5" defines a 
map X* -^ F(X; S^^), and by virtue of the naturality of the slant product, the induced map 
of spectra X* -> 5''̂ F(X) is a weak equivalence. 
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Combining this weak equivalence with the exponential correspondence 

[ Z ; F ( X * ; 5 " ) ] = [ Z A Z * ; 5 " ] , 

he showed that the map 

R^ : {Z; X}^{ZA Z* ; 5'^}, / ^ /x(/ A 1), (1) 

is an isomorphism. By symmetry, 

L^ : {Z; X*} -^ {X A Z; 5"}, / -^ /x(l A / ) , (2) 

is an isomorphism. 
Now, if Y is also a polyhedron in S^'^^, 7* is a deformation retract of 5""̂ ^ — F, and 

V : y* A y —> 5" is the associated map, a duality isomorphism 

D(/x, v ) :{Z;y}-> {y*; X*} (3) 

is defined in terms of the fundamental isomorphisms (1) and (2), by 

{X; y} - ^ {X A y*; 5"} - ^ {y*; X*}. 

The existence of the isomorphism /?^ of course does not depend on the geometric origins 
of X* but only on the existence of the map /x. Thus, Spanier was led to define a duality map 
tobeamap/x:XAX* -> 5" such that the slant product/x *(}/) /_ \Hq{X) -> //""^(X*) 
is an isomorphism. He then showed that the map /x: X* A X -> 5" obtained by composing 
pi with the interchange map X* A X -> X A X* is also a duality map, from which it follows 
that L^ is also an isomorphism. Given a second duality map v : y A y* -^ 5", he derived 
the duality isomorphism D(/x, v) as we have described above. In addition to being more 
general, the formal properties of the duality are much more readily established. Moreover, 
the theory gives a simple criterion for 5'-maps f \X ^^ Y and g : y* -> X* to be dual. 
They are dual if and only if the diagram 

/A l 
X A y* ^ y A y* 

Y 

X A X* — > 5" 

is homotopy commutative. (A comparison of the two approaches to duahty revealed a 
minor notational problem: A geometric {n + l)-dual X* gives rise to an n-duality map 
X A X* ^ 5". Spanier suggested that it would be more natural to call X* an Ai-dual of X, 
which is the terminology that is now used.) 

A few years later. Wall [1967] added an additional refinement which would prove useful 
in applications; particularly to surgery theory. He noted that the whole theory could be 
given a "dual" formulation. In this description, an n-duality is a map /x: S" —> X A X* 
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such that /x*(y)\— : H^(X) -^ Hn-qiX"") is an isomorphism, where y is a generator of 

When Spanier's textbook on algebraic topology appeared in 1966, it contained an exer
cise outlining a categorical formulation of Spanier-Whitehead duahty which he attributed 
to P. Freyd and D. Husemoller. The fundamental isomorphisms (1) and (2) are easily gen
eralized to isomorphisms 

R^\[Z\E AX}^ { Z A X * ; £ A 5 " } , (4) 

L^ : {Z; X* A £} -> {X A Z; S"" A E], (5) 

where E is an arbitrary CW-complex. In the categorical formulation one now defines /x 
to be a duality map if R^ and L^ are isomorphisms. (By a standard argument it is only 
necessary to assume that /?^ and L^ are isomorphisms when Z and E are spheres.) One 
then shows by an induction over cells argument that for every finite C W-complex X there 
is an integer n and a finite C W-complex X* for which there is a duahty map /x: Z A X* -> 

This formulation exhibits Spanier-Whitehead duality as an intrinsic property of the 5-
category quite independent of Alexander's duality theorem. The latter now emerges as the 
fundamental connection between this duahty and geometry: If X is contained in S^^^ and 
X* is a deformation retract of 5""̂ ^ — X then X* is a Spanier-Whitehead «-dual of X. 

As generalizations of the 5-category arose, the appropriate formulation of Spanier-
Whitehead duality soon followed. In 1970 at the International Congress in Nice, 
G. Segal [1970] introduced for a finite group G, the equivariant ^-category whose objects 
are finite C W-complexes and whose morphisms are 

{X;y}G=l im[5^X;5^F]^ , 

the limit taken over all representations V of G. This marked the beginning of equivariant 
stable homotopy theory - a theory which has undergone rapid development in recent years. 
Duality was extended to this category by Wirthmiiller [1970] and Dold and Puppe [1980]. 

A second generalization of ^-theory involves the consideration of families of pointed 
spaces parametrized by a fixed space B. The homotopy theory of such spaces was devel
oped by I.M. James [1971], T. tom Dieck, K. Kamps and D. Puppe [1970], among others. 
There is the corresponding 5-category based on fiberwise suspension, and duality in this 
category was derived in [Becker and Gottheb, 1976]. 

5. Atiyah's duality theorem 

Milnor and Spanier [1960] clarified the relation between Spanier-Whitehead duality and 
Poincare duality on a closed differentiable manifold. Thom [1952] had introduced what is 
now called the Thom space M" of a vector bundle a over M. It is defined to be D(a)/5(a) 
where D{a), S(a) are, respectively, the unit disk and sphere bundles of a. The Milnor-
Spanier theorem states that if M is a closed manifold embedded into Euclidean space R^ 
with normal bundle v and M"̂  is M disjoint union with a point then M^ is 5-dual to M" .̂ 
Their proof was geometric; exhibiting M^ as a deformation retract of the complement of 
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M~^ in S^'^^. With the dual formulation of Spanier-Whitehead duality, which came later, a 
duality map 

/x : 5 ' ^ M+ A M^ 

is easily constructed. There is the Pontrjagin-Thom map cS^^- M^ defined by embed
ding the normal disk bundle D{v) into R^ as a tubular neighborhood and letting c collapse 
the complement of the interior of D(v) to a point. Then fi is the composition of c with the 
"diagonal" map M^ -^ M"̂  A M^, Vx ^-^ x AVx^ Lefschetz duality for (S^, D(v)) imphes 
that /x is a duality map. There is the commutativity relation 

i ; n _ 

HHM-^) = H^(M-^) 

where D = fi^iy)/ , u e //'^~"(M"), 0^ is the Thom homomorphism, and v = D{u). 
Since D is an isomorphism, i; H is an isomorphism precisely when (j)u is an isomorphism. 
This basic relation, which goes back to Thom, carries over to generaUzed homology-
cohomology theories, and the Milnor-Spanier theorem implies that D remains an isomor
phism. Thus, the question of the orientability of a manifold M is equivalent to that of the 
orientability of its normal bundle in the sense of Thom. The latter is usually studied as part 
of the general question of orientability of a vector bundle or spherical fibration with respect 
to a cohomology theory. 

Atiyah [1961a] generaUzed the Milnor-Spanier theorem to manifolds with boundary, 
and derived from it the following relation among Thom spaces: Let a and fi be vector 
bundles over a closed manifold M such that of 0 jS :^ M x /?^ Then if M is embedded in 
R^ with normal bundle y, 

M" is (5 + 0-dual to M^®^ 

This relationship, which was also obtained by R. Bott and A. Shapiro (unpubhshed), is 
now known as Atiyah duality. It provides a fundamental connection between duality theory 
and the theory of differentiable manifolds. Atiyah gave two applications of this relation. 
The first was to extend the work of I.M. James reducing the question of the existence of 
vector fields on spheres to a homotopy question about what he called stunted projective 
spaces. This reduction was later used by Adams in his celebrated paper [1962], in which 
he obtained a complete solution of the problem. 

6. Generalized homology and cohomology theories 

The concept of a generalized homology or cohomology theory emerged over a period of 
roughly seven years from 1955 to 1962. Along with the examples - stable homotopy-
cohomotopy [Spanier and Whitehead, 1957], A'-theory [Atiyah and Hirzebruch, 1959], 
bordism and cobordism [Atiyah, 1961b], [Conner and Floyd, 1964] - the search for a 
satisfactory duality theory guided the development of the subject. 
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If E = {£•„; ^„} is a spectrum, a generalized cohomology theory //*( ; E) is defined on 
the category of (pointed) finite C W-complexes by 

E.H. Brown [1962] showed that every generalized cohomology theory defined on the cate
gory of finite C W-complexes, and having countable coefficient group, arises from a spec
trum in this way. It was well known that the cohomology theories which existed up to 
this time had such a description, the first of which (singular cohomology) goes back to 
Eilenberg and MacLane [1943]. 

A year later G.W. Whitehead [1962] undertook a comprehensive study of generalized 
homology-cohomology theories from a homotopy point of view. He defined the general
ized homology groups of X with coefficients in the spectrum E by 

Hq{X\ E) = Ih^ [5"+^; En A X]. 

As motivation for this definition, he cited D.M. Kan's [1958] theory of adjoint functors. He 
had also shown in an earher paper [1956] that his definition gave the correct answer when 
E is an Eilenberg-MacLane spectrum. 

After laying out the theory of products. Whitehead proved general Poincare and Alexan
der duality theorems. From the fact that //*( ; E) and //*( ; E) are related by Alexander 
duality, he established conclusively that his definition of homology was the correct one. 
It is a consequence of Spanier-Whitehead duality that every cohomology theory W de
termines a "formal dual" homology theory //*: Given a space X, choose a duality map 
X A X* ^ 5" and define Hq{X) = / /""^(Z*). This eventually leads to a homology the
ory //*. Now, the fact that //*( ; E) and //*( ; E) are related by Alexander duaUty impHes 
that //*( ; E) is the formal dual of //*( ; E) as desired. 

Whitehead, G.W.'s fundamental paper gave a complete and satisfactory generalization 
of Poincare and Alexander duality to arbitrary homology-cohomology theories. 

7. Umkehrmaps 

An Umkehr map is a map related to an original map which reverses the arrow, that is 
the source of the original map becomes the target of the Umkehr map. The name has not 
solidified yet; sometimes Umkehr maps are called wrong way maps, or Gysin maps, or 
even transfer maps. 

The first appearance of Umkehr maps occurred in [Hopf, 1930]. For a map f :M -^ N 
between two combinatorial manifolds of the same dimension, / induces a homomorphism 
/* : H^{M\ Q) -> H^{N\ Q). Now intersection theory gave rise to a ring structure, called 
the intersection ring, due to Lefschetz. The map /* is not a ring homomorphism, how
ever, Hopf managed to define a "wrong way homomorphism" which did preserve the ring 
structure when the manifolds had the same dimension. He called it the "Umkehr homo-
morphismus"from//*(A^; Q) -> H^{M\ Q). 



A history of duality in algebraic topology 739 

With the invention of cohomology, Hans Freudenthal [1937] could explain the Umkehr 
homomorphism in terms of Poincare duality. In modern notation the Umkehr homomor-
phism is what we call the Poincare duality map 

fl = DMoroD-\ 

where DM denotes the Poincare isomorphism from cohomology to homology. This idea 
begs to be generalized to manifolds of different dimensions. It was finally done by Hopf's 
student Gysin [1941] in his dissertation. Because of this, Umkehr maps are frequently 
called Gysin maps. 

Integration along the fibre was introduced by A. Lichnerowicz [1948]. Suppose F -^ 
E —> B is a fibration. If it is a fibre bundle with F and E and B all C^ manifolds, then 
using de Rham cohomology, an /-form on E can be integrated over each fibre to give an 
(/ — 72)-form on B, where n is the dimension of F. This gives a cochain map on the de Rham 
cochain complex of forms, and thus we get an Umkehr map TT' : H^ (£"; Q) -> / / ' " " (5; Q) 
called integration along the fibre. 

Chern and Spanier [1950] extended integration along the fibre to more general fibre 
bundles where Hn(F) = Z for the top dimension n. With the Serre spectral sequence 
in [Serre, 1951], integration along the fibre could be defined for any oriented fibration 
whose fibre has a top nonzero homology group Hn{F,V) ^ V and V is any field of 
coefficients. Then reading along the top fine of the E'^ and E^ terms gives integration 
along the fibre both for homology and cohomology. 

In the late 1950's and early 1960's, Umkehr maps played an important role in the gen
eralization of the Riemann-Roch theorem and in the Atiyah-Singer index theorem. 

Dieudonne [1989], gives a very lively account of the Riemann-Roch theorem. "In the 
late 1950's the growing usefulness of categorical notions gradually convinced mathemati
cians that morphisms rather than objects had to be emphasized in many situations. It was 
that trend that led Grothendieck to believe that the Riemann-Roch-Hirzebruch formula 
. . . is only a special case of a relative Riemann-Roch relation dealing with a morphism 
/ : X -> y of smooth projective varieties; the relation . . . would then be the case in which 
Y is reduced to a single point. The problem was thus to replace both sides [of the re
lation] by meaningful generahzations when X and Y are arbitrary." On one side of the 
Riemann-Roch-Hirzebruch equation he needs to replace "integration" by an Umkehr map. 
So Grothendieck introduced the Poincare duality map / ' : H*(X) -^ H*(Y), which is the 
dual to the map f\ on homology defined by Gysin [1941]. For the other side of the equation, 
he had to invent A'-theory. 

Atiyah and Hirzebruch [1959] extended A'-theory, and hence the Riemann-Roch theo
rem and the AT-theory Umkehr map. 

An important set of notes was produced by J.M. Boardman [1966]. In it he develops his 
very influential ideas on spectra. Chapter V was devoted to "Duality and Thom Spectra". 
In Section 6, entitled Transfer Homomorphisms, Boardman collected together eight con
structions and called them transfers. (By now, the word "transfer" is usually taken to mean 
an Umkehr map which does not shift dimension.) These Umkehr homomorphisms all satis
fied seven equations and turned out to agree on generalized homology and cohomology in 
the situations in which their definitions were valid. The seven relations forms a very tricky 
but useful calculus. In particular the Umkehr is functorial. A particularly useful relation 
gives / ' ( /* (« ) ) = a U / ' ( I ) . That is: Composition of the Umkehr homomorphism with 
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the induced homomorphism results in multiplication by a fixed element / ' ( I ) . This turns 
out to be very important in the development of the transfer. 

Boardman, as a graduate student, had discovered a simple Umkehr map for bordism the
ory, and he asked several people for more examples and got quite a few leads. Although the 
constructions were quite-different looking, the homomorphisms agreed on the intersections 
of their domains of vahdity. 

Boardman's thesis (Cambridge 1964) problem was a computational problem and he was 
collecting as many tools as he could. What he published of his thesis used a slick proof, and 
his Umkehr maps were not mentioned. Fortunately, he collected his material in Chapter V, 
Section 6, of his notes, where they played a seminal role in our next topic - Transfers. 

8. Transfers 

Duality has influenced and been influenced by almost every subarea of algebraic topology. 
Even if we concentrate only on the key theorems of strong duality, we find the number 
of topics too vast to describe. We choose the subject of Transfers to illustrate the action 
and reaction of strong duality on a particular subject. Therefore we Hmit our discussion of 
the transfer to its origins and its complex relation to strong duahty. We choose Transfers, 
even though there are more important topics we could have considered and even though 
the subject is still developing, because we know that area well and have worked in it and 
so we can provide information which is not readily available in the pubhshed record. In 
addition to our own recollections, we benefited from conversations and correspondence 
with J.M. Boardman, A. Dold, D.S. Kahn and S.B. Priddy. 

The transfer began as a group-theory construction, which produced a homomorphism 
from a group G made abelian to a subgroup H of G of finite index made abelian. Thus 
Qab _^ fjab (ggg [fî u^ i959j^ p 201). 

It was Beno Eckmann who realized that this was a special case of a construction made 
for covering spaces and when applied to K{n, l)'s gave the group-theory result. He gave 
the name transfer to the homomorphism in cohomology for a covering space with finite 
fibre, T : H^ (X) -> / / ' (X), whose composition with the projection homomorphism p* is 
multiplication by the number of elements in the fibre. 

The relationship to group theory came about as follows. W. Hurewicz [1936] recognized 
that aspherical spaces were classified up to homotopy by their fundamental group. Now we 
call these spaces K(7t, 1), where n is the group. If / / is a subgroup of TT, then K(H, 1) is 
a covering space of K{7T, 1). Then the group cohomology of n is the cohomology of the 
K(n, 1). Eckmann [1953] noted that the group theory transfer was in fact the dual of his 
transfer homomorphism for Hi (K(7T, 1)), which is the group n made abehan. One can see 
part of the idea for transfer in [Eckmann, 1945-1946]. 

The emphasis on describing the transfer as a homomorphism was probably part of the 
general movement inspired by the Eilenberg-Steenrod axioms which indicated that the 
morphisms were as important as the objects. The (covering space) transfer was also used 
by Conner and Floyd and S.D. Liao in the study of finite transformation groups in the early 
1950's. 

By the early 1970's, covering transfers were in the air. An interesting account of the 
transfer up to this time is given in J.F. Adams [1978] book in §4.1. Mainly, the thrust 
was the ad hoc construction of covering space transfers for different cohomology theo-
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ries. These could all be united by a construction of the transfer as an 5-map. Various 
5-map constructions were made independently by 1971 by Dan Kahn, Jim Becker, and 
F.W. Roush [1971]. None of these were pubhshed since the discoverers did not believe 
they were important. 

J.F. Adams [1978] wrote in his book on pp. 104-105: "Transfer came to the attention of 
the general topological public when Kahn and Priddy [1972] pubhshed their well-known 
paper in 1972 . . . Kahn and Priddy wrote: 'the existence of the transfer seems to be well-
known, but we know of no published account'. The topological world thus learned that all 
well-informed persons were supposed to know about transfer, although hardly anyone did 
unless they were lucky ... the rapid spread of a general conviction that the transfer was very 
good business owed much to the fact they solved a problem of some standing in homotopy 
theory". 

The transfer for finite covering fibrations has a spectacular generalization to fibrations. If 

F —> E —> B is a Hurewicz fibration with compact fibre F (and very mild conditions 
on B), there is an 5-map T : B^ -^ E'^ which induces homomorphisms r* and r* on 
ordinary homology and cohomology, respectively, such that p* o r* and r* o ;?* are both 
multiplication by the Euler-Poincare characteristic x (^)-

The only hints that transfers could exist for fibrations came from an early consequence 
of the Leray-Serre spectral sequence: For a field of coefficients, if /* maps onto the top 
dimensional cohomology group of F, then j9* must be injective in cohomology with the 
same coefficients. Now Borel [1956] observed that if F were a closed smooth oriented 

manifold and F —> E —> B were a smooth oriented fibre bundle, then /* mapped onto 
the top cohomology for Zp coefficients whenever p did not divide x (F). Thus for such p, 
the projection ;?* is injective. This result would follow immediately if there were a transfer 
for fibrations. 

Also, dual to the projection p is the transgression co: QB -> F from the Nomura-
Puppe sequence mentioned in Section 2. It had recently been discovered, [Gottheb, 1972], 
that x(^^)<^* = 0 for M a smooth manifold. This result was true for cohomology with 
any coefficients. A proof depended on the same fact about /* which was central to Borel's 
result. 

These considerations led to the question of the existence of a transfer for fibrations in 
the Fall of 1972. Boardman's Umkehr map calculus immediately gave a transfer in Borel's 
special situation for singular cohomology: 

T ( . ) : = p ' ( - U x ) , 

where p' is the spectral sequence version of integration along the fibre and x is the Euler 
class of the bundle of tangents along the fibre. By the Spring of 1973 the transfer theorem 
had been extended to fibre bundles whose fibre was a manifold with boundary, [Gottheb, 
1975], and the transfer existed as an ^-map for fibre bundles whose structure group was a 
compact Lie group, [Becker and Gottlieb, 1975]. 

In the announcement [Becker et al., 1975] all the conditions on the fibration were es
sentially removed (as long as F was homotopic to a finite complex). The transfer was an 
5'-map which satisfied in singular homology and cohomology the following relations. 

/?* o r* = multiplication by x(F), 

r* o p* = multiplication by x(^)-
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In fact, if the fibration is equipped with a fibre-preserving map, then there is a transfer 
which satisfies the above conditions with a suitable Lefschetz number replacing the Euler 
characteristic. 

A consequence of the generalization of the transfer was the generalization of the trans
gression theorem x(^)<w* = 0, which now holds in all cohomology theories and in all 
homology theories, for essentially any fibration whose fibre is homotopy equivalent to a 
finite complex. In addition, for fibre-preserving maps, the Euler characteristic can be re
placed by the same Lefschetz number as in the transfer theorem (see [Becker and Gottlieb, 
1976]). 

To extend the transfer theorem to Hurewicz fibrations and to construct the transfer as an 
iS-map, the use of strong duality became vital. The two methods indicated in the announce
ment were explained in detail in [Casson and Gottlieb, 1977] and in [Becker and Gottlieb, 
1976]. In the first method, the role of integration along the fibre was played by the Poincare 
duality map. Topological maps on Thom complexes induced the Poincare duality map on 
the homology level of the underlying manifolds, and the cup product could be induced by 
a map between Thom complexes as well. These considerations yielded the transfer as an 
^-map in the smooth fibre bundle case where everything was a smooth oriented manifold. 
The fact that every Hurewicz fibration was a fibrewise retract of these smooth oriented fibre 
bundles was proved by a series of tricks, and the retraction of the smooth transfer resulted 
in a transfer for the general case. 

On the other hand, the second method depended upon the existence of ^-duality in the 
category of ex-spaces over a space B. This allowed the construction of the transfer via a 
chain of duality maps and a diagonal map. 

Meanwhile Albrecht Dold [1974a] was conducting a deep study of fixed point the
ory. He studied the index of parameterized families of maps. He was influenced by 
R.J. Knill [1971]. As a by-product to defining the index for a parameterized family of 
maps, Dold discovered a transfer. He did not regard it as important until Puppe told him 
about the transfer for fibrations. He sent a note to the Comptes Rendus, [Dold, 1974b], and 
expanded the paper in [Dold, 1976], calling the transfer the fixed point transfer. Nowadays 
it is also called the Dold transfer or the Becker-Gottlieb-Dold transfer as well. 

Dold and Puppe organized a seminar on the transfer for fibrations. As a result of this 
they realized, [Dold and Puppe, 1980], that the observation that the degree of the map 
5" - ^ DX A Z -> X A DX - ^ 5" equals x (^) leads to the categorical definition of 
trace given here in §2 of this paper. The categorical definition of transfer is given by the 
map 

r / : / ^ A (g) DA - ^ ZM (8) A .El^ DA (g) A (g) A _ f ^ 7 (g) A = A. 

Thus in the category of ex-spaces over B, which they call Stab^, they note that if /? is a 
well-sectioned Hurewicz fibration whose fibre has the stable homotopy type of a finite CW 
complex, then the fibrewise dual in [Becker and Gottlieb, 1976] results in the transfer for 
fibrations for Stab^, while the fact that fibrewise ENR also have strong duals, leads to the 
Dold transfers, [Dold and Puppe, 1980]. 

In addition, they can prove the Lefschetz fixed point theorem as a consequence of their 
point of view. So, many important theorems which seemed to be independent, and which 
seemed to have little to do with duality, can be shown to be consequences of Dold and 
Puppe's concept of strong duality for monoidal categories. 



A history of duality in algebraic topology 743 

Postscript: Dold and Puppe [1980] explicitly remarked that the condition on the fibre in 
the transfer theorem could be relaxed from being homotopically equivalent to a finite com
plex to merely being ^'-equivalent to a finite complex, and that this was implicitly proved 
in [Becker and Gottlieb, 1976]. This advance permits the observation that the transfer exists 
in a purely group-theoretic setting where fibration is replaced by surjective homomorphism 
and the condition on the fibre is replaced by the condition that the kernel has finitely gener
ated homology, [GottHeb, 1983]. Thus the transfer is returned back to group theory with all 
the topological conditions removed in a vastly more general situation. But its construction 
is not at all group-theoretic. 

We also note that there is quite recent work by Dwyer [1996] which relaxes the hypothe
sis on the fibre to the case where the fiber of the map satisfies only a homological finiteness 
condition relative to some spectrum. 
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1. The basic homotopy theory 

At its simplest, an //-space is a triple (X, *, /x), where X is a topological space, fx:X x 
X -> X is a continuous multiplication and the base point * is a two-sided multiphcative 
unit, /x(*, x) = /x(x, ^) = X for all x e X. One writes "X is an //-space", if * and /x 
are specified. Frequently it is convenient to replace the unit by a homotopy unit, that is, 
require only that /x(*, ) and /x( , *) are homotopic to the identity map of X in the usual 
sense, where here and throughout this note, maps and homotopies preserve base points. 
We will assume in the first two sections that all spaces have the homotopy types of CW-
complexes as that is an assumption made in much of the literature. A consequence is that 
the multiplication of an //-space with a homotopy unit can be deformed to one with a unit. 
By requiring only a homotopy unit, it follows that a space homotopic to an //-space is itself 
an //-space. We will assume also that //-spaces are connected, for otherwise one normally 
considers the set of path components separately. 

The H in //-space was suggested by J.-P. Serre in recognition of the influence exerted 
on the subject by Heinz Hopf. The latter considered compact, connected Lie groups, but 
the usual interpretation of the main theorem of [23] requires only //-space properties. We 
will return to Hopf's theorem in Section 2. 

Contrasting the definition of an //-space with that of a connected topological group, 
the former lacks multiplicative inverses and no associativity assumptions are given for the 
multiphcation. 

The absence of inverses is not a major problem from a homotopy perspective. A left 
inverse / : X -> X of an //-space is a map such that the composition / x ( / x l ) z \ : X - ^ X 
is homotopically trivial. A right inverse is defined similarly. M. Sugawara proved in [44] 
that left and right inverses exist. They can, however, be homotopically, even homologically 
distinct. About the same time I. James in [28] established that /x induces on the set of 
based homotopy classes [K, X] an algebraic loop structure: in more recent notation this 
says that for any two homotopy classes / and g, there exists a unique third class D(f, g) 
with / = D{f, g) + g, where -{- denotes the operation induced by /x. 
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The absence of any associativity assumption on /x is more problematical and for many 
purposes one needs to introduce some such assumption. The simplest approach, with the 
initial definition above, is just to assume that the multiplication /z is associative. This has 
the major disadvantage that a space homotopically equivalent to an associative //-space 
may not itself inherit an associative multiplication. A homotopy invariant definition is that 
jji is homotopy associative, that is ii(/ji x 1) 2:̂  /x(l x ii):X^ -> X. This ensures that an 
algebraic loop is a group. (One needs no assumption on an //-multiplication to ensure that 
the algebraic loop structure induced on ni (X) by the //-multiplication coincides with the 
normal group structure and that the group is Abelian [18].) But homotopy associativity is 
not a sufficiently strong assumption for many purposes. Sometimes it can be extended to an 
invariant form of associativity. This represents work of J. Stasheff in the early 1960's [41, 
42]. Writing down accurate details is complicated, but the basic idea can be indicated. If 
X is an //-space, we have a map r2: S^ -^ X^ defined by r2(—1) = /x(l x /x), r2(l) = 
/i(/x X 1). If /x is homotopy associative, this can be extended to a map S3 : D^ -^ X^~ 
and we say that X is an As-space. (An //-space is an i42-space.) We can use /x and the 
associating homotopy to define /^: P -> X^ , where P is a regular pentagon: 

/x(l X /x)(l X I X fi) 

//(I X /i)(l X /x X 1) ^ 7 /x(/x X /x) 

/x(/x X 1)(1 X /x X 1) /X(M X 1)(M X 1 X 1) 

the images of the vertices are the maps labelled and the edges are mapped using the obvious 
homotopies. Topologically we have a map r^: S^ -> X^ and we ask if it extends to 
S4: D^ -^ X^ . If it does, we say informally that X is an A4-space - more formally, 
as one needs the multiplication to define an //-space, one need the multiplication and all 
the homotopies, the A4-form, to define an A4-space. The process can be continued in a 
less transparent manner to define an A;2-space for all n and Stasheff defined an ingenious 
polyhedron to keep track of the data. If compatible A„-structures exist for all n, then X is 
an Aoo-space. One must also introduce appropriate morphisms. 

An associative //-space X has a classifying space BX and there is a homotopy equiv
alence X -^ QBX preserving the multiphcations up to homotopy; many authors have 
worked in this area but in this context, the result is usually attributed to A. Dold and 
R. Lashof [13]. Related arguments show that X is an Aoo-space if and only if it has the 
homotopy type of a loop space [40]. So when X is an associative //-space, a homotopy 
equivalent space is an Aoo-space and, with appropriate definitions of morphisms, the Aoo-
structures are preserved. 

We return to the concept of an //-space (X, *, /x). In general, if a space has one H-
multiphcation, it has many homotopically distinct multiphcations. There is a sequence of 
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algebraic loops 

0 -> [Z A X, X] - C [X X X, X] - ^ [X V X, X] ^ 0 

which is short exact in the sense that 7* is injective, /* is surjective and /* / = /*^ if 
and only if D(/ , g) lies in the image of 7*. It follows that the cardinality of the set of 
homotopically distinct multiplications on a fixed space X is the same as that of [X A X, X]; 
in general this is infinite, even for compact Lie groups [4]. 

The interest in different multiplications can be illustrated by the simplest nontrivial ex
ample S^ or SU{2) with its Lie multiplication /x, [29, 30]. As 7te(S^) = Z/12Z, there are 
12 homotopically distinct multiplications JJL + nj'^ico), where co is the standard generator. 
Such a multiplication is homotopy associative if and only if n = 0 or 1 mod 8. In [40] it 
is shown that each of these latter multiplications can be extended to an A 00-multiplication 
on S^, but not in general an associative multiplication. In fact, S^ can support uncountably 
many different AQO or loop multiplications, or equivalently, there are uncountably many 
homotopically distinct spaces whose loop spaces have the homotopy type of S^, [39]. If 
one considers S'^ with multiplication given by the product of Cay ley numbers of norm one, 
a similar analysis shows that there 120 distinct multiplications, none of which is homotopy 
associative. 

As the loop space on any simply connected CW-complex is an //-space, examples of 
the latter abound. One needs therefore to impose additional structure to obtain a coherent 
theory. One direction, not appropriate here, is to consider infinite loop spaces. The theory 
of //-spaces was generally concerned with establishing the relationship with the homotopy 
of connected Lie groups. Therefore for the remainder of this article, we impose finiteness 
conditions on the space of an //-space. 

2. Homological considerations 

We assume that the space of an //-space has the homotopy type of a connected, finite 
complex; this is abbreviated to "finite //-space". 

The proof of the main theorem of Hopf of [23] referred to in the section above implies 
that the rational cohomology ring //*(X, Q) is an exterior algebra on odd-dimensional 
generators. This is purely a Hopf algebraic result for graded, connected, finite-dimensional 
Hopf algebras over a field of characteristic zero, where the multipHcation is associative 
and commutative; in this area, neither multiplications nor comultiplications are assumed 
automatically to be associative or commutative, [36]. So //*(X, Q) and //*(X, Q) are 
dual Hopf algebras in this sense. The number of generators is called the rank of X and 
it is shown in [23] that this is consistent with the usage in Lie theory. If in addition, the 
comultiphcation induced by fi on //*(X, Q) is associative, for example, if /x is homotopy 
associative, each exterior generator can be chosen to be primitive (that is, lies in the kernel 
of /x* —TT^ —712, ^here TTI is a projection) and //* (X, Q) is said to be primitively generated. 

There are related results for //*(X, Z/pZ) for each prime /?, [5]. For an odd prime 
p, this ring is a tensor product of an exterior algebra on odd-dimensional generators with 
polynomial algebras on single even-dimensional generators truncated at heights p^ with 
(distinct) ^ ^ 1; when p = 2 one must drop the condition that the polynomial generators 
have even dimensions. The Hopf algebras //*(X, Z/pZ) and //*(X, Z/pZ) are dual. 
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The theory of finite H-spaces received great impetus from the research of W. Browder in 
the early 1960's who investigated the relationship between these theorems. He established 
that a covering space of a finite iZ-space was a finite //-space, [6]. He proved that if X is 
simply-connected, it has the homotopy type of a topological manifold; the relationship with 
smooth manifolds appears to remain unresolved. It is curious that the close relationship 
between finite //-spaces and manifolds has had so little influence in the former area, though 
presumably it helped to motivate Browder's later work in surgery theory. In [10] it is shown 
that X" ,̂ the union of a finite //-space with a disjoint point is self-dual in the sense of 
Spanier and Whitehead. 

Browder's work analyses the torsion structure in the homology of finite //-spaces. He 
proved the key result, [7], that //*(X, Z) has no p-torsion if and only if //*(X, Z/pZ) 
is an exterior algebra on odd-dimensional generators. The main tool in the analysis is the 
standard mod p Bockstein spectral sequence in cohomology or homology; at each level 
these are dual Hopf algebras. An important concept is that of "infinite implication" in a 
Hopf algebra and its dual, generalising the concept of infinite height. In this context, an 
element x has height p^ \f x^ 7̂  0 and x^ = 0 and we can write xo = x,x\ = x^, 
... ,Xq-\ — x^_2 and 0 = x^ -^. In the corresponding implication sequence, each xi can 
lie in the Hopf algebra or the dual Hopf algebra where if x̂ ^ = 0 for / < <7 — 1, there is 
an element i/ in the dual Hopf algebra with (x/, i/) = 1 and jc/+i = x^ ^ 0. If either 
multiplication is not associative, one must define p-th powers by multiplying in a fixed 
order. There can be no element of infinite implication in the Bockstein spectral sequences 
of a finite //-space. It is shown that only in rather restricted circumstances can there exist a 
class which is both primitive and a boundary in the spectral sequences, unless it has infinite 
implication. 

An //-space is homotopy commutative if/xT ~ ix'.X ^ X -> Z, where T is the 
switching map. It is shown in [8] that when X is a homotopy commutative finite //-space, 
//*(Z, Z) has no 2-torsion and there are related results for odd primes. In [9] it is proved 
that the space of a finite //-space of rank one is one of 5^ S^, S^, RP^ or RP^. The 
question as to whether or not there were any //-multiplications on simply-connected finite 
complexes except when the space had the homotopy type of a product of a Lie group and 
7-spheres was raised about this time and motivated much subsequent research. 

Homological evidence for the reasonableness of the question was provided by work of 
E. Thomas [46, 47] on the action of the Steenrod algebra on the mod 2 cohomology of 
//-spaces, particularly on the submodule of primitive elements. He showed that they had 
to follow the same general pattern as for Lie groups. His most complete results are when 
//*(X, Z/2Z) is an exterior algebra on primitive odd-dimensional generators. A typical 
result, a proto-type of many similar results proved in later years by other mathematicians, 
was that if X2s+\ is one of the primitive generators and Ms a positive integer such that 
the binomial coefficient ( 2̂ )̂ is nonzero mod 2, then there exists a class yis-it+i whose 
image under Sq^^ is ^2^+1. This relation completely determines the action of the Steenrod 
algebra in H'^iUin), Z/2Z) or H'^iSpin), Z/2Z). Further if the exterior generators occur 
in distinct degrees and the highest of these degrees is 2^ -fl , then //*(X, Z/2Z) is isomor
phic as an algebra over the Steenrod algebra to //*([/(n), Z/2Z) or //*(5l7(n), Z/2Z) 
where n = 2^~^ + 1. 

To prove such theorems, Thomas considered the projective plane of an i/-space, some
what following the approach of Adams to the Hopf invariant one problem [1]. Built into 
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the fabric of an A„-space X is the existence of a projective space P„Z. For simpUcity, 
we will again assume that //*(X, Z/pZ) is an exterior algebra on odd-dimensional gen
erators. With mild additional assumptions, certainly weaker than assuming that X is an 
A;i+i-space, a quotient of the cohomology ring H*(PnX, Z/pZ) is a polynomial algebra 
truncated at height n-\-l over the mod p Steenrod algebra on generators which are "suspen
sions" of the exterior generators of /f *(X, Z/pZ). When X is a loop space, PQOX = BX 
and / /*(5Z, ZjpZ) is a polynomial algebra. For the specific result of Thomas quoted 
above, one considers the action of the Steenrod algebra on a polynomial algebra truncated 
at height 3. Properties of the Steenrod squares place strong conditions on this action, lead
ing to the proof. 

A similar approach can be used replacing cohomology by complex A'-cohomology 
and the Steenrod algebra by the algebra of exterior powers. One again assumes that 
//*(X, Z/2Z) is an exterior algebra on odd-dimensional generators and a marginally 
stronger hypothesis than that assumed above. If one again assumes that the generators 
occur in distinct degrees, then provided that the highest degree is not of the form 2^ — 1, 
then //*(X, Z/2Z) is isomorphic over the Steenrod algebra to //*(G, Z/2Z), where G is 
U{n), SU(n), Spin) or S^ x Sp{n), [25]. However, a major deficiency in these approaches 
to classifying the cohomology rings of families of //-spaces is that there is no natural 
concept analogous to that of simplicity in Lie groups. 

A related /iT-theory approach was used by J. Hubbuck to show that a homotopy com
mutative finite //-space has the same homotopy type as a product of circles [24]. The 
proof uses the result of Browder on homology torsion mentioned above and a geometric 
construction of James, [27]. 

The question of the existence of simply-connected finite //-spaces which are not ho
motopy equivalent to a product of a Lie group and 7-spheres was resolved decisively in 
1968 by P. Hilton and J. Roitberg. In investigating cancellation phenomena for products of 
simply connected finite complexes, they discovered that the 5* -̂bundle over 5^ classified 
by lo) is an //-space [19]. It does not have the homotopy type of either of the previously 
known examples with the same rational cohomology. An analysis of the result completely 
changed perspectives in the subject. This and other related developments made it natu
ral thereafter, not to consider finite complexes, but p-local finite complexes which were 
//-spaces [20, 32, 50]; these became known as "mod p finite //-spaces". A major role 
was played in the subsequent analysis by A. Zabrodsky [49], though several mathemati
cians were involved. We indicate the techniques by returning to the general setting of the 
example of Hilton and Roitberg. One considers the pull-back diagram of fibre bundles 

Ekco ^ Sp(2) 

5^ ^ - ^ 5 ^ 

by a map of degree k mod 12. When k = 4, E/^co is an //-space which looks like S^ x S^ 
at the prime 2 and like 5/7(2) at all other primes. This is an example which can be obtained 
from a general construction of mixing homotopy types. To avoid technical quahfications, 
we indicate only a particular case. Let X and Y be simply-connected finite complexes 
whose rationalisations XQ and FQ have been identified. If one partitions the set of all primes 
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into two disjoint subsets Pi and P2, one has the localisation maps, ri : Xp^ -> Xo and 
r2 : Yp2 -> XQ. The homotopy pull back of these maps produces a space with the homotopy 
type of a finite complex, which looks like X at the primes Pi and the space Y at the 
primes P2. If Z and Y are rationally compatible //-spaces, one obtains a finite //-space. Of 
course one needs only the localised spaces to begin the construction. Some years earlier, 
F. Adams [2] had shown that all odd-dimensional spheres are //-spaces at odd primes. 
Homotopy mixing enabled new examples of finite ^-spaces to be constructed from Lie 
groups by changing the homotopy type at an odd prime. 

There is a more subde variant called homotopy twisting. Again we mention only the case 
for simply-connected finite //-spaces. The Mislin genus [37] of such a space X, denoted by 
G(Z), is the set of all distinct homotopy types Y with Xp 2̂  Yp for all primes p. If Z is a 
simply-connected finite //-space then every member ofG{X) is a finite //-space. But more 
is true; if X is a homotopy associative //-space or a finite loop space, so is every member 
of the genus. (It seems that the details of a proof that there is a corresponding statement 
for A,|-spaces has not been written down.) For example, G(5/7(2)) = {Sp(2), Ejo)}, and 
so E-jo) is a finite loop space, as first estabhshed by Stasheff [43]. The technique can be 
applied to other Lie groups producing infinite families of nonstandard finite //-spaces and 
loop spaces. 

A quite different type of example of a finite //-space not known previously was con
structed by J. Harper in [17], using obstruction theory. It is shown that for each odd prime, 
there exists a simply-connected mod p finite //-space with p-torsion in its integral ho
mology. Homotopy mixing techniques enable one to construct a simply-connected finite 
//-space with this /?-torsion. This is in marked contrast with the position for Lie groups, 
where torsion can exist only for the primes 2, 3 or 5. 

There was in the 1970s a topic which attracted great attention, although it was not fully 
resolved until the early years of the next decade. This is the "loop space conjecture", which 
seems to have been first raised by A. Clark and J. Moore. R. Bott had shown that the 
loop space on a simply-connected Lie group had no homology torsion, and the conjecture 
was that the analogous statement was true for simply-connected finite //-spaces. Other 
properties of Lie groups were thought likely to hold true for finite //-spaces and were 
known or suspected to be consequences of a proof of the conjecture, for example, there 
is no p^-torsion for any prime in the integral homology of simply-connected Lie group, 
the kernel of the Hurewicz homomorphism is the torsion in the homotopy and L. Hodgkin 
had shown in [20] that the complex ^-cohomology of a simply-connected Lie group was 
torsion free. The verification of the loop space conjecture confirmed that these results were 
equally true for finite //-spaces. J. Lin [33,34] showed that H^{QX, Z) has no odd torsion 
when Z is a simply-connected finite //^-space and later obtained a weaker statement at the 
prime 2; the complete result for the prime 2 was estabhshed by R. Kane in [31]. 

The method of proof rehed on earher insights of Zabrodsky. He realised that secondary 
cohomology operations could be used effectively in the cohomology of //-spaces. A com
mon difficulty with such operations defined on a particular cohomology class is to show 
that the image does not contain zero. He observed that using naturality properties applied 
to the comultiphcation, one can deduce in favourable circumstances that the image is non-
trivial, particularly when the initial class is primitive. Also in a remarkable note [48], he 
described a method of defining secondary operations on quotients of the cohomology ring 
of an //-space by Hopf ideals preserved by the Steenrod operations. The initial motivation 
appears to have been to remove technical restrictions from the type of results obtained by 
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Thomas mentioned earlier, the strategy was to use partial information on the action of the 
cyclic reduced powers to define secondary operations and then apply them to gain more 
information about the powers. Zabrodsky did not develop his ideas fully and this was done 
later by Lin and Kane; they and others added significant technical advances needed in the 
proof of the conjecture. The result is so elegant and important that one hopes that a more 
accessible proof will be found. 

3. Finite loop spaces 

Since the 1980s, much of the activity in finite ^-space theory has concentrated on finite 
loop spaces, and more particularly their classifying spaces. Of course, if X is a finite loop 
space, ^BX :^ Z. At about the time when Thomas was considering truncated polyno
mial algebras over the mod 2 Steenrod algebra, N. Steenrod raised the general question of 
the classification of polynomial algebras over the algebra of cycHc reduced powers; this 
became known as the "Steenrod Problem". (There are variants of this problem, but this is 
the version on which Steenrod himself worked.) We have noted above that if X is a finite 
loop space and //*(X, Z) has no p-torsion, then / /*(5Z, Z/pZ) is such a polynomial 
algebra. Another well known example was (Z/pZ)[x2n] when n\p — 1 with an action of 
the reduced powers which is essentially unique. A space was constructed by R. Holszager 
and D. Sullivan [22, 45] whose cohomology ring realises this polynomial algebra. When 
n\p — X.ZjnZ is a subgroup of Z/(/? — 1)Z, which is the group of units in the jp-adic 
integers Zp. So Z/nZ acts freely on a suitable Eilenberg-Maclane complex K{Zp,2). 
Letting X denote the quotient space under this action, one has 

//*(X, Z/pZ) = (Z//7Z)[r]^/"^ = {Z/pZ)[x2nl 

A. Clark and J. Ewing [11] observed in 1974 that this construction can be generahsed. 
If G is a finite subgroup of GLn(Zp), it acts freely on A^(Z^, 2) x EG in the standard 
manner, where EG is a contractible free G-space. Denoting the quotient space by XG, 
/ / * ( X G , Z/pZ) = {Z/pZ)[tut2,..., tnf^ They were able to characterise all G which 
gave rise to a polynomial algebra, when the order of the group G was prime to p, as 
p-adic reflection groups. They also classified the /7-adic reflection groups, using an ear
lier classification of complex reflection groups by G. Sheppard and J. Todd into 37 ir
reducible famihes. In the converse direction, Adams and Wilkerson developed in [3] a 
Galois-theoretic approach for polynomial algebras over the Steenrod algebra at odd primes. 
It was deduced that provided p is prime to the degree of each polynomial generator xi in 
(Z/pZ)[x\,X2,..., Xn], then this latter is one of the polynomial algebras realised by the 
Clark-Ewing construction. Later work of W. Dwyer, H. Miller and C. Wilkerson [14] 
showed that there was a unique /7-complete space realising these polynomial algebras, 
which had therefore to be the Clark-Ewing example. (The condition of p-completeness is 
certainly essential, [35].) 

The work has been extended to the modular case, that is when the degree of some gener
ator of the polynomial algebra is divisible by p. Dwyer, Miller and Wilkerson have shown 
that provided there exists a space Y with H*{Y, Z/pZ) = (Z/pZ)[xi, ^2, • •, Xn], then 
this polynomial algebra is again the ring of invariants of a /?-adic reflection group. The 
hypothesis here is stronger than just requiring that there is an action of the Steenrod al
gebra. However, the Clark-Ewing construction does not realise these examples. Other 
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techniques have been appHed successfully to reaHse examples. A key development was 
provided by S. Jackowski and J. McClure (later with B. Oliver) who showed how to con
struct classifying spaces for compact Lie groups from the classifying spaces of appropri
ate proper subgroups [26]. This construction was generalised by Dwyer and Wilkerson 
to find examples in the modular case. This takes us towards the topic of p-compact Lie 
groups [15], which without doubt has been the most exciting development in //-space 
theory for many years. However, it is certainly not history, and so we refer to [38] for 
a short survey of recent results. Here we mention just one theorem which is relevant to 
the contents of Section 2. There exists a 2-complete loop space X with //*(X, Z/IZ) = 
(Z/2Z)[x7,xii,xi3]/(x7,x^j,^^3), [16]. One can replace the 2-complete space by a 2-
local space and using homotopy mixing techniques, construct a simply-connected finite 
//-space with this same cohomology ring. It is certainly not an example known classically 
and is essentially the only new mod 2 finite //-space which has been constructed. 
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Introduction 

Rational homotopy theory is the study of topological spaces "modulo torsion". When ra
tional homotopy theorists calculate algebraic invariants of a topological space, such as 
its homotopy or homology groups, they retain only the nontorsion information. Algebraic 
models of topological spaces are the most important tools of the rational homotopy theorist. 

To understand more precisely the objects studied in rational homotopy theory, recall that 
a space E is rational if its homotopy groups 7r*(£') form a graded rational vector space. 
Any simply-connected or nilpotent space E has a rationalization, consisting of a rational 
space £"0 together with a continuous map (p: E -^ EQ inducing an isomorphism on rational 
homotopy groups 

7tA(p) 0 Q: 7r*(£) 0 Q -^ 7T^{Eo) 0 Q. 

Two spaces are rationally homotopy equivalent if their rationalizations are homotopy 
equivalent. Rational homotopy theory is the study of topological spaces up to rational ho
motopy equivalence. 

Rational homotopy theory is a relatively young branch of algebraic topology, founded by 
D. Quillen and D. Sullivan at the end of the 1960's. To understand what inspired Quillen 
and Sullivan, however, it is necessary to dig deep into the past of topology, as far back 
as the work of H. Poincare at the end of the last century, which is where this history 
begins. 

In the first section of this history we trace the developments in algebraic topology which 
prepared the ground for the foundation of rational homotopy theory. The guiding principle 
behind these developments, implicit in the work of Poincare and explicitly stated in that of 
E. Cartan and G. de Rham, is that one can study the algebraic topology of a differentiable 
manifold via its differential forms. Application of this principle led in the 1950's to the first 
utilisation of algebraic models for solving topological problems. 

We devote the second section to the seminal work of Quillen and Sullivan that laid the 
foundations of rational homotopy theory, as well as to the first important applications of 
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their work. Quillen proved that the homotopy category of simply-connected rational spaces 
was equivalent to the homotopy category of chain Lie algebras over the field of rational 
numbers, Q. Motivated by the guiding principle mentioned above, Sullivan defined a one-
to-one correspondence between rational homotopy types of simply-connected spaces and 
certain free commutative cochain algebras. Their work established the theoretical basis for 
the use of algebraic models in solving problems in rational homotopy theory. 

In the third section we meet the artisans who extended and refined the tools of ratio
nal homotopy theory provided by Quillen and SuUivan and who proved the fundamental 
structure theorems necessary to its further development. During almost a decade, rational 
homotopy theory expanded and evolved rapidly, though it remained in "splendid isolation" 
from much of the rest of mathematics. 

As we explain in Section 4, rational homotopy theorists formed dynamic collaborations 
in the early 1980's with local algebraists, leading to remarkable results in both fields. The 
techniques learned through these collaborations enabled rational homotopy theorists then 
to expand further into mod p homotopy theory, where they have made substantial contri
butions to the study of the homology of loop spaces. 

Those interested in learning more about the methods and scope of rational homotopy 
theory can refer to the books of Griffiths and Morgan [54] and of Halperin [65], as well 
as to the monograph in the Asterisque series of Lehmann [80]. Moreover, a self-contained, 
complete introduction to rational homotopy theory and its applications by Felix, Halperin 
and Thomas is available in preprint form [44]. 

I hope that this history of rational homotopy theory will please all of those directly 
concerned at least some of the time, though I dare not hope to please even some of them all 
of the time. I extend heartfelt thanks to all who took the time to share their knowledge of 
and experience with rational homotopy theory with me: Luchezar Avramov, Hans Baues, 
Ed Brown, Yves Felix, Pierre-Paul Grivel, Andre Haefliger, Steve Halperin, Peter Hilton, 
Daniel Lehmann, Jean-Michel Lemaire, Clas Lofwall, John McCleary, Jan-Erik Roos, Jim 
Stasheff, Dennis Sullivan, Daniel Tanre, Jean-Claude Thomas, and Micheline Vigue. 

Terminology and notation 

• Q denotes the field of rational numbers, while R denotes the field of real numbers. 
• If M is a differentiable manifold, Q^^{M) denotes the de Rham complex of M. 
• A quasi-isomorphism of differential graded objects is a graded morphism commuting 

with the differential that induces an isomorphism in (co)homology. 
• A {co)chain algebra is a (co)chain complex (A, d) endowed with an associative product 

/x : (A, J) (8) (A, J) "> (A, J) that is a map of (co)chain complexes. A (co)chain algebra 
is commutative if a • b =^ (_i)cieg«deg^7^ . ̂  ^ j , ^̂ ^ a,b e A. 
A free commutative cochain algebra generated by a positively graded vector space V = 
0-^Q V^ is denoted (AV, d), where A V is the tensor product of the polynomial algebra 
on y^^^" and the exterior algebra on y^dd ^ ^ denote by A'V the elements of AV 
of wordlength / and by di the summand of the differential d increasing wordlength by 
exacdy / — 1. 

• A chain Lie algebra over a subring of Q containing \ consists of a positively graded 
chain complex (L, d) together with a product denoted [, ] such that 

[a,/?] = -(-l)^^g^^^g^[/7,fl] 
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for all a,b e L, [a, [a, a]] = 0 for all a e Lodd, and 

(_l)degadegc[^^ [/?, c]] + (-l)^'S^^'S^[fe, [c, a]] 

for all a, b,c e L. 

1. The vanguard 

When Quillen and Sullivan laid the foundations of rational homotopy theory at the end of 
the 1960's, they were inspired by the evolution in thinking about the algebraic topology of 
manifolds that had occurred since the end of the 19th century. In this section I describe this 
evolution and explain its importance in the foundation of rational homotopy theory. 

In preparing this section, I benefited greatly from reading Sullivan's article [102], Hae-
fliger's article [62], and the Notes at the end of the book of Greub, Halperin and Vanstone 
[52], as well as from conversations with John McCleary and a long letter from Andre Hae-
fliger. 

1.1. Establishing the foundations 

Henri Poincare made one of the first, crucial steps towards rational homotopy theory when 
he studied the commutative cochain algebra structure of the differential forms on a mani
fold in his 1895 article Analysis situs [89]. Therein he explained that one can obtain infor
mation about the topology of a manifold M by considering the exterior algebra generated 
by the 1-forms on M together with the usual exterior differential, i.e. what is now known 
as the de Rham complex of the manifold, denoted f2^^(M). 

Poincare applied this idea to understanding the Betti numbers of manifolds. At that time, 
the kth Betti number of an m-dimensional manifold M, denoted here fik ( ^ ) , was defined to 
be the greatest integer n for which there exist /:-dimensional submanifolds M\,..., Mn-i 
of M such that the boundary of no (k +1)-dimensional submanifold is composed of copies 
of all of the M,'s. In other words, fik{M) — 1 is the maximal number of /:-dimensional 
submanifolds that are "linearly independent" over the integers, i.e. no integral "linear com
bination" of the submanifolds is homologous to zero. 

Poincare showed that ft (M) — 1 was an upper bound for the dimension of the image 
of the homomorphism induced by integration from the cohomology of .Q^j^(M) to (some
thing resembling) the real singular cohomology of M. He referred to the elements of a 
basis of this image as "periods". He indicated, furthermore, that the number of periods 
should in fact be equal to ft (M) — 1 but did not prove this equality explicitly. 

Inspired by Poincare's work, E. Cartan conjectured in 1928 that the homomorphism 
induced by integration described in the previous paragraph was actually an isomorphism. 
Based on this conjecture, he then proved that the first two Betti numbers of a compact, 
semisimple Lie group G are zero, while its third Betti number is necessarily nonzero [26]. 
The key to his proof is the important observation that the cohomology of ^^^(G) is the 
same as that of its subalgebra generated by left-invariant 1-forms. 
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The following year de Rham proved Cartan's conjecture, which has been known ever 
since as de Rham's theorem. He announced this result in [32], providing details of the 
proof in [33]. De Rham's theorem was absolutely crucial to the future development of ra
tional homotopy theory. As we explain in Section 2, de Rham's theorem provides the link 
between differential forms and algebraic topology that allows the construction of commu
tative cochain algebra models for spaces over the rationals. 

Also in 1929 Cartan used de Rham's theorem to generalize his earlier results, showing 
that if M is a symmetric homogeneous space acted upon by a connected, compact Lie 
group G, then the real cohomology of M is isomorphic as an algebra to the algebra of 
G-invariant differential forms on M [27]. Thus the calculation of the real cohomology of 
M reduces to a calculation of invariants. 

In 1939 Heinz Hopf continued the investigation of the cohomology of Lie groups, show
ing that the real cohomology algebra of a compact, connected Lie group G is always an 
exterior algebra on odd generators [75]. His proof rehes on the observation that ^*(G; M) 
is in fact a Hopf algebra, which imposes strong restrictions on its algebra structure. Shortly 
thereafter, H. Samelson apphed Hopf's methods to studying the real cohomology of ho
mogeneous spaces [95]. 

1,2. The first explicit algebraic models 

The second phase of the evolution that led to the inception of rational homotopy theory be
gan at the end of the 1940's, when several prominent topologists became very interested in 
algebraic models for topological spaces over the reals. Given a certain class of spaces, e.g., 
connected, compact Lie groups or total spaces of principal bundles, their goal was to find 
a formula for commutative cochain algebras whose cohomology algebras were isomorphic 
to the real cohomology of spaces belonging to the given class. 

Guy Hirsch. Hirsch was one of the first topologists to experiment with algebraic models 
of spaces, in a series of articles pubHshed between 1948 and 1956, of which the most 
important are probably [72] from 1948, [73] from 1950, and [74] from 1953. His goal was 
to determine the algebra structure of the cohomology of the total space of a fiber space, 
given the cohomology algebras of the base and the fiber. 

His first step towards this goal consisted in the definition of a degree 4-1 "characteristic 
isomorphism" from a quotient of a subgroup of the cohomology of the fiber onto a quotient 
of a subgroup of the cohomology of the base [72]. In modern language, this is essentially 
the transgression map. He then claimed that this "characteristic isomorphism" together 
with the cohomology algebras of the base and the fiber should be enough to determine the 
cohomology of the total space. 

In his paper in the Proceedings of the 1950 ICM [73], Hirsch showed more clearly 
how one could obtain the additive structure and part of the multiplicative structure of the 
cohomology of the total space from the "characteristic isomorphism" together with the 
cohomology algebras of the base and the fiber. In addition he explained what sort of extra 
information about the fiber bundle might allow one to compute the entire algebra structure 
of the cohomology of the total space, e.g., the characteristic classes of a sphere bundle 
over the orthogonal or unitary group as determined by the multiplicative structure of the 
auxiUary bundle. 



A history of rational homotopy theory 761 

It is probably in his 1953 paper [74] that Hirsch worked most explicitly with algebraic 
models. Therein he considered Serre fibrations with path-connected base B and fiber F of 
finite type such that the fundamental group of the base acts trivially on the cohomology 
of the fiber. He showed that over a field K, one can define an extension of the singular 
cochains on the base, 

(C*(5; IK), d) ^ (C*(5; K) 0 / /*(F; K), D), 

together with a morphism of cochain complexes inducing an isomorphism in cohomology 

(C*(B; K) (8) / /*(F; K), D) -> C*(£; K). (1) 

Claude Chevalley and Samuel Eilenberg. Chevalley and Eilenberg provided further im
petus for the interest in algebraic modelling with their important 1948 paper [35], in which 
they used de Rham's theorem to show that, over a field of characteristic zero, the coho
mology of a compact Lie group is isomorphic as an algebra to the cohomology of the 
corresponding Lie algebra. They defined the cohomology of a Lie algebra g to be that of a 
certain cochain algebra C'i^) whose underlying algebra is the exterior algebra on the dual 
of g, denoted g. The formula for the differential of C*(g), now well known, came from 
pushing forward formulas that were already known for the differential on the left-invariant 
forms on a compact Lie group. 

As applications of the isomorphism between the cohomology of a Lie group G and that 
of its associated Lie algebra g, Chevalley and Eilenberg generalized the results of Cartan 
on Betti numbers and of Hopf on the algebra structure of the cohomology to semisimple 
Lie groups. They showed as well that the cohomology of a semisimple Lie algebra is 
isomorphic to the algebra of aJ-invariant cochains in C'i^). 

Chevalley and Eilenberg further defined the relative complex C^i^, f}) of a pair of Lie 
algebras f) C g. They showed that the cohomology of G/H, where G is compact and 
connected and / / is a closed, connected subgroup of G, is isomorphic to the cohomology 
of C*(g, [)), where g and \) are the Lie algebras corresponding to G and / / , respectively. 

Jean-Louis Koszul Also at the end of the 1940's, Koszul was working on his thesis, 
in which he intended to prove the theorems of Hopf and Samelson by purely algebraic 
means [78]. With this goal in mind, he, too, defined a cochain algebra for calculating the 
cohomology of a Lie algebra, though over a field of any characteristic other than 2. Its 
underlying algebra was again the exterior algebra on the dual of the Lie algebra, and its 
differential differed from that of the cochain algebra of Chevalley and Eilenberg only up to 
multiplication by an integer. He showed that also with this somewhat modified definition, 
the real cohomology of a compact Lie group was isomorphic to that of its associated Lie 
algebra, which enabled him to reprove Hopf's theorem. 

In writing his thesis Koszul also studied the relative complex C''{^,\)) of a pair of Lie al
gebras f) C g, defined, as in the paper of Chevalley and Eilenberg, to be the subcomplex of 
C* (g) consisting of those cochains annihilated by interior products and Lie derivatives by 
elements of f). Using this definition he reproved the results of Samelson on homogeneous 
spaces. 

Inspired by Hirsch's work on the cohomology of fiber spaces [72], Koszul introduced 
the notion of transgression in the context of pairs of Lie algebras. Let \) C g be a pair of 
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Lie algebras. Then a class a e H^(l)) is transgressive if it has a cochain representative 
a € C^([)) that is the restriction to f) of a cochain b G C^Cg) such that JZ? 6 C^^^ (g, f)). 
The transgression of the class a is then the class [db] e H^^^(Q, [)). Koszul proved that 
every primitive element of //*([)) is transgressive. 

Henri Cartan. The next major advances in algebraic modelling appeared in the two 
papers by H. Cartan and in the paper by Koszul based on talks that they gave at the 
1950 Colloque de Topolog ie in Brussels [28, 29, 79]. The two papers by Cartan, in 
which he presented work done both alone and in collaboration with Weil, contain an as
tounding wealth of information; the review in Mathematical Reviews written by Cheval-
ley fills more than two pages! In the paragraphs below, I attempt to present a succinct 
outline of these two important and imposing papers, while still doing justice to their 
depth. 

Cartan first considered smooth principal bundles with total space E and base B over a 
Lie group G with associated Lie algebra g. He defined a form on E to be invariant if it 
was annihilated by ad(x), for all x G g and to be basic if, in addition, it was annihilated by 
all interior products. He then generalized the result of Chevalley and Eilenberg and Koszul 
on the cohomology of Lie groups, proving that the inclusion of the invariant forms into 
Q^^(E) induces an isomorphism of algebras in cohomology. 

Since Cartan's goal in these papers was to reduce topological problems concerning prin
cipal bundles to pure algebra, he needed an algebraic equivalent of the bundle connection, 
introduced by E. Cartan and studied by Weil and Ehresmann. He defined an algebraic con
nection of a principal G-bundle to be a linear map / from g into the 1-forms on E, commut
ing with all interior products and fl<i(x)-derivations, for all jc G g. Algebraic connections 
exist for all smooth principal bundles, according to results of Weil and Ehresmann. An 
algebraic connection / can always be extended to a map of algebras / : C*(g) -> Q*(E), 
though / will usually not commute with the differentials. The deficiency df — fd is the 
curvature tensor. 

Given any Lie group G with corresponding Lie algebra g, Cartan constructed an exten
sion of cochain algebras 

C\g) - (A(g), d) ^ (A(g) 0 P[SQI D) = W(G), 

where A is the exterior algebra functor, P the polynomial algebra functor and s the sus
pension. The cochain algebra W(G) is called the Weil algebra of G. He proved that for all 
algebraic connections / : g ^^ ^ ^ (E), the linear map 

/ = / 0 / : W ( G ) - > ^ * ( E ) , 

where f(sx) = (df — fd){x) was actually a map of cochain algebras. Furthermore, 
g acts on W(G) by both interior products and aJ-derivations, in a way compatible with / . 
Cartan observed that W{G) is a sort of universal cochain algebra for principal fibrations 
over G. 

Cartan's first application of the Weil algebra was to finding the characteristic classes of a 
principal bundle. He observed that the basic elements of W(G) were exactly the invariant 
elements of P[5g], which are all cocycles. In addition, since / is compatible with both 
types of derivations, it must send basic elements to basic elements, i.e. the basic elements 
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of W(G) are sent to ^ D R ( ^ ) t>y / • The images of the basic elements of W(G) in H*{B; R) 
are the characteristic classes of the fiber bundle. 

Cartan next applied the Weil algebra to generaUzing the notion of transgression. Fol
lowing Koszul's example, he defined an element of //*(0) to be transgressive if it had 
an invariant representative that was the image under projection of an invariant element in 
W{G) with basic coboundary. Since W{G) is acychc, he could then define a transgres
sion map from the transgressive elements of //*(0) to the algebra of basic elements in 
W(G), sending a transgressive element to the coboundary of an element in the preimage 
of the projection from the invariants of W{G) onto the invariants of C'i^). Based on this 
definition, Cartan and Chevalley proved an extension of Koszul's theorem that had been 
conjectured by Weil, showing that if 9 is reductive (i.e. the direct product of an Abehan 
Lie algebra and a semisimple Lie algebra), then the transgressive elements of //*(g) are 
exactly the primitives. 

The last, important results from Cartan's papers mentioned here concern explicit al
gebraic models that he constructed for the total space E and the base space 5 of a 
smooth principal G-bundle, when g is reductive. His first such construction, of a model 
for E when G is compact and connected, takes as input a given transgression map and 
algebraic connection. For these data he produced a formula for a cochain algebra ex
tension of Q^^{B) by the invariants of C*(g), together with a quasi-isomorphism to 

Drawing on results of Hirsch, Cartan also constructed a model for B when G is con
nected and compact or when E is finite dimensional and g is reductive. In this case he de
fined a cochain algebra extension of the algebra of basic elements in W{G) by / /*(£; M) 
that had the same cohomology algebra as Q^^{B). As a corollary, Cartan showed that if 
G is compact and H a closed, connected subgroup of G, then a certain cochain algebra 
extension of the algebra of basic elements in W{H) by the invariant elements in C*(g) is 
a model of G// / . 

Cartan only sketched the proofs of many of his results in [26, 27]. In his thorough and 
precise article of 1962 [6], Michel Andre filled in all of the missing details. 

Also well worth perusing is Koszul's paper from the 1950 Colloque de Topologie, 
from which the following points are relevant to our desire to understand the evolution 
of rational homotopy theory. The first is Koszul's explanation of an algebraic theorem, 
due to Chevalley, which implies that the cohomology algebra of the total space of a 
principal fibration is entirely determined by the transgression and the structure of the 
base. 

Second, it is important to note that Koszul defined his famous resolution in this paper. 
Given a smooth principal G-bundle, where G is compact and connected, let xi, . . . , JC/ form 
a basis of the primitives of //*(G; R). The de Rham complex of B is then a differential 
module over the polynomial ring on generators of degree 2, 5 = P[c\,..., c/], which 
is exactly the real cohomology of the classifying space BG. The Koszul resolution of 
/ /* (5 ; R) is then the cochain algebra extension {H'^iB; R) (g) A{x\,..., JC/), D ) , where 
D(b <S> Xi) = bci (g) 1 for all /. The cohomology of this cochain algebra is isomorphic to 
i /*(£;R). 

Rene Thorn. According to Haefliger, one could argue that Thom's article in the 1954/1955 
Cartan seminar [108] represents the "first conscious step towards rational homotopy the-
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ory". In that article Thorn considered pull-back diagrams 

Qf ^P^K{Kn) 

p 

f ^ 
> K(R,n) 

in which K(R, n) is a real Eilenberg-Mac Lane space, and p is the (based) path-space fi-
bration. One important difference between the problem Thom considered and those studied 
by Chevalley, Eilenberg, Cartan, Koszul, and Weil is that Thom no longer required spaces 
to be smooth or even differentiable. 

Thom's goal was to compute the real cohomology algebra of 2 / in terms of the real co-
homology algebra of E and the real homotopy type of / . He explained that one approach 
to solving this problem would be to apply Hirsch's theory and outlined how to proceed. 
He noted that there remained one major obstacle to carrying out his plan: Hirsch's mor-
phism (1) is not guaranteed to induce an isomorphism of algebras unless there are com
mutative cochain algebras that can be used to compute the cohomologies of all the spaces 
involved. Thom conjectured that, at least over R and for a fairly large class of spaces, such 
as CW-complexes, it should be possible to find such cochain algebras, noting that the result 
was known for finite polyhedra, as they are retracts of differentiable manifolds, for which 
one can take the de Rham complex. On the other hand, even then not all the difficulties 
would be resolved, since Hirsch reUed on the Leray spectral sequence of a fibration to 
prove that his morphism induced an isomorphism, and the Leray spectral sequence applied 
only to singular cochains. 

Thom had put his finger on the central, foundational problem of rational homotopy the
ory: how to associate canonically to each "nice" topological space a commutative cochain 
algebra whose cohomology algebra is isomorphic to that of the space, so that the associ
ation allows one to establish an equivalent of Hirsch's theory. This is what Quillen later 
referred to as "Thom's problem". 

Another paper by Thom along similar lines appeared in the proceedings of the 1956 Col-
loque de Topologie in Lou vain [109]. In that paper he investigated the homotopy groups of 
mapping spaces, proposing again to use Hirsch's theory extended to multiplicative struc
ture. In particular, he proposed an algorithm for construction of a cochain algebra describ
ing the rational homotopy type of the space of maps with fixed source and target, homo-
topic to a given map. Haefliger later implemented this algorithm in order to verify a claim 
of Sullivan; see Section 3.2. 

In the summer of 1957, Thom taught a course at the University of Chicago in which he 
solved the problem of his 1954 paper over R. He estabUshed the existence for any space E 
of a commutative cochain algebra over R, the cohomology algebra of which is isomorphic 
to //*(£"; R). His proof was based on verifying the Eilenberg-Steenrod axioms on the 
cohomology of the model. Almost 20 years later Swan generalized Thom's construction so 
that it applied also over Q; see Section 2.3. 

Frank Adams and Peter Hilton. Adams and Hilton also made remarkable contribu
tions to algebraic modelling in the mid 1950's, though of a different nature than the 
work cited above. Given a CW-complex E with one 0-cell and no 1-cells, they showed 
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how to construct a free, associative (tensor) chain algebra (A, d), together with a quasi-
isomorphism of chain algebras {A,d) -> CU^{QE), where CU^ denotes the 1-reduced 
cubical chains [2]. The generators of the free algebra A are in the one-to-one correspon
dence with the cells of £", while the differential d encodes the attaching maps quite ex
plicitly. Thus, the Adams-Hilton model has the advantage of being both small, i.e. with 
relatively few generators, and expHcidy defined. Detailed computations of the homology 
of loop spaces via the Adams-Hilton model are therefore entirely possible. The Adams-
Hilton model has proven to be one of the most useful tools in rational homotopy theory. 

Shortly after his work with Hilton, Adams defined another important algebraic model 
for studying loop spaces [1]. For any simply-connected space £", he showed that there was 
a quasi-isomorphism of chain algebras from the cobar construction on C*£, the singular 
chains on E, to C^{QE). Adams's cobar model has also proven to be of great use in 
rational homotopy theory. 

John Tate. Among the algebraic model builders of this period we should include the 
algebraist Tate, whose research during the 1950's led him to construct algebraic models 
similar to those constructed by the topologists mentioned above. In 1957 Tate published 
a paper in which he calculated Tor^(/?/M, R/N), where /? is a commutative Noetherian 
ring and R/M and R/N are residue class rings [107]. His calculation involved construct
ing free /?-resolutions of R/M and R/N that were actually free, commutative cochain 
algebras over R. The construction proceeded by inductive, degreewise adjunction of new 
variables. As Tate himself mentioned in his article, this method was well known to the 
topological model builders of the time, since it was based on the Postnikov decomposi
tion of spaces initiated by John Moore. The connection between commutative algebra and 
algebraic modelling of topological spaces is a recurrent theme throughout the history of 
rational homotopy theory, as later sections of this history confirm; see, in particular. Sec
tion 4.2. 

1.3. Further algebraic groundwork 

Though not directly concerned with algebraic modelling of spaces, the work of Milnor 
and Moore, as well as that of Serre, in the mid 1950's strongly influenced the genesis and 
development of rational homotopy theory. 

John Milnor and John Moore. The monumental paper of Milnor and Moore [87], which 
began circulating in preprint form in the middle of the 1950's, has played a decisive role 
in the development of rational homotopy theory. The existence of a precise, complete de
scription of graded algebras, coalgebras. Lie algebras and Hopf algebras, as well as of the 
universal enveloping algebra functor U, most probably facilitated Quillen's work on es
tablishing an equivalence between the homotopy category of rational spaces and that of 
chain Lie algebras over Q. It has also proved of crucial importance in the last decade, since 
rational homotopy theorists began applying their techniques to the study of the homology 
Hopf algebra of loop spaces over a field of positive characteristic; see Section 4.3. 

The last theorem in the paper, stating that if G is a path-connected, homotopy associa
tive //-space then the Hurewicz homomorphism 7r*(G) 0 Q ^- //*(G; Q) induces an 



766 K. Hess 

isomorphism of Hopf algebras 

(/(7r*(G)®Q)->//*(G;Q), 

has inspired much research in rational homotopy theory; see, for example, Section 4.3. In 
explaining the proof of this theorem, Milnor and Moore pointed out that the /:-invariants of 
the Postnikov decomposition of a rational //-space were all zero, a remark that ties in with 
the work of Sullivan, whose algebraic models of rational spaces are based on Postnikov 
decompositions; see Section 2.2. 

Jean-Pierre Serre. Serre's 1953 paper on homotopy groups and classes of AbeHan groups 
[96] was crucial to solidifying the foundations of rational homotopy theory, as he provided 
a precise definition of what it meant to "forget torsion" and study only the nontorsion 
homotopy and homology of a space. 

Serre defined a class of Abelian groups to be a nonempty collection C of Abelian groups 
such that 

(1) the trivial group is in €; 
(2) all subgroups and quotients of a group in € are also in €; and 
(3) every extension of two groups in £ is in C 

He then define various £-versions of notions from the usual theory of Abelian groups. For 
example, a homomorphism of Abehan groups is a ^-isomorphism if its kernel and cokernel 
are in (t. Rational homotopy theory is thus homotopy theory modulo the class of all finite 
Abelian groups, (t/; a weak rational homotopy equivalence is a continuous map inducing 
a C/-isomorphism on homotopy groups. 

Once he had defined his terminology, Serre proved "mod C" versions of the Hurewicz 
theorem and the Whitehead theorem, both of which are important tools to rational homo
topy theorists. He then apphed his "mod C-theory to various topological problems. Of 
particular relevance to rational homotopy theory is his proof, based on Hopf's theorem 
[75] (see Section 1.1), that for any compact, connected semisimple Lie group G, there is a 
weak rational homotopy equivalence from G to a wedge of odd spheres. 

1.4. The geometric groundwork 

To be complete, a description of the research leading up to the foundation of rational homo
topy theory should mention the work of Hassler Whitney on geometric integration theory. 
Whitney's beautiful book [110], in which he presented a clear, axiomatic approach to in
tegration of forms over chains, played an important role in the development of Sullivan's 
approach to rational homotopy theory, which is based on a rational, piecewise-linear ver
sion of de Rham's theorem (cf. Section 2 for further details). 

In the introduction to his book Whitney wrote that he wanted to answer the question 
"what should r-dimensional integration on n-space 'look like'?". Starting from the per
ception of an integral as an integrand evaluated on a domain, he gradually introduced 
stronger and stronger continuity-type conditions on the behavior of the integral. Under 
strong enough conditions, he defined the pointwise differential of the integrand and showed 
that the value of the integrand evaluated on a cell is equal to the integral over the cell of its 
pointwise differential. 

Based on the input necessary to the definition of pointwise differentials, Whitney then 
introduced the exterior (Grassmann) algebra of vectors on n-space and its dual, the exterior 
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algebra of covectors, or differential forms, on the ambient space. The pointwise differential 
of an integrand is the canonical example of a differential form. 

Whitney further showed how a smooth mapping from ^z-space to m-space induces an ho-
momorphism of algebras on the algebras of vectors, leading directly to natural definitions 
of the pullback of covectors and of the Jacobian. He explained, moreover, how Stokes' 
Theorem also fits naturally into this abstract context, giving rise to the differential on the 
algebra of forms. 

One last, important contribution Whitney made in his book was in presenting a straight
forward, vivid explanation of de Rham's theorem within the context of geometric integra
tion theory. 

1.5. Postscript 

In the research outlined above, almost all of the groundwork necessary to the inception of 
rational homotopy theory had been carried out. Why then was there a more than ten-year 
hiatus between the last results mentioned above and the foundation of rational homotopy 
theory by Quillen? It is probable that the spectacular and promising advances of Armand 
Borel in the mid 1950's, translating into purely topological terms the algebraic methods 
of Cartan, Chevalley, Koszul and Weil, contributed greatly to diverting the attention of the 
topological community from the path of algebraic modeUing. 

2. The architects 

After a quiescent period starting in the late 1950's, interest in algebraic modelUng of topo
logical spaces started to pick up again in the late 1960's. All the pieces of rational homotopy 
theory suddenly fell into place. Our goal in this section is to present the major innovators 
and their innovations of those crucial foundational years. In addition to the literature cited, I 
relied on long discussions with Steve Halperin and on a helpful letter from Dennis Sullivan 
in preparing this section. 

2.1. The renaissance of algebraic modelling 

Shortly before the actual blossoming of rational homotopy theory, algebraic models of 
topological spaces came back into fashion. To cite an important example, in an article 
published in 1970 [24], Raoul Bott apphed the models of Cartan, Chevalley, Koszul and 
Weil for principal fibrations to determining the obstruction to complete integrability of 
planar vector fields. 

Also in the mid 1960's, Werner Greub, Steve Halperin and Ray Vanstone began working 
on a three-volume study of the de Rham cohomology of smooth fiber bundles [52]. The 
first two volumes of the series cover the differential geometry of smooth manifolds and 
vector bundles, as well as the theory of Lie groups and principal bundles. The third volume 
is a careful, thorough exposition of the models of Cartan, Chevalley, Koszul and Weil. The 
techniques and terminology that Greub, Halperin and Vanstone elaborated in writing the 
third volume of their study proved to be most useful in the early stages of the development 
of rational homotopy theory. 
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2.2. The innovations ofQuillen and Sullivan 

In 1967 Daniel Quillen published Homotopical Algebra, presenting the topological and 
algebraic communities with a categorical, axiomatic framework in which to do homo-
topy theory [90]. In the introduction to Homotopical Algebra, he stated that his desire 
to compute the cohomology of commutative rings had led him to think of certain simpli-
cial categories as possessing natural "homotopy theories", inspired by Kan's equivalence 
between the homotopy categories of topological spaces and of semisimplicial complexes. 
The similarity of the arguments he had to make in each context to conventional topologi
cal arguments motivated him to define a category-theoretic notion of homotopy theory to 
cover simultaneously and uniformly the different notions of "homotopy theory" known at 
the time. 

Two years later Quillen demonstrated the tremendous power of his categorical frame
work for homotopy theory when he pubhshed Rational homotopy theory [91], the foun
dational paper in the subject. The main theorem in [91] states that the rational homotopy 
theory of simply-connected, pointed spaces is equivalent to the homotopy theory of chain 
Lie algebras over Q, as well as to the homotopy theory of 2-reduced cocommutative chain 
coalgebras over Q. Moreover, the equivalence is such that the homology of the chain Lie 
algebra corresponding to a given space E is isomorphic to the homotopy Lie algebra of E, 
i.e. 7T^{QE) 0 Q, endowed with the Samelson product. As a corollary Quillen obtained 
that every positively graded Lie algebra over Q was the homotopy Lie algebra of some 
space. He thus provided a positive answer to a question that he beheved was due to Hopf. 

Quillen showed as well that his equivalence of homotopy categories enabled him to solve 
Thom's problem of constructing a functor from spaces to commutative cochain algebras 
with the right cohomology algebra and the right properties with respect to fibrations. In
deed, the dual of the cocommutative chain coalgebra corresponding to a space £" is a com
mutative cochain algebra whose cohomology is isomorphic as an algebra to H*(E;Q). 
Furthermore, since the equivalence between homotopy categories is induced by a functor 
on the categories themselves that preserves the necessary structure, in particular the fibra
tions, Quillen's functor from topological spaces to commutative cochain algebras behaves 
correctly, in Thom's sense, with respect to fibrations. 

Further important results from [91] include the construction of a functor from the cat
egory of chain Lie algebras over Q to the category of 2-reduced cocommutative chain 
coalgebras over Q that generalizes the procedure for calculating the homology of a (non-
graded) Lie algebra and that is adjoint to the functor given by taking the primitives 
of the cobar construction. Quillen also derived several interesting spectral sequences 
of Lie algebras and of coalgebras from his fundamental equivalence. For example, if 
X -^ y is a cofibration of spaces, then there is a spectral sequence converging from 
E^ = (nA^X) 0 Q) e (7T:,(Q{Y/X)) 0 Q) to jr^(QY) 0 Q. 

Quillen's paper represents a crucial, essential step in the development of rational homo
topy theory, firmly establishing the theoretical justification of algebraic modelling as a tool 
for the investigation of the rational homotopy of spaces. On the other hand the proof of 
his main theorem, though constructive, had the disadvantage of providing unwield y alge
braic models. Performing actual calculations based on Quillen's models was impossible in 
practice. 

At the beginning of the 1970's Dennis Sullivan bridged the calculability gap. Motivated 
by a desire to understand the "true nature" of a diffeomorphism class of compact smooth 



A history of rational homotopy theory 769 

manifolds and inspired by both the algebraic models of the 1950's and Quillen's equiva
lence of homotopy categories, he defined a commutative cochain algebra model over any 
field of characteristic 0, dual to Quillen's cocommutative chain coalgebra model. 

Because of his interest in manifolds, Sullivan found it natural to base his constructions 
on differential forms in the sense of Whitney; see Section 1.4. In particular he wanted to 
understand the relationship between Quillen's cocommutative chain coalgebra model and 
the commutative cochain algebra of forms. In the process, he had to overcome three fun
damental difficulties. The first was that the algebra of forms is not of finite type, so that 
its dual is not a coalgebra. He remedied this problem by finding an algorithm for associat
ing to a given commutative cochain algebra (A, d) such that //*(A, d) is of finite type a 
free commutative cochain algebra that is of finite type and that has the same cohomology 
algebra as {A,d). Furthermore, the free commutative cochain algebra thus constructed is 
minimal, which, in the case H°(A,d) = Q,HHA,d) = 0, means that the differential of 
any generator of the free model is a sum of terms of wordlength at least 2. 

Sullivan's second problem was that differential forms are smooth, while his goal was 
to define models for all finite-type topological spaces, not only smooth manifolds. Fi
nally, he needed to be able to work over Q, even though de Rham theory is defined 
only over R. He resolved these two problems simultaneously by basing his models on 
the rational piecewise-linear (Whitney) forms on a simpHcial set. More precisely, given a 
space E, he considered the commutative cochain algebra AphiE) whose elements of de
gree p are functions commuting with face and degeneracy operations that assign to each 
singular n-simplex on £ a polynomial /?-form with rational coefficients on the standard n-
simplex. Whitney-type integration of forms then induces an isomorphism from H''APL{E) 

to //*(£•; Q), the rational, singular cohomology of E. 
Combining the two strategies mentioned above, Sullivan defined the minimal model of 

a space E to be the minimal commutative cochain algebra obtained via his algorithm from 
the algebra Ap\^(E) of rational piecewise-linear forms on the singular simplices on E. He 
then showed that this association defined a one-to-one correspondence between rational 
homotopy types of simply-connected spaces and isomorphism classes of minimal commu
tative cochain algebras over Q. 

Sullivan started developing his commutative cochain algebra models in the late 1960's. 
He published a preliminary summary of his results in 1973 [101], mentioning the influence 
of the algebraic models of the 1950's on his work. He stressed the possible geometric 
applications of his models, such as to the study of nonabelian periods on smooth manifolds. 

Sullivan wrote a second brief introduction to his models that appeared in 1976 [102]. The 
first part of the article is devoted to a succinct but informative account of the prehistory of 
rational homotopy theory, up through the work of Cartan and Koszul. In the second part 
Sullivan outlined further geometric applications of his models, including those that were 
later published in his joint articles with Deligne, Griffiths and Morgan and with Vigue; see 
Section 2.3. 

Sullivan's definitive, detailed exposition of commutative cochain algebras in rational 
homotopy theory appeared in 1977 [103]. His motivating philosophy was that "any rea
sonable geometric construction on spaces can be mirrored by a finite algebraic one with 
minimal models". As confirmation of this philosophy, he outlined algebraic constructions 
of minimal models corresponding to free loop spaces, path fibrations, universal fibrations, 
and spaces of sections of a fibration. 
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In [103] Sullivan explained as well the important dual Postnikov nature of the minimal 
model of a space E. When E is simply connected and of finite type, the generating graded 
vector space of its minimal model is isomorphic to \lomq{']X^E, Q). Furthermore, the dif
ferential of the minimal model very explicitly encodes the /:-invariants of the Postnikov 
decomposition of E. The result for a nilpotent space is somewhat more difficult to express 
succinctly, but of the same nature. 

2.3. First applications of Sullivan models 

Sullivan collaborated with Pierre Deligne, Phillip Griffiths, and John Morgan on the first 
major geometric apphcation of rational homotopy theory [31], showing that the real homo-
topy type of a compact Kahler manifold is a formal consequence of its real cohomology 
algebra. Their proof employed Sullivan's minimal models, as well as Hirsch theory for fi-
brations with free, transgressive fiber. In applying SuUivan's models to Kahler manifolds, 
they made expHcit and then exploited the notion that "the manner in which a closed form 
which is zero in cohomology actually becomes exact contains geometric information". 

Most rational homotopy theorists consider the article of Dehgne, Griffiths, Morgan and 
Sullivan to be one of the most significant papers in the field. Not only is the geometric re
sult presented of great interest, but the article also contains a very nice introduction to the 
theory of Sullivan's minimal models. In particular, the authors provided a clear and thor
ough explanation of the relationship between the minimal model and the rational Postnikov 
tower of a space. 

The second major geometric application of Sullivan's models was to estabhshing the 
existence of infinitely many closed geodesies on a closed, compact, simply-connected Rie-
mannian manifold whose rational cohomology has at least two generators [104]. Sullivan 
proved this result in 1974 together with Micheline Vigue, who was at that time a doctoral 
student in Paris. Their proof is based on a theorem of Gromoll and Meyer that states that 
if the rational Betti numbers of the free loop space on a manifold are unbounded, then 
there are infinitely many closed geodesies on the manifold [55]. To apply the theorem of 
Gromoll and Meyer, Sullivan and Vigue first constructed a Sullivan model for the free 
loop space E^ on any simply-connected space E of finite type. They then showed that if 
H'^iE; Q) requires at least two algebra generators, then the rational Betti numbers of E^ 
are unbounded. 

2.4. Parallel developments 

While Sullivan was working on developing and refining his models of rational spaces, 
Kuo-Tsai Chen was persuing a different path towards a similar objective [30]. For a 
given simply-connected, finite-dimensional differentiable space E, Chen applied analyt
ical methods to constructing a chain algebra quasi-isomorphic to the real chains on ^E, 
the based loop space on £". 

He considered derivations d of degree — 1 of the free algebra A on the desuspension 
of the H-^(E; R); showing that those to which one can associate SL formal power series 
connection satisfying a certain relation with 9 are in fact differentials on A, i.e. (A, 9) 
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is a chain algebra. Furthermore, there exists a quasi-isomorphism of cochain algebras 
CUi,{QE\ R) -^ (A, 9) defined via transport of iht formal connection. 

We can give a cursory description of Chen's construction, in more modern and less 
analytic language than that of his original description, as follows. First, we can interpret a 
formal power series connection oo either as an element of the completed tensor product of 
the differential forms on E with A or as an R-linear map from the coalgebra C dual to A 
into the algebra of differential forms on £". In the second interpretation, we consider the 
dual 9 of 9, which is a coderivation on C The relation to be satisfied then becomes 

&co-{- a>d = fiico (8) o))A, 

where /x is the multipHcation of forms, A is the coproduct on C, and d is the differential 
on forms. In other words if a; is a twisting cochain with respect to 9, then iterated path in
tegration with respect to the forms composing co - the transport mentioned above - defines 
a quasi-isomorphism of cochain algebras CU^{QE\ R) ^- (A, 9). 

It is interesting to compare Chen's loop space model to that of Adams and Hilton, as 
well as to the cobar construction model of Adams; see Section 1.2. Like the model of 
Adams and Hilton, Chen's model has the advantage of having relatively few generators. 
Furthermore, given a couple (9, o)) such that a; is a twisting cochain in the sense defined 
above, there is an explicit formula for the quasi-isomorphism CU^{QE\ R) —> {A,d). 

In the introduction to [30], Chen observed that his results and those of Sullivan were 
closely related, since the rational homotopy of a space determines its rational loop space 
homology and vice-versa. This is the essence of the theorem of Milnor and Moore stated 
in Section 1.3. 

Victor Gugenheim was the first to describe Chen's formal power series connections in 
terms of twisting cochains, thus establishing a clear link with many other similar construc
tions, such as the bar construction. The theory of twisting cochains gradually developed 
into the field of homological perturbation theory. In [58], Gugenheim, together with Larry 
Lambe and Jim Stasheff, provided a detailed account of the role of Chen's formal power 
series connections in homological perturbation theory. The above description is based pri
marily on their account. Another interpretation, based on graded Lie algebras, appears in 
Daniel Tanre's book [106]. 

Also in the mid 1970's, Richard Swan developed another approach to obtaining a com
mutative cochain algebra over Q with cohomology isomorphic to that of a given space 
[105]. Inspired by Thom's construction of commutative cochain algebra models over R 
(see Section 1.2), Swan defined a functor C from the category of simphcial sets to the 
category of commutative cochain algebras such that 

//*(C(X)) = //*(X;Q), 

for all simphcial sets X, The elements of degree n in C{X) are morphisms of simphcial 
sets from X into a fixed simphcial Q-module L{n), consisting essentially of differential 
forms with polynomial coefficients on a canonical ^-dimensional affine hyperplane. 

Unlike Thom, who proved that his cochain algebra had the right cohomology via the 
Eilenberg-Steenrod axioms. Swan used the identification of cohomology classes with 
homotopy classes of maps into Eilenberg-MacLane spaces to show that //*(C(X)) = 
7/*(X; Q), for all simphcial sets Z. 
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3. The artisans 

Once Quillen and Sullivan had laid the foundations of rational homotopy, they turned their 
attention to other areas of mathematics. The departure of the architects did not mean, how
ever, that the structure of rational homotopy theory would never rise above its foundations. 
Even before Sullivan left the field in the middle of the 1970's, a number of enthusiastic 
topologists were hard at work, developing the tools of rational homotopy theory and prov
ing the fundamental structural theorems that would eventually form the basis of the deep 
results of the 1980's and 1990's; see Section 4. 

In this section we present the artisans who carried out the vital work of determining 
how and where to apply the theory of Quillen and Sullivan, and discuss some of their 
most important results. Long discussions with Steve Halperin, Yves Felix, Jean-Michel 
Lemaire, and Jean-Claude Thomas, together with helpful letters from Hans Baues, Pierre-
Paul Grivel, Daniel Lehmann, Daniel Tanre and Micheline Vigue, supphed the framework 
for this section. 

3.1. Building on Sullivan's foundations 

A fortuitous meeting of the minds occurred at the Cornell Topology Fest in 1970, when 
Dennis Sullivan discussed commutative cochain algebra models for rational spaces with 
Steve Halperin and Domingo Toledo. At the time Halperin and Toledo were studying prob
lems concerning characteristic classes, but were intrigued by Sullivan's ideas. Halperin, in 
particular, had already studied the Cartan-Koszul model for homogeneous spaces, and had 
learned about commutative cochain algebras and Koszul complexes from Greub. Sullivan's 
ideas now led him to wonder whether similar free cochain algebra models might exist for 
all spaces. Prompted by this query, Halperin and Sullivan worked out the correct definition 
of a minimal model together on the blackboard during the conference. 

Two years later, knowledge of Sullivan's models began to propagate through the topo
logical community, when Eric Friedlander, Phillip Griffiths and John Morgan taught a 
summer course on rational homotopy theory at the Istituto Matematico Ulisse Dini in Flo
rence. Griffiths and Morgan later published their course notes, thus producing the first real 
textbook in rational homotopy theory [54]. In 1973 Sullivan himself contributed to the 
spread of rational homotopy theory, when he taught a course on minimal models at the 
AMS summer meeting on differential geometry at Stanford and gave a talk on his models 
at International Conference on Manifolds in Tokyo. 

Sullivan's ideas began to spread quickly in 1974. That year Sullivan taught a semester 
course at the University of Paris at Orsay that covered the full development of his models. 
Proute and Marie attended Sullivan's course and took extensive notes that later circulated 
widely under the name Anonymous. Furthermore, at a conference in differential geometry 
held in Besse-en-Chandesse, France, Vigue gave a talk on her joint work with Sullivan on 
the closed geodesic problem (see Section 2.3), while D. Lehmann presented a summary of 
Sullivan's work on minimal models. 

In the autumn of 1974 the Troisieme cycle romand, a long-running weekly mathematics 
seminar in French-speaking Switzerland, was devoted to an exposition of Sullivan's theory 
presented by F. Da Silveira, P.-P. Grivel and A. Haefliger. Da Silveira and Grivel were both 
doctoral students of Haefliger, working of theses in rational homotopy theory. Haefliger 
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himself was in the process on applying Thorn's suggested method for construction of the 
model of a functional space (see Section 1.2) to verifying that the model Sullivan suggested 
in [103] was indeed correct [61]. 

It was also in 1974 that Halperin once again became involved in rational homotopy 
theory. At the invitation of Koszul, Halperin spent the year in Grenoble, on leave from the 
University of Toronto. During his stay he made a trip with J. Weil to Geneva, where he met 
Haefliger, with whom he discussed foliations and Gel'fand-Fuks cohomology. At lunch 
they were joined by Frank Peterson, who mentioned an interesting question that Sullivan 
had asked in a preprint of Infinitesimal computations in topology [103]: if (AV, d) is the 
Sullivan minimal model of a simply-connected space E with finite-dimensional homotopy 
and cohomology, is it true that the following conditions are equivalent? 

