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The relationship between the topology of manifolds and homotopy theory has
been analysed by surgery [1, 18, 28, 31]. However, the effectiveness of this
analysis depends on being able to compute surgery obstructions. In this paper we
introduce a new technique for evaluating the (weakly-simple) surgery obstruc-
tions for degree-1 normal maps of closed manifolds and apply it to oriented
manifolds with finite fundamental group. Our main result is Theorem A below.

Let (X, dX) be a finite Poincare" pair of dimension n, and £ a TOP bundle over
X which is stably fibre homotopy equivalent to the Spivak normal fibre space v*.
Let (M, dM) be a compact n -dimensional manifold and let

(0.1) h: (M,dM)^(X,dX); k vM^%

be a degree-1 normal map with h\dM a homotopy equivalence. Then surgery
theory gives an element

whose vanishing is necessary and sufficient (when n 2*5 [31], or n = 4 if HyX is
virtually polycyclic [4]) for (h, fi) to be normally bordant (rel d) to a homotopy
equivalence. The special case of (0.1) when M and X are closed manifolds will be
called a closed manifold surgery problem. We will show that these problems have
very restricted obstructions when nx is finite, related to the low-dimensional
homology of nxX, while Lj(Z[^i(JQ]) is usually large.

More generally, let C/c Wh(jtiX) be an involution invariant subgroup. Then
there is a similar theory if (X, dX) is a (/-simple Poincare" pair with h\dM
a (/-simple homotopy equivalence, and the resulting obstruction ku(h, fi) lies
in L^(Z[^iAr], WiX). The most important examples are U = {0} (simple),
U' = SK-SJ-TZ^) (weakly-simple), and U=Wh(Zjti), yielding the surgery obstruc-
tion groups U, L', and Lh respectively. From now on we will only discuss the
oriented case (wxX = 1), and in most cases the surgery obstructions will be
evaluated in V.

Here are two consequences of our main results. First consider the product of a
simply-connected surgery problem with a closed manifold P in domain and range.

THEOREM 0.2. Let P' be a closed topological manifold with nxP finite, and
(h: AT—*Nn, fi) a simply-connected closed manifold surgery problem. Then the
product degree-1 normal map

(h x id: MnxPl-+N"x Pl, d x idVp)
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is normally cobordant to a weakly simple homotopy equivalence either

(i) for n=2 (mod 4) and I = 0 (mod 4), if the Euler characteristic of P is even,
or

(ii) forn = 0 (mod 4), if index(P) = 0.

REMARK. This generalizes the Sullivan, Rourke-Sullivan product formulas [31;
§ 13B; 27] for the simply-connected index and Arf invariant (take JZXP = 1). Part
(ii) was first proved in [30]. The analogous result to Part (i) for the Lh obstruction
was given in [13,14]. There a program for solving the closed manifold surgery
problem (with finite K^) was developed, based on Clauwen's factorization [2] of
the Ranicki product formula. The present work, which began as a sequel to these
papers, uses instead an analysis of the Quinn-Ranicki assembly map (see § 1)
together with ideas from [5,6] and [29,30].

Our most complete result is for odd-dimensional surgery problems. Recall that
if jr is a subquotient of n (that is, n = plp0 where po<lp c ri) there is a
homomorphism L^(ZJT)-» L'n(ZJi) induced geometrically by surgery on a covering
normal map. Let C(2) denote the cyclic group of order 2 and Q(2k) the
generalized quaternion group of order 2k.

THEOREM 0.3. Let Nn be a closed topological manifold with nxN finite and n
odd. Then a closed manifold surgery problem

(h: Mn-*N\ ft: vM^%)

is normally cobordant to a weakly simple homotopy equivalence if and only if
either

(i) n = l (mod 4) and X'(h,fi) maps to zero under transfer-projection to all
quaternionic subquotients Q(2k) of JZXN, or

(ii) n = 3 (mod 4) and k'(h,fi) maps to zero under projection to all C(2)
quotients of JZXN.

To state our main results we need some notation. There exists an //-space
G/TOP (see [10,11]) such that the abelian group [XIdX, G/TOP] acts simply
transitively on the set of degree-1 normal maps (0.1) with range XTQ\ dX. Fix a
base-point (h0, fi0) in this set, determined up to normal bordism by a topological
bundle structure on vx, and let (h0, fi0) * / denote the degree-1 normal map
induced by the action of an element / in [XIdX, G/TOP] on the base point.
Define

(0.4) ag: [X/dX, G/TOP]-*

by the formula

°X(f) = ^((/*o, fto) * / ) " A"(*o, *o).
In Theorem A we will evaluate (0.4), assuming that JZXX is a finite group and
SKX{L[JZXX\) c U, by factoring o" through the low-dimensional homology of
nxX. The standard applications are the following.

EXAMPLE 1. In general, a (/-simple Poincare" pair (X, dX) with reduction
(h0, fi0) and n s* 5 admits a topological manifold structure extending one on dX if
and only if the coset of im(oo) in L£/(Z[;r1A

r]) contains zero.
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EXAMPLE 2. When X is homotopy equivalent to a manifold then (0.4) is just
the surgery obstruction of the surgery problem induced by /. This computes the
maps o in the surgery exact sequence [31]:

(0.5) \2(X/dX), GITOP] - ^ L?+1(Z*r, W) > 2>(X, dX)

> [X/dX, GITOP] -2-> L»{L[nxX\, w).

EXAMPLE 3. By varying X over closed n-dimensional manifolds with nxX = jt,
we see that this evaluates the Sullivan-Wall map

Qn(Bn x G/TOP)->L%(Zn).

In particular, this determines the obstructions for closed manifold surgery
problems.

Let Vx denote the total Wu class of vx, and

k = {k4.+2} e H*t+2(G/TOP;Z/2)

the universal class from [27]. Then given a map / : X/dX-* GITOP we define

(0.6) ARFj(f) = {{V% Uf*(k)) n [X, dX]}a) e H,(X ; Z/2)

to be the /-dimensional component of the indicated homology class. We let
ARF(/) and Index(/) denote the change in the ordinary Arf invariant and index
of the surgery problem given by / (considered as elements of L*(Z)). Note that
ARF0(/) is just the Rourke-Sullivan formula for the Arf invariant. Finally let
(0.7) sr: H2r+2(X ; Z/2)-> H4(X ; Z/2)

(for r 2* 0) be the Horn-dual of the iterated squaring maps in cohomology.
For any finite group n with Sylow 2-subgroup p we define

Y = lmiSK^Zp)-* SKX{ZJI)) C Wh(Zjt) = K1(ljt)l{±jzab}.

Note that since Y is a subgroup of SK^ZJZ), the surgery obstruction groups
L^(Z^r) map into the groups L'n(Zjz) calculated in [34], and so into L^(ZJZ).

In § 1 we construct universal homomorphisms (for all / s* 0):

(0.8) Kf: //y(^;Z/2)^Lf+2(Z^)(2),

for any involution-invariant subgroup U c.Wh(Zjt). The following result shows
that if Yc.U, the surgery obstruction map Oo(f) can be computed in terms of
Index(/), ARF(/) and the maps tcf for 1 =̂ y ^ 4. In the statement of Theorem A
the map c: X-+ BnxX classifies the universal cover of X.

