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Abstract. Seifert forms and Blanchfield forms are defined for homology boundary links.
New tangle constructions are used to show that any pair (pattern, Blanchfield form) can
be realized by a homology boundary link. A classification theorem is proved for homology
boundary links of fixed pattern modulo homology boundary link concordance. This is done
from the points of view of Seifert matrices, Blanchfield forms and Γ-groups. The analogous
notions for links in Zp-homology spheres are discussed.

§0. Introduction.

This work forms part of our on-going effort to classify the set of concordance classes
of links. Recall that a link L = {K1, . . . , Km} in Sn+2 is a locally flat piecewise-linear,
oriented submanifold of Sn+2 of which each component Ki is homeomorphic to Sn. The
exterior E(L) of a link L is the closure of the complement of a small regular neighborhood
N(L) of L. A longitude of a component Ki is a parallel of Ki lying on the boundary
of the tubular neighborhood (untwisted if n = 1). A meridian µi is a path from a
basepoint to ∂N(L) which traverses a fiber of ∂N(L) and returns. A Seifert Surface for
Ki is a connected, compact, oriented, (n + 1)-manifold Vi ⊆ E(L) such that ∂Vi is a
longitude of Ki. Links L0, L1 are concordant (or cobordant) if there is a smooth, oriented
submanifold C = {C1, . . . , Cm} of Sn+2 × [0, 1] which meets the boundary transversely
in ∂C, is piecewise-linearly homeomorphic to L0 × [0, 1], and meets Sn+2 × {i} in Li for
i = 0,1. In the mid-60’s M. Kervaire and J. Levine gave an algebraic classification of
knot concordance groups (m = 1) in high dimensions (n > 1) [L3]. For even n these are
trivial and for odd n they are infinitely generated, being isomorphic to certain Witt groups
obtained from information garnered from the Seifert surface.

Extending Levine’s knot cobordism classification to links is difficult for several reasons.
Firstly, if m > 1, the natural operation of connected-sum is not well-defined on concordance
classes so there is no obvious group structure. Secondly, the Seifert surfaces for different
components of a link may intersect, obstructing at least the naive generalization of the
Seifert form information.
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However the techniques do extend well to the class of boundary links. A boundary link
is one which admits a collection of m disjoint Seifert surfaces, one for each component. In
fact, S. Cappell and J. Shaneson classified boundary links modulo boundary link cobordism
in 1980 using their homology surgery groups, followed later by Ki Ko and W. Mio who
accomplished this via Seifert surfaces [CS1, Ko, Mi]. A boundary link cobordism is a
cobordism C between L0 and L1 for which there exist disjointly embedded 2n-manifolds
IV = {IV1, . . . , IVm} in E(C) such that IV ∩ (Sn+2 × {i}) is a system of Seifert surfaces
for the boundary link Li, i = 0,1, and such that

(∂N(C), IV ∩ ∂N(C)) ∼= (∂N(L0)× [0, 1], (IV ∩ ∂N(L0))× [0, 1]).

These successes focussed intense scrutiny on the question of whether or not every link were
concordant to a boundary link (if n = 1, Milnor’s µ-invariants were known obstructions).
If this had been the case, the concordance classification of links (at least if n > 1) would
have been almost complete.

Unfortunately the situation was not so simple. In 1989 the present authors defined
new invariants which showed that many odd-dimensional homology boundary links are not
concordant to any boundary link [CO1, CO2]. This development focussed attention on the
previously obscure class of homology boundary links, first defined by N. Smythe in 1965
[S]. To define an homology boundary link, let us first define a more general notion of Seifert
surface which we use for the remainder of this paper. Let F be the free group on m letters
{xi}. Consider the subset of Fm consisting of those (w1, . . . , wm) for which wi ≡ xi in the
abelianization and for which {w1, . . . , wm} normally generates the free group. Consider
the equivalence relation on this subset where (w1, . . . , wm) ∼ (w′1, . . . , w