(1) E / ( - i V > ' = o . 
(2) E . ( - i y d i m / / * ( ^ ; Q ) > o . 
(3) / /*(£; Q) = //^^^"(£; Q). 
Sullivan's question was actually a translation in terms of minimal models of a conjecture 

of C. Allday [3], in which 

^ ( - i y d i m 7 r * ( £ ) ( 8 ) Q = 0 

replaced the condition (1) above. The interest of Allday's conjecture resides in the fact 
that it implies that if a compact Lie group G of rank r acts with only finite isotropy on a 
simply-connected finite CW-complex X with finite-dimensional homotopy, then 

^(- l ) 'd im7r*(Z)(8)( ^ 

a conjecture due to W.-Y. Hsiang. 
Intrigued by Sullivan's problem, Halperin set to work almost immediately on solving 

it. One year later, Finiteness in the minimal models of Sullivan [63], the first major paper 
on the structure and properties of Sullivan models after the work of Sullivan himself, was 
ready for submission. In his first article in rational homotopy theory, Halperin not only 
answered Sullivan's question affirmatively, but also showed that the rational cohomology 
algebra of any simply-connected space E with finite-dimensional homotopy and cohomol
ogy satisfies Poincare duality. Furthermore, he provided a formula for the degree of the 
top class in cohomology in terms of the degrees of the homogeneous basis elements of 
;r*(£)(g)Q. 

Halperin pointed out in the introduction to his article that his work was a generalization 
of the results published by Cartan and Koszul in the proceedings of the 1950 colloquium 
in Bruxelles [28, 29,79]; see Section 1.2. In particular, Cartan had solved a special case of 
Sullivan's problem, to which Halperin had been able to reduce the general case. 

When Allday found out about Halperin's finiteness result in 1976, he applied it to show
ing that if a Lie group T acts locally smoothly on a topological manifold X and if F is a 
component of the nonempty fixed-point set, then 

^ ( - l y dim7r*(X) (8) Q = ^ ( - 1 ) ' dim7r*(F) (g) Q [4]. 



774 K. Hess 

The following year Allday and Halperin collaborated in proving using Sullivan models 
that if G is a compact, connected Lie group of rank r that acts almost freely on a finite 
CW-complex X with finite-dimensional rational homotopy, then 

^ ( - 1 ) ^ " dim7r*(Z) (8) Q ^ - r [5]. 

Daniel Lehmann of the University of Lille, an expert in characteristic classes, was also 
in Grenoble for a long visit in 1974. Upon learning more about Sullivan's models, he 
was intrigued by the fact that, from a topological point of view, the algebra of differential 
forms on a complex contains much more information than its cohomology algebra. Thus 
it is worthwhile to work with the forms themselves as long as possible, without rushing to 
calculate cohomology classes. The work of Halperin, such as his contribution to the Greub-
Halperin-VanStone collaboration, also impressed him, leading him to invite Halperin to 
spend the academic year 1975-1976 in Lille. 

In the autumn of 1975 Halperin and Lehmann were reunited in Lille. Halperin was un
able to spend the year in Lille as planned, however, as he soon became seriously ill and 
was obliged to return to Canada. His doctors succeeded rapidly in vanquishing his illness, 
so that he was back in Lille at the beginning of April 1976. 

During Halperin's absence, Lehmann organized the first seminar in rational homotopy 
theory at the University of Lille, in order to study Sullivan's Anonymous. He also started 
writing a book on Sullivan's models in rational homotopy theory, later published in the 
Asterisque series [80]. 

The study of Anonymous led one of Lehmann's students, Jean-Claude Thomas, to spec
ulate on the Sullivan model of a fibration, which he decided to study for his These d'Etat. 
Unfortunately for and unknown to Thomas, Haefliger's student Grivel was just completing 
his thesis on the same subject. In his thesis Grivel proved that for any fibration of simply-
connected spaces, "the cofiber of the Sullivan model is a Sullivan model of the fiber" [53]. 
Somewhat more precisely, given a model of the total space that is a free extension of a 
model of the base space, the quotient of the total space model by the base space model is 
a model of the fiber. This theorem, later generalized by Halperin and Thomas to nilpotent 
spaces and to fiber squares [65], has proved to be of immense importance in rational ho
motopy theory, both for constructing models of specific interesting spaces and for proving 
general results comparing the values of certain rational homotopy invariants of the fiber, 
total space and base of a fibration. 

Grivel proved his theorem using a spectral sequence he constructed for the differential 
forms on a simplicial fibration that was analogous to the Serre spectral sequence. Michel 
Zisman contributed to the construction of Grivel's spectral sequence when he explained 
to Grivel about bisimplicial sets, a notion that turned out to be crucial to Grivel's proof, 
during the Troisieme Cycle Romand in 1974. 

Before returning to Lille in the spring of 1976, Halperin paid a visit to Jim Stasheff at the 
University of North Carolina. They decided to work on the problem of determining when 
the minimal Sullivan model of a space E \s formal, i.e. when it is also a minimal model 
of the cohomology algebra //*(£"; Q) or, equivalently when the rational cohomology of E 
determines its rational homotopy; see Section 2.3. Their project quickly expanded to deter
mining when an isomorphism of rational cohomology algebras of spaces can be realized 
by a rational homotopy equivalence. Using Sullivan models, they translated this problem 



A history of rational homotopy theory 775 

into determining when an isomorphism of rational cohomology algebras of commutative 
cochain algebras 

can be realized by a homotopy equivalence, i.e. by a sequence of quasi-isomorphisms of 
commutative cochain algebras 

(A, d) ^ ^ (Aud) ^ ^ ''. ^ ^ - {An, d) - ^ ^ (5 , d). 

Their solution of the realizability problem consists in the construction of a sequence of 
computable obstructions {On ( /)}, one for each degree. They showed that the isomorphism 
/ is reahzable if and only On(f) = 0 for all n [70]. This theorem is remarkable and es-
thetically pleasing, but the methods Halperin and Stasheff employed in the construction of 
the obstructions have proved at least as important in the development of rational homotopy 
theory as the obstruction theorem itself. 

The first step in the construction of the obstructions consists in the definition of a bi-
gradedminimalmodelof the commutative cochain algebra (//,0), where// = H(A,d) = 
H(B, d), based on Tate's models of residue class rings of commutative Noetherian rings; 
see Section 1.2. Halperin and Stasheff then explained how to perturb the differential of the 
bigraded model, to obtain a canonical filtered model of (A, d) or of (B, d). Finally, they 
defined the sequence of obstructions in terms of the canonical filtered models. 

The filtered models of Halperin and Stasheff represented a great breakthrough in ratio
nal homotopy theory. It suddenly became much easier to carry out exphcit calculations, 
opening the field to many more exciting possible applications. 

When Halperin was once again in Lille, he taught a rigorous and thorough course on 
Sullivan models, the ultimate goal of which was to prove Grivel's theorem for nilpotent 
spaces. His course notes were published first by the University of Lille in 1977, then as a 
memoir of the French Mathematical Society in 1983 [65] and have served ever since as the 
ultimate reference for basic structural theorems concerning Sullivan models. 

While in France, Halperin visited the Institut des Hautes Etudes Scientifiques (I.H.E.S.) 
in Paris, to discuss rational homotopy theory with Sullivan. He found, however, that Sul
livan was no longer very interested in the subject. On the other hand, while still at the 
LH.E.S. he made the acquaintance of two other mathematicians who were interested in 
rational homotopy theory: Micheline Vigue, who had already worked with Sulhvan on the 
closed geodesic problem (see Section 2.2), and Karsten Grove, who wanted to apply Sulh
van models to problems in differential geometry. Both commenced working with Halperin 
shortly thereafter. Vigue ended up writing her These d'Etat concerning relative bigraded 
and filtered models and realization of morphisms in cohomology under Halperin's super
vision, while Grove collaborated with Halperin on several articles in differential geometry, 
such as [56, 57]. 

During Halperin's stay at Lille in 1976, Lehmann organized a conference at Luminy, 
entitled Journees Lille-Valenciennes sur les formes differentielles, the first conference in 
rational homotopy theory. Among the speakers were Grivel, who talked about his thesis 
work; Bohumil Cenkl, who talked about Chen's iterated integrals; Jean-Paul Brasselet, 
who talked about the obstruction theory of Halperin and Stasheff; Thomas, who talked 
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about finiteness in minimal models; and Jean-Michel Lemaire, who talked about Quillen's 
work; see Section 3.2. 

As the conference title indicates, in 1976 Lehmann, and certainly others as well, still 
considered rational homotopy theory primarily as a useful tool in differential geometry. 
The conference in Luminy marks the shift in focus of rational homotopy theory from dif
ferential geometry to algebraic topology. 

In 1977, though Halperin was home in Toronto, the effervescence inspired by rational 
homotopy theory continued in Lille. Thomas, Vigue, B. Callenaere and A. Altai', joined in 
1978 by D. Tanre, as well as by Y. Felix of the University of Louvain-la-Neuve, organized 
a regular rational homotopy theory seminar, which ran until 1983. The seminar was termed 
an Ecole de calcul - school for computations - as the participants were intent on learning 
the properties of the Sullivan models, a process that entailed the calculation of numerous 
examples. Felix has likened the Lille seminar to playing scales. 

Halperin continued his series of important contributions to rational homotopy theory in 
1977, when he pursued his study of Sullivan models of fibrations [64]. He showed that 
there was a close relation between properties of the connecting homomorphism in the long 
exact sequence of a fibration and properties of the cohomology of the fiber and the base. In 
particular, he proved that in a fibration of simply-connected CW-complexes of finite type, 
if the total dimension of the rational cohomology of the fiber is finite, then the connecting 
map 

d:n2n+\(B)0Q^n2n(F)^Q 

is the zero map for all n. As a consequence of these results, he obtained conditions implying 
the nonexistence of fibrings of certain homogeneous spaces. This paper served as an inter
esting warm-up exercise for his monumental article with Felix on Lusternik-Schnirelmann 
category three years later; see below. It also served later to unite rational homotopy theory 
and local algebra; see Section 4.1. 

In collaboration with John Friedlander in 1978, Halperin applied number theory to es
tablishing a definitive and complete description of spaces with finite-dimensional rational 
homotopy and cohomology [51]. Together they gave an arithmetic characterization of the 
sequences of odd degrees and even degrees in which such a space can have nonzero homo
topy groups. As consequences of their characterization, they obtained, for example, that 
the total dimension of the rational homotopy and the degree of the top even degree ele
ment in rational homotopy were bounded above by the degree of the top class in rational 
cohomology and that the degree of the top odd degree element in rational homotopy was 
bounded above by twice the degree of the top class, minus one. Such precise, easily verified 
conditions enabled rational homotopy theorists to determine at a glance whether a given 
minimal algebra was the model of a space with finite-dimensional rational homotopy and 
cohomology, an enormous computational bonus. 

Geneva continued to be a center of activity in rational homotopy theory during the late 
1970's. In 1977 Grivel defended his thesis, followed in 1979 by F. da Silveira, another 
student of Haefliger, who studied relative minimal models. During the same period K. Shi-
bata visited Geneva, where he worked on applying Haefliger's commutative cochain al
gebra model for the space of sections of a fibration to constructing an infinite number of 
indecomposable elements in the Gel'fand-Fuks cohomology of a sphere [99]. 
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During the early and mid 1970's there were several other small groups working on 
understanding and extending Sullivan's theory. In the spring of 1974, a seminar was or
ganized at the University of Illinois-Chicago Circle based on the notes from the 1972 
summer school of Friedlander, Griffiths and Morgan. During the course of the seminar 
A.K. Bousfield and V.K.A.M. Gugenheim reahzed that, as it stood, there were a few im
portant gaps in Sullivan's theory. In particular, they were unable to prove to their satis
faction that there was a one-to-one correspondence between rational homotopy types of 
simply-connected CW-complexes and isomorphism classes of minimal, simply-connected 
commutative cochain algebras. The problem lay in the Sullivan's geometric realization 
of a minimal algebra, which was based on a straightforward, but non-natural, Postnikov 
construction. 

Bousfield and Gugenheim decided to apply methods from Quillen's Homotopical Al
gebra, as well as the notions of Bousfield-Kan locahzation, to obtaining a solid proof of 
Sullivan's equivalence of rational homotopy categories. They first defined a pair of ad
joint functors between the categories of commutative cochain algebras and of simpHcial 
sets, which then gave rise to adjoint functors between the respective homotopy categories. 
They then showed that when restricted to the full subcategories of commutative cochain 
algebras equivalent to minimal algebras with a finite number of generators in each de
gree and of nilpotent, rational simplicial sets of finite type, the latter pair of adjoint func
tors were in fact equivalences. They published their results in 1976 as a Memoir of the 
AMS [25]. 

Another team actively collaborating in rational homotopy theory throughout the 1970's 
was formed of R. Body, who defended his thesis at the University of British Columbia in 
1972, and R. Douglas. Body's thesis consisted of study of the number of rational homotopy 
types with a given integral cohomology ring, based more on standard homotopy-theoretic 
methods than on the techniques of either Quillen or Sullivan. He published two articles on 
this subject, one with Douglas [21], on which C.R. Curjel also collaborated, and one alone 
[20]. They showed that if A is a graded ring such that A (g) Q is either a finite tensor product 
of truncated polynomial algebras on one generator or the quotient of a free commutative 
algebra by a regular sequence, then there are only a finite number of rational homotopy 
types of finite simply-connected polyhedra E such that H'^iE; Z) ~ A. 

In 1976 Body and Douglas studied the problem of unique factorization of rational ho
motopy types. It was known that integral homotopy types do not factor uniquely, i.e. there 
exist spaces X, 7, Y' such that X x Y and X x Y^ are homotopy equivalent, but Y and 
Y' are not. Using Sullivan's models, Body and Douglas showed that every rational homo
topy type of formal, simply-connected spaces with finite-dimensional rational homotopy 
has a unique factorization [22]. Both Body and Douglas published several more articles on 
factorization problems during the years that followed. 

The 1977 paper by R Andrews and M. Arkowitz on higher order Whitehead products 
and the Sullivan model also had a definite influence on the later developments of rational 
homotopy theory [8]. Their idea was to generalize Sullivan's results that the quadratic 
part of the differential in the Sullivan minimal model of a space E contains the same 
information as the rational Whitehead products in 7t^{E) 0 Q. They showed that the rth 
order Whitehead products in TT* (£) 0 Q correspond to the summand of the differential that 
increases wordlength by exactly r — 1. 
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3.2. Building on Quillen 's foundations 

Quillen's theory was also the object of intense study during the 1970's, though by fewer re
searchers than SuUivan's more computational approach to rational homotopy theory. John 
Moore, who was an ardent proponent of Quillen's foundational work from the time it ap
peared in preprint form in the late 1960's, is probably the instigator of the subsequent 
developments and generalizations of the chain Lie algebra version of rational homotopy 
theory. Moore had always believed that dualizing, i.e. passing from chains to cochains, 
was unnecessary, if one were willing to work with coalgebras instead of algebras, as well 
as risky and restrictive, since one had to be careful of finite-type conditions. He thus pre
ferred Quillen's models to Sullivan's, as Quillen never dualized the objects he studied. 

In 1976, around the time Quillen's article [91] began circulating as a preprint, a young 
French student form the Ecole Normale in Paris, Jean-Michel Lemaire, took advantage 
of the exchange program between the Ecole Normale and Princeton to spend a year at 
Princeton, where he met and studied with Moore. Moore gave a copy of Quillen's article 
to Lemaire and suggested that he work on determining whether or not the Poincare series 
of the homology of a loop space is always rational, a question due to Serre. Moore also 
discussed the notion of minimal models with Lemaire during his stay at Princeton, though 
in terms of coalgebras rather than algebras. 

Out of the year he spent in Princeton grew Lemaire's impressive thesis, that he defended 
in 1973 and pubhshed in the Springer Lecture Note Series in 1974 [81]. Lemaire's thesis 
was crucial not only for disseminating and explaining an approach to rational modelling of 
topological spaces that did not rely on dualization, but also for rehabilitating the Adams-
Hilton model, which plays a key role therein; see Section 1.2. 

In this thesis Lemaire extended results of Bott and Samelson showing that the homology 
algebra of the loop space on a suspension iJE" is a free algebra on the reduced homology 
of E to spaces obtained by attaching the cone on a suspension to another suspension. He 
found explicit examples of attachments of a wedge of spheres onto a wedge of spheres 
such that ensuing loop space homology has either an infinite number of generators or an 
infinite number of relations. 

Lemaire's thesis also contains many results of a more purely theoretical nature. For 
example, Lemaire introduced in his thesis the notion of a minimal model of a chain algebra 
over a field. For any graded Lie algebra L of global dimension at most 2, he also outlined 
a method for constructing a CW-complex E such that the rational homotopy Lie algebra 
of E is isomorphic to L. More generally, he proved many important and interesting results 
on the structure of the categories of chain Lie algebras and Hopf algebras. 

It is also in Lemaire's thesis that one finds the first mention of what was to become 
one of the most important numerical homotopy invariants in rational homotopy theory: 
the Lusternik-Schnirelmann (L.-S.) category of a space E, i.e. one less than the minimal 
cardinality of an open cover of E by sets contractible within E, Moore had indicated to 
Lemaire that L.-S. category was an invariant worth investigating, an affirmation that was 
at least partially confirmed by Lemaire's proof that for a given graded Lie algebra L of 
global dimension at most n, there exists a CW-complex whose rationaUzation is of L.-S. 
category at most n and whose homotopy Lie algebra is isomorphic to L. 

In 1975, Lemaire, who was by then a professor at the University of Nice, read a preprint 
of an article on higher-order Whitehead products by Hans Baues of the University of Bonn 
[17] and was struck by Baues's use of the Adams-Hilton model. He then met Baues at 
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Oberwolfach, where Baues was speaking about minimal rational homotopy types, and in
vited him to Nice for discussion and possible collaboration. The paper that resulted from 
their joint work represented a major step towards making Quillen's theory as computation
ally accessible as Sullivan's minimal models [19]. 

In their article Baues and Lemaire constructed minimal models for chain algebras over 
any field and for chain Lie algebras over the rationals. The construction corresponds to the 
cellular or homology decomposition of a space, the Eckmann-Hilton dual of the Postnikov 
decomposition, which underhes Sullivan's minimal models. Baues and Lemaire were thus 
the first to explore in detail the duality underlying the relationship between the theories 
of Quillen and Sullivan. Providing substantial supporting evidence, they conjectured that 
the minimal model of the Quillen chain Lie algebra of a space E was isomorphic to the 
minimal model of the chain Lie algebra underlying the cobar construction on the dual of 
Sullivan's minimal model of E, Their conjecture was proved in 1996 by Martin Majewski 
of the Free University of BerHn [86]. 

Baues published the first application of his joint work with Lemaire in an article [18] 
submitted practically simultaneously with [19]. He showed that any simply-connected 
CW-complex is rationally homotopy equivalent to an unstable CW-complex, i.e. to a CW-
complex whose suspension is a wedge of spheres. 

Another important apphcation of [19] is due to Lemaire, in collaboration with Francois 
Sigrist of the University of Neuchatel. They showed that the set of simply-connected ratio
nal homotopy type with a given finite-dimensional cohomology algebra was in one-to-one 
correspondence with the quotient of a certain affine algebraic variety by the action of a 
certain algebraic group. This is exactly the type of result Sullivan was seeking when he 
developed his theory of commutative cochain algebra models. It is thus particularly inter
esting and satisfying to see such a result based on the Eckmann-Hilton dual methods of 
Quillen. Note as well that the techniques of Lemaire and Sigrist were complementary to 
those developed by Halperin and Stasheff in [70]. 

Around the time that Baues and Lemaire were initiating their collaboration, Joe 
Neisendorfer was also studying Quillen's theory [88]. He generalized Quillen's work to 
nilpotent spaces and, like Baues and Lemaire, defined minimal chain Lie algebras, in order 
to facilitate actual computations. 

3.3. The unified approach to rational homotopy theory 

Rational homotopy theory reached an important turning point in 1979, when the re
searchers studying Sullivan's theory and commutative cochain algebra models, represented 
by Halperin, Lehmann and their students, joined forces with those studying Quillen's the
ory and chain Lie algebra models, represented by Lemaire and Baues, during the workshop 
that Felix and Lehmann organized in Louvain-la-Neuve, Belgium and Lille at the end of 
May, 1979. This conference was also significant because of the permanent bond formed 
between the rational homotopy theorists of Lille and Louvain. 

The workshop consisted of expository lectures to bring all participants up to date on 
the recent progress in rational homotopy theory, as well as of introductory lectures on 
subjects that the speakers felt could be of interest when studied from a rational point of 
view. For example, Lemaire talked about L.-S. category (see Section 3.2), to which the 
Lille contingent had already been exposed via the excellent survey article of loan James 
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[76]. Baues talked about the Gottlieb groups of a space E, i.e. the groups consisting of 
homotopy classes of maps a : 5" -> E such that idz v a: E v S^ -> E extends over 
E X S^. Both of these notions have played a very important role in rational homotopy 
theory since 1980, as we describe below. 

A significant proportion of the conference time was devoted to problem and discussion 
sessions. Felix, Halperin and Lehmann collected the most interesting problems raised in 
these sessions and pubhshed the collection of 17 problems in the preprint series of the 
University of Lille. Some of the problems formulated in 1979 are still unsolved today 
(1997). 

Thanks to the 1979 workshop, rational homotopy theorists of both faiths in the Quillen-
Sullivan schism learned to appreciate and understand the duaUty and complementarity of 
the two methods. In 1980 Felix and Thomas wrote a masterful synthesis, comparing and 
contrasting the techniques and applications of the two approaches to algebraic modelling 
of rational homotopy types [47]. 

Felix and Lehmann had organized the 1979 workshop to coincide with Felix's thesis 
defense. Though not Felix's official thesis director, Lehmann had participated actively in 
supervising his work. The subject of Felix's thesis was the classification of rational ho
motopy types with a given cohomology algebra, a subject related to the work of Halperin 
and Stasheff, as well as to that of Lemaire and Sigrist. Felix defined an algebraic vari
ety representing the set of filtered models (see the discussion of the work of Halperin and 
Stasheff) with a given cohomology algebra. The automorphism group of the underlying 
bigraded model acts on the variety; its orbits are the different rational homotopy types of 
the filtered models. Felix obtained in this manner a result analogous to that of Lemaire 
and Sigrist, based on commutative cochain algebra models, rather than chain Lie algebra 
models [36]. 

A highly productive synergy resulted from the workshop of 1979. For example, in 1980 
Felix, Lemaire and Sigrist collaborated in disproving a conjecture of Baues and Lemaire 
[45] concerning the relationship between the rational cone length of a space and the L.-S. 
category of its rationalization [19]. An iterated cone of length w is a space formed by n 
successive attachments of wedges of spheres. An iterated cone is minimal (or unstable) if 
the suspension of any attachment is homotopically trivial. The (strong) rational conelength 
of a space E is the smallest n such that E has the rational homotopy type of a (minimal) 
iterated cone of length n. 

Since it is easy to see that attaching a cell to a space increases its L.-S. category by 
at most one, it is clear that cato(£') ^ f{E) ^ F{E), where cato(i^) denotes the L.-S. 
category of the rationahzation of £, f{E) its rational conelength, and F{E) its strong 
rational conelength. Based on their experience with Quillen models, Baues and Lemaire 
had conjectured that cato(£') = E{E). FeUx, Lemaire and Sigrist found a family of coun
terexamples to this conjecture with F{E) — cato(£') arbitrarily large, generalizations of 
an example due to FeUx with cato(i^) = 3 and F{E) = 4. They rehed on computations 
with chain Lie algebra models to determine F{E). In each of their examples, however, 
cato(£') = /(£"), which led them to wonder whether this equahty might always be sat
isfied. It was only in 1996 that Nicolas Dupont, a former student of Thomas, managed to 
find a counter-example to this conjecture [34]. 

Lemaire and Sigrist continued their study of L.-S. category and conelength using chain 
Lie algebra models in [82]. They first estabhshed that if F{E) ^ 3, then / ( £ ) = F{E). 
Based on a chain Lie algebra formulation of the notion of formality and of the Eckmann-
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Hilton dual notion of coformality, they also showed that if E is formal or coformal, then 
catoC^") = F{E). They then studied in detail a particular nonformal, noncoformal space, 
demonstrating how well adapted chain Lie algebra models were to the calculation of vari
ous numerical homotopy invariants. 

In 1979 Halperin began to invite his European colleagues to Toronto for prolonged visits. 
One of the first was Baues, whom Halperin invited for six weeks of lectures. Halperin 
had been surprised to find in Baues's paper [18] a short, simple proof of the fact that a 
simply-connected space with only odd-degree rational cohomology is rationally homotopy 
equivalent to a wedge of odd-degree spheres. He and Stasheff had proved the same result 
in their paper on obstruction theory [70], but their proof, based on commutative cochain 
algebra models was considerably more complex. The same year, Thomas also spent two 
months working in Toronto. 

In June 1980 it was Felix's turn to visit Halperin. The three weeks that Felix and Halperin 
spent together in Toronto had profound consequences for the future of rational homotopy 
theory, as the article they wrote based on their work during that period contains several 
of the deepest theorems in rational homotopy theory, with innumerable important appU-
cations [37]. According to Halperin, Felix arrived in Toronto with "the right theorem but 
the wrong lemmas". Together they figured out what the right lemmas should be, working 
15 to 18 hours a day until all the details were correct and the paper almost completely 
written. 

The fundamental result upon which the other theorems in [37] rest is a characterization 
of the L.-S. category of the rationalization of a simply-connected space in terms of Sullivan 
models, based on the idea that the L.-S. category of a space should be related to a sort of 
"nilpotence" of its Sullivan model. Lemaire and Felix had discussed this possibility while 
waiting at the airport for Lemaire's flight back to Nice after the 1979 workshop. More 
precisely, Felix and Halperin showed that if (AV, d) is the Sullivan minimal model of E 
and (A(V 0 W), D) is an extension of (AV, d) that is quasi-isomorphic to the quotient 
cochain algebra (AV/A^^V, J) , then cato(£) ^ n if and only if there is a retract of 
commutative cochain algebras (A(y 0 W), Z)) ^ (AV,d). 

The first important consequence that Felix and Halperin obtained from their algebraic 
characterization of L.-S. category is the Mapping Theorem: if E and E^ are simply-
connected spaces and there is a continuous map E -^ E' inducing an injection on rational 
homotopy groups, then catoCf") ^ cato(£^0- The Mapping Theorem has proved extremely 
useful in a multitude of applications. Felix and Lemaire provided a short and elegant geo
metrical proof of the Mapping Theorem in 1984, extending its validity to the tame category 
as well [46]. 

Indeed Felix and Halperin applied the Mapping Theorem immediately to proving that 
if cato(£^) is finite, then the rational Gottlieb groups G*(£) (g) Q are concentrated in odd 
depress and their total dimension is less than cato(iE). Using the refined Mapping Theorem, 
together with the result concerning the Gottlieb groups, they then proved the beautiful 
Dichotomy Theorem: if £ is a simply-connected space such that dim//*(£; Q) < cx), 
then either d\mix^{E) (g) Q < oo or the sequence {6\mnk{E) (g) Q}^ grows exponentially. 
A sequence [ak}k grows exponentially if there are constants Ci^ C\ > I and an integer Â  
such that 
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In the first case, the spaces are called rationally elliptic and were already very well 
understood by 1980, thanks to the articles of Halperin [63, 64], as well as the article of 
Friedlander and Halperin [51]. In the second case, the spaces are called rationally hyper
bolic and very little was known about them at that time. Felix and Halperin quickly set in 
motion the process of learning more about hyperbolic spaces. They showed, for example, 
that {dim H^{QE\ Q)}k grows polynomially of order dimTToddĈ )̂ (S) Q if £" is rationally 
elliptic and exponentially if E is rationally hyperbolic. A sequence {ak]k grows polyno
mially of order at most r if there is a constant A such that \ak\ < Ak^ for all k. They also 
provided the first indication of the structure of the homotopy Lie algebra of a rationally 
hyperbolic space, when they proved that it is never nilpotent. 

The year following the workshop organized by Felix and Lehmann was an exciting, 
dynamic period in the development of rational homotopy theory. It was also the last year 
of the "splendid isolation" of rational homotopy theory from the rest of mathematics, as 
we explain in Section 4. 

4. The bridge builders and the consoUdators 

During the period of expansion of rational homotopy theory covered in Section 3, two 
algebraists, Luchezar Avramov of the University of Sofia and Jan-Erik Roos of the Univer
sity of Stockholm, had discovered and begun to exploit a deep connection between local 
algebra and rational homotopy theory. In 1981 they established contact with the rational 
homotopy theorists, initiating a powerful synergy that led to a multitude of important re
sults in both fields. Furthermore, rational homotopy theorists soon learned to apply their 
new techniques inspired by local algebra to solving problems in mod p homotopy theory. 

We describe in this section the dramatic evolution of rational homotopy theory under the 
influence of local algebra and then in contact with mod p homotopy theory. The primary 
sources for this section include letters from Luchezar Avramov, Clas Lofwall, and Jan-
Erik Roos, discussions with Yves Felix, Steve Halperin, and Jean-Claude Thomas, and the 
survey articles by Anick and Halperin [11], Avramov [14], and Avramov and Halperin [15], 
as well as Roos's Mathematical Introduction to the Proceedings of the 1983 Stockholm 
conference [93]. 

4.1. The algebraic visionaries 

In 1974 Jan-Erik Roods found a copy of Lemaire's Springer Lecture Notes on loop space 
homology in a Stockholm bookstore, even before it had arrived at the math library of the 
University of Stockholm. Upon reading Lemaire's book, he was struck by the resemblance 
between Lemaire's work on Serre's question concerning Poincare series of the rational 
homology of loop spaces and the work of local algebraists on the analogous question of 
Kaplansky and Serre for local rings. More precisely, Lemaire had studied the Poincare 
series 

^ d i m Q / / „ ( ^ £ ; Q ) . z " 
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for E a finite, simply-connected CW-complex, while local algebraists were interested in 
the series 

^dimB<Ext;^(0<,fl<)-z'^ 

for R a local, commutative, Noetherian ring with residue field Ik. In both cases, the goal 
was to determine under what conditions the series represent rational functions. 

Inspired by what he had read in Lemaire's book, Roos established a research program to 
study the homological properties of local rings, in particular those whose maximal ideal m 
satisfied m^ = 0, the first nontrivial case for Poincare series calculations. He realized that 
in order to study local rings, it was useful, or even necessary, to work in the larger category 
of (co)chain algebras. 

By 1976 Roos had proved that Serre's problem for complexes E such that dim E = 4 
and the Kaplansky-Serre problem for local rings (/?, m) such that m-̂  = 0 were equivalent 
[92]. He had thus demonstrated that not only were similar techniques useful in both rational 
homotopy theory and local algebra, but that there were also significant theorems common 
to both fields. It is interesting to note that the idea of Unking the two fields first appeared 
in Serre's lecture notes on local algebra [97]. 

In 1976 Luchezar Avramov went to Stockholm to visit Roos. They discussed exten
sively the increasingly evident connections between the homology of local rings and the 
homology of loop spaces on finite CW-complexes. Avramov also lectured on Eilenberg-
Moore-type spectral sequences and exact sequences of homotopy Lie algebras of local 
rings, which are defined as follows. Levin had shown in 1965 that if /? is a local, commu
tative ring with residue field Ik, then Tor^(lk, k) is a graded, divided powers Hopf algebra 
[84]. Since the dual of a graded, divided powers Hopf algebra is the universal envelop
ing algebra of a uniquely defined graded Lie algebra (char Ik = 0 [87], char Ik > 2 [7], 
char Ik = 2 [100]), it is possible to associate to any Noetherian, local commutative ring R 
a uniquely defined graded Lie algebra 7t^{R), the homotopy Lie algebra of R. 

Based on results in characteristic 0 due to Gulliksen in the late 1960's [60], Avramov 
had proved before his trip to Stockholm that if /? -> 5* is a homomorphism of Noetherian, 
local, commutative rings with the same residue field Ik such that S is /?-flat, then there is 
an exact sequence of groups 

> 7r"(5 (g)/? Ik) -^ 7r"(5) -^ n''{R) h 7r"+^5 0/? fl<) ̂  • • • 

He showed furthermore that if sup{j \ Tor^(lk, S) ^ 0} < oo, then 62^+1 = 0 for all «, the 
exact equivalent of Halperin's result for rational fibrations mentioned in Section 3.1. 

Avramov's results appeared in 1977 [13], one year before the pubUcation of Halperin's 
analogous results. The two authors were unaware of each other's contributions while they 
were under preparation. Influenced by Tate, who had indicated in [107] the importance 
for his work of his contact with John Moore (see Section 1.2), Avramov had acquired the 
habit of reading articles in topology and spotted Halperin's article soon after it appeared. 
The similarity of their results confirmed for Avramov his intuition that rational homotopy 
invariants provided the correct analogy for homology invariants of local rings in arbitrary 
characteristic. 
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4.2. The bridge to local algebra 

In 1980 the thesis of a student from MIT, David Anick, sparked interest among both ratio
nal homotopy theorists and local algebraists. He had constructed a finite, simply-connected 
CW-complex E of dimension ^ 4 such that the Poincare series of the homology oi QE 
was not rational, thus answering Serre's question [9]. Anick's construction interested the 
rational homotopy theorists because of its relation to the dichotomy between elliptic and 
hyperbolic spaces; see Section 3.3. Local algebraists were interested because of Roos's 
result, that allowed the transcription of Anick's space into a local ring {R, m) with m-̂  = 0 
and with irrational Poincare series. 

Shortly after Anick's result became known, Roos and his student Clas Lofwall discov
ered other examples of local rings with irrational Poincare series that they obtained by 
completely different methods [85]. 

The converging interests of the rational homotopy theorists and the local algebraists 
finally led to direct contact between the two groups in 1981. Roos had begun sending 
preprints from his group in Stockholm to the rational homotopy theorists, inspiring Felix 
and Thomas to begin work on calculating the radius of convergence of the Poincare series 
of a loop space [48]. They eventually succeeded in proving the following beautiful char
acterization, the proof of which relies heavily on results from [37]: a simply-connected 
space E is rationally elliptic if and only if the radius of convergence of the Poincare series 
oi QE is 1. If £ is rationally hyperbolic, then the radius of convergence is strictly less 
than 1. Moreover, they found a relatively easily computable upper bound for the radius of 
convergence if £" is a hyperbolic, formal space. 

During the first half of 1981, a preprint containing the above results reached Avramov in 
Sofia, who arranged to visit Lille as soon as possible thereafter. His visit marked the begin
ning of his extremely fruitful collaboration with the rational homotopy theorists. Perhaps 
as a result of that visit, Felix and Thomas were able to conclude their article on the radius 
of convergence with a proof of a rational version of a conjecture of Golod and Gulliksen 
on the radius of convergence of Poincare series of rings. More precisely, they showed that 
if A is a Noetherian, connected graded commutative algebra over a field k of characteristic 
zero and PA denotes the radius of convergence of 

P^(z) = ^dimTor,f(D<,0<).z", 

then either pA = +oo and A is a polynomial algebra; or p^ = 1» ^ is a complete intersec
tion, and the coefficients of PA{Z) grow polynomially; or p^ < 1, A is not a complete in
tersection, and the coefficients of PA (Z) grow exponentially. Recall that a local, Noetherian 
ring is a complete intersection if its completion, in terms of powers of its maximal ideal, 
is isomorphic to the quotient of a regular, local ring by an ideal generated by a regular 
sequence. Avramov later generalized this result of Felix and Halperin to any characteristic. 

In the autumn of 1981 Halperin was back in Europe, visiting Baues in Bonn. During 
Halperin's visit, Baues organized a conference that Roos attended. When Halperin talked 
about his work on splitting rational fibrations and his work with Felix on the Mapping 
Theorem and its consequences, Roos was impressed by the analogy with the split exact 
sequence of Avramov and intrigued by the Dichotomy Theorem, as similar results had been 
conjectured in local algebra, e.g., the conjecture of Golod and Gulliksen mentioned above. 
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During the Bonn conference, Halperin learned of Avramov's visit to Lille. Frustrated not 
to have been there, he decided to go with FeUx and Thomas to see Avramov in Sofia. To
gether they rode the Orient Express to Sofia, where they spent a week in intense discussion 
with Avramov. 

Since the contact with local algebraists seemed so promising, in June of the following 
year Lemaire and Thomas organized a conference in Luminy devoted to algebraic homo
topy and local algebra. The morning sessions at the conference were devoted to synthesis 
talks, explaining algebraic problems and techniques to the topologists present and vice-
versa. The written version of Avramov's talk on local algebra and rational homotopy theory 
provides an excellent and thorough introduction to the subject [14]. His article contains the 
first "dictionary" between rational homotopy theory and local algebra, explaining how to 
translate notions and techniques from one field to the other. Consequently, given a theorem 
in one field, applying the dictionary leads to a statement in the other field that stands a 
reasonable chance of being true, though the method of proof may be completely different. 

In his article Avramov also emphasized the importance of minimal models in local ring 
theory. If A'^ is the Koszul complex of a local, commutative ring R with residue field (k 
such that the Yoneda algebra Ext̂ ([l<, Ik) is Noetherian, then there is a minimal, commuta
tive cochain algebra (AV, d) over Ik quasi-isomorphic to K^. Avramov called (AV, d) the 
minimal model of /?. He established its relevance by observing that in degrees greater than 
1, the graded Lie algebra derived from (AV, J2) was isomorphic to the homotopy Lie al
gebra of R. Note that the underlying graded vector space of the graded Lie algebra derived 
from a free, commutative cochain algebra (AV, J2) is the desuspension of AV, while its 
bracket product is obtained by dualizing the differential di. 

The proceedings of the Luminy conference also contain signs of links forming between 
rational homotopy theory and mod p homotopy theory. In one of the survey articles, for 
example, Dale Husemoller wrote about loop space decompositions and exponents in ho
motopy groups, using techniques based on graded Lie algebras mod p and the mod p 
Hurewicz homomorphism. 

Shortly before the Luminy conference, Felix, Halperin, and Thomas completed an article 
[41] in which they continued the in-depth study of the homotopy Lie algebra of a rationally 
hyperbolic space begun by Felix and Halperin in [37]. They showed, for example, that if E 
is rationally hyperbolic, where the definition is slightly weakened to allow spaces of finite 
L.-S. category, instead of finite dimension, then its rational homotopy Lie algebra is not 
solvable. Moreover, they proposed as conjectures translations of their theorems into local 
algebra, where, for a local ring (/?, m) with residue field Ik, L.-S. category is replaced by 
dim[i<(m/m^) — depth/? and infinite dimensional rational homotopy is replaced by R not 
being a complete intersection. Recall that 

depth/? = inf {y | Ext̂ (̂lk, /?) / O}. 

In [41] Felix, Halperin and Thomas also mentioned a very important conjecture due to 
Avramov and Felix, stating that the homotopy Lie algebra of a rationally hyperbolic space 
should contain a free Lie algebra on at least two generators. This conjecture has motivated 
much interesting work in the study of the homotopy Lie algebra and has not as yet (1997) 
been proved. 
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Avramov and Halperin quickly proved a weaker version of one of the conjectures in 
[41], when they showed that /? is a complete intersection if an only if its homotopy Lie 
algebra is nilpotent [15]. 

Also in 1982 Felix and Thomas proved the Lemaire-Sigrist conjecture on rational cone-
length (see Section 3.2) for spaces of rational L.-S. category 2, i.e. they showed that 
catoC^") = 2 if and only if f{E) = 2. They also provided detailed information on the 
structure of the homotopy Lie algebra of a space of rational L.-S. category 2, and pro
ceeded to translate that information into results concerning the homotopy Lie algebra of a 
local ring (R, m) such that m^ = 0. 

An important event in the history of the interaction between rational homotopy theory 
and local algebra took place in 1983, when Roos organized a Summer School and Research 
Symposium at the University of Stockholm entitled Algebra, Algebraic Topology and their 
Interactions. As in Luminy the previous year, the morning sessions were devoted to sur
vey lectures, while research-level talks occupied the afternoon sessions. Among the survey 
lecturers were Anick, Avramov, Gulliksen, Halperin, and Lemaire, as well as D. Eisenbud, 
M. Hochster, C. Lech, R. Sharp, and R. Stanley. Many of those who attended the confer
ence remember it as a particularly exciting and dynamic ten days, during which algebraists 
and topologists learned a great deal from each other. Several fruitful collaborations formed 
during the conference as well. 

Avramov and Halperin are the authors of the first article in the proceedings of the Stock
holm conference, a thorough guide to translation between rational homotopy theory and 
local algebra [16]. It begins at a more elementary level than the survey article of Avramov 
in the proceedings of the Luminy conference, leading the reader from first principles of 
differential graded homological algebra to notions of homotopy fiber and loop space and 
on to the homotopy Lie algebra. 

The proceedings of the Stockholm conference also include numerous results of the in
teraction between rational homotopy theory and local algebra. One of the most striking is 
the article by Halperin and Rikard B0gvad, a young researcher who had been a student 
of Roos [23]. Using minimal model techniques, they proved two conjectures due to Roos, 
which are "translations" of each other. More precisely, they showed that 

(1) if jR is a local, commutative ring such that the Yoneda algebra Ext^ (Ik, k) is Noethe-
rian, then /? is a complete intersection; 

(2) if £̂  is a simply-connected, finite CW-complex such that the Pontryagin algebra 
H^{QE\ Q) is Noetherian, then E is rationally elhptic. 

Their proof is based on a slightly weakened form of the Mapping Theorem that holds over 
a field of any characteristic, as well as on ideas from the article of Felix, Halperin and 
Thomas of the previous year [41]. 

The article by Felix and Thomas in the Stockholm proceedings constitutes another prime 
example of the synergy between rational homotopy theory and local algebra [50]. They 
studied the action induced in rational homology by the holonomy of a fibration F -> E -^ 
B, i.e. 

H^{QB', Q) 0 //*(F; Q) ^ //*(F; Q) 

and its dual in cohomology 

/ / * (^B; Q) 0 / /*(F; Q) ^ //*(F; Q) 
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where F, E, and B have the homotopy type of CW-complexes of finite type and B is simply 
connected. Using SulUvan models, they obtained computational descriptions of these two 
actions, which they then applied to proving a number of interesting theorems, several of 
which are "translations" or generahzations of theorems in local algebra. For example, they 
translated a result of GulHksen [59] into rational homotopy theory, proving that if the total 
dimensions of the rational homotopy of B and of the rational cohomology of E are finite, 
then //*(F; Q) is a Noetherian H^{^B\ Q)-module. 

In the spring of 1985 Halperin returned to Stockholm for a five-week visit. During his 
stay, he worked on applying minimal model techniques to answering on old question con
cerning the deviations of a local ring. The 7th deviation, ej, of a noetherian, local, com
mutative ring R with residue field Ik is d\m^ n^(R). Assmus had shown in 1959 that /? is a 
weak complete intersection if and only if ej = 0 for all 7 > 2 [12], raising the question of 
whether any deviation could vanish if R were not a weak complete intersection. Halperin 
succeeded in answering this question, showing that if R is not a weak complete intersec
tion, then ej ^ 0 for all 7. According to Halperin, he had been struggling to work out the 
details of the proof during his stay in Stockholm, until suddenly one evening at dinner with 
Lofwall, all the pieces fell into place. 

The following winter it was Halperin's turn to host Swedish mathematicians in Toronto, 
when B0gvad and Lofwall came to visit. While they were there, Halperin received a 
preprint from Felix and Thomas in which they proved a complicated, technical result re
lating L.-S. category of a space E and some other mysterious numerical invariant. After 
reading through the preprint, B0gvad and Lofwall pointed out to Halperin that the tech
nical computations of FeHx and Thomas were actually calculations of a certain Tor over 
the enveloping algebra U(ii^{QE^ 0 Q) of the homotopy Lie algebra of E, which implied 
that their mysterious invariant was nothing but the depth of U(ji^{QE) 0 Q). Suddenly 
the work of Felix and Thomas became easier to understand, and their calculations easier to 
carry out. 

Felix, Halperin, Lofwall, and Thomas proceeded to work together on rewriting the pa
per from this new perspective and on trying understand the consequences of the results 
obtained. Carl Jacobsson, also of the University of Stockholm, pitched in as well to iron 
out the final details. By the late fall of 1986, the article now known in rational homotopy 
circles as the Five Author paper was ready for submission [38]. 

The Five Author paper is remarkable not only for the story of its genesis, but also for 
the importance of the results presented. It represents a great leap forward in understanding 
of the structure of the homotopy Lie algebra of a space or of a local ring. The principal 
innovation of the Five Author paper consists in exploiting the radical of the homotopy Lie 
algebra, i.e. the sum of all of its solvable ideals, which rational homotopy theorists had 
begun to study in 1983. The radical itself is in general not solvable. 

Expressed in topological terms, the main theorem of the Five Author paper states that if 
£• is a simply-connected CW-complex of finite type and catC^) = m < 00, then the radical 
of the homotopy Lie algebra, Rad(E) is finite dimensional and dim/?a<i(£)even ^ ^- This 
is a consequence of two further theorems, both of which are of great interest themselves. 
The first concerns the relations among the rational L.-S. category of a space and the depth 
and global dimension of its homotopy Lie algebra. Recall that the global dimension of a 
local ring R with residue field Ik is defined by 

gl.dim(/?) = sup {j I Ext^([k, Ik) ^ O}. 



788 K. Hess 

The precise statement of this theorem in topological terms is then that if L is the homotopy 
Lie algebra of a simply-connected CW-complex of finite type £", then either 

depth UL < cato(E) < gl. dim UL 

or 

depth UL = cato(£) = gl. dim UL. 

The second theorem states that under the same hypotheses, if depth UL < oc, then Rad(E) 
is finite dimensional and satisfies 

dim/?aJ(£) even ^ depth L̂ L. 

Moreover, if 

dim/?aJ(£)even = depth L̂ L, 

then Rad(E) = L, 
Rational homotopy theorists have used the results cited above extensively since the mid

dle of the 1980's. In particular, they have proved crucial to developing understanding of the 
homotopy Lie algebra of rationally hyperbolic spaces. The methods the five authors devel
oped to prove their results have turned out to be extremely important as well. For example, 
since their goal was to relate catoC "̂) to depth(L), they needed to construct a model of the 
quotient cochain algebra (AV/A^^V, J) , where (AV, d) is the Sullivan minimal model 
of E. Their method for doing so, based on perturbation of a model for (AV/A^^V, J2) 
has been exploited repeatedly since then, as explained below. 

4.3. The bridge to mod p homotopy theory 

In 1986 Felix organized another conference in Louvain, attended this time not only by 
rational homotopy theorists and a few local algebraists, but also by nonrational homo
topy theorists, such as Bill Dwyer, Haynes Miller, John Moore, Lionel Schwartz, and Paul 
SeUck. Rational homotopy theory was opening itself to mod p homotopy theory, as it be
came increasingly clear that the algebraic methods of rational homotopy theory could be 
applied in a broader context with interesting consequences. 

The article of Halperin and Lemaire in the proceedings of the Louvain conference is 
an important example of this new tendency among rational homotopy theorists [69]. They 
had noticed that in the articles mentioned above by Felix, Halperin and Thomas [41] and 
by B0gvad and Halperin [23], as well as in the Five Author paper [38], the hypothesis 
that catoC "̂) ^ m for some finite m could be replaced by an apparently weaker hypothesis 
requiring only that there be a retraction of differential (AV, d)-modules {K{V®W),D) -> 
(AV, d), where (A(y © W), D) is a free extension of (AV, d) that is quasi-isomorphic to 
the quotient cochain algebra (AV/A^"^ V, d) (see Section 3.3 and the discussion of [37]). 
The smallest such m is denoted McatoC^"). This observation, together with the desire to 
apply rational methods over fields of nonzero characteristic, inspired Halperin and Lemaire 
to define numerical invariants based on a new sort of algebraic model. 
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Halperin and Lemaire chose to model spaces over fields of positive characteristic by 
free, associative cochain algebras, since in positive characteristic it is in general impossi
ble to find a commutative cochain algebra weakly equivalent to the cochains on a space. 
The method of adjoining new generators degree by degree to construct a cochain alge
bra weakly equivalent to a given cochain algebra generalizes easily to the noncommuta-
tive context. Thus, for any simply-connected space E of finite type, there exists a quasi-
isomorphism of cochain algebras 

(TV, J) 4 C*(£;D<), 

where TV is a free, associative (tensor) Ik-algebra on a positively graded vector space of 
finite type and d increases wordlength by at least one. Note that such a model is far from 
unique, and that it has in general no geometric basis, unlike the Sullivan and Adams-Hilton 
models. 

Given such a model (TV, d) for £, and a free extension (T(V 0 W), D) of (TV, d) that 
is quasi-isomorphic to the quotient cochain algebra (TV/T^"^ V, d), Halperin and Lemaire 
defined numerical invariants analogous to cato and Mcato as follows: Acatfl<(£') ^ m 
(respectively, Mc3.t^(E) ^ m) if and only if there exists a retract of cochain algebras 
(respectively, differential (TV, J)-modules) iT(V 0 W), D) -> (TV, d). They proved that 
Acai^iE) < cat(£') for all Ik, while if Ik is of characteristic zero, then 

McatB<(£) = Mcato(^) ^ Acatfl<(Ĵ ) ^ cato(^). 

Once Halperin and Lemaire had shown that free, associative cochain algebra models 
could be useful for approximating L.-S. category over fields of positive characteristic, they 
set to work with Felix and Thomas on applying such models to generalizing the results in 
the Five Author paper. The article in which they presented their results [39], commonly 
known in rational homotopy circles as the Four Author paper, is the first substantial con
tribution of rational homotopy theory techniques, including those borrowed from local 
algebra, to mod p homotopy theory. 

The main theorem in the Four Author paper is a generalization of one of the theo
rems in the Five Author paper. It states that if £" is a simply-connected space such that 
///(£•; ¥p) is finite dimensional for all /, where ¥p is the prime field of characteristic p, 
then depth H^{QE\ ¥p) ^ cat £". The key to the proof is a construction based on a free, 
associative cochain algebra model of E that is similar to the construction based on the 
Sullivan model used to prove the analogous theorem in the Five Author paper. 

Under the hypotheses of the theorem above, H^{QE\ ¥p) is a connected, cocommu-
tative graded Hopf algebras, so that the four authors were able to generalize the notion 
of radical to the mod p context as follows. Recall that a sub-Hopf algebra G of a con
nected, cocommutative graded Hopf algebra H is normal if //+ • G = G • //+ [87]. The 
mod p radical of £", Radp(E), is the union of the normal, solvable sub-Hopf algebras 
of H^{^E\ Fp). Just as in the characteristic zero case, the four authors showed that if 
depth H^{QE\ ¥p) = m < oo, then Radp(E) is nilpotent. They also proved various other 
interesting results concerning the nature of Radp(E), extending those of the Five Author 
paper. 

Another noteworthy theorem from the Four Author paper generalizes a theorem of Serre 
that asserts that a noncontractible, finite, simply-connected CW-complex has infinitely 
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many nontrivial homotopy groups [98]. Recall that E is an n-stage Postnikov space if 
there exists a tower of principal fibrations 

E = En ^ En-l -^ > Eo=pt 

such that the fiber Ft of each qi is a product of Eilenberg-Mac Lane spaces, 

Fi = YlK(GiX,k). 

If in addition the localization of Gi^k at /? is a finitely generated module over the ring Z(p) 
of integers localized at p, then E is of finite type at p. Felix, Halperin, Lemaire and Thomas 
showed that if £ is a /7-local CW-complex of finite conelength and of finite type at p, then 
E is contractible. 

The Four Author paper marks the beginning of an highly productive period of study 
of the homology of loop spaces mod p, particularly by the team of Felix, Halperin, and 
Thomas, who referred to the wealth of results to be extracted as a "gold mine". One of 
their most significant contributions [43] consisted in the proof of a homological version of 
the well-known conjecture of Moore that if £" is a finite, simply-connected CW-complex 
such that {dim Hki^E; Q)}ic grows at most polynomially, then there exists r such that p'' 
annihilates all the j[7-torsion in 7T^(E). Felix, Halperin, and Thomas showed that if £" is a 
simply-connected space such that 

(1) cat(£) < oo; 
(2) each Hi(E; Z(p)) is finitely generated module over Z(p); and 
(3) {dim Hki^E', ¥p)]k grows at most polynomially, 

then there is an integer r such that p^ annihilates all the torsion in H^{QE\ Z(p)). To 
prove this theorem, they studied spectral sequences of elliptic Hopf algebras, i.e. Hopf 
algebras that are finitely generated and nilpotent, estabhshing in the process a sequence of 
important and deep results concerning elliptic differential Hopf algebras. They had shown 
in an earlier article [42] that if a simply-connected space E satisfied conditions (l)-(3), 
then H^(QE; ¥p) was an elliptic Hopf algebra. 

Anick, too, made a landmark contribution to the study of loop space homology via ra
tional homotopy techniques [10]. He observed that the Adams-Hilton model (TV, d) of a 
space E over any ring could be endowed with a coproduct ^j/ : (TV, d) -> (TV, d)<S)(TV, d) 
that was a map of chain algebras and a model for the diagonal map £" -> E x E. Fur
thermore, such a coproduct is necessarily coassociative and cocommutative up to chain 
homotopy. The triple (TV, d, \j/) is thus an example of what he called a Hopf algebra up 
to homotopy. 

Let /? be a subring of Q that contains l/n for all integers n < p. Anick's main theorem 
states that every Hopf algebra up to homotopy (TV, d, ^j/) over R such that V = 0 ' £ ^ ' V/ 
is isomorphic as an algebra to the enveloping algebra of a free chain Lie algebra. More
over, xj/ is chain homotopic to the natural coproduct on the enveloping algebra. Thus, in 
particular, the Adams-Hilton model over R of an r-connected CW-complex of dimension 
at most rp, called an (r, p)-mild complex, is the enveloping algebra of a differential graded 
Lie algebra. 

As a corollary of this profound theorem, Anick proved a conjecture of Wilkerson as
serting that if £• is a finite simply-connected CW-complex, then pih powers vanish in 
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H*(!OE\ ¥p) for /? > 0. He even obtained a precise lower bound on p, showing that if E 

is an (r, p)-mi\d complex, then pih powers vanish in H''{QE\ ¥p). 
Anick's theorem opened the door to even wider use of standard rational homotopy tech

niques in solving mod p homotopy problems. Let E be an (r, p)-mild complex, and let 
/? be a subring of Q containing 5, as well as \/n for all ^ < p. In his important paper 
on universal enveloping algebras, Halperin observed that if one computed the (differential, 
graded) Chevalley-Eilenberg-Koszul cochain complex of the chain Lie algebra associated 
to E by Anick's theorem, then one obtained a free commutative cochain algebra weakly 
equivalent to the /?-cochains of E [68]. He then defined an appropriate notion of mini
mality over R, and explained how to construct /^-minimal commutative cochain algebras 
quasi-isomorphic to a given commutative cochain algebra over R. This generalization of 
Sullivan's rational models has proved quite useful in recent years, for extending rational 
homotopy theory results over subrings of Q. 

Halperin employed the observation above in establishing an extension of Milnor and 
Moore's theorem mentioned in Section 1.3 to principal ideal domains. More precisely, he 
showed that if /? is a subring of Q containing ^ and \/n for all n < /? and E is an (r, p)-
mild complex such that H^{QE\ R) is /^-torsion free, then H^{f^E\ R) is isomorphic to 
the universal enveloping algebra of its Lie algebra of primitives. He showed, furthermore, 
that if p is an odd prime, there is a functor F from the category of (r, p)-mild complexes 
to that of chain Lie algebras over F^ such that H^{QE\ ¥p) is naturally isomorphic to 
U¥{E) for any (r, p)-mild complex E. 

4.4. Consolidating the structure of rational homotopy theory 

During the period described above of intense interaction with local algebra and, later, 
mod p homotopy theory, work on refining and deepening knowledge of rational homo
topy theory continued. The articles of Halperin on torsion gaps in homotopy constitute a 
prime example of such effort [66, 67]. Felix had conjectured that if E was a finite, simply-
connected CW-complex of dimension n such that TCk{E) (g) Q 7̂  0 and n\{E) (g) Q 7̂  0 
but 7ti{E) (g) Q = 0 for all /: < / < /, then I — k < n.ln his first article on torsion gaps, 
written in 1986, Halperin proved the conjecture when Hodd(E\ Q) = 0. More generally, 
he showed that there is an upper bound, expressed in terms of n and C3X(E), for the degree 
of /, limiting both the location and length of such torsion gaps. The proofs of these results 
depend on classical, Sullivan model constructions and arguments. 

In his second paper on torsion gaps, Halperin proved Felix's conjecture in complete 
generality. The proof is again purely based on Sullivan model constructions. In the course 
of the proof, Halperin obtained a very nice characterization of those minimal models that 
have finite dimensional cohomology. 

I would like to end this section on a more personal note, as I think the experience I 
describe illustrates the unity of the rational homotopy community, as well as the importance 
of the interaction with local algebra. At the end of the paper of Felix and Halperin on 
rational L.-S. category there is a list of unsolved problems and open questions [37]. One 
of the questions on that list asks whether Ganea's conjecture, that ca.t(E xS^) = cat(£) +1 
for every finite complex £", is true rationally. In the mid 1980's a student of Halperin, Barry 
Jessup, decided to try to answer this question. By the summer of 1987, he had succeeded 
in proving that Mcato(^ x 5") = Mcato(£) + 1 [77]. 
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In the fall of 1987,1 was a student of Anick at MIT, one of the few he had before leaving 
mathematics for medicine in 1991, and had also decided to work on the rational version 
of Ganea's conjecture. I went with Anick to Toronto to attend the Ontario Topology Sem
inar, where Halperin and Jessup were both present. Anick and I learned then of Jessup's 
result. The proof of the rational version of Ganea's conjecture was thus reduced to the 
problem of showing that Mcato = cato, for which there was some evidence, as mentioned 
in Section 4.2. When asked for his opinion, Halperin expressed skepticism about whether 
Mcato = cato, indicating exactly where he thought the problems would lie. 

In January of 1988, after several weeks of fruitless calculations, I accompanied Anick on 
a month-long visit to the University of Stockholm, where he was a guest lecturer. During 
our stay, Lofwall patiently and carefully explained to me the Sullivan model constructions 
underlying the proofs in the Five Author paper. That was the crucial knowledge that en
abled me to prove a few months later that Mcato = cato and thus to obtain, in conjunction 
with Jessup, a proof of the rational version of Ganea's conjecture [71]. 

Once he heard of my result, Halperin invited me to Toronto, where he proceeded to take 
me through every step of the proof at the blackboard during two very long days, until he 
was absolutely convinced that there was no mistake. It was a wonderful and reassuring, if 
draining, experience for a young researcher. 

Epilogue 

Since the end of the 1980's rational homotopy theory has evolved tremendously, expanding 
at a rapid rate. Relatively Htde research is currendy devoted to problems in pure radonal 
homotopy theory, though there remain a few intriguing outstanding conjectures, such as 
that of Avramov and Felix; see Section 4.2. In fact, much of the work of the former rational 
homotopy theorists is now oriented towards mod p homotopy theory, with the goal of 
either modelling spaces algebraically over ¥p or translating algebraic methods directly to 
topology. Topologists with roots in radonal homotopy theory are also solving problems in 
symplectic geometry, in Hochschild and cyclic homology, and in generalized Morse theory, 
among other fields. Closer to their origins, there are others working in tame homotopy 
theory or in abstract algebraic homotopy theory. 

After an initial decade of prolific, internal development, followed by a decade of in
tense interaction with local algebra and mod p homotopy theory, rational homotopy the
ory has been gradually merging into mainstream homotopy theory over the past several 
years. Whether rational homotopy theory will still be an actively independent branch of 
homotopy theory ten years from now is difficult to predict. If it is not, however, its in
fluence will certainly still be felt, both through the insight it provides into the nature of 
spaces "modulo torsion" and through the algebraic modelling methods developed by its 
practitioners. 
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Homological algebra had its origins in the 19-th century, via the work of Riemann (1857) 
and Betti (1871) on "homology numbers", and the rigorous development of the notion 
of homology numbers by Poincare in 1895. A 1925 observation of Emmy Noether [145] 
shifted the attention to the "homology groups" of a space, and algebraic techniques were 
developed for computational purposes in the 1930's. Yet homology remained a part of the 
realm of topology until about 1945. 

During the period 1940-1955, these topologically-motivated techniques for computing 
homology were applied to define and explore the homology and cohomology of several 
algebraic systems: Tor and Ext for Abehan groups, homology and cohomology of groups 
and Lie algebras, and the cohomology of associative algebras. In addition, Leray intro
duced sheaves, sheaf cohomology and spectral sequences. 

At this point Cartan and Eilenberg's book [41] crystallized and redirected the field com
pletely. Their systematic use of derived functors, defined via projective and injective res
olutions of modules, united all the previously disparate homology theories. It was a true 
revolution in mathematics, and as such it was also a new beginning. The search for a gen
eral setting for derived functors led to the notion of Abelian categories, and the search for 
nontrivial examples of projective modules led to the rise of algebraic AT-theory. Homolog
ical algebra was here to stay. 

Several new fields of study grew out of the Cartan-Eilenberg revolution. The importance 
of regular local rings in algebra grew out of results obtained by homological methods in 
the late 1950's. The study of injective resolutions led to Grothendieck's theory of sheaf 
cohomology, the discovery of Gorenstein rings and Local Duality in both ring theory and 
algebraic geometry. In turn, cohomological methods played a key role in Grothendieck's 
rewriting of the foundations of algebraic geometry, including the development of derived 
categories. Number theory was infused with new results from Galois cohomology, which 
in turn led to the development of etale cohomology and the eventual solution of the Weil 
Conjectures by Deligne. 

Simplicial methods were introduced in the 1950's by Dold, Kan, Moore and Puppe. They 
led to the rise of homotopical algebra and non-Abelian derived functors in the 1960's. 
Among its many apphcations, perhaps Andre-Quillen homology for commutative rings 
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and higher algebraic ^-theory are the most noteworthy. Simplicial methods also played 
a more recent role in the development of Hochschild homology, topological Hochschild 
homology and cycHc homology. 

This completes a quick overview of the history we shall discuss in this article. Now let 
us turn to the beginnings of the subject. 

1. Betti numbers, torsion coefficients and the rise of homology 

Homological algebra in the 19-th century largely consisted of a gradual effort to define 
the "Betti numbers" of a (piecewise hnear) manifold. Beginning with Riemann's notion 
of genus, we see the gradual development of numerical invariants by Riemann, Betti and 
Poincare: the Betti numbers and Torsion coefficients of a topological space. Indeed, the 
subject did not really move beyond these numerical invariants until about 1930. And it was 
not concerned with anything except invariants of topological spaces until about 1945. 

1.1. Riemann and Betti 

The first step was taken by Riemann (1826-1866) in his great 1857 work "Theorie der 
Abel'schen Funktionen" [155, VI]. Let C be a system of one or more closed curves Cj 
on a surface 5, and consider the contour integral /^ X djc + F d}̂  of an exact differential 
form. Riemann remarked that this integral vanished if C formed the complete boundary 
of a region in S (Stokes' theorem), and this led him to a discussion of "connectedness 
numbers". Riemann defined S to be (n + \)-fold connected if there exists a family C of 
n closed curves Cj on S such that no subset of C forms the complete boundary of a part 
of 5, and C is maximal with this property. For example, S is "simply connected" (in the 
modern sense) if it is 1-fold connected. As we shall see, the connectness number of S is 
the homology invariant 1 + dim H\{S\ Z/2). 

Riemann showed that the connectedness number of S was independent of the choice of 
maximal family C. The key to his assertion is the following result, which is often called 
"Riemann's lemma" [155, p. 85]: Suppose that A, B and C are three famihes of curves 
on S such that A and B form the complete boundary of one region of S, and A and C 
form the complete boundary of a second region of S. Then B and C together must also 
form the boundary of a third region, obtained as the symmetric difference of the other two 
regions (obtained by adding the regions together, and then subtracting any part where they 
overlap). 

If we write C ^ 0 to indicate that C is a boundary of a region then Riemann's lemma 
says that if A H- J5 ~ 0 and A-\- C ^ 0 then 5 + C ~ 0. This, in modern terms, is the 
definition of addition in mod 2 homology! Indeed, the Cj in a maximal system form a basis 
of the singular homology group H\ (5; Z/2). 

Riemann was somewhat vague about what he meant by "closed curve" and "surface", 
but we must remember that this paper was written before Mobius discovered the "Mobius 
surface" (1858) or Peano studied pathological curves (1890). There is another ambiguity 
in this lemma, pointed out by Tonelli in 1875: every curve Cj must be used exactly once. 

Riemann also considered the effect of making cuts (Querschnitte) in S. By making each 
cut qj transverse to a curve Cj (see [155, p. 89]), he showed that the number of cuts needed 
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to make S simply connected equals the connectivity number. For a compact Riemann sur
face, he shows [155, p. 97] that one needs an even number 2p of cuts. In modern language, 
p is the genus of 5, and the interaction between the curves Cj and cuts qj forms the germ 
of Poincare Duality for Hi (5; Z/2). 

Riemann had poor health, and frequently visited Italy for convalescence between 1858 
and his death in 1866. He frequently visited Enrico Betti (1823-1892) in Pisa, and the 
two of them apparently discussed the idea of extending Riemann's construction to higher-
dimensional manifolds. Two documents with very similar definitions survive. 

One is an undated "Fragment on Analysis Situs" [155, XXVIII], discovered among Rie
mann's effects, in which Riemann defines the ^-dimensional connectedness of a mani
fold M: replace "closed curve" with w-dimensional subcomplex (Streck) without boundary, 
and "bounding a region" with "bounding an (n + 1)-dimensional subcomplex". Riemann 
also defined higher dimensional cuts (submanifolds whose boundary Hes on the boundary 
of M) and observed that a cut of dimension dim(M) — n either drops the n-dimensional 
connectivity by one, or raises the {n — 1)-dimensional connectivity by one. In fairness, we 
should point out that Riemann's notion of connectedness is not independent of the choice 
of basis, because his notion that A and B are similar iyerdnderlich) is not the same as A 
and B being homologous; a counterexample was discovered by Heegaard in 1898. 

The other document is Betti's 1871 paper [25]. The ideas underlying this paper are the 
same as those in Riemann's fragment, and Betti states that his proof of the independence 
of the homology numbers from the choice of basis is based upon the proof in Riemann's 
1857 paper. However, Heegaard observed in 1898 that Betti's proof of independence is not 
correct in several respects, starting from the fact that a meridian on a torus is not closed in 
Betti's sense. 

Betti also made the following assertion [25, p. 148], which presages the Poincare Duality 
theorem: 

In order to render a finite n-dimensional space simply connected, by removing simply 
connected sections, it is necessary and sufficient to make Pn-\ linear cuts,..., Pi cuts 
of dimension n — \, 

where pt + 1 is the /-th connectivity number. Heegaard found mistakes in Betti's proof 
here too, and Poincare observed in 1899 [148, p. 289] that the problem was in (Riemann 
and) Betti's definition of similarity: it is not enough to just consider the set underlying A, 
one must also account for multiplicities. 

1.2. Poincare and Analysis Situs 

Inspired by Betti's paper, Poincare (1854-1912) developed a more correct homology the
ory in his landmark 1895 paper "Analysis Situs" [148]. After defining the notion, he fixes 
a piecewise linear manifold (variete) V. Then he considers formal integer combinations of 
oriented «-dimensional submanifolds V/ of V, and introduces a relation called a homology, 
which can be added like ordinary equations: ^ ki V/ ^ 0 if there is an (n + 1)-dimensional 
submanifold W whose boundary consists of ki submanifolds like Vi, k2 submanifolds 
like V2, etc. 

Poincare calls a family of n-dimensional submanifolds V/ linearly independent if there 
is no homology (with integer coefficients) connecting them. In honor of Enrico Betti, 
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Poincare defined the n-th Betti number of V to be bn + l, where bn is the size of a maximal 
independent family. Today we call bn the n-ih Betti number, because it is the dimension of 
the rational vector space Hn(V;Q). For geometric reasons, he did not bother to define the 
n-th Betti number for n = 0OT n = dim(y). 

With this definition, Poincare stated his famous Duality Theorem [148, p. 228]: for a 
closed oriented (m-dimensional) manifold, the Betti numbers equally distant from the ex
tremes are equal, viz., bi = bm-i- Unfortunately, there was a gap in Poincare's argument, 
found by Heegaard in 1898. Poincare pubhshed a new proof in 1899, using a triangulation 
of V and restricting his formal sums Yl ^i ̂ i to linear combinations of the simplices in 
the triangulation. Of course this restriction yields "reduced" Betti numbers which could 
potentially be different from the Betti numbers he had defined in 1895. Using simplicial 
subdivisions, he sketched a proof that these two kinds of Betti numbers agreed. (His sketch 
had a geometric gap, which was filled in by J.W. Alexander in 1915.) This 1899 paper was 
the origin of the simplicial homology of a triangulated manifold. 

Poincare's 1899 paper also contains the first appearance of what would eventually (after 
1929) be called a chain complex. Let V be an oriented polyhedron. In [148, p. 295], he 
defined boundary matrices e^ as follows. The (/, j) entry describes whether or not the j-\h 
(q — 1)-dimensional simplex in V hes on the boundary of the i-th ^-dimensional simplex: 
£^- = ±1 if it is (4-1 if the orientation is the same, —1 if not) and £?• = 0 if they do not 
meet. Poincare called the collection of these matrices the scheme of the polyhedron, and 
demonstrated on p. 296 that s^~^ oe^ = 0 . This is of course the familiar condition that the 
matrices e^ form the maps in a chain complex, and today Poincare's scheme is called the 
simplicial chain complex of the oriented polyhedron V. 

Another major result in Analysis Situs is the generalization of the notion of Euler char
acteristic to higher dimensional polyhedra V. If a„ is the number of n-dimensional cells, 
Poincare showed that the alternating sum x (^) = Xl("" 1)"^« î  independent of the choice 
of triangulation of V (modulo the gap filled by Alexander). On p. 288 he showed that xiY) 
is the alternating sum of the Betti numbers bn (in the modern sense); because of this result 
X(V) is today called the Euler-Poincare characteristic of V. Finally, when V is closed 
and dim( V) is odd, he used DuaHty to deduce that x (^) = 0-

In 1900, Poincare returned once again to the subject of homology, in the Second com
plement a VAnalysis Situs. This paper is important from our perspective because it intro
duced Unear algebra and the notion of torsion coefficients. To do this, Poincare considered 
the sequence of integer matrices (or tableaux) Tp which describe the boundaries of the 
/7-simplices in a polyhedron; this sequential display of integer matrices was the second 
occurrence of the notion of chain complex. 

In Poincare's framework, one performs elementary row and column operations upon all 
the matrices until the matrix Tp had been reduced to the block form 

Kp=\ ^2 1 < k\, k\\k2, /:2l^3, 

••./ 

Here / denotes an identity matrix. The /?-th Betti number bp is the difference between the 
number of zero columns in Tp and the number of nonzero rows in T^+i [148, p. 349]. The 
p-\h torsion coefficients were defined as the integers k\, ki, etc. in the matrix Kp^i [148, 
p. 363]. 
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In modern language, Hn{V\ Z) is a finitely generated Abelian group, so it has the form 
Z^" © Z/k\ ® Z/k2 ® '" with k\\k2, fel^s, etc. Here bn is the Betti number, and the 
p-th torsion coefficients are the orders of the finite cycHc groups Z/^/. Of course, since 
homology was not thought of as a group until 1925 (see [145]), this formulation would 
have looked quite strange to Poincare! 

1.3. Homology of topological spaces (1900-1935) 

The next 25 years were a period of consolidation and clarification of Poincare's ideas. For 
example, the Duality theorem for the mod 2 Betti numbers, even for nonoriented mani
folds, appeared in the 1913 paper [186] by O. Veblen (1880-1960) and J.W. Alexander 
(1888-1971). The topological invariance of the Betti numbers and torsion coefficients of a 
manifold was estabhshed by Alexander in 1915. In 1923, Hermann Kiinneth (1892-1975) 
calculated the Betti numbers and torsion coefficients for a product of manifolds in [119]; 
his results have since become known as the Kiinneth Formulas. 

Until the mid 1920's, topologists studied homology via incidence matrices, which they 
could manipulate to determine the Betti numbers and torsion coefficients. This changed 
in 1925, when Emmy Noether (1882-1935) pointed out in her 14-Une report [145], and 
in her lectures in Gottingen, that homology was an Abelian group, rather than just Betti 
numbers and torsion coefficients, and perceptions changed forever. The young H. Hopf 
(1894-1971), who had just arrived to spend a year in Gottingen and meet P. Alexandroff, 
realized how useful this viewpoint was, and the word spread rapidly. Inspired by the new 
viewpoint, the 1929 paper [140] by L. Mayer (1887-1948) introduced the purely algebraic 
notions of chain complex, its subgroup of cycles and the homology groups of a complex. 
Slowly the subject became more algebraic. 

During the decade 1925-1935 there was a general movement to extend the principal 
theorems of algebraic topology to more general spaces than those considered by Poincare. 
This led to several versions of homology. Some people who invented homology theories in 
this decade were: Alexander [3], Alexandroff (1896-1982), Cech (1893-1960) [43], Lef-
schetz (1884-1972) [121], Kolmogoroff (1903-1987), Kurosh (1908-1971) and Vietoris 
(1891-!). In 1940, Steenrod (1910-1989) developed a homology theory for compact metric 
spaces [176], and his theory also belongs to this movement. 

In each case, the homology theory could be described as follows: given topological data, 
the inventors gave an ad hoc recipe for constructing a chain complex, and defined their ho
mology groups to be the homology of that chain complex. In each case, they showed that 
the result is independent of choices, and provides the usual Betti numbers for compact 
manifolds. One theme in many recipes was homology with coefficients in a compact topo
logical group; this kind of homology remained in vogue until the early 1950's, by which 
time it had become superfluous. We shall pass over most of this decade, as it played Httle 
part in the development of homological algebra per se. 

One theory we should mention is the "de Rham homology" of a smooth manifold, which 
was introduced by G. de Rham (1903-1990) in his 1931 thesis [50]. Ehe Cartan (1869-
1951) had just introduced the cochain complex of exterior differential forms on a smooth 
manifold M in a series of papers [36,37] and had conjectured that the Betti number bf of M 
is the maximum number of closed /-forms coj such that no nonzero Unear combination 
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J2 ^j<^j is exact. When de Rham saw Cartan's note [36] in 1929, he quickly realized that 
he could solve Cartan's conjecture using a triangulation on M and the biUnear map 

L ( C , co) h^ j CO. 

Here C is an /-cycle for the triangulation and o) is a closed /-form. Indeed, Stokes' formula 
shows that f^ a; = 0 if either co is an exact form or if C is a boundary. De Rham showed the 
converse was true: if we fix C then /^ co = 0 if and only if C is a boundary, while if we fix 
0) then /^ (W = 0 if and only if co is exact. De Rham's theorem proves Cartan's conjecture, 
since if we write H^^(M) for the quotient of all closed forms by the exact forms, then it 
gives a nondegenerate pairing between the vector spaces /// (M; E) and H^^(M). 

Of course, H^^(M) is just the /-th cohomology of Cartan's complex, and we now refer to 
it as the "de Rham cohomology" of M. But cohomology had not been invented in 1931, and 
no one seems to have realized this fact until Cartan and Chevalley in the 1940's, so de Rham 
was forced to state his results in terms of homology. Much later, the de Rham cohomology 
of Lie groups would then play a critical role in the development of the cohomology of Lie 
algebras (see [45] and the discussion below). 

1.4. The rise of algebraic methods (1935-1945) 

The year 1935 was a watershed year for topology in many ways. We shall focus upon four 
developments of importance to homology theory. 

The Hurewicz maps h : nn{X) -^ Hn(X\ Z) were constructed and studied by Witold 
Hurewicz (1904-1956) in 1935. Hurewicz also studied aspherical spaces, meaning spaces 
such that 7Tn(X) = 0 for n =?̂  1. He noticed in [105] that if X and X' are two finite-
dimensional aspherical spaces with TTI (X) = 7T\ (X^) then X and X^ are homotopy equiv
alent. From this he concluded that the homology Hn(X; Z) of such an X depended only 
upon its fundamental group jri(X). This observation forms the impHcit definition of the 
cohomology of a group, a definition only made explicit a decade later (see below). 

The homology of the classical Lie groups was calculated in 1935 by Pontrjagin [149] 
(Betti numbers only, using combinatorial proofs) and more fully by R. Brauer [32] (ring 
structure, using de Rham homology). These calculations led directly to the modern study 
of Hopf algebras, as follows. H. Hopf introduced //-spaces in the paper [102], written 
in 1939, and showed that the Brauer-Pontrjagin calculations were a consequence of the 
fact that the homology ring //*(M; Q) of any //-space M is an exterior algebra on odd 
generators; today we would say that Hopf's result amounted to an early classification of 
finite-dimensional graded "Hopf algebras" over Q. 

The third major advance was the determination of Universal Coefficient groups for 
homology, that is, a coefficient group A„ which would determine the homology groups 
H^{X\ A) for arbitrary coefficients A. For finite complexes, where matrix methods ap
ply, J.W. Alexander had already shown in 1926 [3] that //*(X; Z/n) was determined by 
//*(Z; Z), the case « = 2 having been done as early as 1912 [186]. In the 1935 paper [44], 
E. Cech discovered that Z is a Universal Coefficient group for homology: assume that there 
is a chain complex C* of free Abelian groups, whose homology gives the integral homol
ogy of a space X (the space is introduced only for psychological reasons). Then for every 
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Abelian group A and every complex X, Hn(X\ A) is the direct sum of two subgroups, 
determined explicitly by Hn{X; Z) and Hn-\{X\ Z), respectively. 

In fact, Cech's Universal Coefficient Theorem gave explicit presentations for these 
subgroups, which today we would recognise as presentations for Hn{X\ Z) (g) A and 
Tori {Hn-\{X\ IJ), A). Thus Cech was the first to introduce the general tensor product and 
torsion product Tor of Abelian groups into homological algebra. However, such a modern 
formulation of Cech's result (and the name Tor, due to Eilenberg around 1950) did not ap
pear in print before 1951 ([39, Expose 10]; see also [67, p. 161]). We note a contemporary 
variant in passing: Steenrod proved a Universal Coefficient Theorem for cohomology with 
coefficients in a compact topological group in 1936; see [175]; in this context the Universal 
Coefficient group is the character group R/Z of Z. 

The fourth great advance in 1935 was the discovery of cohomology theory and cup 
products, simultaneously and independendy by Alexander and Kolmogoroff. The drama 
of their back-to-back presentations at the Moscow International Conference on Topol
ogy in September 1935 is nicely described in Massey's article [136] in this book. The 
Alexander-Kolmogoroff formulas defining the cup product were completely ad hoc, and 
also not exactly correct; the rectification was quickly discovered by Cech and Hassler Whit
ney (1907-1989), and corrected by Alexander. All three authors published articles about 
the cup product in the Annals of Mathematics during 1936-1938. Whitney's article [190] 
had the most enduring impact, for it introduced the modern "co" terminology: coboundary 
(6) and cocycle, as well as the notation a ^ b and a ^ b, prophetically suggesting that "we 
might call ^ 'cup' and ^ 'cap' ". Whitney's article also imphcitly introduced the notion of 
what we now call a differential graded algebra, via the "Leibniz axiom" that if a and b are 
homogeneous of degrees p and q then: 

5(a ^b) = (8a) ^ b-\- (-l)^fl - 8b. 

During the next decade, while the world was at war, the algebraic machinery slowly fell 
into place. 

In the 1938 paper [191], Hassler Whitney discovered the tensor product construction 
A <S) B for AbeHan groups (and modules). Up to that time, this operation had only been 
known (indirectly) in special cases: the tensor product of vector spaces, or the tensor prod
uct of A with a finitely generated Abelian group B. Whitney took the name from the fol
lowing classical example in differential geometry: if T is the tangent vector space of a 
manifold at a point, then T <S> T is the vector space of (covariant) "tensors of order 2". 
The full modern definition of the tensor product (using left and right modules) appeared 
in Bourbaki's influential 1942 treatment [30], as well as in the 1944 book [11] by Artin, 
Nesbitt and Thrall. 

The concept of an exact sequence first appeared in Hurewicz' short abstract [106] of a 
talk in 1941. This abstract discusses the long exact sequence in cohomology associated to 
a closed subset 7 c X, in which the operation 8:H^(X -Y) -^ //^+^ (Z, Y) plays a key 
role. 

In the 1942 paper [59], Eilenberg (1915-1998) and Mac Lane (1909-) gave a treatment 
of the Universal Coefficient Problem for cohomology, naming Hom and Ext for the first 
time. Using these, they showed that Cech homology with coefficients in any Abelian group 
A is determined by Cech cohomology with coefficients in Z. This application further es-
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tablished the importance of algebra in topology. We will say more about this discovery in 
the next section. 

In 1944, S. Eilenberg defined singular homology and cohomology in [57]. First, he in
troduced the singular chain complex S(X) of a topological space, and then he defined 
H^{X\ A) and //*(X; A) to be the homology and cohomology of the chain complexes 
S{X) (8) A and HomC^CZ), A), respectively. The algebra of chain complexes was now 
firmly entrenched in topology. Eilenberg's definition of S{X) was only a minor modifica
tion of Lefschetz' 1933 construction in [121], replacing the notion of oriented simpUces by 
the use of simphces with ordered vertices; this trick avoided the issue of equivalence rela
tions on oriented simplices which introduced "degenerate" chains of order 2. (See [136].) 

We close our description of this era with the 1945 paper by Eilenberg and Steenrod [66]. 
This paper outlined an axiomatic treatment of homology theory, rederiving the whole of 
homology theory for finite complexes from these axioms. They also pointed out that sin
gular homology and Cech homology satisfy the axioms, so they must agree on all finite 
complexes. The now-familiar axioms introduced in this paper were: functoriality of Hq 
and 9; homotopy invariance; long exact homology sequence for Y C X\ excision; and the 
dimension axiom: if P is a point then Hq (P) = Ofor q 7̂  0. We refer the reader to May's 
article [139] for subsequent developments on generalized homology theories, which are 
characterized by the Eilenberg-Steenrod axioms with the dimension axiom replaced by 
Milnor's wedge axiom [141]. 

2. Homology and cohomology of algebraic systems 

During the period 1940-1950, topologists gradually began to realize that the homology 
theory of topological spaces gave invariants of algebraic systems. This process began with 
the discovery that group extensions came up naturally in cohomology. Then came the dis
covery that the cohomology of an aspherical space Y and of a Lie group G only depended 
upon algebraic data: the fundamental group n = 7T\(Y) and the Lie algebra g associated 
to G, respectively. This led to thinking of the homology and cohomology groups of Y and 
G as intrinsic to n and g, and therefore algebraically definable in terms of the group n and 
the Lie algebra g. 

2.1. Ext of Abelian groups 

If A and B are AbeHan groups, an extension of 5 by A is an AbeUan group E, containing 
^ as a subgroup, together with an identification of A with E/B. The set Ext(A, B) of 
(equivalence classes of) extensions appeared as a purely algebraic object, as a special case 
of the more general problem of group extensions (see below), decades before it played a 
crucial role in the development of homological algebra. 

Here is the approach used by Reinhold Baer in 1934 [16]. Suppose that we fix a pre
sentation of an AbeHan group A by generators and relations: write A = F/R, where F is 
a free AbeUan group, say with generators { /̂}, and R is the subgroup of relations. If E is 
any extension of 5 by A, then by lifting the generators of A to elements a(ei) of E we get 
an element a(r) of B for every relation r in R. Brauer thought of this as a function from 
the defining relations of A into B, so he called the induced homomorphism a\R -> B a 
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relations function. Conversely, he observed that every relations function a gives rise to a 
factor set, and hence to an extension E{a), showing that two relations functions a and a' 
gave the same extensions if and only if there are elements /?/ (corresponding to a function 
b:F -^ B)so that a\r) = b(r) + air) [16, p. 394]. Finally, Baer observed (p. 395) that 
the formal sum a -\- a^ of two relations functions defined an addition law on Ext(A, B), 
making it into an Abehan group. In his honor, we now call the extension E(a -\- a') the 
"Baer sum" of the extensions. 

Baer's presentation A = F/R amounted to a free resolution of A, and his formulas 
were equivalent to the modern calculation of Ext(A, B) as the cokernel of Hom(F, B) -^ 
Hom(/?, B). But working with free resolutions was still a decade away [104,72], and using 
them to calculate Ext(A, B) was even further in the future [67]. 

We now turn to 1941. That year, Saunders Mac Lane gave a series of lectures on group 
extensions at the University of Michigan. According to [133], most of the lectures con
cerned applications to Galois groups and class field theory, but Mac Lane ended with a 
calculation of the Abehan extensions of Z by A = Z[l/p]. Samuel Eilenberg, who had 
recently emigrated from Poland and was an Instructor at Michigan, could not attend the 
last lecture and asked for a private lecture. Eilenberg immediately noticed that the group 
Z[l/p] was dual to the topological /?-adic solenoid group U, which Eilenberg had been 
studying, and that Mac Lane's algebraic answer Ext(Z[l//?], Z) = Zp/Z coincided with 
the Steenrod homology groups H\{S^ — E\Z) calculated in Steenrod's 1940 paper [176]. 
After an all-night session, followed by several months of puzzHng over this observation, 
they figured out how Ext plays a role in cohomology; the result was the paper [59]. 

Time has recognized their result as the Universal Coefficient Theorem for singular co
homology, but singular cohomology had not yet been invented in 1942. In addition, the 
notation then in vogue, and used in [59], was the opposite of today's conventions (which 
date to 1945 [66,41]) in several respects. They wrote H^ (A) for the homology groups they 
worked with, and wrote Hq (A) for the cohomology groups under consideration. And since 
they were reworking many of Baer's observations about extensions, they wrote Ext{B, A} 
for what we call Ext(A, B). 

Here is a translation of their Universal Coefficient Theorem into modern language. Given 
an infinite but star-finite CW complex K, they formed the cochain complex C*{K) of fi
nite cocycles with integer coefficients; each C^ (K) is a free Abelian group. Define the 
cohomology 'H* of K using C*(K), and define the homology //H=(A ;̂ A) of AT with co
efficients in A using the chain complex Hom(C*(^), A). Then Hq{K; A) is the product 
of }lom(W, A) and the group Exi(W'^^, A) of Abehan group extensions. Of course, the 
proof in [59] only uses the algebraic properties of C^iK). Since the early 1950's [67, 41] 
it has been traditional to state this result the other way: given a chain complex C* of free 
Abelian groups, one sets Hq = Hq{C^) and describes the cohomology of the cochain 
complex Hom(C*(Ar), A) as the product of Hom(//^, A) and Ext(//^-i, A). 

In order to find a universal coefficient formula for the cohomology H^(K; A) of 
C*(K) (g) A, they discovered the "adjunction" isomorphism 

Hom(A <S>BX)= Hom(5, Hom(A, C)); 

see [59, (18.3)]. This is an isomorphism which varies naturally with the AbeUan groups A, 
B and C. With this in hand, they reformulated Cech's Universal Coefficient Theorem: 
Hq{K\ A) is the direct sum of Hq ® A and a group T that we would write as T = 
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HorricontC^*, Hq-\), where A* is the Pontrjagin dual of A. In fact, T is Tor(A, Hq-\)\ 
see [41, p. 138]. 

The notion that Hom(A, B) varies naturally, contravariantly in A and covariandy in B, 
was central to the discussion in [59]. In order to have a precise language for speaking 
of this property for Horn, and for homology and cohomology, Eilenberg and Mac Lane 
concocted the notions of functor and natural isomorphism in 1942. They expanded the 
language to include category and natural transformation in 1945; see [61]. Although these 
concepts were used in several papers, the new language of Category Theory did not gain 
wide acceptance until the appearance of the books [67,41] in the 1950's. 

2.2. Cohomology of groups 

The low dimensional cohomology of a group n was classically studied in other guises, 
long before the notion of group cohomology was formulated in 1943-1945. For example, 

H^iit', A) = A^, Hx{n\ Z) = 7r/[7r, n] 

and (for ix finite) the character group 

//2(7r, Z) = H\7T\ C ^ ) = Hom(7r, C^) 

were classical objects. 
The group H^{n, A) of crossed homomorphisms of n into a representation A is just as 

classical: Hilbert's "Theorem 90" (1897) is actually the calculation that T/^TT, L"") = 0 
when 71 is the Galois group of a cyclic field extension L/K, and the name comes from its 
role in the study of crossed product algebras [33]. 

The study of H^{ix\ A), which classifies extensions over n with normal subgroup A via 
factor sets, is equally venerable. The idea of factor sets appeared as early as Holder's 1893 
paper [101, Section 18], again in Schur's 1904 study [161] of projective representations 
n -> PGLniC) (these determine an extension E over n with subgroup C^, equipped 
with an n-dimensional representation) and again in Dickson's 1906 construction of crossed 
product algebras. O. Schreier's 1926 paper [160] was the first systematic treatment of factor 
sets; Schreier did not assume that A was AbeUan. In 1928, R. Brauer used factor sets in [31] 
to represent central simple algebras as crossed product algebras in relation to the Brauer 
group; this was clarified in [33]. In 1934, R. Baer gave the first invariant treatment of 
extensions (i.e. without using factor sets) in [16]. He noticed that when A was Abehan, 
Schreier's factor sets could be added termwise, so that the extensions formed an Abehan 
group. Extensions with A Abehan were also studied by Marshall Hall in 1938 [85]. 

The next step came in 1941, when Heinz Hopf submitted a surprising 2-page announce
ment [103] to a topology conference at the University of Michigan. In it he showed 
that the fundamental group n = n\ (Z) determined the cokernel of the Hurewicz map 
h : TTiiX) -> //2(X; Z). If we present TT as the quotient it = F/R of 3. free group F by the 
subgroup R of relations, Hopf gave the explicit formula: 

HiiX; Z) ^ Rn [F, F] 

h{7T2(X)) [F,R] 
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In particular, if n2{X) = 0 this shows exactly how H2{X; Z) depends only upon 7ri(Z); 
this formula is now called Hopf's formula for H2{n; Z). 

Communication with Switzerland was difficult during World War II, and Hopf's paper 
arrived too late to be presented at the conference, but his result made a big impression 
upon Eilenberg. According to Mac Lane [133], Eilenberg suggested that they try to get rid 
of that non-invariant presentation of 7r(X). Since they had just learned in 1942 [59] that 
homology determined cohomology, was it more efficient to describe the effect of n\{X) 
on H^{X\ Z)? Mac Lane states that this line of investigation provided the justification for 
the abstract study of the cohomology of groups, and "was the starting point of homological 
algebra" [132, p. 137]. 

The actual definition of the homology and cohomology of a group n first appeared in the 
1943 announcement [60] by Eilenberg and Mac Lane (the full paper appeared in 1945). At 
this time (March 1943-1945) Eilenberg and Mac Lane were housed together at Columbia, 
working on war-related applied mathematics [134]. Independently in Amsterdam, Hans 
Freudenthal (1905-1990) discovered homology and cohomology of groups using free res
olutions; his paper [72] was probably smuggled out of the Netherlands in late 1944. Also 
working independently of Eilenberg-MacLane and Freudenthal, but in Switzerland, ho
mology was defined in Hopf's 1944 paper [104], and (based on Hopf's paper) the co
homology ring was defined in Beno Eckmann's 1945 paper [56]. We will discuss these 
approaches, beginning with [60]. 

Given n, Eilenberg and Mac Lane choose an aspherical space Y with n =7t\{Y). Using 
Hurewicz' observation that the homology and cohomology groups of Y (with coefficients 
in A) were independent of the choice of 7, Eilenberg and Mac Lane took them as the def
inition of Hn{ix\ A) and W\7i\ A). To perform computations, Eilenberg and Mac Lane 
chose a specific abstract simphcial complex K{7i) for the aspherical space Y. Its n-cells 
correspond to ordered arrays [xi, . . . , x^] of elements in the group. Thus one way to cal
culate the cohomology groups of n was to use the cellular cochain complex of K(7T), 

whose ^-chains are functions f :7t^ -> A from q copies of TT to A. Eckmann's paper [56] 
also defines H^{X; A) as the cohomology of this ad hoc cochain complex, and defines 
the cohomology cup product in terms of this complex. Both papers showed that H^{G\ A) 
classifies group extensions. 

At the same time, Hopf gave a completely different definition in [104]. First Hopf con
siders a module M over any ring R, and constructs a resolution F* of M by free /^-modules. 
If / is an ideal of /?, he considers the homology of the kernel of F* -> F^/I and shows 
that it is independent of the choice of resolution. In effect, this is the modern definition of 
the groups Tor;^(M, R/I)! Hopf then specializes to the group ring R = Z[7r], the augmen
tation ideal / and M = Z, and defines the homology of ic to be the result. That is, Hopf's 
definition is literally (in modern notation) 

//„(7r;Z) = Tor^t^l(Z,Z). 