THEOREM A. Let (X, dX) be an n-dimensional U-simple Poincare pair and
(h0, fi0) a degree-1 normal map with the torsion of h\d in C/c Wh{Z[jzxX\). If
Y^U and nxX is finite, then for any f: XI dX-^ GITOP,

<*X(f) = *u((ho> fio)*/) ~ *"(*<>, ̂ o) in Lu
n{Z[nxX])

is equal to

(a) Index(/) + *:2
7{csll(ARF2(/))} forn^O(mod4),

(b) *3
t/{c!ls(ARF3(/))} forn = l (mod 4),

(c) ARF(/) + Jcy{c,(Er»o Jr(ARF^2 (/)))} for n - 2 (mod 4),
(d) K?{c*(ABF1(f))} forn = 3 (mod 4).
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We remark that JCJ is always (split) monic and that K3 is detected by
quaternionic subquotients of n. More precisely, if Q(2k) denotes the generalized
quaternion group of order 2k then

H3(Q(2k);Z/2) = Z/2

and tf3{c*(ARF3(/))} =0 if and only if the image of c*(ARF3(/)) is zero under
transfer-projection to all quaternionic sub-quotients. This explains Theorem 0.3
above. Note that K^O for n- C(2) from [31], and * 3 * 0 for JT = Q(2k) from
[3]. The new information is that this set of Z/2-valued invariants (often referred
to as codimension 1 or 3 Arf invariants) suffices to detect the odd-dimensional
surgery obstructions.

In the even-dimensional cases the answer is not so precisely under control (is K4

perhaps identically zero ?), and in all dimensions one would like an explicit
description of the images of the K{. From [5, 30] we know that for i^2, the
image of K* is contained in the image of

Hi+\ZI2; £o(Z;r))->L?+2(Z;O.

We can also say something about K2. Recall that Oliver [20] found examples of
finite 2-groups n for which H1(Z/2); Wh' ($.2Jt)) is non-zero.

THEOREM B. The composite

H2{x ; Z/2) - ^ L$(ZJT) > Lt{t2n) = Hl(Z/2 ; Wh' (l2n))

is surjective for n a finite 2-group.

REMARK. Morgan and Pardon (unpublished, proved also in [30,15]) showed
that K2 is non-trivial on the image of H2{n ; Z) in H2{n ; Z/2) by considering the
surgery obstruction of the product of the Kervaire problem with SlxSl in
LQ(Z[Z/4 x Z/2]). The composite in Theorem B vanishes on the image of integral
homology so it gives new examples of closed manifold obstructions in dimensions
congruent to 0 (mod 4).

Recently Oliver has shown that the integral homology contributes further to U.
In fact the image of the 2-adic K*2 contains H°(Z/2; SK^t^)) for n a finite
2-group.

The formulas in Theorem A give the answer in L*(ZJZ), which is useful for the
existence problem of manifold structures, but do not in general give the answer in
Ls

n(Zjr). In some cases of interest SK^ZJT) has odd order (e.g. when 4 does not
divide the order of n [34]), and then L* = L*. For another sort of example note,
from [20], that, for most groups with periodic cohomology, SK^ZJZ) contains
2-torsion and so U^L'. For all such groups however, the 2-Sylow subgroups
have trivial SKX, and hence the above formulas do hold in L%(ZJT). Furthermore,
K2 and K4 are zero in this case, by (7.4).

We now describe the main steps in the proof of Theorem A. It is sufficient to
analyse the K{ with values in L*(ZJZ) for n a finite 2-group, and this will be
assumed from now on. In fact by naturality, KJ is the composite

^ L'i+2(Zjz2) > Lf+2(Zn),

where n2 c n is a 2-Sylow subgroup (compare [32]).
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In § 1 we describe the surgery assembly map and recall in (1.10) the
cohomological formula [32,29], which expresses o# in terms of the K* and certain
other universal homomorphisms. In § 2 these are shown to reduce to just the
ordinary index, so in the rest of the paper we concentrate on the *•*.

We introduce Wall groups L%(RJZ), where R is the ring of integers in Q(V5)
with the Galois involution and prove

THEOREM 1.16. There exist natural homomorphisms

kt: Hin ;Z/2)->L]{RJI) and trft: L\{Rn)-*LUidn)

such that
Kt = trf, ° kt.

This immediately gives a similar factorization for the KJ. The reason for our
Whitehead torsion assumption Y c £/ appears at the next step. In the statement
^i(jt) is the set of dihedral (i = 1,2 (mod 4)) or quaternion (i = 0,3 (mod 4))
subquotients of n. Let nab denote the abelianization of n.

THEOREM 5.4. If' n is a finite 2-group, the map

Lf(Rjt)^Lf(R[jtab]) 0 2 {L?{R[p/Po]): Po<P e # (* )} ,

induced by the (sub)quotient maps, is an injection.

The proof of this result depends on the calculation of the groups LX(RJT)

carried out in §§ 3 and 4, using Oliver's logarithmic description of
Kx{R2n)ISKx{R2Ji) from [19] and the methods of [34]. After Theorem 5.4 the kt

are completely determined in terms of subquotient maps in homology, once we
know the answer for abelian, quaternion, and dihedral groups. This is given in
Theorem 6.8. Now Theorem 0.2(i) is a consequence of the fact that kt (and hence
KY) vanishes for i > 3 on the image of HJ(JZ ; Z) in HJ(JZ ; Z/2).

We remark that the map (0.8)

sr: H2r+2(X ; Z/2)^>H4(X ; Z/2)

used in Theorem A is natural for push-forward and subquotient maps in
homology (since it is dual to an iterated Steenrod square). Therefore to complete
the proof of Theorem A, we combine (1.16) and (5.4) with an explicit check in
(6.8) for the detecting groups that

K2r+2 = K4° Sr

for all r > 0. In § 7 we determine the image of K3 and prove Theorem B.

1. Characteristic class formulae and factorizations

A. The surgery assembly map
We begin by giving an alternate description (due to Quinn and Ranicki) of the

map from (0.4):
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defined by ag(f) = Xu((h0> fi0) * / ) - \u(h0, fi0), where

(h0: {Mn,dM)^(X,dX), fi0: vM

is a fixed normal map. Further details and references are given in an Appendix.
For any pair (JZ, w) consisting of a group with an orientation character,

fftn, w) is the quadratic L-spectrum and

Similarly D_t/(Z ,̂ w) denotes the symmetric L-spectrum. For the trivial group we
shorten the notation to D-o and L° respectively. Then B_o is an Q-spectrum with the
space Z x G/TOP in dimension zero.

For a space Y and a line bundle with first Stiefel-Whitney class w, let Yw

denote the Thorn spectrum of the line bundle where the bottom cell is an 5°.
The pre-assembly map is a spectrum map:

KtW:

For w trivial, the definition is on [24, p. 288] and the generalization to our case is
straightforward.

The spectrum 0.° is a ring spectrum and LQ(ZJT, W) is a module spectrum over it.
Any compact topological manifold (AT, 9M) with w = wx(M) has a fundamental
class

[M, dM]veHn(M
w, dMw;l°).

Let

y0: [XI3X, G/TOP] c H°(X; !<,)->#„(** ; h)

be the map given by capping with (ho)*([M, 3M] r ) .
The surgery assembly map is the composite

AntW: BJZW A U aJL^ll LO(Zjtf vv) A ^ , ^Zjz> wy

Similarly we define the surgery assembly map into 1%(ZJZ, W) for any involution-
invariant subgroup U c Wh(Zjt).

The Quinn-Ranicki factorization theorem (Appendix, Theorem 2). The ge-
ometric surgery obstruction map OQ is given by the following composite:

[XI9X, G/TOP] - ^ Hn{Xw ; h) - ^ Hn{Bnw ; h) ^ Lu
n{Zn, w),

where c: (X, W)^>(BJZ, VV) classifies the universal covering.

B. Computation ofc* ° y0: [XIdX, GITOP]^>Hn{Bjzw ; lQ)
First we localize at 2. Recall that, since the L-theory of a finite group contains

torsion only at 2, this does not lose information for our applications.
By the results of Morgan and Sullivan [16], Rourke and Sullivan [27], and

Milgram [12], we can write

Hn(Bjzw ; L0)(2) ^ 0 Hn^(jz ; Zfo) 0 Hn.4i^(jt; 112).
»O
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Then [32] and [29] give the following 'characteristic variety' formula:

(1.1) yo(/) = [u*{S£) U/*(/) 4- u*(<e) Uf*(k) + d^iVSq'V) Uf*(k))] n [X].