′
m) if and only if

there are elements ηi ∈ F and an automorphism φ of F such that w′i = φ(ηiwiη
−1
i ) for

all i. An element (w1, . . . , wm) of this set of equivalence classes is called a pattern P . A
system of Seifert surfaces of pattern P for L is a collection V = {V1, . . . , Vm} of pairwise-
disjoint, connected, compact, oriented, (n + 1)-dimensional submanifolds of E(L) such
that ∂Vi consists of a union of longitudes (up to orientation) of various Kj in such a way
that if one traverses µi and “reads out” xj (or x−1

j ) as one transversely encounters Vj (or
−Vj), then one spells out the word wi and such that the homomorphism φ : π1(E(L)) → F
associated to the system (by the Thom-Pontryagin construction mapping E(L) to a wedge
of m circles [Ko; 2.1]) is surjective. An homology boundary link of m components with
pattern P may then be defined as one which possesses such a system of Seifert surfaces.
In [CL] it is shown that the pattern is an invariant of the isotopy class of L. Boundary
links are, of course, those with pattern (x1, . . . , xm). Therefore a homology boundary
link is seen to be a sort of “algebraic” boundary link since ∂Vi is homologous to a single
longitude of Ki. The class of homology boundary links first received attention (from the
point of view of link concordance) when the first author observed in [C1, C2] that fusions of
boundary links gave examples of non-boundary, non-ribbon links with vanishing Milnor’s
µ-invariants and that these were in fact sublinks of homology boundary links. Confirmation
that sublinks of homology boundary links was the correct class upon which to focus study
was provided by [CL], [L4] and [LMO] where it was shown that, the classes of sublinks of
homology boundary links and fusions of boundary links are identical up to concordance,
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and that the vanishing of Jean Le Dimet’s homotopy invariant of (disk link) concordance
was essentially equivalent to being concordant to a sublink of a homology boundary link.
This culminated in the above-mentioned result of the authors that, in fact, many homology
boundary links are not concordant to boundary links. It is unknown whether or not every
link (with vanishing µ-invariants if n = 1) is concordant to a homology boundary link.
Therefore we turn to the project of classifying concordance classes of homology boundary
links.

Recall that there were two ingredients to the invariants of [CO1, CO2]. The first was
“complexity” which was there explained to be purely a function of the pattern P . The
second was a function of the universal Blanchfield form B of the homology boundary
link, which may also be viewed in terms of “cobordism classes of Seifert matrices.” The
primary aim of this paper is to show that any such pair (P,B) may be realized by an
explicit geometric construction. An important secondary goal is to classify homology
boundary links modulo a suitable cobordism relation.

Recall the group G(m, ε) of cobordism classes of Seifert matrices of type (m, ε) defined
as in [Ko; §3]. If (L,V) is an m-component link in S2q+1, q > 1, with system V with
pattern P then one can associate to (L,V) an element of G(m, (−1)q) by taking the
“Seifert form” Hq(V)

〈torsion〉 ×
Hq(V)
〈torsion〉

θ−→ Z given by θ(x, y) = lk(x, y+). If q = 1 we must
consider Hq(V)/Hq(∂V ) instead of Hq(V), and the restriction on the pattern (w1, . . . , wm)
guarantees that θ descend to a form on the quotient. Note that θ can be defined from any
set of disjoint codimension-2 oriented submanifolds of S2q+1 each component of which is
labeled by an element of {1, . . . , m}, as long as, when q = 1, the boundaries of the surfaces
have zero linking numbers with all elements of H1(V).

Specifically, our main theorem will be a stronger form of the following.

Theorem 3.6. Given any pattern P , any q ≥ 1 and α ∈ G(m, (−1)q), there is an m-
component homology boundary link in S2q+1 with system of Seifert surfaces of pattern P
and Seifert form equivalent to α. (If q = 2, α must lie in the index 2m subgroup of G(m, 1)
described by [Ko] to account for Rochlin’s theorem).

In [CL] it was shown how to construct a link with arbitrary P and α ∼= 0 (actually
a ribbon link) although it would be nice to have a more constructive algorithm. At the
other extreme, it is relatively easy to construct a boundary link with P = (x1, . . . , xm)
and arbitrary α (see Theorem 3.4 of [Ko] for a proof generalizing Seifert’s proof for q = 1).
The general idea of Seifert’s method (for q = 1) is that, given a Seifert matrix A = (aij) of
type (m, ε), one can take m disjoint wedges of appropriate numbers of circles and modify
them so that the linking number between the ith circle and jthcircle is aij . Then one
can “thicken” the wedges of circles to create punctured surfaces in such a way that the
“self-linking” of the ith circle is aii. These will be the Seifert surfaces of a boundary
link whose Seifert matrix is A with respect to those surfaces. This procedure always
produces a boundary link (as opposed to an arbitrary homology boundary link). No such
simple-minded procedure has been found for homology boundary links.

Theorem 3.6 will be a corollary of a new and interesting construction for links that is
useful in creating homology boundary links with prescribed properties. This method was
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employed in [CO2] to generate examples. On the other hand our work will be helpful in
calculation as well, since many examples in knot theory consist of a simple knot or link
with some bands of its Seifert surface tied into knots. Therefore the Seifert forms of such
links are easily computed by our techniques.