Finally, Hopf showed that if Y is an aspherical cell space with n = 7t\ (Y) then //„ (7; Z) = 
Hn{n\ Z). His proof has since become standard: the cellular chain complex F* for the 
universal cover of 7 is a free Z[7r]-resolution of Z, and F^/I is the cellular chain complex 
of Y. Thus the homology of F*// simultaneously computes the Betti homology of Y and 
the group homology of TT, as claimed. 
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Freudenthal's method [72] was similar to Hopf s, but less general. He considered a free 
Z[:/r]-module resolution F* of Z, and showed that the homology of F* (^jt A is indepen
dent of F* for every Abehan group A. Like the others, Freudenthal constructed one such 
resolution from an aspherical polytope Y with n = 7TI(Y). 

At first, calculations of group homology were restricted to those groups n which were 
fundamental groups of familiar topological spaces, using the bar complex. In his 1946 
Harvard thesis [129], R. Lyndon found a way to calculate the cohomology of a group TT, 
given a normal subgroup Â  such that H*(N) and H''{n/N\ A) were known. His proce
dure started with HP{n/N\ H^(N)) and proceeded through successive subquotients, end
ing with graded groups associated to a filtration on //*(:/r). Serre quickly reahzed [162] 
that Lyndon's procedure amounted to a spectral sequence, and completed the description 
with Hochschild in the 1953 paper [99]. Since then, it has been known as the Lyndon-
Hochschild-Serre spectral sequence. 

One application of the new definitions was Galois cohomology, so named in Hoch-
schild's 1950 study [95] of local class field theory. If L is a finite Galois extension of 
a field K with Galois group G, this referred to the cohomology of G with coefficients 
in L^, or in a related G-module such as the idele class group of L. For example, the 
Normal Basis Theorem implies that the additive group L is a free G-module over L, so 
//^(G; L) = 0 for ^ / 0 [58]. In the late 1940's, it was observed that the factor sets 
of Brauer [31] and Brauer-Noether [33] were 2-cocycles, and the Brauer-Noether results 
translated immediately into the following theorem about the Brauer group: H^{G\ L^) 
is isomorphic to the kernel Br{L/K) of the map Br(K) -> Br{L), and is generated by 
the central simple algebras which are split over L. This observation was mentioned in 
Eilenberg's 1948 survey [58] of the field. A careful writeup was given by Serre in Cartan's 
1950/1951 seminar [39]. 

The 1952 paper [98] explored the connection to Class Field Theory, translating Tsen's 
theorem (1933) into the vanishing of H^(G; K^) for q / 0 when k and K are function 
fields of curves over an algebraically closed field. This paper also marked the first appear
ance of Shapiro's lemma, a formula for the cohomology of an induced module which is 
due to Arnold Shapiro. 

While studying Galois cohomology in his 1952 thesis [182], John Tate discovered that 
there is a natural isomorphism H^(G; Z) = H^'^^(G; CL), where CL is the idele class 
group of a number field L. Moreover, the reciprocity law gave a similar relation between 
//i(G; Z) = G/[G, G] and a subgroup of //^(G; CL). This led him to define the Tate 
cohomology H'^iG, A) of any finite group G and any G-module A, indexed by all in
tegers; see the 1954 paper [183]. Tate did this by splicing together the cohomology of 
G (H^(G; A) = / /^ (G;A)for r > 0) and the homology of G (reindexing via Hn as 
fj~n-i fQj. ̂  ^ i^^ ĵ̂ (j using ad hoc definitions for H^ and H~K 

The 1950/1951 Seminaire Cartan [39] saw the next major advances in group homol
ogy. In Exposes 1 and 2, Eilenberg gave an axiomatic characterization of homology and 
cohomology theories for a group n, and used a fixed free resolution of the TT-module Z 
to establish the existence of both a homology and a cohomology theory. The key axioms 
Eilenberg introduced to prove uniqueness were: 

(1) if A is a free TT-module then Hgin; A) = 0 for q > 0, and 
(2) if A is an injective TT-module then //^(TT; A) = 0 for ^ > 0. 

In Expose 4 of the same seminar, H. Cartan proved what we now call the Comparison 
Theorem for chain complexes: given a free resolution C* and an acyclic resolution C^ of Z, 
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there is a chain map C* -^ C'^ over Z, unique up to chain homotopy. This made Eilenberg's 
construction natural in the choice of C*, and allowed Cartan the freedom to construct cup 
products in group cohomology via resolutions. 

After the 1950-1951 Seminaire Cartan [39], the germs of a complete reworking of the 
subject were in place. Cartan and Eilenberg began to collaborate on this reworking, not 
realizing that the resulting book [41] would take five years to appear. 

2.3. Associative algebras 

Before the cohomology theory of associative algebras was defined, the special cases of 
derivations and extensions had been studied. Derivations and inner derivations of algebras 
(associative or not) over a field k were first studied systematically in 1937 by N. Jacob-
son [107], who was especially interested in the connection to Galois theory over k when 
char(y )̂ 7̂  0. 

Hochschild studied derivations of associative algebras and Lie algebras in the 1942 pa
per [93]. He showed that every derivation of an associative algebra A is inner if and only if 
A is a separable algebra, meaning that not only is A semisimple, but the ^-algebra A (g)̂  £ is 
semisimple for every extension field /: c £. In addition, he showed that if A is semisimple 
over a field of characteristic zero, M is an A-bimodule, and / : A ( 8 ) A - > M is a bilinear 
map satisfying iht factor set condition: 

a fib, c) + f(a, be) = f{a, b) c -f f(ab, c), 

then there is a linear map e: A -^ M so that f(a, b) = a e{b) + e{a)b — e(ab). 
Upon seeing the Eilenberg-Mac Lane treatment of the cohomology of groups in 1945, 

Hochschild observed [94] that the same formulas gave a purely algebraic definition of the 
cohomology of an associative algebra A over a field, with coefficients in a bimodule M. 
The degree q part C^(A; M) of his ad hoc cochain complex is the vector space of mul
tilinear maps from A to M, i.e. linear maps A®^ -^ M. For example, if e:k -^ M has 
^(1) = m then 6{e){a) — am — ma is an inner derivation, and a 1-cocycle is a map 
f \A -^ M such that f{ab) = af(b) + f(a)b. Thus the construction makes H^(A; M) 
into the quotient of all derivations by inner derivations, and the first of Hochschild's 1942 
results becomes: H^{A\ M) vanishes for every M if and only if A is a separable algebra. 
Hochschild also showed that H^(A; M) measures algebra extensions £" of A by M, mean
ing that M is a square-zero ideal and E/M = A; a trivial extension is one in which the 
algebra map £" -> A spHts. Since a 2-cocycle is just a map f \A® A -> M satisfying 
the factor set condition mentioned above, Hochschild's second 1942 result becomes: if A 
is semisimple then //^(A; M) vanishes for every M, and hence every nilpotent algebra 
extension of A must be split. 

2.4. Lie algebras 

Since Ehe Cartan's 1929 theorem [37] that every connected semisimple Lie group is dif-
feomorphic to the product of a compact Lie group G and W, the cohomology of Lie groups 
was reduced to that of compact Lie groups. Cartan conjectured in 1928 [36] and de Rham 
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observed that the de Rham cohomology H^^(G; M) of G may be computed using left in
variant differentials, and it was gradually noticed that the Lie algebra g of left invariant 
vector fields (or tangent vectors at the origin of G) determines the cohomology of G. We 
have seen how this was solved in 1935 by Brauer and Pontrjagin. 

Chevalley and Eilenberg were able to use this observation to define the cohomology 
of any Lie algebra in their 1948 paper [45]. After reviewing de Rham cohomology, they 
calculate that the (differential graded) algebra of left invariant differential forms on a Lie 
group G is isomorphic to the dual algebra C*(g) of the exterior algebra A*g. Translat
ing the de Rham differential into this context gave the differential 8 : C^(Q) -> C^^^ (g) 
defined by 

(8oj)(xu . . . , Xq+i) = — — ^{-l)^~^^~^^a){[xk, x / ] , . . . , i ^ , . . . , i / , . . . ) . 

This makes C*(g) into a differential graded algebra, and they define the cohomology ring 
^Lie^^' ^^ ^^ ^̂ ^ ^^^ algebra g to be the cohomology of C*(g). (They then state that in 
other characteristics one can and should omit the constant 1/(^ + 1).) Thus if G is compact 
and connected then their construction of Lie algebra cohomology has the isomorphism 
/ /*R(G; M) = /̂ Lie^S' ^ ) ^s its birth certificate. 

It is immediate that a 1-cocycle is a map g -> E vanishing on the subalgebra [g, g]. 
Since there are no 1-coboundaries we see that H^^^^ig; k) is the dual space of g/[g, g]. 
This purely algebraic feature is present, but had been downplayed in the cohomology of 
compact connected Lie groups, because it follows from the fact that G/{G, G] is a torus. 

In order to study the cohomology H^^(G/H; E) of the homogeneous spaces G/H of G, 
Chevalley and Eilenberg also defined the cohomology ^Lie^^' ^) c>f a representation V 
of g. This was defined similarly, as the cohomology of the chain complex C*(g; V) of 
(vector space) maps from A*g to V. Translated from the corresponding de Rham differen
tial on the manifold G/H, the formula for the differential Sco resembled the one displayed 
above, but it had an extra alternating sum of terms XkCo(..., x^, . . . ) . 

According to Jacobson's 1937 paper [107], a derivation from a Lie algebra g into a g-
module V is a linear map D :g -> V such that D([x, y]) = x(Dy) — y{Dx). It is an inner 
derivation if Z)(x) = xi; for some v e V. It is immediate from the Chevalley-Eilenberg 
complex C^ig; V) that H^^^^ig-, V) is the quotient of all derivations from g into M by the 
inner derivations. 

The 1948 paper [45] also contains the theorem that Lie extensions of g by V are in one-
to-one correspondence with elements of H^(g\ V), a result inspired by Eilenberg's role in 
the earlier classification of group extensions via H^{G; A) in [60]. Indeed, the proof was 
similar: cocycles in the complex C*{g; V) are recognised as factor sets for extensions. 

Now suppose that g is any semisimple Lie algebra over a field k of characteristic zero. 
J.H.C. Whitehead (1904-1960) had discovered some algebraic lemmas about Hnear maps 
on g in 1936-1937 (see [189]), in order to give a purely algebraic proof of Weyl's 1925 
theorem that every representation is completely reducible. Whitehead's lemmas also ap
peared in Hochschild's 1942 paper [93] on derivations. Whitehead's "first lemma" said 
that every derivation from g into any representation V was inner, even though he proved 
this result before the notion of derivation was known. Chevalley and Eilenberg translated 
Whitehead's "first lemma" as the statement that H^^^ig; V) = 0 for all V. 
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Whitehead's "second lemma" concerned alternating bilinear maps / : 0 A g -> V sat
isfying di factor set condition, which we would now write as (5/(x, y, z) = 0. White
head proved that for every such / there was always a linear map ^: g -> V so that 
f {x, y) = xe{y) — ye{x) -\- e{[x, y]). Chevalley and Eilenberg translated this as the state
ment that /^Lie^S' ^) = 0 ^^^ ̂ 11 ^' I^ t)oth of these results, the first step was an analysis 
of the trivial representation V = k. For the second step, they used another result of White
head to show that when V ^ /: is a simple representation then H^^^iQ; V) = 0 for all q. 
This last step shows that the only interesting cohomology groups of g are those with trivial 
coefficients, and these are interesting because H^^^ig; k) = H^{G\ k). 

The analogy with the cohomology of compact Lie groups was pursued further by Koszul 
(1921-) in the 1950 paper [118]. He introduced the notion of a reductive Lie algebra g, and 
showed that (in characteristic zero) its cohomology is an exterior algebra. 

2.5. Sheaves and spectral sequences 

Jean Leray (1906-1998) was a prisoner of war during World War II, 1940-1945. He orga
nized a university in his prison camp and taught a course on algebraic topology. At the end 
of his imprisonment, he invented sheaves and sheaf cohomology [122], as well as spectral 
sequences for computing his sheaf cohomology [123]. 

As we saw above, the essential features of a spectral sequence had also been noted 
independently by R. Lyndon [129], as a way to calculate the cohomology of a group. The 
algebraic construction of spectral sequences was codified by Koszul [117] in 1947, using 
Cartan's suggestion that the central object should be a filtered chain complex. Koszul's 
presentation clarified things so much that Leray immediately adopted Koszul's framework. 

In 1947/1948, and again in 1949/1950, Leray gave a course at the College de France 
on this new cohomology theory. Part I was a review of his theory of spectral sequences, 
using Koszul's framework. Part II introduced the notion of a sheaf, fine sheaves, and the 
cohomology with compact supports of a locally compact topological space relative to a 
differential graded sheaf. The details of this course eventually appeared in Leray's detailed 
1950 article [124]. 

The next year (1948/1949), Henri Cartan ran a Seminar [38] on algebraic topology, with 
17 exposes published as unbound mimeographed notes. Exposes XII-XVII were devoted to 
an exposition of Leray's theory using Cartan's version of sheaves, but were later surpressed 
when Cartan's viewpoint on sheaves changed. The same subject was revisited by H. Cartan 
two years later in Exposes 14-20 of the 1950/1951 Cartan Seminar [39], where he and his 
students reworked the theory of sheaves, and sheaf cohomology, based on Leray's notion 
of a "fine" sheaf. 

In Expose 16 Cartan gave axioms for sheaf cohomology theory on a paracompact 
space X (with supports in a family (p of closed subspaces of X, which we shall omit 
from our notation here). His axioms were: 
• H^(X, F) is the group r(F) of global sections of the sheaf F (with support in 0 ) ; 
• H^ {X, F) depends functorially on F and vanishes for negative ^; 
• A natural long exact cohomology sequence exists for each short exact sequence of 

sheaves; and 
• If F is a "fine" sheaf then //^ (X, F)=0 for all ̂  7̂  0. 
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Cartan was now able to mimic the proof of existence and uniqueness for group cohomol-
ogy given earlier in Exposes 1-4 of the same Seminar by Cartan and Eilenberg. To prove 
uniqueness, he observed that every sheaf F may be embedded in a fine sheaf, specifically 
into a sheaf he called F®S, which we would describe as the sum of the skyscraper sheaves 
x*x*(F) over all points x of X. To prove existence, Cartan fixed a resolution 

0 -> Z -> Co -> • • • 

of Z by torsion-free fine sheaves, and set H^{X, F) = H^(r(C (g) F)). Observing that 
some choices of C happen to give differential graded algebras, he was able to define a 
product structure 

HP(X, F) (g) HHX, F') -> HP-^HX, F (g) F') 

on sheaf cohomology. 
In the remaining exposes of [39], Cartan, Eilenberg and Serre returned to Leray's spec

tral sequences, codifying the machinery and studying its multipHcative structure. Much of 
this material was reproduced in the 1953 Hochschild-Serre paper [99] in order to redo 
Lyndon's spectral sequence [129]. The usefulness of this approach to spectral sequences 
was decisively demonstrated by Serre in his 1951 thesis [163]. 

A completely different approach to spectral sequences was given by W. Massey in 
1952 [135]. Massey defines an exact couple to be a pair of (graded) modules D and E, 
equipped with maps fitting into an exact sequence 

D\ DX EX DX D. 

One forms its derived couple by considering D\ — i{D) and the homology E\ of E with 
respect to the differential jk. By an iterative process, one obtains a sequence of derived 
couples, and the sequence of modules Er forms a spectral sequence. The exact couple 
approach to spectral sequences has since become very popular with topologists, but less so 
with algebraists. 

Godement's 1958 book [79] summarized and refined all these developments, becoming 
the standard reference for sheaves, sheaf cohomology and spectral sequences for many 
years. In Godement's approach, the focus moved away from Cartan's notion of "fine" sheaf 
and towards the new notions of flasque and soft (mou) sheaves. One trick introduced by 
Godement, but imphcit in Cartan's 1950/1951 seminar [39], was that by iteration of the 
canonical embedding of F into F (S) S one could get a resolution of F by injective sheaves 
which is functorial in F; nowadays it is called the Godement resolution of F. 

3. The Cartan-Eilenberg revolution 

As we have mentioned, Cartan and Eilenberg began collaborating during the 1950/1951 
Seminaire Cartan [39], rewriting the foundations of all the ad hoc algebraic homology and 
cohomology theories that had arisen in the previous decade. Coining the term Homological 
Algebra for this newly unified subject, and using it for the title of the 1956 textbook [41], 
they revolutionized the subject. 
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The first occurrence of the notation Tor„ and Ext", as well as the concepts of projective 
module, derived functor and hyperhomology appeared in this book. In his review of their 
book, Hochschild stated that "The appearance of this book must mean that the experimental 
phase of homological algebra is now surpassed". 

Before we describe the innovations in their book further, let us back up and review the 
evolution of the two main tools that were now available, namely chain complexes and 
resolutions. 

3.1. Chain complexes 

The algebra of chain complexes had been slowly evolving since their formal introduction in 
1929 by Mayer [140]. We have already mentioned Hurewicz' 1941 discovery of the notion 
of exact sequence [106], and the application of this notion in the 1945 axiomatization of 
homology theory [66]. 

The next step was taken in 1947 by Kelley and Pitcher [115], who coined the term "ex
act sequence" and first systematically studied chain complexes from an algebraic point of 
view. They showed that direct limits preserve exact sequences (axiom AB5 holds), but that 
inverse Hmits do not (axiom AB5* fails). If A* is a subcomplex of B^, with quotient C*, 
they constructed the boundary map 9 : Hq{C) -> Hq-.\{A) and proved that the long ho
mology sequence 

• . . ^ Hn{A) -> HrAB) -^ Hn(C) ^ Hn-l(A) -> • • • 

is exact. Since they restricted themselves to positive complexes (indexed by positive inte
gers q), their sequence ended in Ho{B) —> //o(C) -^ 0. 

The yoga of chain complexes was further developed in Eilenberg and Steenrod's 1952 
book [67]; cf. [66]. They indexed their chain complexes by all integers, and observed that 
cochain complexes could be identified as chain complexes via the reindexing Cq = C~^. 
The familiar "five-lemma" occurs for the first time on [67, p. 16]. (Its companion, the 
"snake lemma", first appeared in [41].) Eilenberg and Steenrod's book also introduced the 
"Mayer-Vietoris" sequence for a space X = UUV, associated to the excision isomorphism 
H^(U,UnV) = H^(X,V). 

3.2. Free and injective resolutions 

Free resolutions have long been used in algebra, starting with David Hilbert (1862-1943) 
in his 1890 paper [91] on iterated syzygies of a finitely generated graded module M over 
a polynomial ring R = k[x\,..., JC,|]. A choice of/?o = dim(M <^R k) homogeneous gen
erators of M defines a surjection R^^ -> M, and its kernel is the first syzygy module of M. 
(There is a grading on R^^ which we are ignoring.) Hilbert proved that the syzygy was 
also finitely generated (the Hilbert Basis Theorem), so one could use induction to define 
the higher syzygy modules. Hilbert's syzygy theorem states that the {n -j- l)-st syzygy is 
always zero, i.e. the n-ih syzygy is /?^" for some bn- Since the number of generators bi of 
the syzygies is chosen minimally, they are independent of the choices of generators: today 
we know this is so because bi is the dimension of the vector space Tor^^(M, k). By analogy 
with topology, the bi are called the Betti numbers of M. 
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As we have remarked, Baer [16] implicitly used free resolutions of an Abelian group 
in 1934 to study the groups Ext(A, B). The next expUcit use of free resolutions was by 
Hopf in 1944 [104]. As we have mentioned above, he used them to describe the homology 
of a group, and implicitly gave a definition of the modules Torf (M, R/I) for any ideal / 
of any ring R. Based on Hopf's work, Cartan and Eilenberg used free Z[7r]-resolutions 
of a :/r-module A in 1950 [39] to give an axiomatic description for the group homol
ogy//*(G; A). 

Injective /^-modules were introduced and studied in 1940 by R. Baer [17]. Baer called 
them "complete" Abelian groups over the ring R\ the name injective apparently first arose 
in Eilenberg's 1950 survey paper [39]. Baer's paper contains the proposition that every 
module is a submodule of an injective module, and what is now called "Baer's criterion" 
for M to be injective: every map from an ideal into M must extend to a map from R 
into M. Finally, Baer characterized semisimple rings as those for which every module is 
injective. 

In the 1948 paper [130], Mac Lane formulated the projective and injective Hfting prop
erties for the category of Abelian groups, and showed that these properties describe free 
and divisible Abelian groups, respectively. He did not discover the notion of projective 
module because he did not apply these lifting properties to categories of modules. Using 
this, he showed that one could compute Ext(A, B) by embedding the Abelian group B in 
a divisible group D; this amounts to the use of an injective resolution of B. 

3.3. Cartan and Eilenberg: the book 

We now turn to the contents of the book [41] itself. On p. 6 it introduced an entirely new 
concept: the definition of a projective module. It proved on p. 11 that every /^-module 
is projective if and only if R is semi-simple, complementing Baer's characterization of 
semisimplicity in terms of injective modules; later in the book (p. I l l ) , this was viewed as 
the characterization of rings of global dimension 0. 

In Chapter II the authors introduced the notion of left exact functors (such as Hom) and 
right exact functors (such as ^R). In the central Chapter V, they introduced the notions 
of projective resolutions • • - -^ PQ -> M and injective resolutions M -^ /^ —> • • • 
of a module M, and used these to define the derived functors LnT(M) = HnT{P:^:) and 
R^T(M) — H'^T(I*) of an additive functor T. This material was clearly based on the 
ideas in the 1950/1951 Seminaire Cartan [39]. 

In Chapter VI, the authors defined Tor^(M, N) and Exf^(M, N) as the derived functors 
of M®RN and Hom/? (M, N). Then they defined the projective and injective dimension of 
M as the length of the shortest projective and injective resolution, and characterized these 
dimensions in terms of the vanishing of Ext'^(M, —) and Ext^(—, M), respectively. This 
led them to define the (left and right) global dimension of R as the largest n such that Exfj^ 
is nonzero, and the weak global dimension (now called the Tor-dimension) as the largest n 
such that Tor,f is nonzero. 

Chapters VIII-XIII unified the homology of augmented algebras, Hochschild's homol
ogy and cohomology of an associative algebra A (as Tor and Ext groups over the envelop
ing algebra A (g) A°P), the homology and cohomology of a group n (as Tor and Ext groups 
over the group ring Z[7r]), and the homology and cohomology of a Lie algebra g (as Tor 
and Ext groups over the enveloping algebra Ug). 
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Chapters XV-XVI contained a very readable introduction to spectral sequences for fil
tered chain complexes, and applications to computing Ext and Tor. Again, this material 
was based on the ideas in the 1950/1951 Seminaire Cartan [39]. 

The final chapter (XVII) concerned the hyperhomology of a functor T applied to a chain 
complex A. This was the precursor to the discovery (in 1963) of the Derived Category by 
Grothendieck and Verdier [187]. First they defined double complexes they called "pro
jective" and "injective" resolutions of A; since 1966 [88] we call them Cartan-Eilenherg 
resolutions of A. Then they defined the hyperhomology 1^^T{A) and hypercohomology 
R*r(A) to be the (co)homology of the total complex of T applied to the double complex 
resolutions. 

Until 1970, [41] was the bible on homological algebra, although Mac Lane's 1963 
book [132] was also popular. These texts helped the subject become standard course mate
rial. Grothendieck's 1957 Tohoku paper [81], which we shall describe below, and later his 
multi-volume tome [83] on the foundation of sheaf cohomology in Algebraic Geometry, 
were also heavy favorites. A second generation of texts appeared in 1970/1971: Rotman's 
Notes on Homological Algebra [159] and Hilton and Stammbach's book [92]. 

3.4. Abelian categories 

As soon as Cartan and Eilenberg began their undertaking, limiting themselves to functors 
defined on modules, it was clear that there was more than a formal analogy with the co
homology of sheaves, and that their methods worked in a more general setting. The search 
for that setting led to the notion of an Abelian category. 

The first attempt to formulate a setting in which homological algebra made sense was by 
Mac Lane in 1948 [130]. In this paper Mac Lane introduced what he called "Abehan cat
egories," but which were actually additive categories with special objects resembUng the 
objects Z and Q/Z in the category Ab of Abelian groups. The category of Abelian semi
groups was an Abelian category in Mac Lane's sense. This notion never caught on, though. 

The appendix to [41] contained the next attempt, by D. D. Buchsbaum. It was actually a 
summary without proofs of his 1955 thesis [35], written under Eilenberg. In attempting to 
formulate a general setting in which the theory in Cartan-Eilenberg could be generalized, 
he needed categories which had a natural notion of an exact sequence. To this end, Buchs
baum introduced the notion of an exact category, which is an Abelian category without the 
requirement that direct sums exist. To handle functors of more than one variable, he intro
duced the extra axiom (V) that direct sums A 0 5 exist, which is equivalent to the definition 
of an Abehan category. Buchsbaum also introduced axioms that the category has enough 
projectives or enough injectives. These axioms, unnecessary for the categories of mod
ules considered in [41], allowed Buchsbaum to carry over verbatim the Cartan-Eilenberg 
construction of derived functors to exact categories. 

The name Abelian category is due to A. Grothendieck [81] and A. Heller [89]. 
Grothendieck's paper was motivated by the observation that the category Sh(X) of sheaves 
of Abelian groups on a topological space X was an Abehan category with enough injec
tives, so that sheaf cohomology could be defined as the right derived functors of the global 
sections functor, while Heller was more concerned with a formal analogy to stable homo-
topy (where syzygy modules correspond to loop spaces, and projective modules correspond 
to contractible spaces). 
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Grothendieck's 1957 "Tohoku" paper [81] introduced a hierarchy of axioms (AB3)-
(AB6) and (AB3*)-(AB6*) that an Abelian category may or may not satisfy. Ax
ioms (AB3) and (AB3*) specify that set-indexed coproducts and products exist, respec
tively. The AbeUan category Sh(Z) satisfies axiom (AB5), that filtered colimits of exact 
sequences are exact, but not axiom (AB4*), which states that a product of surjections is a 
surjection. 

Given this framework, Grothendieck proceeded to generaUze Cartan and Eilenberg's 
treatment of derived functors, introducing the names 9-functor and universal 9-functor, 
as well as the notion of T-acycHc objects (in [41, p. 122] flat modules were defined 
as Tor-acycUc modules; Grothendieck showed that Godement's flasque sheaves were 
r-acyclic sheaves). The primary computational tool introduced by Grothendieck was a 
special case of the hypercohomology spectral sequence for the composition TU of two 
functors (see the last page of [41]). Grothendieck observed that if T and U were left exact, 
and if U sends injective modules to T-acyclic modules then we could write the spectral 
sequence as 

{RPT){R^U) ==> RP^HTU). 

Several of the spectral sequences in [41] were seen to be simple special cases of 
Grothendieck's spectral sequence, but so were the Leray spectral sequences associated 
to a continuous map f :Y -> X and a sheaf F onY: 

HP{X, R^f^F) =^ HP^HY, F). 

Even the simplest of lemmas (such as the snake lemma) were painfully difficult to prove 
in a general Abelian category, because one could not chase elements that did not exist. This 
technique of diagram-chasing was justified in 1960, when Saul Lubkin [128], A.R Heron 
(1960 Oxford thesis) and J.R Freyd (1960 Princeton thesis) proved that every small Abelian 
category admits an exact embedding into the category of Abelian groups. Shortly there
after, Freyd and Barry Mitchell proved a stronger version: every small Abelian category 
admits a full exact embedding into the category of modules over some ring (see [73]). 
With this result, and P. Gabriel's 1962 thesis [74], the subject was near maturity. 

4. After the Cartan-Eilenberg revolution 

Upon the publication of Cartan and Eilenberg [41], there was an explosion of research in 
homological algebra. Some results appeared to be fairly isolated curiosities at the time, but 
later became important, such as Yoneda's definition of Ext" groups by long exact sequences 
in 1954 [192], the 1961 study of lim^ by J.E. Roos [157], the 1962 Eilenberg and Moore 
paper [64] on spectral sequences for complete filtered complexes, Giraud's 1965 work [78] 
on non-Abehan H^ ina. GrothendieckTopos, or Boardman's influential 1981 preprint [26] 
on conditional convergence in spectral sequences. In this article we shall focus upon the 
strands of thought that have led to flourishing new fields of study. 

4.1. Projective modules 

When the notion of projective module was introduced in the book [41], there were not many 
examples of projective modules which were not free. By [41, p. 157], all finitely generated 
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projective modules over a local ring are free. By [41, p. 13], all projective modules over 
a principal ideal domain (or more generally a Bezout domain) are free. Kaplansky later 
showed [112] that all projective modules over a local ring are free, as a consequence of the 
general result that any infinitely generated projective module is a direct sum of countably 
generated projective modules. 

If / is an ideal of an integral domain R, Cartan and Eilenberg showed that / was projec
tive if and only if it was invertible: I -1~^ = R. Moreover, if dim(/?) = 1 then invertible 
ideals have at most two generators, s o / 0 / ~ ^ = / ? 0 / ? . Since every ideal in a Dedekind 
domain is invertible - their isomorphism classes forming the Picard class group of R- and 
the integers in a number ring were Dedekind domains whose class groups were classical 
objects of study, some examples of nonfree projective modules were already known in the 
late 19-th century. 

For some rings, it was possible to classify all projective modules. A Priifer domain is 
a commutative domain in which every finitely generated ideal is invertible; this general
ization of Dedekind domains is named for H. Priifer, who initiated their study in 1923. 
Kaplansky [111] showed in 1952 that if /? is a Priifer domain then every finitely generated 
torsion-free module - hence every projective module - is a direct sum of invertible ideals; 
see[41,pp. 13, 133]. 

For other rings, the classification was much harder. In Serre's classic 1955 paper [164, 
p. 243], he stated that it was unknown whether or not every projective /^-module was free 
when R isa polynomial ring over a field. This became known as the "Serre problem", and 
was not solved (affirmatively) until 1976, by Quillen [154] and SusUn [177]. 

In the period 1958-1962 there was a flurry of examples of nonfree projective modules, 
coming from algebraic geometry [29, 167], arithmetic [19], group rings [178] and topo
logical vector bundles [179]. Much of this was based upon the dictionary in Serre's 1955 
paper [164], between projective modules and topological vector bundles. Grothendieck's 
Riemann-Roch theorem, published in 1958 [29], showed that the "projective class group" 
K(R) of stable isomorphism classes of projective modules was useful, especially for rings 
coming from algebra and algebraic geometry. Bass, Serre and Swan began a study of the 
projective class group K(R); by 1964 it was renamed Ko{R) in view of its parallels to 
topological A'-theory, and this led to the rise of algebraic A^-theory in the 1960's. 

4.2. Homological algebra and ring theory 

The left and right global dimension of a ring were early targets. In the 1955 paper [12], 
M. Auslander (1926-1994) showed that the left and right global dimension of a Noetherian 
ring agree, and equal the weak global dimension. Then M. Harada [86] showed (1956) that 
the rings with weak global dimension 0 are precisely the von Neumann regular rings, so 
the weak dimension and global dimension need not agree. Examples in which the left and 
right global dimensions of a ring are different were not known until a decade later, and 
were found by Osofsky [146]. 

4.2.1. Regular local rings. A regular local ring is a commutative Noetherian local ring 
R whose maximal ideal m is generated by a regular sequence, or equivalentiy, such that 
dim(m/m^) = dim(/?). Regular local rings had become important in Algebraic Geome
try because they were the local coordinate rings of smooth algebraic varieties. In 1956, 
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Auslander and Buchsbaum [13] and Serre [166] used homological methods to character
ize regular local rings as those (Noetherian) local rings R with finite global dimension. If 
R is local with residue field k and dim/:(m/ra^) = n, Serre proved that ToT^(k, k) 7̂  0. 
Hence, gl. dim(R) ^ n, and n ^ dim(R) ^ depth(7?). Auslander and Buchsbaum proved 
that the depth of R is an upper bound for the finite values of pd^(M), so if pd̂ ^ is al
ways finite we must have equality: gl. dim(/?) = dim^Cm/m^) = dim(R). In particular, if 
gl. dim(R) < 00 then R must be regular. 

Since localization cannot increase global dimension, a corollary is that any localization 
of a regular local ring is again a regular ring. This nonhomological statement, proven by 
homological methods, firmly established homological algebra as a central tool in ring the
ory; the alternate nonhomological proof of this localization result, due to Nagata [143], is 
very long and hard. 

Also in [13], Auslander and Buchsbaum proved that 2-dimensional regular local rings 
are Unique Factorization Domains (UFDs). A few years later, in 1959, Auslander and 
Buchsbaum [15] used similar homological methods to prove that every regular local ring 
is a Unique Factorization Domain. 

Two timely courses on this material, by Serre in France and Kaplansky in the U.S., had 
a lasting impact upon the field. 

In 1957/1958, Serre taught a course on multiplicities at the College de France [169]. 
Part of that course focussed upon the simple inequality pd^(M) ^ pd/^(5) + ipd^{M) for 
a module M over an /^-algebra S (an exercise in [41, p. 360]). Auslander and Buchsbaum 
reaUzed (1958) that Serre's methods could be used to study the connection between the 
codimension and multipHcity over a local ring; see [14]. This led them to the Auslander-
Buchsbaum Equality: if M is a finitely generated module over a local ring R and pd/̂  (M) < 
00 then depth(/?) = depth(M) + pd;^(M). 

In Fall 1958, Kaplansky taught a course [113] on homological algebra at the University 
of Chicago. Several students attending this course would later make important contribu
tions to the subject: H. Bass, S. Chase, E. Maths and S. Shanuel. 

Kaplansky's course was organized around three "change of rings" theorems, describ
ing how homological dimension changes when one passes from a ring /? to a quotient 
ring R/(x). They allowed him to prove the theorems of Serre and Auslander-Buchsbaum 
without having to first develop Ext or Tor. Early in the course, Shanuel noticed that there 
was an elegant relation between different projective resolutions of the same module. Ka
plansky seized upon this result as a way to define projective dimension, and christened it 
"Shanuel's lemma". Subsequently it was discovered that H. Fitting had proven Shanuel's 
lemma in 1936 [71] (with "projective" replaced by "free") as part of his study of the fitting 
invariants of a module. 

4.2.2. Tor*(/:, k) for local rings. Consider a local ring R with maximal ideal m and 
residue field k = R/m. Cartan and Eilenberg had shown that ToT^(k, k) was a graded-
commutative /c-algebra [41, XI.4 and XI.5]. Its Hilbert function is just the sequence of 
Betti numbers /?/ = dimTorf (/:, /:), and it is natural to consider the Poincare-Betti series 

PR(t) = Y,bit^. 
/=0 
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Note that the first Betti number is b\ = dim(m/m^). For example, if /? is a regular ring, it 
was well known that Torf (/:, k) was an exterior algebra, so that Pnit) = (1 + t)^^. 

Serre showed in 1955 [166] that one always had PR{t) > (1 + 0^^ i-e. that bt is at 
least {^}). In particular, if / = b\ then hi ^ 1 and so Tor^ {k, k) ^ 0. As we mentioned 
above, this was the key step in Serre's proof that local rings of finite global dimension are 
regular. In his 1956 study [184], Tate showed that k had a free /^-module resolution F* 
which was a graded-commutative differential graded algebra, and used this to show that if 
R is not regular then P/?(0 ^ (1 + 0^^ /(I - ^^), i.e. that hi is at least (̂ .') + (.̂ 2̂) + ' ' * • 
This is the best lower bound. In case R is the quotient of a regular local ring by a regular 
sequence of length r (contained in the square of the maximal ideal), Tate showed that the 
Poincare-Betti series of R is the rational function F/?(r) = (1 + tf^ /(I - fy. 

Based upon Tate's results, Serre stated in his lecture notes [169, p. 118] that it was not 
known whether or not Pnit) was always a rational function. This problem remained open 
for over twenty years, until it was settled negatively in 1982 by David Anick [8]. Anick's 
example was an Artinian algebra R with m^ = 0. Constructing a finite simply-connected 
CW complex X whose cohomology ring was R, a 1979 result of Roos [158] showed that 
the Poincare-Betti series of the loop space QX, 

H(t) = Y^dimHiXQX)t', 

was not a rational function either. This settled a second problem of Serre, also posed 
in [169, p. 118]. 

4.2.3. Matlis duality. In his 1958 thesis [137] under Kaplansky, Eben Maths studied the 
structure of injective modules over a Noetherian ring R, and showed that they can be writ
ten uniquely as direct sums of copies of the injective hulls E(R/p), as p ranges over the 
prime ideals of R. This put injective resolutions on an equal footing with projective reso
lutions. 

Let A denote an additive category of modules over a ring R. A dualizing functor on A 
is an exact contravariant /^-linear functor D from A to itself such that D(D(M)) = M. 
Matlis' thesis [137] also showed that the category A of modules of finite length over a 
local Noetherian ring R has a unique dualizing functor: D(M) = Hom/?(M, E), where E 
is the injective hull of R/m. 

This turned attention to other kinds of duality, and to modules of finite injective dimen
sion. The goal here was to find the analogue of Serre's Duality Theorem for projective 
space X = ¥^ [164]: if F is a coherent sheaf on X then the dual of the vector space 
H^ {X; F) is Ext̂ ~^ (F, cox), where cox = ^x ^^ ^^^ sheaf of differential (i-forms on X. 

It would turn out that that the good class of rings from this perspective would be Goren-
stein rings. In a 1957 Seminaire Bourbaki talk on duahty [82, exp. 2], Grothendieck de
fined a commutative ring R (or scheme) of finite type over a field to be "Gorenstein" if 
it is Cohen-Macaulay and a certain F-module COR is locally free of rank 1. A few years 
later, Bass proved a theorem characterizing rings of finite self-injective dimension [19], 
and Serre remarked that the two definitions agreed in a geometric context. Bass consoli
dated these notions in the 1963 paper [20], giving the modern definition: a commutative 
Noetherian ring R is called Gorenstein if all its local rings have finite injective dimension. 
Bass proved that this is equivalent to several other conditions, such as R being Cohen-
Macaulay and a system of parameters generates an irreducible ideal in each local ring. 
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Nowadays we have the notion of the canonical module COR of a ring (see below), and if R 
is a Cohen-Macaulay local ring, then R is Gorenstein if and only if R is its own canonical 
module: COR = R. For example, in Matlis Duality for a zero-dimensional ring, the role of 
COR is played by E, and R is Gorenstein exactly when E = R. 

4.2.4. Local cohomology and duality. In 1961, Grothendieck ran a Harvard seminar on 
Local Cohomology, based upon his 1957 Seminaire Bourbaki talk on duality [82, exp. 2]; 
the notes were eventually pubhshed in [84]. From the viewpoint of schemes, the local 
cohomology of a sheaf is the same as cohomology with supports. From the viewpoint 
of Noetherian local rings, the local cohomology H^{M) of a module M are the derived 
functors of the m-primary submodule functor 

/O H^(M) = limHom/?(/?/m", M), 

so 

H^(M) = \imExt'j^(R/m'\ M). 

Grothendieck showed that the depth of M is characterized as the smallest / such that 
H!^{M) # 0, and that if /? is a Cohen-Macaulay ring then HJ^iR) / 0 only for / = 
dim(/?). Moreover, /? is a Gorenstein ring if and only if the module //m"^ (/?) is dualizing 
in Maths' sense, meaning that it is the injective hull of R/xn. 

The highlight of the seminar was the Duality Theorem: if 7? is a complete Goren
stein ring of dimension d, then H^(M) is dual to Ext^~'(M, R), in the sense that 
Matlis' dualizing functor D interchanges them. For a more general local ring, the dual
ity is more complicated. If R is complete and Cohen-Macauley, one considers the func
tors T'(M) = D(H^(M)), and shows that they equal Ext^~'(M, a>/?), where COR = 
D(H^(R)). More generally, Grothendieck also observed that the T^{M) may be inter
preted as Ext^~'(M, KR) for a suitable duahzing cochain complex KR on R [84, Sec
tion 6.8]. This led to the development of the derived category D{R), which we shall de
scribe shortly. 

This material on duality took awhile to absorb, and a ring-theoretic derivation of these re
sults only appeared in 1970 [170]. Gradually the notion of a canonical module COR became 
the organizing principal for duality theory, and R is Gorenstein exactly when COR = R. 
If R is Cohen-Macaulay, the canonical module is defined [90] to be a maximal Cohen-
Macaulay /^-module of finite injective dimension, and the functor Z)(M) = Hom/? (M, COR) 
is duahzing on the category of maximal Cohen-Macaulay /^-modules. 

In 1971, Sharp [171] used local cohomology (and duality) to show that if /? is a complete 
Cohen-Macauley local ring then the Gorenstein modules are precisely the direct sums 
of COR. He also showed that the final term in the Cousin complex of an /^-module M is 

In 1976 Hochster and Roberts [100] studied the local cohomology of a graded ring R 
in characteristic p > 0, and found that the structure of the local cohomology H^{R) 
was amazingly simplified under certain assumptions, such as the purity of the Frobenius 
homomorphism F: R ^^ R. They were also able to lift these characteristic p results to 
certain rings of characteristic 0, beginning a rennaisance in the study of Cohen-Macaulay 
rings. 
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4.3. Cohomology theories in Algebraic Geometry 

During the early 1950's, the foundations of Algebraic Geometry were reworked by 
O. Zariski and others, focussing upon the role played by the algebras of regular func
tions. In his classic 1955 paper "GAGA" [164], Serre observed that if U is affine, with 
coordinate ring R, then there is an equivalence between finitely generated /?-modules and 
coherent sheaves of modules on U. Hence, restriction to an affine open V of (/ is an exact 
functor on coherent modules, because it corresponds to localization of modules. This im-
phes that if F is coherent and U is affine then the Cech cohomology H^{U, F) vanishes. 
Using this, Serre defined the cohomology groups H^{X, F) of a coherent module on any 
variety X as the Cech cohomology relative to a covering of X by affine open subvari-
eties U. All this was in the spirit of the Cartan Seminars on sheaf theory in 1948-1950, but 
with the homological underpinnings of Cartan-Eilenberg available, Serre's presentation in 
terms of the Zariski topology was much simpler. 

Serre also proved in [165] that if Z is a projective variety over C the groups H^(X, F) 
were the same as the analytically defined Betti cohomology, leaving little doubt that using 
the Zariski topology was a good approach to cohomology. 

Grothendieck then observed that Serre's construction was a special case of the derived 
functor sheaf cohomology (for the Zariski topology) that he had developed in his 1957 
paper [81]. Chapter III of "EGA" [83] was devoted to the Zariski cohomology theory of 
coherent sheaves on a scheme, using the right derived functors Rf^ associated to a mor-
phism f:X^Y, 

As part of the preliminaries to this development, Grothendieck wrote a primer on spec
tral sequences and hypercohomology in 1961 [83, Om]. This was a reworking of the cor
responding material in [41, 81] into a more workable form, and made these tools widely 
available to algebraic geometers. 

4.3.1. Galois cohomology. We have already mentioned that Hochschild [95] coined the 
term "Galois cohomology" in 1950 for the group cohomology of the Galois groups G = 
Ga[(K/k), where AT is a (possibly infinite) Galois field extension of k. As we have already 
mentioned, Hochschild [95] and Tate [182, 183] applied Galois cohomology to class field 
theory in the early 1950's. 

In the mid 1950's Tate began to systematically study what he called the "Galois coho
mology" of the Galois groups G = G2i\{K/k), where AT is a (possibly infinite) Galois field 
extension of k, such as the separable closure of k. Such a group has a topology induced by 
its finite quotients: 

G = limG/HF, 

where F ranges over all the finite extensions of K contained in k and Hf = Ga\{K/F). 
As a topological group, G is compact, Hausdorff and totally disconnected; today we call 
such groups profinite. Moreover, each Hf is an open subgroup of finite index in G. 

In 1954, Kawada and Tate [114] used Galois cohomology to calculate the cohomology 
of a variety. To an etale covering U of X they associated a subgroup of the Galois group of 
k(U)/k{X). This would later be recognized as the first use of what would later be called 
etale cohomology. 
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After years of gestation, a published account of Galois cohomology appeared in the 1958 
paper [120] by Serge Lang and John Tate. One considers a G-module A which is discrete 
in the sense that the action G x A -^ A is continuous (when A has the discrete topol
ogy), and defines the Galois cohomology H*(G, A) to be the cohomology of the complex 
C^iG, A) of continuous cochains, that is, maps 0 : G" -> A which are continuous. An 
almost immediate observation is that 

//*(G, A) = l im//*(G/// , A^), 

as H ranges through the open subgroups of finite index in G. 
Tate's applications lay in the cases where A is an AbeHan group scheme defined over k; 

the G-module in this case is A = A(^), the group of rational points over the separable 
closured ofk. 

One of the most important examples is the group scheme A = G,̂ ,̂ for which the G-
module A is ^^ = Gm(k) of units of k. Hilbert's "Theorem 90" states that for every finite 
Galois extension F/k we have H^(Gsi\(F/k), F^) = 0; taking the direct limit over all 
such F and setting G = Ga\(k/k) yields the infinite version H^(G, k^) = 0. As we have 
seen, it was already known that H^(Ga\(F/k), F^) is the relative Brauer group Bv(F/k); 
taking the direct limit over all such F shows that H^{F, G,n) is the classical Brauer group 
Br(F) introduced in 1928 by Richard Brauer [31] and by Brauer and Noether [33]. 

Serre's 1962 course Cohomologie Galoisienne [168], pubHshed in 1964, has remained 
the standard reference on the Galois cohomology over number fields. 

4.3.2. Etale cohomology. In 1958, Grothendieck found a common generalization of Ga
lois cohomology and Zariski cohomology and used it to define the etale cohomology of 
schemes. A Grothendieck topology is a category T such that each object X is equipped 
with a family of morphisms {Ui -^ X}, called coverings, subject to certain axioms. From 
this viewpoint, a sheaf F is a contravariant functor on T such that for each covering, 
each s e F{X) is uniquely determined by elements si e F(Ui) which agree in each 
FiUi xx Uj). The category of sheaves of Abelian groups on T is an Abelian category 
with enough injectives, and Grothendieck defined the cohomology groups H*(T, F) to 
be the right derived functors of F f-> F(X). When X is a topological space and T is the 
poset of open subspaces then sheaf has its usual meaning, and we recover the usual sheaf 
cohomology on X. 

To define the etale topology on a scheme X, Grothendieck took the category of all 
schemes U which are etale over X, with the set-theoretic notion of covering. If F is a sheaf 
for this topology, the above construction defines the etale cohomology groups //*(Xet, F) 
of F on X. When X is the spectrum of a field k and G = Gal(^//:), a discrete G-module 
A is the same as an etale sheaf on X, so the etale cohomology of X with coefficients A 
agrees with Tate's Galois cohomology //*(G, A). 

In Fall 1961, Grothendieck presented his ideas in a course at Harvard. The following 
semester (Spring 1962), M. Artin ran a seminar covering Grothendieck Topologies, as well 
as some material on etale cohomology (such as cohomological dimension). The published 
notes [9] of this seminar, as well as Giraud's 1963 Bourbaki talk [77] made the ideas 
available to a wide audience. 

The next year (1962/1963), when the seminar continued in France, Artin and Grothen
dieck worked out the fundamental structure theorems of etale cohomology: proper and 
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smooth base change, speciaHzation, cohomology with compact supports and duahty. The 
following year, more results were obtained (such as purity and the Lefschetz trace formula), 
with the seminar notes eventually appearing in 1972 as [10]. 

One of Grothendieck's early successes with etale cohomology was his cohomological 
proof of the rationality of the Zeta function Zx (0 of a scheme of finite type over the finite 
field F^. He proved that each factor Pi {t) of Zx(t) is the characteristic polynomial of the 
Frobenius operator acting on an /-adic cohomology group, namely 

W(X,Qi) = \imHi,{X,Z/{n)-

In 1972, DeHgne used etale cohomology to prove the "Riemann hypothesis" over ¥q [49]: 
the eigenvalues of the Frobenius on H^ {X, Q/) (and hence the zeroes and poles of the zeta 
function) were algebraic integers with absolute value q^^^. This completed the proof of the 
celebrated Weil conjectures, and firmly established the importance of etale cohomology. 

4.4. Derived categories 

After Grothendieck's 1961 Harvard seminar on Local Cohomology, described above, 
Grothendieck realized that in order to extend these results to arbitrary schemes he needed 
some results in homological algebra which were not yet available. This was overcome by 
Verdier's 1963 thesis [187] on Derived Categories. 

The derived category D{A) of an Abelian category A is the category obtained from the 
category Ch(^) of (co)chain complexes by formally inverting the quasi-isomorphisms, i.e. 
the maps C -> C which induce isomorphisms on (co)homology. To describe it, Verdier 
introduced the notion of a triangulated category. The quotient category K(A) of Ch(^), 
whose morphisms are the chain homotopy equivalence classes of maps, is triangulated; 
D{A), which is formed from K{A) by a calculus of fractions, is also triangulated. If 
F :A -^ 25 is an additive functor then under reasonable conditions there is a functor 
RF : D(A) -^ D(B) with the property that if an A in ^ is considered as a complex then 
the cohomology of the complex RF(A) give the ordinary right derived functors R*F{A). 

The topologist D. Puppe had already (1962) defined the notion of a stable category 
in [150]. This is just a graded triangulated category without the "octahedral" axiom. Since 
Puppe only discussed K(A) and not D(A), and did not deal with the total derived functors 
RF, his notion never caught the attention of the algebraists. 

In the Summer of 1963, after Hartshorne proposed to run a seminar at Harvard on du
ality theory, Grothendieck wrote a series of "prenotes", sketching the construction of a 
functor / • : D(y-mod) -> D(X-mod) associated to a reasonable morphism f : X -> Y of 
schemes, together with a natural trace morphism R/*/ ' (A) -> A. The so-called "Semi-
naire Hartshorne" was held at Harvard in 1963/1964, based upon these prenotes, and the 
seminar notes appeared as [88]. An appendix to [88], written by Dehgne in 1966, con
structs / ' for every separated morphism of finite type between Noetherian schemes. 

During the 1966/1967 Seminaire de Geometric Algebrique [24], Grothendieck used the 
triangulated category Perf(X) of perfect complexes of Ox-modules to develop a global 
theory of intersections and a Riemann-Roch theorem for arbitrary Noetherian schemes. 
By definition, a complex is perfect if it is locally quasi-isomorphic to a bounded complex 
of vector bundles, and the alternating sum of these vector bundles gives a well-defined 
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element in the Grothendieck group K(X), at least if X is quasi-projective or smooth. If 
f :X -^ F is proper, the machinery of triangulated categories yields an exact functor 
/?/* : Perf(Z) -^ Perf(y) and, hence, a homomorphism K{X) -^ K(Y). 

In 1978, Bernstein, I. Gelfand and S. Gelfand [23] used derived categories to classify 
vector bundles on projective space P" over a field k in terms of graded modules over 
the exterior algebra A on n + I variables. The crucial step in their classification was the 
discovery of an isomorphism between the (bounded) derived categories of graded modules 
Dgj(yi) and D^^(R), where R is the polynomial algebra on « + 1 variables. This result 
showed that D^(A) did not determine the "heart" category A, a result which came as a bit 
of a surprise. 

The problem of multiple hearts for a triangulated category was revisited in 1982 by 
Bernstein, Beilinson and Deligne [21]. These authors used triangulated categories to study 
P-modules and perverse sheaves on a stratified space. In 1988, BeiHnson, Ginsburg and 
Schechtman [22] generalized the results of [23, 21] by proving that many filtered triangu
lated categories have two hearts, which are in Koszul duality. 

In the mid of 1980's, derived categories found yet another application. The notion of a 
tilting module had come up in the study of representations of finite algebras. Cline, Parshall 
and Scott [46] showed in 1986 that if T is a tilting module for A, and B = Hom^Cr, T), 
th^n DHA) = D^(B). 

Early work on derived categories was often restricted to either bounded or bounded 
below complexes, because of the need to work with injective (or projective) resolutions. In 
1988, Spaltenstein [174] showed that every unbounded complex was quasi-isomorphic to 
a "fibrant" complex, and that one could use fibrant complexes to compute derived functors. 
This result has led to several new developments which continue to this day. 

5. Simplicial methods 

During the 1940's, Eilenberg kept encountering things called "abstract complexes" which 
resembled the triangulated polyhedra (or "geometric simplicial complexes") introduced by 
Poincare, except that a simplex was not always determined by its faces. For example, the 
abstract complex K(7T) of [60] and the singular complex S(X) of [57] had this property. 
To describe this phenomenon, Eilenberg and Zilber [68] introduced the notions of a semi-
simplicial complex and a complete semi-simplicial complex in 1950. The Eilenberg-Zilber 
notion of a complete semi-simplicial complex is identical to our modern notion of a simpli
cial set K: it is a sequence ^0, ^ i , • • • of sets together with face maps 9/: Kq -> Kq-\ and 
degeneracy maps si: Kq -^ Kq^\ (0 ^ / ^ q) satisfying certain axioms; a semi-simplicial 
complex is just a simplicial set without the degeneracy maps. 

A word about changing terminology is in order. The term "complete semi-simplicial 
complex" was awkward and was quickly abbreviated to "c.s.s. complex". During the 
1950's the term c.s.s. complex prevailed, although the short-lived term "FD-complex" was 
also used in [63, 52]. Largely due to the influence of John Moore, the adjective "complete" 
began to be omitted, starting with 1954, while the notion of "semi-simplicial complex" 
languished in obscurity. By the early 1960's the term "semi-simplicial set" had replaced 
"c.s.s. complex". By the late 1960's, even the prefix "semi" was dropped, influenced by 
May's 1967 book [138]; since then "simplicial set" has been the universally used term. 
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Returning to the early 1950's, we mention two results which showed the power of the 
new simpHcial methods. The "Eilenberg-Zilber theorem" was proven in 1953 [69] as an 
appUcation of c.s.s. complexes to products: the (simphcial) map S(X x F) ~ S(X) ® S(F), 
implicitly defined by Alexander and Whitney in 1935, is a homotopy equivalence. In 1955, 
the homotopy theory of c.s.s. complexes satisfying an extension condition was developed 
by Daniel Kan [109]; a simplicial set satisfying Kan's extension condition is now called a 
Kan complex. 

5.1. Homotopical algebra 

The homological study of simplicial Abelian groups was launched in 1954 by Eilenberg 
and Mac Lane [63], as part of their algebraic program to find the cohomology of Eilenberg-
MacLane spaces K(7T, n). This program was analyzed with typical thoroughness in the 
1954/1955 Seminaire Cartan [40]. In exposes 18 and 19 of that seminar, John Moore 
showed that every simplicial group Â  is a Kan complex, and that one could compute its 
homotopy groups as the homology of a chain complex N^ of groups, where Â^ C Kq is 
the intersection of kernels of all the face maps except dq. The complex Â* quickly became 
known as the Moore complex of K. 

In 1956/1957, A. Dold [52] and D. Kan [110] independently discovered that the Moore 
complex provided an equivalence between the category of simplicial Abelian groups and 
the category of non-negative chain complexes of Abelian groups. This Dold-Kan corre
spondence was later codified in [53]. Under the correspondence, Moore's result states that 
simplicial homotopy corresponds to homology. With this correspondence at hand, simpli
cial techniques could be brought to bear on any homological problem. 

Dold and Puppe [53] announced in 1958 that with simplicial methods one could define 
the derived functors of a non-additive functor T (say of modules); their detailed paper 
appeared in 1961. The key idea was that one could consider a projective resolution P* of 
a module M as a simpHcial module via the Dold-Kan correspondence. Since the notion of 
simplicial homotopy does not involve addition, we may take the homotopy groups of r(P*) 
as the derived functors LiT(M) ofT. A variant is obtained by placing M in degree n > 0; 
the derived functors LiT(M, n) are the homotopy groups of r(P[n]), where the simplicial 
module P[n] corresponds to the chain complex P* shifted n places. For example, the /-th 
homology Hi{K(7T, n)\ Z) of an Eilenberg-Mac Lane space K{7T, n) is just LiT{n, n) for 
the group ring functor T{7t) = Z[7r]. 

It is possible to generalize the Dold-Puppe construction and define the left derived func
tors of any functor T from any category C to an Abelian category, as long as C is closed 
under finite limits and has enough projective objects. This observation evolved during the 
late 1960's, finding voice in M. Andre's 1967 book [5], Quillen's 1967 book [151] on 
homotopical algebra, and in the later papers [6, 152]. In fact there are three standard con
structions, which agree in reasonable situations. 

Andre's construction [5] uses a subcategory of "acyclic models" in C. In the category of 
functors on C, one finds a resolution T^ ^^ T which is aspherical on the "model" objects. 
Then one defines LiT{A) to be 7r/r*(A), or /// of the chain complex associated to the 
simplicial module r*(A). 

Quillen's construction is simpler: one finds a simpHcial "resolution" P<^ -^ A of each A 
in C, and defines L/T(A) to be HiT(P^). The work comes in deciding what a "resolution" 
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is: P* should be cofibrant and P^ ^^ A should be an acyclic fibration in the terminology 
of [151]. In many algebraic apphcations, fibrations are defined by a relative Hfting property, 
so all "relatively projective" objects are cofibrant. 

During 1965-1969, Barr and Beck [18] developed the idea of cotriple resolutions as a 
functorial way to obtain resolutions for computing non-Abelian derived functors. Suppose 
that there is a forgetful functor U :C ^^ S with a left adjoint F. Then the functor FU is 
called a cotriple, and the iterates Pi = (FUy~^^(A) often form a simpHcial "resolution" 
P^ -> A. Again, one takes LiT(A) = HiT(P^). 

5.1.1. Cohomology of commutative rings. In analogy with Hochschild's (co)homology 
theory for associative algebras, it is reasonable to ask for a (co)homology theory for com
mutative rings. Let k -^ A be a map of commutative rings, and M an A-module. Then 
Hochschild's group H^(A; M) is the A-module Der^(A, M) of all derivations A -> M 
which vanish on k (as there are no inner derivations), H\(A; M) is M 0 ^A/k and 
H^{A; M) classifies all associative /:-algebra extensions ^ of A by M which are k-split, 
meaning that 5 = A 0 M as a /:-module (this condition is obvious when A: is a field). 
What was wanted was a theory with the same H^ and ^ i , but such that H^ was the group 
ExalcommA:(A, M) classifying all commutative /:-algebra extensions of A by M. 

The functors H^ and H^ were first studied by P. Cartier [42] in 1956, in the case that 
A = ^ is a field extension of k, and partially extended to commutative rings in 1961 by 
Nakai [144]. In a 1961 course at Harvard, Grothendieck defined Exalcomm^(A, M) and 
constructed a 6-term cohomology sequence fork-^A^-B [83, Oiv( 18.4.2)]. 

When /: is a field, Harrison [87] used a subcomplex of the Hochschild complex (1962) to 
define /:-modules ^harr^" '̂ ^ ) ^^^^ ̂ harr ~ ^^ ^^^ ^harr ~ Exalcomm^, equipped with a 
9-term cohomology sequence. When k is perfect, and A is the local ring (at some point) of 
a variety over k, Harrison proved the following two results: (1) A is regular if and only if 
/ /^^(A, —) = 0, and (2) A is a complete intersection if and only if dim ^harr^" '̂ ^ / ^ ) ~ 
dim H^^{A, A/m) = dim A. 

The next step was taken in the 1964 paper [125] by two Ph.D. students of Tate, Licht-
enbaum and Schlessinger. Let k be any commutative ring. For each commutative ring map 
f :k ^^ A, they defined a 3-term chain complex L*, called the cotangent complex of / , 
and-for / = 0 , 1, 2 - s e t 7;(A/i^, M) = ///(L* (g) M), 7'(A/)^, M) = H^Hom(L\M). 
When /: is a field the T'{A/k, M) agreed with Harrison's ti\^^l{^^ ^), and in general 
T^iA/k, M) = Exalcomm/:(A, M). Their infinitesimal criterion for A/k to be smooth, in 
terms of the vanishing of T^ (A/k), was used by Grothendieck (1967) to great advantage in 
EGA [83, IV.17]. Ifk is Noetherian, Risa localization of A:[x,..., j ] and A = R/I, they 
showed that T^(A/k, —) = 0 if and only if A is a complete intersection, i.e. / is defined by 
a regular sequence in R. Schlessinger's thesis applied the T^ to deformation theory, while 
Lichtenbaum's thesis was concerned with applications to relative intersection theory. 

In 1967, M. Andre [5-7] and Quillen [152] discovered what we now call Andre-Quillen 
cohomology. If k -^ A and M are as above, their groups D^(A/k, M) agree with the 
Lichtenbaum-Schlessinger groups T^{A/k, M) for / = 0, 1, 2. It comes with a long 
exact sequence fovk^^A-^B (generaUzing Harrison's) and generalizations of the 
Lichtenbaum-Schlessinger results for smoothness and local complete intersections. In this 
theory, the central role is played by a simpHcial A-module l^A/k, called the cotangent com
plex of A relative to k, because of the similarity (using the Dold-Kan correspondence) to 
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the Lichtenbaum-Schlessinger complex L*. This complex is well-defined in the derived 
category of chain complexes of A-modules, and one has 

D'{A/k, M) = WUomAihA/k, M) 

and 

Di{A/k,M) = Hi{l.A/k^AM). 

Formally, the D^(A/k, M) are the non-Abelian derived functors of the functor 

T(B) = Der^tC ,̂ M) = HomA(A ^B ^B/k) 

on the category C of commutative /:-algebras over A. According to the above prescription, 
the definition starts with an acycUc simplicial resolution P* ^- A in C, and has 

D'{A/k, M) = /f^Der^(P*, M). 

Defining the simphcial A-module hA/k = A <S)p ^p/ky a little algebra yields the above 
formulas. 

5.1.2. Higher algebraic K-theory. In order to find a possible definition of the higher 
^-groups Kn(R) of a ring R, Swan was led in 1968 to consider the non-Abelian derived 
functors of the general linear group GL on the category of rings [180]. This required a sHght 
generalization of derived functor, since the category of groups is not an Abelian category. 
In this context we have a functor G from a category C, such as the category of rings, to the 
category of groups or sets. 

Swan's original construction followed Andre's method, finding an acyclic resolution 
G* -> GL in the functor category and setting Kn(R) = Hn-iG^^R) for n > 2. In 1969 
Gersten gave a cotriple construction [75], using the cotriple associated to the forgetful 
functor from rings to sets, while both Keune [116] and Swan [181] gave constructions 
using free resolutions P^ ^^ Rio define Kn(R) = itn-2GL{P^) foxn ^ 2. By 1970, Swan 
had proven [181] that all three constructions yielded the same functors Kn{R). 

Historically, however, the important construction was given by Quillen in 1969 [153]. 
He showed how to modify the classifying space BGL(R) of GL{R) to obtain a topological 
space BGL(R)-^ with the same homology as BGL(R), and defined Kn{R) = 7TnBGL(R)-^ 
for n > 1. The equivalence of Quillen's topological definition with the homological Swan-
Gersten definition was estabhshed in 1972 by combining partial results obtained by several 
authors [4]. Since then the field of higher algebraic AT-theory has taken on a life of its own, 
but that is another story. 

5.2. Hochschild and cyclic homology 

We have already described the 1945 development [94] of Hochschild homology of an alge
bra A over a field k. The next step was to let A be an algebra over an arbitrary commutative 
base ring k. In his 1956 paper [96], Hochschild began a systematic study of exact sequences 
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of /^-modules which are /:-spUt (spHt as sequences of /c-modules). This became part of a 
"relative" homological algebra movement. 

Hochschild, Kostant and Rosenberg showed in 1962 [97] that if A is smooth of finite type 
over a field k, then there is a natural isomorphism ^^ /^ = ^*(A, A). It follows that for 

such A there is an analogue d: ^ ^ -^ ^A^^ ^^^^ Rham's operator for manifolds. In 1963, 
Rinehart [156] mimicked this construction for all algebras, constructing a chain map B 
inducing an operator HHn(A, A) -> Hn-j-i(A, A). This attempt to define an analogue of 
de Rham cohomology was before its time: twenty years later, Alain Connes [48] as well as 
Feigin and Tsygan [185,70] would both seize upon B and make it the foundation of cyclic 
homology, unaware of Rinehart's eariier work. 

We end our quick tour by mentioning an important application, discovered by Gersten-
haber in the 1964 paper [76]. A deformation of an associative algebra A is a /:[[r]]-algebra 
structure on the /:[[r]]-module A[[t]] whose product agrees modulo t with the given prod
uct on A. Reducing a deformation modulo r̂  yields a /:-split algebra extension of A by A, 
so giving the "infinitesimal" part of the deformation is equivalent to giving an element 
of //^(A, A). Gerstenhaber showed that there is a whole sequence of obstructions to de
formations of A, lying in the Hochschild cohomology group H^{A, A). If A is smooth 
of finite type, the Hochschild-Kostant-Rosenberg theorem implies that the obstructions 
belong to ^ L ^ -

5.2.1. Color for coalgebras. Hochschild homology was also involved in the early devel
opment of (differential graded) coalgebras over a field. This field was heavily influenced 
by its applications to topology, in part because the homology of a topological space X is 
a graded coalgebra, via the diagonal map //*(X) -> H^{X x X) = H^{X) (g) H^(X). 
Moreover, the normalized chain complex C*(X) is a differential graded coalgebra. 

In 1956, J.F. Adams [1] discovered a recipe for the homology of the loop space ^X 
when X is simply connected. To describe it, he considered C* (X) as a differential graded 
coalgebra. Mimicking the Eilenberg-Mac Lane bar construction, Adams defined a differen
tial graded algebra F*, called the cobar construction, and showed that H^{QX) = H^{F^). 
This purely algebraic construction attracted the attention of topologists to the algebraic 
structure of coalgebras and their comodules. 

Now if C is a coalgebra one can define the cotensor product MDcN of comodules M 
and Â . Its right derived functors are called the cotorsion products Cotor^(M, Â ) of M 
and Â . In 1966 [65], Eilenberg and Moore defined and studied the cotensor product over a 
DG coalgebra C = C^. Under mild flatness hypotheses, they constructed what we now call 
the "Eilenberg-Moore spectral sequence", which has E^ equal to Cotor^^^ {H(M), H(N)) 

and converges to Cotor^(M, A )̂. The importance of this is illustrated by the case when C 
is the normalized chain complex of a simply connected topological space X, and M and Â  
are the chain complexes of spaces E and X' over X.lf E -> X is a Serre fibration, they 
prove that Cotor^(M, Â ) is the homology of the fiber space E^ = ExxX\ so this provides 
a powerful method to calculate homology. Of course when X^ and E are contractible then 
E' 'i^ QX, and they recover Adams' cobar construction. 

Eilenberg and Moore also studied the dual construction for tensor products of differen
tial graded modules M, Â  over a differential graded algebra R. In this case the spectral 
sequence is 

£ f = ToTH(R){H{N), H{M)) => TOTR(N, M ) . 
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Using the cochain algebras in the above topological situation, Eilenberg and Moore proved 
that 

/ /*(^ ') = Torc*m(C*(£), C*(X^)), 

so the spectral sequence converges to //*(£'0. This spectral sequence was described and 
studied in [173] by Larry Smith, who showed that this spectral sequence often collapsed. 

Here is one application. Suppose that Y is simply connected and we take X = Y x Y, 
with X' the diagonal copy of 7, and E the path space of Y. Then E' = QY and if C*(F) 
takes coefficients in a field k the Kiinneth formula yields 

c*(Z):^c*(y)(8)C*(r). 

Since the Eilenberg-Moore spectral sequence collapses in this case it yields an isomor
phism between H*{QY), and the Hochschild cohomology HWi^iY), k) of the differ
ential graded algebra C*(y). 

5.2.2. Mac Lane cohomology and topological Hochschild homology Let A be an asso
ciative ring and M an A-bimodule. As we have mentioned above, the Hochschild cohomol
ogy group H^{A, M) only measures ring extensions of A by M whose underlying AbeUan 
group is A 0 M. (One takes k to be Z.) In order to measure all ring extensions of A by M, 
Mac Lane introduced what we now call Mac Lane cohomology in the 1956 paper [131]. 
One may naturally define a differential graded ring Q = Q^{A) and an augmentation 
2 -^ A. By definition, HML^{A, M) and HML''{A, M) are the Hochschild homology 
H^(Q, M) and cohomology H'^iQ, M). As required, ring extensions correspond to ele
ments of the group//ML^(A, M). 

A variant for /c-algebras and their extensions was invented in 1961 by U. Shukla [172], 
and is called Shukla homology. Shukla proved two comparison results: when ^ is a field, 
Shukla homology recovers Hochschild homology; when k = Z, Shukla homology agrees 
with a homology theory defined by Mac Lane in 1958 (which is not Mac Lane homology, 
as asserted by Shukla). 

Both Mac Lane cohomology and Shukla homology were almost completely forgotten 
for thirty years, except for some calculations by Breen in [34]. In 1991, an innocuous 
paper by Jibladze and PirashviH [108] proved that the Mac Lane homology of a ring A 
(and a module M) is Tor^(A(8), M(8)) in the functor category J^ = J^(A) of functors 
from the category of fin. gen. free A-modules to the category of A-modules. Similarly, 
the Mac Lane cohomology of A is ExtjF(A(8), M(g)). This was to lead to an unexpected 
connection to algebraic ^-theory and manifolds. 

In the late 1970's, F. Waldhausen introduced a variant of algebraic ^-theory, which he 
called stable K-theory [188]. His construction was designed to study the homotopy theory 
of the diffeomorphism group of a manifold, and could be applied to a ring spectrum A 
as well as ordinary rings. Following this lead in the early 1980's, M. Bokstedt [27] intro
duced a variant THH^{A, A) of Hochschild homology for ring spectra, called Topological 
Hochschild Homology. It is roughly obtained by replacing rings by ring spectra and tensor 
products over k by smash products. In 1987, Waldhausen announced that stable A^-theory 
of A was isomorphic to THH{A), but the proof [54] took several years to appear. 

Then in 1992, PirashviH and Waldhausen [147] used the functor category interpretation 
to prove that the Mac Lane homology group HML(A, A) was the same as THH(A). This 
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showed that homological algebra could be applied to calculate the topological invariants 
of Waldhausen and Bokstedt. A new and active field of research has been born out of this 
discovery. 

5.3. Cyclic homology 

CycHc homology arose simultaneously in several appHcations in the early 1980's. 
While studying appHcations of C*-algebras to differential geometry in 1981, Alain 

Connes was led to study Hochschild cochains which were invariant under cyclic permuta
tions of its arguments [47,48]. Reahzing that such "cyclic" cochains were preserved by the 
Hochschild coboundary gave him a new cohomology theory, rapidly christened //C*(y4) 
and called the cyclic cohomology of A. Meanwhile, Boris Tsygan [185] was studying the 
homology of the Lie algebra g [(A) over a field k of characteristic zero, and discovered that 
the Hopf algebra H^(Q[(A); k) was the tensor algebra on the homology groups K^{A) of 
the complex of all Hochschild chains invariant under cyclic permutation; the proof, and the 
cohomology version, appeared in the 1983 paper [70] by Feigin and Tsygan. This descrip
tion of //*(g[(i4); k) was discovered independently in 1983 by Loday and Quillen [127], 
and their paper made the new subject of cyclic homology accessible to a large audience. 

Both Connes and Tsygan discovered the following key structural sequence relating 
cyclic homology to Hochschild homology; Rinehart's operator [156] is the composition BI 

• -^HCn+iiA) -4 HCn-i(A) 4 Hn(A, A) -^ HCn(A) •.. . 

Using this sequence, Connes and others rediscovered and clarified the connection with 
de Rham cohomology; for smooth algebras HCn(A) is a product of de Rham cohomology 
groups, together with ^^,^/d^^T^^ 

In retrospect, cyclic homology had been hinted at in several places in the late 1970's: 
pseudo-isotopy theory [55], the homology of 5* -̂spaces and in algebraic A^-theory [126]. 
Other applications soon arose. For example, Goodwillie showed in [80] that the cyclic 
homology (over Q) of a nilpotent ideal / is isomorphic to the algebraic ^-theory of / . 
Because of its diverse apphcations to other areas of mathematics, cyclic homology became 
quickly estabhshed as a flourishing field in its own right. 

It is impossible to give an accurate historical perspective on current developments. As 
tempting as it is, I shall refrain from doing so. Perhaps in fifty years the history of homo-
logical algebra will be unrecognizable to us today. Let us hope so! 
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Communication of the results of scientific research is usually achieved by publication in 
the appropriate scientific journals or by lectures on suitable occasions such as conferences. 
In the case of topology, journal pubhcation has of course been extremely important but 
conferences have also played a vital role. Through the records of the international math
ematical congresses one can trace the gradual acceptance of topology as a subject in its 
own right, until specialist conferences began to be organized. Nowadays, of course, such 
meetings are held very frequently but a century ago the situation was quite different. 

The first International Congress of Mathematicians (see [1] for the proceedings and [12] 
for an account of congresses generally) was held at Zurich in 1897. Most of the participants 
came from nearby countries; there were no contributions from Great Britain or the United 
States. The two principal addresses were by Henri Poincare "Sur les rapports de 1'analyse 
pure et de la physique mathematique" and by Adolf Hurwitz "Uber die Entwicklung der 
allgemeinen Theorie der analytischen Funktionen in neuerer Zeit"; the latter makes several 
references to analysis situs, the old term for topology; in particular he refers to the work of 
Jordan and Schoenflies. However the only lecture at the congress with a distinct topolog
ical flavour was that of Hermann Brunn, from Munich, entitled 'Uber verknoten Kurven'. 
Others who one might expect to have been particularly interested in topology were Walter 
von Dyck from Munich, Felix Hausdorff from Leipzig, Arthur Schoenflies from Gottingen 
and, of course, Henri Poincare from Paris. 

Although the Zurich congress was the first of the regular series, there was an Inter
national Mathematical Congress of a rather different type at Chicago four years earlier 
(see [13] for the proceedings and [14, pp. 309-326], for the significance of this meeting for 
the development of mathematical research in North America). After the Zurich congress 
the next in the series was held in Paris in 1900 (see [2]). Elie Cartan and Henri Poincare 
played a leading role in this, but neither chose to lecture on anything of a topological na
ture. Vito Volterra gave an interesting historical talk on "Betti, Brioschi, Casorati" which 
began: 

Dans Tautomne de I'annee 1858, trois jeunes geometres italiens partaient ensemble 
pour un voyage scientifique. Leur but etait de visiter les Universites de France et 
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d'Allemagne, d'entrer en rapport avec les savants les plus remarquables, d'en connaitre 
les idees et les aspirations scientifiques et, en meme temps, de repandre leurs travaux. 

However, Volterra had little to say about Betti's interests in topology. It was at the Paris 
Congress that Hilbert presented his celebrated agenda of outstanding mathematical prob
lems. Only one of the twenty-three could be described as topological, the famous fifth 
problem about Lie groups, finally settled by Montgomery and Zippin sixty years later. 

From 1900, apart from interruptions due to the two world wars, congresses have been 
held regularly every four years. Thus the next one was held in 1904, with Heidelberg 
the venue (see [3]). More than half the participants were from Germany. Hausdorff and 
Schoenflies were present again, but one also notices the attendance of Max Dehn from 
Munster and Wilhelm Wirtinger from Vienna. Apparently there were no lectures of a topo
logical nature. 

It is in the proceedings of the 1908 congress in Rome (see [4]) that one begins to see 
signs that topology is gaining recognition. Poincare himself, in the course of his address, 
declared: 

L'importance de 1'analysis situs est enorme et je ne saurais trop y insister; le parti 
qu'en a tire Riemann, I'un de ses principaux createurs, suffirait a le demontrer. II faut 
qu'on arrive a la construire completement dans les espaces superieurs; on aura alors 
un instrument qui permettra reellement de voir dans I'hyperspace et de suppleer a nos 
sens. 

In the list of participants at the Rome Congress one notices not only the names of 
some of the participants at earlier congresses but also some new names, such as those 
of L.E.J. Brouwer, Camille Jordan and Heinrich Tietze. Brouwer gave two lectures, one on 
the 3-dimensional case of Hilbert's fifth problem, the other on set theory. But apparently 
these were the only lectures of a topological character. 

Cambridge was selected as the venue for 1912, having been unsuccessful in the previous 
round. Due to a strong showing from the United Kingdom the number of participants was 
much greater than at previous congresses, over 700 altogether (see [5]). However, few of 
them were in any sense topologists. Brouwer and Tietze were present but not Dehn. Frechet 
appears for the first time. Lectures of a topological character were given by Janiszewski 
and Konig. 

Due to the first world war there was no congress in 1916, and so the next meeting was not 
until 1920, when Strasbourg was the venue. Participants included Antoine, Frechet, Jordan, 
Lefschetz and Nielsen, with Elie Cartan playing a leading role (see [6]). No topology was 
featured in the formal programme. 

These early congresses usually lasted up to a week. The number of participants and 
make-up by nationahty varied a good deal according to the choice of venue. Apart from 
the formal addresses and lectures given to the whole congress the lecture programme, 
arranged in parallel sessions, could provide as many as a hundred shorter lectures. When 
topology featured on the programme, which was not often, it was regarded as a branch of 
geometry. It must be appreciated that the number of mathematicians with expertise in the 
subject was still quite small. 

Attendance at the earlier congresses, which were all held in Europe, was dominated by 
the Europeans. Although the importance of North America for mathematical research was 
steadily increasing throughout the first half of the century, the Atlantic crossing was such 
a major undertaking that even the leading American mathematicians seldom put in an ap-
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pearance. It was therefore of special significance that for 1924 the congress met in Toronto 
(see [8]). As was only to be expected, most of the participants were North Americans; as 
in 1920 mathematicians from the Central Powers were excluded. Frechet was there and 
lectured three times. There was a talk on the four-colour problem by Errera. Elie Cartan 
lectured on 'La theorie des groupes et les recherches recentes de geometric differentielle'. 
Following the Toronto meeting the prestigious Fields Medals were instituted. 

For 1928 the congress returned to Italy and met in Bologna; mathematicians from Ger
many and Austria were no longer excluded. Among the participants with a special interest 
in topology one notices (see [6]) Alexandroff, both EHe and Henri Cartan, Cech, Frechet, 
Heegard, Kuratowski, Menger, Newman, Reidemeister, Sierpinski, Veblen and Wirtinger. 
For the first time there was a session devoted to 'research of a topological character' at 
which the programme, presided over by the elder Cartan, was as follows: 

P. Alexandroff, Das dimensionproblem und die ungeloesten Fragen allgemeiner Topolo-
gie. 
B. Kerekjarto, On the general translation-theorem of Brouwer. 
C. Kuratowski, Un systeme d'axiomes pour la topologie de la surface de la sphere. 
K. Menger, Die Grundlagen der allgemeinen Kurventheorie. 
W. Blaschke, Questioni topologiche di geometria differenziale. 
L. Lusternik, Sur quelque methodes topologiques dans la geometric differentielle. 
T. Bonnesen, Theoreme de Brunn-Minkowski sur les corps convexes. 
S. Cohn-Vossen, Der Index einer Nabel-punktes im Netze der Krummungslinien. 
F. Gonseth et G. Juvet, Sur le probleme des quatre couleurs. 
K. Reidemeister, Fundamental gruppe und Ueberlagerung von Mannigfaltigkeiten. 

Thus the 1928 congress at Bologna seems to have been something of a turning-point 
as regards recognition of the status of topology at international congresses. Four years 
later, at the 1932 congress (see [9]), the position of the subject seemed to be assured. 
Twenty-five years after the initial congress, the chosen venue was again Zurich. Topologists 
present included Alexander, Aleksandroff, Borsuk, Cech, Hopf, Hurewicz, Kuratowski, 
Menger, Morse, Newman, de Rham, Seifert, Threlfall, Tietze, Tucker, Ulam, Whitehead, 
and Wirtinger. Brouwer presided over one of the geometry sessions. Contrasting views of 
the subject were presented by Alexander, in the combinatorial tradition, and Menger, in 
the set-theoretic tradition. There were a number of other lectures of topological interest, 
including one by Cech on the higher-dimensional homotopy groups. The report of Cech's 
lecture is brief and uninformative, but those who were present seem to agree that its re
ception was such as to discourage him from pursuing the study of these invariants any 
further. Apparently it was thought that the commutative nature of the higher homotopy 
groups meant that they could not be any use, and in any case no-one knew how go about 
computing them. 

The last congress before the second world war was held in Oslo in 1936 (see [10]). 
A fairly representative gathering of topologists took part, including Aleksandroff, Borsuk, 
Dehn, Ehresmann, Eilenberg, Freudenthal, Lefschetz, Heegard, Hurewicz, Morse, Nielsen, 
Seifert, Threlfall, Veblen and Whitehead, and this time topology was also better repre
sented on the lecture programme. Elie Cartan and Nielsen gave plenary addresses. Among 
the other lectures one notices Marty 'Sur la theorie du groupe fondamental', Newman 
and Whitehead 'On the group of a certain Hnkage', Borsuk 'Uber Addition der Abbil-
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dungsklassen', Pontrjagin 'Sur les transformations des spheres en spheres', and Hurewicz 
'Lokaler Zusammenhang und stetige Abbildungen'. 

After the war broke out communication between mathematicians in different countries 
became much more difficult, and this created problems. For example, Pontrjagin, in the 
lecture mentioned above, had asserted that the stable group of the 2-stem, in the homo-
topy groups of spheres, was trivial. The proof depended on what is now known as the 
Pontrjagin-Thom construction, but since details were not given it could not be checked. 
However, this key result was provisionally accepted and it was not until almost 10 years 
later that G.W. Whitehead conclusively demonstrated that the group in question was non-
trivial, in fact of order two like the stable group of the 1-stem. 

By the mid-thirties there were few European countries where topology was not being 
studied and the subject was also well estabhshed in the United States. The desirabihty of 
organizing a speciahst conference to report on and discuss the latest research must have 
been obvious. The first truly international conference on topology was that organised in 
Moscow from September 4-10, 1935, entitled 'Premiere Reunion Topologique Internat
ional'. 

It was not confined to classical topology, in the sense used in this volume, but included 
general topology and adjacent areas of the subject. The proceedings, which were pubhshed 
in [16], give some idea of the research activity which was taking place in topology at this 
period: 

J. W. Alexander, On the ring of a complex and the combinatory theory of integration. * 
Paul Alexandroff, Einige Problemstellungen in der mengentheoretischen Topologie. 
Garrett Birkhoff, Continuous groups and linear spaces. 
Karol Borsuk, Uber spharoidale und H-spharoidale Raume. 
E. Cech, Accessibility and homology. 
E. Cech, Betti groups with different coefficient groups. * 
St. Cohn-Vossen, Topologische Fragen der Differentialgeometrie im Grossen. 
D. van Dantzig, Neuere Ergebnisse der topologischen Algebra. 
Hans Freudenthal, Entwicklungen von Raumen und Gruppen. 
J.J. Gordon, On the intersection invariants of a complex and its residual space. * 
Paul Heegard, Bemerkungen zum Vierfarbenproblem. 
H. Hopf, Neue Untersuchungen iiber n-dimensionale Mannigfaltigkeiten. * 
W. Hurewicz, Homotopie und Homologie. 
E.R. van Kampen, On the structure of a compact group. 
A. Kolmogoroff, Homologiering des Komplexes und des lokal-bikompakten Raumes. 
Nicolas Kryloff et Nicolas BogoHouboff, Les mesures invariants et transitives dans la 
mecanique nonlineaire. 
Casimir Kuratowski, Sur les ensembles projectifs. 

Group photograph taken at the 1935 International Conference on Topology in Moscow. Top Row: 1. E. Cech; 
2. H. Whitney; 3. K. Zarankiewicz; 4. A. Tucker; 5. S. Lefschetz; 6. H. Freudenthal; 7. F. Frankl; 8. J. Nielsen; 
9. K. Borsuk; 10. ?; 11. J.D. Tamarkin; 12. ?; 13. V.V. Stepanoff; 14. E.R. van Kampen; 15. A. Tychonoff; 
Bottom Row: 16. C. Kuratowski; 17. J. Schauder; 18. St. Cohn-Vossen; 19. P. Heegaard; 20. J. Rozariska; 

21. J.W. Alexander; 22. H. Hopf; 23. R Alexandroff; 24. ?. 
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S. Lefschetz, Locally connected sets and their applications. 
A. Markoff, Uber die freie Aquivalenz der geschlossenen Zopfe. * 
Stefan Mazurkiewicz, Ober die Existenz unzerlegbares Kontinua. * 
J. Nielsen, Topologische invarianten der Klassen von Flachenabbildungen. * 
V. Niemytzki, Unstabile dynamische Systeme. * 
J. von Neumann, The uniqueness of Haar's measure. 
G. Nobeling, Beweisskizze fur die Triangulierung einer Mannigfaltigkeit und die soge-
nannte Hauptvermutung. * 
L. Pontrjagin, Proprietes topologiques des groupes de Lie compacts. * 
Georges de Rham, Sur les nouveaux invariants topologiques de M. Reidemeister. 
JuHa Rozanska, Uber stetige Abbildungen eines Elementes. 
J. Schauder, Einige Anwendungen der Topologie der Funktionalraume. 
W. Sierpinski, Sur les images biunivoques et continues dans un sens. 
W. Sierpinski, Sur les transformations des ensembles par les fonctions de Baire. 
W. Sierpinski, Sur un ensemble projectif de classe 2 dans I'espace des ensembles fermes 
plans. 
PA. Smith, Transformations of period two. 
M.H. Stone, Applications of Boolean algebras to topology. 
A.W. Tucker, Cell spaces. 
A. Tychonoff, Sur les points invariants des espaces bicompacts. * 
Andre Weil, Demonstration topologique d'un theoreme de Cartan. 
Andre Weil, Les families de courbes sur le tore. 
Hassler Whitney, Differentiable manifolds in Euclidean space. 
Hassler Whitney, Sphere-spaces. 

Of the 34 lecturers who contributed to the proceedings (the contributions marked * ap
pear by title only, being published elsewhere), many lectured on topics which might not 
be classified as topological today. In fact, it was not until somewhat later that the tendency 
developed for the different branches of topology each to go their own way, in particular, 
general topology became increasingly separate from other kinds of topology. There were a 
few other participants who did not contribute to the proceedings, making about 40 in all. 

Whitney gave a vivid account of the Moscow conference in an article [15] he wrote not 
long before his death, from which I quote: 

What was the main import of the conference? As I see it, it was threefold: 
(1) It mai-ked the true birth of cohomology theory, along with the products among 

cocycles and cycles. 
(2) An item of application, vector fields on manifolds, was replaced by an expansive 

theory, of vector bundles. 
(3) The pair of seemingly diverse fields, homology and homotopy, took root and 

flourished together from then on. 

He goes on to remark that in each of these major breakthroughs the first presenter turned 
out to be not alone; at least one other had been working up the same material. Thus (1) was 
presented by Kolmogoroff, not usually classed as a topologist, but when he had finished 
Alexander announced that he too had essentially the same definition and results. In the case 
of (2) Hopf presented the results of his student Stiefel concerning the existence of several 
independent vector fields in a manifold, which was just what Whitney himself had gone to 
Moscow to present. 
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As we have seen, Cech presented a definition of the higher homotopy groups at the 
1932 congress. Apparently unaware of this, Hurewicz gave another version of the defi
nition, with several simple but important appHcations, at the Moscow conference. In the 
subsequent discussion Alexander said that he had considered the idea many years earlier, 
but had rejected it since it was too simple in character and, hence, could not lead to deep 
results. Both Cech and van Danzig also said that they had considered introducing the same 
concept as Hurewicz, and if Dehn had been present he might have said the same. To further 
quote Whitney: 

Tucker spoke on cell spaces, a thesis written under Lefschetz's direction, which gave 
certain specifications about what can usefully be considered a 'complex'. Nobeling's 
talk was to present, in outline, the proof that all topological manifolds can be triangu
lated. According to von Neumann, Nobeling demonstrated amply that he had answers 
to every possible question that one might think of. 

Unfortunately, Nobeling's argument contained an error, as van Kampen was soon to 
point out, although it not until 1969 that the Hauptvermutung was finally answered, by 
Kirby and Siebenmann, in the negative. 

Only a month later there was a second international conference, this time at the Uni
versity of Geneva, under the title 'Colloque sur quelques questions de Geometric et de 
Topologie'. Some of those who lectured in Moscow also did so in Geneva. The programme 
was as follows. 

E. Cartan, La topologie des espaces representatifs des groupes de Lie. 
P. Alexandroff, title not available. 
G. de Rham, Relations entre la topologie et la theorie des integrales multiples. 
C. Kuratowski, La notion de connexite locale en topologie. 
A. Weil, La mesure invariante dans les espaces homogenes clos. 
W. Threlfall, Quelques progres recents de la topologie algebrique. 
E.G. Togliatti, Extension aux surfaces algebriques de la theorie des series de groupes de 
points. 
J. Nielsen, Topologie des transformations des surfaces. 
B. Kaufmann, Topologie des surfaces closes et des varietes de Cantor. 
B. de Kerekjarto, Sur la structure des transformations des surfaces en elles-memes. 
C. Ehresmann, Les espaces localement homogenes. 
H. Hopf, Quelques problemes de la theorie des representations continues. 
K. Menger, La geometric metrique. 
R Finsler, Courbures superieures dans les espaces generaux. 
H. Seifert, La theorie des noeuds. 
P. Heegard, Contribution a la theorie des 'graphes' de Tait. 
G. Bouligand, Le role de la theorie des groupes en geometric infinitesimale. 

The Geneva meeting seems to have been rather overshadowed by the Moscow confer
ence, at which America was more strongly represented. Nothing of this nature is on record 
for 1937 or 1938, and plans for another conference on the Moscow model to be held at 
Warsaw in 1939 were abandoned due to the deteriorating international situation. In Amer
ica, however, a conference was organised at the University of Michigan in 1940 (see [18] 
for the proceedings) although by then the second world war was in progress and inevitably 
the international dimension was much reduced. Nevertheless the list of speakers and their 
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titles provides some idea of research activity at this period. Note that general topology still 
remains in a close relationship with other kinds of topology. 

Solomon Lefschetz, Abstract complexes. 
R.L. Wilder, Uniform local connectedness. 
N.E. Steenrod, Regular cycles of compact metric spaces. 
Samuel Eilenberg, Extension and classification of continuous mappings. 
Hassler Whitney, On the topology of differentiable manifolds. 
Stewart S. Cairns, Triangulated manifolds and differentiable manifolds. 
RA. Smith, Periodic and nearly periodic transformations. 
Leo Zippin, Transformation groups. 
Saunders MacLane and V.W. Adkisson, Extensions of homeomorphisms on the sphere. 
O.G. Harrold, Jr., The role of local separating points in certain problems of continuum 
structure. 
L.W. Cohen, Uniformity in topological space. 
E.W. Chittenden, On the reduction of topological functions. 
Edward G. Begle, Homology local connectness. 
Claude Chevalley, Two theorems on solvable topological groups. 
Ralph H. Fox, Topological invariants of the Lusternik-Schnirelmann type. 
O.H. Hamilton, Concerning the decomposition of continua. 
Wilfred Kaplan, Differentiability of regular curve families on the sphere. 
Erich Rothe, On topology in function spaces. 
John W. Tukey, Compactness in general spaces. 
E.R. van Kampen, Remark on the address of S.S. Cairns. 
Heinz Hopf, Relations between the fundamental group and the second Betti group. 

A meeting at Princeton in 1946 on The Problems of Mathematics' might also be men
tioned at this point since it resulted in the publication in the Annals of Mathematics of a 
useful collection of unsolved problems, edited by Eilenberg [19]. As well as the classical 
unsolved problems, such as the Hauptvermutung, the collection includes problems about 
lens spaces, retracts and local connectedness, homotopy groups, homotopy classification, 
fibre bundles, homology theory and transformation groups. 

In Europe, for some years after the end of the second world war, international confer
ences could only be organised with difficulty. However, the Rockefeller Foundation, work
ing with the French body Centre National de la Recherche Scientifique, made it possible 
for several scientific colloquia to be held in Paris as early as the summer of 1947. One of 
these was in algebraic topology (see [17] at which the speakers were as follows. 

Henri Cartan, Sur la notion de carapace en topologie algebrique. 
Charles Ehresmann, Sur la theorie des espaces fibres. 
Hans Freudenthal, La geometric enumerative. 
Guy Hirsch, La geometric projective et la topologie des espaces fibres. 
W.V.D. Hodge, The finite algebraic form of the theory of harmonic integrals. 
Heinz Hopf, Sur les champs d'elements de surface dans les varietes a 4 dimensions. 
Jean Leray, L'homologie filtree. 
Henri Cartan and Jean Leray, Relations entre anneaux d'homologie et groupes de 
Poincare. 



Topologists at conferences 845 

Georges de Rham, Sur les conditions d'homeomorphie de deux rotations de la sphere a 
n dimensions, et sur les complexes avec automorphismes. 
E. Stiefel, Sur les nombres de Betti des groupes de Lie clos. 
J.H.C. Whitehead, On simply connected, 4-dimensional polyhedra. 
Hassler Whitney, La topologie algebrique et la theorie de 1'integration. 