Here u* denotes the map in cohomology induced by the classifying map
u: X—>BSTOP of a bundle | + , such that | + plus the line bundle corresponding
to w is the bundle £ associated to (h0, fi0). The classes / and k are classes in the
cohomology of G/TOP. Such classes are defined by Morgan and Sullivan in [16]
and by Milgram in [12]. The particular ones we are using are the Morgan-
Sullivan ones as in [29], but the reader should have no trouble converting to
others if this is desired. Recall that

le 0 # 4 ' ( G / r O P ; Z ( 2 ) ) and k e 0 H4i+2(G/TOP ; Z/2).

The class £ is the 2-local class in H4*(BSTOP ; Z(2)) as defined in [16]. Note that
X reduces mod 2 to V2, where V is the total Wu class in H2*(BSTOP ; Z/2) and
8* denotes the integral Bockstein.

C. The computation of Anw\ Hn{Bnw ; lo)^L^{Zn, w)
The pre-assembly map

an>w: BJZW->K{ZJZ, W)

is natural with respect to w-preserving group homomorphisms, transfers to
subgroups, and the following diagram commutes:

(1-2) I
B(7lx X JT2)

+ ! ^

where £;r+ is just BJZW for w trivial and an \% an>w for w trivial.
Note that the spectrum l°(Z) is a ring spectrum, with unit u: 5°-»(L°(Z) and

the 2-local splitting of D_°(Z) in [29] yields a map of ring spectra

Because of the associativity of Cartesian products, the 2-local pre-assembly
map anw is a module map over ^(Z(2), 0) and we can use this module structure to
give a more explicit description of the assembly map in terms of universal
homomorphisms.

The homomorphisms we need all arise from the following construction. We fix
a family of spectra, which we denote by E(JT, H>).

In the homotopy category of spectra, we want this assignment to be functorial
with respect to w-preserving group homorphisms and transfers to subgroups.

If p2 denotes the projection to the second factor, we require pairings of spectra

(1.3) fi: VS{ZJZX) A E(JT2, W ) - > E{JZ1 X K2, wp2)

which satisfy the following three conditions:

(1.4) (i) the two ways of computing

L^Z^) A 1%ZJI2) A E(^3, W>)-» E(jTi x JT2 x JZ3, wp3)
are homotopic,
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(ii) the composite

5° A E(JT, w) ^ l Vs(l) A E(w, w) - ^ E(w, w)

is the identity,

(iii) the pairing is natural for w-preserving group homomorphisms in both
the 1° and the E factors; the pairing is natural with respect to transfers
in the E factor and the identity in the fl_° factor.

Given any functor E(JT, W) as above, (1.4) says that E(JZ, w) is an IL°(Z)-module
spectrum. We outline a procedure for constructing homomorphisms after
localizing at 2. Let

h:

be a map where C is a 2-local group and M(C, i) denotes the Moore spectrum
with ith integral homology equal to C. We produce a map of Eilenberg-MacLane
spectra

[h]: K(C, i) s K(Z{2), 0) A M{C, i) ^ L°(Z) A E(e)(2) —> E(e)(2)

and then construct homomorphisms

(1.5) /*„_,: HH-fr ; Cw)^En(n, w)(2)

by applying nn to the following composite

Bxw
 A K{C, i) a"w^h\ (L°(ZJT, W) A E(e)(2) - ^ E(JT, W)(2).

Because of the conditions in (1.3), the {/*,} that we have constructed are natural
with respect to w-preserving group homomorphisms and transfers to subgroups,
and hence for subquotient maps.

(1.6) EXAMPLE. For the map h take the unit u: S°2)-* L°(̂ )(2)- This gives rise to
homomorphisms

We will refer to these particular homomorphisms as {/;}.

We can now state another property of the {hj} as constructed in (1.5): the
following diagram commutes:

Hn{nx; Z(2)) ® Hm-i{jz2; Z(2)) > Hn+m-i{nx x JZ2 • Z(2))

(1.7)

The proof of (1.7) is an easy diagram chase.

(1.8) EXAMPLE. Let K: M(Z/2, 2)-»ll4(Z) denote the unique non-zero homo-
topy class. This gives rise to homomorphisms
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(1.9) EXAMPLE. Let 3>\ S°-*ls
0(Z) denote the unique homotopy class so that

the composite 5°-^Lo(Z)-»L°(Z) is 8 times the unit u. This gives
homomorphisms

We can now combine formula (1.1) with the K and 3> homomorphisms to give
the cohomological formula for the surgery obstruction:

(1.10) aQ(f) = f*c*{(L+ U/*(/) + 6*(V+SqxV+ U/*(*))) n [X, dX]}

where L+ = u*(Z£) and V+ = u*(V) are the universal classes pulled back to | + . In
the oriented case, £+ = f and V+ = Vx, the total Wu class of the Spivak normal
fibre space vx. The term %c*{L+ U / * ( 0 n [X, dX]} = Index(/) by the Sullivan
product formula [31, 13B]. We will show in § 2 that $s = 0 (for j > 0 ) , under the
assumptions of Theorem A.

D. Factoring the surgery assembly map
We prove Theorem A by factoring the $ and K homomorphisms through a

more computable L-theory. For the {̂ -} this was done in [30] and for the {*,} in
[6].

(1.11) EXAMPLE. Since Ls
0(t2) = 0, we can find a map 3: 5 1 ( )

lifting the 3> from (1.9). This lift is not unique (since L{(Z-+t2) = Z © Z / 2 there
are two such) but either choice produces a family of homomorphisms

,:
which are natural for subquotient maps and satisfy (1.7). This gives a commuta-
tive diagram:

We can also smash the map 3 above with M (Z/2, 0) and get a mod 2 version of
these results. We still have products and the mod 2 analogue of (1.7) continues to
commute using the mod 2 versions of the /„.

(1.12) EXAMPLE. Let R = Z[e] denote the ring of integers in the quadratic
extension Q(V5), where e = 2(1 + V5). The Galois involution on R will be
denoted , and the involution on RJZ induced by w is

- i

By the 's'-decoration on L-groups we will mean torsions in KX{RJZ) which lie in
the subgroup generated by R x © nab.

Note that e + e = 1 so that K(Rn> w) = L°(/?;r, w). Furthermore ee = - 1 so
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that all the L-groups are Z/2-vector spaces [34, 3.4.4]. In Proposition 4.11, we
show that

Un{R, 0,1) = Z/2, Z/2, 0, 0 (for n = 0,1, 2, 3 (mod 4) respectively).

Let
k: M(Z/2 ,0)^ !*(/?)

denote any homotopy class which induces an isomorphism on JZ0. We get

> Lsj(Rn, w).

There is no need to localize since ^>(RJZ, W) is already 2-local. As usual the {*:,}
are natural for subquotient maps.

The map {k}: K(Z/2, 0)-»i.°(^) defined above is a map of ring spectra. This
involves snowing that the difference of two maps

K(Z/2, 0) A K(Z/2, 0)-* l°s(R)

is zero. Note that K(Z/2, 0) A K(Z/2, 0) is also a ring spectrum and (1.4)(i) shows
that the map we are trying to show is zero is actually a module map over this ring
spectrum. Hence it suffices to check that it is zero on M(Z/2, 0) A Af (Z/2, 0)
sitting in K(Z/2, 0) A K(Z/2, 0). An easy diagram chase using the unit shows that
our map vanishes on 5° A M(Z/2, 0) and on M(Z/2, 0) A 5°. The remaining
obstruction is in n2 of K(R), and hence vanishes. A diagram chase now yields the
analogue of (1.7):

/ / , (* , ; Z/2) <g> Hj(n2; Z/2) —> Hi+j{jzx x JZ2 ; Z/2)

(1.13)

Finally we come to the reason for introducing the {kj}. The ring
homomorphism

h: R^>M2(Z)

sending e to I J is involution-invariant with respect to

/o - i \
on M2(Z). This is just transpose followed by conjugation with I 1 . A
spectrum level transfer map is defined by the composite

(1.14) trf: WRn, P, 1) - ^ i f(Z^ ® M2(Z), or ® j8,1) > K(Zn, a, -1) ,

where X is the image of Rx © {nab} in Kx(Zn ® M2{Z)). The second map in
(1.14) is given by [7,7.1]. The generator of LS

O(R) is the rank-1 quadratic form
given by (e). It is straightforward to calculate that, under trf* the form goes to a
form with Arf invariant 1. Since Irf is compatible with products on the spectrum
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level [7,7.3], the following diagram commutes up to homotopy:

Bnw A M(Z/2, 0) a*-wN\ [^(Ztt, w) A ls
0(R, ft 1) —> L?(Zw 8 M2(Z), a <8> ft 1)

n A ^ \ 11 A trf I trf

(1.15) ^(Zj r , W) A l'o(Z, 1, - 1 ) > L'o(Zw, a, - 1 )

THEOREM 1.16. For any pair (^, w) there is a factorization, commuting with
w-preserving group homomorphisms and subquotient maps,

HJ{JI ; Z/2) -?U L]+2{ZJZ, w){2)

LJ(/?JT, W)

Proo/. This is an immediate consequence of Example (1.12) and (1.15).

