312 SURFACES WHOSE PRIME SECTIONS ARE HYPERELLIPTIC.

been made by P. DuValt. Heshows that the prime sections of the surfaces
for which m is even can be represented by all quadric sections of normal
rational ruled surfaces in space [p-+2]. From this representation it
follows at once that these surfaces have the property of the surfaces F’.
For if to the quadric sections of a normal rational ruled surface in space
[p+2] there are assigned p+-1 general base-nodes, the resulting system
consists of pairs of curves in a pencil of prime sections of the ruled surface ;
and this system is of grade zero.

Finally, an example may be given, the case p =1. The corresponding
surfaces are the three octavic Del Pezzo surfaces in eight dimensions,
F8, F#% and F8* with a node. Then through a general point of the
space passes a unique trisecant plane of F®, but no trisecant plane of F8*
or of F8* with a node.

THE GEOMETRIC GENUS OF A SURFACE AS A TOPOLOGICAL
INVARIANT

W. V. D. Hoperj.

In a paper now in the press§ I have established the following
theorem :

Let M be an analytic construct of n dimensions which has the topological
properties of an orientable absolute manifold, with Betti numbers R,, ..., R,,
and which has attached to it ¢ Riemannian (positive definite) metric, given by
the quadratic differential form

gu d:t"dx’

in the region. in which the parameters (2, ..., x*) are valid. Then there are
exzactly R, linearly independent skew-symmetric tensors B;,  ; satisfying the
tensor equations

2+1
le (—1)"1 Bil...i,..lif.l...i,,.l, 8 0» (1)

g" Bi]...i,_lr, s = 0 . (2)
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which are finite (and, indeed, analytic) everywhere on M. ““,i” as a suffix
denotes covariant differentiation with respect to i, the fundamental metrical
tensor being g,.

‘This result has important applications to the theory of Abelian integrals
attached to an algebraic variety, and the present note shows how we can
deduce from it a topological definition of the geometric genus of a surface.

1. Consider a complex projective linear space S, of r dimensions
(21, «+e» 2,41)- Mannoury* has given the following simple representation
of the Riemannian of this space, which has many interesting metric
properties. We subject the coordinates to the condition that

EA S LA LE X
Let Z denote the conjugate imaginary of z, and write
X, = /22,7 G=1, ..., 7+1),
Xy=22+2%5=X; 6 #J),
Yy=i@z—zz)=—Yy; (#]).

This defines a locus in the Euclidean space of (r-+1)? dimensions in
which (X;, X,;, Y,;) are rectangular Cartesian coordinates, which is the
Riemannian R of 8,. The distance between the images of (z,, ..., z,,,)
and (2, ..., #;,,) is given by

41422+ .. 42,2, %

To discuss the neighbourhood of a point-on R, we shall find it more
convenient to use non-homogeneous coordinates. Except on z,.,=0,
we take these to be

. 2 .
w Fiurt = z—"— (!, wtireal, j=1,...,71).
r+1

Then a simple calculation shows that the metric on R (defined by the
Euclidean metric of the space in which it lies) is given by

gy dui du?,

i 2
wher 0= 5

* G. Mannoury, Nieuw Archief voor Wiskunde (2), 4 (1898), 113,
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and P =log {1+ (u!)2+...4 (u?)?},
and where we write wlrti = —yd,

Now let us put u/+du+ equal to an analytic function of m complex
variables (m <r) 2*¥{iamtk, Remembering that

ouw!  oJurt

o= g (L, = —gk),

we find that, on the locus of 2m dimensions so defined on R, the metric is

given by

gi; 4t da’, (3)
02 02
where Gii = o ad.;,' + dxmH a‘/;m.'.i = ¢fi+¢m+t’, m+ij* (4)

This fails on z,,.,=0, but we readily verify that all that is necessary
for the discussion of an analytic locus in this case is that we should
replace ¢ by ' =—yx, where ¢’ remains finite on z,,, =0, and the
metric defined by formulae (3) and (4) is the same wherever ¢ and '
are both defined.

2. We now consider an algebraic surface without singularities lying in
S,, and denote by M the corresponding four-dimensional manifold in R.
We consider two complex parameters valid in the portion of the surface
in which we are interested. We have now the case m =2 of the last
paragraph. The matrix (g;;) will now be written

a b 0 ¢
b d—c O
0—c a b
c O b d

Let B,; be a skew-symmetric tensor satisfying (1) and (2). These imply

that
” B dx'dx’ and U = /g gii» ¥ B, dai dai

are integrals of total differentials, where, in the second integral, the
summation is over even permutations (,, %y, %3, ,) of (1, 2, 3, 4), and
gx'i, kl —

g% gt|, /g =ad—b2—c?.
gk gt
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Write
¢ = By, datdz?+ Bgdat dad+ By datdzt+ By, dx®da®
' + B, dx?dz*+ B,, dx3 dx?,
¢’ = 1/g(g'%12 B, +¢1% 1 By +g'214 B, 49122 B,,
+g122 B, 123 B )d23dat+...
(the point being that, if we were to use the ordinary conventions of tensor
calculus, numerical factors would enter which we wish to avoid). We call
¢’ the conjugate of ¢. Then we find that
‘ ¢’ = B,datdat— Byydatdxt+ By dx?dx®4- Byydxt dxt— By, dat dx®
+ By, dxt da?+ (By3+ B,,) (dat dad+-dx? dat) — yw,
where
(ad—b2—c?) x = cByy+d B3 —bB;—bBy;+aBy,+cBy,
w = adald2z’+ddx? dat—c(dxr dx?4-dad dat) + b (dat daxd -+ dx® dad).