There was another rather similar meeting in Brussels in 1950, at which the speakers 
included Cartan, Eckmann, Ehresmann, Hirsch, Hopf, Koszul and Leray. But perhaps the 
most important topology conference of this period was that held in conjunction with the 
International Mathematical Congress of 1950 (see [11]), the first after the end of the war, 
which was held at Harvard University and other institutions in the Boston area. Hassler 
Whitney was Chairman of the conference and in his introduction he said: 

The subject of algebraic topology and applications was chosen for one of the confer
ences of the Congress because of its great growth in recent years, and the increasingly 
large contact with other fields of mathematics, in geometry, algebra and analysis. The 
subject of general topology has moved considerably into the domain of analysis. It was 
with great regret that the field of point set theory had to be omitted altogether. 

In fact, general topology increasingly went its own way. The textbook of Schubert was 
the last to follow the example of Aleksandroff and Hopf by combining algebraic topology 
with general topology. At conferences it was considered more useful to emphasize the links 
with other kinds of mathematics such as differential geometry. 

The programme of the Harvard Conference in Topology was divided up as follows. 

Homology and homotopy theory 

W. Hurewicz, Homotopy and homology. 
S. Eilenberg, Homotopy groups and algebraic homology theories. 
J.H.C. Whitehead, Algebraic homotopy theory. 
G.W. Whitehead, Homotopy groups of spheres. 

Fibre bundles and obstructions 

P. Olum, The theory of obstructions. 
W.S. Massey, Homotopy groups of triads. 
G.C. Hirsch, Homology invariants and fibre bundles. 
E.H. Spanier, Homology theory of fiber bundles. 

Dijferentiable manifolds 

S.S. Chern, Differential geometry of fiber bundles. 
C. Ehresmann, Sur les varietes presque complexes. 
B. Eckmann, Complex-analytic manifolds. 
C.B. Allendoerfer, Cohomology on real differentiable manifolds. 

Topological groups 

P.A. Smith, Some topological notions associated with a set of generators. 
D. Montgomery, Properties of finite-dimensional groups. 
K. Iwasawa, Some properties of (L)-groups. 
A.M. Gleason, One parameter subgroups and Hilbert's fifth problem. 
R.H. Fox, Recent developments in knot theory at Princeton. 
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In addition to these lectures there were a considerable number of lectures at the Congress 
itself which would have been of interest to topologists. For example, Hopf delivered one 
of the opening addresses, entitled 'Die n-dimensionalen Spharen und projektiven Raume 
in der Topologie'. Most of the participants were from North America although special 
efforts were made to encourage participants from elsewhere. Among those present with a 
particular interest in topology were: 

Cahit Arf, A.L. Blakers, Raoul Bott, D.G. Bourgin, L.EJ. Brouwer, S.S. Cairns, R.E. 
Chamberiin, James Dugundji, Beno Eckmann, Charles Ehresmann, Samuel Eilenberg, 
R.H. Fox, Alex Heller, Heinz Hopf, S.T. Hu, Witold Hurewicz, J.L. Kelley, Solomon 
Lefschetz, Jean Leray, C.B. de Lyra, Saunders MacLane, W.S. Massey, Karl Menger, 
J.W. Milnor, E.E. Moise, Deane Montgomery, J.C. Moore, Marston Morse, J.F. Nash, 
M.HA. Newman, Paul Olum, R.S. Palais, Everett Pitcher, Moses Richardson, Hans 
Samelson, Paul Smith, E.H. Spanier, N.E. Steenrod, A.W. Tucker, S.M. Ulam, Oswald 
Veblen, A.D. Wallace, A.H. Wallace, Henry Wallman, G.W. Whitehead, J.H.C. White
head, Hassler Whitney, R.L. Wilder, Shaun Wylie, J A. Zilber, and Leo Zippin. 

As far as I am aware the first truly international conference on topology after the war 
was the one held at the National University of Mexico in 1956, entitled 'Symposium In-
ternacional de Topologia Algebraica'. In fact, although general topology was not included, 
the scope of the programme was broader than the title suggests. There was a large atten
dance of a strongly international character, where topologists of the older generation, such 
as Henri Cartan, Witold Hurewicz, Solomon Lefschetz and Henry Whitehead interacted 
with some of the rising stars of the new generation, such as Michael Atiyah, Raoul Bott, 
Jean-Pierre Serre and Rene Thom. If we compare the programme with that of the 1935 
Moscow conference, hardly more than twenty years previously, it is obvious how much 
has changed. 

Witold Hurewicz and Edward Fadell, On the structure of higher terms of the spectral 
sequence of a fibre space. 
Henri Cartan and Samuel Eilenberg, Foundations of fibre bundles. 
Jean-Pierre Serre, Sur la topologie des varietes algebriques en characteristique p. 
R. Thom, Les classes characteristiques de Pontrjagin des varietes triangulees. 
D.C. Spencer, A spectral resolution of complex structure. 
M.F. Atiyah, Complex analytic connections in fibre bundles. 
Raymond Raffin, Remarques sur certaines algebres de Lie. 
Shiing-Chen Chern, Geometry of submanifolds in a complex projective space. 
Henri Cartan, Espaces fibres analytiques. 
John Milnor, On simply-connected 4-manifolds. 
Friedrich Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch. 
W.S. Massey, Some higher order cohomology operations. 
Emery Thomas, The generaUzed Pontrjagin cohomology operations. 
Franklin P. Peterson, Functional higher order cohomology operations. 
N.E. Steenrod, Cohomology operations. 
Jose Adem, Operaciones cohomologicas de segundo orden asociadas con cuadrados de 
Steenrod. 
I.M. James, On the homotopy groups of spheres. 
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Daniel M. Kan, The Hurewicz theorem. 
John C. Moore, Semi-simpUcial complexes and Postnikov systems. 
J.H.C. Whitehead, DuaUty between CW-lattices. 
E.H. Spanier, Duality and the suspension category. 
P.J. Hilton, Homotopy theory of modules and duahty. 
R. Bott and H. Samelson, Applications of Morse theory to symmetric spaces. 
Hassler Whitney, Singularities of mappings of EucHdean spaces. 
B.A. Rattray, Generalizations of the Borsuk-Ulam theorem. 
James Eells, Jr., On the geometry of function spaces. 
Paul Dedecker, On the exact cohomology sequence of a space with coefficients in a 
non-Abelian sheaf. 
I. Fary, Spectral sequences of certain maps. 

Many exciting new results were announced at the symposium but the sensation of the 
meeting was the news that the young American mathematician John Milnor had shown that 
the 7-sphere admits more than one differential structure. Later he received a Fields medal 
for his work in this area. At the end of the meeting participants were shocked to hear that 
Witold Hurewicz had suffered a fatal accident in Yucatan; he was visiting one of the Mayan 
pyramids at Uxmal when he wandered off limits and fell to his death. The proceedings of 
the symposium [20] were dedicated to his memory. 

Of course conferences were also being held with a more geometric emphasis. For ex
ample one took place in 1961 at the University of Georgia (USA) on the Topology of 
3-manifolds with almost 40 participants, mostly from the USA. The lectures (see [24]) 
were grouped under the following headings: Decompositions and subsets of the plane, 
n-manifolds. Knot theory, The Poincare conjecture. Periodic maps and isotopies. Applica
tions. The Proceedings were dedicated to J.H.C. Whitehead, who had died suddenly the 
previous year and who would surely have played a leading role at the meeting had he lived. 

In recent years the custom has grown up of using an appropriate birthday or other occa
sion to pay tribute to one of the leading researchers. Although former students and others 
who have been closely associated professionally with the person in question tend to pre
dominate, these conferences can be quite large. In 1990, for example, such a meeting had 
been planned to mark the sixtieth birthday of the British homotopy theorist Frank Adams, 
but following his untimely death as the result of a motor accident it was transformed into 
a memorial meeting instead. Over 150 topologists, from almost twenty different countries, 
came together in Manchester for this symposium. The proceedings [21] include a survey 
of Adams' work as well as reports of recent research on topics in which he had been inter
ested. 

There are also some well-established series of conferences on topology. For example, 
a relatively small meeting, with an emphasis on younger topologists, takes place every 
autumn at the Mathematisches Forschungsinstitut in Oberwolfach. Another long-standing 
series, on a somewhat larger scale, is that of the Oxford Topology Symposia, where the em
phasis is on homotopy theory. These meetings take place every four years, approximately, 
and although at first they were always held at the Mathematical Institute in Oxford, more 
recently other venues have been used, such as the Palazzo Feltrinelli on Lake Garda, by 
courtesy of the University of Milan. The large and enthusiastic attendance at these sym
posia is an indication of the continued vitality of the subject. 



848 I.M. James 

Bibliography 

References to proceedings of the first eleven congresses 

[1] Verhandlungen des ersten internationalen Mathematiker-Kongress, Rudio (ed.), Teubner, Leipzig (1898). 
[2] Compte Rendu du Deuxieme Congres International des Mathematiciens, Gauthier-Villars, Paris (1902). 
[3] Verhandlungen des Dritten Internationalen Mathematiker Kongresses in Heidelberg, Krazer (ed.), Teubner, 

Leipzig (1905). 
[4] Atti del IV Congresso Internazionale dei Matematici, Castelnuovo (ed.), Academia dei Lincei, Rome (1909). 
[5] Proceedings of the Fifth International Congress of Mathematicians, Hobson and Love (eds), Cambridge 

Univ. Press, Cambridge (1913). 
[6] Comptes Rendus du Congres International des Mathematiciens, Strasbourg 1920. Villat, Toulouse (1921). 
[7] Atti del Congresso Internazionale dei Matematici 1928, Zanichelli, Bologna (1929). 
[8] Proceedings of the International Mathematical Congress, Fields (ed.). University of Toronto, Toronto 

(1928). 
[9] Verhandlungen des Internationalen Mathematiker Kongresses Zurich, Saxer (ed.), Fussli, Zurich/Leipzig 

(1932). 
[10] Comptes Rendus du Congres International des Mathematiciens Oslo (1936), Broggers, Oslo (1937). 
[11] Proceedings of the International Congress of Mathematicians, Cambridge, MA, USA (1950), Amer. Math. 

Soc, Providence, RI (1952). 

Other references 

[12] D.J. Albers, G.L. Alexanderson and C. Reid, International Mathematical Congresses: An Illustrated History 
1893-1986, Springer, New York (1987). 

[13] Mathematical Papers Read at the International Mathematical Congress, Macmillan, New York (1896). 
[14] K.H. Parshall and D.E. Rowe, The Emergence of the American Mathematical Research Community, 1876-

1900: J.J. Sylvester, Felix Klein and E.H. Moore, Amer. Math. Soc. and London Math. Soc, Providence, RI 
(1991). 

[15] H. Whitney, Moscow 1935: Topology Moving toward America, A Century of Mathematics in America, 
Duren, ed., Amer. Math. Soc, Providence, RI (1989). 

[16] Matematicheskii Sbornik N.S. 1 (43) : 5 (1936). 
[17] Collogue International de Topologie Algebrique, Paris (1947), Gauthier-Villars, Paris (1949). 
[18] Lectures in Topology, Wilder and Ayres (eds), Univ. of Michigan Conf. of 1940, Univ. of Michigan Press, 

Ann Arbor (1941). 
[19] S. Eilenberg, On the problems of topology, Ann. of Math. 50 (1949), 247-260. 
[20] Symposium Internacional de Topologia Algebraica, Universidad Nacional Autonoma de Mexico and 

UNESCO (1958). 
[21] Adams Memorial Symposium on Algebraic Topology, I, II, Ray and Walker (eds), London Math. Soc. Lec

ture Note Sen vols 175, 176, Cambridge Univ. Press, Cambridge (1992). 
[22] Development of Science Publishing in Europe, Meadows (ed.), Elsevier, Amsterdam (1980). 
[23] I.M. James, Topology: past, present and future. Algebraic Topology, Carlsson, Cohen, Miller and Ravenel, 

eds. Lecture Notes in Math. vol. 1370, Springer, Berhn (1989). 
[24] Topology of ?>-Manifolds and Related Topics, Fort (ed.), Prentice-Hall, Englewood Cliifs, NJ (1962). 



CHAPTER 30 

Topologists in Hitler's Germany 

S.L. Segal 
Department of Mathematics, University of Rochester, Rochester, NY 14627, USA 

E-mail: ssgl@ troi. cc. rochester. edu 

What happened to topology in Germany after January 30, 1933 when Adolph Hitler be
came chancellor are really two questions: what happened to topology, and what happened 
to topologists? Though "algebraic topology" goes back to the nineteenth century and has its 
beginnings in the work of G.F.B. Riemann, Felix Klein, Enrico Betti and, above all, Henri 
Poincare; although L.E.J. Brouwer made some stunning advances in the early part of this 
century; nevertheless the 1920's saw a large disciphne constructed on those beginnings. 
This was especially true in Germany, even though by 1911 important figures in topology 
like Max Dehn (David Hilbert's pupil), W. von Dyck (Klein's pupil and the inventor of the 
generator-relations description of groups), Heinrich Tietze (who though he had been Gus-
tav von Escherich's student in Vienna, was influenced there by Wilhelm Wirtinger to an 
interest in topology) and Arthur Schoenflies (who had studied with E.E. Kummer but was 
strongly influenced by Klein) were already active. For example, it was von Dyck's work 
which inspired Poincare to what we today call the Euler-Poincare characteristic. Schoen
flies, already in his forties when he turned his attention to topology, published several 
papers in the period 1903-1906. It was the errors and gaps in these which were an inspira
tion to L.E.J. Brouwer. Tietze's Habilitationsschrift m 1908 was one of the first significant 
studies of topological invariants. Dehn not only proved "Dehn's Lemma" in 1910 (though 
the proof was not correct), but together with Poul Heegaard, published one of the very first 
surveys of topology (the Enzyklopddie article of 1907-1910). In fact, it perhaps shows the 
difference between the topological sophistication of pre-World War I and the late twenties, 
that it was Hellmuth Kneser (in a footnote occasioned by his careful reading of the galley 
proofs of an article) who in 1928 pointed out that "Dehn's Lemma" had not been correctly 
proved. A correct proof seems to have waited until C. Papakyriakopoulos in 1952. 

In Weimar Germany despite the initial exclusion, at French insistence, of the Germans 
from international gatherings and exchanges, topology flourished from these nascent be
ginnings. Among those stimulating such interest were also distinguished "nontopologists" 
like Erhard Schmidt. It was with Schmidt that Heinz Hopf wrote his dissertation (Ludwig 
Bieberbach was second reader) on the topology of manifolds (1925), which received the 
rarely awarded highest commendation for a dissertation. Hopf then traveled to Gottingen 
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for a year where he met Alexandroff, and "habilitated" in Beriin in 1926. In his evaluation 
of Hopf s dissertation, Schmidt spoke of topology as "the most difficult area of mathemat
ics, and at the same time the one most rich with future possibilities". Before he left Berlin 
for Zurich in 1931, Hopf had two students, Hans Freudenthal and the differential geome
ter, Willi Rinow. While still at Breslau, Erhard Schmidt not only influenced Hopf, who 
followed him to Berlin, but apparently also Hellmuth Kneser, though the latter eventually 
went to Gottingen, wrote a dissertation on the quantum theory of the time under Hilbert's 
supervision, and then, seemingly deciding not to specialize, became one of the broadest 
mathematicians of his generation; but topology, the subject of his Habilitationsschrift was 
a constant interest. One final example of the topological scene in Germany in the pre-Hitler 
period deserves mention here. In 1930, Herbert Seifert received a Dr.rer.nat. with William 
Threlfall, got a Ph.D. in Leipzig, and returned to Dresden to "habihtate" in 1934. Seifert 
and Threlfall became known as "inseparable twins", frequendy collaborating, especially 
on their famous textbook. Finally, it is worth mentioning that the topology of the time 
was far from removed from other mathematics. The most famous example is undoubtedly 
Emmy Noether's definition of homology groups which would seem to have first appeared 
in a paper of Hopf. Perhaps another example is that Hellmuth Kneser's first student who 
wrote a topological dissertation, and did some significant early work in topology, was the 
to-be-famous algebraist, Reinhold Baer. By January 30,1933, Schoenflies had already died 
(in 1928), Heinz Hopf was in Ziirich where he would remain throughout the Nazi period, 
and von Dyck, stricken with an illness which would be fatal, retired in 1933 (at age 77) 
and died the following year. Though remaining in Switzerland, Hopf did try to help col
leagues in Germany who suffered Nazi persecution, such as the aerodynamicist, Ludwig 
Hopf, apparently a distant relative, who was tainted and dismissed as Jewish. 

The roster of German university topologists when Hitler came to power thus ranged from 
Max Dehn (who was 54 and very well-established) to Herbert Seifert who was working to
wards his ''Habilitation". They also included Hans Freudenthal, Hellmuth Kneser, Georg 
Feigl, Kurt Reidemeister, William Threlfall, Heinrich Tietze. To these should also be added 
the names of Hermann Kiinneth, who though he eventually became quaUfied as a university 
lecturer (at age 49), spent most of his career as a teacher at a Gymnasium in Erlangen, and 
Leopold Vietoris, an Austrian who was very active in the German Mathematical Society. 
There was also, of course, Felix Hausdorff, one of the greatest mathematicians of the first 
half of the twentieth century, whose Grundzuge der Mengenlehre completely surpassed 
Schoenflies' work (which with Brouwer's help, had appeared in a second edition in 1913). 
Hausdorff's book provided a set-theoretic foundation for topological ideas. Finally, men
tion must be made again of L.E.J. Brouwer in this context; for Brouwer, though Dutch, 
was an ardent Germanophile and "German nationalist," and played a significant role in 
the politics of German mathematics. In addition, while David Hilbert was never himself a 
topologist, and already showing signs of his age in 1933, some of his distinguished students 
who were not primarily topologists also stimulated topological activity; Erhard Schmidt is 
a good example. These are only some salient names; topology itself was thriving, and Ger
man mathematicians not primarily topologists (like Emmy Noether, Reinhold Baer, and 
Friedrich Levi) also made contributions. Germany was far from the only country in which 
topology was thriving in the twenties, but it certainly had more than its share of leaders. 

Before turning to the fates of topologists under the Nazis, it is perhaps well to look at 
the subject itself. For some Nazis, at least for a while, had very definite ideas of what was 
and was not appropriate mathematics. This may sound astonishing, but mathematics and 
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physics each saw specific different attempts to discern a truly Aryan subject from other 
varieties, and this was more than merely a question of the expulsion of Jews and commu
nists. This article is not the place (if only for the reasons of space) to go into this in detail, 
but, briefly, the most prominent such Nazi movement saw "truly German" mathematics 
as intuitive and tied to nature, often geometrical, and certainly not axiomatic. Axiomatics, 
"logic chopping", too great abstraction, was Franco-Jewish. The details of how mathe
maticians like Richard Dedekind and David Hilbert were nevertheless quaUfied as "truly 
German" need not concern us here. Through no fault of his own, the deceased FeUx Klein 
was apotheosized by this movement as its exemplar (rather like a Roman emperor divinized 
post-mortem). This movement was the Deutsche Mathematik associated principally with 
the names of Theodor Vahlen and Ludwig Bieberbach. Bieberbach was one of the leading 
mathematicians of his generation, as well as the most vocal protagonist of Nazi views with 
respect to mathematics. Furthermore, Bieberbach, though not a topologist, was associated 
with a number of the topological names previously mentioned. In 1910-1912, Bieberbach 
had partially solved "Hilbert's eighteenth problem", which partly stemmed from work of 
Schoenflies. In fact, this work formed his Habilitationsschrift. Though Bieberbach initially 
went with Ernst Zermelo to Zurich in 1910, Schoenflies, who was then a full professor 
in Konigsberg, immediately arranged a position for him there, and this was the German 
university at which he "habilitated", also in 1910. In 1914, Schoenflies became the first 
full professor at the newly established university in Frankfurt (lectures began October 23, 
1914), and he helped arrange for Bieberbach to be his full professorial colleague. When in 
1921 Bieberbach accepted a call to Berlin, as is clear from the Bieberbach-Blaschke corre
spondence, he was actively involved in choosing his Frankfurt successor who turned out to 
be Max Dehn. Finally, at least from 1928 onward, and to some extent earher, Bieberbach 
and L.E.J. Brouwer collaborated in conservative German ultra-nationalist politics affecting 
mathematics - in 1928, the issue was German attendance at the international congress in 
Bologna. 

And Brouwer? By 1925, Brouwer was no longer working in topology: yet topologists 
of the caliber of Paul Alexandroff, Karl Menger, Leopold Vietoris and Hans Freudenthal 
stayed with him. Brouwer's interest in the foundations of mathematics dated back to his 
1907 dissertation; but it was not until the publication in 1923 of his famous paper on the 
excluded middle that his mathematical work became almost exclusively in intuitionism. 
Topologists seemingly went to Brouwer because he was a great man in their field and one 
can always learn from a great man. However, Brouwer was more interested in promot
ing intuitionism and in Berlin he found an apparently wiUing audience. According to Hans 
Freudenthal, as early as 1923, the young Karl (Charles) Lowner gave a Berlin course in cal
culus on an intutionistic basis, and in 1926-1927, Brouwer gave there a very well received 
series of lectures on intuitionism. Some even talked of a mathematical "putsch". Freuden
thal, for example, was so attached by Brouwer's lectures that, on obtaining his doctorate 
in 1930, he decided to go to the Netherlands to be with Brouwer, eventually becoming a 
professor at Utrecht. In 1926, Bieberbach gave an unpublished public lecture (a copy is in 
my possession) in which be castigated Hilbert, saw Brouwer's intuitionism as the coming 
mathematical philosophy, and Klein's views as an early predecessor of Brouwer's. 

But what of topology for Nazi ideologists? Was it a "truly German" subject, being ge
ometrical, or was it not so, being highly abstract? This is not as silly a question as it 
at first seems, since, for example, Bieberbach stigmatized both Cantorian set theory and 
Measure Theory as "non-German". Some ideologically Nazi mathematicians even looked 
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suspiciously at abstract algebra as being not "as German" as, say, probability theory or 
geometric subjects. 

Did topology have difficulty getting published? What happened to topologists under the 
Nazis? The pohtical opinions of topologists such as those fisted earlier, at the beginning of 
1933 ran the gamut from Hellmuth Kneser, who was a very conservative nationafist, even 
a bit of a reactionary, to Kurt Reidemeister who was opposed to the Nazis on philosophi
cal, intellectual and pofitical grounds. Most German academics during the Weimar period, 
whatever their ethnicity, seem to have been conservative nationalists; mathematicians as a 
group do not seem to have been an exception, nor do topologists among mathematicians. 
Kneser, for example, though initially a supporter of Nazi ideals, seems to have been guided 
by a solid set of conservative and humanistic principles to an eventual rejection (by then 
necessarily tacit) of all the Nazis stood for. Of the individuals mentioned above, those 
with Jewish ansectors, of course, suffered severely under the Nazis. Max Dehn and Hans 
Freudenthal have separate articles in this volume devoted to them. Briefly, it should be 
said here that Freudenthal, because he had a non-Jewish wife, was saved from immediate 
deportation when the Germans occupied Holland during World War II. However, he spent 
six weeks in prison during 1942 and in 1944 was taken to a labor camp from which he 
later escaped and went into hiding for the duration of the war. Max Dehn was dismissed 
in 1935. He had not been immediately dismissed under the Nazi law of April 7, 1933, 
which called for the dismissal of civil servants (hence university professors) who were 
Jewish or unable fully to support the new government, because he fell under one of the 
exceptions clauses - he had been a civil servant prior to 1914. However, in 1935, he was 
suddenly dismissed as "supernumerary" (another clause in the law), in a second wave of 
dismissals. Carl Ludwig Siegel, in his story of Frankfurt mathematics, suggest that this was 
an act of revenge by Theodor Vahlen - in 1905 Dehn had savagely reviewed a geometry 
book by Vahlen. More likely is that this was simply the Nazi bureaucracy doing its job, 
since on January 21, 1935, a new law allowed for dismissal of professors when it was "in 
the national interest". This allowed the dismissal of the previously protected; in addition, 
Frankfurt had a reputation as a "Jewish university" and, for a while, the Nazis thought of 
closing it completely. What the immediate stimulus was for Dehn's dismissal seems un
known. Though dismissed, Dehn stayed in Germany and in November 1938, was arrested 
during the Kristallnacht pogrom. However, there being no room in the jail, he was tem
porarily released. To prevent his rearrest, the Dehns fled Frankfurt the next day. This began 
a long and arduous voyage of escape described in detail in John Stillwell's article. First 
via Hamburg to Copenhagen in early 1939 and then Trondheim, Norway. The Germans 
invaded Norway on April 19, 1940: no arrests immediately followed; enabling the Dehns 
to flee Norway in October of that year. With the war on, they thought the Atlantic waters 
more dangerous than going eastward, and so travelled to America via Stockholm, Moscow, 
Siberia (a ten-day rail journey with temperatures as low as —50°C.); from Vladivostok to 
Japan, and then San Francisco; ending finally at Idaho State University in Pocatello, Idaho. 
The Dehns moved three more times within the US, to the Illinois Institute of Technology in 
1942, St. Johns in Annapofis the following year, and finally to Black Mountain College in 
North Carolina, a now defunct experimental college. One can wonder why a man of Dehn's 
distinction did not find more prestigious positions, but it must be remembered that despite 
the efforts of the Emergency Committee set up to help displaced scholars (whose "assistant 
secretary" was the young Edward R. Murrow), the United States did not unanimously wel
come those refugee scholars with open arms. A similar point might be made about Great 
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Britain. Prominent mathematicians like Oswald Veblen and G.H. Hardy might strive to 
place their displaced colleagues; yet as Nathan Reingold has documented for mathemati
cians, the reception of the foreigners in the US was often frosty. In addition, Dehn was over 
60 years old, and presumably not accustomed to American students. 

On October 27, 1934, Karl Menger wrote Oswald Veblen (in English): 

What I could not write you from Vienna is a description of the situation there. You know 
how fond I am of Vienna — But the moment has come when I am forced to say: I 
hardly can stand it longer First of all the situation at the university is as unpleasant 
as possible. Whereas I still don't believe that Austria has more than 45% Nazis, the 
percentage at the university is certainly 75% and among the mathematicians I have to 
do with, except, of course, some pupils of mine, not far from 100%. 

This was written after the failed July 1934 Nazi putsch in Austria, during which the 
Austrian chancellor, Engelbert Dollfuss, was killed. Menger in fact had been in Vienna 
since 1927, when, after two years with Brouwer, he succeeded to Kurt Reidemeister's 
chair, Reidemeister having gone to Konigsberg. Menger also speaks of how an assistant of 
his, whom he regarded as "one of his best friends", went home to Germany for a visit, and, 
to Menger's amazement, returned full of enthusiasm for Hider. In 1937 Menger took a job 
at Notre Dame, officially on leave from Vienna. With Hitler's Anschluss of Austria (March 
12-13,1938), Menger resigned his professorship in Vienna; in 1942 he moved to Chicago 
and the Illinois Institute of Technology, where he stayed for the rest of his life. 

While Felix Hausdorff was not, properly speaking, an algebraic topologist, his work 
seems fundamental to the appropriate establishment of topology as a mathematical subdis-
cipline. Some people are surprised to learn that Hausdorff's early work was astronomical 
in character, and, of course, he made significant contributions to areas of mathematics 
other than set theory. He also (like later, Hans Freudenthal) was devoted to literary pro
duction and pubHshed poems and other literary works often with a Nietzschean flavor 
under the pseudonym Paul Mongre. What deserves brief mention here is his tragic fate. 
On November 7, 1934, Hausdorff took the new civil service oath sworn to Adolf Hitler. 
All civil servants still in office (including Jews) were required to take this oath; however, 
on March 5, 1935, he was dismissed under the same new law which affected Max Dehn. 
Though not rehgious, Hausdorff had never denied his Jewish origins, nor had he ever been 
baptized, though his wife had long before converted to the Lutheran religion. He stayed 
in Germany as conditions for "non-Aryans" became progressively worse. The only Bonn 
mathematician who maintained contact with Hausdorff after his forced emeritization was 
Erich Bessel-Hagen, a student of Caratheodory, also a classical scholar, and very inter
ested in the history of mathematics as well. Bessel-Hagen, an analyst and historian, who 
was also lame, does not seem to have gotten on well with at least some topologists, as he 
is somewhat cruelly caricatured on p. 151 of Bela Kerekjarto's 1923 topology text. The 
Hausdorffs were threatened several times with internment and deportation. This managed 
to be staved off until an order finally came in mid January, 1942 that they would be interned 
in Endenich, a suburb of Bonn. This was in fact preparatory to deportation to Theresien-
stadt. On Sunday, January 25, 1942, Hausdorff wrote his last letter to his friend the Jewish 
lawyer, Hans Wollstein (who would himself be deported several months later and die in 
Auschwitz). There is not space here to quote this, except to remark that typical of Haus
dorff, is the poignant pun it contains. Wollstein had tried to convince the Hausdorffs that 
being interned in Endenich was perhaps bearable. Hausdorff writes: 
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" . . . auch Endenich 
ist noch vielleicht das Ende nich." 

That is, "also Endenich is still perhaps not the end", and leaves the "t" off the German word 
"nicht" to indicate expressly that he is punning. 

After writing the letter, which announced his suicide, Hausdorff, his wife, and her sister 
(also a Lutheran convert) took lethal doses of barbiturates. In 1948, Hindenburgstrasse, on 
which the Hausdorffs had lived, was renamed Hausdorffstrasse. 

Most topologists, however, did not have to leave Germany or suffer tragedy. Further
more, despite its somewhat uncertain status from a purely ideological Nazi point of view, 
algebraic topology did get published during the Hitler years. A survey (carried out by 
Beata Smarcynzska at the University of Rochester) has been made of the three major Ger
man mathematics journals: Mathematische Annalen, the Journal fur die Reine und Ange-
wandte Mathematik C'Crelle") and Mathematische Zeitschrift for the years 1933-1944, 
as well as of Deutsche Mathematik for the years 1936-1944. Deutsche Mathematik was 
the journal, first appearing in 1936, which was founded by Bieberbach originally to pro
mote a "truly Aryan" mathematics. After the first two volumes, however, except for oc
casional excrescences, it settled down to being just another mathematics journal. While 
crude classification of mathematics papers is sometimes very difficult, nevertheless it is 
apparent that the three leading journals steadily published topological papers; this was es
pecially true of Mathematische Annalen. In fact, their content hardly seems overtly tainted 
by the political atmosphere in which they were appearing. This was at least partly because 
the three chief editors: Erich Hecke (Annalen), Konrad Knopp (Zeitschrift), and Helmut 
Hasse (''Crelle''), whatever their different political views and differing mathematical spe
cialties, were all intent on keeping mathematics free from political interference. On the 
other hand, Bieberbach's Deutsche Mathematik published exactly one topological article 
in those years, a paper on curves by one Erich George, about whom I know nothing more, 
except that apparently he did not have a university career. On the other hand, Deutsche 
Mathematik published an overwhelming amount of nontopological geometry, even slightly 
more pages than in analysis. Nontopological geometry appeared in the other three journals 
as well, and indeed more than the newer subject of topology, but far less than algebra or 
analysis. Prima facie journal content alone would seem to indicate that some mathematics 
was more suitable to Nazi views than other mathematics. This is not to demean Deutsche 
Mathematik. In addition to the famous papers of Oswald Teichmiiller, it published other 
quite creditable mathematics, especially from volume 3 onward. 

If most topologists stayed in Germany during the Hitler years and were also enabled to 
publish, the atmosphere in which they worked is of more than passing interest. I should 
like to tell three brief stories involving topologists which reveal that atmosphere and only 
one of which has received mention previously in the Hterature. Kurt Reidemeister was at 
first more interested in philosophy than mathematics. Born in 1893, as a nineteen-year-old 
he heard Edmund Husserl lecture in Freiburg. His studies there and elsewhere were inter
rupted by World War I, and after that war (in which he rose to lieutenant), he returned to 
university in Gottingen where he quahfied simultaneously as a secondary school teacher 
in mathematics, philosophy, physics, chemistry, and geology! In 1920, he followed Erich 
Hecke to Hamburg, completing a dissertation in algebraic number theory in less than an 
additional year. At Hamburg, Wilhelm Blaschke turned Reidemeister's attention towards 
geometry, and he was collaborator on Blaschke's Differential Geometry. While a brilliant 
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mathematics student, he continued to pursue his philosophical interests, lectured on Os
wald Spengler's "Decline of the West", and wrote stories and poems. Thus he had a breadth 
of interests analogous to that already mentioned for Hausdorff and Freudenthal. Although 
not yet "habilitated", two years after following Hecke to Hamburg, he received a call to a 
professorship in Vienna. Not only did he pursue mathematics in Vienna, but philosophy as 
well, becoming part of the famous "Vienna Circle" founded by Moritz Schlick. When Rei-
demeister moved to Konigsberg, his successor at Vienna, Karl Menger, engaged in similar 
philosophical pursuits as well. It has while he was at Konigsberg that Reidemeister's well-
know books on combinatorial topology and knot theory appeared. In January 1933, shortly 
before Hitler's becoming chancellor, Nazi students at Konigsberg fomented a disturbance 
against the university Rektor. Apparently, Reidemeister devoted a whole mathematical lec
ture to explaining why such student behavior was irrational and totally unsupportable. As 
a result, he was dismissed shortly after January 30 at a time when three "non-Aryan" col
leagues in mathematics, Gabor Szego, Richard Brauer, and Werner Rogosinski, were all 
left in office (until after the law of April 7 of that year, "reforming the civil service"). 
Wilhelm Blaschke, who had been Reidemeister's mentor, circulated a petition for Reide
meister's retention and attempted to find him another job. In autumn 1934, when Hasse 
went to Gottingen, Reidemeister succeeded him at Marburg. In 1946, Reidemeister wrote 
a lengthy manuscript in German on "The Freedom of Science" (a copy is in the Veblen 
papers at the Library of Congress). Here he comments (my translation): 

"... The validity of science for the general public of the German state was destroyed in 
May 1933, the administration of institutions became drawn along in sympathy; however, 
the inner scientific public remained, seen as a whole, intact, and a struggle took place 
around it, which was carried through with great tenacity and up until the last hours 
of the Hitler state. The success of this struggle, the wisdom and bravery, which stood 
the test here, is that in which the German universities preserved their inner essence 
(Kern) and saved the possibility of their flourishing once more when the time of fearful 
destruction was over 

A second incident involved William Threlfall and Herbert Seifert. Its story is told in 
the Hecke correspondence preserved at his death, and maintained by Rotraut Stanik at 
the university at Hamburg. If shows the triviality which might excite concern in the Nazi 
atmosphere. The principals are Threlfall (his first name was actually William - his mother 
was EngUsh); Erich Hecke (who rejected the Nazis, a fact, says Bruno Schoeneberg in 
a memorial notice, known even to the German authorities) and Wilhelm Blaschke. The 
behavior of Blaschke, a great mathematician and very cosmopoHtan man, during the Nazi 
years, can perhaps best be described as cynical opportunism. He was a Nazi fellow-traveller 
both for personal self-aggrandizement and, as he believed, to the benefit of his department 
in Hamburg. For example, he propagandized for the Nazis without necessarily believing 
the National SociaUst doctrine. In some ways he was the traditional German professor who, 
in Max Weber's words, "sings the song of him whose bread I eat". 

After the success of Seifert and Threlfall's famous textbook, they decided to write a 
monograph on ''Global Calculus of Variations: Morse Theory'', This was accepted by 
Blaschke as a publication in a series of "Hamburg monographs" (it was to be #24). The 
epigraph was in Latin and the opening words of Kepler's Introduction to the Astronomia 
Nova, running about 20 short fines. The first sentence begins with how most difficult it is 
"today" (hodie) to write mathematical books. On May 22, 1938, Blaschke wrote Threlfall 
that the epigraph could lead to misunderstandings and so, without asking the authors, had 
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instructed the publisher to suppress it. Threlfall wrote Hecke, Blaschke's co-editor of the 
series, saying he would not give in on this matter and that any reference to contemporary 
times was only to the fact that mathematicians should not be too seriously upset if a text
book had appeared in which an octahedron had appeared as a cube en point, since it was 
as difficult in 1609 as in 1938 to write mathematical books which were simultaneously 
rigorous and intelligible, and at all epochs, the people who knew how things were, were 
few, and it took effort to uphold the level of their science. 

The letter suggests various alternatives, all of them maintaining the epigraph if Threlfall 
is to be associated with the book. It ends, however, as follows: 

What concerns me is that I would die of home sickness if I had to leave Germany, some
thing which can easily happen ifBlaschke withdraws his protection from me. [Hand von 
mir zuriickzieht] Granted that has no influence on my position in the struggle over the 
epigraph. 

This ominous-sounding last paragraph indicates the power which by then Blaschke had 
amassed in academic matters. 

Though Threlfall had written Hecke on May 30, when Hecke had just returned from 
a trip to the US, the accumulated work during Hecke's absence prevented him from an
swering for two weeks. On the very day he was answering Threlfall, Threlfall was writ
ing Blaschke again. A few days earlier, Blaschke had written him a letter which appar
ently warned Threlfall about possible consequences if he persisted in the Kepler epigraph. 
Threlfall replies (emphasis in original): 

[My opinion] is that the epigraph indeed can be pernicious to my person - who is able 
to predict such a thing today! - and I thank you once again that you have made me 
aware of this possibility and warned me in a friendly manner However one may also 
interpret the epigraph, it will only extend both internally and in foreign countries to the 
honor and profit o/German Science. Never yet have I allowed personal considerations 
to be decisive in questions of science and will not do so now. 

Hecke to Threlfall on the same day (June 15) says: 

If one is very careful and anxious - or must be so, then perhaps one can have second 
thoughts about some places in the epigraph. (Ipersonally have none.) 

He then suggests that striking the word ''hodie'' would remove all dangers and he has 
suggested this to Blaschke who then told him that he had just written Threlfall. Blaschke 
also said to Hecke that he did not believe Threlfall would be so stubborn as previously (but 
as seen above, Blaschke was wrong). Hecke also worries about the suggestion at the end 
of Threlfall's letter, and warns him that Blaschke is a man of unaccountable impulses, who 
is more influenced by a momentary frame of mind than rational dehberations, and that: 

Since he has made application to be a member of the [National Socialist] party, and 
probably will shortly be one, now does everything in order not to excite any offense and 
to rise as quickly as possible. 

A few days later Hecke reemphasized that he had nothing against printing the citation 
from Kepler. 

Threlfall's reply was grateful for Hecke's support, but deplored his suggestion of striking 
''hodie'' to satisfy Blaschke. Things dragged on with further correspondence, also with the 
pubHsher, Teubner, but finally on November 28,1938 (six months after Blaschke's original 
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complaint), Threlfall could announce to Hecke that Blaschke had finally given in, and that 
he hoped Blaschke would now leave him in peace. However, a letter from Blaschke to 
Seifert "foaming with rage [wutschnaubendY which ended the correspondence, did not 
make him sanguine. He finds Blaschke completely ununderstandable and entertains the 
idea that perhaps Blaschke is against him because "... I agreed to his pressing request to 
tell him my real judgment on his lecture in Holland". He comments that he had previously 
rejected all warnings about Blaschke; until he himself had had bad experiences. 

The book appeared shortly after this letter, with the complete epigraph from Kepler, 
including ''hodie'\ 

This all seems so absurdly trivial. But it was not in 1938 in Germany. A few final con
textual comments are in order. At the time Threlfall was awaiting official appointment as 
Carl Ludwig Siegel's successor in Frankfurt (Siegel had gone to Gottingen). This did even
tually come through, effective for 1938, though by late November of that year, it still had 
not. Blaschke and Hecke not only had quite different political views, but they were personal 
enemies as well, and never spoke about anything but mathematical matters. Nevertheless, 
they managed to work together to lead the Hamburg Mathematics department (with first 
Johannes Radon, and then, most significantly, Emil Artin, as a third) for twenty-five years. 
In Threlfall's letters, the close to Hecke is always "Most sincerely" or an equivalent ex
pression; to Blaschke, it is always the officially asked for "Heil Hitler". Generally, one 
only failed to use "Heil Hitler" to people whose opinion one was sure of. Hecke's letters 
to Threlfall (and others) have similar conventional closes. When World War II broke out, 
Seifert managed to get transferred (officially on leave from Heidelberg) to a research po
sition at the air force research installation in Braunschweig, from winter semester 1939/40 
through winter semester 1944/45. This position removed him from being subject to the 
military draft, vitally important since he was only 32 in 1939. After the war, he returned 
to Heidelberg as a full professor and rebuilt mathematics there. In 1946, Threlfall, then at 
Frankfurt, joined him in Heidelberg, but died suddenly in 1949 at the age of 61. 

The third and last "atmospheric incident" involving topologists to be mentioned here 
illustrates the direct pressure put on traditional academic values by the Nazi government. 
It also shows how a new young faculty member could become a political pawn through 
simply trying to do what he thought was necessary in those times to obtain a position. 

During the Nazi period in Germany, the full professors of mathematics at the University 
of Munich were (with year of appointment) Oskar Perron (1923), Constantin Caratheodory 
(1924), Heinrich Tietze (1925). There had been a fourth, the early analyst of several com
plex variables, Friedrich Hartogs, appointed in 1927 and compulsorily dismissed as Jewish 
in 1935. Hartogs committed suicide in 1943. None of these three full professors had any 
sympathy for the Nazis, though Caratheodory, born of Greek parents in Berlin, his father 
being a diplomat in the service of Turkey, kept his opinions rather to himself (during World 
War II, Greece was an enemy state of Germany, despite its best efforts to stay neutral, and 
Turkey was neutral). Tietze and Perron, however, did not fail to be outspoken about aca
demic matters and the attempted intrusion of political chicanery into mathematics. On the 
other hand, the academic administration at Munich in those days was another matter en
tirely. Munich, for the Nazis, the "chief city of the movement", was important to them as 
a showplace in academic as well as other matters. When the famous mathematical physi
cist, Arnold Sommerfeld, retired, the issue of who should replace him became a lengthy 
and interesting story. The upshot, though, was Wilhelm Miiller, who was essentially forced 
on the faculty by the German education ministry. Miiller's expertise was in classical me-
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chanics, and at the time was in the mathematics department at Aachen (where he had 
been Theodor von Karman's successor). He was also an ardent and vigorous proponent of 
"Aryan physics". Unquahfied as a physicist to succeed Sommerfeld, his pohtical bona fides 
carried him through (as they no doubt had already in Aachen), and he eventually became 
Dekan (roughly Dean) for natural and mathematical sciences. 

One of the things Tietze and Perron struggled against was the imposition on the math
ematics and natural science faculty by Miiller of poUtically respectable incompetents; this 
went on on more than one occasion. A rather interesting case was that of Eduard May. May 
was born in 1905 in Mainz, and in 1923 matriculated at Frankfurt in the natural science 
faculty, studied various sciences and mathematics, but soon gave up on mathematics be
cause he says in his curriculum vitae of November 21,1941, he "was not able to follow the 
leading Frankfurt mathematicians of the time, Dehn and Helhnger" (for the Nazis, Dehn 
and Hellinger were both Jews). May later concentrated his attention on botany and espe
cially zoology, and received a doctorate in 1928 with a dissertation on mollusks. He failed 
to get a start on a university career (times were hard) and went to work for a chemical 
factory as a scientific advisor. In 1931, he married and moved to Gottingen to be nearer 
the firm employing him, at the same time, taking classes at the university and using its 
library. In particular, not only did this result in zoological pubhcations, but he educated 
himself in mathematics, physics, and philosophy, becoming convinced he says of the ne
cessity of a thoroughgoing study of the region between philosophy and natural science. He 
won an essay prize in 1934 which brought him to the attention of a Nazi general science 
journal. He pubHshed several articles therein, remarking that "with respect to the reform 
and foundation of science in the Indogermanic spirit" the journal followed "the same ten
dencies as I do". Various vicissitudes along the way, including more philosophical essay 
prizes, brought him to the attention of "scholars in Munich", and he moved to Munich. 
One of these essays was a monograph published in early 1941 entitled "At the Abyss of 
Relativism". At Munich he pursued study of the "major philosophical and epistemological 
problems with especial attention to the racial and national [volkisch] point of view". 

One month after May submitted this c.v., Wilhelm Miiller "warmly approved using" "At 
the Abyss of Relativism" as the paper for his "Habilitation" as a faculty member in Mu
nich. "Habilitation" was the way one started on a German academic career: it consisted 
of an original essay in a subject matter, an oral examination on that essay, and usually 
then a sample lecture. All candidates for "HabiHtation" necessarily already had a Ph.D. 
Miiller's statement explaining the importance of May's work contains fulminations against 
"relativism" and "empiricism" citing May's work as a turning point "in the scientific think
ing of our time". A second reader, the philosopher Dirlmeyer, also a Nazi party member, 
chimed in as to the importance of May's work, not faiUng to mention "the coming Euro
pean cultural tasks of Germany". However, the acceptance of this book for May's original 
essay for "HabiHtation" depended upon the faculty of natural science and mathematics. 
Perron and Tietze led the opposition to its acceptance. On January 23, 1942, Miiller wrote 
a riposte to their opposition saying it was to be expected, however, in his opinion, repre
sented a completely false understanding "of the ideological struggle of the present which 
burned even more strongly than ever exacdy in the area of natural science". Their opposi
tion proved to him how important it was to have May as a teacher. Exactly one month later, 
the Munich physical chemist, K. Clusius, also exphcitly joined the opposition to May. At 
the same time, however, Miiller scheduled the oral examination. Clusius complained that 
not all senior faculty members had yet given their judgment of the essay as they were 
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supposed to prior to the scheduling of the oral. Tietze and Perron complained that they 
had investigated and discovered that several of their colleagues had also rejected the essay, 
however, some had not even received it (!). Miiller put off May's oral from February 27 
to March 13, 1942. It seems clear that, as more faculty members were opting for rejec
tion, the habilitation procedures were accelerated to prevent that. Even the additional two 
weeks seemed hardly adequate time (since not all had received the essay). Actually, of 
those faculty giving an opinion on May's essay, ten rejected it (including two Nazi party 
members), four abstained (including three Nazi party members), and six voted for its ac
ceptance (all party members). Present at the oral examination which Miiller nevertheless 
pushed through, was the Nazi Rektor of the University, Walter Wiist, an "Indogermanic" 
scholar, also a highly placed SS man, who sometime earlier had been interested in the 
"Jewish influence in mathematics". Wiist's opinion was that because May's doctorate was 
in natural science, he had to become accepted in the natural science and mathematics fac
ulty. Wust's presence at the examination was certainly unusual, nevertheless, not only the 
likes of Tietze and Perron fought the habihtation at the oral examination, but even one of 
the Nazi party members who voted for the essay's rejection. Nevertheless, Miiller pushed 
things through, though the discussion seems to have been lively. The faculty as a whole 
discussed the matter on April 29, accepted May, and his trial lectures were scheduled. The 
local leader of the Dozentenschaft (the Nazi organization for university teachers) in ap
proving the scheduling spoke explicitly of the "inimical behavior of Messrs. Tietze and 
Perron" on April 29. 

May held three lectures on June 1, 4, 5, 1942 whose subject was "Description and crit
icism of the logical and epistemological bases of modern theoretical physics". Apparently 
the faculty vote was fourteen to four against May's receiving a teaching position (the 
fourteen including four party members). Nevertheless, Miiller pushed him through, full 
of praise of his abilities. Consequently, May was given the right to teach "History and 
Methodology of Natural Science" in the natural science and mathematics faculty, provided, 
of course, the necessary proofs that he and his wife were both Aryan were provided. This 
was done on June 9, and though they apparently were slightly incomplete, May taught at 
Munich during 1942-1944. May was immune from the military draft because of chronic 
otitis in both ears and in 1943, received a contract for entomological research on insecti
cides, this being civilian service in the interest of the war's prosecution. This was under the 
auspices of the police and the Waffen-SS, and May's laboratory began work in June 1944. 
After the war. May admitted that the only reason he was admitted to an oral examination 
was because of the FUhrerprinzip, and expHcitly mentions Perron and Tietze as the people 
who got a majority of the faculty to vote against his being so admitted. After the war also 
(Clusius was a university administrator at the time), the faculty refused to permit May to 
teach any longer in Munich because he had been forced on them as an exponent of national 
socialism. Ironically, though the leaders of the Nazi element in the 1942 faculty thought of 
May "as an old national socialist" and Clusius thought he must be, in fact apparently he 
was never a member of the party, nor even an applicant for party membership. It should be 
made clear that the faculty's post-war decision made no judgment of May's actual abih-
ties, he was dismissed because Nazi officials had forced him on the faculty. May eventually 
ended up teaching history of science at the Free University in Berlin but not until 1951, 
and died in 1956 shortly after his 51st birthday. 

May seems to have been no Nazi, but merely an opportunist trying to make the best 
academic career he could under the conditions of the Third Reich. Tietze and Perron (they 
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often acted together in such matters) would fight against such pseudo-science infiltrating 
the scientific faculty whenever they could. May's was not the only such case, but it is the 
one for which I have the best documentation. 

What permitted such "insubordination" among full professors? Another example of Ti-
etze's open attitude occurred in late September 1938. Asked in a questionnaire about his 
military connections, he replied sarcastically: 

In September 1937, I received an appointment as substitute air raid warden. I possess 
no auto, horse, available land, gasoline station or canned goods factory. For a more 
precise answer, I lack explanation of the new to me and difficult to understand word 
"Bedarfstrdger" (typographical error?). [The neologism Bedarfstrager roughly trans
lates as "consumer".] 

This earned him the following report from the university Rektor. 

Since this remark represents a gross impropriety both in content and tone, I reject it 
most sharply and make you aware that a repetition of such childishness could be ac
companied by the most unpleasant consequences for you. 

To show open disagreement with Nazi officialdom was never without peril, but actually 
the mechanisms of the state cared little about academe, provided Jews and political oppo
nents were eliminated (Max Zorn, for example, had to emigrate because he was a youthful 
communist). Nazi ideologues could (and did) complain of the nonreception of their mes
sage by many mathematicians. Yet a number of prominent German mathematicians were 
Nazi fellow-travelers of one sort or another, ranging from ideologues like Bieberbach and 
Teichmiiller to cynics like Blaschke. 

This was even true for some non-Germans. For example, L.E.J. Brouwer was offered 
a professorship by the Nazis, which he seems to have actually seriously considered be
fore rejecting it (he had earlier rejected a position prof erred by the Weimar government). 
Brouwer also wrote an encomium for Vahlen's 70th birthday (1939). Nor was he the only 
non-German topologist who seems to have had similar Nazi leanings: the Norwegian, Poul 
Heegaard (Dehn's collaborator), was another. 

Significant algebraic topology was certainly done during the Nazi regime, even though 
it would probably not have been the mathematics advocated by the likes of Bieberbach or 
Vahlen. (In any case, Bieberbach was essentially a complex analyst with strong interests 
in certain algebraic structures, and Vahlen a number theorist and geometer turned applied 
mathematician.) Algebraic topology and most mathematics qua mathematics had no diffi
culties under the Nazis because the mechanisms of the state did not care about academic 
disciplines. They did care that Jews were expelled or transported and serious open resis
tance was suppressed - that is, they cared about who were mathematicians, not what was 
mathematics. Somewhat surprisingly, not even applied mathematics was fostered or even 
prevented from decay in a Germany either rearming or at war. The reactions of Nazi offi
cialdom were always uncertain; it took courage for Tietze to act as he did in both the cited 
instances as well as others. While there were academic Nazi true behevers like Muller and 
Bieberbach and many others who would agitate for a sort of national Aryanism in science, 
that was not important to the political powers. What counted for them was the assimilation 
of all German institutions, and the elimination of Jews and other undesirables. The Nazi 
ideology among academics did great service in producing this; but after about 1936, their 
activities became less and less important to the powers that were, though, of course, as true 
believers, they would carry on as before. 
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Sources 

The present manuscript is essentially based on the following articles written in Japanese, in particular 
on the first one [C], which was compiled on the occasion of the Centenary of the Mathematical Soci
ety of Japan in 1977 by a committee of this Society, presided over by Atuo Komatu. The compilation 
lasted several years and the first edition of the book is published in two volumes. Vol. I (1983) and 
Vol. II (1984). Chronologically, this book was arranged according to the Imperial eras, namely Meiji 
1868-1912, Taisho 1912-1925, and Showa 1925-1989. (Since 1989 we have been in the Heisei era. 
We shall also use occasionally in our text these names of Imperial eras.) The contents of the book 
are limited to the period before around 1970. Volume I contains the following four chapters: 1. Be
fore Meiji, 2. The first half of Meiji (1868-1890), 3. The second half of Meiji (1890-1910), 4. Taisho 
(1910-1925). Volume II contains two chapters: 5.Thefirsthalf of Showa (1925-1945), 6. The second 
half of Showa (1945-1970). Each chapter describes (i) the historical background, (ii) the establish
ment of institutions and societies and their activities, (iii) publications, (iv) lives of leading scholars, 
and (v) the development of each branch of mathematics. The article [MM] is essentially a continu
ation of the topology section of [C], that is, developments after 1970. The book [NK] is a volume 
concerning the mathematical sciences out of a 25 volume history of the development of science and 
engineering in Japan, and [N] treats the development of geometry in Japan. The articles [Kl, K2, 
T, F] are personal essays which appeared in the monthly journal "Sugaku Seminar" ("Mathematics 
Seminar"). 

[C] The Centennial History of Mathematics in Japan, Vols I, II, Committee of the Centennial 
History of Mathematics in Japan, Iwanami (1984). 

[MM] Y. Matsumoto and S. Morita, Topology of manifolds: Current mathematics in Japan, Sugaku, 
Iwanami-Shoten 25 (1973), 64-67. 

[NK] Nippon Kagaku Gizyutusi Taikei, Mathematical Sciences 12, Daiichi Hohki Shuppan 
(1969). 

[N] H. Noguchi, The World of Geometry, Nihon Hyoron-sha (1972). 
[Kl] A. Komatu, The Department of Mathematics at the University of Tokyo, 40 years ago, Sug

aku Seminar (September 1969), 35-37. 
[K2] A. Komatu, On topology: the development of its idea, Sugaku Seminar (August 1979), 2-7. 

[T] H. Terasaka, Memories ofK. Nakamura, Sugaku Seminar (March 1987), 36-37. 
[F] H. Fukaishi, Another topology in Japan, Sugaku Seminar (July 1987), 34-35. 
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We have not included a section on the development of general topology in Japan after World 
War II, since there is a good article for this: 

J. Nagata, The Flowering of General Topology in Japan, Handbook of the History of General 
Topology, Vol. 1, Kluwer Academic Publishers, Dordrecht (1997), 181-241. 

1. Introduction 

The Tokyo Mathematical Society was founded in 1877, which was an epoch-making event 
for the mathematical world in Japan together with the adoption of western style calculation 
in the school system and the foundation of the University of Tokyo in the same year. In June 
1884 the name of the society was changed to the Tokyo Physico-Mathematical Society. In 
May 1919 it was further changed to the Physico-Mathematical Society of Japan, but this 
society was disbanded in December 1945 to form two new societies: the Mathematical 
Society of Japan and the Physical Society of Japan. In June 1946 the Mathematical Society 
of Japan was founded. 

During this period 1877-1945 six further (ex-Imperial) universities with departments of 
mathematics were founded: 

Kyoto 1897, Tohoku (Sendai) 1907, Hokkaido (Sapporo) 1930, Osaka 1931, Kyushu 
(Fukuoka) 1939, Nagoya 1942; 

in addition two other universities (called Higher Normal Schools at that time, later renamed 
Bunrika Daigaku) with departments of mathematics were founded in Tokyo and Hiroshima 
in 1929. 

Thus the University of Tokyo is the oldest, and the teaching staff of other universities 
were recruited initially from among the graduates of the University of Tokyo. (Incidentally, 
the name of this university has changed several times: Imperial University, Tokyo Imperial 
University, etc.) But soon each of these universities created its own school with a distinct 
character. One might say that these nine universities have been the centres of development 
of mathematics in Japan. They had their own journals of mathematics to publish the works 
of their members and others: 

Journal of the Faculty of Science, Imperial University of Tokyo, Section I; 
Memoirs of the College of Science, Kyoto Imperial University, Series A; 
The Science Reports of the Tohoku Imperial University, First Series (there was another 
journal published privately by T. Hayashi, "The Tohoku Mathematical Journal"); 
Journal of the Faculty of Science, Hokkaido Imperial University, Series I; 
Collected Papers from the Faculty of Sciences, Osaka Imperial University; 
Memoirs of the Faculty of Science, Kyushu Imperial University, Series A; 
Collected Papers from the Mathematical Institute, Faculty of Science, Nagoya Imperial 
University; 
Science Reports of the Tokyo Bunrika Daigaku; 
Journal of Science of Hiroshima University, Series A. 

Kunugui, Terasaka and Komatu graduated from Tokyo in 1926, 1928 and 1932, respec
tively. Kunugui joined Hokkaido after having studied in France; Terasaka and Komatu 
joined Osaka. 
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Soon after its establishment in 1931, Osaka became the centre of the study of modern 
mathematics in Japan. (Kunugui also joined Osaka later on, in 1949). The 1930's were the 
time when topology in its widest sense began to be actively studied in Japan. At the Univer
sity of Tokyo lyanaga became a member of the teaching staff in 1935, after coming back 
from Europe. Although the field of his own research was arithmetic, he taught geometry 
and topology as well, and had students such as Abe, Kodaira, and (later,) Yoneda, Tamura 
and Hattori. 

2. The early days 

Probably the first paper pubHshed in Japan related to topology is [92] in which Takeo 
Wada (1882-1944) defines a simple curve in the ^-dimensional Euclidean space from the 
set theoretical viewpoint and shows that it is a Jordan curve. Wada graduated from Kyoto 
University and became assistant professor in 1908. He visited the USA, France and Ger
many from 1917 to 1920; after coming back he was promoted to professor. Wada's main 
work was in analysis but he was also interested in topology. 

C. Jordan constructed a curve as a simple example to express curves analytically in his 
book 

C. Jordan, Cours d'Analyse I (1893). 
Later in 1903 F. Riesz named the simple curve the Jordan curve, which became famous 
together with the recognition of the importance of the Jordan theorem. Wada's paper ap
peared around this time (the beginning of the 20-th century) when there was much interest 
in the theory of curves. 

The basic concepts of topology were being developed by Poincare, Brouwer and others 
during this period. As for books in the Taisho era, there were only those of Kerekjarto and 
Veblen: 

S. Kerekjarto, Vorlesungen Uber Topologie, Springer (1923); 
O. Veblen, An̂ f̂ŷ ẑ  Situs, Colloquium Publ., Amer. Math. Soc. (1922). 

It is remarkable that the topology of curves and surfaces had been studied independendy 
and successfully in Japan during this time. 

Kunizo Yoneyama (1877-1968), who, though older than Wada, came later to Kyoto 
University after having taught in middle school, did research in topology under Wada's 
influence and extended Wada's ideas about curves to higher dimensions in his study [98] 
of the concept of curvihnear solid surfaces. Furthermore, Yoneyama published in 1917-
1920 a lengthy work [99] of more than 300 pages which may be the first treatment of 
general topology in Japan. This work aims to classify continua (connected perfect sets) 
in w-dimensional space, and many results about indecomposable continua were obtained 
in this series of papers. In fact, Rosenthal presented some of Yoneyama's results in his 
appendix of the "Enzyklopadie". In 1910 L.E.J. Brouwer constructed an example of an 
indecomposable continuum by dividing the plane into three regions so that these three 
regions have a common boundary, in 

L.E.J. Brouwer, Zur Analysis Situs, Math. Ann. 68 (1910), 422-434. 
In 1912 Janiszewski introduced the notion of the irreducibility between two points in a 
continuum after studying Brouwer's result. Around the same time, Yoneyama [99], saying 
that he was taught by Wada, showed how to construct such an indecomposable continuum 
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by an easier method than that of Brouwer. This is known as the "lakes of Wada". Wada's 
idea was beautiful and it was praised as "poetic" on p. 143 of the book 

J. Hocking and G. Young, Topology, Addison-Wesley (1961) 
and "particularly attractive" in the commentary on the complete works of Brouwer. 

It seems that no more papers on topology appeared after that in the Taisho era, while 
in the Showa era, the study was carried on by Koshiro Nakamura, Hidetaka Terasaka and 
Atuo Komatu. In particular, it could be said that the achievements of Takeo Wada and 
Kunizo Yoneyama in the Taisho era were taken over by Hidetaka Terasaka. 

The idea that topology supports the basic structure of mathematics along with algebra 
had been widely promoted during this period, and a new word 'HsosugaW (topology) 
appeared in Japan. The field included the theory of topological spaces, topological algebra, 
and analysis by means of topological and algebraic methods (at that time this was called 
topological analysis). 

The concept of a topological space was defined by using neighbourhoods in the book 
F. Hausdorff, GrundzUge derMengenlehre, Teubner (1914). 

Kuratowski gave a version using closure in his paper 
C. Kuratowski, Topologie /, Fund. Math. 3 (1922); Warszawa (1933) 

and described the theory systematically in his book of 1933. Frechet defined various ab
stract spaces in his book 

M. Frechet, Les Espaces Abstraits, Gauthier-Villars (1928) 
and emphasized their importance in the study of analysis. As for algebraic topology, an 
advanced book 

O. Veblen, Analysis Situs, Colloquium Publ., Amer. Math. Soc. (1922) 
using algebraic methods was published in 1922, and in the next year, a purely geometrical 
book was published: 

S.B. von Kerekjarto, Vorlesungen Uber Topologie, Springer (1923). 
We should mention another topologist working during this period; Keitaro Haratomi 

(1895-1968) of the Toyama High School, who published two papers [9, 10] when there 
were no Japanese mathematicians working in the theory of general topology other than 
K. Kunugui who was still working under M. Frechet in France. (In fact, it was in 1933 that 
Kunugui wrote his book [38].) Haratomi published a few more papers in the Proceedings 
of the Physico-Mathematical Society of Japan, the Tohoku Mathematical Journal and the 
Japanese Journal of Mathematics. It is remarkable that he was not a university graduate, 
but learned mathematics all by himself. 

3. The period 1925-1945 

The book by Seifert and Threlfall, 
H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner (1934) 

in which topology was dealt with algebraically, even going as far as manifolds, was pub-
fished in 1934. The influential book by Alexandroff and Hopf 

P. Alexandroff and H. Hopf, Topologie I, Springer (1935) 
which described both general and algebraic topology was published in 1935. 

In 1929 Koshiro Nakamura (1901-1985), then at Tokyo Bunrika University, visited 
Berfin University and studied algebraic topology under H. Hopf. Then he visited Switzer
land for one year, following Hopf who had moved to Zurich. Thus, fortunately for him and 
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for Japanese topologists later, he encountered a new branch of mathematics in its devel
opment. He came back to Japan in 1932 and published two books [52, 53] to introduce 
algebraic topology to Japan. This was when A. Komatu was in his 3-rd year at the Univer
sity of Tokyo. (Nakamura later became interested in the history of mathematics.) 

Kinjiro Kunugui (1903-1975) went to France in 1928 to study in Strasbourg, and then in 
Paris under Frechet, and he obtained the degree of national doctor in France with the paper 
Sur la theorie des nombres de dimensions, These (1930) which discussed the relation be
tween the dimensional type of Frechet and the dimensional number of Menger. That is, he 
introduced the concept of "the dimensional class", and obtained a relation with the dimen
sional type of Frechet, and by finding a relation with the theory of Menger he succeeded 
in relating the two theories of the dimension. In another paper [37] Kunugui found a con
dition that an analogy of Baire's theorem holds in the L^-space of Frechet. After coming 
back to Japan, he pubhshed the book [38]. Subsequently, he changed his area of study to 
the descriptive set theory, and then, to the theory of functions. 

Weil defined uniform spaces in his book 
A. Weil, Sur les Espaces a Structure Uniforme et sur la Topologie Generale, Actualites 
Sci. Ind. (1938). 
Kiiti Morita (1915-1995) discussed in 1940 [49] the dimension of a uniform space and 

a compact space. This is the first paper in Japan on uniform spaces. After World War II, 
under the influence of the fundamental work of Hurewicz and Wallman 

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press (1941) 
Kiiti Morita, Jun-iti Nagata (1925-), Keio Nagami (1925- ) and others made major con
tributions to the development of dimension theory. 

Descriptive set theory mainly studies subsets of the real continuum which can be char
acterized descriptively. This theory had been started in 1916 by Luzin and Suslin, and was 
concerned with effectively constructed sets, such as Borel sets and analytic sets. Results 
in this field were obtained in Japan only in the first half era of Showa. Many studies were 
done by Kinjiro Kunugui, Motokiti Kondo (1906-1980), Takeshi Inagaki (1911-1989) 
et al., mainly at Hokkaido University. 

One important concept in this field is "uniformisation". The uniformisation problems 
had been considered since around 1930. It was known that Borel sets are not necessarily 
uniformised by Borel sets and that analytic sets are not necessarily uniformised by ana
lytic sets or by complementary analytic sets. Kondo made a significant advance by proving 
the theorem that a complementary analytic set E can be uniformised by a complementary 
analytic set U in his study [34]. This result has an important meaning in modern mathe
matical logic in the wide sense, and even now it is often quoted and still generaUsed. On 
the other hand, in 1940 Kunugui obtained the result [39] that if £ is a Borel set and if all 
the cross-sections are compact, then the projection p{E) of £" is a Borel set, and that E 
is uniformised by some Borel set U. Inagaki made a deep study [16] in 1937 on the con
stituents of the sheaves for determining a zero analytic set. After World War II, Yoemon 
Sampei, Tosiyuki Tugue et al., followed in this direction. 

Concerning "the metrisation problem", which asks for conditions under which a topo
logical space is expressible as a metric space, Motokiti Kondo dealt in 1933 [33] with the 
case of a topological space on which a topological group acts. Using this result, Shizuo 
Kakutani (1911- ) showed in 1936 that the condition for a topological group to have a 
one-sided invariant metric is simply that it satisfies the first countability axiom [17]. 
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Shizuo Kakutani, born in 1911, graduated from Tohoku University in 1934 and became 
an assistant at the newly founded mathematics department of Osaka University, where 
he was under the general guidance of T. Shimizu. His 1936 paper in Japanese Journal of 
Mathematics on Riemann surfaces, which was later to become the main part of his doctoral 
dissertation, caught the attention of H. Weyl at the Institute for Advanced Study, and he 
was invited to Princeton in 1940 for two years. There in 1941 he generahsed in [18] the 
Brouwer theorem that a continuous map from the n-dimensional disk into itself has always 
a fixed point, to a form which can be applied to an existence theorem in the game theory of 
Von Neumann. This result, called "the fixed point theorem of Kakutani", is not difficult to 
prove, though it required a skillful formulation. But war broke out between Japan and the 
USA in December 1941 and he was obUged to return to Japan the following summer; he 
joined Osaka University with the rank of assistant professor. (He returned to Princeton in 
1948 and later moved to Yale.) 

H. Terasaka (1904-1994) graduated from the University of Tokyo in 1928 as a student 
of S. Nakagawa, and went to Germany and Austria in 1933 as a scholarship fellow of 
the Ministry of Education of the Japanese Government. He spent two years in Vienna, 
where he attended the seminar of K. Menger, becoming acquainted there with H. Tietze and 
H. Seifert. He came back to Japan in 1935 to join the newly founded Osaka University as 
assistant professor. The following year he was promoted to professor of Osaka University, 
where he gave lectures on projective geometry, topology and lattice theory. 

In the 1930's, Terasaka published many papers using the purely geometric methods of 
the book by Kerekjarto. In the 1930 paper [78] he used the concept of critical domain to 
give a simple proof of "the translation theorem of the plane" due to Brouwer. This is the 
theorem that a topological transformation of the plane is a topologically parallel trans
formation if it preserves direction and if it has no fixed point. In the following year, he 
considered the problem of dividing a Riemann surface into sheets and, correcting defects 
in the paper by Radoitchitch, gave an example of a Riemann surface which cannot be 
divided into sheets even if it has no boundary [79]. After the consideration of transfor
mations of plane R^ in 1930, he dealt with the case of R'' in his work [80] of 1938 and 
showed that there is an essential difference between the cases n = 2 and n ^ 3. If / is a 
topological orientation-preserving transformation of R" without fixed points, then, when 
n = 2, the sequence x, / (JC), f^{x),... for any x e W diverges according to the the
orem of Brouwer. Montgomery proposed the problem of determining whether the same 
holds in the case n = 3. Terasaka proved that if « ^ 3, then there are x and / such that 
. . . , / " ^ (x), X, f(x), f^(x),... remains bounded. In this paper, he discussed systems of 
curves on R", and proved the above results. In another paper of the same year, he discussed 
Erreichbarkeit of a 0-dimensional set on R^. In his paper [81] of the following year, by ex
amining topological properties of a system of curves generalising a system of geodesies 
on a surface homeomorphic to a sphere, he showed that the irreducible continua of Wada-
Brouwer could be constructed by linking finitely many smooth curves among them, that 
is, half circles with radii between 1 and 2. By applying to general lattices Kuratowski's 
method of defining a topological space by using the closure operator, Terasaka introduced 
and developed the theory of topological lattices [82]. One episode concerning this paper 
illustrates high standards of his research. During the early stages of World War II he sub
mitted the paper to Fundamenta Mathematica; it was accepted but was burnt to ashes in the 
German invasion of Poland. With the revival of Poland, Fundamenta Mathematica decided 
to republish the issue which had been destroyed and asked Terasaka to submit his paper 
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again. He declined to do so, answering that the paper was no longer up to date. Thus the 
volume had only the title of the paper, not the content. Around this time a geometrical study 
of surfaces with boundary was made by Ken-iti Koseki (1917-1980) of Kyoto University, 
but this work was done independently of that of Terasaka. 

Now we turn to work in the field of algebraic topology. Atuo Komatu (1909-1995) en
tered the University of Tokyo in 1929. In his 3-rd year he attended the seminar of S. Nak-
agawa, who was in charge of geometry, choosing problems in Raumformen as a topic. At 
the seminar he read papers such as 

H. Hopf, Die Curvature Integra Clijford-Kleinscher Raumformen, Nachr. Ges. Wiss. 
Gottingen, Math.-Phys. Klasse (1925), 131-141; 
P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raumformen /, Sit-
zungs Bericht Preuss. Akad. Wiss. (1927), 164-196; 
H. Hopf and W. Rinow, Vber den Begriff der vollstdndigen differentialgeometrischen 
Flache, Comment. Math. Helvetici 3 (1931), 209-225. 

It was around this time that K. Nakamura came back from Europe; he influenced Komatu 
further in the study of algebraic topology. Komatu entered the graduate school in 1932. He 
joined Osaka University in 1934 and was promoted to assistant professor in 1938. 

In his paper [28] of 1936, Komatu proved "the duality of a covering", using the lemma 
that the automorphism ring of an Abelian group and its character group are anti-isomorphic 
as rings. (It was proved in the paper [2] by Makoto Abe in 1940 that this lemma can be 
generalised to the case of a locally compact Abelian group.) Komatu constructed in his 
paper [29] of 1937 the anti-homomorphism of Hopf and an isomorphism between Gor
don's ring and Alexander's ring. He did this by using [/-cycles and 0-cycles, which are 
well known these days, but were new concepts at that time. This was done independently 
of Freudenthal who announced similar results in the same year. Furthermore in a joint pa
per [32] with Ryozi Sakata (Shizuma), ^ he solved a problem proposed by Borsuk using 
a generalisation of the Hopf theorem and the addition theorem of homotopy groups. This 
paper was important for the techniques used in the proof, such as the addition property of 
homotopy, and such methods were systematised soon afterwards by Eilenberg. Sakata pub
lished a paper [63] on mappings from a compact metric space to a sphere in 1938. In 1941, 
Komatu developed "a transformation theory of complexes" in his paper [30], and devel
oped "an obstruction theory" by using local coefficients under some algebraic conditions. 
This became his Ph.D thesis under the supervision of S. Nakagawa, where he discussed the 
problem of stabihty presented by Panwitz. By examining axioms for topological spaces in 
terms of neighbourhoods, convergence, closure, etc., Atuo Komatu investigated properties 
such as the Hausdorff condition. He also considered the weak topology, and he announced 
his results in the book [31]. 

The studies of Atuo Komatu and people around him at Osaka University during this 
period were the source of later developments, but, in concert with it, there was the work 
of Makoto Abe (1914-1945) and Kunihiko Kodaira (1915-1997), both of whom were stu
dents of S. lyanaga at the University of Tokyo. As noted in one of Abe's papers, Abe 
and Kodaira have the following achievements. In his paper [26] of 1939, Kodaira proved 
that Hopf's extension theorem can be generalised to a compact metric space by using Kura-
towski's maps. In the following year, Abe proved the same result [2] by using Freudenthal's 

^ Ryozi Sakata (1916-1985) was adopted by the Shizuma family in 1942, after which he used the name Ryozi 
Shizuma. 
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method which compares a compact metric space to a sequence of polyhedra. Besides, in a 
joint paper [27] in 1940, they proved that a compact, separable, connected AbeUan group is 
homeomorphic to its one-dimensional Betti group with coefficients in the real field mod 1. 
Having also proved a relation which could be described as a form of the Kunneth theorem 
about Betti groups of a product complex, Abe pubHshed it [3] in Japanese. He died in the 
chaos after the end of World War II. 

Comparing the tendencies and achievements in this research field at the University of 
Tokyo and Osaka University around that time, it could be said that the University of Tokyo 
was more algebraic, and Osaka University was more geometric. Later in 1949, Komatu 
moved from Osaka University to Osaka City University, and then to Kyoto University, and 
the study of topology which he was leading developed more and more. After World War II, 
in the field of topology, Komatu taught Tatsuzi Kudo, Hiroshi Uehara, Minoru Nakaoka, 
Hirosi Toda, and others in the algebraic direction, while Hidetaka Terasaka taught Tatsuo 
Homma, Shin'ichi Kinoshita, and others in a more geometric direction. 

4. The Topology Colloquium and its bulletin 

One of the activities of the Physico-Mathematical Society of Japan before the end of World 
War II was the organisation of the topology colloquium. The first meeting of the collo
quium was held in April 1936 at the Faculty of Science of the University of Tokyo. It 
was held on the occasion of the annual meeting of the Physico-Mathematical Society of 
Japan with the intention of developing further the prosperity of topology. The planning was 
accomphshed by Motokiti Kondo of Hokkaido University, Atuo Komatu of Osaka Univer
sity and Shizuo Kakutani of Osaka University, all in their twenties, and it was held with 
the approval of many universities and the Physico-Mathematical Society of Japan. 

The chairman of the first meeting was Mitio Nagumo of Osaka University and there 
were two talks: 

Kinjiro Kunugui: On a problem in point-set theory; 
Koshiro Nakamura: Algebraic methods in topology. 

There were about 80 participants, which was remarkable for that time. 
The second meeting of the colloquium was held in July 1937, also on the occasion of the 

annual meeting of the Physico-Mathematical Society of Japan at the Faculty of Science of 
Hokkaido University. The chairman was Kondo and again there were two talks: 

Fumitomo Maeda: The eigenvalue problem in Hilbert space; 
Atuo Komatu: Uber die Homotopiegruppen. 

There were also colloquium talks and a problem session led by Kondo, Kakutani and Naka
mura. 

The third meeting of the colloquium was held in April 1938 at the Faculty of Science of 
the University of Tokyo. The attendance was about 50. The chairman was Komatu and the 
talks were as follows: 

Motokiti Kondo: On various kinds of point-sets having a remarkable property; 
Hidetaka Terasaka: The formulation of topology and its application. 

After the talks, Kodaira, Komatu and Kakutani reported on 
A problem on cellular space, 
A problem on the spherical decomposition. 
An impossibility problem on representation of Boolean rings, 
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respectively. At this meeting Tatsujiro Shimizu proposed the publication of a bulletin of the 
colloquium, which was supported by everyone present. As a result, it became necessary to 
equip the colloquium formally with regulations, and its name was changed to Isosugaku 
Danwakai (the Topology Colloquium). It was at this time that the name "Isosugaku" (topol
ogy, in Japanese) was chosen for this branch of mathematics. The following people were 
appointed to the committees: 

Editorial committee: Koshiro Nakamura, Hidetaka Terasaka, Fumitomo Maeda, Kinjiro 
Kunugui (chief), Shin-ichi Izumi, Shokichi lyanaga; 

Staff committee: Motokiti Kondo, Atuo Komatu, Shizuo Kakutani. 

Kondo at Hokkaido University was in charge of the clerical work such as accounting, while 
Komatu and Kakutani at Osaka University were in charge of editing work. 

The Topology Colloquium gradually became prosperous and Hiroshi Okamura (1905-
1948) of Kyoto University and Masuo Hukuhara of Kyushu University joined the editorial 
committee. The colloquium consisted of 2 or 3 special lectures and several 15 minute 
lectures, and continued until the 8-th Topology Colloquium in October of 1942. The titles 
and speakers of the special lectures were as follows: 

4-th Colloquium (April 1939; at Kyoto University) 
Shizuo Kakutani: Markov chains and the ergodic theorem', 
Shokichi lyanaga: The foundation of general topology, 
Ryoji Shizuma (Sakata): Continuous mappings ofpolyhedra. 

5-th Colloquium (April 1940; at Tokyo Bunri University) 
Shin-ichi Izumi: Integration theory, 
Takeshi Inagaki: The problem ofSuslin', 
Makoto Abe: Betti groups of a product space. 

6-th Colloquium (April 1941; at Hiroshima Bunri University) 
Kosaku Yosida: On normed rings; 
Masuo Hukuhara: The existence theorem for fixed-points and its application. 

7-th Colloquium (April 1942; at the University of Tokyo) 
Tadao Tannaka: Introduction to the Morse theory, 
Hidegoro Nakano: Continuous linear functional on partially ordered modules. 

8-th Colloquium (October 1942; at the University of Tokyo) 
Yukiyosi Kawada: The lattice-theoretic probability theory, 
Shizuo Kakutani: The measure algebra. 

On the occasion of the birth of the Mathematical Society of Japan after World War II the 
Topology Colloquium was disbanded and replaced by the topology branch of the Mathe
matical Society of Japan. 

Isosugaku (Topology) was the name of the bulletin of the Topology Colloquium and the 
first number of the first volume was published in October 1938; the editor and publisher 
was the Topology Colloquium, The title "Isosugaku (Topology)" was temporarily used in 
the first number and remained afterwards. Let us quote from the explanation of terminology 
in the first volume. 

... The terminology "topology" today has vaiious meanings, so when we use the word 
we have to clarify the meaning by adding adjectives after "topology" such as topology 
in the wide sense or topology in the narrow sense. This is inconvenient. In our country 
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some people use the word "isokikagaku" as the Japanese translation of topology in the 
narrow sense, but by choosing the word topology (= isosugaku) which has a similar 
form to this word, we want to accept it as the Japanese translation in the wide sense.... 

And to show what was included in "isosugaku", the names of the specific fields were given 

explicitly. 

. . . In this bulletin, the terms used were "topology in general", "algebraic topology", 
"set theory", "theory of abstract spaces", "topological algebra", "topological analysis", 
but there is no significant reason for that classification. . . . 

After that there were explanations of the contents of the above six branches, but let us just 

quote here the explanation of "set theory". 

. . . Purely descriptive set theory and theory of real variable functions direcdy related to 
it are central. Analytical set theory, of course, belongs to it. Others ai*e Borel sets, the 
theory of projective sets, the theory of a family of sets in general, the problem of Baire's 
funcdon and of implicit funcfions, various problems on the Konfinuum Hypothese. . . . 

One can see from this that a fairly wide range of set theory was considered as topology. 

Also, in the first issue, the main purpose to publish "Isosugaku (Topology)" was discussed 

as follows. 

. . . In fact, one of the characteristics of mathematics in the 20-th century is to make use 
of topological methods satisfactorily. . . . There are many mathematicians throughout 
the fields of mathematics who are interested in topology, and who are making tireless 
efforts to develop mathematics, but the incompleteness of the research network of these 
people has brought up many obstacles for research.... Now, based on the main purpose 
of its foundation, we rename the colloquium the Topology Colloquium, and we publish 
the bulletin "Isosugaku (Topology)" in cooperation with the mathematical departments 
of universities in Japan and the publisher Teikoku-Shoin. . . . 

This bulletin was published twice a year (each volume had 70-80 pages) with large size 
print. The contents consisted of special lectures at the Topology Colloquium mentioned 
above and some articles such as the following: 

Atuo Komatu: On 0-Zyklus (1939); 

Motokiti Kondo: On the parameter representation of sets (1940); 

Shin-ichi Izumi: On the mean motion (1940); 

Junshiro Higuchi: On the existence problem of collectives (1941); 

Kosaku Yosida: On representation of vector lattice (1941); 

Hidegoro Nakano: On the abstract spectral theory (1942); 

Shizuo Kakutani: The lattice and ring of a Banach space (1943). 

These articles were useful for interchanging information between many mathematicians 

whose interests were different. The themes taken up were also gradually approaching the 

major problems of that time. 

"Isosugaku (Topology)" continued to be published for about 5 years up to number 1 of 

volume 5, but publication was suspended in February 1943 due to World War II. However, 

it had greatly encouraged mutual understanding amongst Japanese mathematicians. 
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5. Developments after the end of World War II 

5.1. Algebraic topology 

In Japan it was about 1950 when the confusion after World War II finally abated and the 
study of topology became active. Below we survey the history up to the early 1970's of the 
development and the results of algebraic topology. 

The basis for the development of topology, especially algebraic topology, in Japan was 
constructed by Atuo Komatu. During the war, Komatu continued to study topology at Os
aka University together with Ryozi Shizuma (Sakata), but in 1949 he became professor 
of Osaka City University, and organised a research group in topology by inviting Tatsuzi 
Kudo (1919- ), Minoru Nakaoka (1925- ), Katsuhiko Mizuno (1926- ), Ichiro Yokota 
(1926-), Hirosi Toda (1928-), et al. from Osaka University. Hiroshi Uehara (1923-) and 
Nobuo Shimada (1925- ) (supervised by Shizuma at Nagoya University) participated in 
Komatu's group by obtaining the (Hideki) Yukawa Scholarship which was estabhshed at 
Osaka University at that time. New journals from abroad were available only in the library 
of American Culture Center then, but many papers on topology appeared in those journals. 
They had different aspects from those published before World War II and were worthy of 
the name algebraic topology. Komatu encouraged the members of the group not to adhere 
to the old references but to read these new papers, from which they developed their re
search activities starting as early as 1950. The results of this group before about 1953 can 
be described as follows. 

The central subjects of interest to topologists all over the world at that time were the 
study of the homology of fibre bundles, and the homotopy classification of continuous 
maps, especially homotopy groups of spheres. The research of Komatu's group was also 
on these topics; in particular. Kudo studied the Leray spectral sequence in his own way. Ob
struction theory for the extension of a continuous map was the research object of Komatu's 
research during World War II, and it was pursued by Uehara, Shimada and Nakaoka. They 
studied applications of cohomology operations to the homotopy classification problem and 
generalised Pontrjagin's theorem and Steenrod's theorem; this attracted the attention of 
Eilenberg and others during 1951-1952 (see [66, 67] and [55]). As for homotopy groups 
of spheres, important works at that time, extending the results obtained by their forerunners 
before World War II, were done by American mathematicians such as G.W. Whitehead, and 
also H. Cartan and J.-P. Serre in France were engaging in the study based on the application 
of cohomology of Eilenberg-Mac Lane spaces. Toda published more detailed results [83] 
in 1952 which went further. This drew international attention to Japanese achievements in 
topology. 

Around 1950, in addition to the topologists at Osaka City University and Nagoya Univer
sity, Kiyoshi Aoki (1913-) and Hidekazu Wada (1924-) and others of Tohoku University 
were studying topology, as well as other mathematicians in the University of Tokyo such 
as Nobuo Yoneda (1930-1996). 

With the aim of fostering interchanges between these people, Komatu proposed the idea 
of a symposium for topology, and (he was a very good organiser) the first one was held at 
the College of Arts and Sciences of the University of Tokyo in 1951. This symposium, the 
Zen-Nippon (all Japan) Topology Symposium, which encompassed every area of topol
ogy, proceeded to Tohoku University in 1952, and then Osaka City University in 1953, 
and it has been held once a year until the present day, making a great contribution to 
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the development of topology in Japan. At that time there seemed to be no mathematical 
symposia other than this one, although these days symposia are held as a matter of daily 
occurrence. 

In the summer of 1953 S. Eilenberg, who was interested in the Japanese school of topol
ogy, paid a visit to Japan. He brought with him the galley proofs of "Homological Al
gebra" which was a joint work with H. Cartan, thereby introducing it to Japan, and this 
caused great excitement. It could be said that this stimulated Yoneda to study the product 
on Ext* [97]. 

In 1954 Toda was invited to CNRS in France, where he worked hard on the homotopy 
groups of spheres and Lie groups by using his construction called the "Toda bracket", and 
received high praise from Cartan and others. In May, 1957 Komatu transferred to Kyoto 
University along with Toda. But even after that, until about 1965, seminars were still being 
held in Osaka City University, and many mathematicians in the Kansai district (the western 
part of Japan) participated in them. In the seminars, Nakaoka studied the relation between 
Smith's special cohomology theory and Steenrod operations, and the cohomology groups 
of cyclic products and symmetric products; Yokota gave a wonderful cellular decomposi
tion of the classical groups [96]; Mizuno studied the obstruction theory from the viewpoint 
of Postnikov decompositions. Masahiro Sugawara (1928- ) participated in this seminar 
from time to time, although he was at Okayama University at that time. He discussed a 
condition for a space to be an ^-space [70]; he also showed in [71] that a classifying space 
can be constructed for some kind of //-spaces. By this time. Kudo and Uehara had trans
ferred to Kyushu University, and Shoro Araki (1930-), a graduate of Nagoya University, 
joined them too. They considered the spectral sequence of a fibre space. Kudo proved a 
transgression theorem [35] and Araki introduced in [5] squaring operations of Steenrod in 
the spectral sequence. Moreover, Kudo and Araki wrote a joint paper [36] in which they 
proved that, for the homology of some kinds of spaces, homology operations corresponding 
to squaring operations for cohomology can be constructed. This was later generalised by 
Dyer-Lashof, and now it plays an important role in the theory of infinite loop spaces. Other 
studies around that time were those by Ken-ichi Shiraiwa (1928- ) of Nagoya University 
who discussed the homotopy types of {n — l)-connected {n + 3)-dimensional complexes; 
work on the minimal complex of a fibre space by Tokusi Nakamura (1930- ) of the Uni
versity of Tokyo; the paper [95] by Tsuneyo Yamanoshita (1929- ) of Tsuda Women's 
University who calculated unstable homotopy groups of spheres; a work by Haruo Suzuki 
(1931-) on Eilenberg-MacLane invariants of loop spaces, and so on. 

Nakaoka and Araki (from 1958), and Toda (from 1959) visited the Institute for Ad
vanced Study in Princeton for two years, where Nakaoka obtained a stabihty theorem for 
the homology groups of a symmetric group, and determined the homology groups of the in
finite symmetric group [56]. Araki studied differential Hopf algebras and their apphcation 
to the cohomology of compact exceptional Lie groups [6]. Toda completed a book [84] 
in which he determined the homotopy groups TCn+k{S^) of spheres for k ^ 19; he then 
spent one year at Northwestern University at the invitation of Yamabe, who however had 
passed away before he came over. (Toda's book is often quoted in subsequent papers on 
topology.) During that time, just before Toda went to the USA, I.M. James visited Japan, 
giving lectures at the major universities and providing a good stimulus to the Japanese 
topologists. In Japan, Nakamura at the University of Tokyo studied a relation between the 
constructive definition and the formal definition of cohomology operations [54], also Akio 
Hattori (1929-) of the University of Tokyo studied the spectral sequence of de Rham co-
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homology of fibre spaces. Shimada and Yamanoshita independently proved the triviality 
of mod p Hopf invariants [68], and Sugawara who transferred to Kyoto University studied 
the homotopy commutativity of groups and loop spaces [72]. 

By 1960 results started to appear by people who had recently obtained their master's 
degree. Many works on homotopy theory were announced during the following five years: 
a work [64] on homotopy types of certain kinds of complexes by Seiya Sasao (1933- ), 
a graduate of the University of Tokyo; a work [62] on Toda brackets and its application 
by Kunio Oguchi (1933- ), also a graduate of the University of Tokyo; a work [61] on 
the so-called soft homotopy by Yasutoshi Nomura (1932- ), a graduate of Nagoya Uni
versity; works [41, 42] on homotopy groups of unitary groups by Hiromichi Matsunaga 
(1935-), a graduate of Kyushu University; works [43,44] on homotopy groups of spheres 
and classical groups by Mamoru Mimura (1938-), a graduate of Kyoto University, and so 
on. During this period, Araki, who had transferred to Osaka City University, studied ho
mology of symmetric spaces intensively. Mimura went to France as a Scholarship Fellow 
of the French Government in 1964 for two years; during that period he visited the UK at 
the invitation of J.F. Adams, M.G. Barratt and I.M. James, and also met M. Mahowald and 
F.R Peterson in West Germany; he was influenced mathematically by these people rather 
than by the French topologists. 

Around 1960, M.F. Atiyah and F. Hirzebruch created A^-theory to prove the Riemann-
Roch theorem on differentiable manifolds, and since then A'-theory and other gener
alised cohomology theories were studied actively and widely throughout the world. From 
about 1965, a series of results in this area were announced in Japan. Typical of these were 
the achievements of Hattori and Araki-Toda. The work of Hattori [11,12] was the affirma
tive solution of the Atiyah-Hirzebruch conjecture on the exactness of the Riemann-Roch 
relations among the Chern numbers, which was proved independently by Stong around the 
same time; thereafter it was referred to as "the theorem of Hattori-Stong". In contrast to 
the computational proof by Stong, Hattori succeeded by reducing the statement to a propo
sition concerning the Hurewicz homomorphism in ^-theory, a result which exerted much 
influence on the development of general cohomology theory. Araki and Toda [100] worked 
on a thorough study of multiplications on general cohomology with mod p coefficients, 
which is considered to be one of the basic references in general cohomology. Among other 
research in these fields published by 1970 were Araki's work [7] giving another proof with
out using the classification of simple Lie groups of Hodgkin's theorem on the structure of 
the i^-theory of Lie groups, a study by Haruo Suzuki of Kyushu University and Teiichi 
Kobayashi (1936-) of Kyoto University on the possibility of embedding projective spaces 
or lens spaces into Euclidean space as an application of AT-theory, and many works done by 
young mathematicians in Kyoto University and Osaka City University. Around 1966 in Ky
oto University a research group of algebraic topology was organised by Toda and his pupil 
Mimura, and they studied actively the homotopy groups of compact Lie groups [47]. The 
young and promising Goro Nishida (1942-) and Akihiro Tsuchiya (1942-) dealt with the 
homology of infinite loop spaces; the former [58] discovered relations, which came to be 
called the "Nishida formulae", between Kudo-Araki-Dyer-Lashof homology operations 
and classical Steenrod cohomology operations, and the latter [87-90] analysed the char
acteristic classes of spherical fibrations and PL micro-bundles by applying Dyer-Lashof 
homology operations, which was a generahsation of the result of Kudo-Araki. 

Mimura, Nishida and Toda developed in [46] the localisation theory of CW-complexes 
in a quite different manner from that of D. Sullivan; that is, they defined the locaHsation of 
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CW-complexes by extending the ideas of [48,45]. Around the same time Toda wrote two 
remarkable papers [85, 86], the first of which was later to be extended by Nishida to prove 
the nilpotency of elements of the stable homotopy groups of spheres. 

By that time Nakaoka had transferred to Osaka University, Sugawara to Hiroshima Uni
versity, Suzuki to Hokkaido University, and Yokota to Shinshu University, where they 
headed research groups of topology. 

5.2. Differential topology 

The modern theory of the topology of manifolds started with Whitney's 1936 paper ''Differ-
entiable manifolds'\ which formulated definitively the concept of manifold in the present 
form. However its real development began after Thom's cobordism theory in 1954, a prod
uct of the algebraic topology developed after World War II, and Milnor's work in 1956 
showing that the 7-dimensional sphere admits distinct differentiable structures. It was 
around 1960 that the term "differential topology" started to be used. 

Research in this field started in Japan about ten years later than that in algebraic topol
ogy. Ryozi Shizuma, who transferred to Nagoya University from Osaka University during 
World War II, gradually changed his interest to topology of manifolds from the homotopi-
cal study of fibre bundles which he had been studying since 1950. Under his influence 
Nobuo Shimada and Masahisa Adachi (1931-1993) emerged from Nagoya University as 
the influential mathematicians in this field. In 1957 Shimada pubhshed a paper [65] ap
plying the methods of Milnor to the 15-dimensional sphere, showing that it admits distinct 
differentiable structures. Adachi calculated [4] cobordism classes of higher dimension than 
Thom's calculations produce. Shizuma himself pubhshed an interesting paper [69] in 1958 
on the existence of closed geodesies on a manifold. 