2. The vanishing of the J> *

For any finite group n, we let

CIX{JT) = ker{^(Z^)^ K^tn) © K^QJT)}

and if p c ^ is a 2-Sylow subgroup let

p ) ^ Clx{n)}.

THEOREM 2.1 [29]. For any finite group JT, the homomorphisms

are zero for j 2* 1.

Notice that CI(JT)^Y(JT) where Y{JZ) = im{SK1(Zp)^>SK1(Zjz)} cK^Zn)
was the decoration used in the statement of Theorem A. Also if n is a finite
2-group, then from [20],

(2.2) Y(jt)/Cl(jr) = SKx(t2n).

We will use the following result of [9].

THEOREM 2.3. For any finite 2-group JT, the subquotient maps give an injection

LfUl.K -+ 12JT) > 0 LfMZ[H/N] -> 12[HIN]),

where the sum is over all basic subquotients of JT.

Recall that the basic 2-groups are cyclic, C(2k), quaternion, Q(2k), dihedral,
D(2k) for k > 3, and semidihedral, SD(2k).

Since Sf factors by (1.11) through

3j: HJ(JT ; f? t
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we have finished if we can show that 3j is trivial for / s* 1 on the basic 2-groups.
Note that we also get a commutative diagram:

3j cl

HJ(JZ ; Z/2) - ^ LfUZn^ l2n ; 2/2)

where 3j is the mod 2 analogue of 3j.
For ^ a 2-group we have

which is computed in [34, 5.2.2] for the basic 2-groups. Notice that r#, the
reduction mod 2, is injective on the torsion subgroup. Since each basic group
contains a unique central element z of order 2, we can analyse 3j by comparing
the relative L-groups under the projection p: n^>jz/(z). We now consider each
type separately.

(i) C(2): compare with the trivial group;

p ^ r e s : Lf+1(Z[C(2)]->l2[C(2)])

is injective for all;, whence 3j and 3S are trivial when / 5= 1.

(ii) C(2*), it > 1 : here

is injective for all /.

(iii) D(2k): Quillen [22] has proved that Hj(D(2k);Z/2) is generated by
elementary abelian subgroups. The quadratic detection theorem [9]
implies that

Lf+1(Z[C(2*)Hl2[C(2*)])

is detected by C(2) subquotients.
(iv) Q(2k): recall that Hj(Q(2k) ; Z(2)) = 0 for / = 2 (mod 4). Also

is injective for /^O or 3 (mod4). Finally Hj(Q(2k) ;Z(2)) is generated by
cyclic subgroups for j = l (mod 4).

(v) SD(2k): here

p # : torsLf+1(Z[5D(2fc)]^l2[5D(2fc)]) - ^ L?+l(Z[D(2k-l)]^t2[D(2k-1)))

is injective for all j .

3. The 2-adic L-group

In this section we will describe the structure of LJ{R2JZ, ac,u) for a finite
2-group. Throughout this paper we let
(3.1) X = SKx{A7t)^Kx{Ajz)ioiA = RorR2,

Y denote the image of Y in Kx(I.7z), modulo the image of Kx(l) = {±1}.
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The antistructure (A, oc, u) will always be a geometric antistructure [8,
Appendix I]:

(3.2) «(rg) = w ( g 1

for all gen and reR. Here w: n —»{±1} is a homomorphism and 6: n-*n
is an automorphism with 62(g) = bgb~1 for all gen, and a)°d = <o. Also
we assume that u = ±b, w{b) = 1, and 6{b) = b. The Galois automorphism
(V5-» -V5) is denoted by ": R^>R.

The antistructure with 6 = Id, w trivial, and unit u-e will be called the
standard antistructure.

The main result of this section is

THEOREM 3.3. For the standard antistructure there is an isomorphism

Lf(R2n) - ^ L f ( ^ f e

where the involution on nab is g—»g~J. Iff: nx-*n2 is a group homomorphism,
the isomorphism is natural so that the induced maps fit into a commutative diagram

Lj{R2n) —> Lf(

Lf(R2n2) ^-+ Lf(

REMARK. We have Lj{R2) = 1/2, 0, 0, Z/2 for i = 0,1, 2, or 3 (mod 4), see
(3.11). As usual in this context, the notation Hi{nab) means the Tate cohomology
of Z/2 with coefficients in the module nab. This convention will be used
throughout the paper.

Theorem 3.3 has two immediate corollaries.

THEOREM 3.4 (the 2-adic detection theorem). Let {fk: JF—»Ck, l=sfc=sr} be a
set of projections of n to cyclic groups Ck such that the direct sum 0 fk gives an
isomorphism nab = ®/t=i Ck. Then the induced map

L?(R2n)^ 0 Lf(R2Ck)
k = l

is an injection.

In § 5 we will need the following remark.

PROPOSITION 3.5. Let z en be a central element of order 2 whose image in
Hx(n; Z/2) is trivial. Then the map L2i^(R2n)^>Lli_x{R2nI{z)) is an
isomorphism.

We will give the proof of Theorem 3.3 after collecting together some needed
lemmas. The general method is to understand the round to unround exact
sequence [8, p. 61, 1.1.6] and then compute the round groups. The following
general discussion ought to be in the literature but we cannot find it.



362 I. HAMBLETON ET AL.

Let (A, ft, v) be a ring with antistructure and let V c KX(A) be a jS-invariant
subgroup with {±v} eV. Then [7, Proposition 3.2] says that

(3.6) 0 > LUA, fi, v) —> LUA, p, V) - ^ Z/2

- ^ Ll_x(A, p, v) > Ll_x{A, p,v) > 0

is exact. There is a Rothenberg sequence (due to Wall [34]) and we let

denote the discriminant map.

THEOREM 3.7. The composite

Z/2 -X Ll_x{A, p, v) 1^±> H\V)

sends the generator to the class of (-l) 'u € H 1(V).

Proof. Using Wall's definition of L^^A, f$, v) and of the map in the
Rothenberg sequence, it is easy to chase down the class in H1 represented by the
generator of the Z/2.

In our case this gives

THEOREM 3.8. Let {An, ec,u) be a geometric antistructure on An for A = R or
&2- Then rkc. L^{An, a, u)-»Z/2 is surjective if and only if

<(-l)'u) e H\RX 0 nab)
is trivial.

Proof. If ((-l) 'w) =£0 in H\YIX), it certainly cannot be 0 in H\Y) either, so
one way follows easily from Theorem 3.7. If ( ( - 1 ) ' M ) = 0 then we can find
w e Rx © nab such that (-l)'w = w/T V ) - If we scale by w [8, p. 74, 2.5.5], we
see that the map rk( above is equivalent to the map

rk0: Lt(An, ocw, l)-*Z/2.

But (e) is a rank-1 quadratic form in Lo(An, aw, 1).