We also recover a classification theorem for homology boundary links which parallels the
classification theorem for boundary links but is much more complicated. Unlike boundary
links, the set of homology boundary links is not closed under connected sum. Consequently
we fix the pattern P and consider only those homology boundary links with pattern P .
Just as in [Ko], we must consider pairs (L,V) where L is such an homology boundary link
in S2q+1 and V is a system of Seifert surfaces for L. However for homology boundary
links we must narrow our focus further by only considering V whose surfaces meet the
link components in a fixed combinatorial scheme S. For any pattern P many schemes are
possible, and only links with identical schemes may be summed in such a way that their
Seifert forms also naively sum. We define the set of scheme cobordism classes, C(m, q, S), of
such pairs where two are scheme-cobordant if there is a concordance between the links and
an embedded cobordism between the Seifert surface systems, that preserves the scheme (is
a product on its boundary). We show in §5 that C(m, q, S) is naturally a group isomorphic
to G(m, (−1)q), if q > 1, where this isomorphism is given by the Seifert form. We also
interpret this as a relative L-group and a Γ-group by using the Blanchfield form. This
much is perfectly analagous to the previous work on boundary links.

When we analyze the effect on the Seifert form of changing V for a fixed L, we begin
to see some surprising complications in the case of general homology boundary links of
pattern P . In §7 we define two such links L, L′ to be homology-boundary-link-concordant
if they are concordant in such a way that for some V, V ′ the pairs (L,V), (L,V ′) are
scheme-cobordant. The set of these equivalence classes is denoted P(m, q, P ). We then
analyze this set and find that:

Theorem 6.3. For any fixed pattern P and any representative (w1, . . . , wm) of P , this
is a bijection θ : P(m, q, P ) → G(m, (−1)q)/ Autwi F given by taking the Seifert form
of a system of Seifert surfaces with scheme S = (w1, . . . , wm). Similarly the Blanchfield
form induces a bijection B : P(m, q, P ) → L(−1)q+1

(Z[F ],Σ)/ Autwi F . Here Autwi F is
the subgroup of automorphisms of the free group which send wi to a conjugate of wi (the
actions are given in 3.4 and 4.5). (If q = 2 we need to take certain index 2m subgroups to
account for Rochlin’s theorem).

A very surprising aspect of 6.3 is that P(m, q, P ) depends on P (whereas C(m, q, S) is
independent of S)! A translation of 6.3 in terms of Γ-groups yields the following.

Theorem 6.4. Suppose q > 2. For any fixed pattern P and any representative
(w1, . . . , wm) of P , there are functions Γ̃2q+2(ZF −→ Z)/ Autwi F

φS−→ P(m, q, P ) π−→
L2q+1(F ) such that π is surjective and φS is an injection with image π−1(0). (Here Γ̃ is
the gamma group modulo the image of L2q+1).
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Finally, in §7, we discuss the analogues in the case of links in Zp-homology spheres to
establish some claims made in [CO1, CO2].
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§1. Generalized basings and tangle sums.

The method of construction we shall presently detail is perhaps best described as an
“action” of the set of boundary links on the set of homology boundary links with pattern
P . There are actually many actions depending on various initial data. Given an homology
boundary link L, and a sort of generalized basing which effectively decomposes L into two
tangles, one of which is trivial; we “act” on L by removing the trivial tangle and inserting
a boundary disk link (suitably modified for this purpose). To be more specific, we need to
set up some notation.

Definition. A generalized basing b of a link L is an embedding b of the 2-disk ∆ = I × I
into Sn+2 such that, with regard to the subdivision of the 2-disk shown in Figure 1

Figure 1

i) b is transverse to L

ii) (image b) ∩ L lies interior to
m⋃

i=1

∆i along the line b(I × {1/2}).
Now suppose ∆i ∩ L is {Ki1 , . . . , Kini

} ∩ ∆i reading left to right. Then this will be
called a generalized basing of type (b1, . . . , bk) where bi = x±1

i1
. . . x±1

ini
and the plus sign is

used if Kij
∩∆ is +1. Note that a basing of type (x1, . . . , xm) is the usual (strong) basing

that decomposes L as the closure of a disk link. Also note that it is not necessary that
k = m.

A generalized basing of L may be slightly thickened to given an embedding of ∆×Dn =
I × I ×Dn whose intersection with L is the product (L∩∆)×Dn. Therefore b induces a
“tangle” decomposition of L along ∂(I × I ×Dn), one “summand” of which is a standard
trivial disk link of type (b1, . . . , bk). Since a “strand” of one of these tangles inherits a
label i if it was part of the ith component knot of L, these tangles are unusual as ordered
links in that the set of strands labelled i may be disconnected.