The University of Tokyo got a late start, but from the middle of 1950's there appeared 
graduate students who started to study differential topology. Ichiro Tamura (1926-1991) 
of the University of Tokyo wrote a paper [74] showing that Pontrjagin classes are not 
homotopy invariants, and also in a paper [75] of the following year he showed by general
ising Milnor's invariant that there exist some 2-connected 7-dimensional rational spheres 
and 6-connected 15-dimensional rational spheres which admit distinct differentiable struc
tures. Furthermore, Tamura generalised characteristic classes to manifolds with singular
ities. Tamura pubhshed a paper [76] in 1961 showing that there exists an 8-dimensional 
manifold which cannot have a differentiable structure. This was proved independently by 
Eells, Kuiper and Wall almost at the same time. In Tohoku University, Haruo Suzuki tried 
in a paper [73] in 1958 to generahse Thom's result realising characteristic classes by sub-
manifolds. 

It was in 1960 that the solution by Smale of the higher-dimensional Poincare conjecture 
was published, and around the same time Hiroshi Yamasuge of Osaka City University 
reached the solution of the Poincare conjecture for the 5-dimensional case independently, 
starting from the partition of differentiable manifolds by Morse functions. It was regrettable 
that he died young in November 1960; his result [95] was pubhshed in 1961 after his death. 
His work is conspicuous by its originality. 

In addition to the above mentioned papers, there are some other papers pubhshed in 
1961/1962, such as one on singular sets of mappings by Yoshihiro Saito (1930-1997) of 
Osaka City University, one on Pontrjagin classes by Yoshihiro Shikata (1936-) of Osaka 
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University, one on the index of homogeneous spaces by Hattori of the University of Tokyo, 
and one on approximations of mappings between differentiate manifolds by Kozi Shiga 
(1930-) of Tokyo Institute of Technology, and so on. 

Most of these mathematicians were around 30 years old, and many of them began the 
study of topology by themselves. Their number was so limited that they could not organise 
a school, but their researches were so advanced at a time of worldwide rapid developments 
in differential topology that it drew international attention even in the early 1960's. From 
around 1965 some of the above mathematicians started to supervise graduate students in 
major universities, and hence there appeared the first group of mathematicians who had 
received their education in this field from the beginning, such as Hajime Sato (1944- ), 
Katsuo Kawakubo (1942-) and Yukio Matsumoto (1944-). By the late 1960's research in 
Japan had become substantial. 

Differential topology began to have a close relation with the combinatorial theory of 
manifolds from about 1962 or 1963. In this latter field, in addition to a paper on the intro
duction of a prebundle in 1967 by Mitsuyoshi Kato (1942-) of Tokyo MetropoHtan Uni
versity (see the section on Combinatorial Topology), some papers on higher-dimensional 
knots published in 1969 are worthy of note. 

In 1967 the construction theory for manifolds and its apphcation to the Hauptvermutung 
was pubHshed by Sullivan, and furthermore a complete solution of the Hauptvermutung 
was published by Kirby and Siebenmann in 1969. These results had much influence on 
differential topology. 

From the middle of the 1960's differential topology became connected with transforma
tion group theory, the theory of dynamical systems, the structure theory of foliations, the 
theory of singularities and so on, in each of which many results were obtained. Among the 
papers published in Japan in 1968-1970 were those on the generalisation of the Borsuk-
Ulam theorem by Minoru Nakaoka [57] in transformation group theory, on free and semi-
free actions of homotopy spheres by Kawakubo [22], on cobordism groups of semi-free 
actions of S^ and S^ by Fuichi Uchida (1938-) [91], and on the Brieskorn algebraic vari
ety and the differential topological generalisation of group actions on it by Tamura [77] 
(this result furnished with a basic method in constructing codimension 1 foliations on 
an odd dimensional sphere). Until 1970 research in Japan in fields such as transforma
tion groups, dynamical systems and foliation structures was Hmited, but after a few years, 
it developed rapidly, and the results were presented at the International Conference on 
Manifolds and Related Topics in Topology in 1973 in Tokyo of which we shall speak 
later. 

5.3. Combinatorial topology 

Combinatorial topology is topology with a strong geometrical aspect, also called PL (piece-
wise linear) topology or geometric topology; it is a subject which is concerned with the 
structure of a complex (a polyhedron) consisting of simplexes of simple figures or of a 
manifold. The relation with differential topology is very important and, as the difference 
between combinatorial and algebraic topology was not so clear at the beginning of the 
history of topology, algebraic methods were a driving force. Low-dimensional topology in 
most cases is studied by specialists in combinatorial topology. 
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Active research was done in the 1950's by Hidetaka Terasaka of Osaka University, and 
in the 1960's by Hiroshi Noguchi (1925-) of Waseda University, Tatsuo Homma (1926-) 
of Yokohama City University and Fujitsugu Hosokawa (1930-) of Kobe University. These 
were the leaders, who taught many young mathematicians who are active nowadays. Visits 
to Japan by people like Moise, Fox, Cairns, Bing, Harold and visits to the USA by Noguchi, 
Shin'ichi Kinoshita (1925- ), Homma, Kunio Murasugi (1929- ), Hosokawa, Junzo Tao 
(1929-) made possible a close research cooperation and the exchange of information be
tween Japan and the USA. The Japanese academic world was greatly stimulated by the 
Hauptvermutung for 3-dimensional manifolds and the affirmative solution of the triangu-
lation problem by Moise (1952), Dehn's lemma and the proof of the sphere theorem by 
Papakyriakopoulos (1957), the unknotting theorem by Zeeman, the proof of the Poincare 
conjecture for dimension ^ 5 (1963), the theorem on the Hauptvermutung for higher di
mensions by Kirby and Siebenmann and others, and the development of the triangulation 
problem (1969). 

Right after World War II, Terasaka and Kinoshita in Osaka and Noguchi, Homma and 
Murasugi in Tokyo were working by themselves without good contacts, but research made 
good progress when Homma and Noguchi paid a visit to Osaka University. Around 1950 
Terasaka, Kinoshita and Homma were studying homeomorphisms of R^ and of M-̂ , which 
bore fruit as work on quasi-parallel translations of R^ by Kinoshita [24]. In this research the 
importance of how to embed a closed curve (knot) and a surface (2-dimensional manifold) 
in R-̂  attracted attention. Homma proved Dehn's lemma, i.e. whether a knot {S^ c R^) 
is truly unknotted is determined by whether the knot group 7ri(R^ — 5^) is isomorphic 
to Z, almost at the same time as and independently of Papakyriakopoulos [13]. Terasaka, 
Kinoshita and others also undertook reseai'ch in knot theory. One of the typical results at 
that time was the generalisation of composition of knots by Kinoshita-Terasaka [25]. It 
can be said that research in knot theory in Japan truly started around this time. 

Murasugi has always been an authority in research on knots by algebraic methods. His 
research standard was high, in both quahty and quantity. Let us mention a few typical ex
amples: a work [50] on the genus of the alternating knot and on Alexander's polynomial, 
and a work [51] on the matrix of links defined by Murasugi and the signatures of links, 
which has many applications. Alexander's polynomial is a strong tool for research on knots 
and links together with the knot group, and by defining the V-polynomial (Hosokawa poly
nomial) using Alexander's polynomial, Hosokawa proved [15] interesting results such as 
the relation with a covering space with links as a bifurcation set. Japanese mathematicians 
played the leading role in research on ribbon knots. 

In generalising knots in higher dimension, only the cases of codimension 1 or 2 are in
teresting, by Zeeman's result mentioned above. The case of codimension 1 is called the 
Schoenflies conjecture, which has not been solved completely. For the case of codimen
sion 2, almost all Japanese mathematicians who studied combinatorial topology such as 
Terasaka, Takeshi Yajima (1914- ), Noguchi, Kinoshita, Hosokawa and Takaaki Yana-
gawa (1935- ) took some interest in it, and valuable research has resulted. Yajima [93] 
considered a certain kind of 2-dimensional sphere in R"̂ , which was called later the ribbon 
2-knot. One of the reasons why higher-dimensional knots give rise to such great interest 
is that understanding this problem is indispensable in the construction and embedding of 
higher-dimensional manifolds. Thanks to the efforts of Noguchi and Mitsuyoshi Kato, who 
was a student of Noguchi at Waseda University, research in this direction is well developed, 
and it will be mentioned again later. 
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In the late 1960's, work on the Hauptvermutung and the triangulation problem made 
great progress. The aim was to make clear the relation between combinatorial mani
folds and general manifolds, and Kato and Yukio Matsumoto pushed the study forward. 
Homma [14] proved that a homeomorphism of ^i-dimensional manifolds can be approx
imately modified to be PL up to a /:-dimensional submanifold if 2/: + 2 < n but it was 
later proved by Miller and others that this theorem holds for codimension ^ 3 (that is, 
n-k^3). 

The problems of smoothing or locally flat embedding are important in differential topol
ogy, and were studied by Noguchi and Kinoshita. Assuming the Schoenflies conjecture on 
the smoothing of an /2-manifold in M""*"̂  Noguchi showed in [59] that it can be approxi
mated by a differentiable manifold. Noguchi's work [60] that an embedding of a manifold 
of codimension 2 can be approximated by a locally flat embedding if the Whitehead class 
is 0 was highly acclaimed, and this research was followed up by Kato and others. Defin
ing a prebundle by introducing a bundle structure on a combinatorial manifold, Kato [19] 
obtained many results beginning with a locally flat embedding. This paper was from a dif
ferent and independent viewpoint, although it partly overlapped with the work on block 
bundles by Rourke and Sanderson. It exerted much influence on topology and became a 
driving force in the development of combinatorial topology in Japan in the 1970's. Then 
Kato obtained a counterexample in the (relative) Hauptvermutung for regular neighbour
hoods, by studying the action of the Whitehead group on regular neighbourhoods in a 
sphere constructed using higher dimensional knots [20, 21]. Under the stimulus of the 
"drama" of the Hauptvermutung, Y. Matsumoto [40] extended the result of Sullivan on the 
Hauptvermutung for simply connected manifolds to the case where the fundamental group 
is the infinite cycHc group. 

The International Conference on Manifolds and Related Topics in Topology was held in 
Tokyo during the period April 10-17, 1973 by the Mathematical Society of Japan, under 
the co-sponsorship of the International Mathematical Union and the support of the Ministry 
of Education and the Science Council of Japan. The organising committee of the confer
ence consisted of Y. Akizuki, S. Araki, M.F. Atiyah, A. Hattori, H. Hironaka, T. Homma, 
M. Hukuhara, S. litaka, S. lyanaga, Y. Kawada (chairman), K. Kodaira (chairman of the 
program committee), A. Komatu, J. Milnor, M. Nakaoka, K. Ono, V. Poenaru, S. Sasaki, 
N. Shimada, T. Shioda, K. Shoda, I. Tamura, H. Toda and K. Yosida. M.F. Atiyah and 
V. Poenaru acted as representatives of the IMU on the organising committee. Financial 
support for the conference was provided by the IMU and by donations from Japanese com
panies. 

The topics of the conference were differentiable manifolds, PL manifolds, certain as
pects of complex manifolds and of algebraic varieties, and related topics in topology such 
as homotopy, generahsed cohomology, singularities, foliations, and dynamical systems. 

The proceedings [12] were published in 1975. 
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To include even short biographies of all the topologists who have been mentioned in this 
book would be impracticable. To try and select the most important would seem presumptu
ous. After careful consideration I decided, reluctantly, to exclude living persons. Even after 
this the numbers are too great so I chose about thirty who are certainly not minor figures 
and whose hves are not only interesting in themselves but in some way illustrative of the 
period and part of the world in which they lived. 

It seemed appropriate to arrange for a separate article on the Japanese school, because 
of its distinctive character, and not to arrange for individual biographies. Unfortunately I 
was unable to do the same for the Russian school. The idea of organizing all the material 
under schools seemed attractive in some ways but difficult to carry out. The life of someone 
like Hurewicz, who spent his early years in Poland, began his academic career in Austria, 
continued it in the Netherlands, and ended up in the United States is such that one might 
hesitate to class him as an American, although as a matter of fact he took out American 
nationality, since from a cultural point of view he remained so much a European and it was 
in Europe that he did his most important work. 

The present chapter contains short biographies of about twenty individuals which I have 
compiled myself, drawing mainly on published sources. The remaining chapters in the 
book consist of rather longer biographies of a number of individuals written by people 
with special knowledge of the fife of the subject. These more extended biographies often 
contain information not published hitherto. 

Short biographies 

To arrange the short biographies in alphabetical order, although convenient for reference, 
would tend to mask the often significant relationships between individuals. After trying 
various alternatives I have ended up by arranging them chronologically according to date of 
birth. The information has been collected from a variety of sources, including the standard 
reference books such as the Dictionary of Scientific Biography, and the obituary articles 
and other memoirs which have been published, usually by learned societies of which the 
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subject was a member. The principal sources used are listed at the end of each biography. 
However, such accounts are often of a rather formal character and where possible this has 
been supplemented by further information from other sources. Since research contributions 
are generally described elsewhere in this volume, no more than brief indications are given 
here. 

Topology first began to develop in the German-speaking part of Europe. The universities 
of Berlin, Gottingen, Leipzig, Munich and Vienna were particularly important, but others, 
such as Konigsberg and Prague, played a significant role. The terminology used to describe 
academic posts, quahfications etc. varies from country to country. Not without some reluc
tance I have succumbed to the practice of translating the terms ausserordentliche professor 
and ordentliche professor, and their equivalents, by the terms associate professor and full 
professor, although the correspondence is only very approximate. However, I have retained 
the term habilitation for the distinctive qualification, usually obtained several years after 
the Ph.D., which is a requirement for becoming a university teacher under the German 
system. 

There is a problem in deciding just where to begin. Leibniz, Euler and Gauss were 
precursors, but so much has been written about them already that to have included short 
biographies here would seem rather pointless. It is hardly possible to claim Gauss himself 
as a topologist but there can be Httle doubt that he inspired Listing and Mobius. Listing 
is the subject of an extended biography in the next section. He is less well-known than 
Mobius although in some respects his work is more important in the history of topology. 
I begin the present section with a note on the life [3] of his contemporary Mobius. 

August Ferdinand MOBIUS was born 17 November 1790 at Schulpforta, near Naum-
burg (Germany). He was the only child of Johann Heinrich Mobius, a dancing teacher in 
Schulpforta until his death in 1793, and the former Johanne (nee Keil), a descendant of 
Martin Luther. His father's unmarried brother succeeded him as dancing teacher and as 
provider for the family until his own death in 1804. Mobius was educated at home until 
his thirteenth year, by which time he was already displaying an interest in mathematics. In 
1803 he began formal education in his native town, where he studied mathematics under 
Johann Gottlieb Schmidt. The young man entered Leipzig University in 1809 to study law, 
but his early love for mathematics soon prevailed, leading him to take courses in mathe
matics, physics and astronomy instead. 

In May 1813, shortly before the battle of Leipzig, Mobius went to Gottingen, where 
he spent two semesters studying theoretical astronomy under Gauss. He then proceeded 
to Halle for further studies in mathematics with Pfaff. The following year he returned to 
Leipzig as professor of astronomy, which he remained for the rest of his fife. In 1820 
Mobius' mother, who had come to live with him, died. Shortly afterwards he married 
Dorothea (nee Rothe), whose subsequent blindness did not prevent her from raising a 
daughter, Emilie, and two sons, both of whom became distinguished hterary scholars. 

Mobius rarely travelled, and in general his life centered around his study, his observa
tory, and his family. His writings were fully developed and original, but he was not widely 
read in the mathematical literature of his day, and consequently found at times that oth
ers had previously discovered ideas presented in his writings. Moreover, his investigations 
were frequently aimed at developing simpler and more effective methods for treating ex
isting subjects. Like his contemporaries Gauss and Hamilton, Mobius was employed as an 
astronomer but made his most important contributions in mathematics. 
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So far as topology is concerned, Mobius is now best remembered for his discovery of 
the one-sided surface called the Mobius strip, which may be formed by glueing together 
the ends of a rectangular strip of paper after giving it a half twist. The Paris Academy 
had offered a prize for research on the geometric theory of polyhedra, and in 1858 Mobius 
began to prepare an essay on the subject. Although this was unsuccessful, possibly because 
his French was not of the best, Mobius published much of the material later, including a 
discussion of the famous strip. It seems that Listing discovered the properties of the strip 
independently at about the same time. Ten years later, on 26 September 1868, Mobius 
died, shortly after celebrating fifty years of teaching at Leipzig; his wife had died nine 
years earlier. 

Much has been written about Riemann, whose ideas have proved so important for mod
ern mathematics. Since a full-scale biography [18] has recently appeared, only an outhne 
of his Ufe is given here. 

(Georg Friedrich) Bernhard RIEMANN was born 17 September 1826 at Breselenz, near 
Dannenberg, in Lower Saxony, the second son of a Protestant minister, Friedrich Bernhard 
Riemann, and Charlotte (nee Ebell). The children received their elementary education from 
their father, who was later assisted by a local teacher. Riemann showed remarkable skill in 
arithmetic at an early age. From Easter 1840 he attended the Lyceum in Hanover, where 
he lived with his grandmother. When she died two years later, he entered the Johanneum 
at Luneburg. He was a good student and keenly interested in mathematics beyond the level 
offered at the school. 

In the spring term of 1846 Riemann enrolled at Gottingen University to study theology 
and philology, but he also attended mathematics lectures and finally received his father's 
permission to devote himself wholly to mathematics. At that time, however, Gottingen of
fered a rather poor mathematical education; even Gauss taught only elementary courses. 
In the spring term of 1847 Riemann migrated to Berlin University, where a host of stu
dents flocked around Jacobi, Dirichlet and Steiner. He became acquainted with Jacobi and 
Dirichlet, the latter exerting the greatest influence on him. When Riemann returned to Got
tingen in the spring term of 1849, the situation there had changed as a result of the return 
of the physicist W.E. Weber. For three terms Riemann attended courses and seminars in 
physics, philosophy and education. In November 1851 he submitted his thesis on complex 
function theory, including the idea of what are now called Riemann surfaces, and defended 
it a month later, thereby earning his Ph.D. 

Riemann then prepared for his Habilitation as a Privatdozent, which took him two and 
a half years. At the end of 1853 he submitted his Schrift on Fourier series and a list, of 
three possible subjects for his Vortrag. Against Riemann's expectation Gauss chose the 
third: 'Uber die Hypothesen, welche der Geometric zu Grunde liegen'.It was thus through 
Gauss's acumen that the splendid idea of this paper was saved for posterity. Both papers 
were posthumously published in 1867, and in the twentieth century the second became one 
of the great classics of mathematics. Its reading on 10 June 1854 was a historic occasion: 
young, timid Riemann lecturing to the aged, legendary Gauss, who would not live beyond 
the next spring, on consequences of ideas the old man must have recognized as his own 
and which he had long secretly cultivated. Weber recounts how perplexed Gauss was, and 
how with unusual emotion he praised Riemann's profundity on their way home. 

At that time Riemann was also working as an assistant, probably unpaid, to H. We
ber. His first course as a lecturer was on partial differential equations with applications 
to physics. Further courses in 1855/56, in which he expounded his now famous theory of 
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abelian functions, were attended by C.A. Bjerknes, Dedekind, and Ernst Schering; the the
ory itself, one of the most notable masterworks of mathematics, was pubUshed in 1857. 
Meanwhile he had also published a paper on hypergeometric series. 

When Gauss died early in 1855, his chair went to Dirichlet. Attempts to make Riemann 
even an associate professor did not succeed until 1857. He only became a full professor 
after Dirichlet's death in 1859. On 3 June 1862 Riemann married Elise (nee Koch) of 
Korchow, Mecklenburg-Schwerin. The next month he suffered an attack of pleurisy; in 
spite of periodic recoveries he was a dying man for the remaining four years of his hfe. His 
premature death from consumption is usually ascribed to the illness of 1862, but numerous 
early complaints about bad health and the early deaths of his mother, his brother and his 
three sisters make it probable that he had been long been a sufferer from tuberculosis. To try 
and alleviate his condition by moving to a better cHmate, Riemann took leave of absence 
from Gottingen and found financial support for a stay in Italy. The winter of 1862/63 
was spent in Sicily; in the spring he travelled through Italy, seeing the sights and visiting 
Italian mathematicians, in particular Betti, whom he had got to know when the latter was 
at Gottingen. 

By June Riemann was back in Germany but his health deteriorated so rapidly that in 
August 1864 he returned to northern Italy where he stayed until October 1865. He spent 
that winter in Gottingen, then set out for Italy again in June 1866. On 16 June he had 
reached Selasca on Lake Maggiore. The day before his death he was lying under a fig tree 
with a view of the landscape and working on the great paper on natural philosophy which 
he left incomplete. He was buried in the cemetery of Biganzole. 

In the second half of the nineteenth century interest in topology began to spread out
side the German-speaking area of Europe. Cayley was reporting on Listing's work to the 
London Mathematical Society as early as 1869, and Clifford was developing some very 
significant ideas a few years later. In the case of Italy Betti is an isolated example. In the 
case of France, Vandermonde must be regarded as a precursor and it is not until we reach 
Jordan [19] that we find someone who seemed deeply interested in topological questions. 

Camille JORDAN was born 5 January 1838 in Lyons, France. One of his granduncles 
(also named Camille Jordan) was a fairly well-known politician who took part in many 
events from the French Revolution in 1789 to the beginning of the Bourbon restoration; a 
cousin, Alexis Jordan, is known in botany as the discoverer of 'smaller species' which still 
bear his name. Jordan's father, an engineer, was a graduate of the Ecole Poly technique; 
his mother was a sister of the painter Pierre Puvis de Chavannes. A brilliant student, Jor
dan followed the usual career path of French mathematicians from Cauchy to Poincare: 
at seventeen he entered the Ecole Polytechnique and was an engineer (at least nominally) 
until 1885. That profession left him ample time for mathematical research, and most of 
his 120 papers were written before he retired as an engineer. From 1873 until his retire
ment in 1912 he taught at both the Ecole Polytechnique and the College de France. He 
was elected a member of the Academy of Sciences in 1881. His most famous contribu
tion to topology was to realize that the observation that a simple closed curve in the plane 
decomposes the plane into two regions is a result which is capable of being proved and 
to conceive of such a proof for the first time. His classification of the free loops on a sur
face, another great achievement, is described elsewhere in this volume. He died in Paris on 
22 January 1921. 

Although mathematics was flourishing in France throughout the nineteenth century, 
there were no French topologists apart from Jordan until Poincare turned his attention 
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to the subject towards the end of his extraordinarily productive career. Single-handed he 
virtually created the subject in its modern form. Much has been pubUshed about his life 
and work, beginning with [11]. The following short biography gives just the bare outline 
but there is a separate article on Poincare's work elsewhere in this volume. 

(Jules) Henri POINCARE was born 29 April 1854 in Nancy (Lorraine). Poincare's 
mathematical ability became apparent while he was still a student at the Lycee. He won 
first prizes in the concours general (a competition between students from all the lycees of 
France) and in 1873 entered the Ecole Polytechnique at the top of his class; his professor 
at Nancy is said to have described him as a 'monster of mathematics'. After graduation he 
followed courses in engineering at the Ecole des Mines and briefly worked as an engineer 
while writing his thesis for the doctorate in mathematics which he obtained in 1879. Shortly 
afterwards he started teaching at the University of Caen, and in 1881 he became a professor 
at the University of Paris, where he taught until his untimely death. In the same year he 
married Louise (nee Poulain), who bore him a son and three daughters. At the early age 
of thirty-three he was elected to the Academic des Sciences and in 1908 to the Academic 
Francaise. He was also the recipient of innumerable prizes and honours both in France and 
elsewhere. He died in Paris 17 July 1912. 

Poincare left no French school of topology behind him; that developed much later. Dehn 
and Heegard promoted his work for the German-speaking world in their Enzyklopadie arti
cle of 1907. It was also about this time that Vienna began to be recognized as an important 
centre for topology, under the leadership of Wirtinger [16]. 

Wilhelm WIRTINGER was born 19 July 1865 in Ybbs, on the Danube in lower Austria, 
the son of a medical practioner also noted for his research. In his schoolyears he had the 
opportunity to visit several of the great Benedictine foundations in that part of Austria, and 
take advantage of their excellent Hbraries. He entered the University of Vienna in 1884 and 
in due course was encouraged to visit first Berlin, where he heard Weierstrass, Kronecker 
and Fuchs, and then Gottingen, where he met Felix Klein, a close friend in later years. 

In 1890 Wirtinger married Amalia (nee Feyertag), the same year as he took his Habihta-
tion. She bore him three sons, two of whom died in the first world war, and two daughters. 
He became interested in topology through function theory, where his early work led to 
his appointment as associate professor at the University of Innsbruck (1895). Eight years 
later he was appointed to a full professorship at the University of Vienna, where he re
mained until his retirement in 1935. Although he published comparatively little himself he 
attracted to Vienna others who were influential in the development of topology in the early 
twentieth century, such as Tietze and Newman. Among other honours he was awarded the 
Sylvester medal of the Royal Society of London and was elected to membership of several 
academies. After retirement he returned to his birthplace of Ybbs, where he died on 16 
January 1945. 

At this period the German-speaking universities of Central Europe were closely related, 
and movement between them was encouraged for students and quite normal at faculty 
level. Vienna-trained topologists, such as Tietze [27], were to be found in a number of 
universities in Germany and elsewhere. Like Veblen in the United States Tietze was trying 
to place Poincare's work on a firmer foundation and to develop it further. 

Heinrich (Franz Friedrich) TIETZE was born 31 August 1880 in Schleinz near Vienna. 
He was the son of Emil Tietze, director of the Geological Institute at the University of 
Vienna, and of Rosa, daughter of the geologist Franz Ritter von Hauer. He began to study 
mathematics at Vienna in 1898. Following the advice of his friends Ehrenfest and Her-
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glotz, he moved to Munich for a year in 1902. After returning to Vienna, he worked on 
his doctoral thesis on functional equations under Escherich, being awarded his doctorate 
in 1904. 

Meanwhile Wirtinger had moved from Innsbruck to Vienna and it was through 
Wirtinger's lectures on algebraic functions and their integrals that Tietze became interested 
in topological problems, thereafter the focus of his most important mathematical work. He 
received his Habihtation at Vienna (1908) with a Schrift 'On topological invariants of 
multidimensional manifolds', inspired by the work of Poincare. Two years later he was 
appointed associate professor of mathematics at the technical college of Brunn (nowadays 
Brno), being promoted to full professor in 1913. 

Tietze's academic career was interrupted by the outbreak of the first world war, when 
he was drafted into the Austrian army. He returned to Brunn after the war, but in 1919 
accepted a full professorship at the University of Erlangen. While at Erlangen he wrote his 
three-part 'Beitrage zur allgemeinen Topologie'. In 1925 he moved to Munich, where he 
remained for the rest of his life. Most of his 120 publications were produced there. 

Tietze's best-known result is his extension theorem of 1914, but his research in knot 
theory and other areas of topology is also important. For example, he was the first to show 
that the first homology group of a space was the abehanization of its fundamental group. 
With his friend Vietoris he wrote the article on topology for the 1930 edition of the En-
zyklopadie, replacing that of Dehn and Heegard. As well as giving an account of what 
had been achieved in the intervening period the article dealt with the relationship between 
combinatorial topology and set-theoretic topology and incidentally helped to standardize 
some of the terminology. 

In 1929 Tietze was elected a member of the Bavarian Academy of Sciences. He was 
also a corresponding member of the Austrian Academy of Sciences and was awarded the 
Bavarian Verdienstorden. After his retirement in 1950 he continued with research until 
shortly before his death on 17 February 1964. 

In the first quarter of the twentieth century Vienna was exceptionally strong in topology. 
However, across the Atlantic another place was beginning to establish a reputation in the 
subject, and by about 1930 Princeton had echpsed Vienna and become supreme for many 
kinds of mathematics, especially topology. For what is to follow it is necessary understand 
something about the way in which a rather unimportant American college developed first 
into a leading international university [1], at least where mathematics is concerned, and 
then in partnership with the Institute for Advanced Study [4], consolidated that leadership. 

In 1896 the College of New Jersey changed its name to Princeton University, reflecting 
its ambitions for graduate education and research. When Woodrow Wilson was called to 
the Princeton presidency in 1903, his first priority was to match the quahty of the edu
cational programme to the upgraded status of the university. At Wilson's instigation, the 
preceptorial system was introduced in 1905 to provide smaller classes and more personal
ized instruction. Efforts to achieve this in the case of mathematics were placed in the hands 
of Henry Burchard Fine, the senior mathematics professor, who had studied in Leipzig 
with Felix Klein and in BerHn with Leopold Kronecker. Those appointed initially in
cluded Eisenhart and Veblen, each of whom played a major role in turning Princeton into a 
world centre for mathematical research and education following the untimely death of Fine 
in 1928. By then many first-class appointments had been made, for example, Alexander and 
Lef schetz in topology, but the commanding position of the university was confirmed when 
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a splendid new departmental building, based on Veblen's farsighted ideas of what would 
be needed, was constructed in memory of Fine and named after him. 

By the time the department moved into Fine Hall in 1931 another initiative was under 
way. This was an institute for advanced research, not part of the University although located 
at Princeton. Mathematics was the first mission of the Institute for Advanced Study, and 
Veblen the first Professor, soon to be joined by others, including Alexander. For the first few 
years they worked in Fine Hall, until Fuld Hall was ready to provide office accommodation 
and other facilities both for the permanent members of the Institute and for numerous 
visitors. The atmosphere was very different from Fine Hall, in particular there were no 
students to be catered for. However, the combination of these two institutions enabled 
Princeton to become an unrivalled centre for research in the subject. 

It was Veblen who introduced Poincare's ideas to the EngHsh-speaking world in his 
'Analysis Situs' of 1922. Topology soon caught on in America. Biographies of five Amer
ican topologists will be given in this section, all associated with Princeton. Of these, Lef-
schetz [15, 21, 22, 24, 29] and Steenrod [31] were University-based, Morse [6, 28] and 
Whitney [8, 32] were Institute-based, while Alexander [10, 23] was first at the University 
and then at the Institute. I begin with Lefschetz and Alexander. 

Solomon LEFSCHETZ was born 3 September 1884 in Moscow (Russia), the son of 
Alexander Lefschetz, an importer, and his wife Verba, who were Turkish citizens. Young 
Solomon's father's business interests required him to spend much time away in Persia, and 
he decided to setde his family in Paris, where his children were brought up from a very 
early age. The boy's first language was French, but he became fluent in Russian and other 
languages in later years. 

There is Utde on record about the future mathematician's early years in Paris; the first 
event of note is the award of the degree of Tngenieur des arts et manufactures' in 1905, 
after he had spent 3 years at the Ecole Centrale in Paris, where the professors included 
Appell and Picard. In November of that year he emigrated to the United States, and after a 
short apprenticeship became an engineer at the Westinghouse Electric and Manufacturing 
Co. of Pittsburgh. He was with this firm from 1907 to 1910, but then a promising career in 
industry was abruptly terminated by an accident at work in which Lefschetz lost both his 
hands and forearms. 

After a period in hospital, he faced up to the fact that his career as an engineer was 
finished. He decided to change over to pure mathematics, and with this in view he became 
a graduate student at Clark University in Worcester, Massachusetts, where he took his 
doctorate (1911) in just one year with a thesis on algebraic geometry. He then occupied 
a series of positions of increasing seniority first at the University of Nebraska (1911/13) 
and then at the University of Kansas (1913/25). It was during those 14 years in the prairies 
that he came to terms with his disabiUty, rebuilding his self-confidence and laying the 
foundations of a new career. He became an American citizen on 17 June 1912, and in the 
following year married Ahce (nee Hayes), who had been a fellow mathematics student 
at Clark. She helped him overcome his initial despair and face up to life. Later, when 
sometimes his exuberance burst all bounds, she was equally successful at calming him 
down. 

The major part of Lefschetz' massive contribution to algebraic geometry was completed 
before he left Kansas. As he has said in [21], his mathematical isolation was complete, and 
this circumstance was most valuable in that it enabled him to develop his ideas in complete 
mathematical calm, applying topological methods to the theory of algebraic surfaces. As 
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he put it: 'the harpoon of algebraic topology was planted in the body of the whale of 
algebraic geometry'. It is not too much to say he arrived in the prairies unknown, and left 
14 years later recognized as one of the most outstanding geometers of the day. In 1919 was 
awarded the Prix Bordin by the Paris Academy and in 1923 the Bocher Memorial Prize of 
the American Mathematical Society. 

In 1924 Lefschetz spent a year visiting Princeton, at the end of which he was appointed 
to a permanent post as associate professor. Three years later he was promoted to full pro
fessor, and in 1932 he succeeded Veblen as Henry B. Fine Research Professor, an office he 
held until his retirement in 1953. The move to Princeton was a turning-point in Lefschetz' 
life. The isolation of Kansas was over and he found himself in close contact with the wide 
circle of mathematicians at Princeton, not only the permanent staff but also the many dis
tinguished visitors who spent periods of leave there, and the able graduate students. It also 
made it easier for him to travel and visit other universities. That he was able to take full ad
vantage of these opportunities in spite of his physical handicap was due to his indomitable 
courage. 

When Lefschetz moved to Princeton his research interests became centred on algebraic 
topology. Among the numerous distinguished mathematicians who were around Princeton 
when he arrived were Veblen and Alexander. The interests of the latter were very close 
to those of Lefschetz, and although they never wrote a paper together they frequently dis
cussed such matters of common interest as fixed-point theory and duality in topology. 
Lefschetz was a great admirer of Alexander, and in later years was greatly saddened when 
Alexander gradually withdrew from contact with mathematicians and became a recluse. 

Lefschetz' main contribution to mathematics during the thirties lay in his powerful in
fluence on others. He worked very hard to keep himself informed on what his students and 
associates were doing, and was a vigorous critic of anything he did not approve of. He 
employed equally drastic methods in his capacity as editor of the Annals of Mathematics 
over a period of 25 years. No leniency was shown towards any paper which was submitted 
to the journal which was not up to his standards. He tended to make up his mind in a flash 
and anyone who disagreed with his judgement had to work very hard to make him change 
his mind. By these methods he made the Annals one of the top journals in the world, and 
he and his colleagues made Princeton a world centre for mathematics. In the course of 
this vigorous programme he made very few enemies: it was felt that there was no personal 
animosity in his bark, and no self-seeking: he just wanted to serve mathematics as best he 
could. 

During the second world war, when he was acting as a consultant to the US Navy, Lef
schetz came across Russian work on nonlinear oscillations and stability. He immediately 
recognized the importance of the work of Poincare and Liapunov on the geometrical the
ory of differential equations, and saw that the subject had been 'too long neglected' in the 
United States. After the war, with the support of the Office of Naval Research, he organized 
a differential equations project at Princeton University, which became the leading centre 
of research in ordinary differential equations in the United States. 

In a related development Lefschetz built up the Research Institute for Advanced Studies 
in Baltimore into an outstanding example of support for basic research by industry. In 1964 
part of the Institute moved to Brown University, at Providence, Rhode Island, and became 
the Lefschetz Centre for Dynamical Systems. For 6 years he commuted weekly by plane 
from Princeton to Providence, where he lectured, discussed research, and spread his wit, 
enthusiasm and love of life and mathematics. But this was not all: during the same period 
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he was also making frequent visits to the National University of Mexico, in Mexico City, 
where his enthusiasm, drive and organizing ability contributed greatly to the establishment 
of a lively school of mathematics. 

Lefschetz' contribution to mathematics was recognized by his election to the National 
Academy of Sciences of Washington in 1925, and to the Presidency of the American 
Mathematical Society ten years later. He received honours from numerous universities and 
learned societies. He died after a short illness in Princeton on 5 October 1972. 

James (Waddell) ALEXANDER was born 19 September 1888 in Seabright, New Jer
sey. His father, John W. Alexander, was a noted American painter of the last century; his 
mother was an active patron of the arts. Alexander himself received his early education 
in France and at the Browning school in New York. After a distinguished undergraduate 
career at Princeton University he graduated in 1910, and received his doctorate five years 
later. He remained at Princeton as an assistant in mathematics until 1917. In that year he 
married Natalie (nee Levitzkaya), a Russian who he had met in Italy, and he volunteered 
for military service in the first world war. Attached to the technical staff of the Ordnance 
Department, he was stationed in Washington and later in France. 

After the war Alexander returned to Princeton, where he was appointed full professor 
in 1928. Five years later he moved to the newly-founded Institute for Advanced Study. 
Alexander was fortunate in his scientific development in that he came under the guidance 
of Veblen and, no doubt under Veblen's perceptive influence, directed practically all of his 
own scientific endeavours towards the still young science of combinatorial topology, very 
largely created by Poincare. 

What Poincare contributed to the subject was immense but not always supported by a 
strong logical base. The first contributions of Alexander (in collaboration with Veblen) 
was to provide the subject with a reasonable element of logic. This led to the famous 
paper establishing the topological invariance of the Betti numbers. Although he only dealt 
with the three-dimensional case, the argument he gave is vahd in all dimensions. When 
Poincare was studying the homology of manifolds he at first thought that these invariants 
might be sufficient to classify manifolds of a given dimension up to homeomorphism. 
When he discovered that 3-dimensional manifolds exist which have the same homology 
as the 3-sphere but different fundamental groups he conjectured that homology and the 
fundamental group might be sufficient. In 1919 Alexander found a family of 3-manifolds, 
the lens spaces, which provided counter-examples. 

This was soon followed by the famous Alexander duality theorem of 1920, later ex
tended in various directions, notably into the Pontrjagin duality theorem. It is of great im
portance, not only in itself but also because there are contained within it certain anomalies 
whose resolutions were major influences in developing homology theories with different 
coefficients and in developing cohomology theories. 

In the 1920's Alexander was becoming increasingly interested in knot theory, and 
in 1925 he made a fundamental discovery. To a given knot diagram he associated a matrix 
of polynomials and showed that the equivalence class of this matrix (equivalence having 
a sHghtly more extended meaning from the normal one) is an invariant of the knot type. 
From this matrix equivalence class he extracted by essentially classical means a sequence 
of polynomials, particularly one now called the Alexander polynomial, which is such a 
sensitive invariant that it readily distinguishes most of the knots found in the knot tables 
compiled in the last century. Other polynomial invariants of knots were discovered not long 
ago. 
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In the mid-thirties Alexander played an important role in the development of the idea of 
the cohomology ring structure. Although he continued to pioneer new concepts for another 
decade, his great work was complete. He left the field to the suddenly numerous rising 
generation and, although living on the edge of the campus, seldom appeared in Fine Hall. 
In this younger days Alexander was well-known as an accomplished alpinist, but after an 
attack of polio he had to give up this activity. An exceptionally shy man, he loved music, 
photography and amateur radio. Alexander was elected to the American Philosophical So
ciety (1928) and to the National Academy of Sciences of Washington (1930). He received 
honorary degrees from the universities of Bologna and Paris in 1947. He retired in 1951, 
and died 23 September 1971 at Princeton. 

Hassler Whitney [32] has this to say about the relationship between Alexander and Lef-
schetz. They naturally had many discussions on topology. But Alexander became increas
ingly wary of this; for Lefschetz would come out with results, not realizing they had come 
from Alexander. Alexander was a strict and careful worker, while Lefschetz's mind was al
ways full of ideas swimming together, generating new ideas, of origin unknown. I beheve 
that Lefschetz never felt good about Veblen choosing Alexander, not himself, as one of the 
first professors at the new Institute for Advanced Study.' 

(Harold Calvin) Marston MORSE was born 24 March 1892 in Waterville, Maine, where 
he had his early education and where he completed his undergraduate work in 1914 at 
Colby College. Three years later he received his Ph.D. from Harvard under G.D. Birkhoff, 
having meanwhile published his first research paper in 1916. His career was interrupted 
by the first world war. He served with distinction in the American Expeditionary Force 
and was awarded the Croix de Guerre with Silver Star for bravery under fire. Resuming 
academic life, Morse taught at Harvard 1919/20, Cornell 1920/25 and Brown 1925/26, 
before returning to Harvard as assistant professor (1926), associate professor (1928) and 
finally full professor (1930). Five years later he moved to the Institute for Advanced Study. 
Mathematics to Morse was a highly competitive enterprise; priority in publication was 
important to him. He needed an audience. As a consequence he sought collaborators and 
assistants, a substantial function of these individuals being to listen to his explanations of 
mathematical situations as he perfected his understanding of them. 

In the second world war he served as consultant in the Office of the Chief of Ordnance. 
His invaluable work on military apphcations of mathematics was recognized by a Merito
rious Service Award, conferred in 1944 by President Roosevelt. 

After the war he was the prime mover in the establishment of the National Science Foun
dation. President Truman invited him to serve on its first board from 1950 to 1954. He 
represented the Vatican at the Atoms for Peace Conference of the United Nations (1952). 
He was president of the American Mathematical Society 1940/42; a vice-president of the 
International Mathematical Union starting in 1958; chairman of the Division of Mathemat
ics of the National Research Council 1951/52, and so on. In his local community he served 
on the board of two private schools and an organisation concerned with making records for 
the use of the blind. 

Among the many honours bestowed on Morse were honorary degrees from twenty in
stitutions in the USA, Austria, France and Italy. These include the University of Paris 
(1946), Pisa (1948), Vienna (1952), Harvard (1965) and Modena (1975). In 1952 he be
came a Chevalier of the French Legion of Honour. He was elected in 1932 to the National 
Academy of Sciences of Washington and in 1956 as an associate member to the French 
Academy of Sciences. His affinity for France made the honours from that country partic-



894 l.M. James 

ularly gratifying. He also cherished his election as a corresponding member of the Italian 
National Academy Lincei. A National Medal of Science was awarded to him in 1964 and 
presented by President Johnson at the White House. 

Morse became emeritus in 1962 but for the remainder of his eighty-five years he contin
ued his research activity. Essential to the remarkable prolongation of his long and brilliant 
career was the devoted care and understanding of his second wife Louise. As well as their 
five children there survives one of the two offspring of his first marriage. He died in Prince
ton 22 June 1977. 

We now return to Europe. Until recently, topology in Eastern Europe followed a distinc
tive tradition, less dominated by the ideas of Poincare than topology in Western Europe and 
America. In fact if topology is divided into point-set topology on the one hand and com
binatorial topology on the other the emphasis in Eastern Europe was more on the former. 
One of the leading topologists of Eastern Europe was Cech [7]. 

Eduard CECH was born 29 June 1893 in Stracov in northeastern Bohemia. He was the 
fourth child of Cenek Cech, a poUceman, and Anna (nee Kleplova). After studying at the 
Gymnasium in Hradec Kralove, he went to the Charles University in Prague to study math
ematics in 1912. However, his university studies were interrupted by the first world war, 
and he did not graduate until 1920. By then he had become interested in projective differ
ential geometry, the study of those features of the geometry of embedded curves, surfaces, 
and higher-dimensional spaces that are projectively invariant. Cech's work emphasized re
sults about tangency, correspondences between manifolds, and (significantly for his later 
work in topology) the systematic theory of duality in projective spaces. He spent 1921/22 
working with Fubini in Turin, and later they collaborated on two books on projective dif
ferential geometry. 

In 1922 Cech returned to his native country and, after receiving his Habilitation he took 
up an appointment at the Masaryk University in Brno. He was promoted to full profes
sor (1928) and, inspired by the papers in the Polish journal Fundamenta Mathematica, 
his research interests increasingly turned to topology. His first contributions to topology 
were characteristically broad and aimed at keeping the subjects of algebraic and point-set 
topology together. In his first two papers he developed a homology theory for arbitrary 
spaces, and established general duality theorems for manifolds, generalizing the classical 
duality of subspaces of projective spaces. Cech's approach to homology was deliberately 
intended to be very general, as the title of his 1932 paper in Fundamenta Mathematica 
makes clear ('General homology theory of an arbitrary space'). This is based on the idea 
of studying all the finite open coverings of a given space. Although many of the ideas in 
it can be traced back to earlier work of Vietoris and Aleksandrov, Cech's originality lay 
in using inverse limits to obtain homology groups independent of the choice of covering. 
This approach turns out to work well for compact spaces, and yields what is now called the 
Cech homology theory. The corresponding cohomology theory works less well for non-
compact spaces, giving unexpected results even for the first cohomology group of the real 
line. Later Dowker replaced Cech's finite coverings with arbitrary coverings, and showed 
that with this modification, Cech cohomology satisfied all the Eilenberg-Steenrod axioms 
for a cohomology theory. 

At the 1932 International Congress of Mathematicians in Zurich, Cech presented his 
ideas on the definition of the higher homotopy groups of a space. Unfortunately, he was 
discouraged from pursuing the subject. Independently Hurewicz, a few years later, recog
nized the importance of these invariants and proved the basic theorems about them. Alek-
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sandrov was to single out Cech's contribution, when commemorating Cech's life and work 
in 1961, and to lament that it had been misunderstood. 

After Cech reported on his researches at the 1935 international conference on topology 
held in Moscow, Lefschetz invited him to visit the newly-founded Institute for Advanced 
Study in Princeton. When he returned from there Cech founded a topology seminar in 
Brno which applied itself to the work of Aleksandrov and Uryson. In three years the sem
inar pubUshed 26 papers, including Cech's 'On bicompact spaces', which appeared in the 
Annals of Mathematics. In this paper he introduced the idea of the (Stone)-Cech compact-
ification of a regular space. The seminar continued at the University until 1939, when the 
Germans invaded Czechoslovakia and closed the universities down. Thereafter it contin
ued in the flat of Cech's student B. Pospisil until 1941, when the Gestapo arrested Pospisil. 
The seminar had a lasting influence on the development of mathematics in Czechoslovakia, 
because it introduced the practice of working on mathematical problems collectively. 

After the war, Cech returned to the Charles University in Prague. By then in his fifties, he 
began an intensive career in administration. He was appointed Director of the Mathematical 
Research Institute of the Czech Academy of Sciences and Arts in 1947 and three years later 
became Director of the Central Mathematical Institute. In 1952 the Central Institute was 
incorporated into the Mathematical Institute of the Czechoslovak Academy of Sciences, 
with Cech as its first Director, and he also became head of the new Mathematical Institute 
at the Charles University. Nevertheless he also found time to redirect his mathematical 
interests; in the 1950s he wrote 17 papers on differential geometry. He also deepened his 
interests in the teaching of mathematics. He wrote seven textbooks for secondary schools 
and held seminars on elementary mathematics at both Brno and Prague. Cech continued to 
be active in mathematical life in Czechoslovakia until his death on 15 March 1960. 

During the twenties and thirties a number of textbooks and monographs on topology 
were published. Several of these were written by Reidemeister [2]. 

Kurt (Werner Friedrich) REIDEMEISTER was born 13 October 1893 in Brunswick 
(Germany), the son of Hans Reidemeister and Sophie (nee Langerfeldt). He went to school 
in Brunswick and then studied at the universities of Freiburg, Munich and Gottingen. The 
young man's studies were interrupted by four years of military service during the first world 
war. When that was over he returned to Gottingen and passed the Staatsexamen (Edmund 
Landau was his examiner) in mathematics and other subjects in 1920. After becoming 
assistant to Hecke at the University of Hamburg, he obtained his doctorate (1921) with a 
dissertation on algebraic number theory. He was also working on affine and differential 
geometry at this time. 

In 1923 Reidemeister was appointed assistant professor at the University of Vienna, 
where he came into contact with Hahn and Wirtinger, amongst others. Two years later 
he became a full professor at Konigsberg, where he worked with other young mathemati
cians, notably the algebraist Richard Brauer. Reidemeister's main research interests at this 
stage were in combinatorial topology and the foundations of geometry. The historical ori
gin of mathematical and rational thought always fascinated him. Due to his opposition to 
the Nazis Reidemeister was expelled from his Konigsberg professorship in April 1933. 
The previous year he had pubUshed his well-known monograph 'Knotentheorie', which 
remained the standard work on the theory of knots for several decades. From Konigsberg 
he moved first to Marburg, a less important university, and then, in 1955, back to Gottin
gen, where he remained (apart from two separate years at the Institute for Advanced Study 
in Princeton) until he died on 8 July 1971. His wife EHzabeth (nee Wagner), the daughter 



896 LM. James 

of a Protestant pastor at Riga, was a professional photographer, whose portraits of Dehn 
and Seifert illustrate their biographies elsewhere in this volume. 

Topology arrived in the British Isles quite early, as we have seen, and there was particular 
interest in knots and graphs. However, the subject did not begin to flourish until the twenties 
when Newman [14] visited Vienna and came into contact with Wirtinger and others at a 
time when that university was exceptionally strong in topology. 

Maxwell Herman Alexander NEWMAN [14] was born 7 February 1897 in Chelsea, 
London. His father, who had come from Germany (with the name of Neumann), was sec
retary of a small company; his mother was a farmer's daughter who had trained as a teacher 
and taught at elementary schools in London. Their only child, known to everybody as Max, 
was educated at the City of London School. He wrote very highly of the mathematical 
teaching he received there from a former fellow of St. John's College, Cambridge. In due 
course Newman won an Entrance Scholarship to that college. 

Newman came up to Cambridge in October 1915, and resided until December 1916. He 
spent the next three years in war service. After his father was interned as an 'enemy ahen' 
the young man changed his surname from Neumann to Newman by deed poll in 1916. At 
some point in this period he had a spell as a schoolteacher, and at another, in spite of poor 
eyesight, he served in the army as a paymaster. 

When Newman returned to Cambridge in October 1919, to complete his studies, college 
teaching at St. John's was in the hands of Bromwich and Cunningham, both of whom Max 
regarded as exceptionally good teachers. Of the lecturers he thought Hardy stood out. In 
1916 Newman had achieved first class honours in the first part of the Mathematical Tripos 
and now in 1921 he was equally successful in the second part. Two years later he was 
elected to a Fellowship at St. John's which he retained until 1945. 

Newman spent the year 1922/23 at the University of Vienna, at that time one of the lead
ing centres in Europe for topological research. He was strongly influenced by the ideas of 
Wirtinger, Hahn and Reidemeister. Afterwards he worked on a wide range of subjects, but 
he made his name by his early work on the foundations of combinatorial topology. Later in 
this period Newman worked on the Poincare Conjecture and on the Hauptvermutung, but 
did not publish his findings. He spent 1928/29 in Princeton. 

Newman had been appointed University Lecturer at Cambridge in 1927. He had a pio
neering attitude to syllabus reform and was the first in Cambridge to use abstract vector 
spaces in presenting linear algebra. He was also the first to lecture on Godel's theorem. 
About 1938 he started a joint seminar with Philip Hall on algebra and topology, which 
played a part in introducing the axiomatic point of view into Cambridge mathematics. He 
also wrote a textbook 'The Topology of Plane Sets' which some consider a minor mas
terpiece, and one of the best introductions to point-set topology considered as a part of 
mathematics as a whole. 

In December 1934 he married Lyn (nee Irvine), an authority on medieval poetry who 
also enjoyed some success as an author. They made their home at Cross Farm, Comberton, 
outside Cambridge. They had two sons, Edward (born October 1935) and WilUam (born 
May 1939). 

In May 1942 Newman was approached to work at a government institution on a matter 
whose importance to the war effort could be hinted at, although its nature could not. This 
turned out to be the celebrated code-breaking centre at Bletchley Park, midway between 
Oxford and Cambridge, where a remarkable group of British mathematicians not only 
succeeded in the immediate task but also talked about what they would do when the war 
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was over. Newman entered into this important work wholeheartedly and found it deeply 
interesting. 

In September 1945 Newman resigned his positions in Cambridge and went to Manch
ester to succeed Mordell as Fielden Professor of Mathematics. It was as leader and man
ager of a mathematics department that Newman showed talents rarely equalled among pure 
mathematicians. The list of those he recruited displayed exceptional judgement of abiUty. 
From 1945 to 1964 he raised his department to a very high standard among British math
ematics departments. At the same time his own research was not neglected. Interest in 
combinatorial and geometric topology revived through the work of Moise, Mazur, Smale 
and others. From 1960 to 1966 Newman published work of a quality seldom achieved by 
mathematicians in their sixties. 

Newman continued a Manchester tradition of support and hospitality to refugee math
ematicians, such as Paul Erdos, Bernhard Neumann, Kurt Mahler, and Beniamino Segre. 
In contrast to some other mathematicians he was not a great traveller himself. He visited 
Princeton as a Rockefeller Research Fellow in 1928/29 and returned there in 1937/38. 
However, when the time came for him to lay down his responsibilities at Manchester New
man decide to spend a few years abroad and did so at the Australian National University, 
Canberra, and at Rice University, Houston. 

The Newmans had kept their main home at Cross Farm, in fact their only home after 
he retired from Manchester, and their social life was based around Cambridge to a large 
extent. In 1973 Lyn died after a short illness. Later that year Newman married Margaret, 
the widow of the distinguished Cambridge scientist Lionel Penrose. Just over ten years 
later he died 22 February 1984. 

Although the Swiss contribution to topology is important, after Euler it is not so easy to 
name topologists of Swiss origin who satisfy our criteria. This may be because they tended 
to be geometers first and topologists second. This was true of Schlafli, who was notable 
for his generalization of the Euler formula, and it was also true of de Rham. There does 
not appear to be a biographical memoir of the latter but some information can be found 
in a lecture 'Quelques souvenirs des annees 1925-1950' which he gave in 1980 and in a 
memorial booklet 'Georges de Rham 1903-1990', privately published by his friends and 
colleagues. 

Georges DE RHAM was born 10 September 1903 at Roche (Vaud), where his father 
Leon occupied the post of engineer in an important cement works. He went to school at 
Aigle, on the edge of the Valais, and by the time he was fifteen had already developed the 
passion for mountaineering which remained with him throughout his life. 

In 1919 the de Rham family left Roche for an apartment in the Chateau de BeauHeu 
in Lausanne, and the future mathematician attended the Gymnasium of that city until 
1921, when he proceeded to the University of Lausanne. There his studies, always in sci
entific subjects, increasingly tended towards mathematics. After graduating he continued 
at the university as an assistant, becoming particularly interested in the work of Poincare, 
Lebesgue and Elie Cartan, especially the last. In the following years he was developing the 
theory to which his name is now invariably attached and which he presented as his doctoral 
thesis at Paris in 1931 under the title 'Sur 1'Analyse Situs des Varietes a n Dimensions', 
in which he showed that the real cohomology of a differential manifold could be defined 
using differential forms. This celebrated result established his reputation internationally. 
After a few years as lecturer he was appointed associate professor at Lausanne in 1936 and 
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then, almost immediately, to a similar post at the university of Geneva, an extraordinary 
combination. He was promoted to full professor at Lausanne in 1943. 

During these years de Rham was becoming equally celebrated as an alpinist. He liked 
to tell how on one occasion on Mont Blanc he accidentally met the topologist Alexander 
and another time on the Weisshorn he met him again with a young companion who turned 
out to be Hassler Whitney. Among a long Ust of spectacular climbs in the Alps perhaps the 
one he was most proud of was his conquest of the south face of the Taschhorn with Andre 
Roch in 1943. He died at Lausanne 7 October 1990. 

During the thirties, as the situation in Europe became increasingly threatening, a number 
of European mathematicians migrated to America. Even with the assistance of Veblen and 
other influential well-wishers it was not easy for them to find suitable positions in the 
aftermath of the economic depression. Among the topologists Dehn was one of the older 
migrants; there is an account of his life in the next section. Hurewicz [5, 20] was one of 
the younger migrants, who generally found positions more easily. 

Witold HUREWICZ was born 29 June 1904 in Lodz (Poland), the son of a well-to-do 
industrialist. After graduating from the Lodz high school he went to study at the University 
of Vienna, at that time a leading centre for mathematics, and by 1926 he had obtained 
his Ph.D. under Hans Hahn. His early research was on dimension theory, particularly the 
extension to separable metric spaces of the results established by Brouwer, Menger and 
Uryson for subsets of Euclidean space. When Menger moved to Amsterdam Hurewicz 
followed him, and remained there until 1936. After the first year, during which he was 
supported by a Rockefeller fellowship, Hurewicz became lecturer and assistant to Brouwer, 
who was not only one of the creators of dimension theory but also of homotopy theory. 
Brouwer thought Hurewicz was a genius who might turn out to be a second Riemann or 
Poincare. For some years Hurewicz added nothing to his earlier publications and it was not 
until 1935/36 that there appeared, in the Proceedings of the Royal Academy of Amsterdam, 
an amazing series of four short papers which set homotopy theory in motion. In these he 
defined the higher homotopy groups and discovered the fundamental theorem which links 
them to homology groups. The definition of the higher homotopy groups had occurred to 
others, in particular to Cech and Dehn, but they had not developed the idea. The last of 
these papers, on aspherical spaces may be regarded as the starting point of what became 
known as homological algebra. 

These achievements led to a fellowship at the new Institute for Advanced Study in 
Princeton, where Hurewicz spent the years 1936/39. In the years 1939/45 he held a pro
fessorship at the University of North Carolina, Chapel Hill, but he was also working at 
Brown University and the Radiation Laboratory at Cambridge, Massachusetts, during the 
second world war. During this period he published an abstract, in which the notion of exact 
sequence appears for the first time, and an important joint paper with Steenrod containing 
a theory of fibre spaces; a similar theory had been developed independently by Eckmann 
in Europe. 

At the end of the war Hurewicz was appointed to a professorship at the Massachusetts 
Institute of Technology, where he remained for the rest of his life. Unfortunately, Hurewicz 
had a tendency not to write up his ideas in detail. He intended to develop them into a 
book, which would cover the whole of homotopy theory as it then was. However, the 
theory was developing rapidly and so he was never able to complete it. The incomplete 
text seems to have been destroyed in a fire not long after his death. Fortunately, his earlier 
work, on dimension theory, led to a very successful book on the subject, co-authored with 
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Henry Wallman, published in 1941 and still the classic text over 50 years later. He wrote 
a few other papers, including an important one on ergodic theory, but his complete Ust of 
publications extends to no more than 14 items. 

Mathematics was by no means his only interest. As well as music and literature he 
enjoyed learning languages, being fluent in English, French, Russian, German, Dutch and, 
of course, his native Polish, which he often used in his private life. Although he took out 
American citizenship he remained a European gentleman, most at home in a circle of close 
relatives and old friends of a similar cultural and social background. His untimely death, 
on 6 September 1956, occurred after he had been attending the important international 
symposium on algebraic topology which was held at the National University of Mexico 
that year. Hurewicz was taking the opportunity to visit the Mayan archaeological sites of 
Yucatan, and it was when he was exploring the ruins at Uxmal that he suffered a fall, 
sustaining injuries which proved fatal. 

The British school of topology was founded by Newman, as we have seen. However, it 
was Whitehead [13,25,26,34] who built it up into a school of major importance, especially 
after the second world war. 

(John) Henry (Constantine) WHITEHEAD was born 11 November 1904 in Madras 
(India). His father was Bishop of Madras, and his mother the formidable Isabel Duncan, 
had been a mathematical scholar at Oxford; the mathematician and philosopher Alfred 
North Whitehead was his uncle. He was educated at Eton College and at BaUiol College, 
Oxford, and was very proud of it. His great mathematical gifts did not include the knack 
of carrying out manipulations correctly, so that he was no schoolboy prodigy. At Oxford, 
however, he achieved high honours in both the mathematical examinations and his college 
awarded him an honorary scholarship. 

Perhaps the mathematics taught to undergraduates at Oxford at that period had too strong 
a flavour of problem-solving to fire him. At any rate after he graduated Whitehead spent 
several years working at Buckmaster and Moore, a London firm of stockbrokers. Fortu
nately for mathematics he found this way of life unsatisfying and in 1928 began a new 
career by winning a Commonwealth Fellowship to study differential geometry at Prince
ton under Veblen. Differential geometry was a natural choice at that time, but he may 
have been influenced towards it by lectures on relativity he attended at Oxford. He worked 
mainly on differential geometry until about 1932, collaborating with Veblen in writing a 
monograph on the foundations of that subject. 

A number of important things happened to him in the next few years. In 1933 BalHol 
made him a fellow and tutor in mathematics. In 1934 he was married to Barbara (nee 
Smyth), a concert pianist; together they made their successive homes places of welcome 
and entertainment for a host of friends. It was in the middle 1930's too that he began to 
pubUsh papers in topology and algebra. He was drawn towards topology not only because 
it was then a great geometrical arena but also by his friendship with Newman; his early 
papers show clearly the influence of Newman's work and also that of Reidemeister. This 
early work, up to the time of the second world war, contains some of Whitehead's most 
original contributions to mathematics, the importance of which was not fully appreciated 
until much later. 

During the war, after a spell at the Admiralty he joined Newman and other mathemati
cians at the celebrated code-breaking establishment in Bletchley. There was one useful 
thing, he said, he had learnt from his war-work, namely the poHcy of abandoning un
promising projects ritually and finally. 
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Norman Steenrod (1910-1971) Frank Adams (1930-1989) 
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In 1944 Whitehead had been elected a Fellow of the Royal Society; three years later he 
was appointed Wayneflete Professor of Pure Mathematics at Oxford and thereby became a 
Fellow of Magdalen College. Meanwhile, as he found at mathematical gatherings, he was 
beginning to be recognized as one of the world leaders in topology, attracting able research 
students and a stream of academic visitors so that Oxford became a Mecca for topology. 

His work after the war was at first mainly devoted to a striking series of results on homo-
topy classification and to the development of his important pre-war papers. Although most 
of his earlier topological research had firm geometrical roots, he began to turn increasingly 
to algebraic methods. By the end of the fifties, however, exciting progress again began to 
be made with some of the classical problems of geometric topology. He had the satisfac
tion of seeing some of his earlier work playing an important part in these developments, 
and to participate himself. In 1959 he returned to Princeton for a sabbatical year. He was 
apparently in full vigour and spirits when in 11 May 1960 he collapsed and died, leaving a 
widow and two sons. 

During the thirties a distinctive school [9] of topology was developing in Poland, espe
cially Warsaw. Point-set topology was an important component of the work of this school 
but under the leadership of Borsuk [12] an alternative theory to combinatorial topology 
was created. 

Karol BORSUK was born 8 May 1905 in Warsaw, the son of the well-known surgeon 
Marian Borsuk and Zofia (nee Maciejewska). He received a master's degree (1927) and 
doctorate (1930) from Warsaw University, and became Privatdozent there in 1934. On 26 
April 1936 he married Zofia (nee Paczkowska); they had two daughters. Borsuk's principal 
nonacademic interests were reading and travelling, usually accompanied by his wife. At 
their country cottage 'Radachowka', some forty miles from Warsaw, they often entertained 
mathematical friends. 

During the Nazi occupation of Poland Borsuk strove to keep intellectual life in Poland 
alive through an 'underground university'. Together with other 'illegal' activities this led 
to his imprisonment but he managed to escape and remained in hiding until the war ended. 
When Poland began to rebuild, Borsuk and Kuratowski began the work of restoring math
ematical research in Warsaw. Borsuk was appointed professor at the university in 1946, 
director of the Mathematical Institute there from 1952 to 1964, and deputy director of 
the Institute of Mathematics of the Polish Academy of Sciences in 1956. He made several 
visits to the United States: the Institute for Advanced Study 1946/47, the University of Cal
ifornia at Berkeley 1959/60 and the University of Wisconsin at Madison 1963/64. He was 
a corresponding member of the Polish and Bulgarian Academies of Science. He died in 
Warsaw 24 January 1982. 

Although all the American topologists whose lives are discussed in this section were 
associated with Princeton it is only fair to say that some of their best work was done 
elsewhere. Whitney is a case in point. 

Hassler WHITNEY was born 23 March 1907 in New York City. His grandfather was Si
mon Newcomb, a noted astronomer and the fourth President of the American Mathematical 
Society. His father Edward Baldwin Whitney was a Justice of the Supreme Court of New 
York, and his mother Josepha was an artist and active in politics. The young man gradu
ated from Yale University with bachelor's degrees in physics (1928) and music (1929), and 
went on to Harvard University to obtain his doctorate in mathematics (1929). In 1931 he 
was awarded a National Science Foundation Fellowship to go to Princeton for two years. 
He returned to Harvard in 1933, where he advanced to the rank of professor. In 1952 he 
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moved to the Institute for Advanced Study in Princeton as a Professor of Mathematics, a 
position he held until he became emeritus in 1977. 

A pioneer in topology, Whitney combined very fruitful perspectives with great technical 
prowess. The ideas and methods he developed in the general theory of manifolds, the study 
of differentiable functions on closed sets, geometric integration theory, the geometry of 
tangents to a singular analytic space, as well as many others, have become a part of the 
very fabric of these subjects and have had a tremendous influence on subsequent work. 

The celebrated Whitney Embedding Theorem was an important conceptual advance in 
the understanding of manifolds, for it ties together the extrinsic and intrinsic definitions. 
The theorem states that any ^-dimensional manifold can be embedded in m-dimensional 
Euclidean space, for m sufficiently large; later he showed that m = 2n was sufficient. 

Whitney was also one of the founders of cohomology theory. Along with Cech he for
mulated the first clear and correct definition of the cup product in cohomology. He also 
pioneered the use of the vector and sphere bundles as a tool in the solution of topological 
problems. Stiefel-Whitney classes, which are important invariants of vector bundles, were 
discovered independently by Whitney and Stiefel around 1935. 

Throughout most of his career Whitney was interested in the properties of smooth func
tions. His ideas were instrumental in the development of the field of differential topology, 
which in turn led to his work on the theory of analytic varieties. He helped to launch the 
theory of singularities and estabhshed that the generic singularities of maps from the plane 
to the plane are folds and cusps. 

Whitney was intensely concerned with what he saw as the failure of the American edu
cational system in mathematics and during the last twenty years of his life he pursued this 
concern with great energy, particularly on the elementary school level. The many honours 
and awards he received included election to the National Academy of Sciences of Washing
ton (1945), the Wolf Foundation Prize (jointly), and the United States National Medal of 
Science. As well as music his nonmathematical pursuits included roller-skating, on which 
he was something of an authority, and mountain-climbing, particularly in the Swiss Alps. 
He died 10 May 1989 in Princeton at the age of 82, following a massive stroke; his ashes 
were placed at the summit of one of the Alpine peaks he loved. 

Under R.L. Wilder the University of Michigan at Ann Arbor became an important centre 
for research in topology and for bringing on the young. Steenrod was one of his later 
students. 

Norman (Earl) STEENROD was born 22 April 1910 in Dayton, Ohio, the youngest of 
three surviving children of Earl Lindsay Steenrod and his wife Sarah (nee Rutledge). The 
Steenrods, reputedly of Norwegian origin, came to the United States by way of Holland 
before the Revolutionary War, and Norman Steenrod's ancestor Cornelius Steenrod, raised 
a company of soldiers who fought in that war. Both his parents were teachers - his mother 
for two years before her marriage, his father for some forty years as a high school instruc
tor in manual training and mechanical drawing. Neither parent had any special interest in 
mathematics, although Earl Steenrod had a keen interest in astronomy, which he commu
nicated to his son. From his mother Norman Steenrod acquired a lifelong interest in music, 
to which he devoted much of his spare time. Other interests included tennis, golf, chess, 
and bridge. 

Steenrod attended the pubhc schools in Dayton, finishing the twelve-year course in nine 
years. After graduation from high school he worked for two years as a tool designer, hav
ing learned the trade from his elder brother, and he did so again later. In this way he 
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earned enough to help with his college expenses first at Miami University in Oxford, Ohio, 
(1927/29) and then at the University of Michigan (with interruptions) until 1932. 

At Ann Arbor Wilder's course in topology was the only mathematics course that he 
enrolled in, all the others being in physics, philosophy and economics. The year 1932/33 
was a hard one for Steenrod: unable to secure a fellowship, he went back home to Day
ton, where he started on a problem given to him by Wilder. By the end of the year he had 
finished his first paper, on the strength of which Harvard, Princeton and Duke all offered 
him fellowships. He decided on Harvard and, to help meet his expenses there, worked for 
a time at the Flint Chevrolet plant as a die designer. This enabled him to spend a year in 
Cambridge. Next, in the spring of 1934 he was again offered fellowships at both Harvard 
and Duke, but turned these down when a similar offer arrived from Michigan. However, 
as it happened Wilder was going to spend that year at Princeton and decided not to leave 
Steenrod behind. With Lefschetz' support Wilder was able to persuade the Princeton fel
lowship committee to make an offer to Steenrod, although it took some persuasion to get 
him to accept. 

By this time Steenrod's financial problems had eased. At Princeton he worked under 
Lefschetz, obtaining his Ph.D. in two years. He remained at Princeton as an instructor 
for three more years. In 1938 Steenrod married Carolyn (nee Witter), and they moved to 
Chicago the following year. Their first child, Katherine Anne, was born there in 1942. 
However, Steenrod felt a strong attachment to Michigan and was reluctant to raise a family 
in a large city like Chicago, and so they returned to Ann Arbor the same year. Five years 
later their other child, Charles Lindsay, was born. Just afterwards the family moved back 
to Princeton, and Steenrod spent the rest of his career there. 

Steenrod's work in algebraic topology is probably best known for the algebra of opera
tors which bears his name. The problem of classifying by homotopy the maps of a complex 
into a sphere had long occupied the attention of topologists. The case where the complex 
has the same dimension as the sphere is classical, the work of Hopf in 1933, although sub
sequently improved upon. In 1942 Steenrod solved the next case, where the dimension of 
the complex may exceed that of the sphere by one. His solution was not only interesting 
per se, but by virtue of the new operations in terms of which the solution was expressed. 
These were the celebrated Steenrod squares. The power of the operations soon became ap
parent, for example, in relation to the famous problem about vector fields on spheres. The 
squares were defined in mod 2 cohomology; similar operations for mod p cohomology, p 
odd, were defined before long. Relations involving these families of operations were dis
covered by the Mexican mathematician Jose Adem, one of many able students who took 
their Ph.D. under Steenrod. 

Algebraic topology underwent a spectacular development in the years following the sec
ond world war. From a position of minor importance, as compared with the traditional areas 
of analysis and algebra, its concepts came to exert a profound influence, and it is now com
monplace that a mathematical problem is 'solved' by reducing it to a homotopy-theoretic 
one. To a great extent the success of this development can be attributed to Steenrod's influ
ence. 

As well as his early research on point-set topology there are two other aspects of Steen
rod's work which have had a profound and lasting influence on the development of topol
ogy. One was his deep interest in the theory of fibre bundles, which culminated in his 
classic book, the first attempt to organise this important subject. The other was his inter
est in homology theories, which led to the book on the foundations of algebraic topology 
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which he wrote with Eilenberg. To this might be added the monograph on cohomology op
erations, based on his Princeton lectures, and a useful compilation of reviews of all papers 
in algebraic topology and related areas. 

Steenrod was elected to the National Academy of Sciences of Washington (1956) and 
gave the prestigious Colloquium Lectures for the American Mathematical Society (1957). 
In the spring of 1971, while on sabbatical leave at Cambridge University, he suffered an 
attack of phlebitis and, after his return to Princeton that fall, the first of a succession of 
strokes, to which he finally succumbed on 14 October 1971. 

There are many examples of mathematicians of European origin who emigrated to North 
America. Dowker [30] is one of the few who moved in the other direction. 

(CHfford) Hugh DOWKER was born 2 March 1912 at Parkhill, Western Ontario, and 
grew up in a rural community, where his family owned a small farm. His ancestors on his 
father's side were of Yorkshire origin, while his mother was of Scottish descent. Hugh was 
the first member of the family to attend high school. His elder brother Gordon left school 
at the age of thirteen and worked as a forester, while his younger brother Arthur followed 
the family tradition by going into farming. 

When Dowker was seventeen he went to the University of Western Ontario on a schol
arship, intending to become a schoolteacher. He studied a variety of subjects, including 
physics and economics, but his particular gift for mathematics was already evident. This 
was such that, after obtaining his BA (1933) he was encouraged to continue his studies 
at the University of Toronto, where he gained his MA the following year. He was then 
advised to go on to Princeton to study under Lefschetz. It was at Princeton that Dowker 
became fully aware of the power and beauty of mathematics. He specialized in topology 
and ran one of Lefschetz' seminars, obtaining his Ph.D. in 1938. Apart from Lefschetz, the 
mathematicians who were to have an important influence on Dowker's research included 
Aleksandrov, Fox, Hurewicz and Steenrod. 

Dowker's first academic post was that of instructor (1938/39) at the University of West
ern Ontario, where he had earlier been a student. Next he moved back to Princeton to be
come assistant (1939/40) to von Neumann at the Institute for Advanced Study, after which 
he became an instructor (1940/43) at Johns Hopkins University in Baltimore. It was there 
that he met Yael Naim, who he married in 1944. Yael at the time was a young graduate 
student who had come to Johns Hopkins from Israel, and who was to become well-known 
for her work on ergodic theory. 

In 1943 Dowker was seconded to the United States Air Force as a civihan adviser, and 
carried out work on gunnery and the trajectories of projectiles, which took him to Libya 
and Egypt. Then, from 1943 to 1945, he and Yael worked at the MIT Radiation Laboratory. 
After the war he became associate professor (1946/48) at Tufts, before going on to hold 
visiting positions at Princeton (1948/49) and Harvard (1949/50). 

This was the period of McCarthyism, when the atmosphere in North American Univer
sities was very difficult. Several of Dowker's friends in the mathematical community were 
severely harassed, and one had been arrested. In this situation Hugh and Yael decided to 
leave North America. They came to England in 1950, when Yael obtained a post at the 
University of Manchester and Hugh before long was appointed to a Readership in Apphed 
Mathematics at Birkbeck College, London. Although Dowker is best known for his work 
in the purest and most abstract branches of mathematics, it is a mark of his versatility that 
he was capable of holding an applied post, in which he contributed to the theory of servo-
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mechanisms and projectiles. In 1962 he was appointed to a personal chair at Birkbeck, 
where he remained until his retirement in 1979. 

Dowker's mathematical work Ues mainly in the field of topology. Although the number 
of his published papers is not large they have been remarkably influential. They contain 
a wealth of ingenious examples, often answering difficult problems posed by other math
ematicians. He was constantly concerned to find the 'right' basic definitions and axioms, 
and this led to his proving very general results under very few assumptions. While he is 
best known for his work in point-set topology he also made contributions to category the
ory, sheaf theory and the theory of knots. He had a long-standing interest in homology 
theory, for general spaces. Among many other important results he showed that the Cech 
and Vietoris homology groups coincide, for general spaces, as do the Cech and Alexander 
cohomology groups. 

Dowker was widely travelled. In his early twenties he had twice crossed the United 
States and Canada, jumping on and off freight trains hobo-style. Later, as a mathematician, 
he held visiting positions in Russia, Israel, India and Canada. He also spent some time 
working on a kibbutz in Israel. He was able to speak Russian and knew some Georgian and 
some Hebrew. He loved the countryside and often went walking or mountain-climbing in 
the National Parks of Britain and Switzerland. 

In manner Dowker was reserved and gentle, with an innate dignity and a penetrating wit. 
He possessed a high degree of integrity and moral strength which enabled him to endure 
seven years of illness uncomplainingly. He was unfaihngly kind and generous, always 
ready to spend time helping others. With Yael he did a great deal of work for the National 
Association for Gifted Children. He had an affection for all young people and was known 
among his students for his helpfulness and patience. Three years after his retirement he 
died in London 14 October 1982 after a long struggle with ill-health. 

After the second world war research in topology flourished vigorously in England, no
tably at Cambridge, Manchester and Oxford. Among topologists of the younger generation 
Adams [17] was outstanding. 

(John) Frank ADAMS was born 5 November 1930 in Woolwich, near London, the elder 
son (there were no daughters) of William Frank Adams, civil engineer, and Jean Mary (nee 
Baines), biologist, both of London. He was educated at Bedford School and then, after a 
year of military service, he went on to Trinity College, Cambridge. In due course he became 
a research student at Cambridge, first under A.S. Besicovitch and then, more significantly, 
under Shaun Wylie. His Ph.D. Thesis (1955) was on algebraic topology, which remained 
his main research interest for the rest of his fife. 

Adams spent the year 1954 at Oxford as a Junior Lecturer, where he came under the 
influence of Whitehead, then the leading topologist in the United Kingdom. Returning to 
Cambridge in 1956 as a research fellow at Trinity College, Adams developed the spectral 
sequence which bears his name, linking the cohomology of a topological space to its stable 
homotopy groups. The next step in his career was a two-year visit (1957/58) to the Uni
versity of Chicago on a Commonwealth Fellowship. While he was there he used his new 
methods to prove the famous conjecture about the existence of //-structures on spheres. On 
his return from America Adams became fellow, lecturer and director of studies in mathe
matics at Trinity Hall, Cambridge. In 1961, on another visit to the United States, Adams 
enhanced his already high international reputation by solving another famous problem, 
concerning vector fields on spheres. For this purpose he invented certain operations in 
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^-theory, which later bore his name, and these have proved to be of fundamental impor
tance. 

In 1962 Adams left Cambridge for Manchester University, where in 1964 he became 
Fielden professor in succession to Newman, and was elected a fellow of the Royal Society 
at the early age of thirty-four. At Manchester he developed much further the powerful meth
ods he had originated previously in a celebrated series of papers 'On the groups J{X)\ 
which opened up a new era in homotopy theory. In the first of these he made a bold conjec
ture about the relation between the classification of vector bundles by stable isomorphism 
and their classification by stable homotopy equivalence of the associated sphere-bundles. 
Reformulated in various ways this Adams conjecture (later a theorem) is regarded as one 
of the key results of modern homotopy theory. 

By 1970 Adams was the undisputed leader in his field. His reputation was such that 
he was seen as the obvious person to succeed Sir William Hodge as Lowndean Professor 
of Astronomy and Geometry at Cambridge. He was dehghted to return to Trinity, his old 
college, although he never became very active in its affairs. Among Adams research in
terest in this later stage in his career three subjects predominated: ^-spaces of finite type, 
classifying spaces of topological groups, and equivariant homotopy theory. Although he 
pubhshed important research papers on these and other subjects throughout this period he 
also began to publish more expository work, notably lecture notes on Stable Homotopy and 
Generahzed Homology (1974) and a monograph on Infinite Loop Spaces (1978), based on 
the Hermann Weyl lectures he gave at Princeton. The latter, especially, gives a good idea 
of his magisterial expository style and particular brand of humour. 

Adams was an awe-inspiring teacher who expected a great deal of his research students 
and whose criticism of work which did not impress him could be withering. For those who 
were stimulated rather than intimidated by this treatment, he was generous with his help. 
The competitive instinct in Adams was highly developed, for example, in his attitude to 
research. Priority of discovery meant a great deal to him and he was known to argue such 
questions not just as to the day but as to the time of day. Again, in a subject where 'show 
and teir is customary he was extraordinarily secretive about work in progress. 

Although Adams enjoyed excellent physical health he suffered a serious episode of de
pressive illness in 1965 and there were further episodes of depression later. To what extent 
his professional work was adversely affected by the nature of the treatments he received to 
control the condition is not clear but certainly his contributions to research in later years 
were not as innovative as those of his youth. Moreover, he never played the prominent role 
in the academic and scientific role to which his professional standing would have entided 
him. Even so his influence was very great; those who turned to him for an opinion were 
seldom left in any doubt as to his views. 

Adams' research achievements were recognized by the awards of the Junior Berwick 
(1963) and Senior Whitehead (1974) prizes of the London Mathematical Society and the 
Sylvester medal (1982) of the Royal Society. He became a Cambridge Sc.D. (1962), was 
elected a foreign associate of the National Academy of Sciences of Washington (1985) and 
an honorary member of the Royal Danish Academy of Sciences (1988), also he received 
an honorary Sc.D. (1986) from the University of Heidelberg. His collected works were 
pubhshed in 1992. 

In 1953 Adams married Grace (nee Carty), who soon afterwards became a minister in 
the Congregational Church. They had a son and three daughters (one adopted). Family 
life was extremely important to Adams, although he preferred to keep it separate from his 
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professional life. The family used to do many things together, especially fell-walking in 
the Lake District. Adams acted as Treasurer of the local branch of the Labour Party and 
might be described as an intellectual Fabian in outlook. He died immediately following an 
accident on the Great North Road near Brampton, 7 January 1989. 

Samuel EILENBERG was born in 30 September 1913 in Warsaw (Poland). At the 
University of Warsaw he was a student of Borsuk. His doctoral thesis, on the topology of 
the plane, led to a series of early publications on general topology but a research paper of 
1938 on the action of the fundamental group on the higher homotopy groups of a space 
signalled a shift in the algebraic direction, where he was to make his reputation. 

On his father's advice Eilenberg left Poland in 1939 and went first to Princeton. Be
fore long a position for him was found at Ann Arbor, where at that time Wilder's research 
group of topologists included Steenrod. In this stimulating environment Eilenberg's inter
ests rapidly broadened. At the end of the war he moved to Columbia University and made 
New York his main home. In later years he also spent a good deal of time in London where 
he was better able to pursue his non-mathematical interests. Of these the most important 
was the collection of small Asian sculptures, on which he became an expert; some of his 
trophies can be seen in the Metropolitan Museum in New York. 

Eilenberg was one of the most influential algebraic topologists of the post-war period. 
His influence was spread not only through his many distinguished research contributions, 
often in collaboration with others, but also through his expository work, where he showed 
an extraordinary ability to clarify and systematize. Algebraic topology derived enormous 
benefit from this, but it went much further. In a long-term collaboration with Saunders 
Maclane he played a leading role in the development of homological algebra. One of the 
fruits of this joint work was the notion of category, which from being just a nice convenient 
way to look at certain kinds of mathematics has turned into a major speciality. Although 
algebra and topology remained Eilenberg's main mathematical interests he also contributed 
to the theory of automata. 

Perhaps his most important book is the classic Homological Algebra (1956), which he 
wrote in collaboration with Henri Cartan. The earlier Foundations of Algebraic Topology 
(1952), of which Steenrod was coauthor, unfortunately did not progress beyond the first 
volume. He was an outstanding teacher, with a distinguished list of former research stu
dents, and the recipient of many academic honours. He died 30 January 1998 in New York, 
having been incapacitated by a stroke two years previously. 
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CHAPTER 33 

Johann Benedikt Listing 

E. Breitenberger 
Department of Physics and Astronomy, Ohio University, Athens, OH 45701-2979, USA 

1. Overview 

Johann Benedikt (or Benedict) Listing, 1808-1882, was one of the founding fathers of 
our discipline even though he did not contribute any capital discoveries. He gave it the 
apt name "topology" and wrote the very first monograph on it, pubHshed originally as 
a paper in 1847, and re-issued as a slim booklet in 1848, under the modest title Vorstu-
dien zur Topologie. Later he turned to aggregates of points, hnes and polygons which he 
called "complexes", and wrote a novel survey under the title Der Census rdumlicher Comp-
lexe . . . , again pubHshed first as a paper and then as a book, both in 1862, and followed a 
few years later by a paper containing two addenda. He wrote nothing else on topology, but 
repeatedly lectured on the subject from 1848 onwards in various seminars and meetings. 

Listing was a doctoral student of GauB who became a close personal friend, but he 
should not be labelled a mathematician; from 1839 on he was nominally a professor of 
physics in Gottingen. Indeed he appears as one of the many minor universalists who lend 
so much colour to the history of 19-th century science. He was a founding father of mod
ern ophthalmology, too, since he pioneered the study of the optical properties of the eye, 
described in a non-technical memoir called Beitrag zur physiologischen Optik in 1845; 
later he expanded this in a theoretical article which still reads strikingly accurate today. He 
made other contributions to optics; he studied the figure of the earth in minute detail; he 
made observations in meteorology, terrestrial magnetism, and spectroscopy; he wrote on 
the quantitative determination of sugar in the urine of diabetics; he promoted the nascent 
optical industry of Germany and better street lighting in Gottingen; he travelled to the 
world exhibitions in London 1851, Vienna 1873 and London 1876 as an observer for his 
government; he assisted in geodetic surveys; and more. Besides the word "topology", he 
invented a good many other terms, some of which have become current: "entoptic phenom
ena", "nodal points", 'homocentric light", "telescopic system", "geoid". Lastly, he coined 
the name "one micron" for a millionth of one metre; it entered general usage through the 
American Society of Microscopists who adopted the micron as the standard unit of length 
for microscopical work in 1879. 
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The man himself was industrious and inquisitive, kind and helpful, gregarious and witty, 
good-natured to a degree, a true friend to many and an enemy to none. Yet he was not 
held in high esteem. Given his achievements, here lies a conundrum. Flaubert's dictum 
''L'homme c'est rien - Vceuvre c'est touf (Never the person - solely the work) will not 
apply. For an elucidation the chronicler must yield to the biographer who champions the 
individual. Three reasons for Listing's small academic repute stand out. 

First, the structure of the personality. Listing was a mild manic-depressive who most of 
his adult life oscillated between opposite frames of mind. Early on the extremes were ap
proximately "carefree/dejected", later more "mellow/hstless"; the waves lasted from one 
month to many. This is the judgement of a much later generation, of course. His contem
poraries, including GauB, a most astute observer, certainly did not see Listing in such a 
light, and he never saw through himself. Like many persons afflicted with this disposition 
he found it difficult to concentrate, both in the high and in the low phases. Thus his natural 
curiosity frequently drove him to linger over details; he then failed to see the wood because 
of all the trees, and did not reap the full fruit of his efforts. His writings often lack a grand 
sweep, and occasionally appear pedantic. Presumably the Usteners in his lectures formed 
similar impressions. 

The second reason was his wife. Pauline, 15 years younger, beguiling and profligate, 
must be characterised as an overweening hysteric. Her treatment of servants brought her 
before the magistrates any number of times, while her relations with landlords led to many 
moves for the family. In brief, she was no social asset. 

Thirdly, the partners in this menage had one fault in common: an astonishing inability 
to cope with money. Listing borrowed frequently and heavily, sometimes from usurers; 
Pauline habitually abused credit, and again ended up in court with some regularity. They 
tended to live beyond their means, and on one occasion barely avoided bankruptcy. No 
wonder that Listings were not invariably held in polite regard. 

When Listing died, only one obituary appeared, by his correspondent RG. Tait in Edin
burgh. Thereafter this obliging and deserving man was nearly forgotten, although in 1905 
Wilhelm Ostwald reprinted the Beitrag in his renowned series of classics of science. Even 
the word "topology" did not readily gain currency. 

2. Youth in Frankfurt 

Listing was bom in Frankfurt-on-Main on 25 July, 1808. The father, who had the same 
names, came from a family of craftsmen; they were mainly cabinetmakers, but he made 
brushes. The mother, Caroline Friederike nee TheiBinger, was a peasant girl from the Hun-
sriick hills west of the city. He seems to have been an only child; there were several cousins, 
at least one of whom later emigrated to Central America. Hardly an affluent setting. 

The boy showed promising gifts, including a special talent for drawing and fine writ
ing. Already at age 13 he earned some pocket money giving calligraphy and sketching 
lessons. He soon received aid from the Bernus family of Frankfurt patricians and from the 
Stddelsches Institute a foundation which still exists and maintains one of Europe's major 
art museums. 

In 1816 he entered the Musterschule, a very progressive institution with distinguished 
founders and a select staff. The mathematics and astronomy master and textbook author, 
Johann Heinrich Miiller, 1787-1844 (not to be confused with the Freiburg physicist Johann 
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Heinrich Jakob Miiller, 1809-1875, who was widely known as author and translator), soon 
gained influence over him. Interest in mathematical and scientific matters grew; eventu
ally he envisaged academic study. Miiller remained a mentor and friend until his untimely 
death. 

From 1825 onwards Listing attended a Gymnasium and graduated in 1830. By then 
he was famihar with English, French, Italian and Latin; he knew some Greek; he had a 
working knowledge of analytic geometry and calculus; and he had a boundless curiosity 
about all the natural sciences. The Stadel foundation honored his scholastic success with 
the award of a four-year scholarship for the study of "architecture and mathematics". Their 
charter emphasized the fine arts to such an extent that it would not have permitted support 
for the study of mathematics or science alone, hence the curious combination. The stipend 
was generous: 400 Thaler per year, an amount well above the needs of a frugal student. 

3. Student in Gottingen 

In the fall of 1830 Listing moved to Gottingen and registered as a student of mathematical 
and natural sciences. For a starter he even took a course in architecture, but the rest of his 
time he spent all over: mathematics, astronomy, anatomy, physiology, botany, mineralogy, 
geology, chemistry. Why worry? He was better off than the average Gottingen student, and 
the place, then as large as Oxford and Cambridge combined, buzzed with enticing activity. 

From his third semester onwards he also went to lectures by GauB (nominally professor 
of mathematics and director of the observatory). The princeps mathematicorum disliked 
formal teaching and had a public reputation for aloofness, but in his small inner circle he 
appeared rather different, for he possessed the precious gift of making friends with young 
people. Spotting Listing's industry, he thought him "quite promising" (vielversprechend). 
Soon afterwards he invited the lowly student to dinner with stars like Wilhelm Weber, 
1804-1891, the brilliant young physicist he had brought to Gottingen in 1831, and his son-
in-law Georg Ewald, 1803-1875, one of the leading semitists of the century. The relation 
intensified, enhanced no doubt by Listing's unselfish disposition, and remains close and 
even intimate to the last. Indeed, Listing was present when GauB finally closed his eyes 
shortly after 1 a.m. on 23 February, 1855. 

In this inner circle Listing also met Wolfgang Sartorius von Waltershausen, 1809-1876, 
a fellow student whose interests lay mostly in mineralogy and geology; as his family was 
well acquainted with GauB he had grown into the status of another young friend and was 
welcome to drop in and attend a class any day. Being of the same age, the two soon formed 
a close friendship which was destined to endure a Ufetime. 

In those years after 1830 GauB no more undertook the arduous field work for the geodetic 
surveys that had consumed so much of his time during the 1820's. Shifting interests had 
gradually led him to physics; first to Faraday's discovery of magnetic induction (1831). It 
may well have been a preoccupation with magnetically linked, closed circuits that brought 
GauB back to some old ideas about the curvature of space curves and resulted in an integral 
formula for winding numbers jotted down in January of 1833. He never pubhshed it, but 
it was later incorporated in his Gesammelte Werke. For the present context, it is significant 
that he added the lament: 
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Von der Geometria Situs, die Leibnitz ahnte und in die nur einem Paar Geometern 
(Euler und Vandermonde) einen schwachen Blick zu thun vergonnt war, wissen und 
haben wir nach anderthalbhundert Jahren noch nicht viel mehr wie nichts 

(Of the Geometria Situs presaged by Leibniz, and of which only two geometers (Euler and 
Vandermonde) had the privilege to gain a faint glimpse, we still know and have next to 
nothing although one and a half centuries have gone by), which aroused some attention 
after Maxwell alluded to it in his classic Treatise on Electricity and Magnetism of 1873. 
In fact, GauB had topological matters on his mind, off and on though never intensively. 
He even talked about them. Listing reports "sketchy remarks" (hingeworfene Aufierungen) 
and records various conversations on "analysis situs" in his diaries. 

Another topological fact may have lingered in GauB' thoughts at about that time: the im
possibility of defining "right" and "left" without reference to a material object. He seems to 
have encountered it rather early, when he had to come to grips with aprioristic philosophy. 
Kant regarded this impossibility as proof that space was a category of pure reason, whereas 
GauB recognized it as merely a matter of symmetries. He first spoke out on the subject in 
a non-technical manner in 1831, in the preliminary announcement of his second memoir 
on quadratic residues (which is also famous for his geometrical representation of complex 
numbers). This was just after Listing had arrived in Gottingen. 

Terrestrial magnetism was another concern from physics. It is not always appreciated 
what a tireless empiricist GauB was. He had constructed sensitive magnetometers, and 
introduced the new, metric and "absolute", system of "Gaussian" units of measurement. He 
had also built a magnetic observatory without iron components or nails; it was the world's 
first geophysical research institute and can still be visited in Gottingen. He was interested 
in both the local and the temporal variations of the earth's field. Thus a synoptic approach 
was indicated. Together with Weber, he founded a Magnetic Union, the very first instance 
of international scientific cooperation. The accumulating mass of data later permitted him 
to calculate the positions of the magnetic north and south poles by means of least squares, 
his pet method. Needless to say, the extensive observations absorbed much time and effort, 
but willing helpers always turned up. In Gottingen, Listing as well as Sartorius assisted 
regularly. 

In a short while. Listing had become a young friend, a recipient of sketchy thoughts 
on topology, and an experimentalist collaborator. It may have followed of itself that he 
also did his dissertation under GauB. He made good progress and obtained the Dr. phil. on 
30 June, 1834. The dissertation, De superficiebus secundi ordinis, estabhshes a connection 
between surfaces of the second degree and the ternary forms studied by GauB in the Dis-
quisitiones arithmeticae. GauB rated it "ingenious" (scharfsinnig). Listing acknowledged 
an old indebtedness by dedicating the dissertation to his teacher Miiller: "Viro doctissimo 
summe venerabiW. 