We now turn to the computation of the round groups. The result here is

THEOREM 3.9. The groups L?(Rn, a, u) are trivial and the other map in the Lx

to LY Rothenberg sequence

Lj{Rin, a, u)^H'(Rx 0 nab)

is an isomorphism.

REMARK 3.10. We will not give the full proof in this paper. We will do the case
when n is abelian or where the map w is trivial. These two cases suffice for our
applications.
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In particular, it is now easy to show

PROPOSITION 3.11. For the trivial group,

Lf(R2) = 1/2,0,0, Z/2.

/ / C2 denotes the antistructure with u = \ and w non-trivial, then

Lf(^2[C2-]) = Z/2, Z/2, Z/2, Z/2

fori = 0, 1, 2, or 3 (mod 4).

Proof. Use (3.9) to calculate Lj and then use (3.8) to determine the rk(.

We now turn to the proof of Theorem 3.9. Since R2JI modulo its radical is F4

with the non-trivial involution, the LK groups are trivial by a result of Wall [34].
Hence (3.9) is equivalent to

LEMMA 3.12. H\Z/2 ; KX(RJZ)/X) = 0fori = 0orl (mod 2).

Proof. First we prove (3.12) assuming that n is abelian. Then A = R2JZ is a
commutative, complete local $2-algebra: let m denote its maximal ideal. As
usual, we have the involution-invariant exact sequence

0 > V" m ' , > {AlmT -?U (Aim1-1)* » 0.
1 + tn

Since H*(Z/2; (A/m)x) = 0 (by Hilbert's Theorem 90 and a Herbrand quotient
argument) we can assume by induction that H*(Z/2 ; (A/m'~l)x) = 0. Also,

and this last group is an $2-module. Moreover, the isomorphism preserves the
involution, so (since e + e = 1),

Since A is complete, Ax = \im(A/mi)x and, since p, is surjective for all i,
H*(Z/2;Ax) = 0.

In the abelian case, X = SK1(R2Ji) is trivial so we have finished. If n is
non-abelian, we reduce to the abelian case using results of Oliver [19]. Here we
need to assume w is trivial or else generalize [19] along the lines of [21]. We stick
to the case where w is trivial. Then we have (from [19]) the following
involution-invariant exact sequence

(3.13) 0-> £2
X 0 nab-* KX{R2JZ)IX^> I(R2JZ)-^ Jtab -> 0.

The involution on I(R2JZ) satisfies a(rx) = fa(x) so H*(Z/2;I(R2JT)) = 0. The
sequence (3.13) is natural for group homomorphisms, and if we use the natural
epimorphism x-*nab to compare (3.13) for n with (3.13) for nab, we see that

H*{Kx{R2n)IX) = H*{K,{R2[jzab])) = 0.
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This concludes our proof of Theorem 3.9, so we turn to

Proof of Theorem 3.3. We now have the standard antistructure. In this case we
have that R2-*R2JT and R2n—>R2 are maps of rings with antistructure.

It follows easily from Theorerr 3.9 that

and from this and Theorem 3.8, the result follows.

4. An exact sequence for Lj{Rn)

The information we need about the Lj{Rx, oc,u) comes from the exact
sequence

{b
(4.1) > LJ(RJZ, oc, u) > LJ(R2K, oc, u) - ^ > Lj{Rn-+R2jz, oc, u)

> Lf-iiRn, oc, u) >

There is a similar exact sequence relating the round L-groups, and

LJ(RJZ^>R2JZ, a, u) — • Lj(R7i-+R2n, oc, u)

is an isomorphism.
The two main results of this section concern (4.1) with the standard

antistructure (6 = Id, w trivial, u = 1). In Theorem 4.5 we compute

and in Theorem 4.10 we compute fjft.

PROPOSITION 4.2. For any geometric antistructure, the composite

Lj{Rn-^A2Jt, a, u) <^— Lj{Rn-*An, oc, u) <^— L?(Rn;-*R27z, oc, u)

^—> Lf-i(Rjt, oc, u) -=1+ Lf_!(F5^, oc, u)

is an isomorphism.

Proof. Recall X - SK^Rri) or its image in Kx{RiJi) where R{ is the completion
at some prime. Since 5A^1(^5JT) = 0 for n a 2-group [19], SKx{Rn)-*Kx{$sx) is
trivial, so we do land in Lf_!(IF5jr, oc, u).

Since the antistructure is fixed, we suppress it in the notation. The map

defined above, factors as the composite

The map 1 is an isomorphism by excision: the map 3 is an isomorphism from
the reduction modulo the radical theorem [34].
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In the centres of the various simple factors of QJI, 2 is the only prime that
ramifies. Since the discriminant of Q(e) is 5, 2 and 5 are the only primes that
ramify in the centres of the various simple factors of Q(e)ji. In Q(E)JI, all the
factors are of type GL or U and in R{JI for / =£ 5, all the factors still have Type GL
or U. By a result of Wall [34], all the Ls groups are trivial for GL and U type
factors, so the map 2 above is an isomorphism.

Since all finite division algebras are fields, the general theory in [8] and [9]
shows

PROPOSITION 4.3. For all i, Lf(^5Ji, a, u) = Yl Lf(Fr, oc, ±1) where the product is
taken over the invariant factors of F5;r, and Fr denotes the centre of the rth factor.

A similar result holds for the other two terms in the Ls to LK Rothenberg
sequence for l5n, and the whole sequence for F5jr is the product of the ones for
the various Fr.

With (4.3) established, we turn to

LEMMA 4.4. If oc is a non-trivial,

Lf(F5, or, ± 1) = L*(F5, oc, ±1) = tf'(F5
x) = 0.

If a is the identity, and Fr is an extension of F5 then

0^L*(Fr, 1, l^H^^LU^r, 1, 1)^0

is exact, //'(Fr
x) = Z/2,

L?{lr, 1, 1) & 1/2, Z/2, 0, 0, and Lf(Fr, 1, 1) = 0, Z/2, Z/2, 0

for i = 0, 1, 2, or 3 (mod 4).

Proof Wall [34] shows that the map L?^> Lf is trivial in the above cases. The
groups Lf are computed in [8, p. 90, 3.3.1], for a non-trivial, and [8, p. 83,
3.2.1], for a the identity. The Tate cohomology calculations are easy since Fr* is
cyclic and, if a is non-trivial, /^(F*) = 0 by Hilbert's Theorem 90.

In the proof to follow, we explain the notion of the type of a factor of QJZ.

THEOREM 4.5. For the standard antistructure,

where s1 = s2is a number of Type O factors in QJT, and j 3 = j0ijfl number of Type
Sp factors in QJZ.

Before beginning the proof of Theorem 4.5, we give a general discussion of the
relation between types of factors in QJI and types of factors in F5JT. We let (a, u)
be an arbitrary geometric antistructure. Recall [8] that
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where A, is a Z[£]-maximal order in one of the following division algebras:

Clearly,

n ] A ( ) and F5^ = Yl Mni(h 0 A,).

A geometric antistructure begins as an antistructure on Zn. Factors of QJZ that
are flipped (so called GL type) give rise to GL factors of ¥SJZ.

We also showed in [8] that any invariant factor EndA.(L,) is quadratic Morita
equivalent to (A,, a, ±1): hence the corresponding factor in ¥SJZ is quadratic
Morita equivalent to (F5 0 A,, 1 0 or, ±1).

Invariant factors of QJZ for which oc is non-trivial on the centre are called Type
U; if oc is the identity on the centre and the unit is 1 (respectively -1) , the factor
is said to be of Type O (respectively Sp).

Since 5 splits in Q(£2*) for k 5= 2, but is inert in Q(£2* ± £ 2*), F5 0 A, is a field
for A, = Z[^][C2*± £2*] but it splits into two fields for A,-= Z[J][£2*]. When A, is
the Z[^]-maximal order in

\Q
we have

and this is quadratic Morita equivalent to F5®Z[£2*+ t2*] with no type change.
Hence a Type O or Sp factor of QJT gives rise to a single factor of F5JI; of the same
type unless the centre of the factor is <Q>(£2*)> with k 2= 2, in which case we get two
factors of F5JT of the same type.