We consider the R, independent integrals
(| Byydeide’

satisfying (1) and (2), which are everywhere finite on M (harmonic integrals
of the first kind). From the fact that (¢')' = ¢, we see that we can take
them in two sets: (a) those for which ¢ =¢’, and (b) those for which
¢ = —¢’. The more interesting integrals are those of the second set. In
this case, we find that ¢ is of the form

A (dx dx®—dx® dxt)— B(da! det—da? dx®)+ Cw. (5)

The only conditions to which the coefficients are now subject are that (5)
should be a total differential, and that it should be finite everywhere.
Consider the form w. If we remember that

a=vntdss, b=tptds, c=¢u—t &=ut,,
we verify at once that w is a total differential, and we have indeed
w =, dridx®>+ = }g, dat damH,

If we make an “analytic” change of variable, i.e. one satisfying the
conditions
oxi  Ox2H

77 ox' e (all 5, j),
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w becomes }g;,dz'tdz'#/ and hence

;
Jjeo
is a harmonic integral of the first kind attached to M.

Consider now the general form (5). If this is a total differential, we
have

—A,+B,  —cC—dCy+bC,=0,
A4 By—cCy  —bCytaC,=0,
A+ By+dC,—bC,  —cC,=0,
Ay+ B +50,—aCy—cCy =o.

Now these equations can be written
—A,+By=+/99%C;,
A,—By=+/g9%C;,
—A,—By= /49" C,
Ayt B, =+/99%C;,
and hence % (vVgg?C,)=0. (6)

If we make any analytic change of variable, C is unaltered. Hence C
is a one-valued finite function defined everywhere on the manifold. But
(6) shows that it is harmonY. Hence it must be a constant*.

In the integrability conditions,

and the conditions then show that 4 4-¢B is a function of
X =at4123, Y =ax3+4ixd,
and that [[(4+iBydxaY

is everywhere finite on M, and is therefore an Abelian integral of the first
kind. Thus the harmonic integrals of the first kind on M which satisfy
the condition ¢ = —¢’ are the real and imaginary parts of the double

® Proved in my paper previously mentioned.
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integrals of the first kind, together with the integral

JJos

and there are hence 2p,+ 1 integrals of this kind.

3. Let I';,...,['g, be a fundamental base for the 2-cycles of the manifold
M. Let (I'\T';)=ay, and let A be the inverse of the symmetric matrix a.
Let ¢y, ..., ¢r, be differentials of R, harmonic integrals of the first kind
on M such that '
L{ 4’!’ = Sija
I‘j

and let ¢, be the conjugate of ¢,, Then, since ¢, is the differential of a
harmonic integral of the first kind, ’

¢ — ?cﬁ ¢, (c; = constant).

It is known* that, if ¢,  are the total differentials of everywhere finite
integrals on M, having periods w,, ..., wg,, vy, ..., Vg, then

[, 89=2 dyrm,

Hence Zk" Cn A= JM $ids' = EM bidi = % Cite A s
therefore cd =Ac,

wﬁere ¢’ is the transpose of c.~

Also é=1.

Further, 5 IXHENSG
M

is positive for all values of the constants A; hence c4 is a symmetric matrix
defining an essentially positive form. Let

°=H(? ;1)A’

where A is real, and (1 ’ 1) is a diagonal matrix with « = R,—2p,—1

* Cf. W. V. D. Hodge, Journal London Math. Soc., 5 (1930), 288.
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positive elements and 8= 2p,+1 negative elements. Then

H(. —-1>)‘A AX(. —-1))"
ie. (1 _'JAAX:AAA’(T -
Hence AAX’ is of the form (p ) ,

. q

where p and ¢ are symmetrical matrices of orders a and B respectively ;
and further
g
- g

defines an essentially positive form. Hence A is such that, when it is
transformed to a diagonal matrix pdp’, it has B negative terms. This
number is an invariant of the matrix 4, and hence p, is expressed as a
topological invariant of the manifold.

4. Thisresult can easily be verified in the few cases in which the matrix 4
can be determined. In the case of a rational surface we know* that
every 2-cycle is homologous to an algebraic cycle. A base is most readily
constructed from a plane representation and is given by the curves
represented by straight lines in the plane, and by certain curves represented
by points in the plane. In this case 4 is a diagonal matrix of which the
first element is —1, and the other elements are 1, the signs being the
reverse of those usually given in Severi’s theory of the base, in consequence
of our unusual arrangement of the parameters. Hence

B=l=2pq+1.

A more interesting verification of our theorem is provided by the surface
which represents the product of two algebraic curves. Let the 0-, 1-, and
2-cycles of the first curve be denoted by ¢; vy, ..., ¥5,; C, and those of

the second by d; 3,, ..., 8,,; D, where
(rivs) =0 @ #jEp),
ViYirn) = = Vi) =1,
(8;8;)=0 @ #j£9),

(8i8i+q). = (8i+q S.‘) =1.

* 8. Lefschetz, ‘‘ L'analysie situs et la géométrie algébrique '’ (Borel Tract), 72.
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Then a base for the 2-cycles is given by
cxD, y;x8;, COxd.

4 is a symmetrical matrix such that in each row or column there is only one
element different from zero, and this is +-1. By rearranging the order of
the cycles, and possibly changing certain orientations, we can arrange that
the quadratic form in 4pg+ 2 variables defined by A4 is

2% g+ 223 X4+ ... + 2% 4041 Zapg+2:
If we put

Tops1 = Yore1—Yor+zr  Tarpe =Yorsa—Yarsz (r=0,1,...,2pq),
this becomes 2y 2 =Yt Ys —. .. —Ydpgua)-
Hence our theorem gives |
2pq+1=2p,+1, te p,=pq,

as 18 well known to be the case. The theorem can also be verified for
hyperelliptic surfaces.
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