4. Italy and Hanover 

What next? An ambitious young graduate would have reached for the best academic po
sition available. Listing was not so career-minded. Instead, he embarked on a three-year 
adventure. 

Sartorius the geologist was interested in volcanoes and intended to study the barely un
derstood Mt. Etna in Sicily. He was also willing to combine an expedition to the Mediter-
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ranean with further geomagnetic work for GauB. Both undertakings called for a qualified 
assistant. Who was better suited than his good friend Listing? Funding was no problem, as 
he was wealthy enough to finance everything himself. 

And so, Listing having graduated, the two went to Frankfurt, procured the needed gear, 
and on 27 July, 1834 set out southwards on their own coach, Listing in the driver's seat, 
helpful as ever. At intervals they stopped for a week or two to make magnetic and baromet
ric measurements; they also arranged to meet various friends and colleagues. Karlsruhe, 
Stuttgart, Bavaria, Salzburg, Innsbruck, Verona, Milan were among the early stops. Then 
they continued on a circle of latitude to Venice, went on by the shortest route to the island 
of Elba, and again by the shortest way via Rome to Naples, all in accordance with the plans 
of the Magnetic Union. 

After more than a year, in the fall of 1835, the pair finally reached Sicily. While the 
magnetic observations continued, the huge Etna massif now became the focus of labour. 
Geology and topography had to be elucidated; extensive geodetic surveys were undertaken. 
Sartorius later made full use of these early results in a magnum opus on Etna (1876). 

Beyond his duties in the field Listing still found enough time for various studies. In 
particular, he roamed over bits and pieces of topology. His notebooks and diaries from 
this period contain many elegant sketches of crystals and polyhedra knight's moves on the 
chessboard, ornamental calligraphic flourishes with discussions of their symmetry prop
erties, instances of the Konigsberg problem, and the like. Shortly before April 1836, the 
word "topology" makes its first appearance. It may have helped him to unify his scattered 
thoughts. At any rate, he felt a need for a summary essay, and under date of April 1st, 1836, 
wrote up his preliminary ideas in a lengthy letter to his teacher Mtiller. Its main contents 
were later incorporated in the Vorstudien and need no comment. The introductory passage 
is relevant, however; in shortened paraphrase, he explained to Miiller that he is dissatis
fied with the term ''geometria situs'' introduced by Leibniz because the word "geometry" 
should not denote a discipUne in which distance and quantity are irrelevant, and anyway, 
because the word should remain reserved for the then current term ''geometrie de position'' 
(due to Carnot, 1803). The entire doctrine being rather new, he felt justified to give it a new 
name and therefore called it "Topology", which he thought more appropriate. 

Some time afterwards, Sartorius fell severely ill, was given up by the physicians and 
barely survived, desperately nursed by Listing. Then Listing fell ill for a month. Still, if 
life was not rosy, a future beckoned. The Hohere Gewerbeschule Hannover, instigated by 
GauB, wrote to offer a position as teacher of applied mathematics, machine design and 
engineering drawing. This institution was an ambitious polytechnic which later became a 
Technische Hochschule, and today is a fully-fledged university. Listing answers politely, 
yet does not commit himself. 

A return to Gottingen had been intended for the university's centennial in the fall of 
1837. Now the cholera intervened. First the Italian mainland became inaccessible, then the 
epidemic reached over to Sicily. At an opportune moment, Sartorius and Listing catch a 
Danish brig going to Rio de Janeiro with a cargo of SiciUan wine. Thus they reach Gibral
tar, then continue on another vessel to Lisbon, and from there on one of the newfangled 
steamers to Liverpool. They took the unplanned opportunity and stayed in Britain for a 
couple of weeks: Sartorius to look at the extremely involved geology. Listing, perhaps 
soon a teacher in a polytechnic, to look at the industry which then led the entire world. 
And so to Hamburg. 
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Later in the fall Listing presents himself in the city of Hannover at the Gewerbeschule 
to interview and is given the position at once, to start in November 1837. The new sphere 
of activity perhaps did not suit his incHnations exactly, but he seems to have liked it. In any 
event, he could have carved himself a comfortable niche after a few apprentice years. 

It was not to be. On 2 March, 1839, he is summoned before the cabinet secretary in 
charge of the affairs of the University of Gottingen who offers him point blank a position 
as professor extra-ordinary of physics. Stunned but quickly overjoyed, he accepts, to start 
at Michaelmas 1839. 

5. Back to Gottingen 

The abrupt change of Listing's fortunes arose from historical events which call for a digres
sion. In 1837 occurred the death of WilHam IV, King of Great Britain, Ireland and Hanover. 
In London he was succeeded by his niece, eighteen-year-old Victoria. In Hanover the law 
of succession differed, though: a female could ascend the throne only if the entire male 
Hne was extinguished. Thus Ernest Augustus, Duke of Cumberland, a younger brother of 
William, became King of Hanover. 

Ernst August, as he henceforth called himself, was a Tory, reactionary, headstrong, and 
a sworn foe of all ideas emerging from the French revolution. His Whig opponents in the 
House of Lords called him "the most unpopular prince of modern times". Hanover had a 
fairly liberal, written constitution, promulgated in 1833, loosely connected with the British 
ParUamentary Reform of 1832, and initiated partly by student unrest in Gottingen in 1831. 
Ernst August rescinded it with a stroke of the pen. His embittered subjects were placated a 
little by lowered taxes, but not all Gottingen academics gave in. Seven of them, including 
Weber and Ewald, signed an eloquent letter of protest. They made the mistake of addressing 
it not to the King but to a cabinet minister. Besides, the contents leaked to the public. Ernst 
August reacted with the instant dismissal of all seven, and, moreover, commanded three of 
them, including the famous brothers Grimm, to leave Hanover within twenty-four hours on 
pain of incarceration. This happened shortly after Listing had begun at the Gewerbeschule. 

Another and unintended victim was GauB: he lost not only his son-in-law, but also his 
friend and indispensable collaborator Weber. Eventually the ministry asked him to name 
a successor to Weber. In the faint hope of finding someone who might "to some extent" 
(einigermaassen) replace Weber for him, he forwarded three names with Listing's in third 
place. Negotiations with the first two foundered, whence Listing, just 31 years old and 
still without publications, emerged as a junior professor in renowned Gottingen as related 
above. 

However, a close collaboration with GauB did not materialize, for two unforeseen rea
sons. First, from about 1835 onwards the naval powers more and more appreciated the 
importance of terrestrial magnetism to navigation. In the interest of both strategy and 
commerce, they increasingly muscled into research; the pre-eminence of GauB and Weber 
faded, and the Magnetic Union slowly crumbled. In 1838 the Royal Society awarded GauB 
the Copley Medal for his geomagnetic work, but he gradually lost interest and abandoned 
the subject. 

Secondly, the brutal dismissal of the "Gottingen Seven" caused an outcry throughout Eu
rope followed by the spontaneous formation of a committee-in-aid which collected massive 
subscriptions and continued to pay the salaries of the sacked Seven while they were with-
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out positions. In particular, Weber was enabled to stay on in Gottingen for over five years 
to cope with the affairs of the Magnetic Union until in March 1843 he moved to Leipzig. 

Thus Listing unexpectedly remained free to do what he pleased, although his personal 
relation with GauB remained close as always, with mutual visits and dinners and many 
discussions. Then his friend Theodor Ruete, 1810-1867, a former fellow student and now 
an aspiring young ophtalmologist in Gottingen, aroused his interest in the optics of the 
human eye. Coincidentally, GauB furnished indispensable theoretical ideas inasmuch as 
just at that time, prompted by weaknesses in a paper of Bessel, he wrote up his theory of 
thick lenses which he had worked out much earlier but never published (maybe Listing's 
reports of the collaboration with Ruete also nudged him a little). In any case. Listing found 
himself in a unique position with access to speciaUst guidance as well as to a new chapter 
of optical theory. He made commendable use of it. After protracted, difficult and minute 
observations he had enough material for the Beitrag zur physiologischen Optik; the little 
work without mathematical formulae appeared at the end of 1845 and became a classic not 
least through the medical illustrations which he had drawn and Hthographed by his own 
hand. 

What next, may again be asked. On the whole, he had spent six years learning how 
to teach general physics, how to cope with faculty politics, and how to understand the 
workings of the human eye, and he had enjoyed a bachelor's merry social life, but he had 
hardly done much to keep up with the rapid advances of physics and applied mathematics. 
Now he went his own way and returned to topology where pioneering work beckoned. 

6. The Vorstudien 

Topology had never been far from his mind. GauB also continued to supply stimuli; for 
instance. Listing's diaries report another discussion of "Geometria situs" on 2 January 
1845, when the human eye was still his prime concern. Soon after the Beitrag is out, early 
in 1846, Listing begins to write and has a long essay done one-and-a-half years later. He 
calls it Vorstudien zur Topologie. The term means "preliminary studies" and should be 
taken Uterally, for he was conscious all along that he had no comprehensive vistas to offer. 
After a cursory but correct historical survey, he defines his own standpoint: 

Unter der Topologie soil also die Lehre von den modalen Verhaltnissen raumlicher 
Gebilde verstanden werden, oder von den Gesetzen des Zusammenhangs, der gegen-
seitigen Lage und der Aufeinanderfolge von Punkten, Linien, Flachen, Korpern und 
ihren Theilen oder ihren Aggregaten im Raume, abgesehen von den MaB- und GroBen-
verhaltnissen. 

(By topology we mean the doctrine of the modal features of spatial objects, or of the laws of 
connection, of relative position and of succession of points, fines, surfaces, bodies and their 
parts or their aggregates in space, always without regard to matters of measure or quantity.) 
The stress on "connection" recurs in other passages and hints at a deeper understanding of 
continuity which seems to be Listing's own, for it cannot be felt in the posthumous papers 
of GauB. Still, a lot of water had to flow under the bridge until the spirit of Klein's Erlangen 
program (1872) prevailed, and Listing's snake of words was replaced by the brief caU for 
invariance under continuous 1-1 transformations. 

In an essentially combinatorial section entitled "On Position" {Von der Position) he dis
cusses the relative orientations of two Cartesian axis systems with parallel axes. There are 
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48, allowing for all right-left inversions and permutations; they may serve to symboUze the 
relative positions of two objects such as dice. His discussion is long-winded because he 
does not possess the basic notions of group theory. He even writes a sum for the product 
of two transformations. Nor does he perceive subgroups or inner automorphisms. On the 
other hand, he remains not content with abstractions and appHes his insight to the object-
image relations in various optical instruments; they had come to his close attention during 
many observational pursuits. What he has to say sounds lengthy but far more lucid than 
most optics textbooks; they often leave their readers wondering and fail to stress the ba
sic symmetries inherent in reflections and refractions which could be readily illustrated by 
pairs of symbols such as b and d, L and F, or 6 and 9. 

The rest of the essay is a medley under the title "On HeUces" {Von der Helikoide oder 
Wendellinie). He defines helices in quite a general manner and shows first that topologically 
they differ only in their handedness. Like many early authors he uses right- and left-handed 
in a sense opposite to the one that is now standard; the former usage survives to the present 
only in the designation of the handedness of circularly polarized Hght. Typically he adds 
many examples from botany and zoology, right back to Linnaeus. Then he passes on to 
double and multiple helices as in pine cones, threads, strings and ropes. He also describes 
simple and multiple screws and screw surfaces. 

When a simple or multiple helix is closed, the complication arises that it may have been 
knotted before the endpoints were joined. In order to study knots he flattens the extended 
object into a plane. Consideration of the simplest possible cases shows how two knots may 
be equivalent in the sense that they can be (continuously!) deformed into one another; if 
not equivalent, they are topologically different. The simplest possible forms of a given knot 
he calls "reduced" but he does not ask how to find them in some systematic manner; it took 
another eighty years until Reidemeister showed how to do that. He does, however, attempt 
to classify knots by the nature of the meshes in a reduced form (including the part of the 
plane outside the knot). He does not carry the classification very far; it was extended thirty 
years later by Tait. Still, some of his examples are astonishingly involved. 

When a closed helix is not just flattened into the plane but projected, the result is a 
closed curve with double points. Such curves may again be classified by the nature of the 
meshes. The white-on-black figure on the cover of the Vorstudien reproduces his Figure 20 
as an illustration of the method. Closed curves with multiple points lead Listing on to 
the Konigsberg problem; he gives the general solution and shows that it also holds in the 
3-dimensional case. 

Much of all this would nowadays not be considered part of topology. At that pioneering 
stage, however, the subject had no conventional boundaries yet. One may even give Listing 
credit for the polymath breadth of his outlook. For instance, his emphasis on the importance 
of symmetries to science was altogether prophetic. In this context he was quite right to 
quote the classic Treatise on Crystallography by W.H. Miller (1839) in a long footnote. 
In another place, he was also right to mention a paper by Charles Babbage, On a method 
of expressing by signs the action of machinery, which in 1826 had attempted to classify 
machines by the nature of the connections between elements; for Listing, this was indeed 
topology. 

Much of it was also incomplete. No matter, it was original. The section on knots was 
even the very first anywhere. No one had written a single word on knots before (Van-
dermonde in 1771 had written about plaits, knits and knight's tours, but said nothing on 
knots). 
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7. Middle years 

Coincident with (and perhaps detrimental to) the writing of the Vorstudien Listing travelled 
the path to matrimony. PauHne, nee Elvers, was the daughter of an eminent jurist in Kassel, 
the nearby capital of Electoral Hesse. In January 1846 she accompanied her mother on a 
private visit to Gottingen, met Listing and captivated him instantly. In April they became 
engaged, in September they married. After a honeymoon in Bavaria she commenced as 
a housewife, exceeded her monthly allowance in three weeks and needed more money. 
Domestic misery has begun. 

Listing had just acquired a spouse, moved into a new apartment and published his sec
ond book, the Vorstudien, when his career was once more affected by extraneous forces. 
The revolution of 1848, launched with the abdication of King Louis Philippe in Paris in 
February, quickly laps over into Germany. The autocratic bastion of King Ernst August 
begins to quake in March; by September it has collapsed. Ernst August is forced to grant 
a constitution which goes farther in its liberality than any other in Germany. Moreover, in 
Gottingen everyone, town as well as gown, remembers the dismissed Seven and begins to 
agitate for their return. As early as April, Weber is approached officially; in May he comes 
over from Leipzig to negotiate, and at the end of August he is appointed to his old post. 
Ewald, too, eventually returns. 

Listing had to be newly accommodated in this altered setting. He hardly lifted a finger 
to safeguard his own interests; it was Weber, always a gentleman, who insisted from the 
outset on cooperation and avoidance of conflicts. In the end. Listing is promoted to profes
sor ordinary and charged with pursuing "mathematical" physics, whereas Weber takes the 
"experimental" part. This representation of physics by two separate chairs was the first in 
the world. It owed its emergence to the historical incidents of 1837 and 1848, but it was 
also promoted by an express desire on Weber's part to see his discipline enhanced in its 
standing as a basic science. The division into an experimental and a theoretical part should 
not be taken too seriously, for the differentiation which is now common only hardened 
much later. Weber and Listing continued to do just what interested them most. 

If Listing had gained something, he took losses elsewhere. He had to transfer two thirds 
of his laboratory space to Weber, and his income did not rise substantially. While the cost of 
his household grew, waves of price increases also swept over the country repeatedly. Thus 
his and Pauline's housekeeping inabilities developed into an endless spiral of financial woe. 

A daughter arrived in the summer of 1848, another in 1849. Both had musical gifts 
and received a thorough and probably costly training in voice and instrumental music. The 
younger later became a music teacher and organist. The older in 1881 married Wilfrid Airy, 
a son of the Astronomer Royal Sir George Airy; she died a year later after the birth of a 
daughter (Listing's only grandchild). 

After the death of GauB in 1855 Listing obtained some financial reUef when he was 
awarded the rent-free apartment in the observatory where GauB had lived. A second such 
apartment existed there. In May of 1858 it was given to Riemann, already a professor 
extraordinary but still at very low pay. Bernhard Riemann, 1826-1866, came from a tuber
cular family and had lost parents, brothers and sisters until only the two youngest sisters 
were left to him and his care. He had explored the general theory of complex functions 
as a doctoral student of the "experimental physicist" Weber whose Assistent he afterwards 
remained for some years. Listing knew him well, through academic governance and from 
common walks; he seems to have recognized his genius early, and respected him highly. 
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Now they found themselves neighbours with a common terrace in front of their doors. 
Yet no friendly contacts between the households developed. Perhaps the tuberculosis was 
responsible. In the northern part of Europe it was believed inherited because it ran often 
enough in families, but in the south it was held to be contagious. Listing may well have 
learned that during his mediterranean travels, and avoided close contact with Riemann and 
his sisters in order to protect his two young daughters. 

When the Vorstudien were done Listing returned to various matters from optics. Then 
he travelled to the historical Great Exhibition of 1851 and used the occasion to make more 
acquaintances in Britain through visits in and around London. He entered optics again, to 
write the substantial theoretical article about physiological optics which also includes a 
flawless exposition of the theory of thick lenses with many impressive figures, published 
1853 in a large handbook of physiology. Then he turned to a number of subjects, interrupted 
by the task of integrating Gottingen into the network of meteorological stations promoted 
by Heinrich Dove, the founder of synoptic meteorology (Copley Medal 1853). And at long 
last, back to topology. 

Listing's diaries note several conversations about topology with Dedekind who was first 
a student and then a Privatdozent in Gottingen until 1858, and with Dirichlet who had 
succeeded GauB in 1855. According to his notes, he also knew Riemann's short but impor
tant paper of 1857 which clearly and convincingly defines the connectivity of a surface by 
means of separating and nonseparating cuts. This was Riemann's only pubUcation in topol
ogy but Listing also knew of some unpublished material; thus they must have had talks on 
topological matters although the diaries do not mention any. However that may be. Listing 
later used the idea of connectivity merely in an altered manner that did not entirely do jus
tice to the clarity of Riemann's insight. It remains a puzzle why these two kindhearted men 
never discovered how much they had to tell each other. The failure was mutual inasmuch 
as Riemann did not adopt the convenient word "topology" instead of his "analysis situs". 
Of course, their personalities were quite different. Listing expansive, Riemann very shy. 
Their thinking habits also differed greatly, Riemann always aiming straight at the heart of 
the matter. Listing often dawdling with detail. A creative artist and an assiduous stamp 
collector facetiously come to mind. How should a fluid exchange of ideas have grown up? 

Listing's new topological concerns originated from a long-standing preoccupation with 
crystals, acquired perhaps under the influence of Sartorius the mineralogist. It guided him 
to polyhedra and from there to related items such as tents, scaffolds, adjacent cells as in a 
foam, maps in the plane, and so on. He was the first to recognize that all these objects had 
topological properties; in particular, he perceived relations between the numbers of their 
elements, similar to Euler's formula for simple polyhedra. The novel insights led him to 
write another milestone of topology. 

8. The Census 

This product of much labour was pubHshed in 1862 under the baroque title Der Census 
rdumlicher Complexe oder Verallgemeinerung des Euler'schen Satzes von den Polyedem 
(Census of spatial aggregates, or generalisation of Euler's theorem on polyhedra). It con
sists of 84 pages of text, followed by an alphabetic list of 31 terms none of which has 
survived into the present, and by copperplates containing 64 figures. Through long dis
cussions larded with new terminology it proceeds towards an apex consisting of a single 
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proposition, called the Census-Theorem. From remaining notes and drafts it is known that 
Listing had considered half a dozen titles mentioning topology, but in the end he opted for 
the word "census", meaning a taxonomy according to his peculiar criteria. A full, techni
cal description should not be the aim of a biography; hence, with some license only a few 
principal cues will be outlined. 

Start with Ruler's formula C + F = £" + 2 for the number of comers, faces and edges 
of a simple polyhedron. Listing asks himself, why 2? He reahzes that for an object like 
a picture frame, the 2 becomes a zero. Today we say neatly that, when the polyhedron 
is not simple but equivalent to a sphere with g handles, the 2 becomes 2 — 2g. But the 
2 can also become an odd number. E.g., for a bounded map in a plane, a 2-dimensional 
analog of polyhedra, it becomes 1. Listing guesses even more. Just as in the Vorstudien, he 
pays attention to the space outside a geometrical object (which he calls the Amplexum) and 
interprets the 2 as the number of pieces into which a closed, simple polyhedron separates 
the 3-dimensional space, whereas he sees the 1 play the analogous role for a plane map. 
Furthermore, when he writes Euler's formula as C — £" + F — 2 = 0, he notes that the 
odd-dimensional components, the edges and the pieces of space, occur with a — sign, and 
the even-dimensional ones, the corners and faces, with + sign. Thus dimensionahty as well 
as its parity should be watched. 

In pursuit of the highest generality, he thereafter considers aggregates (or "complexes") 
of constituent points, hues and polygons which must be connected but remain otherwise 
arbitrary, and he reckons the resultant space pieces as parts of the aggregate. To illustrate: 
a tetrahedron may be a scaffold made up of six rods, or a closed surface made up of four 
triangles with an extra space piece now belonging to it; or the bottom triangle may be 
omitted to leave a tent, one of the triangles may be detached like a tent flap, a tent pole 
may be sticking out at the top, or a flag may be put at the top; and so forth. The edges 
and faces may also be bent. Connectivity is now introduced by means of a process he 
calls a Cyclase. On any given constituent, whether polygon or polygonal face or space 
piece, he seeks to construct two closed, hnked simple curves, one lying entirely within 
the constituent, the other entirely outside. He then spans the latter by a diaphragm which 
necessarily cuts the constituent. The process is repeated until the constituent would sepa
rate. The maximal number of cycloses possible, which he calls the cyclomatisch number, 
is evidently Riemann's connectivity minus 1, only it is introduced in a more rigid fashion. 
A simply connected component or a single point or the whole space he calls acyclomatisch. 
Through a delicate discussion he needs to clarify how the cycloses are to be established for 
more complicated aggregates having loops that are knotted, or wound around each other; 
it anticipates Felix Klein's later distinction between intrinsic and relative (or embedding) 
properties. For constituent surfaces it also becomes necessary to state whether or not they 
are closed; he calls closedness the Periphraxis. 

Through a sequence of propositions he ultimately reaches the Census-Theorem for an 
aggregate of a corners, b edges and c faces with d resultant pieces of space. He writes it as 

(a -f a) - (fc + ^) + (c + y) - (J + 5) = 0, 

where each number a, ^, y, 5 is called an Attribut and is made up by properly counting 
cycloses, periphraxes and the number of constituents extending out to infinity, if any. Fur
thermore, he shows that for compound aggregates made up of p nonconnected aggregates 
the zero on the right becomes p — I. Many examples follow. 
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Despite its startling formal elegance the Census-Theorem has not entered the canon of 
present-day topology. Not even the existence of such a general relation is well remem
bered. The reason is mainly that the "attributes" remain obstreperous. They are often not 
easy to ascertain; they commingle dimensionality, connectivity and extension; and they do 
not foreshadow the combinatorial invariants which were later found to furnish trenchant 
criteria of wide applicability. In the end, only partial cases of the Census-Theorem were 
absorbed into various branches of topology, such as graph theory, where other concerns 
demanded different emphases and left Listing's contribution hard to recognize. 

Yet the Census remains a milestone. It established topological aspects where no one 
had seen them before. One is also impressed by the strictly topological nature of Listing's 
proofs. Not once does he mention angle or distance, area or volume. And where it sounds 
verbose, the utter generality of his approach still rests upon an exactness of definition which 
for his time was remarkable. In brief, it is a pioneering work which hke many other bold 
explorations was quickly superseded by more practical undertakings. 

Throughout his meticulous survey of variegated examples. Listing fails to notice the ex
istence of one-sided surfaces. However, the Mobius strip appears in the Census as Figure 3. 
He refers to it only once, in a footnote, together with another multiply-connected surface 
which occurs in the adjoining Figure 4 but is two-sided. Listing says that these two exam
ples, both bounded by a single, unknotted curve, have "properties quite different" {ganz 
andere Eigenschaften) from those just described in the main text for a simple diaphragm, 
namely, how it can be continuously contracted to a point, and how in order to pass from 
one side to the other the boundary curve must be crossed. The statement is faintly unclear, 
but it definitely does not indicate that he perceived one-sidedness. 

The strip is named after Ferdinand August Mobius, 1790-1868, who was a student with 
GauB in 1813/1814, became nominally a professor of astronomy in Leipzig, and wrote 
his two seminal papers on topology when he was older than 65. His biographer dates the 
earliest consideration of the strip "with fair certainty" {mit ziemlicher Bestimmtheit) to the 
last quarter of 1858. Listing's notes mention the strip quite often, for the first time in July 
of 1858. Hence, independent, prior discovery is sometimes ascribed to Listing. It has been 
widely overlooked that among the papers left behind by Mobius was a note on bordered, 
one-sided surfaces which said of the strip that it possesses 

... noch die merkwiirdige Eigenschaft, dass man von irgend vier in ihrem Perimeter 
auf einander folgenden Puncten P, Q, R, S den ersten mit dem dritten und den zweiten 
mit dem vierten durch zwei Linien [PR] und [QS] verbinden kann, welche in der Flache 
selbst liegen und dennoch einander nicht schneiden ... 

(... also the remarkable property that on its perimeter one may mark any four successive 
points P, 2 , R, S and connect the first with the third and the second with the fourth by 
two lines [PR] and [QS] which lie entirely within the surface and yet do not intersect each 
other . . . ) . In brief, the perimeter admits non-intersecting diagonals. Mobius adds: 

Nach einer mundlichen Mitteilung von GauB. Wodurch G. zur Betrachtung dieser 
Flache gefiihrt worden ist, ist mir unbekannt. 

(After an oral communication from GauB. What led G. to consider this surface is not known 
to me.) Oddly enough, these non-intersecting diagonals are also mentioned by Listing in 
his quoted note of July 1858 as the characteristic property of the strip. Is this a conver
gence of ideas? Or did GauB tell Listing as well as Mobius? Whatever the truth, prior-
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ity in time belongs to Gau6, yet the all-important one-sided nature was recognized by 
Mobius. 

When a ladder is twisted into a Mobius strip, its rungs are readily seen to be
come such non-intersecting diagonals. A widely reproduced woodcut by the Dutch artist 
M.C. Escher shows a Mobius strip made from a ladder-like material, with nine huge ants 
crawling around it in unending single file. Metaphorically, then, GauB and Listing saw only 
the rungs, but Mobius also noticed the ants. The strip is properly named after him. 

9. Later years 

While still writing the Census, in 1861, Listing was elected one of the very few members of 
the mathematical section in the Gottingen Academy (then called Konigliche Gesellschaft 
der Wissenschaften). After the publication he took up a variety of minor matters, mostly 
in spectroscopy, and in instrumental, atmospheric and physiological optics. In the midst 
of all this the Listing family very nearly slithered into a catastrophe due to overwhelming 
debts, and had to be rescued with a direct intervention by the ministry in Hannover (set in 
motion by Sartorius, in stalwart return for Listing's loyalty). Of course, the embarrassing 
event could hardly remain a secret and resulted in increasing social isolation. 

Next came a short foray into topology. The extreme generality of the Census had ex
empted Listing from the need to define what is meant by "polyhedron". He touched upon 
it in a paper dated 1867 which contains mainly a retrospective critique of L'Huiher who 
in 1812 had noted exceptions to Euler's theorem as it was then understood, but substituted 
an alternative definition that was again full of lacunae. The paper also dealt with closed, 
plane curves having only double points, as in the white-on-black figure on the cover of 
the Vorstudien. Listing shows that the rule "The number of pieces exceeds the number of 
crossings by 2" is contained in the Census-Theorem as a special case. After that, he left 
topology altogether. Thus the reception of his ideas by others took place without his active 
participation and need not be described here; see especially the articles on knots (M. Epple) 
and on graphs (R.J. Wilson). 

An isolated occurrence may be mentioned, though. Maxwell in his Treatise had quoted 
both the Vorstudien and the Census in the context of integrability conditions, line and 
surface integrals, and solid angle calculations. He also had other concerns. In particular, 
various studies of statics had led him to networks of force vectors, and to frameworks of 
rigid members. In four papers on reciprocal figures, force diagrams, hills and dales, dated 
1864-1870, he repeatedly quoted Listing and the Census. However, his results did not find 
their way into engineering practice and remained a dead end as far as Listing's standing 
was concerned. 

In the 1870's Listing again worked on optics, including a book on reflection prisms, 
and then undertook an intensive study of the figure of the earth. Undoubtedly he had been 
introduced to this ramified topic by GauB who in the 1820's had provided many accurate 
data through his geodetic labours, then enriched cartography and differential geometry 
hand in hand, and also contributed the main elements for the later definition of the geoid. 
Listing attempted a synthesis in two large, painstaking memoirs in 1872 and 1877. Both 
were superseded in 1878 by Heinrich Bruns (he of the algebraic integrals in the three-
body problem). With a booklet of only 47 pages Bruns put the entire subject on a firm, 
lasting foundation through a sound application of potential theory. Listing had missed the 
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salient point over all the detail. Still, just then some recognition arrived from abroad. In 
1877 the University of Tubingen awarded him the Dr. med. h.c. for his contributions to 
ophtalmology, and in 1879 he was elected a member of the Royal Society of Edinburgh. 
And he remained active to the end, busy in many areas, and directing dissertations on 
subjects ranging from centrifugal pumps through meteorology into electromagnetic theory. 

Listing was felled by a stroke on 24 December, 1882. 

10. Sources 

Listing has been neglected by historians and biographers alike. My own last-minute (1985) 
contribution to Neue Deutsche Biographie 14, 700-701, is still inaccurate. For adequate 
documentation, see my article ''Gaufi und Listing: Topologie und Freundschajf\ Mitteilun-
gen der Gauss-Gesellschaft, Nr. 30 (1993), 2-56, with much collateral material, a census 
of Listing's publications, and the entire text of the letter to Miiller. 

When Leibniz called for a Geometria situs he envisaged not topology but a vector cal
culus of sorts. GauB misunderstood, like many others (although not Listing in the Vorstu-
dien). For the full story, see Michael J. Crowe, A history of vector analysis. University of 
Notre Dame Press, Notre Dame (1967), pp. 3-5, with accurate references and translated 
sources. Further documents, hitherto unknown, have been pubhshed with commentary in 
G.W. Leibniz, La caracteristique geometrique, J. Echeverria, ed., J. Vrin, Paris (1995). 

The posthumous papers of GauB on topology are in his Gesammelte Werke, Vol. V, 
605, and Vol. VIII, 271-286 (with terse commentary by Paul Stackel). The early discus
sion of "right" and "left" appeared in his (anonymous) announcement of the second paper 
on quadratic residues in Gottingische gelehrte Anzeigen 1 (1831), 625-638; also Werke, 
Vol. II, 169-178. 

On the broader influence of GauB, see Jean-Claude Pont, La topologie algebrique des 
origines a Poincare, Presses Universitaires de France, Paris (1974). He also comments 
extensively on Mobius, with the conclusion 

Si Euler, Listing, Riemann et d'autres ont donne des bequilles a la topologie, Mobius 
lui a donne des ailes. 

(If Euler, Listing, Riemann and others provided crutches for topology, Mobius gave it 
wings.) 

For detailed, technical appreciations of the Vorstudien and the Census, see Pont, op. 
cit. (with some translation and printing errors); also Angelo Tripodi, "Uintroduzione alia 
topologia di Johann Benedict Listing", Atti e Memorie della Accademia Nazionale di 
Scienze, Lettere e Arti di Modena 13 (1971), 3-14, and ''Sviluppi della topologia secondo 
Johann Benedict Listing'', ibid., 15-24. The Vorstudien have been translated into Russian: 
Predvaritel'nye issledovaniya po topologii/s logann Benedikt Listing, Gosudarstvennoye 
tekhniko-theoretitcheskoyeizdatel'stvo, Moscow (1932), with introduction and technical 
comment by the editor E. Kol'mana. 

Listing's note of July 1858 has been pubhshed by Paul Stackel, ''Die Entdeckung der ein-
seitigen Fldchen'\ Mathematische Annalen 52 (1899), 598-600. On the papers of Mobius, 
see Curt Reinhardt, ''Mitteilungen aus Mobius' Nachlass'\ in August Ferdinand Mobius, 
Gesammelte Werke, Vol. 2, Fehx Klein, ed., Hirzel, Leipzig (1886), pp. 513-708, espe
cially pp. 517 and footnote 197 on pp. 540-542. 
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The definition of "polyhedron" has remained vexing to the present day. See Branko 
Griinbaum and G.C. Shephard, "A new look at Euler's theorem for polyhedra'\ Amer. 
Math. Monthly 101 (1994), 109-128; and Walter Nef, "A new look at Euler's theorem 
for polyhedra: A commenf\ ibid. 104 (1997), 150-151; with much literature but without 
reference to the Census-Theorem. 
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1. Poul Heegaard's autobiographical notes 

When we started our investigation of Heegaard's life and career, it was easy enough to 
locate his mathematical publications, but we found only very few accounts of his Ufe, in 
general. In particular, we could locate only one obituary. We then searched the Internet for 
persons carrying the name Heegaard. This led us to contact a number of e-mail addresses 
in Norway, Denmark, USA, Sweden and Switzerland. A few of the persons we reached this 
way knew that they were related to "our" Heegaard. Among those was Poul E. Heegaard, a 
Ph.D. student of computer science at Trondheim University, Norway, and a great grandson 
of Poul Heegaard. He gave us the very welcome news that Poul Heegaard had actually left 
roughly 130 pages of handwritten autobiographical notes, [17], and he generously supplied 
us with a copy. 

The notes were written in 1945 (in Norwegian) when Heegaard was 73 years old and 
they were meant as a family history told to his children and grandchildren, but they do 
contain a lot of information that is relevant to our study. Unfortunately, a few pages are 
missing precisely at two critical points in Heegaard's Ufe. Nevertheless, the notes supply 
much more information about Heegaard's life than any other single source we have found, 
and we have chosen to use them as a skeleton for the following account. Our rather ex
tensive quotes from this source are both indented and between quotation marks, as in the 
following example which refers to the semester Heegaard spent in Paris in 1893. 

"Later, I have always regretted that I accepted the advice not to attend lectures by 
Poincare, who was claimed to be untelligible. His very intuitive exposition has later 
on been of great importance to me when I met it in printed books." 

Heegaard wrote long, rather complicated sentences, probably influenced by his regular use 
of German. In our translation we have attempted a compromise between the original style 
and current usage in English. 

HISTORY OF TOPOLOGY 
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A transcript of the autobiographical notes (in Danish) has been produced at Odense 
University and is available on the Internet ( h t t p : / / w w w . i m a d a . o u . d k / ~ h j m / 
h e e g a a r d . h t m l ) . 

In our account we also quote from other sources, again in our own (occasionally some
what free) translation. Such quotes are not indented. Here is an example from a letter that 
Heegaard wrote to Jakob Nielsen in 1935: 

"I have been terribly busy with University work. Therefore, I have not written to you, nor to 
Dehn. Where is Dehn at the moment? I made all the mathematicians sign an application to 
the Science Academy for 2000 Kr. so that he could come up here in April of 1936, attend the 
Congress and give lectures and exercises. Now the board is trying to figure out that a grant 
would be against the statutes."^ 

2. The early years (1871-1883) 

Poul Heegaard was born 1871 in Copenhagen where his father, Sophus Heegaard,^ was 
a professor of philosophy. As a young student, Sophus Heegaard had wavered between 
theology and astronomy when he registered at the university. Influenced by his father, 
he settled for theology, but for his dissertation he switched to philosophy. He retained 
an interest in science, and it is reported that he pursued mathematical studies with great 
eagerness throughout his life. 

As we shall see, Sophus Heegaard managed to transfer at least three of the above four 
areas of interests to his son even if he died before Poul turned 13. 

At first, there was little indication of a future mathematical career for the schoolboy 
Poul. Thus, in his autobiographical notes, [17], Poul Heegaard reports that he was not very 
adept at arithmetic. In particular, when he was examined in the addition table, he would 
always secretly try to reach the result by counting on his fingers. 

"I really only learned the addition table in [my high school fi-eshman year] when the use 
of logaiithms forced me to take it up on my own. I still remember that the occasion for 
this was my discovery that I had consistently believed seven plus eight to be seventeen. 
. . . I never learned any mental arithmetic, a fact that has later been a great nuisance 
for me. By the way, this matter deteriorated even further towards the end of elementary 
school [i.e. around the age of 10 or 11] when our teacher of arithmetic, a young student 
. . . discovered that I had a flair for algebra. Apparently it amused him to replace the 
dry teaching of basic arithmetic by such abstract teaching of mathematics. This proved 
fateful to me in two ways. For one thing, it further weakened my basic arithmetic skills. 
For another, it developed my mathematical abilities at an early stage - and thus led 
my surroundings to drive me towards an occupation with mathematics for which I did 
have a talent, but for which I do not have the burning interest that I have met in others. 
I feel so particularly, when I compare with my interest in astronomy. . . . [The interest 
in] astronomy grew during the dark, starry nights. I would often sit astride the ridge of 
the roof and compare a star atlas with the firmament itself. Later, during starry nights, 
I have often felt the well known constellations to be faithful friends." 

This may refer to the dispute concerning the participation of Germans in the 1936 International Congress in 
Oslo. 
^ Information about Sophus Heegaard is from [23]. 
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3. High school and University of Copenhagen (1883-1893) 

Nevertheless, in Poul Heegaard's description of his high school years (1883-1889, Metro-
politanskolen, Copenhagen) he notes that 

"The teacher who became most important for me was the mathematics teacher, Eigil 
Schmidt... an excellent teacher for those students who took an interest in the subject. 
But he did not have sufficient patience for the backward pupils." 

Later in high school, the same teacher 

"Eigil Schmidt gave an excellent course in mathematical physics, sufficient in scope for 
my minor in physics at the university." 

After high school graduation in 1889, Poul Heegaard started studies at University of 
Copenhagen. His father's death had left the family in a bad financial situation, so Poul had 
to finance his studies by tutoring other students and grading papers at the nearby Techni
cal University (Polyteknisk Laereanstalt). Nevertheless, he finished his Master's Degree in 
mathematics with a minor in astronomy, chemistry and physics, in less than four years. In 
mathematics, his best known teachers were H.G. Zeuthen at whose lectures on enumera-
tive geometry he was the only student, and Julius Petersen whose contributions to complex 
function theory would later become a model for much of Heegaard's dissertation. Lectures 
in astronomy by Thiele included an introductory and an advanced series as well as a spe
cial series on quaternions. Heegaard's strong high school background in physics mentioned 
above was still present, so 

"the physics curriculum I picked up on my own. I found chemistry very interesting 
but the teaching was very abstract and unpedagogical. Jul. Thomsen did arrange for 
complete fireworks of experiments, but you remembered very little of it. And S.M. J0r-
gensen was very dry. We only had to memorize his big textbook on inorganic chemistry, 
and we got no real impression of the substances from watching him shake some glass 
jars containing a white powder." 

When Heegaard registered for the final examination in December of 1892, 

"Zeuthen thought it premature, but I had become secretly engaged to Magdalene and 
longed for my degree." 

The first part of this comprehensive examination was a "thesis" which had to be worked 
out between January 23 and March 4 1893. 

"Its purpose was to study Chasles' description of algebraic curves in a surface of sec
ond order by characterizing them in terms of the number of intersection points with the 
generators in the two generating systems. I recall as a wonderful time these six weeks 
when I could concentrate completely on the thought processes. Zeuthen was very satis
fied with my work." 

In May of 1893, there followed two written six hour exams in mathematics and one in 
physics, as well as an oral examination where 

"all four professors, Zeuthen (mathematics), Thiele (astronomy), Christiansen (physics) 
and J0rgensen (chemistry) sat around a semi circular table at the center of which 
1 had been placed. The examination started at 10 o'clock and the torture lasted until 
2 o'clock." 
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The final outcome, presented by professor Zeuthen immediately after the oral on May 6, 

1893, was the desired "Admissus". 

4. In Paris and Gottingen (1893-1894) 

After his examination, Heegaard wanted to go on a study trip abroad. He managed to 
secure some funds from a private foundation and a much needed addition came from the 
university. 

"Personally, I would like to go to Gottingen to study with Felix Klein with whose in
tuitive exposition I felt so confident. But Zeuthen was strongly pro-French and wanted 
me to study in Paris. This I then went along with." 

Thus, in August of 1893, Heegaard left for Paris, bringing along letters of introduction to 
a number of French professors. He reports to have been well received first by Mannheim 
and later also by Picard, 

" . . . but nothing more came of this courtesy call. 
Professor Darboux' behaviour was more remarkable. In his private residence the maid 
told me that he would receive only during his office hours at the Sorbonne. . . . 
I went there and dehvered Zeuthen's letter of introduction to a Cerberus in the anteroom. 
After I had waited there for three quarters of an hour, the Cerberus said: 'Monsieur 
might as well leave immediately, for the professor tossed the letter in the wastepaper 
basket after reading it'." 

Heegaard had arrived early in order to improve his command of the language, but in this 
he did not succeed. Nor did things improve when the lectures started. 

'The French were extremely withdrawn towards foreigners. Therefore, I only asso
ciated with the Danish Norwegian colony, much to the detriment of my progress in 
speaking French. 

I attended lectures by Picard. He covered his book 'Lemons d'Analyse' word for word. 
When he came into the room, met by applause, a caretaker . . . would precede him at 
a light trot. He would pour water into a glass and place small bits of sugar beside it. 
Some of the students kept an account of the number of sugar bits consumed by Picard 
during each lecture, and intended to expand the results in spherical harmonics after the 
semester. 

I also heard lectures by Jordan at the College de France. Nor from him did I get exciting 
expositions. He went through the proof sheets of his 'Cours d'Analyse'. Occasionally, 
he would pause and pencil in a correction." 

The autobiographical notes give no indication that Heegaard worked (hard, or even oth
erwise) on mathematical research, but he reports that his mathematics was of some assis
tance to a Danish professor Tscherning who was investigating Listing's law on eye move
ments. Also, he made the drawings for a medical dissertation, submitted to University of 
Copenhagen by a Danish MD, named Ree. 

"The scant return on my mathematical studies matured in me the thought that I would 
spend the next semester in Gottingen. After an exchange of letters with Zeuthen, I fi
nally got a very friendly letter from Klein. He wrote that it would be a special satisfac-
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tion for him if I would end up feeling that I had studied better at Gottingen than Paris. 
As a preparation, I had to read a paper by Riemann on the V function. I rushed to the 
Bibliotheque Nationale and got hold of the relevant issue of Mathematische Annalen in 
the reading room. It was heavy stuff, but I did get far enough to be orientated when I 
arrived at Gottingen. 

The remaining time I spent in part by fulfilling an old, rather peculiar, desire, namely 
to learn Chinese I wallowed in the studies, in part at Bibliotheque Nationale, in part 
at Bibliotheque Mazarin and Bibliotheque Sainte Genevieve." 

In Gottingen, the reception was much more pleasant. Within hours of Heegaard's arrival, 
Klein himself had taken him to his new quarters. And very soon Heegaard presented his 
first seminar lecture - about harmonic functions in Tait's mathematical [theory of] elec
tricity. Later, he attended two lecture series by Klein (an elementary one including angle 
trisection and the like, and a more advanced one on differential equations) and one by 
Heinrich Weber (Higher Algebra). In addition, 

"Klein had me give two lectures in the 'Mathematische Gesellschaft' with a summary 
of Zeuthen's work on enumerative geometry. He also discussed with me the idea that 
would later form the basis for my dissertation. Altogether, there was a scientific atmo
sphere which stimulated me very much - stronger than anything I have ever met again. 

When the semester ended, early October [of the year 1894], I returned to Copenhagen, 
very satisfied with the result of my study visit. In particular, I had the idea for my 
dissertation. Now, the object was to get a secure occupation so that I could marry." 

5. Work on the dissertation (1894-1898) 

The desired occupation Heegaard found as a teacher of mathematics in two high schools. 
Later on, more high school jobs were added along with some tutoring at the Technical 
University, and in 1896 the financial situation finally allowed Heegaard to marry Magda
lene. Their first child, Lorenz, was bom a year later. Under these circumstances, Heegaard 
recalls that 

"of course, the dissertation progressed only slowly. Moreover, I felt strongly out of it 
among the mathematicians. While I had been in Gottingen, two closed coteries had 
formed, and I was made to feel odd man out in many ways. When I had announced a 
lecture in the Danish Mathematical Society, and it ended up being sabotaged away, I 
resigned from the Society at the end of the year. Presumably, this was a tactical error, 
but I have always been timid where it looks like war." 

It is easy to speculate that this represents an early start of those infights that would make 
Heegaard resign his chair at University of Copenhagen more than 20 years later. However, 
one must bear in mind that the text quoted here was written fifty years after the events took 
place. 

One day, apparently in the fall of 1897, 

"one of the older mathematicians who knew of the problems I worked on [said to me] 'It 
is unpleasant for you that Poincare has solved your problem.' He had seen it in an article 
Analysis Situs in the Journal de I'Ecole Polytechnique, [obviously [30]]. At the time, 
this journal was in circulation among members of the Society of Sciences and Letters, 
and it would be available to the public in the University Library only after a long time. 
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I now ordered the issue in question through my bookseller. I noticed immediately that 
Poincare's treatment was based on a gross mistake. There was a reference to a book by 
Picard and Simart, [presumably [29]], on functions of two independent variables. When 
I got hold of this, I saw that Picard had the same mistake. During the Christmas break 
I then plunged into a critique of Poincare's and Picard's accounts, in which I demon
strated the mistake. Already in January [of 1898], I could hand in a dissertation, [1], 
entitled 'Preliminary studies of a theory of connectivity for algebraic surfaces'." 

6. The dissertation (1898) 

Heegaard's counterexample to Poincare's original formulation of the duality theorem and 
the role this example played in the development of algebraic topology (by "forcing" 
Poincare back to the matter) is well documented, e.g., in [24, 31, 34], and we shall not 
go into that aspect here. Nor shall we go directly into the other main contributions from the 
dissertation, Heegaard decompositions and Heegaard diagrams. Here we refer the reader 
to [34] and the article by C. Gordon in the present volume. 

The Poincare duality conterexample and Heegaard's stay in Paris had led us (and many 
others, we have reason to believe) to assume that Poincare had been an unofficial advisor 
for Heegaard. As we have seen in the above description of the time in Paris, this was cer
tainly not the case. Actually, we have found no indication that Heegaard ever met Poincare, 
then or later. 

For a dissertation there was no official advisor, but we have seen that Heegaard's dis
cussions with Klein certainly played a role. So did also Julius Petersen's lectures on Func
tion Theory, [28], which Heegaard had attended (in an earlier version) at University of 
Copenhagen and in which the role of Riemann surfaces as a tool in the study of (com
plex) algebraic functions of one variable, had been emphasized. Furthermore, the Riemann 
surfaces themselves had been studied by puncturing them and deforming the result into a 
normal form. It is this approach that Heegaard sets out to generalize to the case of alge
braic functions of two variables. In his own words from the introduction to the disserta
tion: 

"To caiTy out an analogous investigation of the connectivity of an algebraic surface z = 
f{x,y), one must first form a fourfold infinite collection of elements to which one can as
sociate all the value pairs {x, y) that can be obtained by letting x and y assume all possible 
complex values, independently of one another." 

Today, it is easy for us to say that Heegaard is looking simply for S^ x 5^, but such 
abstraction was not available, so Heegaard begins by describing how one may interpret 
(xi + ix2, y\ + \y2) as a point {x\,X2, y\) in ordinary 3-space equipped with a contour 
number y2\ how lines, planes, and (flat, 3-dimensional) spaces look in this set up; also 
circles, rotations, angles, distances, etc. 

Actually this description of points in 4-dimensional space had already been given by 
Lie [12] some thirty years before, but we see no indication that Heegaard knew of Lie's 
work when he wrote his thesis. We shall return to this question later when we describe 
Heegaard's contribution to the publication of Lie's collected works. 

Once Heegaard has the 2-variable analogue of the Gauss sphere at his disposal, he turns 
to the generalized Riemann surfaces as we see in the following continuation of the quote 
above: 
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"By covering this several times, introducing 'branching surfaces' in a suitable way, and con
necting these by means of 3-dimensional creations through which the different 'layers' can be 
connected to one another, one can create a 4-dimensional manifold in which the connectivity 
of the algebraic surfaces can be studied." 

Here the word "connectivity" could be interpreted to mean the Betti numbers, but Hee-
gaard really wants more: 

"Already before I knew . . . [Poincare's and Picard's work, [30] and [29]] . . . I had decided 
to try a different road than that of Riemann and Betti, viz. to attempt a generalization of Jul. 
Petersen's Puncturing Method . . . . 
. . . it appeared unfortunate to me that the n connectivity numbers were not sufficient to charac
terize a manifold, topologically, when n > 2. When I became acquainted with . . . Poincare's 
[work] I began to falter in my choice as I compared the elegant methods I met here with the 
somewhat hard and clumsy theory that I worked on. But since I seemed to discover that the 
road chosen by me would throw light over circumstances which were not clearly exposed in 
the other way, and since furthermore I got tools in hand to find sufficient conditions for the 
equivalence of n-dimensional manifolds I decided to continue in spite of the difficulties I met." 

The difficulties were so great that Heegaard never really got to the 4-dimensional case. 
But he illustrated the idea in three dimensions and thereby immortalized his name. 

The defense act went well but did not lead to mathematical acceptance in Denmark as 
we can see from the following excerpt. 

"I had sent my dissertation to Picard and Poincare. The latter asked me about different 
things that he had not understood in the Danish text. Thus I wrote a summary of the 
dissertation in French for him. This led him to write a paper supplementing his original 
treatise, and thus my dissertation became known abroad even if it was written in Danish. 
In Denmark public opinion held it worthless and completely ridiculous. One of my 
foreign friends noted this in a conversation with one of the older mathematicians who 
had to admit at the same time that he had not read it." 

A French translation, [5], appeared in 1916. A preprint from Odense University, [32], 
contains a translation into English of the latter half of the dissertation. 

7. The Dehn-Heegaard Enzyklopadie article (1907) 

After his dissertation Heegaard taught for twelve years in a variety of naval and military 
academies in Copenhagen. Hours were long - eight hours a day, six days a week, typically. 
But Heegaard remembers this period fondly 

"I was now on firm ground and could live happily and unaffected by whatever the 
coteries of mathematicians might be up to for a score of years. But, of course, there was 
extremely little time for advanced mathematical production." 

In spite of this, when he was asked to report on Analysis Situs in the Enzyklopadie der 
Mathematischen Wissenschaften, Heegaard accepted, and 

"started the work with great pleasure, and - lack of time notwithstanding - finished an 
outline and a bibliography. However, it was difficult to get the time and quiet needed 
to work out the theoretical introduction. Moreover, quite senselessly, I let myself be 
influenced by a variety of malicious comments on my work in topology. Therefore, 



Poul Heegaard 933 

I asked Franz Meyer [the Enzyklopadie editor] for an assistant. It was then arranged 
that I should write the article with the young German mathematician Max Dehn, Dr. 
from Gottingen. 

In the meantime, Dehn had become Privatdozent in Kiel, and in the summer of 1905 
I went down there to work with him. I now initiated him into my viewpoints and he 
began to work on the general introduction, which he finished beautifully during the 
next winter." 

Here, Heegaard seems to think of Dehn as a junior author, but the official version, appearing 
in a footnote in the article itself, [2], is different: 

"Of the two authors, Heegaard did the preliminary literature studies, and also took an essential 
part in the work. Responsibility for the final form of the article is Dehn's." 

In his Heegaard obituary, [25], Heegaard's student, Ingebrigt Johannsson, gives a ver
sion, which he probably heard from Heegaard at some stage. This has Heegaard and Dehn 
meeting at a conference in Kassel in 1903. It further reports that they discussed founda
tional problems in topology on the train back between Gottingen and Hamburg and con
tinues: 

"Dehn believed that that one should postulate just enough axioms to let the topological essence 
stand out clearly, something that had never been done before. Here, in the railroad compart
ment, combinatorial topology was created. Heegaard was enthusiastic, and proposed that they 
would write the article jointly." 

The axioms referred to by Johannsson are purely combinatorial. They treat abstractpo/j-
hedral complexes', subdivisions', n-manifolds, defined to be complexes in which each vertex 
has an {n — l)-sphere as its link, just the way we expect it today; orientations, under the 
name indicatrices; homeomorphisms', singular subcomplexes in manifolds, defined some
what clumsily by today's standards, but workable; homotopies that are more restrictive 
than we might anticipate today; isotopies', etc. 

Such an approach was not universally admired. Thus, Klein, [27], calls it 

"... quite abstractly written ... begins with the most general formulations of basic notions 
and facts from Analysis situs, construed by Dehn himself. From there, everything else is then 
deduced by pure logic. This is in complete contrast to the inductive presentation that I always 
recommend. To be fully understood, it really presupposes a reader who has already worked 
through the field thoroughly in an inductive manner." 

The authors are well aware that the intuitive content is important. In fact they charac
terize Analysis situs as a part of combinatorics, distinguished by its ''anschauliche Be-
deutung", i.e. by its intuitive/visual interpretation/impact/importance. In a section called 
"Das Anschauungssubstrat" immediately after the combinatorial axioms, they record ax-
iomatically those properties of the ordinary three dimensional space which make it possible 
to interpret the abstract developments concretely. And they explicitly state that it is only 
through such interpretation that the whole theory acquires its value. 

What then is the value that it acquires, i.e. what do Dehn and Heegaard do with the for
mal apparatus they have built? In the following summary we follow Dehn and Heegaard's 
break down of the material according to the methods used. 

Complexus is their name for that part of the theory in which neither subdivision, nor 
homotopy is used. In this part they give a thorough overview of the existing literature 
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on graphs ("Liniensysteme"). And in higher dimensions, a treatment of homology, Betti 
numbers, torsion coefficients, and Euler's formula. Even though this necessitates some 
use of subdivision, expositions of Poincare duality and Poincare's counterexample to the 
(original) Poincare conjecture are also given under this heading. 

Nexus is the heading used when subdivisions, but no homotopies, are allowed. The main 
problem here is to find necessary and sufficient conditions under which two given mani
folds are homeomorphic. Their axiomatic approach allows them to estabhsh a normal form 
for surfaces (as a disk with a number of twisted bands or double bands attached, and fi
nally capped off by another disk) and thereby solve the main problem in dimension two. 
Among the applications given is the so called proper Euler formula expressing the Euler 
characteristic of a surface in terms of the number of boundary components, and the maxi
mal number of disjoint, closed, simple curves that do not separate the surface. They argue 
that this form is much deeper than the one with Betti numbers. And especially point to the 
fact that the latter is easy to establish in all dimensions whereas the former has no known 
generalization to higher dimensions, "because, so far, no presentation in normal form is 
known for Mn with n > 2". 

Connexus, finally, denotes the theory obtained when homotopy and isotopy become es
sential. One section reports on Jordan's, [26], classification up to homotopy of all closed 
curves through a given point on any orientable surface. In modern terms this is, of course, 
the determination of the surface fundamental group, and Poincare's recent introduction 
of that notion is briefly recorded. In another section, there is an extensive report on the 
existing literature on knots and Unks. 

Dehn and Heegaard did not find it possible to fit the study of singularities into their 
complexus/nexus/connexus classification scheme. A separate section, entitled Manifolds 
with singularities, consists mainly of a survey of Riemann surface theory. Also mentioned 
are Gauss' study of singularities for curves and Boy's proof that any surface can be realized 
in M-̂  with singularities no worse than double curves with one threefold point. The latter 
of course refers to Boy's construction of the immersed surface carrying his name, [21]. 

8. Not quite turning astronomer 

In 1901, Heegaard's childhood stargazing experience matured in the form of a series of 
popular articles that appeared in a Danish weekly magazine. In book form, under the 
title "Popular Astronomy" (1902), it became very popular and it was later translated into 
Swedish and German. Moreover, it became the starting point for a long series of popular 
lectures on astronomy, often accompanied by small publications. 

During his visit with Dehn in Kiel, Heegaard participated in professor Schur's seminar 
on astronomy, and also otherwise 

"I had the opportunity to cultivate my old love, astronomy. In Copenhagen I had often 
wanted to to get this opportunity, at times I had even had plans to study astronomy. 
After my dissertation I went so far as to lecture on astronomy at Copenhagen University. 
But this crossed Professor [of astronomy] Thiele's plans, and I never got any further. 
Especially, I never had the opportunity to learn observation skills. But here, I was met 
favourably by Professor Harzer, the Director of the Kiel observatory. On the one hand, 
I performed observations with the observer. Professor Kobold, using the big meridian 
instrument, along with a sister instrument in South Africa the largest on Earth. On 
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the other hand, I worked with a Swedish astronomer, Dr. Str0mgren . . . I recall an 
experience, which really throughout the years contributed to the cooling of my desire 
to be an observing astronomer. One starry night at around 2-3 o'clock I was sitting in 
the meridian house, assisting Professor Kobold. He would give the times for the star 
passages, and I would record them. Then he got tired and wanted to take a break. We 
were both looking through the slit in the roof where innumerable stars sparkled in the 
dark night. Then he suddenly said: 'Eigentlich ein lacherliches Geschaft'. Here sat a 
man, who had reached all I longed for, the insight, the position, and one of the world's 
best instruments - and then basically he found the work *a ridiculous business'. I began 
to fear that it might turn out the same way for me." 

A year after Heegaard's visit to Kiel, in 1906, Professor Thiele retired from the astronomy 
chair at University of Copenhagen, and several friends urged Heegaard to apply. 

"Zeuthen spoke very diplomatically when he answered one of my most insistent friends: 
'Dr. Heegaard is probably the best judge of his own qualifications'. In that he was right. 
For although I did not have a bad standing concerning theoretical knowledge, I lacked 
sufficient experience in observation and I completely lacked scientific publications. It 
therefore never occurred to me to apply." 

However, this did not mean that Heegaard gave up his interest in astronomy. He became a 
cofounder and the first chairman of the Astronomy Society in Denmark in 1916, and his 
popularizing lectures continued, also after he went to Norway. So did the small accom
panying publications, including one called T h e Childhood of Astronomy. Lectures for 
prisoners of war' published 1917 by University of Copenhagen and The Danish Red Cross 
and translated into French, Italian, Russian and German, [6]. 

9. Professor at University of Copenhagen (1910-1917) 

Heegaard's mentor, Professor Zeuthen, retired at the age of almost 71 on February 1, 1910. 
Already a few months earlier, applications to succeed him had been solicited, and Heegaard 
reports that he was assailed with calls to apply, 

"but definitely did not feel qualified. My best years of preparation had elapsed under a 
great work load and without any support from the Carlsberg Foundation, so I had only 
a scant scientific production to show, really only my dissertation and the Enzyklopadie 
article with Dehn. Moreover, I had a well paid job, around 15.000 Kr. a year, which 
I filled to the satisfaction of everyone. Also, in these circles I lived protected against 
the hostile plots as long as I kept quiet. When all the calls to apply were lost on me for 
a period of six months, my friends . . . turned to a different angle. They began to work 
on my mother. . . . At last, the pressure was so great that I poured out my troubles to 
Zeuthen. He completely concurred that I felt unqualified, but said that I ought to submit 
an application anyway. He would then see to it that I would not be appointed. Thus 
I submitted a very short application. 

This, however,... gave the coterie of university mathematicians the means to prevent 
the Technical University mathematicians from forcing their entry into the Mathematical 
Faculty of the University. They had secured very laudatory references from Poincare, 
Picard, Klein and Franz Meier, probably also from Hilbert. 

There followed a succession of dramatic events which I shall not report on here 
since I had nothing to do with them and stood by quite powerlessly. As a result I was 
appointed in February of 1910." 
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The above is one of the many instances where Heegaard refuses to state explicitly who 
are his enemies. And what are they really fighting about. Heegaard had only two com
petitors for the chair. One of them, J. Hjelmslev, already held a chair at the Technical 
University, and thus must have had a formal advantage over Heegaard. Was it him that the 
University mathematicians wanted to keep out? If so, they only succeeded temporarily: 
When Heegaard resigned seven years later, Hjelmslev became his successor. 

Heegaard reports that his time at University of Copenhagen was difficult, also finan
cially. As a professor his annual salary was only 3.000 Kr. He had a wife and six children, 
he had no private means worth mentioning, and he had been used to a yearly income of 
15.000 Kr. To make ends meet, he kept a job at the naval cadet school, where he made 
5.000 Kr. a year. But the work load made research conditions difficult. 

"After all, my best youthful years had passed. My teaching experience did make it 
possible for me to attend to my lectures to the satisfaction of the audience. But in many 
ways I was hampered by the other group of mathematicians who also had their allies in 
the Faculty of Science." 

The above paints a bleak picture of Heegaard as a professor at Copenhagen University, but 
there are also successes to be reported. 

Already before his appointment, in 1908, Heegaard had been elected Danish representa
tive on the international committee for the teaching of mathematics, IMUK, an organisation 
that had been founded earlier that year, at the International Congress of Mathematicians in 
Rome, with Klein as chairman. Heegaard took part in the first meeting in Bruxelles, and 
in 1912, IMUK published his comprehensive report on the teaching of mathematics at all 
levels in Denmark, [3]. 

A mathematical laboratory had been created by the University in 1907. According 
to [33] it was Heegaard who first organized a library there and who undertook the creation 
of a collection of mechanical and kinematic models for teaching use, probably inspired by 
what he had seen in Gottingen. Furthermore, he did a lot of the practical work connected 
with the 2nd Scandinavian Congress of Mathematicians which took place in Copenhagen 
in August of 1911. 

Two years later, Heegaard also participated in the 3-rd Scandinavian Congress in Kris-
tiania (later to be called Oslo) where he presented a short paper on graph theory. This, in 
1915, became the third mathematical research paper, published by the, then, 43 year old 
professor. 

As mentioned earlier, in 1916 the French Mathematical Society pubUshed a translation 
of Heegaard's dissertation, [5]. Quite understandably, Heegaard was pleased to see this 
happen and he chalks it up as a "retraction by the vulgar real world" of the sHghting press 
that the coteries of mathematicians had given the dissertation. But apparently it did not 
inspire him to continue the fine of research from the dissertation. 

In his letter of resignation (see below) Heegaard complains that his many duties do not 
leave him time for such a continuation. As we have seen, he did have the time for an 
extensive popularizing activity in astronomy. He also wrote on the geometry of Trondheim 
cathedral and several high school related publications. Was it really time he lacked - or 
was he closer to the truth when he wrote (as quoted earUer) " . . . mathematics for which I 
did have a talent, but for which I do not have the burning interest that I have met in others"? 
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10. Resigning the chair in Copenhagen (1917) 

The University of Copenhagen 1917 Yearbook, [19], records a letter of resignation from 
Heegaard, dated January 5. The reasons given are as follows: 

"1 . My work at the University comprises Geometry, Rational Mechanics, Elementary Math
ematics, History of Mathematics and General Mathematics for Actuaries; in addition I am 
librarian at the Mathematical Laboratory Library. My work has been of such magnitude that 
neither have I had any otium for research, nor - in spite of all the energy spent - have I been 
able to discharge my work to my own satisfaction. 
2. In addition, often my views on various matters in the Faculty have been so different from 

those of my colleagues as to further contribute to making my University work too onerous for 
me." 

The Faculty did not immediately recommend the resignation to the University senate. 
Instead, concerning point 1 it asked Heegaard to propose changes in his duties that would 
alleviate the problem. As for point 2, it asked for explicit examples where disagreements 
with colleagues had been serious enough to make Heegaard's work onerous. 

Heegaard answered that any discussion of the work load should be taken up with his 
successor. And that he had no desire, now or ever, to further discuss the matters in his 
point 2. 

Kurt Ramskov, in his thesis [33], has touched upon the matter of Heegaard's resignation 
because of its relation to the main character of the thesis, Harald Bohr. Based on letters 
from N0rlund^ to Mittag-Leffler at Stockholm University, and on contemporary accounts 
in the Danish tabloid Ekstrabladet, Ramskov reports that the fight could be construed to 
start with the Danish sale of the (then Danish) Virgin Islands to the United States. This 
sale was finalized in 1916, at a price of 25 million $ of which more than 1 milHon $ 
was (at some stage) intended as extra funding for the University. With the exchange rate 
and the salary level of the time, the interest on such a sum would probably finance 4 0 -
50 new positions at the University. This naturally raised hopes and expectations among 
young researchers. Among the hopefuls were Harald Bohr and Hjelmslev. They both held 
positions at the (less prestigious) Technical University, but they now hoped for (additional) 
University appointments. However, Heegaard and his colleague. Professor Niels Nielsen, 
were opposed, and at first they won the battle (even if it may be said that Heegaard lost the 
war). Thus, on January 6, 1917, Ekstrabladet brings the following account: 

"Harald Bohr's and Hjelmslev's strong desires, and no less vigorous work and propaganda, 
for admission into the Faculty as Docents [^ Adjunct Professors or Instructors] has created a 
lively mood, and it has long been felt that one walked among loaded bombs. 
Yesterday, the first bomb exploded: Professor Heegaard submitted his letter of resignation. 
In academic circles it is no secret that he has not been an unequivocal admirer of Professor 
Harald Bohr, Esq. He is certainly not alone with this opinion but he is probably among those 
least likely to pull their punches. Now an explosion occurred. And Poul Heegaard preferred to 
leave, and for that one cannot blame him. 

We have told that recendy Harald Bohr has threatened the Faculty of Science in a letter. If 
he did not get an affiliation with the University, he would leave [the country]. Groningen lay 

At the time Professor at Lund University, Sweden. 
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open to him.^ And even if he was damned opposed to going to Groningen - it is always worth 
using as a threat, isn't it. 
But it did not work out. In the end it was decided that Bohr would not be appointed Docent, 
nor Hjelmslev. When Bohr realized that his threat did not avail and that nobody feared the loss 
of him, he got furious. He went home, unpacked his suitcase, and said No to Groningen: now 
he would take revenge on the gentlemen of this country by staying and making it hot for them. 
And then there is the chair that Heegaard vacated. But on that, the least said the better." 

When Heegaard wrote his autobiographical notes, he may or may not have violated his 
promise never to discuss his reasons for resigning. We cannot tell because, unfortunately, 
two pages of the notes are missing at the critical spot. This could be a coincidence. Or 
Heegaard may have written an account after all, but then decided to destroy it later on. 
Whatever the reason, it seems certain that the missing pages, 103 and 104 in the hand
written version, have dealt with his situation around the time that he left University of 
Copenhagen, for p. 105 picks up as follows: 

"she: 'What would father have said to this?' At that moment the telephone rang. A voice 
said: 'This is Reverend Dalhoff. I have just returned from a visit with my son-in-law, 
Professor Guldberg, in Norway. He has requested that I ask you whether you would 
accept it, if you were to be nominated for a chair at the University of Kiistiania.' Rev
erend Dalhoff was the clergyman with whom my father spoke at his conversion to ac
tive Christianity. This, therefore, seemed like an answer to my mother's question, and a 
greeting from my father." 

11. Professor at Kristiania (= Oslo) University (1918-1941) 

Towards the end of the year, Heegaard's appointment at Oslo University became official, 
and on December 12, 1917, the Danish newspaper Nationaltidende reports that 

"We met Dr. phil. Heegaard this morning at the Naval Academy where his Royal Highness 
the Crown Prince and other cadets were passing by during a break, and we again used the 
Professor title as we addressed him. 

'Well, weir, he answered while stroking his beautiful, slightly greying whiskers, 'but the 
Royal signature is still lacking.' 

'Stortinget [The Norwegian Parliament] promises you 10.000 Kr. as annual revenue.' 
'Yes, and that is more than I had here at the University; it is twice as much.' 
'Norwegian newspapers report that you resigned down here for personal reasons.' 
'They do? Let us not get into that matter. I have long since decided to bury everything that 

caused my leaving University of Copenhagen, and it will stay that way. But I can tell you that 
it had no connection to Kristiania, for the Norwegian nomination did not exist at that time.' 

'Have you not taught at all since then?' 
'Yes, I have had much to do, both here at this Academy and at other schools, and I am 

also occupied with actuarial work. But academic teaching appeals strongly to me and I have 
accepted the offer from Norway with pleasure.' 

'And you will leave Denmark?' 
'Yes, in the spring, Ibelieve, once the signature of King Haakon is available.'" 

In December of 1916, Harald Bohr had been offered a chair at Groningen University in the Netherlands. 
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Actually, Heegaard arrived in Kristiania already in January of 1918. He tells of becoming 
a member of the country's oldest freemason lodge 'St. Olaf of the white leopard', where 
he soon became speaker and acquired many friends. 

"Thus I quickly took root and felt very happy. A question which stirred the mind 
strongly at the time was the restoration of Trondheim cathedral. As already mentioned, 
while in Copenhagen I had written an article about the geometric system of Macody 
Lund.^ It was the first favourable contribution and thus had attracted attention in Nor
way. Now the architect Sinding Larsen and Macody Lund welcomed me with enthusi
asm. In my inaugural lecture I touched upon the question." 

During his twenty-odd years at Kristiania University, Heegaard followed the same pat
tern as in Copenhagen. He was interested in many things and they seemed to keep him 
away from mathematical research to a large degree. And when he did enter into a major 
mathematical publication project (see later about the collected works of Lie), he was too 
busy to finish it. 

He was active in the creation of Norsk Matematisk Forening and became a founding 
editor of its journal Norsk Matematisk Tidskrift. He chaired an influential welfare commit
tee for students (Den akademiske dyrtidskomite) 1920-1925, and he arranged a geometric 
study circle for advanced students. 

His interest in popularization manifested itself strongly when he became chairman for 
the Oslo University Folkeakademi {^ Extramural Department). In this latter context, he 
continued to give popular lectures on astronomy, and in a country with the enormous dis
tances (and the climate) of Norway, this could be an arduous job. Thus he tells about a 
lecture tour that took him from Kristiania to Kautokeino in the extreme North of the coun
try. First overland, 400 miles to Trondheim, then another 700 miles by boat along the coast 
to Hammerfest, and finally inland again for at least 150 miles, a part of which took place 
in a reindeer drawn sledge. All along the tour he would stop to give lectures, and up in the 
north these 

"were translated, sentence by sentence, into Lappish by the storekeeper who acted as 
an interpreter. When I asked the local minister how the translation had been, he said 
'Oh, rather free'. For example, on one occasion after 1/2 hour of lecturing I found all 
this translation bothersome so I said: 'Now the Laps may leave. I shall continue for 
the Norwegians'. The Laps rose, but immediately sat down again. My words had been 
translated as: 'What kind of a disturbance is that you are making. Sit down again!' " 

12. The collected works of Sophus Lie 

On this topic Heegaard writes: 

"I had received a call to take part in the publication of Sophus Lie's collected works. 
Already before the world war there had been plans for such an edition, in six volumes 
plus a seventh volume of 'Nachlass'. 

5 In a book 'Ad quadratum' (1919) and earlier in other writings, the Norwegian historian Macody Lund (1863-
1943), claimed to have found the geometrical system underlying medieval church architecture, and proposed to 
use this system for the restoration project. 
^ Entitled 'Incidents from the History of Geometry'. 
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Now that the first world war was over, the matter was considered again. Professor 
Engel already had most of the manuscript ready. He had worked out most of the an
notations. There were only a couple of the geometric papers, especially the first one, 
not easily accessible, that he had not considered. The Norwegian Research Foundation 
promised to give the necessary, considerable, financial support, but then a Norwegian 
had to join as a coeditor. In a way I was not particularly keen on the idea. The work 
would take me a long time since I had not earlier occupied myself with the work of 
Sophus Lie, and I would thereby be hindered in my plans to resume the investigations 
in my dissertation. But in this way the appearance of the edition would depend upon 
my consent, and as a professor of geometry, the very subject in which Sophus Lie had 
worked, I felt morally obligated to support the publication. I visited several times with 
Professor Engel in Giessen . . ." 

Heegaard does not indicate when the above took place, but according to the obituary, [25], 
the editing extended over the period 1921-1937. The work did turn out to be considerable. 
In the two volumes to which Heegaard contributed one finds 47 of Lie's publications to
talling more than 1300 pages, and with detailed annotations running to more than 400 pages 
(not counting indexes and the like). As mentioned earUer, Heegaard had to give up before 
the finishing line. In the introduction to volume I, the editors note that 

"Since Engel can in no way pass himself off as a geometer - nor would he be accepted as such 
by Lie himself - the other one of us, Heegaard, constituted the necessary completion in order 
to edit the geometric articles. Unfortunately, his teaching and his constantly appearing new 
duties have placed such demands on him that Engel has had to do the annotations alone from 
article number XL" 

Heegaard did sign the preface to volume II which has no special mentioning of the parts 
played by the respective authors, so it seems natural to assume that here the original plan 
had been restored so that Heegaard had the main responsibility for the annotation in this 
part. 

Naturally this is not the place to go into a description of Lie's work or Heegaard's anno
tation thereof. However, one feature must be included. As mentioned earlier, in his disser
tation Heegaard describes the points in 4-dimensional space as points in ordinary 3-space 
equipped with contour numbers. Presumably, it had not been known to him at that time that 
some of Lie's very first articles take precisely the same view point. At any rate, here some 
25 years later, he takes a great interest in this early part of Lie's work: The annotations to 
these papers run to almost twice the length of the papers themselves. 

Moreover, three papers published by Heegaard in the period 1928-1930 seem to be 
direct spinoffs. The first one, [8] was his contribution to the International Congress in 
Bologna in 1928, where the explicitly stated purpose is to draw attention to Lie's work. 
One year later, at the seventh Scandinavian Congress in Oslo, he presents a generalization 
of the viewpoint to three complex dimensions, [9]. This generalization is also the topic 
of [10]. 

Shortly before his retirement, Heegaard finally finds the time to return to his dissertation. 
This leads to three papers in the period 1938-1941. As shown by the following review of 
[14] in Zentralblatt ftir Mathematik, Lie's view of four space again figures prominently. 

"It is the purpose here to utilize Lie's presentation of points in the complex plane as points 
in space equipped with contour numbers in order to approach a visual investigation of the 
Riemann surface of an algebraic function. The method is explained in some detail, albeit not 
completely, through the example of the sphere x^ -\-y^ + z^ = r'^. H. Kneser" 
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The remaining two papers, [15,16], use similar methods to study neighbourhoods of the 
origin in two specific complex surfaces. 

13. The four colour problem 

Heegaard's interest in graph theory and the four colour problem first shows up at the 
3-rd Scandinavian Congress in Kristiania in 1913, [4], and he takes up the thread again 
in 1933, [11], and at the 1935 International Topology Conference in Moscow, [13]. His 
main contribution is a reduction of Heawood's congruences to a single congruence. But 
this section is not here to report on what Heegaard did in graph theory, but rather to let 
himself describe what he did not (manage to) do. The description appears in three letters^ 
that he wrote to Jakob Nielsen in the Spring of 1946. On May 9, he writes: 

"Hold on to your hat! I believe I have solved the four colour problem!! At least I cannot find 
any mistake. But considering the many false proofs that previously have been given I would 
be exceedingly grateful if you would look through the small paper enclosed. If you can get 
other Danish mathematicians, e.g., Hjelmslev and Steffensen to look it over, I would also be 
glad. Since I would like to publish the paper in America, I shall send it to Veblen. I am not 
well up in the writing of English so I shall ask Veblen to have a student revise the language, at 
my costs. . . . " 

Jakob Nielsen seems to have answered quickly, because May 28 Heegaard continues: 

"I am sorry that I wrote you at a time when you have so very much to do. Thus, I'm even 
more grateful for your inspection. It shows me that at least there is no obvious mistake. I was 
ill at the time that I sent my original proof^ to Kunneth; otherwise I would probably have 
discovered the flaw myself. Honestly, on that occasion I was very annoyed with myself for 
having overlooked the [special] case. And since Kunneth apparently had worked hard, but 
in vain, to repair the matter, I gave up working on it. But then some weeks ago, three days 
before I had to be admitted to the hospital for an operation, the solution literally fell down 
from Heaven, and the matter was in order in a couple of minutes. Myself, 1 now do not believe 
that there could be any real mistake. I do realize that formally a lot of objections can be raised. 
But I had to go into surgery and I had no guarantee that everything would go so well. . . ." 

The third letter is not dated, probably because of the agitation that may be construed 
from the heading: 

"Professor Poul Heegaard. 
Nordli, Aurdal, Valdres, Norway, Earth, pro tern The Universe. 

Dear Jakob Nielsen. 
This is only to tell you that you may throw the manuscript in the wastepaper basket. Indeed, 
there is a mistake in Section 17 (Possibility 2). It is incredible how easily a mistake may sneak 
into this complicated matter. In 1942, I believed I had constructed a vortex graph transfor
mation which would solve the problem but a German expert pointed out a case where it did 
not always exist. Now after a life threatening case of pneumonia I had to go in for a hernia 
operation, and it occurred to me that both Richard Birkeland and Palmstr0m had passed away 

^ We thank Lektor Bjarne Toft, IMADA, Odense University, for drawing our attention to these letters in the 
Jakob Nielsen collection at Matematisk Institut, University of Copenhagen. 
^ Probably the one also referred to in the third letter, see below. 
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after an operation. So I got the idea that I would try over the following three days to mend 
the flaw in the proof. I had a list of all possible initial vortex graphs. And I noticed that with 
one of them the criminal case disappeared. As I now hastily changed the whole exposition in 
accordance with this, I did not notice that the conditions for a different case had been changed. 
Thereby the four colour devil found a new loophole. ..." 

14. Heegaard's spiritual life 

When we first set out to investigate Heegaard's life we were struck by the scarcity of 
obituaries. Heegaard had been an editor of three journals published in Scandinavia, Acta 
Mathematica, Nyt Tidsskrift for Matematik and Norsk Matematisk Tidsskrift, but none of 
them published any obituary. Actually, apart from two small pieces in Danish newspapers, 
the only obituary known to us is [25], which has the following on Heegaard's spiritual life: 

"... he was a high ranking free mason, and for many years he was active in the Oxford Move
ment.̂  Most of all it was all kinds of philosophical, political and religious systems that at
tracted his attention and kept him captive. Clearly he was a searching soul in pursuit of a 
meaning in life. He had to try everything. But he abhorred doubts, and his desire to believe 
occasionally made him almost blind to the less sympathetic aspects of the systems and their 
followers. Towards the end, his inquiring mind apparently found peace in Catholicism." 

These words were written three years after Norway's liberation from five years of Nazi 
rule. And the extensive Heegaard bibliography in [25] suggests that indeed Nazism was one 
of the systems, to whose imperfections Heegaard had been blind. In fact, in 1945 Heegaard 
published a two page note 'Meine Ahnentafel. Auswartige Vorfahren' ('My pedigree. For
eign ancestors') in a periodical'Norsk-tysk Tidsskrift' ('Norwegian-German Journal') that 
appeared in Oslo precisely during the years of occupation. In it, Heegaard advocates ge
nealogy as an interesting means to stimulate international contacts and he presents a few 
examples of his own studies in the area. Thus, the actual content of the note is completely 
innocuous, but in Norway, at that time, the very existence of such a note might be enough 
to ostrasize its author. 

Lest the reader believe that this is a case of overinterpretation on our part, we quote from 
the centennial volume of the Norwegian Science Academy, [20] 

"Poul Heegaard whose sympathies definitely lay with the authoritarian states stopped attend
ing the meetings after 1941." 

The Norwegian society of the 1940's may have seen another indication of such sympa
thies in a series of causeries, "Naturvitenskapens hovdinger" ("Chiefs of Natural Science"), 
presented by Heegaard in the Norwegian radio, NRK, in 1944 and 1945. One of Poul Hee
gaard's grandchildren, Rese Hjelle, gave us access to the manuscripts of these causeries, 
and once again, we note a complete absence of politics. However, to appreciate the po
litical impact that may nevertheless have resulted from such an activity, one only has to 
know that during most of the occupation, Norwegian families were allowed to own a radio 
set only if a majority in the household were members in good standing of the Norwegian 
Nazi party. All others had their sets confiscated in 1941, and this lowered the number of 
registered listeners from more than half a million to less than fifteen thousand [22]. 

^ In [17], Heegaai'd himself speaks of the Oxford Group, aka Moral Re-Armament, rather than the Oxford 
Movement. 
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After the war, Poul Heegaard rewrote the causeries slightly (in Danish), to make them 
form the major part of a book manuscript, [18], that he apparently intended to have pub-
Ushed in Copenhagen. We borrowed this manuscript from the above mentioned Rese 
Hjelle. A transcript is available on the Internet at the address h t t p : / / w w w . i m a d a . 
o u . dk/^hj m / h e e g a a r d . h t m l . 

In spite of the above, the Academy did accept the presentation of the obituary [25] at its 
meeting November 1,1948, so it must have been felt that Heegaard's connection to the Nazi 
ideology had been relatively innocent. One could speculate that the unpleasant sympathies 
simply sprang from Heegaard's long standing love and respect for German mathematics. 
Certainly this background was noticeable after the First World War when Heegaard [7] 
tried to counteract an international attempt to exclude German mathematicians from future 
international cooperation, but then, so did many other mathematicians who would later 
take a clear stand against the Nazi movement. 

Naturally, we would have liked to see Heegaard's own account of this period in his life, 
but the autobiographical notes finish abruptly 

" . . . I attended many meetings [in the Oxford Group] but gradually became more and 
more skeptical as I noticed how superficial many people took the matter. And after 
April 9, 1940 I retired from the movement because" 

Once again we wonder whether some pages have been deliberately destroyed. 
An interesting piece of information was presented to us by Poul Heegaard's great grand

son, Bror Magnus Heegaard. He reports that, according to his father, one of the leaders of 
the Norwegian resistance movement has praised Poul Heegaard for inspiring the formation 
of the resistance leadership, Milorg, and has dedicated a copy of his book about Milorg 
to Poul Heegaard. We have not (yet?) seen a copy of such a dedication, but if, indeed, it 
exists, it would certainly reinforce our image of Poul Heegaard as an innocent, albeit polit
ically naive, admirer of German science and Germany rather than an adherent of a fascist 
movement. 

On the religious side, we have to return to Poul Heegaard's father, Sophus Heegaard. 
Throughout most of his life, Sophus was an outspoken agnostic, but three years before 
his death, following his own serious illness and the death of Poul's older sister, Henny, he 
became 

" . . . a practicing Christian. In a new edition of his book on upbringing and education, 
he changed the preface in a Christian direction declaring that previously he had relied 
on science, but when the storms of life came these anchor cables snapped like threads 
and he found peace only in a simple ChrisUan faith. The new preface caused a great 
stir and rejoinders. It was claimed that his conversion was caused solely by illness and 
feebleness of the brain." 

This happened when Poul was around 10 years old and made a lasting impression which 
came to a cUmax in 1916 when Poul's 11 year old son, Aage, was admitted into a Copen
hagen hospital with meningitis. 

" . . . from the corridor I heard him say the Lord's Prayer. When I came into the room 
he was unconscious and he never regained consciousness. This affected me violently. 
I had to find my school catechism to learn the Lord's Prayer. A few days later there was 
a call to Magdalene and me telling that the end was approaching. When we entered the 

10 The day of the German invasion of Norway. 
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sick room a nurse was standing with a telephone at the ear connected to a stethoscope. 
Something Hke a grey shadow raced over his face and the nurse said: 'Now his heart 
stopped beating'. Silently I folded my hands and said the Lord's Prayer. This was the 
end to a long fight. I had had to give in to God." 

Heegaard's faith manifested itself also in his academic activities. Over the years a num
ber of small articles on science appeared in various religious periodicals. And at the Uni
versity of Kristiania he took a special interest in Christian students, e.g., by letting them 
use his office for morning prayers. 

15. Conclusion 

We have described some aspects of Heegaard's life and career largely by following his own 
account. This was written at a late stage of his life, and in an earlier version of this article 
we speculated that the turbulence about his position during the Second World War might 
have made the author a bitter and depressed man. However, except for short remarks in a 
couple of letters, we had no real evidence. Also, an interview with the granddaughter Rese 
Hjelle, who spent most of her childhood and youth in Poul Heegaard's house, contradicted 
our speculations. In fact, Rese Hjelle recalls her grandfather "Bobo" as a very happy and 
entertaining old man who would spend a lot of time at his desk, reorganizing papers. 

Which conclusions can we draw from our study? First of all, it is undeniable that Hee
gaard's mathematical research production was small. Probably no Dean of today would 
even grant tenure on the basis of such a publication list. On the other hand, Heegaard's 
criticism of Poincare did play a vital role for the foundation of algebraic topology, and the 
study of 3-manifolds is still very much based on notions that he created. Thus a search for 
his name in current review journals might lead our hypothetical present day Dean to re
consider. Indeed, over the last ten years Mathematical Reviews lists more than 200 reviews 
where the word Heegaard occurs either in the title or in the review itself. 

It is also undeniable that Heegaard's publications in astronomy are more numerous than 
the mathematical ones. However, we do not believe that he would necessarily have been 
a happier man, or more productive in the strict academic sense, if he had chosen a career 
in astronomy. Maybe, deep down he was really an expositor and an educator more than 
a researcher. After all, he does characterize the teaching years between his dissertation 
and his appointment at University of Copenhagen as a happy time; it does appear that he 
would always let other activities interfere with his research; and it is remarkable that his 
autobiographical notes record only one instance where mathematical research is described 
as an urgent endeavour, viz. in his description of the Christmas vacation where he worked 
out his counterexample to Poincare's formulation of the duality theorem. 
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When Brouwer entered the mathematical scene, the Netherlands had already produced 
some outstanding mathematicians, notably Christiaan Huygens, Simon Stevin and Thomas 
Jan Stieltjes. Only the latter one belonged to the nineteenth century, but he did not practise 
his mathematics in the Netherlands. In fact, the level of mathematics had in the eighteenth 
and nineteenth century remained far behind that of the surrounding countries; the same 
could be said for the exact sciences, but those disciplines had at the end of the nineteenth 
century already joined the international research community. Van der Waals, Kamerlingh 
Onnes, Lorentz, van 't Hoff, Hugo de Vries and others belonged to the top of their profes
sion. 

Brouwer was born on 27 February 1881 as the son of a schoolmaster in Overschie (now 
a part of Rotterdam); after half a year his father accepted a position in Medemblik where 
the family spent the next 11 years before moving to Haarlem, where his father became 
the headmaster of a secondary school. In Medemblik two more sons were born. Lex and 
Aldert. 

The high school years of Brouwer were without problems. He entered high school (the 
Hogere Burger School, HBS), in 1890 at the age of nine - a record at the time. 

In Haarlem he again visited the HBS, in 1894 he entered the gymnasium (the successor 
of the old Latin school) while at the same time preparing for the final examinations of the 
HBS. In 1895 he obtained the HBS diploma and two years later (compressing three school 
years into two) he graduated from the gymnasium a and p. All the time he was the number 
one student in class, his only weak spot was the art class. 

The gymnasium diploma gave him the right to study at a university. The university of 
his choice was the Municipal University of Amsterdam, where physics was dominated by 
Van der Waals. In mathematics there were two professors: Diederik Johannes Korteweg 

*The paper relies on a number of historical presentations: Freudenthal's account in [52], the biography of 
Brouwer, [60], and [2-4, 64, 66, 67, 75]. 
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and AJ. Van Pesch. The latter is not known for striking contributions, but Korteweg was 
an extremely competent applied mathematician. He was the first doctor of the young Ams
terdam University, where he obtained the doctor's degree from Van der Waals. Three years 
after his doctorate he became a professor at the Amsterdam University. Nowadays his fame 
is mostly based on the Korteweg-de Vries equation, but in fact he contributed to the most 
diverse parts of mathematics, ranging from thermodynamics to philosophy of mathemat
ics. The mathematical underpinning of Van der Waals' physical theories was for a large 
part the work of Korteweg (e.g., the investigation of the Van der Waals surface, folding of 
surfaces). Furthermore the edition of Huygens' collected works was largely the work of 
Korteweg. 

Brouwer learned his mathematics mainly from Korteweg; the second big influence in his 
early years was Gerrit Mannoury, a more or less self-made mathematician. 

Brouwer was not a terribly quick student, it took him three and a half years to pass the 
candidaatsexamen, the half-way examination, which could be taken after two years. On 16 
June 1904 he passed his final examination, the doctoraal examen. In all it took him seven 
years to obtain the doctoral degree (comparable to the M.Sc). Certainly nothing to be 
proud of for such a brilliant student - for a brilliant student he was indeed: he passed both 
examinations Cum Laude. It should be pointed out that he had managed to publish three 
research papers before his final examination: [5-7]. The papers dealt with the decompo
sition of rotations in four-dimensional EucHdean space. In modern terminology Brouwer 
showed that SO^ = SU2 x SU2/ ± (1, 1). His proof was purely geometric; in the third 
paper he added an algebraic derivation. The paper brought him some recognition, but also 
his first priority conflict. The Berlin professor E. Jahnke claimed to have proved the main 
result first. Brouwer, who had not been aware of Jahnke's paper, analysed Jahnke's result 
and showed that apart from a certain similarity in formulation, there was no ground for 
Jahnke's claim. 

The main reason for the long drawn out study was Brouwer's poor health, in combination 
with the national service in the army. His student years, and the next few years, were 
marked by nervous collapses and general ill health. 

The story of Brouwer's student years can be read in the correspondence of the young 
student and the poet Carel Adama van Scheltema, cf. [57]. 

The second half of his study was also interrupted by the military service. Although 
Brouwer was no stranger to physical exertions - he was fond of walking, football, swim
ming, and in 1899 he made a trip to Italy on foot, he could not, however, adept himself to 
the military milieu. Pestered by his fellow conscripts and mocked by his superiors, he had 
his worst breakdowns in years. 

Brouwer's interest was divided between mathematics and philosophy, the latter was 
rather a hobby and not a formal study. The true love of mathematics was strongly encour
aged by Mannoury, a Jack of many trades. Gerrit Mannoury, the son of a merchant navy 
captain, had come to mathematics via the teacher's career. He had finished high school in 
1885 and obtained his teacher's diploma three months later. He taught at many schools until 
he became a full professor in 1918. Although he never got a university degree, he published 
a few significant mathematical papers in the years before Brouwer's mathematical activity. 
In 1898 he published a paper ''Les his cyclomatiques" [73], the first Dutch paper in the 
new area of topology. The paper treats a generalised form of the Euler-Poincare formula. 
Mannoury proved in this paper a theorem which Van Dantzig [61] has called 'Mannoury's 
duality theorem'. In Hopf's words 
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The theorem expressed by the [indicated] formulas, which you correctly call 'Mannoury's du
ality theorem', belongs completely to the area of modern duality theorems, and that Mannoury 
knew it in 1897 shows how far he was ahead of his time. It is a pity indeed, that he did not 
continue this work, he was very close to the duality theorems of Alexander [61, p. 7]. 

Mannoury was also the first person to introduce Peano's symbolic logic in the Nether
lands. In spite of the efforts of Korteweg, who gave Mannoury private tutorials on Sundays, 
and who allowed Mannoury the use of his private library (there was as yet no mathemat
ical library at the University of Amsterdam), Mannoury could not find the time to study 
for the formal degree. But his mathematical talent was well recognized, so that in 1903 
the University of Amsterdam admitted him as SLprivaat docent} Mannoury's original and 
playful approach to mathematics greatly influenced Brouwer. The lectures of Mannoury 
eventually appeared in print [74]. 

In the Dutch academic tradition one studied at a university, obtained a doctoral diploma, 
with the title of doctorandus, and then either chose a profession or continued to work 
for a Ph.D. degree. In mathematics the profession invariably meant 'teaching', but even a 
doctorate was no guarantee for a scientific position. The universities had few mathematics 
professors, and hardly any lower positions. If one was lucky, some professor would die or 
retire and the faculty would offer the vacancy to the mathematical doctor. In the meantime 
one taught at a gymnasium or a HBS, published dutifully and hoped for luck. 

Brouwer was temperamentally ill-suited for the teaching profession, thus his choice for 
a continued study seemed logical. Even after finishing his university education he was not 
certain whether to become a mathematician or a philosopher. Mathematics came out on 
top, but not before a brief excursion into the domain of philosophy. 

In 1905 Brouwer gave a series of lectures on what he called 'moral philosophy', pub
lished under the title ''Life, Art and Mysticism'', cf. [80]. In these lectures Brouwer ex
pounded a mystical view of the world. A number of topics are of interest for his later 
scientific and foundational work, e.g. his negative view on the role of language and the 
conviction that the domination of nature or fellow creatures is sinful. 

Already before his dissertation was written, Brouwer published a few papers on vector 
analysis: The force field of the non-Euclidean spaces with negative curvature [9], The force 
field of the non-Euclidean spaces with positive curvature [10], Poly dimensional vectordis-
tributions [8]. In the first paper Brouwer used the tools of contemporary differential ge
ometry, but added the novelty of 'parallel displacement', thus being the first to use the no
tion, albeit in a special case.^ The third paper contained a proof of the higher-dimensional 
version of Stokes' theorem. It had apparently escaped him that Poincare had already for
mulated the theorem in 1887 and 1899. In a sequel [39] he set the record right by ac
knowledging that Poincare had enunciated the theorem, but, he added, "without a proof, 
however". 