Proof of Theorem 4.5. Theorem 4.5 follows from Proposition 4.3, Lemma 4.4,
the above discussion, and the next lemma.

LEMMA 4.6. For the standard antistructure, the centre determines the type:

Q and Q(£2* + £2*) for k ^ 3 are Type O;

and the others are Type U.

Proof and remark. This result is well known. For more complicated antistruc-
tures the centre does not determine the type, but in [8, Appendix I], we gave one
way to determine the type of the factors. The proof of Theorem 4.5 then outlines
how to compute LY(Rn-*R2ji, oc, u) for any geometric antistructure.

Next we turn to the calculation of the xpi maps. Our first result, Corollary 4.8
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below, reduces the calculation of the maps

T/;,: Lj(R2n, a) > LY{RJZ^>R2JZ, OC, U)

to a ^-theory calculation. But first we remark

LEMMA 4.7. The following two composites are equal:

Lj{R27i, a, u) —'-* Lj(Rx-*R2n, a, u) <-=- Lf{Rjt-^R2K, oc, u)

> L?_X(RJT, a, u)

and

z, oc, u)—*Hl{YlX)—>L?_x{Rn, a, u).

Proof. The two composites are the two ways of constructing the Mayer-
Vietoris boundary map for the fibre square of spectra

ta, a, u) > Hf(R2n, a, u)

I . 1
?JT, oc, u) i^

COROLLARY 4.8. The following diagram commutes:

LJ{R2JI, a, u) -^U LJ{RJT • R2JZ, a, u) * Ltiih", oc, u)

H'iY/X)

where rt is the map induced by the obvious map

r: Y/X = R* 0 nab^

Proof The result is clear from (4.2), (4.7), and the naturality of Rothenberg
sequences.

Rather than compute the map in Tate cohomology induced by r, we will
compute the map induced by

f: {±1} 0 nab c R* 0 nab-* K^JT)^ ^ ( F 5 <8> A,)

when A,, as before, is Z[£]-maximal order in the division algebra associated to a
Type O or Sp factor of Qn.

LEMMA 4.9. / / A, is non-commutative, f is trivial, and hence so is the induced
map on Tate cohomology. If A, = Z[2][̂ 2* ± £2*] the map induced on H° is trivial.

Proof Clearly r factors through #i(A,). If A, is quaternionic, X^A,) is
isomorphic to totally positive units in the centre. Since this group is torsion-free
we have finished.

In the other cases, the torsion in /^(A,-) is {±1}. Since F5®A is a field,
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Kx(^5 <S> A) is cyclic of order 5d — 1 and here has order divisible by 4. Since the
involutions are trivial the map induced on H° is trivial (and the map induced on
H1 is an isomorphism).

Finally we compute the maps i//,- in sequence (4.1).

THEOREM 4.10. For the standard antistructure,

&: Lf(R2Jt) > Lf{Rjz-*R27i)

is trivial for i = 0, 1, or 2 and monk for i = 3 (mod 4).

Proof For the standard antistructure,

#'({±1} 0 ;rafe)-»#'(/?* 0 jzab)

is surjective. From Lemmas 4.6, 4.9, and Corollary 4.8 we can compute r,. This,
together with Proposition 4.2 and Lemma 4.3, shows that ty is trivial for i = 0, 1,
or 2. By Proposition 3.2 we see that ^ is trivial for i = 0, 1, or 2.

If i = 3, we can compute that for n = e or C2, V>3 is
 a n isomorphism. The 2-adic

detection theorem, (3.4), and naturality complete the proof.

PROPOSITION 4.11. For i = 0, 1, 2, 3 (mod 4),

(i) / /( /?) = Z/2, Z/2, 0,0,

(ii) L?(R[CZ]) = (Z/2)2, (Z/2)3, Z/2, 0.

Proof Apply (3.11) and (4.10).

5. A detection theorem for Lj{Rji)

The goal of this section is to reduce the calculation of the groups Lj(Rx)
for n a finite 2-group to a few special cases. First we recall from (4.5) that
LY(RJT—> R2n) is a direct sum of terms corresponding to the irreducible rational
representations of n. We let Lj{Rjz^>R2n ; p) be the factor associated to p.

Associated to each irreducible rational representation p of_n there are a
division algebra Dp and a simple factor of QJZ: note that LJ{RJZ^R2JZ ;p)
depends only on Dp.

We also recall the relationship [9] between basic groups and the irreducible
rational representations of n. Each basic group (and D8) has a unique irreducible
faithful rational representation. For each irreducible rational representation p of
JZ, there is a subquotient N<1H C.JZ such that

(i) H/N is isomorphic to a basic group,
(ii) if p0 denotes the pull-back to H of the faithful irreducible rational

representation of H/N, then po\
n = p and Dp = DPo.

Neither N nor H need be unique, but H/N is and in particular H/N = {e} if and
only if p is trivial.

Our first lemma explains why we want D8 in addition to the basic dihedrals.

LEMMA 5.1. If p is an irreducible rational representation of n such that O p s Q
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and such that p does not factor through jzab, then there exists a subquotient
N<H g n with H/N = D8 such that p0 \" = p, where p0 is the pull-back to H of
the faithful irreducible rational representation of D8.

Proof. By the above discussion we can find a subquotient NO<1HO with
H0/N0 = C2 such that \\>\7l = p where ij) is the faithful irreducible rational
representation of C2. Since p does not factor through nab, HO^JZ and so we can
find a subgroup H c n with Ho index 2 in H. Furthermore, by [9], we can assume
that v | " = Po is irreducible.

Hence po\Ho = ip + ip' where ij>J=y' by the Frobenius reciprocity theorem, and
ty'(g) = Vitgr1) for allg eHo and some fixed teH-H0. Hence tNot~

li= No. We
set N = N0C\ tNot'1 and note N has index 2 in No, so H/N has order 8.

Since tNot'1^^, H/N is not abelian and so is either D8 or Q8. Note that
No/N, tNot^/N, and (Ho n tHor

l)/N are three distinct C2 in H/N, so H/N = D8.

We need one more lemma on representations.

LEMMA 5.2. Let p be an irreducible rational representation of n. Suppose there
is a subquotient N<\H^Jt, with H/N = D(2k), for k^3, so that if p0 is the
faithful irreducible rational representation of D(2k) pulled back to H, po|

JT = P and
DPo = Dp. Let V be an irreducible rational representation of H which factors
through (H/N)ab. Then \p" and p have no common constituent.

Proof. Notice that ip has dimension 1 since (H/N)ab = C2xC2, but p0 has
dimension greater than 1. Hence dim(^"r) = (dim i//)[;r : H] < dim p, so the result
is clear.

Our next step is to identify the needed constituents of LY(RJT

LEMMA 5.3. The sequence

0 > *ZLf+1(Rjz^>A2n;p) > Lf(Rjz) > Lf{Rjzab) > 0

is exact where the sum runs over the irreducible rational representations of n which
do not factor through nab.

Proof. From [9], we know that

LY+X{RJZ^R27Z) = 2 Lf+1(Rjz^R2Ji; p) 0 Lf+l(Rjtab^R2n
ab).

The map LY+1(R2JT)—> Lj+l{R2ji
ab) is an isomorphism (Theorem 3.3) and the map

T/j,+1: Lj+i(R2Jt)-^ Lj+l{Rjz-^R2JZ) is either monic or trivial (Theorem 4.10).
The required result is a simple diagram chase.

Let Sft run over the subquotients N<\H c n such that, if i = 0 or 3 (mod 4), we
have one quaternionic subquotient for each irreducible symplectic representation
(and it can be induced from H/N as in the discussion preceding (5.1)). Similarly,
if i = l or 2 (mod 4), we take one dihedral subquotient for each irreducible
orthogonal representation of degree at least 2.
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THEOREM 5.4. Let n be a finite 2-group. With the standard antistructure on Rx,
the map

Lf(Rn)-> Lf(R[jzab]) 0 £ [Lf(R[H/N]): N<H c #}

is injective.

Proof. If i T^2, then xj>i+1 is trivial and the proof follows easily. If i = 2, ^ 3 is
monic, and indeed the composite

Lf(R2Jt) -> Lf(/?w -* /?2;r) -> Lf (Rnab -+ R2n
ab)

is an injection (see the proof of Theorem 4.10). Consider the commutative
diagram:

2 Lf(Rjt -> R2n ; p) ?

L%{R[MN]

2Lf(R[(H/N)ab] -> I

where the sums run over the sub-quotients H/N in $f2. one for each irreducible
orthogonal representation p of n which does not factor through nab.

The middle row is exact and the vertical map 1 is injective by [9, Theorem 7.1].
Furthermore, by Lemma 5.3 and [9, Lemma 4.5(ii)], the composite of the maps 1
and 2 is trivial. The required result is now a diagram chase.

6. Determining the kt for certain 2-groups

To finish the proof of Theorem A, we need to compute the kt. By the detection
Theorem 5.4 it is enough to do this for abelian, dihedral, and quaternionic
2-groups. The results are summarized in Theorem 6.8.

First we point out two useful consequences of (1.13):

(6-1) **: H*(C2;Z/2)^Lt(R[C2])

is a ring homomorphism where the (graded) ring structure on both sides is
induced by the multiplication map m: C2xC2-^C2. Note that with this product,
//*(C2 ; Z/2) is an exterior algebra on generators a0 = 1 and at in dimensions i = 2'
for/2sO.

(6.2) For any central C2= (T) in a 2-group n,

is an #*(C2;Z/2)-module homomorphism. The group L,f(/?[C2]) = Z/2©Z/2,
generated by the rank-1 forms (e) and (eT) acts on Lt(Rn) by 'scaling', so
acts trivially on elements in the image of the round group LX(Rx).

PROPOSITION 6.3. The non-zero k(for C2 or C2 are given by

(i) £0 and itj for C2 when i = 2l with I ss 0,
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(ii) ki for C2 when i = 2'+2 - 2 or i = 2l - 1 with 12= 0,

(iii) for C2, if 12= 3 then k2i(a2i) = kt(s*(a2i)) = *r4(a4) = (eT) - (e).

Proof This is a calculation based on the twisting diagram [8, p. 53] for the
inclusion R^>R[C2]:

L0(R) L0(R[C2])

Z/2Z/2 Z/2 (Z/2)2 Z/2 Z/2

\y \y\/^r\/
(6.4) (Z/2)2 (Z/2)2 Z/2 Z/2 0 Z/2 Z/2 (Z/2)2

/ \/\y ^ \ /

Z/2

Z/2 7/2 (Z/2)2

The L-groups necessary for the top and bottom rows in this diagram are
calculated in (3.11) and (4.11); the middle row is forced.

We start with the fact (from § 1) that

is non-zero and deduce the others from (6.4) and the following diagrams:

//,(C2;Z/2) A

(6.5)

Notice that the L-groups (and the maps between them) in (6.5) also appear in
(6.4). The map D0 is the cap product with the non-trivial class 0 in H\C2; Z/2).
The second diagram is similar:

(6.6)

H,(C2;Z/2)

I
/>o

where the left vertical map is the cap product with E n(02'+2 3), so the surgery
obstructions spread over many lower components in this case.

To derive these diagrams we combine the cohomological formula for the
surgery obstruction with a homotopy commutative diagram of spectra:

Bnw
 A L ° H (L°(Zjr, w)

BJZW<P A L°

_L. nO,l°(Zp-+Zjz,w)
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relating the pre-assembly maps (1.1) with the transfer maps induced by the line
bundle associated to an index 2 subgroup p c i (the map tis defined as in [26, p.
694]). On homotopy groups this diagram just expresses the relationship between
the symmetric signature of a closed manifold and a codimension-1 submanifold.

With the aid of these diagrams it is easy to verify the results for kt if 0 *s i ^ 4,
and then prove the rest by induction. For (6.3)(iii) note that since k4 is non-trivial
it must be in the kernel of the projection

The results for n cyclic (the oriented case only will be considered from now on)
follow directly from

PROPOSITION 6.7. If K is cyclic, then for both H*(JT ; Z/2) and Ll(Rjz) the
inclusion C2-*n induces an isomorphism in even dimensions and the projection
n-+C2 induces an isomorphism in odd dimensions.

Proof. For homology this is well-known and for L-theory it is an easy exercise
using § 4.

Now consider abelian groups. In this case LJ(RJI) is detected by a set of cyclic
quotients for i = 2 (mod 4), that is, the result of (3.4) holds for RJZ. For
n = C2 X C2 the possible non-zero products into L2 are restricted by (1.13), (6.2),
and (6.3). In fact since

and the images of positive-dimensional kt are in the round L-groups, these
products are all zero. The remaining possibly non-zero product is k2{al<&ax).
The non-triviality of the Morgan-Pardon example forces the product to be
non-zero (this can easily be checked using another twisting diagram).

Since the mod 2 homology of a dihedral group is generated by that of its
elementary abelian subgroups [22], we only need to remark that, if C2—>D(2k) is
the inclusion of the centre, then the induced composite

H2(C2 ;Z/2) > H2(D(2k);Z/2) - ^

is non-trivial.
A quaternion group JT has centre C2= (T) and //4|(C2 ;Z/2)-*H4i(ji ;Z/2) is

an isomorphism. Furthermore, the product

H4i(C2 ; Z/2) x Hj(a ; ZI2)-+HM+{n ; Z/2)

is surjective for all i 5= 0 and j = 1, 2, or 3. Therefore if i > 0 and 4i +y =£ 2', the
homology classes in the domain of k{ are products involving the generator of
//4l(C2 ; Z/2). We apply (6.2), (6.3)(iii), and note that again the images of kj for
1 =*/ =s 3 lie in the round group Lj{Rn), so the product with (eT) — (e) is zero.
To prove that k2i # 0 for the quaternion groups, we check (via a twisting diagram)
that the map induced by the inclusion

is injective.
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The above results give

THEOREM 6.8. Let it be an abelian, dihedral, or quaternion 2-group. Then

(i) k1 and k2 are injective for all such n,

(ii) k3 is injective for n quaternion and zero for n abelian or dihedral,

(iii) k2r+2 is injective for r 5* 0 if n is cyclic or quaternion, factors through cyclic
quotients for n abelian, and factors through nab = C2x C2 for n dihedral,

(iv) kt = 0 for i > 4, when i * 2r+2,

(v) k2r+2 = k4° sr for rz?0 and k( vanishes on the image of integral homology
fori^4.

1. Final remarks on the Kt

We begin by determining the image of K3. For n = Q(2k) the answer is in [3]:
H3(JT ; Z/2) = Z/2 and the image of K* is the unique Z/2 in L[(ZJZ) which
vanishes in

THEOREM 7.1. The map K% factors as the composite

H,(JT ; Z/2) > 0 H3(p/p0 ; Z/2) - L , Lf(Zw),
po<peSf3

where A is a natural monomorphism defined in the proof.