The dissertation, which was defended on 19 February 1907, was a rather mixed bag of 
topics. It appears from the correspondence with the Ph.D. advisor Korteweg that Brouwer 
originally wanted to incorporate a substantial philosophical part. Korteweg refused his per
mission for this exposition, he urged Brouwer to stick to the mathematical topics, see [79]. 

^ The equivalent of the German Privatdozent. A rather poorly paid position at the University, with an opportunity 
to teach and stay around until an opening would appear somewhere. 
•̂  Schouten, in his book Ricci-Kalkiil acknowledged Brouwer's priority, but later authors seem to have forgotten 
about it. 
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In a letter to Korteweg Brouwer claimed that the mathematical part of the dissertation 
was sufficiently substantial; he had, he said, solved three of Hilbert's problems - no. 1, the 
continuum problem, no. 2, the consistency of arithmetic, and no. 5, the elimination of the 
differentiabiUty conditions from the theory of Lie groups.-^ 

The claim may surprise the modern reader, but one should realize that Brouwer consid
ered the first two problems in a constructive framework, not in an axiomatic or metamath-
ematical framework. His solutions would thus lose their meaning in another setting. The 
solution to the fifth problem, however, was completely mathematical, albeit only a partial 
one. In the first chapter Brouwer eliminated the differentiability conditions from the special 
case of the one-parameter case by means of a meticulous construction. 

The dissertation thus contains the first topological investigation of Brouwer. He pre
sented an updated version at the International Mathematics Congress in Rome [14] and 
subsequently published his results in the Mathematische Annalen [15]. He continued his 
research in [15, 21], the second paper dealt with the two dimensional case. In a letter to 
Urysohn (9.4.1924) Brouwer mentioned that he had material for another paper, which un
fortunately never appeared, nor has a manuscript been found. The material may have been 
lost in a fire that destroyed Brouwer's house. The Rome Conference may have been the in
spiration for one of Brouwer's topological researches in the following years. Poincare's lec
ture, the future of mathematics, (which was not delivered by Poincare himself), contained 
a section on 'differential equations' in which he had advocated a "qualitative discussion 
of curves defined by a differential equation". Brouwer treated the subject in a series of pa
pers "On continuous vector distributions on surfaces" [12, 17, 18]. He started with Peano's 
existence theorem and only made use of continuity properties. Poincare, on the contrary, 
had in his earlier publications on the topic exploited algebraic and analytic features. In 
spite of Poincare's lecture as a source of inspiration it seems that Brouwer did not know 
Poincare's actual publications on the subject (cf. [52, p. 423]). Strange as this may seem, 
it may be explained as a certain Hmitation in his mathematical education. Compare his 
quoting Poincare on Stokes' theorem only in 1919, and not in 1906. 

Among the results of the first paper there is the well-known theorem on the existence of 
singular points: "A vector varying continuously on a simply connected, two-sided, closed 
surface must be indeterminate in at least one point". 

In the second paper structure theorems for singular points and for the behaviour of the 
field in the neighbourhood of singular points are proved. The paper contains a purely topo
logical definition of 'winding number', and the notion of homotopic change of vectorfields. 
The methods of the 'vector distribution'-papers are completely elementary topological. 

While preparing his Lie group papers for the Mathematische Annalen, Brouwer dis
covered that some of the topological results borrowed from the monograph of Schoenflies 
were not satisfactorily proved, or even false (letter to Hilbert 14. 5. 1909). Schoenflies' 
book was the second volume of a comprehensive survey of set theory, including point 
set theory. It was commissioned by the German Mathematical Society, and the choice of 
Schoenflies was probably based on the fact that since 1899 he had devoted his efforts to 
the new discipline of set theoretical topology. He was known for his converse of the Jor
dan curve theorem. The combination is now known as the Jordan-Schoenflies theorem. 
Brouwer had, to his regret, found out that Schoenflies' arguments were far from perfect. 
He scrutinised Schoenflies' notions and proofs, and sent a report of his investigations to 

^ Brouwer to Korteweg 5.11.1906, see [56]. 
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Hilbert for publication in the Mathematische Annalen. After some correspondence, which 
was not devoid of its painful moments, Brouwer and Schoenflies published in the same 
issue of the Mathematische Annalen a critique of Schoenflies' Bericht and a reply. 

Brouwer's paper 'Zur Analysis Situs' contained a number of comments on Schoenflies' 
topology. The theory of curves had to bear the brunt of the attack. Brouwer gave a number 
of counter examples, among which the curve that spHts a square in three domains has 
become famous. The curve gave the first example of an indecomposable continuum. Wada 
gave a nice suggestive version of the construction: Consider an island in a salt water sea, 
with a sweet water lake. By alternatively digging suitably chosen canals from the sea and 
from the lake the whole island is 'eaten' away by canals and there is one curve separating 
the sweet and the salt water. A similar construction with two lakes (say with red and black 
water) will yield a curve separating three domains. 

The ''Zur Analysis Situs'' paper elevated set theoretic topology to a new level of exact
ness; it became obhgatory reading for the new generation of topologists. 

At roughly the same time Brouwer started the publication of another series of papers, 
''Continuous one-one transformation of surfaces in themselves" [11, 13, 25, 26, 33]. The 
starting point was the question "whether a one-one continuous mapping of a sphere into 
itself is possible without at least one point remaining in its place"? 

This, evidently, is the beginning of Brouwer's occupation with fixed points. In the first 
papers, the methods are still elementary. The whole series contain 8 papers, the last one 
appearing in 1920. 

In [11] the fixed point theorems on the sphere are proved: "A continuous one-one trans
formation in itself with invariant indicatrix of a singly^ connected, two sided closed surface 
possesses at least one invariant point" and the corresponding theorem for simply connected 
one-sided closed surfaces. The second paper contains a first, and defective, formulation and 
proof of the plane translation theorem. The precise formulation of the theorem reads: 

Let / be an orientation preserving homeomorphism of R^ without fixed points, then 
each point p belongs to its domain of translation for / . Here a domain of translation 
for / is an open connected subset of M̂  with a boundary L U /(L), where L is the 
image of a proper embedding of M in R ,̂ such that L separates /(L) and f~^(L). 

Brouwer proved it rigorously in his ''Beweis des ebenen Translationssatzes" [30]. In the 
fifth paper in the series Brouwer acknowledged that in the first version he had relied on 
defective arguments from Schoenflies' ''Berichf. See also [63]. 

A resume of the first part of the series appeared in the Mathematische Annalen [20]. 
Another line of research took Brouwer to, what Freudenthal has called "Cantor-

Schoenflies (style) topology" - basically point-set topology. He pubUshed two papers "0/2 
the structure of perfect sets of points", in which he proved his extension of the Cantor-
Bendixson theorem [19, p. 790], and introduced the first topological group which was not 
a Lie group. 

The second paper contains another generalisation, in addition Brouwer formulated and 
proved his reducibility theorem ([27, p. 138], cf. [1, p. 123]). 

Brouwer gave also a new proof in the spirit of elementary topology of the Jordan curve 
theorem; the proof stands out as one of the most elegant elementary proofs. It was highly 
praised by Hilbert. 

^ Brouwer's terminology, present term: 'simply'. 
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There are a few more Cantor-Schoenflies style topology papers in Brouwer's oeuvre: 
Some remarks on the coherence type rj [35], which contains higher dimensional generali
sations of Cantor's categoricity theorem (all countable dense linearly ordered sets without 
end points are isomorphic) and finally two papers on G5 sets. 

Brouwer led, so the speak a double life; he was at heart a stern constructivist, but his 
mathematical leanings were very much geometric, in particular topological. The period 
1909-1913 is completely taken up by his topological work. In fact, his appointment as a 
"privaat docenf was primarily intended as a reinforcement of geometry at the Amster
dam University. His inaugural lecture (12.10.1909) had the title ''The nature of geometry'' 
(Dutch, see [51, pp. 112-120]), it gave a survey of contemporary geometry, including geo
metric reflections on the theory of relativity. Brouwer concluded that no a priori arguments 
can serve to single out parts of geometry as privileged. His definition of geometry was 
strikingly Hberal: "Geometry occupies itself with the properties of spaces of one or more 
dimensions. In particular it classifies the point sets, transformations and groups of trans
formations, which are possible in those spaces" [16, p. 15]. 

In the same address he mentioned some open problems, e.g.: 

"In how far are spaces of distinct dimension-number different for our group [of homeomor-
phisms]". He added "It is very likely that this is always the case, but it seems most difficult to 
provide a proof, and it will probably remain an unsolved problem for a long time." 

... one has no certainty that the 3-dimensional Cartesian space is spht into two domains by a 
closed Jordan surface, i.e. the one-one confinuous image of a sphere. 

Brouwer ended his lecture with a plea for basing mathematical theories on analysis si
tus, the prime example being the topological treatment of geometry (as found in Hilbert's 
''tjber die Grundlagen der Geometrie'' [65]. See also Grundlagen der Geometrie, An-
hang IV). In the case of geometry, coordinates can be introduced afterwards by using Van 
Staudt's techniques. 

"And so", Brouwer concluded, "coordinates wiU not have to be banned from other theories, if 
one succeeds in founding them on analysis situs, but the formula-free 'geometric' treatment 
win be the point of departure, the analytic one wih become a dispensable tool. 
It is this possibility and desirability of this priority of the geometric treatment, also in parts of 
mathematics where it does not yet exist, that I have mainly wished to point out in the above 
lines". 

This is a clear statement of Brouwer's geometric credo, to which he adhered in his own 
mathematics. 

Indeed, Brouwer was occupied with the fundamental problems of topology. At the end 
of 1909 he made an important breakthrough. He was spending the Christmas vacation with 
his brother in Paris when he apparently hit on the idea of "mapping degree". In a letter to 
Hilbert (1.1.1910) he indicated the notion of 'degree' (cf. [52, p. 421]).^ In this letter the 
approach to the degree is still algebraic, but it is clear that Brouwer saw the importance 
and implications. He also formulated generalisation of his fixed point theorems on spheres 
to higher dimensions and to not necessarily bijective continuous maps. 

^ Freudenthal describes the history of the discovery of the mapping degree and its uses in the topological volume 
of the Collected Works of Brouwer. 
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In March 1910 Brouwer wrote to Hilbert that he had a partial solution to the dimen
sion problem: odd and even dimensional spaces are not homeomorphic (letter to Hilbert 
18.3.1910). 

Somewhere in the spring or early summer Brouwer must have overcome the difficulties 
and found a satisfactory proof of the invariance of dimension. He submitted a paper of 
5 pages to the Mathematische Annalen with the title ''Beweis der Invarianz der Dimensio-
nenzahr [22]. 

The paper contains essentially the techniques of the mapping degree and simplicial ap
proximation, the invariance of the mapping degree under homotopic change, simplicial 
mapping, One can see this with hindsight, but at the time it was considered as a clever 
but inaccessible, compUcated proof. When the managing editor Blumenthal (who ran the 
Mathematische Annalen for Hilbert) told Lebesgue about Brouwer's paper during a trip 
to Paris in the summer vacation, Lebesgue remarked that he had already several proofs 
of the invariance in his possession. One of them was pubhshed as an extract from a let
ter to the editor in the same issue of the Mathematische Annalen, immediately follow
ing Brouwer's proof. Brouwer was shocked; he almost immediately saw that Lebesgue 
had indicated a beautiful principle from which the invariance followed straightforwardly, 
but he also saw that Lebesgue's proof was totally wrong. The principle that Lebesgue 
had formulated, without actually proving it, was the famous and elegant paving princi
ple. 

A long and compHcated correspondence between Brouwer, Blumenthal, Lebesgue, 
Baire and possibly others ensued. When challenged, Lebesgue promised a correct proof, 
but in spite of Brouwer and Blumenthal's pressure no proof was forthcoming until 1921 
[71], and even then, according to Brouwer, it was essentially Brouwer's 1913 proof. 

Lebesgue in the meantime had submitted alternative proofs of the invariance of dimen
sion to the Comptes Rendus [70]. 

Brouwer commented in [23]: 

The first one [69] is not sufficient. The second one [70] is with respect the content identical to 
mine: the differences make the line of thought only more complicated. 

In a letter to Baire (5.11.1911) Brouwer wrote that 

I have already proved the Lebesgue Annalen theorem a few days after its appearance, but I 
do not publish the proof because I wish to give Lebesgue the opportunity to do his duty [52, 
p. 441]. 

The Lebesgue-Brouwer conflict had not only negative consequences, it spurred both 
parties to outwit each other. Lebesgue introduced new notions such as the paving principle 
and linking varieties, and Brouwer pushed his methods to their logical limits. He devised 
different proofs of basic facts, and laid the basis for the topology of the following years (or 
decades). Freudenthal, in his comments on Brouwer's papers in the Collected Works, has 
analysed and described the course of the conflict. Further information can be found in [67] 
and in the biography of Brouwer, [60]. 

On October 1910 Brouwer presented his invariance of dimension-proof at a meeting 
of the Dutch Mathematics Society. The proof is the one of the Annalen paper, but for 
the occasion the presentation was a didactical polished gem. In 1911 a series of papers 
in the New Topology appeared in rapid succession in the Annalen: Uber Abbildungen 
von Mannigfaltigkeiten [28], Beweis der Invarianz des n-dimensionalen Gebiets [23], Be-
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weis des Jordanschen Satzfur den n-dimensionalen Raum [24], tjber Jordansche Mannig-
faltigkeiten [29]. 

In particular, the first one of the series is of tremendous importance for the development 
of topology, it contains all the tools that are implicit in the invariance of dimension paper: 
simplex star, simphcial manifold (his first definition of manifold occurs in [14]), simplex, 
indicatrix, simplicial decomposition, simphcial approximation, mapping degree, homotopy 
for maps, invariance of mapping degree under homotopic change, singularity index. 

The paper further contains a generalisation of his singular point of a mapping on a sphere 
to spheres of even dimension, and it ends with a section on fixed points of continuous 
mappings of balls, culminating in the famous fixed point theorem. 

The second paper contains the proof of the invariance of domain theorem: the homeo-
morphic image of a domain is a domain. In [31] another proof of the invariance of domain 
is given, this time based on the mapping degree. 

Brouwer considered the invariance of domain paper as much more important than his 
invariance of dimension paper. Indeed the theorem plays an important role in analysis, and 
it was the missing piece in the proof of the fundamental theorem of automorphic functions 
(or uniformisation). 

Once having solved the invariance of domain problem, Brouwer looked for a convincing 
apphcation. He soon found one that had baffled the masters of analysis. After some thought, 
and probably some consultation, he settled on the theory of automorphic functions and 
uniformisation. 

The uniformisation problem had occupied some of the finest minds of the nineteenth 
century, including Klein and Poincare. Klein had indicated a method for solving the prob
lem, the so-called ''continuity method''. This method called, however, for a deep homeo-
morphism result. 

Brouwer had the good forture to reahse that the invariance of domain theorem provided 
exactly the missing hnk. There is some correspondence with Blumenthal and Poincare, but 
there is no doubt that Brouwer found the application himself. He was immediately invited 
to present his result at the special symposium on automorphic functions which was part of 
the annual meeting of the German Mathematical Society in Karlsruhe, 27-29 September, 
1911. 

The successful vindication of the continuity method somehow annoyed the leading auto
morphic function speciahst Paul Koebe who had solved the uniformisation, simultaneously 
with Poincare in 1906, by other means. A most unpleasant period followed, in which Koebe 
feverishly worked to beat Brouwer on his own territory. Many letters were exchanged, 
Koebe asked for Brouwer's manuscript in exchange for his own one, and then he did not 
comply. Some wild stories resulted from the episode, including tampering with Brouwer's 
printer's proofs. At the end Brouwer was sorry to have engaged in uniformisation.^ 

The year 1912 brought more results in the New Topology: the invariance of the closed 
curve (claimed but not proved by Schoenflies [32]); the introduction of homotopy class 
(under the name 'class') in ''Continuous one-one transformations of surfaces in them
selves, y " [33], including the theorem that maps of the same degree belonged to the same 
class. The latter theorem was the topic of Brouwer's talk at the International Congress of 
Mathematicians in Cambridge 1912 [34]. 

Cf. [52] and [60]. 
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Brouwer was the first to introduce and investigate a number of notions in topology. Most 
of them have already been mentioned above. He coined a few new terms, but in general he 
was quite content to use descriptions instead of short, suggestive names. E.g., he referred 
to homotopy classes just as 'classes', someone else had to introduce the name 'homotopy'. 
He also used the term 'Zyklosis\ which probably derived from Listing. Brouwer used it 
for the predecessor of the fundamental group, cf. [32, 42]. Vietoris used the term in the 
framework of homology theory. The use of ''topological mapping" in the modern sense 
was introduced by Brouwer in 1919 [40]. 

The last paper in the vein of the new methods was his ''tjber den naturlichen Dimen-
sionsbegrijf' [36]. In this paper Brouwer gave an intrinsic, topological definition of the 
notion of dimension. Poincare had aheady in his ''Pourquoi Vespace a trois dimensions'' 
[77] given a first version of such a definition, but it suffered from a number of inadequacies. 

Brouwer adopted Poincare's idea and gave an exact definition. The definition used the 
notion of separation, and it ran: 

The expression n has the general dimension degree n, in which n denotes an arbitrary natural 
number, will mean that for each choice of p and p' [disjoint closed subsets of :7r] a separating 
set 7T\ exists which has the general dimension degree /i — 1, but not, however, that for each 
choice of p and p' a separating set 7i\ exists which has a lower dimension degree than n — \. 

On the basis of this definition Brouwer showed that R" has dimension degree n, thereby 
once more proving the invariance of dimension. The proof used the paving principle, for 
which Brouwer gave a short proof using the mapping degree. 

This particular paper became in the twenties a nail in his coffin. It is the subject of 
the Brouwer-Menger conflict. Before we pass on to the next episode in Brouwer's hfe, a 
comment on his topological methods is in order. Many of Brouwer's contemporaries have 
remarked that he was hard to read, and up to a point they were right. Brouwer stubbornly 
stuck to his geometric approach, either unaware of the potential of homology as initiated 
by Poincare, or just preferring the direct geometric attack, cf. [62]. Since nobody asked 
him the question, we can only guess. 

It is well established, however, that Brouwer was not a victim of any compulsion to 
produce results. He usually practiced his mathematics as an artist, free from economic 
pressure: he loved mathematics for the sake of beauty and the satisfaction it brought, but 
following up a gold vein he had discovered was not to his taste. After proving the basic 
facts, he was happy to leave the area to the more ambitious professionals. In that sense 
we may be grateful to Lebesgue, he may have got more out of Brouwer than any kind 
well-meaning counsellor! 

The year 1913 saw the end of Brouwer's first and incredibly productive, topological 
period. It is as if Brouwer's topological appetite was stilled. 

At the end of this first topological period Brouwer was well recognised both nationally 
and internationally. The recognition at home had come only slightly later than the interna
tional one. When the leading mathematicians were already convinced that this young man 
had achieved beautiful and difficult results and offered new ideas to mathematics, his Ph.D. 
adviser was still struggling to get Brouwer a secure place in the academic world. Brouwer 
became a 'privaat docenf in 1909, as such he could teach a course here and there, but 
privaat docents were only minor satelhtes to the professors and the faculties. Moreover, the 
salary was more symbolic than real. Korteweg, fully realising that Brouwer could easily 
drop out of mathematics altogether, started in 1910 an action to get a lecturer's position for 
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him. The board of the university (of Amsterdam) refused, however, to go along. In order 
to build a better case, Korteweg then started a campaign to get Brouwer into the Royal 
Academy at Amsterdam as a jumping board for a university job. He wrote to the mathe
matical authorities of the day: Hilbert, Borel, Poincare and possibly Klein for recommen
dations. Only Hilbert's reaction has been preserved; it was unconditionally favourable. The 
first time, in 1911, the action failed, when Brouwer did not get enough votes, but in 1912 
he was elected a member of the Academy. Even then drastic measures where required to 
get Brouwer a real position. In 1912 Brouwer got an offer from Groningen. Korteweg, who 
would have been sorry to lose his star student, convinced the board of the University of the 
necessity to appoint Brouwer. This resulted in an appointment as extrarordinary professor, 
a post with few duties, but also with a marginal salary. Then Korteweg made a surprisingly 
generous proposal to the board of the university: he offered to step down himself and pass 
his chair on to Brouwer. This generous action was crowned with success. Brouwer became 
a full professor in 1912 and Korteweg stayed on as an 'extraordinary' professor till his 
retirement in 1918. 

The First World War isolated Brouwer more or less from his second scientific home -
Gottingen. And so the war years saw a return to his first love: the foundations of mathe
matical philosophy. 

The advances in the foundations were closely related to his teaching. In 1912/13 and 
again 1915/16,1916/17 Brouwer taught (among other courses) a course in set theory. From 
his lecture notes one can more or less reconstruct his progress. The first courses were 
basically on point set theory, we would nowadays say "theory of real functions". They 
were conducted in the style of his 1907 constructivism, and nonconstructive parts of the 
theory were labelled as such. 

In 1916/17 he repeated the course of 1915/16, but this time there was an innovation: the 
introduction of choice sequences. In the margin of his 1915/16 notes he added his new in
sights on choice sequences. The simplest case of a choice sequence is an infinite sequence 
of natural numbers determined in a more or less arbitrary way. Given the fact that choice 
sequences were highly unpredictable objects, Brouwer saw that their weakness was at the 
same time their strength: if one knew that to every choice sequence a natural number was 
assigned, then their very undeterminedness forced a continuity property. In mathematical 
terms, he accepted on the grounds of a conceptual analysis of his choice sequences the fol
lowing Continuity Principle: All functions from the set of choice sequences to the natural 
numbers are continuous [37]. 

Furthermore he joined during the war a philosophical society, which later became known 
as the Signific Circle. 

In 1915 one of the highest honours that a mathematician could receive from his col
leagues befell Brouwer: he was appointed member of the editorial board of the Mathema-
tische Annalen. 

The importance and impact of Brouwer's topological work was such that the Universities 
of Gottingen and of Berlin offered him chairs in 1919. Brouwer seriously considered the 
BerUn offer, but after some generous concessions of the Amsterdam University he decided 
to stay where he was. The concession took the form of an extension of the mathematics 
group in the faculty. The later economic crises practically prevented the fulfillment of the 
promises. 

After the war Brouwer resumed his topological activities, but on a more moderate scale, 
also without new revolutionary insights. His heart was clearly drawn towards the founda-
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tions of mathematics. In a series of papers he started to rebuild mathematics along the line 
of his new intuitionism, i.e. the intuitionism with choice principles [37, 38, 41,44,45]. At 
the same time he published some fifteen papers on the topology of surfaces. A number of 
enumeration results, and also a paper which extended results of Nielsen on fixed points on 
the torus [76,43]. 

The topological papers of 1921 would probably have been his last activity in the area, 
had not the developments in dimension theory called him back. 

Brouwer had become a full-time intuitionist, and the new program asked all his atten
tion. In 1919 he got the enthusiastic support of Hermann Weyl, whom he told about the new 
intuitionism during a holiday in the Engadin in Switzerland. Weyl vigorously promoted in
tuitionism in his provocative paper ''Uber die neue Grundlagenkrise in der Mathematik'' 
[81]. A year later Brouwer gave his first public lecture on the topic at the Naturforscherver-
sammlung in Bad Nauheim (September 1920). The challenging title of his talk was ''Does 
every real number have a decimal expansion ?"" 

Weyl's paper introduced famous (or notorious) expressions in the mathematical vernac
ular, such as "Brouwer is the revolution", "Pure existence is paper money". The paper fired 
the imagination of the readers, and it is not an exaggeration to say that it was the opening 
volley in the Grundlagenstreit (cf. [59]). 

In 1923 Brouwer quite unintentionally returned to topology. The event that caused this 
was the lecture of the young Russian topologist Pavel Urysohn, who was at the annual 
meeting of the German Mathematics Society in Marburg. Brouwer was at the same meet
ing, delivering a talk on intuitionism. Urysohn had successfully attacked a number of prob
lems in topology, among other things the definitions and theories of curve and dimension. 

Urysohn had come with Alexandrov to visit colleagues, when visiting Gottingen he was 
told about Brouwer's 1913 paper. In his Marburg lecture he mentioned a mistake in the di
mension definition of Brouwer. The "closed" in the definition of separation gave the wrong 
dimension. Urysohn provided a simple counterexample, cf. [46, p. 637]. Indeed, Brouwer 
had apparently slipped in the condition 'closed' unintentionally. Freudenthal's precise and 
convincing analysis shows that Brouwer had immediately after publication seen the, what 
he called, clerical mistake. He had inserted a remark to the effect in the proofs of Schoen-
flies' new edition of the Bericht [78], but Schoenflies seemed to have ignored the note, 
probably thinking that it was irrelevant. The question (which became central in the discus
sion with Menger) is, did Brouwer know the right notion of connectedness (i.e. the modern 
one)? Lennes gave the modern definition in 1911, and Brouwer himself gave in the same 
year (probably independently) the same definition [72, 23]. Moreover, Brouwer was the 
referee for Lennes second paper, so he could not have missed the fact that Lennes and he 
had given the same (modern) definition. 

The evidence for the answer 'yes' seems therefore to be overwhelming (cf. [52, pp. 548 
ff.]). The matter is of some importance, as the confusion about the credit for the right 
dimension notion would have been avoided if Brouwer's correct version had been known 
to Urysohn - and subsequently to Menger. The Brouwer-Menger conflict would probably 
have been avoided. 

In 1924 Urysohn and Alexandrov again visited western Europe. This time they visited 
Brouwer, who was most favourably impressed by the two Russians. He was particularly 
taken with Urysohn, for whom he developed something like the attachment to a lost son. He 
saw in Urysohn the rightful inheritor of his own topology. After visiting Holland Urysohn 
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and Alexandrov travelled on to France and there they rented a cottage in Brittany. There 
Urysohn tragically drowned during one of their regular swimming sessions.^ 

Brouwer was broken hearted. He decided to look after the scientific estate of Urysohn, 
as a tribute to the genius of the deceased. Together with Alexandrov he acquitted himself 
of this task. 

In the following years various topologists visited Brouwer: Alexandrov, Vietoris, 
Menger and later Freudenthal, Hurewicz, Newman and Wilson. The latter wrote a Ph.D. 
thesis with Brouwer. 

Menger had studied with Hans Hahn in Vienna, where he started his research in topol
ogy, as part of Hahn's seminar. He had investigated, starting in 1921, independendy of 
Urysohn (and Brouwer) the notions of curve and dimension. 

After some correspondence Menger joined Brouwer as an assistant in March 1925, in 
May of the same year Alexandrov arrived. In the fall Vietoris came over and Newman 
dropped in for a short visit. Brouwer's Ph.D. student Wilson also took part in the topology 
discussions. The members lived in Laren and Blaricum (towns not far from Amsterdam) 
and the workshops were conducted in Brouwer's house in Blaricum.^ 

During the Christmas Holiday Emmy Noether, with whom Brouwer had been in con
tact since the Karlsruhe meeting in 1912, stayed with Brouwer. She gave some informal 
talks, also attended by B.L. van der Waerden , about the definitions of the Betti groups of 
complexes and related subjects. 

Eventually Brouwer and Menger fell out, mosdy about the distribution of credits in 
dimension theory. This developed into a long drawn conflict with numerous letters and 
recriminations. Even the mediation of Hans Hahn (who was the teacher of Menger and 
a good friend of Brouwer) was of no avail. In 1927 Menger accepted a chair in Vienna, 
where he became a key figure in the mathematics community. For detailed information 
the reader is referred to [67, 75], Freudenthal's commentary in [52], and the forthcoming 
Brouwer biography, volume 2. 

In the meantime Brouwer had carried on his intuitionistic program with considerable 
success. He had found means to exploit the properties of choice sequences. At the same 
time Hilbert was developing his proof theory as an answer to the intuitionistic challenge. 
The foundational discussion assumed definitely nasty proportions. Where Brouwer went 
out of his way to avoid provocation - his publications bordered on the impersonal, Hilbert 
attacked his opponents with all available means. After many an exchange the factual 
Grundlagenstreit ended when Hilbert fired Brouwer from the editorial board of the Mathe-
matische Annalen (cf. [58]). Brouwer withdrew from the debate and for more than 10 years 
hardly pubhshed anything at all. The intuitionistic activity of the twenties yielded some 
topological papers, which mainly were intended to show that the adoption of the intuition
istic viewpoint did not lead to such disastrous amputations as some claimed. Among the re
sults are (intuitionistic versions of) the Heine-Borel theorem, the dimension definition and 
the accompanying 'soundness theorem' (the invariance of dimension), the Jordan theorem. 

In reaction to his exit from the Mathematische Annalen, Brouwer founded his own jour
nal, Compositio Mathematicae. Its first issue appeared in 1934. Contrary to the expectation 

'̂  Cf. [3,4]. 
Brouwer got most of his visitors paid jobs. Here is a short Hst of Brouwer's assistants: 1925/26 - Belinfante, 

Menger, Alexandroff, Vietoris; 1926/27 - Menger, Hurewicz; 1927/28 - Menger, Hurewicz, Gawehn; 1928/29 
- Hurewicz, Gawehn, 1929/30 - Hurewicz, Gawehn; 1930/31 - Hurewicz, Gawehn, Freudenthal; 1931/32 -
Hurewicz, Freudenthal. 
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Hurewicz and Brouwer (Courtesy of Brouwer Archive) 

of some veterans of the foundational war, the journal turned out to be a respectable, normal 
mathematics journal, not a pulpit for preaching intuitionism. The journal was closed down 
in the first year of the occupation, 1940. 

The topological activity in Amsterdam was carried on by Freudenthal and Hurewicz, 
who became Brouwer's assistants. During the period of Brouwer's active mathematical 
career, further topological research in the Netherlands was carried out by D. van Dantzig, 
J. de Groot, A. van Heemert, B.L. van der Waerden, and E.R. van Kampen. Van Kam-
pen's work was not influenced by Brouwer (other than through the literature), he came 
to topology through contacts with Alexandrov and Van der Waerden. The development of 
homotopy theory was the result of Hurewicz' and Freudenthal's research. Hopf in Zurich 
took up Brouwer's methods and pushed them far beyond their known limits. 

In the late twenties Brouwer created furore with his lectures in BerHn (1927, [53]) and 
Vienna (1928, [47, 48]). The subsequent Mathematische Annalen conflict, unintendedly, 
put a halt to Brouwer's foundational crusade. 

Brouwer was now in his fifties, and the mathematical revolutionary had become a re
spectable scientist. His recognition in the Netherlands may be inferred from the fact 
that Queen Wilhelmina made him Knight in the Order of the Netherlands' Lion (1932). 
International recognition had already come his way, when the Konigliche Gesellschaft 
der Wissenschaften zu Gottingen (1917) and the Leopoldinische-Carolingische Deutsche 
Akademie at Halle (1924) adopted him as a member. Furthermore, he received an honorary 
doctorate from the Oslo University in 1929, together with 16 other mathematicians (includ
ing some of friends and associates, such as Hadamard, Landau and Weyl), at the occasion 
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hundredth commemoration of the death of Abel. In the same year the Prussian Academy 
elected Brouwer as a member. 

In the thirties Brouwer mainly worked in private, and hardly published. There is an ex
ception, in [49] Brouwer pubHshed the triangulation theorem for differentiable manifolds. 
Freudenthal subsequently produced another proof. Both were not aware that Cairns had 
already estabHshed the theorem [54, 55], see also [68]. 

During the Second World War Brouwer published a few intuitionistic papers. After the 
war he resumed his activity and published a series of papers showing that intuitionistic 
analysis diverged in a strong specific way from classical analysis. 

The postwar novelty, which was already implicit in his Berlin Lectures, eventually be
came known as the method of the creating subject. It provided strong (negative) results 
instead of the weak results of the form "we cannot affirm at the moment that . . . " (the 
so-called Brouwerian counterexamples). In a paper in the proceedings of the Royal Soci
ety [50] Brouwer presented an intuitionistic form of the fixed point theorem (for any £ > 0 
there is an x such that \f{x) — x\ < £, for a continuous / ) . 

The aftermath of the war brought Brouwer sad disappointments. He was suspended for 
a few months on the basis of insignificant grounds and reinstated with a reprimand of 
the minister. His views on the faculty were no longer heeded and to add insult to injury, 
the Mathematical Centre was founded in Amsterdam, which virtually got all the facilities, 
and more, that were promised to Brouwer as a compensation for turning down the Berlin 
chair in 1920. In addition he was reduced to a symbolic figurehead in his own journal the 
Compositio Mathematica. 

Abroad he got the recognition that failed him in post-war Holland. He was elected for
eign member of the Royal Society of London, and the University of Cambridge granted 
him an honorary doctorate. In 1953 he made a lecture tour through the United States and 
Canada. Furthermore he lectured in Finland, England, France, Belgium and South Africa. 
He survived his wife Lize de Holl by seven years and died on December 2, 1966, being run 
over by a car. 
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1. Introduction 

Max Dehn is remembered today for many concepts in topology and the related fields of 
geometry and combinatorial group theory: Dehn's lemma, Dehn's algorithm, Dehn surgery, 
Dehn filling, Dehn twists and the Dehn invariant. Remarkably, most of these concepts 
were recognised and brought to maturity only after Dehn's death in 1952. One reason for 
this is that Dehn was often ahead of his time. He worked in topology and combinatorial 
group theory before they were considered important, so mainstream mathematicians did 
not at first follow up his ideas. Also, his work was perhaps too visual and intuitive to be 
respectable, and indeed this approach sometimes led him into error. However, Dehn was 
also influential in his lifetime through the work of his students Jakob Nielsen, Wilhelm 
Magnus and Ruth Moufang. He was generous with ideas, and happy for others to publish 
proofs of results he had discovered. 

In this essay I shall try to follow those threads in the history of topology that pass through 
Dehn: the influence of Hilbert, Poincare, Heegaard and Tietze on him, and Dehn's influence 
in turn on other topologists and on the development of topology. 

Sources I have found particularly helpful are the biographical articles of Magnus (1978), 
Magnus and Moufang (1954) and Siegel (1965). I obtained valuable information about 
Kneser's discovery of the error in Dehn's lemma from Wilhelm Magnus and Martin Kneser, 
and on Dehn's later career from Linda Hill. Abe Shenitzer and Sanford Segal provided in
formation about Dehn in Frankfurt, Vagn Lundsgaard Hansen and Hans J0rgen Munkholm 
checked the details of Dehn's fife where it intersects with the lives of Nielsen and Hee
gaard (see also their contributions to this volume), and Walter Neumann made some valu
able technical comments. Dehn's daughter, Maria Peters, very graciously shared her fam
ily reminiscences with me. Finally, more mathematical details may be found in the book 
Dehn (1987), which consists of my translations of, and commentary on, the most important 
Dehn papers. 
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2. Early influences 

2.1. Foundations of geometry 

Max Dehn was born in Hamburg on 13 November 1878, the fourth of eight children of a 
physician. Most of his brothers and sisters lived in Hamburg until the 1930s, so Hamburg 
remained home base even after Dehn's career took him elsewhere. As his daughter Maria 
recalled in a letter to me: 

Visits to Hamburg were visits to Heaven for us. The city itself seems to foster a kind of 
wisdom and self-confidence in its inhabitants; could this be due to the many waterways 
and the Alster river and lake? Instead of trucks rumbling through the streets, you have 
barges gliding along canals with their loads. Instead of going to work by streetcar or bus, 
people take the steamer across the Alster from the residential to the business district, or 
they walk to work along the water's edge - such a good way to start the day! But for us 
it was family that made Hamburg our dream town. It was the Verwandtenstadt (family 
town). Every day had its joyful events, but the special occasions were something else 
again! Then there would be table songs written and sung, chamber music would be 
played, quadrilles danced, skits put on to tease, and love and laughter filled the rooms. 

His mathematical career began as a student of Hilbert in Gottingen in 1899. This was 
during the period of Hilbert's interest in the foundations of geometry, and Dehn's first 
original work was a proof of the Jordan curve theorem for polygons, based on Hilbert's 
axioms of order and incidence. It was not published at the time, perhaps because Hilbert 
thought it was easy - it is stated without proof in Hilbert (1899). Dehn's proof was first 
described in the article of Guggenheimer (1977). In 1900 Dehn completed his doctoral 
dissertation on the role of the Legendre angle sum theorem in axiom systems of geometry. 

Also in 1900, Dehn made his greatest contribution to geometry with the solution of 
Hilbert's third problem. Specifically, he showed the regular tetrahedron is not equidecom-
posable with the cube, that is, it is impossible to decompose a regular tetrahedron, by planar 
cuts, and paste the pieces together to form a cube. This result gave a negative answer to a 
question that had effectively been open since the time of Euclid: can the volume of poly-
hedra be defined without using infinite constructions? In view of the age of the question, 
and the fact that Gauss and Hilbert had worked on it without success, Dehn's solution is 
brilliantly simple. 

He associates with each polyhedron 77 an invariant of cutting and pasting which we 
would now write as the tensor l\ ^ a\ -\- h ^ cti -\- - - -\- h ^ otk. where the // are the 
edge lengths of 77 and the ai are the corresponding dihedral angles. Elementary linear 
algebra suffices to reduce the question of equidecomposability to commensurability of the 
dihedral angles of the tetrahedron and cube, and their incommensurabiUty is proved by 
some elementary number theory. 

Dehn had no thought of topology when he solved Hilbert's third problem, so it is in
teresting that his invariant has recently been apphed to 3-manifolds. A 3-manifold can be 
defined by identifying faces of a polyhedron, the Dehn invariant of which is a geomet
ric invariant of the manifold. But we now know, thanks to the Mostow rigidity theorem, 
that geometric invariants are also topological invariants of hyperbolic 3-manifolds. Thus 
for hyperbolic manifolds the Dehn invariant is a topological invariant, as was apparently 
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first noticed by Thurston (see Dupont and Sah (1982, p. 160)). (Technically, it is not quite 
as simple as this, because the plain Dehn invariant vanishes for 3-manifolds, but one can 
extract a nontrivial invariant from it.) 

In 1900/1901 Dehn was an assistant in the Technische Hochschule at Karlsruhe. His 
work on Hilbert's third problem became his Hahilitationsschrift, which earned him a po
sition as Privatdozent at Miinster. He held this position until 1911, during which time he 
came under the influence of Heegaard and Poincare, and his interests shifted to topology 
and group theory. 

2.2. Foundations of topology 

Algebraic topology was founded by Poincare in a great series of papers between 1895 
and 1904. Poincare unified and generalised the fragmentary topological ideas of Euler, Rie-
mann, Jordan and Betti into a comprehensive theory of homology and homotopy, including 
the Betti and torsion numbers of manifolds of arbitrary dimension, and the fundamental 
group. However, he obtained his results by somewhat ad hoc methods - sometimes assum
ing differentiability, sometimes a triangulation, sometimes a geometric structure such as a 
hyperbolic metric. A single foundation for all of Poincare's results was lacking. 

In 1903 or 1904, Dehn and Heegaard met, and found they had a mutual interest in the 
foundations of topology. According to Johannson's obituary of Heegaard, Dehn met Hee
gaard at a conference in Kassel in 1903, after which they discussed foundational questions 
on the train between Gottingen and Hamburg. According to Dehn's widow Toni (told to 
Wilhelm Magnus) the conference was the International Congress of Mathematicians at 
Heidelberg in 1904. At any rate, the meeting led to joint work in Kiel during the summer 
of 1905, and their joint article on analysis situs (combinatorial topology) for the Enzyk-
lopddie der Mathematischen Wissenschaften. This article gave a uniform combinatorial 
foundation for homology and the fundamental group. Among its many results was the first 
rigorous proof of the classification of compact surfaces, previously discovered by Mobius 
(for orientable surfaces) and Dyck. 

The analysis situs article with Heegaard appeared in 1907. A footnote at the beginning 
says: 

Heegaard undertook the collection of literature for the article, as well as working out 
essential portions. Responsibility for the final form of the article is Dehn's. 

It appears that the article was originally Heegaard's idea, and Heegaard later felt he 
received insufficient credit for it (see the biography of Heegaard in this volume). Dehn 
was well versed in axiomatics from his time with Hilbert, and may well have suppUed an 
axiomatic structure to meet Heegaard's intuitive requirements. However, it should also be 
said that Dehn himself took an intuitive view of topology, and did not pursue axiomatics 
thereafter. In fact, Dehn's intuition was his greatest strength, and on occasion it exceeded 
his ability to give rigorous proofs. 

2.3. Homology spheres 

Dehn was particularly impressed with the Poincare (1904) paper, which used hyperbolic 
geometry to study the topology of surfaces. This paper also contains the first construction 
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of a homology sphere, which greatly interested Dehn. Poincare's construction comes out 
of the blue, presenting a 3-manifold whose homology is unclear, but which turns out to be 
trivial after a group-theoretic calculation. The calculation also shows that the fundamental 
group is not trivial, so the manifold is not homeomorphic to the 3-sphere. Dehn sought 
a more insightful construction, giving a manifold with obviously trivial homology, yet 
obviously not homeomorphic to the 3-sphere. 

His other paper of 1907, a research announcement in the yearly report of the Deutsche 
Mathematiker-Vereinigung, is an attempt to do this. After correcting the encyclopedia ar
ticle's account of the Poincare homology sphere, Dehn gives a new homology sphere con
struction which is short enough to quote in full: 

A very clear example of such a noteworthy manifold can be constructed as follows: a 
knotted torus T2 in ordinary space [meaning the 3-sphere] divides the latter into a solid 
torus 73 and a part K^, not homeomorphic to it. Suppose that curves C, respectively, 
r are nonseparating on Ti and bounding in 73, respectively, K^,. One joins K^^ to a 
homeomorphic body K'^ which is bounded by T!^ (with the curves C' and F') in such a 
way that T2 is identified with T2, C with F and C with F'. In the resulting closed M3, 
each curve is bounding when taken once. However, this M3 is not homeomorphic to 
ordinary space, since it is divided by the torus T2 into parts Ki, and AT̂, neither of 
which is homeomorphic to a solid torus. 

The claim in the last sentence seems intuitively clear, but in fact it was first proved 
by Alexander (1924). Perhaps Dehn realised that it would be hard to formahse his intu
ition, and set off instead on the group-theoretic path followed in his great series of papers 
from 1910 to 1914. As I pointed out in Still well (1979), the construction above can be 
justified by a group-theoretic argument and Dehn's lemma. The lemma appears in the first 
paper of the series, Dehn (1910), though in fact not in connection with homology spheres, 
which Dehn does afresh with new constructions which reduce the difficulties to pure group 
theory. He succeeds in making the homology obviously trivial, but the nontriviahty of the 
fundamental group still requires some work. 

2.4. The Poincare conjecture 

Poincare's homology sphere disproves a claim he made at the end of Poincare (1900): 
every closed 3-manifold with trivial homology is homeomorphic to the 3-sphere. In the 
light of the homology sphere counterexample, Poincare (1904) strengthened the condition 
to trivial homotopy in the famous Poincare conjecture: every closed 3-manifold with trivial 
fundamental group is homeomorphic to the 3-sphere. Thanks to the research of Moritz 
Epple, we now know that Dehn tried to prove the Poincare conjecture in 1908, and thought 
for a while he had succeeded. 

He actually sent his proposed proof to Hilbert, urging him to speed up publication in 
case someone else got there first ("Poincare, for example", he says). As we now know, 
there was no need to be so hasty! Tietze found a mistake in Dehn's proof, and the paper was 
withdrawn. As Volkert (1996) puts it, Dehn nearly became "the first victim of Poincare's 
conjecture". 
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3. The major papers 

3.1. Group theory 

Dehn was not the only mathematician to be inspired by Poincare's results. The long paper 
by Tietze (1908) on multidimensional manifolds took up where Poincare left off, introduc
ing some crucial examples and problems for group theory and low-dimensional topology: 
Tietze transformations, the isomorphism problem (even the statement that it is unsolv-
able!), mapping class groups, knot groups, proof that the trefoil is knotted, and lens spaces. 
Dehn does not refer to this paper until 1914, but in Dehn (1911) he refers to a 1907 report 
of Tietze which mentions some of its results. It seems likely that Tietze's paper first alerted 
Dehn to the power of group theory in topology. 

Around 1910 Dehn gave a lecture course on group theory and topology, two chapters of 
which were eventually published in Dehn (1987). The group theory chapter introduces his 
"Gruppenbild" (group diagram) a generalisation of Cay ley diagrams to infinite groups, also 
related to the tessellation pictures of infinite discontinuous groups used by Dyck, Fricke 
and Klein. He begins by giving presentations and diagrams for some of the alternating and 
symmetric groups related to regular polyhedra, showing that the diagrams follow the shape 
of the corresponding polyhedra. Then he studies the group with a related presentation, by 
generators S2 and 53 and relations S2 = s^ = (53^2)̂  = 1. He shows that its diagram is 
naturally embedded in the hyperbolic plane, and hence this group is infinite. 

In fact, nearly every group discussed in the course is naturally represented by a diagram 
on the sphere, Euclidean plane or hyperbolic plane, and Dehn's diagram is just the dual 
of the tessellation picture of the group. It is nevertheless a somewhat clearer picture, since 
generators correspond to edges and relations to closed paths (instead of closed chains of 
cells). And it is better suited to topology, where elements of the fundamental group are 
also represented by paths. This is the origin of Dehn's interest in the word and conjugacy 
problems for finitely presented groups, which he was apparently the first to state. Solving 
the word problem amounts to deciding whether a path can be contracted to a point, and 
solving the conjugacy problem amounts to deciding when one path can be deformed to 
another. 

The chapter on surface topology presents several of the results about fundamental groups 
of surfaces that were eventually pubHshed in Dehn (1911) and (1912), though with different 
proofs. In particular, he gives a geometric algorithm for the conjugacy problem similar to 
an algorithm used by Poincare (1904) to detect whether a closed curve on a surface of 
genus > 1 is homotopic to a simple curve. He lifts the curve to the universal cover (the 
hyperboHc plane), where its free homotopy class (and hence the conjugacy class of the 
corresponding element of the fundamental group) is determined by its "ends" at infinity. 

3.2. Knots and groups 

Some of the ideas from Dehn's lectures saw the light, in suddenly matured form, in 
Dehn's (1910) paper on the topology of 3-dimensional space. This very rich paper in
cludes a discussion of word and conjugacy problems for arbitrary groups, Dehn's lemma, 
presentation of knot groups, and the construction of homology spheres by Dehn surgery. 

Dehn saw that the fundamental group translated many topological problems into prob
lems of combinatorial group theory - for example, free homotopy of curves was equivalent 
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to the conjugacy problem, and triviality of knots was equivalent to commutativity of the 
knot group - but at the same time he saw that the group theory problems were hard, and 
perhaps best solved by further use of topology and geometry. A substantial part of the paper 
is in fact a topological attack on the knot problem, with Dehn's lemma used to prove that 
a nontrivial knot has a noncommutative group. Unfortunately, Kneser (1929) discovered a 
gap in Dehn's proof, and the lemma was not proved until 1957 (by Papakyriakopoulos). 

Dehn's lemma was indeed deeper than Dehn realised, and the gap in Dehn's proof 
held up the development of 3-manifold topology until the 1950s. Nevertheless, Dehn's 
"switchover" (Umschaltung) technique from his unsuccessful proof was an important tool. 
Kneser (1929) was the first to recognise this, and he used the technique to prove the main 
result of his paper. When 3-manifold theory finally took off, Kneser's result was seen retro
spectively as a breakthrough, and a slew of new results was obtained by the same technique. 

The 1910 paper was more successful in the construction of homology spheres. Thanks to 
his understanding of group diagrams, Dehn was able to give constructions which were rig
orous, clear, and also highly original. Improving on the idea of his (1907) announcement, 
he constructs them by removing a solid torus from the 3-sphere and "sewing it back differ-
endy" - what is now called Dehn surgery. He actually constructs infinitely many different 
homology spheres, the simplest of which is homeomorphic to Poincare's, though this was 
first shown by Weber and Seifert (1933). This homology sphere is still the only one known 
with finite fundamental group. 

3.3. Dehn's algorithm 

From 1911 to 1913 Dehn was Extraordinarius (associate professor) in Kiel. He prepared 
three more major papers during this time, the first two (1911 and 1912) bringing his study 
of the word and conjugacy problems for surface groups to an elegant conclusion with 
Dehn's algorithm, 

Dehn (1911) is a remarkable blend of topology, algebra and geometry. A problem moti
vated by topology (deciding whether curves on a surface are free homotopic) is translated 
into a problem of algebra (the conjugacy problem for the fundamental group 7X\{S) of the 
surface 5), and a combinatorial algorithm for its solution is justified by appeal to geometry 
(using the hyperbolic plane as universal cover for a surface S of genus > 1, and hence as 
the location of the group diagram of TTI (5)). 

The algorithm and its proof can be seen as a transitional stage between the group theory 
notes of 1910, where the algorithm and its proof are both geometric, and Dehn (1912), 
where the algorithm and proof are combinatorial. However, this stage includes a new idea 
which was important for the Dehn-Nielsen theorem of the 1920's, and the geometric group 
theory of today - the word metric. Dehn defines the distance between elements g\ and g2 
of 7T\{S) as the minimum length of a word for ^ lg^^ that is, the minimum number of 
edges in a path connecting the vertices ^i and gi in the group diagram of 7T\ (S). He shows 
that this distance lies within constant bounds of the hyperbolic distance, and hence can be 
used as a substitute for it. 

Dehn (1912) contains his last word on the conjugacy problem for surface groups, as 
well as a very simple solution of the word problem. The solutions are by what is now 
known as Dehn's algorithm, a decisive improvement on the 1911 paper both in concept and 
computational efficiency. In 1911, Dehn needed the existence of the hyperbolic metric but 
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computed only with the combinatorial structure of the group diagram. His 1912 algorithm 
needs the existence of the group diagram but computes only with words. He shows that 
if a word for an element of the fundamental group is equal to 1 then it can be reduced 
monotonically, by replacing any subword that is more than half the defining relator by its 
complement, or by trivial cancellations. (For the conjugacy problem, the same operations 
suffice, but the word is regarded as circular.) 

It would seem that Dehn here is returning to the goal of a purely combinatorial topology, 
the ideal of the 1907 Dehn and Heegaard encyclopedia article. His next paper however, was 
perhaps his most brilHant application of hyperboHc geometry. 

3.4. The two trefoil knots 

Dehn (1914) answers one of the most intuitively appealing questions in topology, by show
ing that the left and right trefoil knots are not equivalent. Dehn reduced the problem to 
finding the automorphisms of the trefoil knot group, but these were far from easy to find 
with the presentation and group diagram he used, taken straight from his 1910 paper. The 
diagram hes in the product of the hyperboHc plane with the real fine, and Dehn needs all 
his skill in hyperboHc geometry find the automorphisms. Schreier (1924) showed that the 
automorphisms can be found more easily, and purely algebraically, using a presentation of 
the trefoil knot group with generators A, B and defining relation A^ = B^. However, no 
really elementary method for distinguishing the two trefoil knots was known until 1984, 
with the discovery of the Jones polynomial. 

Towards the end of his term in Kiel, Dehn met Jakob Nielsen and took over the super
vision of Nielsen's thesis after the death of Landsberg, Nielsen's original supervisor. The 
last section of Nielsen's thesis (1913) deals with a problem on torus mappings suggested 
by Dehn. This was the beginning of Nielsen's lifelong interest in surface mappings and 
related questions on automorphisms of groups. Dehn too seems to have begun investigat
ing automorphisms around 1913. His first published results are in his 1914 paper on the 
two trefoil knots, but there he also raised the general problem: given a presentation of a 
group by generators and relations, find a presentation of its automorphism group of the 
same type. 

4. Dehn's career between the wars 

4.1. Breslau 

From 1913 to 1921 Dehn was Ordinarius (fuU professor) at the Technische Hochschule, 
Breslau. After the trefoil knot paper his term was interrupted by army service (1915-1918), 
and, in fact, he produced no more topology papers until the 1930s. However, there were 
important developments immediately after the war, when he really began to influence the 
development of topology. 

In 1920 and 1921 Dehn was joined by Jakob Nielsen in Breslau. The Dehn-Nielsen 
theorem, that every outer automorphism of 7t\ (S) is induced by a homeomorphism of S, 
probably dates from this time. In Breslau on the 9th and 11th of March 1921, Nielsen gave 
a proof of the theorem for a surface of genus 2. Notes of these talks were later discovered 
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by Fenchel and an English translation was published in Nielsen's Collected Mathematical 
Papers (1986). The notes credit the theorem to Dehn and say that Dehn's proof uses the 
idea from Poincare (1904) of lifting curves to the universal cover (the hyperbohc plane) and 
using their ends at infinity. Nielsen himself took up this idea later, and greatly expanded its 
scope. 

Dehn's own work on surface mappings was only partially pubHshed in his hfetime. His 
earUest work on the subject, "On curve systems on two-sided surfaces, with appHcation to 
the mapping problem", is now available in Dehn (1987). This paper is based on a lecture by 
Dehn to the Breslau mathematics colloquium on 11 February, 1922. It was not published 
at the time but evidently circulated among a few mathematicians. Followup papers were 
pubHshed by Baer in 1927 and 1928, Goeritz in 1933, and Dehn himself in 1938. In Sec
tion I of the 1922 paper Dehn stakes his claim to the Dehn-Nielsen theorem and says that 
his proof uses essentially topological properties of the diagram of the fundamental group. 
As mentioned above, Dehn (1911) discovered that the advantages of the hyperbolic metric 
could be recaptured in a topological setting by the word metric, and this idea indeed leads 
to a natural proof of the Dehn-Nielsen theorem (see Appendix to Dehn (1987)). The first 
published proof of the theorem was given by Nielsen (1927) and, like most of Nielsen's 
work, it makes full use of hyperbolic geometry. 

4.2. Frankfurt 

In 1922 Dehn was called to Frankfurt to succeed Bieberbach, and stayed there until 1935. 
This happy period in Dehn's career has been described by Siegel (1965) and Mag
nus (1974). Magnus compares Frankfurt in those days to the empire of the caliphs in the 
time of Harun al-Rashed, described by Goethe as follows: 

Proverbially, it was a time when, in a particular locality, all human endeavours inter
acted in such a fortunate way that the recurrence of a similar period could be expected 
only after many years and in very different places under exceptionally favourable cir
cumstances. 

The heart of these fortunate endeavours was the history of mathematics seminar, founded 
by Dehn in 1922, and continuing under his leadership until 1935. Siegel (1965) says: 

Dehn was in a sense our spiritual leader, and we always followed his advice in choosing 
topics for each semester. As I look back now, those communal hours in the seminar are 
some of the happiest of my life. Even then I enjoyed the activity which brought us to
gether each Thursday afternoon from four to six. And later, when we had been scattered 
over the globe, I learned through disillusioning experiences elsewhere what rare good 
fortune it is to have academic colleagues working unselfishly together without thought 
of personal ambition, instead of just issuing directives from their lofty positions. 

It is typical of Dehn's lack of personal ambition that he readily allowed others to find 
proofs of theorems, and get the credit for them, instead of publishing his own proofs. 
We have already seen how this was the case with the Dehn-Nielsen theorem, and Mag
nus (1978) gives other examples. One was the Nielsen-Schreier theorem that every sub
group of a free group is free, another was the "Freiheitssatz" which Dehn set Magnus as 
a thesis topic in 1928. Magnus succeeded in proving it, but not by the topological method 
Dehn apparently had in mind. 
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4.3. Setbacks and new directions 

On 22 April, 1929, Hellmuth Kneser wrote to Dehn informing him of a mistake in the 
Dehn (1910) proof of Dehn's lemma. Some interesting correspondence ensued (now in the 
Archives of American Mathematics in Austin Texas), including Kneser's beautiful repre
sentation of the Poincare homology sphere as a dodecahedron with opposite sides iden
tified. However, they were unable to repair the proof of the lenama. This did not greatly 
affect Dehn, who was no longer working on 3-manifold topology, but it was a blow to 
Kneser, who had to drop plans for a book on the subject based on Dehn's lemma. (I owe 
this information to a letter from Kneser's son Martin, who also suggests that the collapse 
of Dehn's proof may have been influential in his father's switch from topology to several 
complex variables.) 

In 1930 Ruth Moufang completed a thesis on the algebra of projective planes, super
vised by Dehn. The problem goes back to Hilbert (1899), who showed that the algebra of 
segments in a projective plane is commutative if the theorem of Pappus holds, and it is 
associative if Desargues' theorem holds. Moufang found a weaker theorem which implies 
only that the algebra is alternative (for example, the octonions). At the time, this topic did 
not seem to be related to topology, but it became so in the 1950s, when the existence of 
division algebras with various properties was found to be controlled by topology, and in 
particular by the properties of the spheres S \ Ŝ  and S^. 

In the summer of 1935, Dehn was dismissed from his position at Frankfurt, "pensioned 
because of Non Aryan legislation" as he later wrote on his resume. Siegel (1965) conjec
tures that this was 

the result of an act of revenge by an influential ministry official in Berlin. This man 
had published a rather inferior mathematics text some 30 years earlier which Dehn had 
reviewed unfavorably. 

Dehn, who was of Jewish descent (though in fact a Lutheran since the age of 18), had 
kept his position up to this time because of his war service, along with other Jewish 
colleagues at Frankfurt, Epstein and Hellinger. But by the fall of 1935 they had all lost 
their positions with the passage of new laws at the Nuremberg party congress. Dehn used 
his forced retirement to write up some topology he had been thinking about since the 
early 1920s. 

Dehn (1936) contains a miscellany of results on combinatorial topology, mostly in areas 
where group theory is not applicable. This little known paper is noteworthy for the solution 
of a problem posed by Gauss, the "crossing problem". Read and Rosenstiehl (1976) drew 
attention to the efficiency of Dehn's solution. 

4.4. Mapping class groups 

The long and complicated paper Dehn (1938) was also overlooked for a long time, until its 
main result was rediscovered by Lickorish (1962): the mappings of a closed orientable sur
face are composed (up to isotopy) of twist mappings. Dehn was already working towards 
this result in his unpublished 1922 paper, and perhaps delayed publication because of the 
extreme complexity of his proof - an induction on the complexity of the surface and the 
mapping, with a base step involving the study of spheres with up to five holes. The proof by 
Lickorish is similar in concept but much simpler. Amazingly, Lickorish also rediscovered 
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Dehn surgery at the same time, and had the new and fruitful idea of combining the two, to 
show that all 3-manifolds may be constructed by Dehn surgery on the 3-sphere. 

While the work of Lickorish enables us to skip many of the details of Dehn (1938), 
it does not replace the whole paper. Dehn had another idea which went unnoticed even 
longer, until it was rediscovered by Thurston in 1976. This was the idea of studying the 
mapping class group by its action on the space of simple curve systems. Dehn took this idea 
far enough to represent mapping classes by transformations of the (fig — 6)-dimensional 
space of integer vectors, but not far enough to understand the geometric meaning of this 
space. 

Thurston interpreted the simple curve systems as "rational points" in the boundary of the 
Teichmiiller space of surfaces of genus p. This space is defined as the space of hyperbolic 
structures on a surface of genus /?, and, hence, demands a return to the hyperbolic geometry 
Dehn had abandoned in his quest for purely combinatorial proofs. What Dehn did not know 
is that mapping classes are easier to understand when they act on the whole Teichmiiller 
space, rather than on the rational points in its boundary, because the whole space is, in fact, 
a topological ball. 

The results of Dehn and Lickorish show that the mapping class group is finitely gener
ated, but they do not give a set of defining relations. Undoubtedly, Dehn would have liked 
to do so, as part of his program from 1914 of finding the automorphism groups of finitely 
presented groups, but this was first done by McCool (1975). 

5. Dehn in America 

5.1. Escape from Germany 

Dehn stayed in Germany until 1939. As Siegel (1965) explains 

Despite the increased oppression in Germany, older Jews often decided not to emigrate. 
They would have had to surrender their savings in accordance with the strict new reg
ulations, leaving them with only ten Marks to try to start a new Hfe abroad. In the first 
few years after 1933, so many university-educated emigrants had gone to America that 
it would have been almost impossible for an older professor to begin a new existence 
there; at the same time, European countries would grant a foreigner resident status only 
if he were capable of supporting himself and had brought his fortune with him. 

Nevertheless, Dehn explored possibilities outside Germany, and sent his children to 
study in England. The way this came about was quite remarkable. In the early 1930s Dehn 
sent his daughter Maria to study at a school near Ulm called the Herrlingen school. This 
was on the advice of one of his former students. Ado Prag, who taught Greek, Latin and 
mathematics there. Dehn became quite involved in school affairs, including plans to move 
the school to another country. After much searching for a suitable location, it was moved 
to England in September 1933, and became the New HerrHngen school near Favesham in 
Kent. Maria moved with it, and was later joined by her younger sister Eva. Dehn him
self taught mathematics at the school between January and April 1938. This Uttle known 
episode in his life is mentioned in his resume, which is in a collection of Dehn documents 
maintained by Linda Hill at Idaho State University. 

Dehn returned to Germany, and Siegel relates what happened to him in November 1938. 
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The real terror in Germany began in earnest on November 10, 1938, when the govern
ment organized an anti-Jewish pogrom: synagogues were burned, many Jewish busi
nesses destroyed, and all the concentration camps in existence at the time were filled to 
overflowing with Jews who had been dragged from their homes. Hitler's minions went 
after Dehn, Epstein and Hellinger to cart them off as well. After an initial period of 
arrest, however, Dehn was released by the police because there was no more room in 
Frankfurt to keep prisoners under lock and key. To avoid being taken again the follow
ing day, Dehn and his wife left for Bad Homburg, where they found asylum with our 
friend and colleague Willy Hartner. 

This lucky escape is described more vividly by Maria in her letter to me: 

I was told that when the Nazis came for my father he was very deliberate, insisting on 
fetching his hat to go out. When they got him down to the station, they were barked 
at "We told you not to bring in anyone after 7" - so my father had to go home again! 
Mother was still standing, clueless, at the top of the stairs (as he had left her), when he 
came back! He then spent several days riding all over the railroads till their safe haven 
with the Hartners in Hamburg was secured. 

It was there that Siegel met him, after initially seeking Dehn at home to congratulate 
him on his 60th birthday. A few days later, Dehn was smuggled on to a train to Hamburg 
with the help of Wilhelm Magnus. In Hamburg he again met Siegel and, together with a 
Danish colleague and former student of Dehn's (could this have been Nielsen?) discussed 
the possibility of emigrating to Scandinavia. 

For a while, this plan was successful. Dehn and his wife left Germany for Copenhagen in 
January 1939, later moving to Trondheim in Norway, where Dehn took the place of Viggo 
Brun at the Technical University until early 1940. But when Siegel visited him there in 
March 1940 more trouble was on the horizon. Ships carrying German flags were loitering 
in the harbour, ostensibly with engine trouble. In reality, they had a more sinister purpose, 
as Siegel explains: 

They were filled with war material for the German soldiers who suddenly occupied 
Trondheim on the day of the invasion of Norway. They were followed by the Gestapo 
and the national-socialist party organisation. . . . Dehn escaped to a farmer's house in 
the early days of the German occupation, but returned to Trondheim when, at least at 
first, no further acts of violence or arrests had occurred. In the course of the next few 
months, Hellinger and a few of his other friends were laying the groundwork for Dehn's 
second emigration. 

5.2. The years in America 

With the help of Hellinger and Clare Haas, a family friend who had fled earlier and found 
work at the State Hospital South in Blackfoot, Idaho, Dehn obtained a position at Idaho 
Southern University (now Idaho State) in Pocatello. A wealth of information from this 
period exists in the Dehn documents at Idaho State. The local newspaper reported Dehn's 
arrival and Dehn related the story of his escape from Europe in an address to the university 
faculty. He and his wife Toni left Norway in October 1940, and travelled to America via 
Stockholm, Moscow, Siberia and Japan - in the belief that it was then more dangerous to 
cross the Atlantic. During their 10 day rail journey across Siberia the temperature dropped 
to around —50° and Dehn contracted what the doctor in Irkutsk cheerfully told him was a 
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"touch" of pneumonia. At this stage the Dehns were forced to wash with eau d'cologne, it 
being the only Uquid that did not appear to freeze. 

On arrival in Vladivostok, Dehn managed to contact Dean Nichols of Idaho Southern 
University to tell him they were safe. Dehn was apparently worried about arriving early 
enough to prepare his lectures, as Nichols wrote to him in Tokyo to assure him there was 
plenty of time. Dehn "took a deep breath of recovery" on arrival in Japan, basking in the 
warm cHmate, feasting his eyes on the flowering plants and colorfully dressed women, and 
admiring the skill and precision of Japanese craftsmanship. From Japan the Dehns travelled 
by ship to San Francisco, arriving on 1 January, 1941. 

They stayed in Pocatello for about a year, with Dehn teaching Freshman Algebra, His
tory of Ancient Philosophy and History of Modern Philosophy. Toni Dehn had visited 
America 30 years earlier, and spoke excellent English, so the culture shock was not as se
vere as it might have been. The beauty of the surrounding countryside and opportunities 
for hiking also helped. In the summer of 1941 it was a little like old times in the Taunus 
mountains near Frankfurt, when Dehn and his wife were visited by Siegel and Hellinger. 

The Dehns were well liked at the University of Idaho, but it was not a permanent job, nor 
was it academically challenging. In 1942 they moved to Chicago, where Dehn was given a 
job at the Illinois Institute of Technology. The pay was higher, but otherwise IIT was less 
pleasant than Pocatello. As Siegel (1965) recalls, Dehn disHked the turbulence of the big 
city and 

One semester he had to dehver the same lecture [course] on differential calculus twice -
once for the new students and once again for the students who had understood nothing 
of it from the previous semester. He told me that this latter group had greeted him at the 
beginning of the first lecture with: "Hello Professor, we're the dumb ones". 

In 1943/1944 Dehn moved to St. John's College in AnnapoUs, Maryland, and spent 
a particularly unhappy year. The school had an impossibly ambitious program of "great 
books in the original languages", which Dehn was required to teach to teenagers who, in 
some cases, had not even mastered English. 

In 1945 Dehn finally found peaceful and productive conditions in an unlikely place. 
Black Mountain College in North Carolina. This period of his life has been reported by 
Sher (1994). Black Mountain College was a small, liberal arts college founded in 1933, 
with strong emphasis on the creative arts. There were only about 100 members, includ
ing faculty, and Dehn was the only mathematician. Nevertheless, he was happy at Black 
Mountain, teaching not only mathematics but also philosophy, Latin and Greek. He died 
there on 27 June, 1952. 
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Two of the central figures in Danish mathematics in the first half of this century were Har-
ald Bohr (1887-1951) and Jakob Nielsen (1890-1959). Both of them won international 
recognition, but the immediate impact of their work in Denmark was not of the same mag
nitude. Harald Bohr quickly established a strong school of analysis in Copenhagen through 
his pioneering work on almost periodic functions. The deep work in group theory and the 
topology of surface transformations of Jakob Nielsen did not immediately attract many 
students and maybe the time was, in fact, not quite ripe for it, when Nielsen was at his 
height as a mathematician. A few years after the death of Nielsen, a Danish school in alge
braic topology was, however, founded in Aarhus by Leif Kristensen, student of Nielsen's 
close collaborator and friend Werner Fenchel in Copenhagen and Saunders MacLane in 
Chicago. Internationally, the impact of the work of Jakob Nielsen has never been stronger 
than now towards the end of the 20th century. 

The biography of Jakob Nielsen and the description of his mathematical work given 
below is a modified version of my paper [9] supplied with new information on Nielsen's 
relations to other mathematicians. The memorial paper by Werner Fenchel [6], reprinted 
in [15, Vol. 1], contains exact references to the works of Jakob Nielsen mentioned in the 
following. 

I am indebted to Dirk van Dalen, Erik Bent Hansen, Kurt Ramskov, Asmus Schmidt and 
Christian Siebeneicher for supplying valuable pieces of information in connection with the 
present biography of Jakob Nielsen. 

1. Childhood and school years 

Jakob Nielsen was born in the small village of Mjels on the island of Als in North 
Schleswig on October 15, 1890 as the youngest of four children. North Schleswig, called 
S0nderjylland in Denmark, was part of Germany in the period 1864-1920 but has since 
1920 again been the southern part of Denmark. Like many people of Danish origin from 
this region, Jakob Nielsen felt a strong association with his birthplace throughout his fife. 
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At the age of 3 he lost his mother. In the following years, an aunt, who was a teacher at 
Rendsburg, followed his progress closely. She noticed early on that he was an unusually 
gifted child, and in the year 1900 he moved to live with her in Rendsburg, as this town 
offered a far better educational system. Here he attended the so-called Realgymnasium, 
where the teaching of Latin carried considerable weight in the curriculum. Throughout his 
life he retained a deep passion for Roman poetry. After a few years, the relations between 
him and his aunt deteriorated because they were both rather uncompromising characters, 
and at the age of 14 he left her. For the remainder of his schooldays, and later during all 
his years of study, he earned his living by tutoring pupils in a variety of subjects - even 
Norwegian, as he once put it. 

In December 1907, he was expelled from the Realgymnasium because he and a few of 
his schoolmates had founded a pupils' club which, though quite harmless, was against the 
rules. Full of confidence, however, he continued studies on his own and matriculated at 
the University of Kiel in the Spring of 1908, also obtaining his school-leaving certificate 
privately at Flensburg in the Autumn of 1909. 

2. Years of study in Kiel and doctorate 

Jakob Nielsen spent all his years of study in Kiel, with the exception of the summer 
term 1910, which he spent at the University of Berhn. In the first years of study, he attended 
lectures in mathematics, physics, chemistry, geology, biology, literature, and philosophy. 
Only slowly did mathematics begin to play the central role in his studies, but philosophy 
also was a subject close to his heart. 

Among his teachers in Kiel, Jakob Nielsen valued in particular the mathematician Georg 
Landsberg, known among other things for his work on algebraic functions. It was Lands-
berg who encouraged Nielsen to study the mathematical problems underlying his doctoral 
dissertation of 1913. In a short autobiography appended to the thesis, he expresses his 
devotion to Landsberg, who had died shortly before. 

Of the outmost importance to Nielsen for his start as a research mathematician, however, 
was Max Dehn (1878-1952), who was attached to the university in Kiel at the end of 
the year 1911. Dehn was already considered an eminent mathematician, and through him 
Nielsen came into contact with the most recent advances in topology and group theory. It 
was precisely to these fields that Nielsen devoted most of his research. 

In itself, Nielsen's thesis was not epochmaking. It contains, however, the germs of his 
pioneering work on surface transformations which we shall describe in some detail. In ad
dition, the group theoretical papers of Nielsen, including a very important paper in Danish 
from 1921 on free groups, have roots going back to his years of study in Kiel, and, in 
particular, to the inspiration from Dehn, with whom he developed a life-long friendship. 

3. Military service and marriage 

Immediately upon receiving his Ph.D. in 1913, Jakob Nielsen was drafted to do military 
service in the German Imperial Navy and was assigned to coastal defense. After the out
break of the war in 1914, he was sent first to Belgium and then, in April 1915, to Con
stantinople as one of the German officers assigned to advise the Turkish government on 
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the defense of the entrance to the Black Sea through the Bosporus and the Dardanelles. At 
the end of the First World War in 1918, he finished his military service. During these years 
there was, of course, not much time for mathematics, but somehow Jakob Nielsen found 
time to write a couple of important short group theoretical papers published in Mathema-
tische Annalen and a paper on a subject from baUistics. The home journey from Turkey 
went through Russia and Poland in November 1918, and during this journey he kept a 
diary, which was pubHshed in the Danish newspaper Tolitiken' on the tenth anniversary 
of Armistice Day. The whole period made a strong impression on him and probably con
tributed to his complete open-mindedness throughout his life towards people with a back
ground different from his own. In the spring of 1919, Jakob Nielsen married the German 
medical doctor Carola von PieverUng, whom he had met in Hamburg shortly after the war. 
They lived a happy family life together and had one son and two daughters. 

4. The early career of Jakob Nielsen 

In the summer term 1919, Jakob Nielsen stayed at Gottingen, which was at that time the 
undisputed centre for mathematical research in the world. Here, he was especially attracted 
by the algebraist Erich Hecke (1887-1947), and when Hecke the same year received nom
ination to a chair in mathematics at the recently established university in Hamburg, Jakob 
Nielsen followed Hecke as his assistant with the title of 'Privatdozent'. Already in 1920, 
however, Nielsen himself was named to a professorship at the Technical University of 
Breslau. Here he could resume close contact with Max Dehn, who had been a professor 
at the University of Breslau for some years. In two inaugural lectures in Breslau in 1921, 
Jakob Nielsen formulated clearly that circle of problems concerning surface transforma
tions upon which he was so strongly engaged for the rest of his life. Handwritten notes 
from these lectures were translated into English and published for the first time in 1986 in 
connection with the publication of his collected mathematical papers [15]. 

The most spectacular mathematical work of Jakob Nielsen from his early career is his 
work in combinatorial group theory, which was just beginning at the time with emphasis 
on finding descriptions of groups by generators and relations. For that purpose free groups 
play a decisive role. 

In a very important paper in Danish published in Matematisk Tidsskrift in 1921, Nielsen 
proved that every subgroup of a free group is itself free. (This fundamental paper is in
cluded in his collected works in an English translation by Anne W. Neumann, which was 
first published in The Mathematical Scientist 60 years after the original paper.) Nielsen 
assumed the free group to be finitely generated, but 5 years later. Otto Schreier proved 
that this assumption is not necessary, so that the result is true in complete generality. The 
theorem, which is now known in the mathematical literature as the Nielsen-Schreier the
orem, is important among others when dealing with the relations in a group. Though this 
result is extremely significant, the main goal of Nielsen was, however, to describe the au
tomorphism group of a free group, that is the group of isomorphisms of the free group 
onto itself. For that purpose, he introduced some basic automorphisms, now known as 
Nielsen transformations. In this context, a paper in Mathematische Annalen from 1918 
should be mentioned, in which it is shown that the automorphism group of the free group 
on n generators is generated by n + 1 automorphisms. The corresponding relations for the 



Jakob Nielsen and his contributions to topology 983 

automorphism group are determined in a paper which is very difficult to read, pubUshed in 
Mathematische Annalen in 1924. 

Although his work in combinatorial group theory quickly won recognition, Nielsen did 
not take it up again in major scientific pubhcations before his very last research paper 
from 1955. 

The theory of automorphisms of free groups has only recently approached a definitive 
stage with works of Culler and Vogtman [5] and Bestvina and Handel [1]. 

5. Jakob Nielsen at his height 

Jakob Nielsen's stay in Breslau was not to last long, for at the reunion of North Schleswig 
with Denmark in 1920, he opted for Denmark, and in 1921 he took over the vacant po
sition as lecturer in mathematics at the Royal Veterinary and Agricultural University in 
Copenhagen. In 1925, he succeeded Christian Juel as professor of rational mechanics at 
the Technical University, where mathematicians held this chair. Following tradition, the 
name of the chair only determined the teaching duties of the professor. 

For some years, Jakob Nielsen based his teaching of mechanics on Juel's textbook, but 
gradually it became clear that a revision was needed. Nielsen plunged into this work with 
great energy, and the new textbook in rational mechanics was published in two volumes 
in 1933/1934. The book was to a large extent original pedagogical work on an advanced 
level for its time, and in his exposition, Nielsen made extensive use of mathematical tools 
such as vectors and matrices, which were then relatively new concepts in textbooks. The 
text is not very easy, and Jakob Nielsen's lectures were rather demanding on the part of the 
students. He was, however, well known for his ability to express himself with great clarity 
and intensity. 

The lectures were also for mathematics students at the University of Copenhagen, and at 
a 25 years anniversary meeting in 1985, my old mathematics teacher at secondary school 
('gymnasium') told me that he had attended one of the very first courses Jakob Nielsen gave 
on rational mechanics in Copenhagen. He was immensely impressed by Jakob Nielsen and 
also very proud that he received a top mark in the course. 

In 1935, the textbook was translated into German by Werner Fenchel, who by invitation 
of Harald Bohr had come to Copenhagen shortly before as a refugee from Nazi Germany; 
it was reprinted by Springer-Verlag in 1985. In 1941, the teaching of aerodynamics was 
introduced at the Technical University of Denmark and put into the hands of Jakob Nielsen. 
The more theoretical parts of the lecture notes in this connection were published in 1952 
as the third volume of his textbook on theoretical mechanics. The book is remarkable for 
its clear distinction between the empirical foundation and the mathematical theory. 

As soon as the work with the first edition of the textbook was completed, Jakob Nielsen 
returned to his earlier studies of topology and group theory and thus over a span of more 
than 30 years he published his pioneering work on surface transformations, marked in 
particular by four long memoirs in Acta Mathematica (1927, 1929, 1932, 1942) and a 
memoir in 'Meddelelser fra det Kongelige Danske Videnskabernes Selskab' from 1944. 

About the life of mathematicians in Denmark in the twenties and thirties, Harald Bohr 
has given a vivid description in his retrospective lecture "Et Tilbageblik" delivered on the 
occasion of his 60th birthday. In this lecture ([3, p. xxxi]), Bohr said: 
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Bonnesen, Jakob Nielsen and I followed each other's work with keen interest during 
those years, and many Tuesday evenings Bonnesen and I walked to Hellerup to visit 
Jakob Nielsen, who was distinguished among us by being in possession of a blackboard, 
and in a cosy atmosphere we told each other what was on our minds. 

It also belongs to the picture of the friendly atmosphere that Jakob Nielsen in 1919 had 
bought a little house on Als and that Harald Bohr a few years later followed his example. 
In [6, p. xii], Werner Fenchel writes: 

Year after year, in the summer vacation, a group of mathematicians, young and old, 
Danish and foreign, gathered about those two (Bohr and Nielsen). Apart from normal 
holiday activities, the study of mathematics was pursued. Not a few advances and dis
coveries were presented in Bohr's little half-timbered house, in the study remarkable 
for its blackboard - unforgettable experiences which are remembered with gratitude by 
all who had the privilege of attending. 

Of course, not everything was idyllic. Also Jakob Nielsen had his quarrels. I have been 
told that at a certain occasion, professor Richard Petersen, a mathematics colleague, asked 
Jakob Nielsen that they stopped being informal - which they had earlier decided to be after 
solemn agreement - and returned to addressing each other formally (like German 'Sie') 
since they had so many disagreements about teaching. 

When it really came down to details, Jakob Nielsen worked, however, very much on 
his own on the problems on surface transformations. His work was highly respected by 
his contemporaries, but it was not in the main stream of the then burgeoning field of al
gebraic topology. There does exist a small correspondence between Jakob Nielsen and 
L.E.J. Brouwer who handled two short papers of Nielsen on fixed points for surface trans
formations published in Mathematische Annalen in 1920. And it is clear that Brouwer 
found the work of Nielsen interesting. There is no evidence of any correspondence with 
Solomon Lefschetz on fixed point theory, as could have been expected, in the Nielsen 
archives discovered by Sigurd Elkjaer at Mathematical Institute, University of Copenhagen. 

At the beginning of the German occupation of Denmark 1940-1945 during the Second 
World War, some attempts were made to bring Jakob Nielsen to America, since it was 
feared that he might be assaulted by the Nazis. In a letter from Oswald Veblen at Princeton 
University to Gustav Hedlund at the University of Virginia dated May 23, 1940 (Veblen 
Papers, Library of Congress, Washington, D.C.), it is said: 

Nielsen has no things of Jewish blood, but he was born on the island of Als which is in 
the part of Denmark which was ceded by Germany to Denmark after the last war. He 
was at one time a professor in Germany (Breslau), but he elected to become a Danish 
citizen and to take a chair in Copenhagen. He is a great friend of Harald Bohr and has 
done a great deal to help refugees from Germany. It is pretty sure that he is well known 
to the German secret police. 

Later in the same letter it is said: 

You, of course, know Nielsen's scientific work at least as well as I do, but if it is of any 
use to you you may quote my (Veblen) opinion that he (Nielsen) is one of the leading 
topologists of the world. I have been particularly impressed with the fact that he has 
gone after the simple hard problems, rather than the showy generalizations. 

As it turned out, Nielsen stayed in Denmark during the war and he was not assaulted by 
the Nazis. 
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6. The later career of Jakob Nielsen 

Jakob Nielsen often lectured on topology and group theory to small groups of interested 
younger mathematicians at the University of Copenhagen. Of particular importance is a 
series of lectures in the year 1938-1939 on discontinuous groups of isometrics in the hy
perbolic plane. Inspired by these lectures, in 1942 Svend Lauritzen wrote his thesis: "En 
Indledning til en gruppeteoretisk Behandling af de ikke orienterbare Flader" (An introduc
tion to a group theoretical study of the non-orientable surfaces). It contains no mention of 
Nielsen's lectures in which the corresponding study for orientable surfaces was presented; 
and the thesis remained published in Danish only. 

It quickly proved desirable to take up studies of discontinuous groups in their full gener
ality, and Jakob Nielsen began with Werner Fenchel (1905-1988) to prepare a manuscript 
for a monograph on this subject. Even though he was heavily engaged in this project, 
Nielsen could only devote a Hmited part of his time to it because after the Second World 
War 1939/1945 he became more and more involved in international work, in particular 
in UNESCO, where he was a member of the executive board from 1952 to 1958. In this 
context also, he was highly esteemed for his personal integrity. 

After the death of Harald Bohr in 1951, Jakob Nielsen was nominated as his successor 
as professor of mathematics at the University of Copenhagen. Already in 1955 he resigned 
from the chair, however, since he no longer felt that he could carry out his work as a pro
fessor fully due to his many international obligations. A first version of the manuscript just 
mentioned was completed, but both Jakob Nielsen and Werner Fenchel felt that it needed 
a thorough revision. The revision was not finished when Nielsen died in 1959, and later 
the original of the manuscript was stolen from a parked car, much to the embarrassment 
of Fenchel, who was extremely careful in all matters. Various copies have, however, circu
lated among specialists, and in several cases, other mathematicians have found alternative 
proofs of the most important results in the manuscript. Major parts of the theory, now 
known as the Fenchel-Nielsen theory, have therefore gradually become known among the 
researchers in the field. 

Over the years, the manuscript, which Jakob Nielsen arranged for publication in the 
Princeton Mathematical Series in the late 1940s, has gained quite a lot of fame. As time 
passed without the necessary revision being completed, Princeton University Press faded 
out as a publisher of the book, and Werner Fenchel was not particularly happy to be re
minded of the unpublished manuscript, which he felt had several shortcomings. He found 
that they could be resolved by considering trigonometric formulas resulting from hyper
bolic geometry and wrote up notes to prepare a typed form of his ideas. He finished this 
work in 1986 and decided to have it published as a separate book "Elementary Geometry in 
Hyperbolic Space", pubHshed posthumously in 1989 by de Gruyter. Undoubtedly, Fenchel 
saw his book as an introduction to the first chapter of the Fenchel-Nielsen manuscript. 
In his last years, Fenchel almost completed the revision of the total manuscript, and after 
further work, particularly by Christian Siebeneicher in Bielefeld and Asmus Schmidt in 
Copenhagen, it will be published by de Gruyter in the near future. By then, the Fenchel-
Nielsen manuscript will represent an important piece of history of mathematics. 

Jakob Nielsen was elected member of the Royal Danish Academy of Sciences and Let
ters in 1926, and in his last years he lived in the Academy's honorary residence close to 
the castle of Hamlet in the town of Elsinore. 
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In January 1959 Jakob Nielsen was stricken by the illness which led to his death on 
Augusts, 1959. 

7. The work of Jakob Nielsen on the mapping class group of a surface 

An important method in the investigation of a geometrical object is to study its degree of 
symmetry. If you are interested only in the topological properties, you need also to consider 
"quahtative symmetries", where certain distortions are allowed. Nielsen's investigations 
deal with topological transformations ("quahtative symmetries") of surfaces. His four long 
memoirs in Acta Mathematica and the memoir in 'Meddelelser fra det Kongelige Danske 
Videnskabernes Selskab' have already been mentioned. When Nielsen began his studies of 
transformations (homeomorphisms) of surfaces, topology was still at a formative stage with 
its roots particularly in work by Poincare at the end of the previous century. Concerning 
the study of manifolds, the subject had not yet come very far, but it was known that one 
can reahze every closed, orientable surface in space by adding handles to a sphere; the 
number of handles being the genus of the surface. As Nielsen writes in his first long memoir 
in Acta Mathematica from 1927, "the 2-dimensional manifolds (i.e. the surfaces) have 
thereby prematurely offered themselves for deeper study", and he gives almost no further 
motivation to embark on his detailed study of surface transformations. 

Let (p denote a closed, orientable surface of genus p ^ 1, and let M((p) denote the 
group of isotopy classes of orientation preserving homeomorphisms of (p onto itself. Two 
homeomorphisms belong to the same mapping class if they can be continuously deformed 
into each other through homeomorphisms. By a result of Baer from 1928, it is sufficient 
to require that the two homeomorphisms be homotopic. The group M.{(p) is called the 
mapping class group of (p. Already in his thesis from 1913, Nielsen had proved that the 
mapping class group of the torus (a surface of genus 1) is nothing but the so-called elliptic 
modular group SL{2, Z) of integral (2 x 2)-matrices with determinant 1; a group closely 
associated with the theory of doubly periodic algebraic functions. 

Now consider a closed, orientable surface of genus /? ^ 2. As the keystone in his in
vestigations of surface transformations, Jakob Nielsen in 1942 succeeded in proving for a 
surface of genus /? ^ 2 that if the nih iterate of a homeomorphism of the surface can be de
formed into the identity homeomorphism, then the homeomorphism itself can be deformed 
into another homeomorphism for which the nih iterate is exactly the identity homeomor
phism. This main result on surface transformations can be given the following formulation: 
Every cyclic subgroup of M.{(p) can be represented by a cyclic subgroup of homeomor
phisms of (p. In this formulation, the problem can be generahzed. In 1948, Fenchel proved 
that every finite solvable subgroup of M{(p) can be represented by a subgroup of homeo
morphisms of ip. In 1981, Kerckhoff proved this result in complete generality for an ar
bitrary finite subgroup of M((p), thereby solving what by then had become known as the 
Nielsen realization problem. Heiner Zieschang pointed out in 1976 that one of Nielsen's 
arguments in his memoir of 1942 is not correct in that his proof does not cover all cases. 
The first complete proof of Nielsen's theorem is, therefore, contained in Fenchel's paper 
of 1948, where other methods are used. Nielsen's general description of surface transfor
mations in terms of primitive homeomorphisms, which is perhaps even more important and 
to which we shall return at the end of this paper, is completely correct, however. 
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8. On Nielsen fixed point theory 

Major parts of Nielsen's research on surface transformations have to do with the study of 
fixed points of homeomorphisms of an orientable closed surface (p of genus p ^ 2 onto 
itself. We shall describe some of the investigations, which have led to the development of 
a theory now known as Nielsen fixed point theory. 

The main tools in Nielsen's investigations are the notions of fundamental group and uni
versal covering space. In the case of an orientable surface cp of genus p ^ 2, the universal 
covering space 0 can be identified with the interior of the unit disc in the complex plane. 
As Poincare has shown, 0 can be equipped with a non-EucHdean metric, thereby providing 
a model of the hyperbolic plane. Accordingly, the fundamental group F of 0 (the group of 
covering space transformations) can be identified with a group generated by 2p hyperbolic 
translations (special Mobius transformations) in 0. Nielsen made extensive use of this 
non-Euclidean setting and he worked as comfortably in the hyperbolic as in the Euclidean 
plane. 

Every homeomorphism r :(p -^ cp can (in many ways) be lifted to a homeomorphism 
t:0 -^ 0, 

By a clever argument Nielsen shows that t\0-^0 can be extended to the closed unit 
disc 0 , so that t defines a homeomorphism t\E\E -^ £" of the unit circle E onto itself. 
It is by a close examination of the homeomorphism t \ E that Nielsen gets his results about 
T '.(p -^ ip. 

In the 1927 memoir in Acta Mathematica, it is shown to begin with that every auto
morphism of the fundamental group of </?, that is, of the group F, can be realized by a 
homeomorphism of cp onto itself. This theorem is due to Dehn, but the first proof of it in 
print is in Nielsen's memoir. Nielsen later always gave full credit to Dehn, and the theorem 
is now known as the Dehn-Nielsen theorem. 

The main bulk of the work is devoted to an analysis of the fixed point set of r : (̂  -^ cp. 
A fixed point x e 0 for a lift r: 0 -^ 0 of z '.cp -^ (p, that is, t{x) = jc, is projected 
onto a fixed point x e (p for r, that is, r(jc) = x. Two hfts r, t^ :0 —> 0 of the same 
homeomorphism x '.cp -^ (p have the same fixed point projections onto (p if and only if 
they are conjugate under F, that is, t' = TtT~^ for a hyperbolic translation T e F. Every 
fixed point x e cp for r :(p ^^ (̂  is the projection of a fixed point Jc G 0 for some lift 
t :0 -^ 0 of r. The collection of fixed points for r, which are the projections of all the 
fixed points for the lifts ? of r in a conjugacy class of lifts, is called a fixed point class. 
The index of an (isolated) fixed point jc of r measures the twisting of r about JC and can be 
identified with the winding number, as in complex analysis, of 1 — r, where 1 denotes the 
identity map. After deforming the map r to have only finitely many fixed points, the index 
of a fixed point class is defined to be the sum of the indices of its members. The number 
of fixed point classes with index 7̂  0 is now called the Nielsen number of r and is denoted 
by A^(T). It was this number that Nielsen tried to determine. Clearly, the Nielsen number 
A^(r) provides a lower bound for the number of fixed points of r. 
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It can be proved that two fixed points x\,X2 E cpfor z :(p -^ cp belong to the same fixed 
point class if and only if xi and X2 can be connected by a curve C in <̂  such that C is 
homotopic to r(C) by a homotopy keeping xi and X2 fixed. The Nielsen number A^(r) is 
again the number of "essential" fixed point classes, that is, those with index / 0. In this 
formulation, the notion of fixed point classes and indexes for these can be generalized to 
mappings / : Z -> X between more general types of spaces than surfaces, for example, 
polyhedra and manifolds. There is an extensive Hterature on the subject. 

Homotopic maps f, g:X -> X have the same Nielsen number, that is, A^(/) = N(g). 
The following question about the Nielsen number N(f) for a map f :X ^^ X is therefore 
interesting: Does there exist a map g:X -^ X homotopic to f :X -> X, such that the 
number of fixed points for g is exactly N{g) = N(f)l In other words: Can the Nielsen 
number be realized? In 1942, it was proved by Wecken that for a fairly large class of finite 
polyhedra, containing among others all triangulable manifolds of dimension > 3, such a 
minimahty theorem holds. 

Nielsen conjectured in his 1927 memoir that Nielsen numbers of maps of surfaces can 
be realized. For homeomorphisms, the answer is correct, as Nielsen himself proved in part 
(see also [16]), though the proof was completed only recently [13]. However, for contin
uous maps, in [10, 11], Boju Jiang produced examples which show that it is not always 
possible to realize the Nielsen number on surfaces. In fact, for any surface of negative Eu-
ler characteristic, Jiang has recendy proved that there is a map such that the gap between 
its Nielsen number and the minimum number of fixed points of all maps homotopic to it is 
arbitrarily large [12]. This would most certainly have come as a surprise to Jakob Nielsen. 
The survey paper by R.F. Brown [4] discusses the realization problem further. 

9. The synthesis of Nielsen's work on surface transformations 

As the synthesis of his work on homeomorphisms of a closed, orientable surface (p of genus 
p ^ 2 - for obvious reasons also called a hyperbolic surface - Jakob Nielsen gained the 
deep insight that up to isotopy, and possibly after a finite iteration, every homeomorphism 
of a hyperbolic surface can be written as a composition of certain primitive homeomor
phisms defined essentially on disjoint subsurfaces. The work of Nielsen was based, as 
indicated above, on a thorough analysis of the fixed point sets for the homeomorphisms. 
Nielsen found that the primitive homeomorphisms of a hyperboHc surface were of two 
types, one type consisting only of periodic homeomorphisms. The second type of primitive 
homeomorphisms was not clearly identified before the end of the 1970s, where, by com
pletely different methods, William Thurston found that they are nonperiodic and that they 
preserve a pair of transverse measured foliations by geodesic fines. They are now called 
pseudo-Anosov homeomorphisms. These homeomorphisms are very important both in the 
theory of 3-dimensional manifolds and in the study of iterations of mappings. The study of 
the connections between the work of Nielsen and the work of Thurston has been the sub
ject of several papers, among which we mention the papers by Oilman [7], Miller [14], and 
Handel [8]. See also the paper by Thurston [16] and the book by Bleiler and Casson [2]. 
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Introduction 

Without doubt, Heinz Hopf (1894-1971) was one of the most distinguished mathemati
cians of the twentieth century. His work is closely Hnked with the emergence of algebraic 
topology; it is most decisively thanks to his early works that this area established itself 
as a new and important branch of mathematics. His oeuvre has influenced profoundly the 
evolution not only of topology but of a large part of mathematics. But Heinz Hopf was not 
only a gifted researcher: he was also an excellent teacher and a personaHty of the highest 
integrity. At the same time, he effervesced with charm and subtle humour. In the obituary 
that appeared in the organ of the IMU, Henri Cartan describes Heinz Hopf: ̂  

Ceux qui I'ont connu n'oublieront jamais sa finesse et sa douceur, alliees a une grande 
fermete du caractere. lis n'oublieront non plus le professeur ou le conferencier: Hopf 
n'avait pas besoin d'elever la voix pour se faire ecouter; la precision de son langage ne 
I'empechait pas, bien au contraire, d'eveiller I'intuition chez son auditeur; a partir de 
quelques constatations simples, de caractere elementaire, il posait des problemes neufs 
et les regardait sous leur differents aspects: analytique, geometrique, algebrique. 