Proof. We let A = trf3 ° A and define A. By the detection Theorem 5.4,

H3(* ; Z/2) ^ > Lf(Rn)

0 H3(p/p0;Z/2) — * © Lf(R[p/po\)

commutes and determines k3. From §6 we see that the image of k3 for a
quaternion group is the unique element in the kernel of

Lf(R[Q(2k)])^Lf(R2[Q(2k)]).
Hence it comes from a unique element in the relative group. The map

is naturally split so we have finished.
Finally, we remark that the coboundary map 6 in the Tate cohomology

sequence arising from ([19], compare with (3.13))

can be used to describe the '2-adic' K2 and K4. More precisely, the composite

Hz(n\ Z/2) - ^ Lt{Rjz) > LX{R2JZ) = H°(jtab)
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fits into the following commutative diagrams:

H2(JZ;I/2) -^H°(jtab) - ^ H\Wh'{l,jz))

(7.2) j , ,

K{Zn) > K{l2n)

and

H4(jt;I/2) -ii* H2(JZ ;Z/2) - ^ H°{jcab) - A H\Wh'{l2x))

(7.3) * \ /
L2(ZJZ) > L2(I2JZ)

Note that /J may be identified with the integral Bockstein, and 6 is explicit since

so that 6 is the natural projection map from

Since Hx{Wh'{12JZ)) injects into L'Q or L2, this shows that JC2 is non-zero for n
whenever Hx{Wh'{£.2n)) is non-zero. This also proves Theorem B.

PROPOSITION 7.4. If n is cyclic or quaternion, then K^ and J ^ are zero.

Proof. Since U = L' for n cyclic or quaternion [20], the statement for K%
follows from the one for K*. Since the torsion in L^(Z^r) is detected by transfer
to the trivial group [34, 3.3.3 and 5.2.4], the result follows.

Appendix. The assembly map

We are going to outline the proof that the surgery obstruction map factors
through a spectrum level assembly map. Factorizations of this sort were first due
to Quinn [23] and later reformulated in a more algebraic manner by Ranicki. The
proof is essentially contained in Ranicki's paper [24] and his book [26]. We will
give a detailed outline of the necessary results as a guide to the reader of these
sources.

Let X be an n -dimensional geometric Poincare" complex with first Stiefel-
Whitney class denoted by w and let T(X, w) denote the set of surgery problems
into (X, w). If this set is non-empty, we have the surgery obstruction map

(A.I) A: T(X,w)->LH{Zx1{X),w)

described in the Introduction. For convenience we suppose that dX is empty.
We first summarize some of the ideas in the algebraic theory of surgery.

Ranicki's notion of bordism of algebraic symmetric and quadratic Poincare"
complexes [26] can be expanded in the standard way to give simplicial sets and
even spectra. A convenient reference for this process is Nicas's thesis [17] where
the Quinn spectra are described in detail and the following result is proved.
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THEOREM 1 (Quinn). For every pair {n, w) consisting of a group with an
orientation there are spectra D-O(ZJT, W) whose homotopy groups are the geometric
surgery obstruction groups appearing in (A.I).

The construction of algebraic L-spectra by Ranicki and the proof of the
analogous result proceeds in a similar way. The simplices are modelled on
algebraic quadratic Poincare" n-ads [24, p. 285] and the main point is to check that
the resulting simplicial spaces satisfy the Kan extension condition. This is implied
by a 'glueing' construction for a collection of n-ads along compatible boundary
pieces (generalizing [26, § 1.7]). After verifying this condition, it follows that the
homotopy group in dimension n is just the bordism group of closed Poincare"
n-complexes modulo homotopy equivalence. This was shown to be the geometric
L-group in [25].

More generally, quadratic L-spectra are defined for any ring with anti-structure
(and this is the main advantage of the algebraic theory for our purposes). These
spectra have pairings which reflect the usual tensor product pairings of
complexes.

In § 1 we introduced some notation and stated the Quinn-Ranicki factorization
for the map o0. By definition (0.4) this map is the composite

[X, G/TOP] -!U T{X, w) A > Ln{Z[nx{X)l w),

where v is the usual action map of [X, G/TOP] on a base-point (h0, fiQ) for
T{X, w), and

K{h\, fix) = A(/*!, fix) - A0(/i0, /t0).

Therefore the factorization is given by the following result.

THEOREM 2. Fix a base point (h0, hQ) in T(X, w). The following diagram
commutes:

[X, G/TOP] - ^ Hn(x
w ; h)

T(X,w) - ^ Ln{J.JixX, w)

Proof. The proof will be broken up for convenience into several steps. The key
results we use are that Ranicki has identified the surgery obstruction as the
bordism class of an algebraic quadratic Poincare complex, and that his chain
complex constructions are natural.

Step 1. The following diagram commutes:

T(X, w) -ilU Q^(X, w)

Ln{ZjzxX, w)

where QN'P(XW) denotes the (normal space, Poincar6) bordism group of (X, w).
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The map y0 sends (hlt fix) to {Wx Ux-W0, Mx Ux-M0), where /i,: M,->Zand Wt

is the mapping cylinder of ht. The map a* is defined on p. 618 of [26, Proposition
7.4.1]. If (h, h): M^>X is a surgery problem with mapping cylinder W, then

k(h, k) = o*{W, MU-X)e Ln{Zn} w).

This follows from the commutativity of the following diagram:

TJZ(VW)*-0+ l^W/MU-X)

r r

where G is from [26, p. 621] and F is from [26, p. 35].

Step 2. Next we define a map

[X, G/TOP]^ Hn+l(X
w ; Q"-

following [24, pp. 293-296]. On p. 294, Ranicki defines

and we consider the composite with Poincare" duality

[X,G/TOP] -!-> [X, QrMS{GITOP)]

= Hn(X
w;MS(G/TOP)),

using the MSTOP-module structure and the AfSrOP-orientation class coming
from ^o- To define the map r0, use the fact that

and compose with the natural map

; QNP).

Step 3. The following diagram commutes:

[X, G/TOP] - ^ Hn + x{Xw ; QNP)

I- K
T(X, w) > QNP(XW)

where T# is induced by the following composite of maps of spectra:

Xw A QNP^QP(XW) A QNP^>Q^

and the last map is the map induced on the spectrum level by the obvious
Cartesian product on the simplices. For a more detailed discussion of how to do
such products, consult Step 4. The proof of the commutativity finishes on the
bottom of p. 296 of [24].
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Step 4. Compatibility of the geometric and algebraic products. The following
diagram commutes:

QP(X") A QN-P(YV) > l°(Z[wi*l w) A ZhdiniY], v)

QN-P(XW A Yv) >H<ff[ni(X x Y)], w x v)

There is an analogous Qp to L°-theory diagram which also commutes. The
horizontal maps are just the spectrum level maps induced by taking the
underlying symmetric (respectively hyper-quadratic, symmetric) chain complex
on each simplex. The vertical maps are given by products.

Proof of Step 4. The maps are discussed in [24, p. 287]. The only point to
clarify is how to do the products. On the simplicial set level we can take the
Cartesian product of simplices. This defines a bi-simplicial set.

We fatten up Q ^ p T A YV) and lo(Z[j7:1(A
r x Y)], w x v) to be bi-simplicial

by taking spaces or complexes over A* x Am. The bi-simplicial version of the
diagram commutes on the simplex level. Then we take the diagonal simplicial set.
It is a well-known result that the diagonal of the bi-simplicial smash product is
homotopy equivalent to the smash product.

The only point left to consider is why the diagonal of the bi-simplicial version
of QNP(XW A Yv) or l o ( Z [ t f ^ x Y)], w x v) is homotopy equivalent to the
original simplicial version. Since we have mapping cylinders in both algebra and
geometry, this is a standard argument. We have lifted this proof from some
unpublished notes of Ranicki.

REMARK. The above diagram with P replaced by STOP also commutes. The
left-hand vertical map is then surjective, which shows that any surgery problem
can be decomposed into a sum of products. Furthermore, the surgery obstruc-
tions for products are given algebraically as products, so Theorem 2 can be
viewed as reducing the general surgery problem to products.

Step 5. The final result follows by combining the diagram in Step 3 with jzn+l

applied to the following commutative diagram:

Xw A QNP > Xw A

QNP{XW) A QNP

(see Step 4).

REMARK. We have not been very careful in our notation to keep track of
Whitehead torsions, but if the Poincare spaces are simple, our L spectra are the
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simple ones. If our Poincare" spaces are finite and have their torsions in some
fixed subgroup of the Whitehead group, then Theorem 2 is still true if our L
spectra are the ones with torsions in this subgroup.
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