Youth (1894-1913) 

Heinz Hopf's ancestors belonged to a respected and prosperous family of hop traders in 
Nuremberg.^ The great-grandfather, Lob Hopf, came from Uhlfeld, a small town in Up
per Franconia. He moved with his family to Nuremberg in 1852, where he was one of the 
first Jews to be able to acquire citizenship. The grandfather, Stephan Hopf (1826-1893), 
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became respectably wealthy as a hop wholesaler and played politically important roles 
in Nuremberg as Kommerzienrat, Magistratsrat, and Landrat. The father, Wilhelm Hopf 
(1861-1942), first learned brewing in Flensburg and then, in 1887, moved to Breslau after 
he had quarreled with his father and had had his inheritance paid out. There he joined Hein-
rich Kirchner's brewery. Only one year later, thanks to his considerable inheritance, he be
came sole owner. On May 28th, 1892, he married Elisabeth Kirchner, the elder one of Hein-
rich Kirchner's two daughters. In 1895, Wilhelm Hopf adopted his wife's Protestantism. In 
their happy marriage they had two children, Hedwig Hopf (1893-1953) and Heinz Hopf. 

Heinz Hopf was born on November 19th, 1894, in Grabschen near Breslau. Father Hopf 
had had a villa-like house built in the Grlinderzeit^ style, surrounded by a large garden. In 
1901, Heinz entered Dr. Karl Mittelhaus' higher boys' school and, from 1904, went to the 
Konig-Wilhelm-Gymnasium in Breslau. His mathematical talent was soon recognized and 
found an active supporter in his teacher Bruchmann. His Abitur certificate from May 13th, 
1913, says:^ 

Mathematik: Er hat fiir den Gegenstand, besonders nach der algebraischen Seite bin, 
eine nicht gewohnliche Begabung gezeigt.* 

In the other subjects his marks were not as good. It is possible that Hopf neglected his 
homework at times and preferred doing sports. Throughout his life he loved sports ac
tivities. Though not tall, he was of a tough and strong constitution. In his childhood his 
favourite sports were swimming and tennis. Later he made regular swimming outings, 
rambling and mountaineering, in winter often with skis. An extended daily walk was a 
necessity to him, as to his father before him. 

Student period (1913-1925) 

In April 1913, after his Abitur, Hopf matriculated for mathematical studies at the Silesian 
Friedrich Wilhelms University in Breslau.^ He attended lectures by Adolf Kneser, Erhard 
Schmidt, and Rudolf Sturm as well as by Max Dehn and Ernst Steinitz who worked at 
the Breslau Polytechnic at that time. Besides mathematics, Hopf also attended lectures in 
physics, philosophy, and psychology, subjects in which he was also interested after his 
studies. 

One year later already, the outbreak of World War I interrupted Hopf's studies. Hopf, 
following the common war enthusiasm at that time, volunteered for military service. For 
a long time during the next four years, he fought on the Western Front as lieutenant of 
reserves. He was wounded twice during the war, and in 1918 he was awarded the Iron 
Cross (first class). 

A short holiday from service in June 1917 was, according to Hopf himself, the decisive 
turning-point in his mathematical career. During this holiday, he attended a lecture course 
on set theory by Erhard Schmidt. At that time, Schmidt was treating Brouwer's theorem on 
the invariance of dimension under topological maps and presented the proof Brouwer had 
given in 1911 using the mapping degree. Hopf tells in his memoirs:^ 

Ich war fasziniert; diese Faszination - durch die Kraft der Methode des Abbil-
dungsgrades - hat mich nicht wieder verlassen, sondern groBe Teile meiner Produk-
tion entscheidend beeinflusst. Und wenn ich heute den Griinden fur diese Wirkung 

Mathematics: He has shown an extraordinary gift in this topic, especially in the algebraic direction. 
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nachgehe, so sehe ich besonders zweierlei: erstens die Eindringlichkeit und mitreiBende 
Begeisterung des Vortrages von Erhard Schmidt, und zweitens meine eigene gesteigerte 
Aufnahmefahigkeit wahrend einer vierzehntagigen Unterbrechung eines langjahrigen 
Militardienstes.* 

After the end of the war, in December 1918, Hopf was discharged from military service 
and resumed his interrupted studies at the University of Breslau. However, in the mean
time, Erhard Schmidt had been appointed the successor of Hermann Amandus Schwarz in 
Berlin. This may have been the reason for Hopf not continuing his studies in Breslau. In 
autumn 1919, he changed to the University of Heidelberg. The reason for this choice can 
be simply assumed to be due to his sister who had begun studying law there a year already. 
Besides lectures on philosophy and psychology, Hopf attended only a few mathematical 
lecture courses by Oskar Perron and Paul Gustav Stdckel and furthermore a mathematical 
seminar. 

Already in autumn 1920, Hopf decided to follow his teacher Erhard Schmidt from Bres
lau and to continue his studies in BerHn. This step was extraordinarily significant for his 
development. Since the time of Kummer, Kronecker, and Weierstrass, Berlin had been one 
of the leading universities in mathematics in Germany. In his scientific interests, he fol
lowed mainly Erhard Schmidt, whom he owed many ideas. Their personal relationship 
was based on high mutual esteem; however it was part of Schmidt's nature to maintain a 
certain distance. Scientifically as well as personally, Hopf was also close to the algebraist 
Issai Schur. Hopf attended lectures on set theory, on differential equations, and on com
plex analysis by Schmidt, and on number theory, elliptic functions, and invariant theory 
by Schur. Hopf learned much about the newest developments in topology from Schmidt, 
in particular about Brouwer's work and about Schmidt's own work on the Jordan curve 
theorem. Schmidt also made his assistant Feigl give a lecture course on Poincare's work 
on Analysis situs. 

In Schmidt's seminar, Hopf gave talks on the Clifford surface and the Clifford-Klein 
space problem in the winter semester of 1921/22. The topic he treated for his dissertation 
under Schmidt's supervision during the following years was in this area. In the first part of 
his doctoral thesis, Hopf proved the theorem that a simply connected complete Riemannian 
3-manifold of constant curvature is globally isometric to either the Euclidean, the spherical 
or the hyperbolic space. The connection between local and global phenomena that emerges 
here also preoccupied Hopf in many of his later works. In the second part Hopf treated the 
relation between the curvatura Integra of closed hyper-surfaces M in R'̂ "̂ ,̂ defined as the 
degree of the Gauss normal map, and the indices of the zeroes of tangent vector fields 
on M. Hopf proved that, independently of the vector field, the sum s of the indices of 
the zeroes is nought for n odd, and twice the curvatura Integra for n even, therefore in 
particular even. Hopf published the results of his dissertation in two separate papers in the 
Mathematische Annalen [1], [2]. He obtained his degree in February 1925. Schmidt closed 
his report with the remark:^ 

Die Kiihnheit der Fragestellungen verdient ebensoviel Bewunderung wie die iiber-
raschenden Ergebnisse der Losungen. Das Schonste der Arbeit bildet aber doch die 

* I was fascinated; this fascination - of the power of the method of the mapping degree - has not left me since, 
but has influenced great parts of my production. And when I look for the cause of this effect, I see particularly 
two things: firstly, Schmidt's vividness and enthusiasm in his talk, and secondly my own increased receptivity 
during a fortnight off many years of military service. 
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Methode der Beweisfiihrung, die, was bei Arbeiten in diesem Gebiet besonders sel-
ten ist, abstrakt und in jedem Schritte kontrollierbar vorgeht und kraft der Abstraktion 
in gleich hohem MaBe Reichtum der anschaulich-geometrischen Fantasie an den Tag 
legt.* 

For the thesis Schmidt pleaded for the rare predicate eximium. In the final result - Hopf 
was examined in mathematics by Schmidt and Bieberbach, in physics by Planck, and in 
philosophy by Wertheimer - Hopf got the predicate summa cum laude. 

The period as a Privatdozent (1925-1931) 

Immediately after his doctorate, Hopf turned to his Habilitation. On Schmidt's advice 
he intensively studied Brouwer's publications - in his memoirs he remarks:^ that was 
tough work - and Hadamard's paper Note sur quelques applications sur Vindice de 
Kronecker. From this emerged the two papers Abhildungsklassen n-dimensionaler Man-
nigfaltigkeiten [5] (mapping classes of n-dimensional manifolds) and Vektorfelder n-
dimensionaler Mannigfaltigkeiten [6] (vector fields on n-dimensional manifolds), which 
Hopf submitted as his Habilitation thesis. Hopf could already talk on these results during 
the annual conference of the Deutsche Mathematiker-Vereinigung in September 1925, only 
half a year after his doctorate. In the second of these papers, the famous theorem appears 
which says that the sum of the indices of the singularities of a vector field on a closed ori-
entable manifold is an invariant of the manifold, namely, the Euler characteristic. The first 
proof of this had been given by Lefschetz a short time before; Hopf presented a new proof 
based on a complicated induction argument on the dimension. His Habilitation took place 
in autumn 1926. In his reference^, Schmidt stated that according to him, Hopf should be 
seen as already standing in the first rank of German mathematicians. 

Hopf spent the academic year which lies between Doctorate and Habilitation in Got-
tingen. The University of Gottingen was a most active centre of mathematical research of 
international prestige at that time. Besides David Hilbert, Richard Courant, Carl Runge 
and others, also a number of prominent Privatdozenten worked there, among them Paul 
Bernays and Emmy Noether, and many important mathematicians from all over the world 
came as long- or short-term guests. 

In his memoirs, Hopf begins his description of the Gottingen year as follows: ̂ ^ 

Mein wichtigstes Erlebnis in Gottingen war es, dass ich dort Paul Alexandroff traf. Aus 
diesem Zusammentreffen wurde bald eine Freundschaft; nicht nur Topologie, und nicht 
nur Mathematik wurden diskutiert; es war eine gliickliche und auch eine sehr frohliche 
Zeit, die nicht auf Gottingen beschrankt war, sondern sich auf vielen gemeinsamen 
Reisen fort setzte.^ 

A deep friendship started here, lasting until Hopf's death. 

* The boldness of the questions deserves as much admiration as the surprising results of the solutions. But the 
most beautiful thing in his thesis is the method of proving, which is, particularly rarely found in works in that 
area, abstract and comprehensible in every step, and which, due to the abstractness, shows equally clearly the 
richness of the concrete geometrical imagination. 
' My most important experience in Gottingen was to meet Paul Alexandrov. This meeting soon became friend
ship; not only topology, not only mathematics was discussed; it was a fortunate and also a very happy time, not 
restricted to Gottingen but continued on many joint journeys. 
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In every year since 1923 Alexandrov had been a guest in Gottingen. Though a Httle 
younger than Hopf, he was already regarded as one of the leaders in point-set topology. 
Just at that time he began to apply algebraic methods to set-theoretic questions. One of the 
tools developed for that purpose was to associate with a covering of a topological space its 
nerve, i.e. a simphcial complex describing the combinatorics of the covering. The nerve 
can be viewed as an abstract algebraic approximation of the space, and by means of the 
notions of algebraic topology, results on the topological space itself can be derived. In the 
following years this notion would be applied extensively and led to a great number of new 
and interesting results in point-set topology. 

Hopf commented on Alexandrov's idea of nerves in his memoirs: ̂  ̂  

Sie war der erste erfolgreiche Versuch, algebraische Betrachtungen in die mengenthe-
oretische Topologie einzufiihren - sehr zum Missfallen mancher Verfechter der "Rein-
heit der Methode". [... ] Mich selbst hat damals die Erkenntnis, eine wie groBe Rolle 
die Algebra in den topologischen Problemen spielt, in entscheidender und bleibender 
Weise beeinflusst* 

Their common interests brought Alexandrov and Hopf together from the beginning, and 
thanks to Alexandrov, Hopf was warmly received in the Gottingen circle around Courant, 
Hilbert, and Emmy Noether. 

Another important idea concerning the link between topology and algebra emerging 
then for the first time was due to Emmy Noether. Alexandrov tells in his autobiographic 
notes ̂ ^ how Emmy Noether explained the idea of Betti groups of a complex after a dinner 
at Brouwer's house in Blaricum in December 1925. She suggested introducing the factor 
group of cycles modulo boundaries and replacing the complicated numerical study of Betti 
numbers by the algebraic investigation of these groups. The idea was adopted at once, 
in particular by Vietoris, Alexandrov, and Hopf, and soon became popular in algebraic 
topology. It not only made it possible to give concise and simple definitions of the basic 
notions of algebraic topology but also prompted a wholly new view of the methods of 
algebraic topology. This shows up very clearly in the example of Hopf's paper Eine Ver-
allgemeinerung der Euler-Poincareschen Formel [12] which appeared in 1928. Here, for 
the first time Hopf explicitly uses homology groups. He shows how the Euler-Poincare 
formula, interpreted in this new framework, can be generalised easily to yield a simple and 
lucid proof of the Lefschetz fixed point formula. 

Alexandrov and Hopf, soon later joined by Otto Neugebauer, formed a closely linked 
group of friends in Gottingen, and they called themselves a two-dimensional simplex. They 
spent a lot of their spare time together on walks or in the attendant KHe's swimming pool 
at the river Leine. That was where often the whole mathematical department of Gottingen 
met, together with the guests who were present. Alexandrov writes in his Memories of 
Heinz Hopf:̂ ^ many a discussion, mathematical and nonmathematical, took place there, 
and many mathematical ideas were born there. In the semester vacation, Alexandrov, Hopf, 
and Neugebauer made several major journeys, for example, to Brittany in France, to the 
Pyrenees and to Corsica after the end of the summer semester 1926, and later, in May 
1927, to Upper Bavaria, after the summer semester 1927 to the Dauphine, to Cassis near 
Marseille and to Portofino on the Itahan Riviera. 

* This was the first successful attempt to introduce the algebraic study of point-set topology - much to the dislike 
of some supporters of the "Pureness of method". [ . . . ] ! was influenced in a decisive and persistent manner by the 
insight into the importance of the role of algebra in topological problems. 
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Following the first journey to France, Hopf returned to Berlin in the autumn of 1926. 
During the following winter semester he gave a course on combinatorial topology which 
encompassed many of the most recent results. Hopf's student Erika Pannwitz compiled 
this into a script. He regularly informed Alexandrov in Moscow about the contents of his 
lectures, who in turn discussed the new results in his circle. During that time, Hopf was 
thoroughly occupied with the analysis of the mapping degree and the question of how 
far the mapping degree determines the homotopy class of a map between manifolds. The 
two resulting papers [11], [14] appeared in the Mathematische Annalen in 1928 and 1929, 
respectively. 

Hopf and Alexandrov spent the academic year 1927/28 together at Princeton Univer
sity on a Rockefeller fellowship. In his final report on this stay Hopf says that he went to 
lectures by Lefschetz and Alexander on Analysis Situs and that, on the Princeton mathe
maticians' request, he also gave a number of talks himself on his own works and those of 
other European mathematicians. He continues:^'* 

Jedoch erblicke ich in diesen auBeren Ereignissen keineswegs den wichtigsten Teil 
meines Princetoner Aufenthaltes. Diesen sehe ich vielmehr in den haufigen zwanglosen 
Gesprachen mit [den] Professor[en] Alexander, Lefschetz und Veblen, sowie mit Pro
fessor P. Alexandroff aus Moskau, mit dem ich in Princeton taglich zusammen war und 
alle frisch empfangenen wissenschaftlichen Eindriicke und Gedanken sofort griindlich 
durchsprach.* 

During his time at Princeton, Hopf worked primarily on the homology of manifolds. The 
discovery of the intersection ring of a manifold goes back to that time. Hopf showed that the 
homology of a manifold becomes a ring when one views the intersection of two cycles as 
a product. This intersection ring behaves contravariantly - this was completely surprising 
to Hopf - in that a map between manifolds corresponds to the so-called inverse homo-
morphism between the intersection rings. Only a few years later could this contravariant 
behaviour be explained completely with the introduction of cohomology: the intersection 
ring can be identified with the cohomology ring of a manifold by means of Poincare du
ality. Hopf's paper [16], where he expands the theory of the intersection ring, appeared in 
the Journal fur reine und angewandte Mathematik in 1930. 

Having returned from Princeton, Hopf and Alexandrov again spent the summer of 1928 
in Gottingen. During that time, Courant proposed that they should write a book on topol
ogy for the Springer-Verlag series Grundlehren der mathematischen Wissenschaften. They 
agreed but did not suspect that this joint work should take up so much of their time during 
the following seven years. They outlined a comprehensive exposition of the whole area 
of point-set and algebraic topology. For this extended programme a single volume would 
certainly not suffice, as they soon reaHzed. They planned a second and later even a third 
volume, but only the first one was finished. It was pubHshed in 1935. The difficulties of 
that time and eventually the outbreak of World War II contributed to the discontinuation 
of the project. Also it is clear that the very rapid development of algebraic topology in the 
30s would have made the task very difficult, even in ideal circumstances. 

* But I do not regard these circumstantial events as the most important part of my Princeton stay, but much 
more the frequent informal talks with Professors Alexander, Lefschetz, and Veblen, as well as with Professor 
P. Alexandrov from Moscow whom I met daily in Princeton and with whom I discussed all the freshly absorbed 
scientific impressions and thought thoroughly. 
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In October 1928, Hopf married Anja von Mickwitz (1891-1967). Anja von Mickwitz 
came from a German-Baltic family of pastors blessed with many children.^^ She had 
trained in St. Petersburg to become a teacher. After the First World War she moved to 
Northern Germany and later worked as a private teacher in BerUn. After the wedding the 
couple spent a few days in Hopf's parents' hoUday home in Hain in the Sudeten Mountains. 
It was there where Hopf often retired for rambling and skiing. 

In December 1929 Hopf was offered by Princeton University an assistant professorship, 
but he turned it down. In the autumn of the following year, the Eidgenossische Technische 
Hochschule in Zurich asked in a diplomatically worded letter whether Hopf would accept 
an offer to succeed Hermann Weyl. This inquiry was in part induced by a statement by 
Issai Schur who had written about Hopf to Zurich: ̂ ^ 

Hopf ist ein ganz vorziiglicher Dozent, ein Mathematiker von starkem Temperament 
und starker Wirkung, ein Muster seiner Disziplin, der auch auf anderen Gebieten 
vorziiglich geschult ist. [... ] Was seine Art, seine Bildung und liebenswiirdiges We-
sen betrifft, wiinsche ich Ihnen keinen besseren Kollegen.* 

After a short consultation with Courant, Hopf repUed:^^ 

[... ] eine Berufung in die Schweiz nach der schonen Stadt Zurich wiirde mich sehr 
locken und ehren, zumal auf einen so beriihmten Lehrstuhl. Ich erklare mich daher 
grundsatzlich bereit, eine eventuelle Wahl anzunehmen.̂  

While Hopf was waiting for a reply from Zurich, he received another offer from Freiburg i. 
Br., where Lothar Heffter's chair was vacant. But Hopf maintained his decision for Zurich, 
and before the end of the year he was elected Full Professor for Mathematics at the Eid
genossische Technische Hochschule. In the beginning of April 1931 he took up his new 
position. 

Zurich before World War II (1931-1939) 

Only a few days before he wrote his acceptance in the autumn of 1930, Hopf had finished 
his manuscript Uber die Abbildungen der dreidimensionalen Sphdre auf die Kugelfldche 
{On the maps from a three-dimensional sphere to the two-dimensional sphere) in his par
ents' holiday home in the Sudeten Mountains and submitted it to the Mathematische An-
nalen. We will take a deeper look into this work because it is particularly typical for Hopf's 
methods of working and thinking; it is illustrated beautifully by Eckmann's words:^^ 

[Hopf hat] mit sicherem Instinkt tiefe Probleme ausgewahlt und reifen lassen, um dann 
jeweils in einem Wurf eine Losung zu geben, in der neue Gedanken und Methoden zu 
Tage traten.̂  

Since Brouwer, the theory of the mapping degree had developed from the theory of 
maps between spheres of the same dimension. In 1925, Hopf was able to prove that the 

* Hopf is an excellent lecturer, a mathematician of strong temperament and strong influence, a leading example 
in his discipline, and he is also well-educated in other subjects. [... ] I cannot wish you a better colleague in 
respect to his manners, his education and his sympathetic nature. 
^ [... ] A call to Switzerland, to the beautiful city of Zurich, could indeed tempt and honour me, particularly to 
such a famous chair. I therefore declare that I am in principle willing to accept such an offer. 
^ Hopf selected deep problems with an unerring instinct and let them mature. Then he presented in one piece a 
solution that showed new thoughts and methods. 
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homotopy class is characterized by the mapping degree. Along these lines it seemed natural 
also to study maps between spheres of different dimensions. At that time nothing was 
known about this apart from the simple fact that all continuous maps / : S" -^ S"̂  with 
w < m are contractible to a point. Since all maps between spheres of different dimensions 
induce the zero homomorphism in the homology groups, they cannot be distinguished 
homologically. Hopf considered the simplest case of maps from the three-dimensional to 
the two-dimensional sphere. To tackle this problem, Hopf introduced a new invariant which 
was later named after him. Hopf defined it as the linking number of the pre-images of two 
different points of S^ in S-̂ . In an involved proof with the aid of simplicial approximation, 
he could show that this linking number is independent of the choice of the two points and 
that it is an invariant of the homotopy class. To exhibit a topologically essential map it 
was therefore sufficient to construct a map with a nonvanishing Hopf invariant. Due to his 
knowledge of classical projective geometry, Hopf could describe such a map - nowadays 
known as the Hopf fibration: he embeds S^ as the unit sphere into the four-dimensional 
space R^. Then he regards R"̂  as C^, maps a point P of Ŝ  to the line that joins P with 0 
and interprets it as a point in P^ (C). Finally, he uses that P^ (C) is homeomorphic to §^. 
This map can be described in a simple and completely expHcit way using coordinates. But 
it is more difficult to prove that it is essential, i.e. not homotopic to the trivial map. Hopf 
derived this using his invariant. 

Looking at the explicit form of this map, it can easily be inferred that the pre-image of 
any point in §^ is a great circle in S"̂ . Hopf explains the fact that the linking number of 
any two of these great circles is ±1 as follows - this quotation at the same time illustrates 
Hopf's graphic and clear formulation:^^ 

Eine dreidimensionale und eine zweidimensionale Ebene durch den Mittelpunkt der §^ 
schneiden sich, wenn die letztere nicht ganz in der ersteren liegt, in einer Geraden durch 
den Mittelpunkt; dies bedeutet, wenn man zu den Schnitten mit der Ŝ  iibergeht: eine 
zweidimensionale GroBkugel und ein GroBkreis schneiden sich, wenn der Kreis nicht 
auf der Kugel verlauft, in zwei zueinander diametralen Punkten; folglich wird die Halfte 
H einer GroBkugel von jedem GroBkreis, der fremd zu dem Rand von H ist und daher 
nicht auf der GroBkugel verlauft, stets in genau einem Punkt geschnitten; da es zu je
dem GroBkreis (unendlich viele) von ihm berandete Half ten von GroBkugeln gibt, folgt 
hieraus: je zwei zueinander fremde GroBkreise der S-̂  sind miteinander verschlungen, 
und zwar ist ihre Verschlingungszahl ±1.* 

The last statement follows from the fact that the linking number of the two great circles is 
equal to the intersection number of one great-circle with the great hemisphere bounded by 
the other. 

Hopf would generalise the methods and results of this work to maps between spheres of 
higher dimensions a few years later (in 1935). Surprisingly, a connection to the theory of 
real algebras showed up here. 

* A three-dimensional and a two-dimensional plane through the center of S^ intersect in a line through the 
center unless the latter lies completely in the former; this means when passing to the intersection with S^: a 
two-dimensional great sphere and a great circle intersect in two antipodal points unless the circle lies inside the 
sphere; therefore the hemisphere H of the great sphere intersects every great circle which is disjoint from the 
boundary of H and which is therefore not part of the great sphere, in precisely one point; since for every great 
circle there are (infiniUy many) great hemispheres bounded by it, it follows: any two disjoint great circles in S-̂  
are intertwined; their linking number is ± 1. 
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The result described above invoked several important lines of development in algebraic 
topology; it stimulated algebraic topology frequently and for years, and prompted further 
developments. Examples that should be mentioned are the homotopy groups (Hurewicz 
1935), in particular those of spheres, the notion of fibration (Seifert 1932), the conclusion 
of the study of the Hopf invariant one maps (Adams 1958/60), and their various relations 
to the theory of real algebras. 

Almost at the same time as the work on maps of spheres, he wrote with his Berlin student 
Willi Rinow the joint work Uber den Begrijf der vollstdndigen dijferentialgeometrischen 
Fldche (On the notion of complete differential geometric surfaces), which appeared in 
Commentarii Mathematici Helvetici in 1931 [20]. Here they prove the equivalence of dif
ferent definitions of completeness. In particular it is proved that completeness in the sense 
of point-set topology is equivalent to the property that on a geodesic ray starting at any 
point one can go arbitrarily far (aufjedem geoddtischen Strahl [...] [kann man] von je-
dem Punkt ausjede Strecke abtragen). Here again the fascination is apparent which Hopf 
felt for the link between local and global properties. 

From the 4th to 12th of September, the International Congress of Mathematicians took 
place in Zurich. Hopf was one of the organizers, being a member of an executive committee 
of five. At the congress itself Hopf talked about results he had achieved together with 
his Berlin student Erika Pannwitz. Soon later the paper Uber stetige Deformationen von 
Komplexen in sich (On continuous deformations of complexes into themselves) appeared in 
the Mathematische Annalen [25]. The question was here which complexes can be deformed 
into proper subcomplexes of themselves. 

Alexandrov took the occasion of the International Congress for a longer stay in Zurich. 
This provided a welcome opportunity to pursue the book project further in direct cooper
ation. Until now, Hopf and Alexandrov had been posting each other the manuscripts for 
correction and criticism. Now much could simply be settled in direct discussions. They did 
not have another such opportunity before September 1935, when Hopf participated in the 
Erste Internationale Konferenz Uber Topologie in Moscow, run by Alexandrov.-^^ Almost 
all important topologists of that time were present. In the talks, a number of new ideas and 
results were presented for the first time. Alexander, Gordon, and Kolmogorov, for exam
ple, talked about their independently obtained results on cohomology. A surprising fact -
also for Hopf - was that a product could be defined for cohomology classes of arbitrary 
complexes and spaces, which gave cohomology a ring structure. Hopf had thought that 
such a product structure - as he had given for homology in his definition of the intersection 
ring - could only exist for manifolds, due to the local Euclidicity. 

In Moscow, Hopf himself reported on his student Eduard Stiefel's results on the question 
of whether there are m continuous vector fields on an n-dimensional manifold. Stiefel had 
introduced characteristic classes in his work, which could be used to answer the question. 
After Hopf's talk, Whitney remarked in a discussion that a part of Stiefel's results were 
also contained in his note Sphere Spaces that had just appeared. Subsequently, it became 
common in algebraic topology to name the characteristic classes after Stiefel and Whitney. 

Hopf had travelled to Moscow together with his wife; their plan was to spent several 
weeks with Alexandrov and Kolmogorov on the Crimean Peninsula after the congress. 
During this stay in Gaspra near Jalta, where Alexandrov had been several times in his 
holidays, the joint book was completed; they read the last corrections and finally edited the 
preface. 
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After his return to Switzerland, Hopf took part in a conference on topology in Geneva. 
Elie Cartan talked on his result that the homology of the classical compact simple Lie 
groups is the homology of a product of spheres of odd dimensions. Afterwards Cartan 
posed the question of whether this is also true for the exceptional groups and, hence, be
cause of the structure theorems, in general for all compact Lie groups. 

Hopf was able to solve this problem in an utterly new way in the course of the following 
years. The resulting paper appeared in 1941 in the Annals of Mathematics [40]. It had 
been submitted to the Compositio Mathematica in August 1939, but because of the war 
this journal had to be discontinued. Like Elie Cartan, Hopf was not satisfied by a proof by 
direct verification because such a proof̂ ^ contained no general reasons for the truth of the 
theorem. He therefore tried to determine the homology of a compact Lie group using only 
general properties. For this goal he introduced so-called F-manifolds; these are manifolds 
on which a continuous but not necessarily associative product is defined. So, group spaces 
are particular examples of T-manifolds. Hopf then showed that the intersection ring of a 
r-manifold is isomorphic to a product of intersection rings of spheres of odd dimension. 
It is essential for his proof that the product structure of the manifold induces a coproduct in 
homology via the inverse homomorphism. The intersection ring therefore becomes - as it 
is called nowadays - a Hopf algebra. The result then follows because the algebra structure 
of a Hopf algebra is very restricted. In the case of a T-manifold one gets an exterior algebra 
with generators in odd dimensions. 

In that way, Hopf solved the problem in unexpectedly great generality. At that time, no 
further examples of T-manifolds were known other than Lie groups and spheres of odd 
dimension, but Hopf had recognized the pivotal role this concept plays in the study of Lie 
groups. Starting with Hopf's work, the theory of //-spaces was intensively developed in 
algebraic topology in the following years. The insight that the existence of a coproduct in 
an algebra posed severe restrictions on its structure is the beginning of the theory of Hopf 
algebras which, as should be shown later, plays an important role not only in algebraic 
topology but also in many other areas. 

At the end of his paper, Hopf briefly referred to the algebra structure in the homology 
of a Lie group introduced by Pontryagin a short time before and conjectured that the proof 
could also be done using the Pontryagin algebra. This was soon later proved by Hopf's 
student Hans Samelson. 

Instead of the Hopf intersection ring, one today considers the cohomology ring which 
carries a Hopf algebra structure due to the product on the manifold. This point of view was 
already well known at that time. But Hopf preferred - here as well as in other works - to use 
homology; apparently the more geometric cycles were nearer to his way of thinking than 
the cocycles which are better suited for computations.^^ During the first ten years of his 
Zurich time Hopf published, besides the voluminous book with Alexandrov, about twenty 
papers; several among these papers have influenced the further development of algebraic 
topology in a pioneering way. He achieved this in addition to all the duties of his profes
sorship at the ETH. From the very beginning, Hopf devoted himself to extensive lecturing, 
comprising various areas of mathematics and also many elementary courses. His lectures 
were regarded - as before in Berlin - as excellent by his students, and they were known 
to be extraordinarily clear and gripping. He always succeeded in making his audience ask, 
think, and work together with him. Therefore it is not astonishing that he attracted a number 
of excellent students who wanted to work for a Diploma or Doctorate under his supervi
sion. In particular his PhD students always found him attentive - discussions took place in 
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his house in ZoUikon where tea and cakes were served afterwards - and he supported them 
generously with ideas and consultation. 

Zurich during World War II (1939-1945) 

In addition to the great demands of his work, Hopf was also under great psychological 
stress during his first years in Zurich, due to the poHtical situation in Germany. His parents 
still lived in Breslau. Being a Jew, his father was exposed to increasing pressure by the 
Nazis. Until 1939, Hopf could visit his parents regularly and get his own impression of 
the situation.^^ This made him try to get them an immigration permit for Switzerland. 
Although his application was approved, the planned journey had to be deferred because 
the father became seriously ill. The outbreak of the war made it impossible to pursue the 
plans later. Hopf's father died in Breslau in 1942. 

In Zurich and at his place in Zollikon, Hopf, together with his wife, tried to provide 
aid for persecuted people from Germany. His cousin Ludwig Hopf was a regular guest in 
Zollikon. Ludwig Hopf had been professor at the Technische Hochschule Aachen and lost 
his position in 1934 because of the Nazi laws. In 1938 he managed to flee from Germany. 
He became lecturer at Trinity College, Dublin, but died only a few months later. After 
the loss of his position, Issai Schur, Hopf's former teacher in Berlin, spent some time 
at the ETH with a teaching post before he could emigrate to Palestine in 1939.̂ "̂  Hopf 
tried to help many other persecuted people financially or by supporting their cause outside 
Germany. For his student Hans Samelson he managed to organize a position in Princeton in 
July 1940, when Switzerland was already almost surrounded by the Axis occupied territory. 

In Princeton, people were worrying about Heinz Hopf's future fate, and Solomon Lef-
schetz sent him an invitation to Princeton in November 1940. Hopf replied in his letter 
from January 1st, 1941:^^ 

Das ist sehr nett von Ihnen, und ich bin Ihnen fiir diese Anfrage sehr dankbar. [... ] Aber 
[wir halten] es aus prinzipiellen Griinden fiir richtiger, das Schiff nicht zu verlassen, 
solange trotz des Sturmes doch noch eine Moglichkeit besteht, dass es nicht untergeht.* 

Two years later, circumstances had deteriorated for Hopf in such a way that he had to 
apply for the Swiss citizenship.^^ Until then, he had not planned to take this step before 
the end of the war in order not to be considered an opportunist. But in March 1943, he 
received a notice that his property had been confiscated by the German authorities. Soon 
afterwards, the German consulate general in Zurich refused to extend his Heimatschein, 
and he was threatened with the loss of his German citizenship unless he moved back to 
the area of the German Reich. Hopf's plea for Swiss citizenship was approved by the 
Burgergemeindeversammlung of Zollikon in the same year. 

Whereas until the outbreak of the war there were some, albeit censored, connections with 
Germany, they were disrupted completely when the war began. Scientific contacts with 
France, Great Britain, and America were strongly restricted and even the formerly frequent 
correspondence with Alexandrov in Moscow ended around Christmas 1940. In spite of this 
isolation which Hopf found oppressing, he and his students continued to publish works of 
the highest standards. 

* That is very kind, and I am very grateful that you offered this. [... ] However, for reasons of principle we 
consider it better not to leave the ship as long as despite of the tempest, there is a possibility that it will not sink. 
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A compilation of works from the school of algebraic topology Hopf had founded in 
Zurich can be found in his report Bericht iiber einige neue Ergebnisse in der algebraischen 
Topologie [42], which was meant to be a contribution to the Festschrift for Brouwer's six
tieth birthday in 1941 but then could only be published in 1946 because of the war. In that 
paper Hopf first reports on Eduard Stiefel's study of the existence of systems of continu
ous tangent vector fields on real projective spaces, in particular of the parallelizabihty of 
these spaces (1941); then on Beno Eckmann's results on the homotopic properties of fibred 
spaces from which statements about the parallelizabihty of spheres follow, among others 
(1941). He continued with an account of Werner Gysin's work on the homology of fibred 
spaces with fibre a sphere (1941), of Hans Samelson's work on the homology of spaces on 
which Lie groups act, from which a general reason for the special structure of the homol
ogy of compact Lie groups could be derived (1941), and finally of Alexandre Preissmann's 
results on the fundamental group of closed Riemannian manifolds of negative curvature 
(1942/43). His own contribution was about the question in how far the fundamental group 
of a connected complex determines the second Betti group. Using ideas which also ap
peared in the works of Samelson and Preissmann in other contexts, Hopf considered the 
quotient of the second Betti group of a complex with fundamental group G modulo ho
mology classes whose cap-products with arbitrary one-dimensional cohomology classes 
vanish. He showed that this quotient only depended on the fundamental group G. As a 
conclusion he obtained that the second Betti group is completely determined by the funda
mental group if every image of a two-dimensional sphere is null-homologous.^^ 

In the sequel, these considerations led to the important paper Fundamentalgmppe und 
zweite Bettische Gruppe [44]. Here Hopf weakened the preconditions and investigated the 
quotient of the second Betti group modulo the homology classes which contain continuous 
images of spheres. Hopf showed that also this quotient depends only on the fundamen
tal group. In particular, the theorem followed that the second Betti group is completely 
determined by the fundamental group if every image of a two-dimensional sphere is null-
homotopic. Starting with a free presentation F/R of the fundamental group G, Hopf gave 
an explicit description of this group, namely [F, F] Pi R/[F, R]. The abelian group asso
ciated with G by this formula had already arisen in works of Issai Schur's on projective 
representations which had appeared just after the turn of the century. But Hopf does not 
seem to have noted this connection with the Schur multipher in the beginning. 

The paper Fundamentalgmppe und zweite Bettische Gruppe is legitimately regarded to 
be the beginning of homological algebra. It opened the way for the definition of the ho
mology and cohomology of a group. This step was made independently at different places 
shortly after the paper had become known: in the USA in the circle around Samuel Eilen-
berg and Saunders MacLane, in Switzerland by Heinz Hopf and Beno Eckmann and in 
the Netherlands by Hopf's former student Hans Freudenthal. Hopf's own paper on this 
topic Uber die Bettischen Gruppen, die zu einer beliebigen Gruppe gehoren [49] appeared 
in 1944/45. Following his work mentioned above, he had conjectured that its main result 
could be generalised to higher dimensions. Hurewicz had shown in the thirties that the 
homology groups of an aspherical connected space are completely determined by the fun
damental group G. Hopf's first work contained the algebraic details of this proposition for 
the second homology group. In the comprehensive sequel he now showed how one can treat 
higher dimensions similarly. From today's point of view, one can describe his purely alge
braic construction as a G-free resolution of Z. For Hopf, it arose as the algebraic analogue 
of the complex of the universal covering X of an aspherical space X with fundamental 
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group G (whose existence was proved by Eilenberg and MacLane at the same time and 
independently of Hopf). The Betti groups were then defined as the homology groups of 
the complex which resulted from the free resolution by trivializing the G-action (tensor 
product with Z over G). Hurewicz's result mentioned above corresponds in this context to 
the fact that the Betti groups do not depend on the choice of a particular free resolution 
of Z. By his procedure, Hopf assigned Betti groups to a given group in a purely alge
braic way; so the basis for the (co-)homology theory of groups and of homological algebra 
was established. In the following years, this theory earned broad appreciation only slowly, 
possibly due to the necessary complex algebraic machinery. But gradually it became an 
indispensable tool in quite a large range of mathematical areas. 

At the same time, Hopf occupied himself with the theory of ends of open spaces already 
developed in 1931 by his student Hans Freudenthal. Hopf considered spaces which are 
regular coverings of a compact space. He showed that there are only three possibilities: 
either the number of ends is one or two, or the set of ends has the cardinaHty of the con
tinuum. If the (finitely generated) group G is realized as the group of deck transformations 
of the covering Z of a compact space Z, then the number of ends of X is an invariant of 
G. Hopf posed the question about the group-theoretic significance of the number of ends 
and solved the case of two ends completely: a group G has two ends if and only if it con
tains an infinite cycUc subgroup of finite index. Hopf did not succeed in characterising the 
other cases completely. The theory of ends was taken up again soon later by Hopf's student 
Ernst Specker. In the end of the sixties, the theories of ends of a group played a key role in 
Stallings' solution for the problem of groups of cohomological dimension one.^^ 

Zurich after World War II (1945-1971) 

After the end of the war, the interrupted scientific relations were gradually reestablished. 
First, Hopf tried to contact Alexandrov. The latter had come through the war safe and 
sound. His house in the vicinity of Moscow was slighdy damaged by grenade spUnters 
but he was able to spend the time in safety east of Moscow, although in rather primitive 
conditions. 

In the period just after the war, Hopf tried to help his relatives and friends on the other 
side of the Swiss border to the best of his abiUty. On the one hand, the support consisted 
of the bare necessities of hfe, for the terrible shortage could only be alleviated by food 
parcels from foreign countries. But Hopf's assistance was also aimed at helping reestab
lishing mathematical life in Germany. Already in August 1946, Hopf was guest at the 
Mathematical Research Institute at Oberwolfach in the Black Forest, which was founded 
by Wilhelm Siiss after the war. 

In the period from October 1946 until March 1947, Hopf went to America.^^ On the 
journey he first went to Paris where he spent a few days with Jean Leray and participated 
in a meeting of the Academic Frangaise. Then he boarded a ship in Le Havre for New York. 
After arrival he spent a few weeks in New York, the remaining time primarily in Prince
ton. He met many old friends for the first time after a long period, Courant, Friedrichs, 
Stoker, Neugebauer in New York, Veblen, Alexander, Lefschetz in Princeton. In Princeton 
he shared a flat with J.H.C. Whitehead. 

At New York University, Hopf gave talks on Selected Topics in Geometry with much 
success. In his audience there were some young mathematicians who would become well-
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known later, e.g., Louis Nirenberg, Peter Lax, and Anneli Leopold (later Lax). Peter Lax 
worked up his notes of these lectures; they were pubhshed posthumously in volume 1000 of 
the Springer Lecture Notes in Mathematics, together with a lecture Differential Geometry 
in the Large Hopf gave in Stanford in 1956 written up by John W. Gray. 

During his stay in Princeton he received several calls and offers from American univer
sities, among them Harvard University, the California Institute of Technology in Pasadena, 
and Princeton University. According to the reports Hopf sent home, Courant, whom Hopf 
consulted, had a very high opinion of the offer from Harvard: only few mathematicians 
have such good positions. In the sequel, Hopf could slightly improve his position at the 
ETH, and after thorough consideration he decided to stay in Zurich. 

On the occasion of the bicentenary of the University of Princeton he was awarded with 
the title of honorary doctor. In a letter to his wife he tells: 

Dinge gehen vor im Mond.* [... ] So werden Illusionen zerstort. Was babe ich mir doch 
als unschuldiger Jiingling unter einem Ehrendoktor, noch dazu von Princeton, fiir einen 
klugen und weisen Mann vorgestellt. Aber es freut mich natiirlich gewaltig."̂  

He also tells in detail about the celebration itself in his letter and adds humorously: 

Mein 'gown' war mir zwar zu weit, aber glucklicherweise nicht zu lang, so dass ich 
nicht daraufgetreten bin.̂  

Towards the end of his American visit Hopf made some major journeys. He visited Harvard 
University, Brown University and the University of North Carolina at Chapel Hill. Finally 
he undertook an extended journey with lectures at Toronto, Chicago, Bloomington, and 
Ann Arbor. In the beginning of April, he returned from New York to Zurich by aeroplane. 

As before the war, Hopf made it possible for many, especially younger mathematicians, 
to stay in Zurich. For example, in 1948 the young Hirzebruch was hospitably welcomed at 
Hopf's home in Zollikon. Also Tits and Nirenberg both spent several months at the ETH 
in Zurich as post-doctoral visitors. 

Towards the end of the forties, mathematics in Europe came to life again. Hopf was now 
invited frequently, often as the principal speaker at congresses and conferences. In 1947 he 
travelled to Paris, in 1949 to a major conference on topology in Oberwolfach, in 1950 to 
Brussels. On the occasion of Seven's seventieth birthday in Rome in the same year, he met 
Paul Alexandrov for the first time after a long period. In 1953, he was Henry Whitehead's 
guest in Oxford while the conference for "Young Topologists" was held there. 

In the winter semester 1955/56, Hopf again went to America, this time together with his 
wife. The ship voyage to New York was followed by an excellently organized lecture trip 
across the whole American country, and during a longer stay at Stanford University, Hopf 
gave a lecture course on Differential Geometry in the Large which appeared posthumously 
in the volume of the Lecture Notes in Mathematics mentioned above. 

Thanks to his high scientific and personal reputation, Hopf was elected President of 
the International Mathematical Union from 1955 until 1958. Since Alexandrov worked in 

* Dinge gehen vor im Mond / die das Kalb selbst nicht gewohnt / . . . (things happen in the moon that even the 
calf is not used to) is the beginning of the humorous poem "Mondendinge" by C. Morgenstem. 
^ This is how you lose your illusions. What an intelligent and wise man I imagined a honorary doctor, and in 
particular one from Princeton, must be when I was an innocent youth. But of course it makes me tremendously 
happy. 
^ Although my gown was too wide, it was fortunately not too long so that I did not step on it. 
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the executive committee too, the two old friends now met more frequently, at the Interna
tional Congresses of Mathematicians in Amsterdam (1954), in Edinburgh (1958), in Stock
holm (1962), and finally in Moscow (1966). When Rene Thom received the Fields Medal 
in Edinburgh, Hopf was asked to give the laudatory speech. Now the honours accumu
lated: the Princeton honorary doctorate was followed by five more: Freiburg i. Br. (1957), 
Manchester (1958), Sorbonne at Paris (1964), Brussels (1964), and Lausanne (1965). From 
the University of Gottingen he received the GauB-Weber Medal in 1955, and from the 
Academy of Sciences of the USSR in Moscow the Lobachevsky award in 1967. In 1958, 
he became member of the Deutsche Akademie der Naturf orscher Leopoldina in Halle. Fur
thermore, he was corresponding member of the Heidelberg Akademie der Wissenschaften 
(1949) and of the Akademie der Wissenschaften in Gottingen (1966), honorary mem
ber of the London Mathematical Society (1956), of the Schweizerische Mathematische 
Gesellschaft (1957), of the American Academy of Arts and Sciences (1961) as well as for
eign member of the National Academy of Sciences of the USA (1957) and the Accademia 
Nazionale dei Lincei (1962). 

On the occasion of his seventieth birthday in 1964, the Selecta Heinz Hopf appeared, in 
which the 19 most important of his over 70 articles were pubHshed and in that way made 
accessible to the mathematical world more easily. One year later, on 6th July 1965, Hopf 
gave his retirement lecture at the ETH as part of a major celebration. 

In personal Hfe he could not escape sorrows. In the year 1959, he had to be operated 
on for a stomach ulcer and had to recover at home for an extended period. Around the 
middle of the sixties, his wife Anja fell very ill. They had planned a journey together to the 
International Congress of 1966 in Moscow and to Alexandrov, but Hopf had to go alone. 
Anja died in February 1967. Hopf did not recover from this blow. Symptoms of a geriatric 
disease appeared which confined him to his house. He died in hospital on 3rd June 1971. 

Sources 

Heinz Hopf's scientific papers are in the Wissenschaftshistorische Sanmilungen der ETH-
Bibliothek Zurich, under the reference Hs. 620-622. In the same collection, under the 
reference Hs. 160, there are copies of fifty letters by Heinz Hopf to Paul Alexandrov; the 
originals are kept in the Russian Academy of Sciences in Moscow. A comprehensive col
lection of Heinz Hopf's letters to his wife during his America visit in 1946/47 is property 
of Dr. Elisabeth Ettlinger-Lachmann, Heinz Hopf's niece. 

Several obituaries on Heinz Hopf have appeared. We want to mention in particular: 

Alexandrov, P. (1976), Einige Erinnerungen an Heinz Hopf, Jber. Dt. Math.-Verein. 78, 113-125. 
Behnke, H. and Hirzebruch, F. (1972), In memoriam Heinz Hopf, Math. Ann. 196, 1-7. 
Cartan, H. (1972), Heinz Hopf (1894-1971), International Mathematical Union (IMU), 7-10. 
Eckmann, B. (1971), Zum Gedenken an Heinz Hopf, Neue Ziiricher Zeitung, June 18th, reprint in L'Enseignement 

Mathematique 18 (1972), 105-112. 
Hilton, P.J. (1972), Heinz Hopf, Bull. London Math. Soc. 4, 202-217. 
Samelson, H. (1976), Zum wissenschaftlichen Werk von Heinz Hopf, Jber. Dt. Math.-Verein. 78, 126-146. 

Acknowledgements 

We wish to thank the employees of the Wissenschaftshistorische Sammlungen der ETH-
Bibliothek Zurich, particularly the former director, Dr. Beat Glaus, who supported us con-



Heinz Hopf 1007 

tinually by word and deed; Dr. Elisabeth Ettlinger-Lachmann for many informative talks 
on Heinz Hopf and for allowing us to look at the letters he wrote to his wife from America; 
and Professor Beno Eckmann for retelling many personal memories of Heinz Hopf and for 
numerous comments about the development of mathematics as he had experienced it as 
one of Hopf's students. Finally we thank Tilman Bauer for the excellent translation of our 
German text into English. 

Notes 

References to Heinz Hopf s publications are marked by square brackets; the numbering corresponds to the 
one in Selecta Heinz Hopf, Springer-Verlag, 1964. 

^International Mathematical Union (IMU), 1972, pp. 7-10. 
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xxxviii. 
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^^Alexandrov, P.S., Pages from an autobiography, Russian Math. Surveys 34:6 (1979), p. 324. 

•̂̂ Alexandroff, P., Einige Erinnerungen an Heinz Hopf, Jber. Dt. Math.-Verein. 78 (1976), p. 113. 
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Juni 1928, Sketch. Wissenschaftshistorische Sammlungen der ETH-Bibliothek Zurich, Hs. 622:47. 

^^The information on Anja von Mickwitz was taken from a typoscript which Leopold Ettlinger put generously at 
our disposal. 

^^Letter by Issai Schur to George Polya from June 30th, 1930. Archiv des Schweizerischen Schulrates, Korre-
spondenz des Schweizerischen Schukates, Akten. Wissenschaftshistorische Sammlungen der ETH-Bibliothek, 
Zurich. 

^^Letter by Heinz Hopf to Schulratsprasident Rohn from September 30th, 1930. Archiv des Schweizerischen 
Schulrates, Korrespondenz des Schweizerischen Schulrates, Akten. Wissenschaftshistorische Sammlungen der 
ETH-Bibliothek, Zurich. 
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nement Mathematique 18(1972), 105-112. 

The quotation is taken from [18], see also Selecta Heinz Hopf, p. 54. 

^^The source for the information on the Erste Internationale Konferenz iiber Topologie is Hopf, H., Einige per-
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and Hs. 160. 
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ities in that respect, consult Wissenschaftshistorische Sammlungen der ETH-Bibliothek Zurich, Hs. 622:43-44. 

^^Brauer, A., Gedenkrede auf Issai Schur, in: Issai Schur Gesammelte Abhandlungen, Vol. I, Springer (1973), 
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^^Cf. the correspondence in Wissenschaftshistorische Sammlungen der ETH-Bibliothek Zurich, Hs. 622:45-75. 

Hopf had summarized these results in a note Relations between the fundamental group and the second Betti 
group in 1940 and sent it to America where they were thoroughly studied by Eilenberg and MacLane on the oc
casion of a topology conference at the University of Michigan in Ann Arbor. See MacLane, S., Group extensions 
for 45 years. Math. Intelligencer 10 (1988), No. 2, pp. 29-35. 

^^Stallings, J., On torsion free groups with infinitely many ends, Ann. Math. 88 (1968), 312-334. 

•̂ ^The information on Hopf's time in America stems from letters Hopf wrote to his wife from America; the three 
following quotations are from letters written on December 20th, 1946, January 13th, and February 22nd, 1947. 
We thank Elisabeth Etthnger for allowing us to read these letters. 



CHAPTER 39 

Hans Freudenthal 
17 September 1905 - 13 October 1990 

W.T. van Est 
Aert van Neslaan 628, 2341 HV Oegstgeest, The Netherlands 

Writing a short biography of Hans Freudenthal in a Handbook of Topology creates some
thing of a predicament. 

Of course it is quite appropriate that he should be recorded here for his contributions 
to Topology. On the other hand he was a man of erudition and widespread interests both 
in the mathematical sphere as well as in other fields like literature, philosophy, history, 
mathematics education. In practical life there was likewise a broad spectrum of activities 
he was involved in, and one had the impression that any one of these activities - be it 
administrative, scientific, literary or one of the many miscellaneous ones - was equally 
important to him. 

In the diploma of one of the honorary doctorates that were bestowed on him, this broad
ness of activities and interests was duly acknowledged.^ 

In the last part of his life he concentrated on mathematics education - a point of interest 
since his student days - and he devoted his energies to this up to his last day. 

Hans Freudenthal was born on 17 September 1905 as the son of the teacher Joseph 
Freudenthal and his wife Elsbeth nee Ehmann, at Luckenwalde, a small city some forty 
miles south of Berlin. 

Having passed through the Reformrealgymnasium of his hometown, he registered as 
a student at the university of Berlin in 1923.^ Here he found an extremely stimulating 
atmosphere with L. Bieberbach, R. von Mises, E. Schmidt and /. Schur as professors and 
among the staff of 'Privatdozenten' the young H. Hopf, K. Lowner and 7. von Neumann. 
In addition there was the active club MAPHA (Mathematisch Physikalische Arbeitsge-
meinschaft), in which G. Feigl, an assistant of Schmidt, played a leading role. Later on 

^ The diploma of the Humboldt Universitat at Berlin (November 1960) states that apart from the outstanding 
work in mathematics the honorary doctorate has been conferred " . . . sowie in Anerkennung seiner vielseitigen 
Bemtihungen Probleme der modernen Kultur mathematisch zu durchdringen...". 
•̂  Berlin 1923-1930. Studienerinnerungen von Hans Freudenthal, DMV-Tagung, 21-25 September 1987, Son-
derdruck, W. de Gruyter, Berlin. 
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Freudenthal expressed more than once his indebtedness to Feigl, who had been to him and 
many a student a wise counselor. 

In physics the names of Max Planck and Albert Einstein (among others) lent lustre to 
the faculty, and of course the young student picked his share of their lectures too.-̂  

Among the visitors that passed by, in particular L.EJ. Brouwer should be mentioned, 
who from January to March 1927 gave a series of lectures on Intuitionism."^ This brought 
Freudenthal into closer contact with Brouwer and Intuitionism - some famiharity with 
these ideas he had already gained from an analysis course by Lowner. This first contact 
turned out to be decisive for his later career. 

In any case for the time being Freudenthal continued his studies. He spent the summer 
semester of 1927 in Paris, where he heard among others J. Hadamard, G. Julia and E. Pi-
card. Once returned to Berlin, where he got a small job as 'Hilfsassistent', he set out to 
work on a thesis. 

The choice of topology as a subject was due to the overall influence of Erhard Schmidt 
and the stimulating lectures of Heinz Hopf. As a matter of fact Schmidt has been one of 
the first people^ who had studied and understood papers by Brouwer - hard as they were 
to read! - and who had been disseminating over the years the knowledge of these. For 
example, Heinz Hopf recounts [Hopf 1964] that his first contact with topology came about 
by a lecture of Schmidt on Brouwer's proof of the invariance of dimension at the university 
of Breslau in 1917. So in Berlin, where Schmidt had moved to in 1920, he stimulated 
the interest in topology among the younger people, and Hopf, who had moved over with 
Schmidt, all the more contributed to this interest. 

In any case when Freudenthal made his first steps, he found Hopf as a guide, and ever 
since he always considered himself a student of Hopf. From that period on dates their 
friendship which was maintained by a lifelong correspondence when, a few years later, 
their ways parted. 

Hopf at the time was pondering about the construction of a 5-̂  -^ S^. The 'natural 
candidate' - the Hopf map - was already at his disposal, but the proof of noncontractibility 
was lacking.^ For a while Freudenthal too was involved in the problem, but then he turned 
to the theme of the ends a space, and in particular of a topological group. In 1930 he 
defended a thesis on the subject [HF 2] J Very soon after he was attracted by Brouwer to 
Amsterdam as an assistent, and a new period in his career began. 

In Amsterdam Freudenthal came to know W. Hurewicz, another assistant of Brouwer.^ 
Although Brouwer at the time was not so actively interested in topology anymore, the fact 
of being his assistant was for both a mighty spur in their research and teaching.^ 

As for Hurewicz, his Amsterdam period gave birth, apart from various interesting papers, 
to his theory of homotopy groups [Hurewicz, 1935, 1936]. His emigration to the US in 

^ One should recall that at the time students had a great freedom to take the courses they liked. Mathematics 
students often took physics courses as well. 
^ A radical constructivistic conception of mathematics; see [Brouwer, 1913]. 
5 Another one was J.W. Alexander. 
^ In April 1928, when at Princeton, Hopf in a letter to Freudenthal sketched a proof of the noncontractibility. 
^ The doctoral degree was formally conferred in October 1931. 
^ Hurewicz came to Amsterdam on a Rockefeller grant for the year 1927-1928, and became an assistant to 
Brouwer thereafter. 
^ Both had been appointed 'privaatdocent', a formal (nonremunerated) position that gave the right to lecture on 
topics of their own choice. 
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1936 was of course a great loss for Amsterdam. ̂ ^ 
Freudenthal published on various subjects. Making a rough incomplete clustering up to 

1941, when he was suspended from duties (like so many others), one may distinguish three 
main categories, to wit: Topological and Lie groups [HF 13,14,42,44], Algebraic Topology 
proper [HF 9,10,25,30,31,32] and Linear Analysis [HF 16,17,18,19,20]. 

On the whole the period from 1930 up to 1941 was a relatively happy one for Freuden
thal. He got settled in the Netherlands and in 1932 he married Susanna J.C. Lutter. The 
marriage was blessed with four children. 

In the sphere of professional activities he became de facto the first managing editor of 
Compositio Mathematica, the journal founded in 1934 on Brouwer's initiative. Freudenthal 
always felt much attached to the journal, and after the war he took action to resuscitate the 
journal. 

Furthermore, when in 1937 the chairs of geometry and analysis fell vacant, geometry 
and algebra were assigned to A. Heyting in the position of reader, whereas Freudenthal 
was made responsible for the courses in analysis, pro forma in a position of curator (of the 
library and the cabinet of mathematical models). Of course this was not a regular teaching 
position, but the economic crisis of the thirties still enforced budget cuts on all levels. 

To both mathematicians this gave room to introduce certain innovations. For example, 
for second year students Heyting taught a course on 'Modern Algebra' based on the book 
by van der Waerden, which at the time was still recent. 

Freudenthal set up a five year course in analysis. The first two years treated calculus, 
more variables, differential forms and Stokes' theorem, ending up with Lebesgue integra
tion. Comparing it to the usual analysis courses in the first two years, the subject matter in 
itself was not new, except perhaps for differential forms and Lebesgue integration. But it 
was rather the treatment of the subject with an extensive use of metric topology and linear 
algebra that made the difference. 

The subsequent courses were on 'Functions of One Complex Variable', including Rie-
mann surfaces and elliptic functions, 'Differential Equations' (ordinary and partial) in
spired by the book of Frank and von Mises (a modernized version of the classical Riemann-
Weber), and finally 'Linear Analysis' with the basics of Banach spaces, spectral theory in 
Hilbert space, unitary semi-groups (Stone-von Neumann), ergodic theorems, and almost 
periodic functions on groups. Of course not all chapters were taught every year, the later 
ones were taught alternately. 

At the time this was an utterly modern integrated analysis course, and as such it made 
quite an impression on the students. 

Apart from the 'assigned' courses both Heyting and Freudenthal found time to teach 
special topics such as 'Intuitionism' (Heyting) and 'Combinatorial Topology' (Freuden
thal). All in all this added up for both of them to a considerable teaching load, but on the 
other hand, classes being much smaller than nowadays, it was bearable. 

Freudenthal's style of lecturing was quite vivid, perhaps not always easy to follow. But 
one saw how mathematical ideas emerged, and this was certainly not the least merit of his 
lectures. 

The relatively care-free period came abruptly to an end by the German occupation. Be
ing a Jew, Freudenthal, like so many others, was suspended from duties in 1941. The future 

^̂  In retrospect one might say that his emigration spared him the ordeal that would have been in store for him 
during the war. 
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looked ominous, and even more so when the systematic deportation of Jews began. How
ever, since Mrs. Freudenthal was non-jewish, there was, for the time being, no immediate 
danger. 

Despite the harassing circumstances in the period 1941-1945 - occasional arrests by 
the German police, work camp detention, a period of hiding out - he managed to pursue 
his mathematical and other interests whenever circumstances permitted. Among the rare 
gratifying events, if any, were the theses of two young mathematicians at the university of 
Groningen that complemented some of his work [de Groot, 1942; van Heemert, 1943]. 

At irregular intervals the correspondence with Hopf was maintained. Fruits of this dif
ficult period are [HF 47] and [HF 48]; both papers deal with questions addressed by Hopf 
earlier. 

Furthermore he came out with some literary work and a deepened interest in the history 
of mathematics. His impressive inaugural address at the university of Utrecht [HF 50] and 
some later articles bear witness to this. 

In this Utrecht period (1946-1980) his interest changed gradually to questions of re
lations between geometry and Lie groups, in particular to geometries associated to the 
exceptional simple Lie groups. Only in a few papers [HF 77,78,80,96] he came back to 
questions of topology, [HF 77] and [HF 96] being a completion of earlier results. 

Apart from these, many of his postwar papers address a broader public. Elementary texts 
on statistics, logic, natural philosophy [HF 83,263], short articles on philosophical ques
tions, history of mathematics and mathematics education belong to this category. Some
what apart from these, although related to his interest in logic, stands his book LINCOS, 
design of a language for cosmic intercourse [HF 190].^^ 

In the last years of his career his interest focused practically entirely on questions of 
mathematics education from the primary up to the secondary level. As we mentioned 
before, these questions were already a longtime interest of Freudenthal. Very soon after 
the war, (or maybe even earUer) he joined the Werkgemeenschap voor Vernieuwing van 
Opvoeding en Onderwijs, where an active group of mathematics teachers in secondary ed
ucation strove for innovation in the traditional methods of teaching mathematics. It was 
natural that Freudenthal, by his active interest, was gladly accepted as president. One of 
the leading ideas in his efforts was to bring together observations on phenomena in every
day life and mathematical activity. In 1971 Freudenthal managed to found an institute for 
developing new methods of teaching mathematics, the lOWO. And with full impetus he 
gathered a group of young people around him who set out to develop, under his guidance, 
mathematics courses at various levels. These new courses and teaching methods were tried 
out at various schools and resulted here and there into changes of teaching methods at a 
national level. 

The ideas attracted attention abroad too, and for some time there was a co-operation 
project between the Utrecht group and a group of the university of Wisconsin. 

In the field of mathematics education Freudenthal left a 'school' in the sense of a group 
of younger people working more or less along the fines that had been traced by the mas
ter. In mathematics proper the 23 theses under his patronage were quite diverse, various 
of these (due to special circumstances) somewhat off the lines he had been working on 
himself. 

^' As the reviewer in MR 22 (1961) #9378 observed, the application of the ideas of LINCOS is perhaps rather in 
the communication between humans and systems with artificial intelligence. 
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As mentioned before, the range of Freudenthal's interests and activities was a broad one. 
Let us just mention the many columns and articles in non-mathematical journals and his 
active participation in national and international committees of various kinds. In particular 
the Wiskundig Genootschap (the Dutch mathematical society), which he served twice as 
president, owes him a great deal because of some of his initiatives that changed hfe within 
the Genootschap radically. 

Death gently surprised Freudenthal on 13 October 1990, thereby putting an end to an 
inamensely active life. 

* * * 
In conclusion we shall try to put into context and perspective some of Freudenthal's 

papers dealing with topological questions. 

Ends and topological groups [HF 2,13,14,47,771 

All spaces to be considered in this section will be supposed to belong to the category T of 
connected, locally connected, locally compact, second countable Hausdorff spaces, unless 
mentioned otherwise. 

In [HF 2] it is shown that any space X'mT admits a compactification Z D X such that 
(i) X is open and dense in X, 

(ii) the ^tiE — X — X of endpoints (or ends) is zero-dimensional, 
(iii) X is locally connected in X, i.e. any endpoint e e E admits arbitrarily small neigh

bourhoods Ue such that Ue r\ X is connected. 
The conditions (i)-(iii) guarantee the essential uniqueness of X. If X is obtained from 

a compact space Y by leaving out a closed not necessarily connected subset A, then X is 
essentially obtained from Y by collapsing to a single point a/ every component A/ of A. 

The points e e E art defined by descending chains of noncompact connected opens 
with compact boundary. A similar construction in a more general context was later used by 
Fox [1954]. 

In the case of a manifold X a construction of endpoints in terms of diverging sequences 
of points was given by Hopf in [1943-1944]. The Hopf paper called for an intrinsic con
struction of the ends of a finitely generated abstract group, and this was done in [HF 47]. 
For further developments see [Specker, 1950; Stallings, 1971] and [Peschke, 1990]. 

If X is in addition the underlying space of a topological group, then it turns out that 
card E ^2. 

At the time this must have been a surprising result, we think. The general notion of 
'topological group' had been introduced not so long ago by Leja [1927], but nothing much 
was known about the topology of these objects in general, apart from some scarce results 
on locally Euclidean groups (hence Lie groups as we now know) [Schreier, 1928; Car-
tan, 1928]. Furthermore there was the result by Brouwer [1910] and Leja [1928], that the 
more than once punctured plane was not a group manifold, a result that also followed 
directly from Schreiers' result on the commutativity of the fundamental group. Since a 
more than once punctured noncompact manifold has at least three ends, the Freudenthal 
result gives another very general reason for the result of Brouwer and Leja. 

[HF 13] collects some simple, by now standard, facts to be used in [HF 14]. It essen
tially points out that the canonical factorization of a homomorphism in the category of 
abstract groups should in the category of (general!) topological groups take the form of a 
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factorization into an open continuous surjection and a continuous injection (of course the 
terminology is somewhat different). Furthermore it proves that in the category of complete 
second countable Hausdorff groups any continuous surjection is open. Second countabil-
ity is essential, hence the result is not quite an extension of the similar result for Banach 
spaces. 

[HF 14] proves that any locally compact connected group with sufficiently many almost 
periodic functions is the direct product of some R" and a compact connected group, and 
the latter factor is the inverse limit of a sequence of compact connected Lie groups. 

A nice application of [HF 14] is [HF 77] where it is proved that a group in the category 
T with two ends is the direct product of R and a compact group, thereby completing the 
results of [HF 2] in a satisfactory way. 

The results of [HF 14] were so to speak in the air; the introduction discusses related 
results by contemporaries. 

A (not quite dispassionate) survey of various results in the theory of topological groups 
up to 1936 is to be found in the review paper [HF 42]. 

Limits and algebraic topology proper [HF 9,25,32,48] 

We mention [HF 9] only as an example of a situation where the adequate tools are lacking 
to estabhsh the 'good result' predicted by a correct intuition. 

Recall that a classical theorem of Hopf states essentially that the homotopy classes of 
maps P -^ S^\ P being an n-dimensional polyhedron, are in natural 1-1 correspondence 
with the elements of H^\P, Z). Now H^\P,Z) has a natural group structure, whereas for 
the homotopy classes there is no natural composition. However, in the cases n = 1, 3, 5" 
has a group structure and this induces a group structure on the set of maps P -> S'\ 
and thereby a composition for homotopy classes that corresponds to the addition in coho-
mology [Bruschlinsky, 1934]. The paper imposes by brute force a 'group structure with 
singularities' on 5*" and sets out to show that it actually induces a 'good' composition for 
the homotopy classes. 

In retrospect we now see that the advent of K(7T, «)-spaces with group structure had 
to be awaited before a fully satisfactory homotopical definition of cohomology could be 
given. 

Inverse limits of groups had occurred earlier in mathematics (e.g., [Brouwer, 1910; van 
Dantzig, 1930; Herbrand, 1933]), and of course examples abound in /7-adics. Direct se
quences had occurred. These matters are discussed in the introduction of [HF 25], and 
then the paper sets out to define the notions of inverse and direct Umit, albeit sequential 
limits, and, working with a different terminology, it examines the properties of these limit 
procedures. 

It is, we think, by this paper that the notions of inverse and direct Hmit acquired their 
formal status in mathematics, although nowadays we see them as special cases of a more 
general limit notion from category theory. 

Whereas in the case of [HF 14] and [HF 25] one might say that the results were about 
to crystallize anyway, if not by Freudenthal as mediator then by somebody else, it is a 
different matter with the suspension paper [HF 32] estabhshing 

7r«+A:(̂ ") =^n-\-k-\-l{S^'^ ) 
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whenever k ^ n ~ 2, and giving results on the kernel of the suspension homomorphism, 
the so-called 'crude' and 'deUcate' suspension theorems (J.H.C. Whitehead). Of course 
[Hopf, 1935] (extending [Hopf, 1931]) had just been pubhshed, and the Hurewicz homo-
topy theory had just been created next door so to speak, and these certainly spurred the 
interest in these questions. But the idea to consider, for any map / : 5""^^ -> 5" its 'sus
pension' Ef: 5^+^+1 -> 5"+^ induced from / x 1:5"+^ x / -> 5" x / by passing 
to the quotient spaces 5"+^+^ of 5"+^ x / and "̂"̂ ^ of 5" x / gotten by identifying 
the ends of the cylinders to points, and to study the homomorphism of homotopy groups 
E : 7tn+k^^^ -^ ^n^k-^\ ^^'^^ resulting from this construction, was really a stroke of genius. 
The letter E, which is frequently employed to denote the suspension homomorphism (as in 
the 'EHP-sequence', see [G.W. Whitehead 1978]), derives from the German 'Einhangung' 
used by Freudenthal in his famous paper [HF 32]. 

Taking into account the utterly nontrivial results (at the time) and the hard geometric 
approach (bare handed so to speak) the paper reminds one of the Brouwerian papers.̂ -^ Of 
course today we are much wiser and experts know how to get at the results by suitable 
general machinery (see [Whitehead, 1978]) or Morse theory (see, e.g., [Milnor, 1963]); the 
delicate results, however, are still a shade more difficult than the crude ones. 

The paper is a historic landmark in that here for the first time the phenomenon of stabiHty 
makes its appearance in topology. 

It stood by itself quite a while, ̂ ^ untill roughly around the late forties and early fifties 
things began to move again in the homotopy theory of spheres. 

As we mentioned before [HF 48] was written in war time, practically in 'splendid iso
lation' . It is concerned with the problem in what way the homology of an aspherical space 
is determined by the fundamental group - again a problem raised by the Hurewicz pa
pers. The results are similar to those of [Hopf, 1944-1945], but in addition it proves that, 
and makes clear how, the multiplicative structure of cohomology is entirely determined by 
the fundamental group. The papers by Eilenberg and MacLane [1945,1947] and Eckmann 
[1945-1946] put rather more emphasis on cohomology. But perhaps the main difference in 
comparison with Hopf-Freudenthal is that the latter authors make use of the 'standard com
plex' (the homogeneous or inhomogeneous one) associated to a group G, supplemented 
by the equivariant chain homotopy theorem for maps from a free G-complex to an acyclic 
G-complex. 

Miscellany [HF 16,20,44] 

[HF 16] deals with vector lattices and more in particular with Riesz spaces. The subject 
goes back of course to Riesz [1928], and in 1936 it was taken up practically simultaneously 
by Kantorovich and Freudenthal. The main result of [HF 16] is an integral representation 
of the elements of a Riesz space in terms of 'idempotents', quite analogous to the spectral 
representation of selfadjoint operators in Hilbert space. For the further history see [Lux
emburg and Zaanen, 1971]. 

^̂  This goes for the readability as well; even Hopf once wrote in a letter to Freudenthal that he found it hard 
reading. 
^̂  A sequel to the paper was submitted to Compositio, and, since Compositio collapsed, was subsequently for
warded to the Annals, but it was withdrawn because it contained a mistake. 
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The fact that a densely defined semi-bounded Hermitian operator in Hilbert space admits 
a selfadjoint extension, was established by Friedrichs [1934]. [HF 20] points out a very 
elegant shortcut in Friedrichs' proof, and it is now to be found in the textbooks, see, e.g., 
Sz.-Nagy [1967]. 

E. Cartan [1930] and independently van der Waerden [1933], established that an ab
stract group isomorphism G\ -^ G2 of Lie groups, with G\ compact and simple, is a 
Lie isomorphism. The theorem is false for G\ noncompact simple, as is evidenced by 
5/(2, C), where discontinuous automorphisms of C induce discontinuous automorphisms 
of SI (2, C). [HF 44] shows that the theorem still holds true if G1 is a real form of a complex 
simple group. The result remained isolated quite a while, till Borel and Tits [1968, 1973] 
took up the question of abstract group isomorphisms in the framework of algebraic groups. 
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CHAPTER 40 

Herbert Seifert* 

May 27,1907 ~ October 1,1996 

Dieter Puppe 
Mathematisches Institut, Universitdt Heidelberg, Im Neuenheimer Feld 288, D-69120, Germany 

E-mail: puppe @ sunO. urz. imi-heidelberg. de 

Herbert Seifert died October 1, 1996 in his 90-th year. He was one of the great pioneers 
in the field of topology which developed enormously during his hfetime. His work was 
an essential part of this development. He was of particular importance for the University 
of Heidelberg because he taught at this university as a professor for 40 years with an in
terruption during the Second World War. After the war he was temporarily the only one 
responsible for the department of mathematics and it was his influence and his policy which 
led to what is now the Faculty of Mathematics at Heidelberg. 

Karl Johannes Herbert Seifert was born May 27,1907 at Bernstadt in Saxony. His father 
was, at the end of his career, Justizamtmann, i.e. a court official of medium rank. After the 
family had moved to Bautzen (also in Saxony) it was there that Herbert Seifert attended 
the Knabenbiirgerschule (primary school) and later the Oberrealschule (secondary school). 
His grades were good but in the beginning - even in mathematics - not outstanding. How
ever, a mathematical exercise book from his last school years already shows not only his 
mathematical talent but also the precise and extremely clear style which distinguishes all 
his writings and lectures. 

In the spring of 1926 Seifert finished secondary school with the Abitur, and in the sum
mer term of the same year he began to study mathematics and physics at the Technische 
Hochschule (Technical University of) Dresden. In 1927 he attended a course on topology 
taught by William Threlfall, and this determined the direction of his whole life. Threlfall 
was the son of a niece of Robert Koch and of an Englishman, and he was a private scholar. 
Most of the time he taught as an unsalaried lecturer at the Technical University of Dresden 
until he became a professor at the University of Frankfurt am Main in 1938 as the successor 
of Carl Ludwig Siegel, who had emigrated to the United States of America. Threlfall owned 
a spacious beautiful house in Dresden, which nowadays does not exist any more. A friend
ship started to develop between Threlfall and Seifert (who was 20 years younger) which 

*This is essentially a translation of an obituary written by the author in German and published in "Jahrbuch der 
Heidelberger Akademie der Wissenschaften fiir 1997", Heidelberg, 1998. 
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established a close personal relationship for the rest of their lives and was scientifically very 
fruitful. But first, in 1928/1929, Seifert went to Gottingen which at that time was the world 
center of mathematics and where he met some of the most important mathematicians of this 
century, among them David Hilbert and the topologists Paul Alexandrov and Heinz Hopf. 

For the summer term of 1929 Seifert came back to Dresden and moved into Threlfall's 
house. On July 17,1930 he passed the examination which entitled him to become a teacher 
of mathematics at a secondary school (the usual way to finish university studies in mathe
matics at that time), and only 4 weeks later on August 13, 1930 - he was 23 years old - he 
received his first doctorate (Dr. rer. techn., Doktor der Technischen Wissenschaften). 

The tide of his dissertation was "KonstruktiondreidimensionalergeschlossenerRaume", 
in Enghsh translation: "Construction of 3-dimensional closed spaces", in today's terminol
ogy: . . . closed manifolds". At that time the problem of classifying 3-dimensional closed 
manifolds with respect to homeomorphism was considered as one of the most important 
problems of topology. To the present day it is still unsolved. Seifert made important con
tributions to it, even more so in his second dissertation, to which we come back below, 
but the first one contains something else in addition, namely a theorem allowing him to 
calculate the fundamental group of a space from the corresponding groups of certain sub-
spaces. In the literature it was for a long time often called van Kampen's theorem, although 
van Kampen's paper to which this refers appeared in 1933 and does not contain the usual 
formulation of the theorem. It is true that also Seifert formulates the theorem differently 
from what is usual today. So it is fair to speak of the "Theorem of Seifert and van Kampen" 
which is being more and more accepted. 

Having completed his first doctorate Seifert was granted a scholarship from the Tech
nical University of Dresden to enable him to continue his studies at a different university. 
Seifert used it to go to Leipzig in the summer of 1931. However, he usually stayed there for 
only part of the week. Each weekend he returned to Dresden to work with Threlfall and they 
regularly spent their vacation time together. As early as February 1, 1932 Seifert submitted 
his paper on "Topologie dreidimensionaler gefaserter Raume" (Topology of 3-dimensional 
fibred spaces) as a dissertation at Leipzig. Nowadays the notions of "fibred space" or "fibre 
space" or "fibre bundle" or "fibration" are among the most important ones in topology. The 
meaning of the word "fibred" has changed a little but it goes back to this second disserta
tion of Seifert's. Van der Waerden was the official supervisor but in reality Seifert did not 
need supervision. The paper was almost finished before he went to Leipzig. On March 3, 
1932 he passed the oral examination for the second doctorate (Dr. phil.). 

At that time Seifert and Threlfall had been working already on their textbook on topol
ogy ("Lehrbuch der Topologie", Teubner, 1934). Threlfall had introduced Seifert to topol
ogy but before long the younger one became the leader in the team. Certainly, Seifert would 
deny this but then Threlfall would confirm it vigorously. The preface of the book begins as 
follows: 

Den ersten AnlaB zur Abfassung des vorliegenden Lehrbuches gab eine Vorlesung, die 
der eine von uns (Threlfall) an der Technischen Hochschule Dresden gehalten hat. Aber 
nur ein Teil der Vorlesung ist in das Buch ubernommen worden. Der Hauptinhalt ist 
in der Folgezeit in engem taglichem Gedankenaustausch zwischen beiden Verfassern 
entstanden. 

(Translation: The first step towards writing this textbook was a course which one of us 
(Threlfall) taught at the Technical University of Dresden. But only part of the course was 
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included in the book. The main part of its contents originated later from daily discussions 
between the two authors.) 

This formulation is a compromise on which Seifert insisted. Originally Threlfall wanted 
to write (according to his diary): 

Das Buch ist aus Vorlesungen hervorgegangen, die der eine von uns dem anderen im 
Jahre 1927 an der Technischen Hochschule Dresden gehalten hat. Bald hat aber der 
Horer so wesentlich neue Gedanken zur Ausarbeitung beigetragen und sie so von Grund 
auf umgestaltet, daB eher als sein Name der des urspriinglichen Verfassers auf dem 
Titelblatte fehlen diirfte. 

(Translation: This textbook arose from a course which one of us gave to the other at the 
Technical University of Dresden. But soon the student contributed new ideas to such an 
extent and changed the presentation so fundamentally that it would be more justifiable to 
omit on the title page the name of the original author than his.) 

The book gives an excellent account of what was known in topology at that time. It 
was superior in contents and in ways of presentation to other books in the field not only 
when it appeared but for a long time to come. It was translated into several languages, and 
generations of topologists in all countries of the world studied it. Even now, more than 
60 years later, it is worth reading because of its lucid style and because, for some special 
problems, it is still the best source of information, in particular if you look not only into 
the main text but also into the "Anmerkungen" (Remarks) at the end. 

On January 22, 1934 Seifert's Habilitation (right to teach at the university level) at 
the Technical University of Dresden went into effect based on his paper entitled "Ver-
schlingungsinvarianten" (Linking invariants) and on a test lecture on "Stetige Vektorfelder" 
(Continuous vector fields). 

At that time Seifert was already well known among German mathematicians and among 
topologists all over the world. So it is not surprising that in spite of his young age he 
got several more or less official offers from other German universities. He entered into 
serious negotiations with the University of Greifswald, but in the end, since the conditions 
of the offer were not satisfactory for him, he turned it down on September 1, 1934. At the 
same time he received the title of "AuBerordentlicher Professor" (comparable to associate 
professor) at the Technical University of Dresden. 

On November 5,1935 a telegram from the Ministry of Education of the German Reich in 
Berlin arrived at Dresden by which Seifert was summoned to go immediately to Heidelberg 
and take over the duties of a full professorship in mathematics at Heidelberg University. 
Threlfall, in his diary, refers to this as an order. Seifert complied, arrived at Heidelberg 
2 days later, and it was only afterwards that he learned the details of the situation. 

Until September 30,1935 the mathematics department of Heidelberg University was run 
by the (full) professors Heinrich Liebmann and Artur Rosenthal. Both of them were Jew
ish. During the summer term of 1935 the national-socialist student association organized 
a boycott of their courses. They tried to resist, Rosenthal with more energy than Lieb
mann. As they did not get any support from the university administration or the ministry 
of education they applied for premature retirement, Liebmann giving his bad health as a 
reason, Rosenthal expressing protest. The retirement became effective with the formal end 
of the summer term on September 30, 1935. In a letter of January 3, 1936 the rector of 
Heidelberg University stated that as a consequence of a certain law (Reichsbtirgergesetz 
of September 15, 1935) Rosenthal lost his right to teach (Lehrbefugnis) and his status as 
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a (retired) faculty member, both with the end of the year 1935. Although it seems that the 
legal situation for Liebmann was exactly the same, in his case the consequences were never 
drawn. On the contrary, the rector confirmed in 2 letters, the second one written after Lieb-
mann's (natural) death on June 12, 1939, that Liebmann continued to be a (retired) faculty 
member of Heidelberg University. Liebmann's daughter needed this confirmation in order 
to obtain a scholarship. Rosenthal emigrated to USA in 1936 where he started a new aca
demic career in 1940. His last position was that of a (full) professor at Purdue University. 
He died September 15, 1959. Five years earlier and retroactively effective April 1, 1949 
his privileges as a retired full professor of Heidelberg University had been restored. 

In November 1935, immediately after his arrival at Heidelberg, Seifert took charge of 
Liebmann's chair. Rosenthal was succeeded by Udo Wegner starting from the winter term 
1936/37. Wegner went along with the poHcy of the Nazi regime, but Seifert kept his dis
tance as much as possible. The rector once told him that this fact delayed his appointment 
as a professor. It was not before August 1936 that he received the official offer. This was 
during a stay in a hospital in Oslo, where Seifert had taken part in the International Mathe
matical Congress and became ill with poliomyelitis. Then it took until July 1937 before his 
appointment became effective. Meanwhile Liebmann's chair in the budgetary sense had 
been used for somebody else in a field different from mathematics. Therefore Seifert's po
sition was only an Extraordinariat (associate professorship), although he had the personal 
privileges of an Ordinarius (full professor). It was not until after World War II, from 1946 
on, that he filled an Ordinariat in every respect. 

Under these circumstances Seifert's possibilities for working at Heidelberg were lim
ited before the war. When the war started he was sure to be drafted to some kind of war 
service. In order to avoid the worst possibilities, he volunteered to work in the Luftfahrt-
forschungsanstalt at Braunschweig, a research institution of the German Air Force, and 
there in particular in the Institut fiir Gasdynamik (Institute for Dynamics of Compressible 
Fluids), whose director was Adolf Busemann. Seifert was accepted and appointed head of 
a department of this institute. He was on leave from Heidelberg University from the winter 
term 1939/40 through the winter term 1944/45. 

From 1936 to 1939 Seifert and Threlfall continued their cooperation by exchanging 
many letters and by getting together as often as their professional duties would allow -
Threlfall worked at the University of Halle in 1937 and at the University of Frankfurt/Main 
from 1938. As before they used to meet in Threlfall's house at Dresden and they undertook 
many joint holiday trips. During this time they wrote their second book, which appeared 
in 1938. The title is "Variationsrechnung im GroBen" (Variational calculus in the large) 
with the subtitle "Theorie von Marston Morse". Again, as in the case of the "Lehrbuch der 
Topologie", they made a new part of mathematics much better accessible than it had been 
before. The book has a motto quoted from Kepler's "Astronomia nova" and beginning 
as follows: "Durissima est hodie condicio scribendi Hbros mathematicos". (Translation: 
Today it is very hard to write mathematical books.) The editor of the book series, Wilhelm 
Blaschke, understood this as a political allusion, which it certainly was, and wanted to 
remove it. But the authors insisted that the motto be printed and so it was. 

As mentioned before, shortly after the beginning of World War II Seifert became head 
of a department of the Luftfahrtforschungsanstalt at Braunschweig. Soon he succeeded 
in getting Threlfall also into this department. The whole institution was considered to be 
important for the German war effort, but Seifert's department worked only on basic the
oretical problems. The only condition was that they should be related to the dynamics of 
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compressible fluids. Thus Seifert wrote a series of papers on differential equations, among 
them one on "Periodische Bewegungen mechanischer Systeme" (Periodical movements of 
mechanical systems), which became one of the roots of today's theory of periodic solu
tions of Hamiltonian systems. In Busemann's institute Seifert also had the opportunity to 
give courses of lectures. One of them was on general relativity and cosmology and had an 
influence on Seifert's teaching after the war at Heidelberg. 

In 1944, because Braunschweig suffered more and more from air raids, Busemann's 
institute was moved to "SchloB Rust" (Rust castle) on the upper Rhine not far from the 
Black Forest and hence not far from Oberwolfach. The foundations of what is now the 
Mathematical Research Institute Oberwolfach, well known throughout the world, were 
laid during the last months of the war by Wilhelm Stiss, and he took care that Seifert and 
Threlfall were among the first to work at this institute. This is where they were when the 
war ended. 

Soon Seifert tried to return to Heidelberg. First he came for short visits and finally in 
November 1945 for good. So he was here when, at the beginning of 1946, the Faculty of 
Science of the university reopened. The American Military Government had closed the 
university in the spring of 1945 and fired many professors in the course of denazification. 
At the beginning of 1946 only 4 full professors in the whole Faculty of Science were in 
office. Seifert was one of them, and in February 1946 he was the only one whom the Amer
ican mihtary authorities would accept as dean. So he did this job for 4 months although he 
did not like it at all. 

In the time to come Seifert and Threlfall (who was again at Frankfurt/Main) were very 
much interested in continuing their cooperation. Each tried to get the other to his place. 
What finally worked out was that Threlfall got an offer from Heidelberg and became the 
second full professor of mathematics in the winter term 1946/47. However, the expectations 
of further extended cooperation did not materialize. Threlfall spent part of the winter term 
1946/47 in Switzerland; Seifert was invited to the Institute for Advanced Study at Princeton 
by Marston Morse and he went there for the winter term 1948/49; and on April 4, 1949 
Threlfall died unexpectedly at the age of 60. 

For the next 3 years Seifert was again the only full professor in mathematics at Hei
delberg and had the main responsibility for the department, supported by the associate 
professor Hans MaaB and the lecturers Walter Habicht and Horst Schubert. Topology was 
taught and studied intensively. Seifert had a series of graduate students whom he super
vised in the best possible way. Recent progress in Algebraic Topology which now mainly 
came from USA, France, England and the Soviet Union was systematically studied in the 
topology seminar which has met on Thursday afternoons ever since. International connec
tions were re- and newly established. Some of the best mathematicians in the world came 
to give talks at Heidelberg. 

In 1952 the department of mathematics started to grow, during some periods at a breath
taking pace. The second chair was filled with the algebraist F.K. Schmidt. Then many 
new professorships were created and finally new institutes were founded, so that at present 
several mathematical disciplines are active at Heidelberg. Topology still plays an important 
role. 

On September 13, 1949 Herbert Seifert married Dr. Katharina Seifert, nee Korn. If he 
had been the head of the mathematical community at Heidelberg for a long time, Mrs. 
Seifert was its soul. She took care that people got together not only for work. She organized 
parties in her house and in other places which have become legendary. She also had an 



Herbert Seifert (1907-1996) 1027 

important part in establishing and keeping relations with many mathematicians outside 
Heidelberg. 

At the end of the summer term 1975 Herbert Seifert retired. After that he did not go to 
the university very often. Together with Mrs. Seifert he enjoyed his beautiful house on the 
hill near the old town of Heidelberg and above all his garden in which he did a lot of work 
himself. For many years a large group of friends, colleagues and former students regularly 
came to visit the Seiferts. It was only a short time before his death that he lost his strength. 
A rich life which had been important for many people ended. 

Many honours were bestowed on Herbert Seifert. He was a member of the Heidel-
berger Akademie der Wissenschaften (Heidelberg Academy of Sciences and Letters), 
of the Akademie der Wissenschaften zu Gottingen and of the Accademia Mediterranea 
delle Scienze in Catania. He was one of very few honorary members of the Deutsche 
Mathematiker-Vereinigung (German Association of Mathematicians). He himself did not 
care much about external honours. He avoided any kind of public attention. In particular 
he did not allow public notice to be taken of any of his birthdays. On his 75-th birthday 
many people gathered to congratulate him but he insisted that there should be no speeches 
mentioning the birthday. 

Seifert will be remembered as a great mathematician by the topologists and by many 
other mathematicians - by those who had the privilege of personal acquaintance he will 
also be remembered as an upright, sometimes stern, but always warm and lovable person. 
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Appendix: Some Dates 

John Frank ADAMS 1930-1989 
Jose ADEM 1921-1991 
Pavel Sergeevich ALEKSANDROV 1896-1982 
James Waddell ALEXANDER 1888-1971 
IzeaBERSTEIN 1926-1991 
Enrico BETTIl 823-1892 
R.H. BING 1914-1986 
Karol BORSUK 1905-1982 
Luitzen Egbertus Jan BROUWER 1881-1966 
Georg CANTOR 1845-1918 
ElieCARTAN 1869-1951 
EduardCECH 1893-1960 
Richard DEDEKIND 1831-1916 
Max DEHN 1878-1952 
Clifford Hugh DOWKER 1912-1982 
James DUGUNDJI1919-1985 
Walther Franz Anton von DYCK 1856-1934 
Eldon DYER 1929-1993 
Charles EHRESMANN 1905-1979 
Samuel EILENBERG 1913-1998 
Leonhard EULER 1707-1783 
Georg FEIGL 1890-1945 
Jacques FELDBAU 1914-1945 
Ralph Hartzler FOX 1913-1973 
Hans FREUDENTHAL 1905-1990 
Tudor GANEA 1922-1974 
Carl Friedrich GAUSS 1777-1855 
Hermann Guenther GRASSMANN 1809-1877 
Victor K.A.M. GUGENHEIM 1923-1995 
Felix HAUSDORFF 1868-1942 
PoulHEEGARD 1871-1948 
David HILBERT 1862-1943 
Guy HIRSCH 1915-1993 
Witold HUREWICZ 1904-1956 
Heinz HOPE 1894-1971 
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Camille JORDAN 1838-1921 
Egbertus R. van KAMPEN 1908-1942 
Gustav Robert KIRCHHOFF 1824-1887 
Christian Felix KLEIN 1849-1925 
Hellmuth KNESER 1898-1973 
Leopold KRONECKER 1823-1891 
Andrei Nikolaevich KOLMOGOROV 1903-1987 
Hermann KUNNETH 1892-1975 
Kazimierz KURATOWSKI1896-1980 
Henri Leon LEBESGUE 1875-1941 
Solomon LEFSCHETZ 1884-1972 
Gottfried Wilhelm LEIBNIZ 1646-1716 
Jean LERAY 1906-1998 
Simon Antoine Jean UHUILIER 1750-1840 
Marius Sophus LIE 1842-1899 
Johann Benedict LISTING 1808-1882 
August Ferdinand MOBIUS 1790-1868 
Eliakim Hastings MOORE 1862-1932 
Robert Lee MOORE 1882-1974 
Harold Calvin Marston MORSE 1892-1977 
Maxwell Herman Alexander NEWMAN 1897-1984 
Jakob NIELSEN 1890-1959 
Amalie Emmy NOETHER 1882-1935 
Christos PAPAKYRIAKOPOULOS 1914-1976 
Charles Emile PICARD 1856-1941 
Jules Henri POINCARE 1858-1912 
Lev SemyonovichPONTRYAGIN 1908-1988 
Georges REEB 1920-1993 
Kurt Werner Friedrich REIDEMEISTER 1893-1971 
Georges de RHAM 1903-1990 
Georg Friedrich Bemhard RIEMANN 1826-1866 
Vladimir Abramovich ROKHLIN 1919-1984 
Ludwig SCHLAFLI 1814-1895 
Arthur MoritzSCHOENFLIES 1853-1928 
Herbert SEIFERT 1907-1996 
Paul SMITH 1900-1980 
Edwin Henry SPANIER 1921-1996 
Norman Earl STEENROD 1910-1971 
Carl Georg Christian von STAUDT 1798-1868 
Peter Guthrie TAIT 1831-1901 
WiUiam THRELFALL 1888-1949 
Heinrich Franz Friedrich TIETZE 1880-1964 
Albert WiUiam TUCKER 1916-1995 
Pavel Samuilovich URYSON 1898-1924 
Alexandre-Theophile VANDERMONDE 1735-1796 
Oswald VEBLEN 1880-1960 
John Henry Constantine WHITEHEAD 1904-1960 
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Hassler WHITNEY 1907-1989 
Gordon Thomas WHYBURN 1896-1982 
Raymond Louis WILDER 1896-1982 
Wilhelm WIRTINGER 1865-1945 
Alexander ZABRODSKY 1936-1986 
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