Suppose L and L′ are endowed with basings b, b′ of the same type. Then we can
define Lb⊕b′ L by deleting the induced “trivial” tangles of type (b1, . . . , bk) from each and
identifying along the common boundaries of the remainders by the (orientation-reversing)
restriction of the homeomorphism r : I × I × (I × Dn−1) ª given by r(x, y, z, w) =
(x, y,−z, w). If n = 1 this tangle-sum may not yield a true m-component link because the
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“ith component knot” of the result might be disconnected as is seen in Figure 3 for m = 1,
L = L′, b = (x1x

−1
1 ). Even if n > 1, this tangle-sum may have components homeomorphic

to the connected sum of copies of S1 × Sn−1.

Figure 3

However if b′ separates L′ into pure tangles (like pure braids) then the tangle sum will
be a true m-component link. Specifically, a labelled oriented tangle is called a pure tangle
if each connected component of the strands labelled i is homeomorphic to the n-disk. A
“link” is called a true link if the union of the spheres labelled i is connected. In what
follows, we shall require situations where L′ is not a true link but whose components are
parallel copies of the components of a true link. As long as L is a true link and b′ separates
L′ into 2 pure tangles, the sum will be a true link.

Figure 4

Moreover if the above links have Seifert surface system which are “compatible” then we
ought to be able to “add” these as well. Here the situation is slightly more complicated.
If L has a system V, we may and shall assume that ∆ has been isotoped, relative to L,
so it meets V transversely in one of a fixed set of standard schemes as shown by example
in Figure 4. This is possible because ∆ may be isotoped to look like Figure 5a and hence
the intersections with V may be assumed to be as in 5b, for example. The set of possible
intersection schemes is larger than the set of possible ((b1, . . . , bk), (w1, . . . , wm)) where
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Figure 5

Figure 6

the latter is the pattern. For example, the schemes in Figure 6 are different although both
have b = b1 = x1x

−1
1 x2x

−1
2 and pattern (x1, arbitrary) with respect to the meridian µ1.

Instead we need the extra data of the words γ1, . . . , γk in the alphabet {x1, . . . , xm}
obtained by traversing ∂∆i i = 1, . . . , k, in a counter-clockwise fashion, and reading x±1

i

upon encountering ±Vi. In fact, precisely what we need is the factorization of γi as ξiriξ
−1
i

where the letters of ri correspond only to those components of V ∩∆ which have boundary
on ∂(E(L)). Therefore, given any m-tuple of words (ξiriξ

−1
i ) we shall say that (L,V, b) has

scheme S = (ξiriξ
−1
i ) if the words γi are identical to the words ξiriξ

−1
i such that the letters

ri correspond precisely to those components of V ∩ ∆ which have boundary on ∂E(L).
A scheme is called reduced if each ξi is empty. S determines P , or more specifically, S
determines wi up to conjugacy for those i which have strands intersecting ∆.

Therefore b induces a tangle decomposition of (L,V), one of which is a standard trivial
disk link of type b, with standard trivial Seifert surface system of some scheme S.

Proposition 1.1. The tangle sum (L,V)
⊕
bb′

(L′,V ′) of two links of basings b, b′ of the

same type and scheme S may be added to yield (L⊕L′,V ⊕V ′). Here L is a true link but
L′ may have disconnected components. If b′ separates L′ into 2 pure tangles then the sum
is a true link of as many components as L.
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Proof. Since the boundaries of (L,V) and (L,V ′), after deleting the standard trivial
tangle of type S, are standard of type S, the result is clear. The orientation-reversing
nature of the gluing map r ensures that the orientations extend. ¤
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§2. The geometric actions of boundary links on links of pattern P .

Now, suppose (L,V) is an m-component homology boundary link of pattern P and
b = (b1, . . . , bk) is a generalized basing of (L,V). We describe how to “twist” (L,V) by a
k-component boundary link (B,W), resulting in a new m-component homology boundary
link of pattern P but whose Seifert form has been altered. Here we explain the action and
give examples. In the next section we describe the effect on the Seifert form.

First, given b = (b1, . . . , bk) we describe how to alter the k-component boundary
link (B,W) to get a boundary link of more components with a natural basing of type
(b1, . . . , bk). This is done merely by forming parallel copies of the components of W dic-
tated by the bi. Specifically if b1 = xε1

i1
. . . xεn

in
where εi ∈ {±1} then form n parallel copies

of W1, so that the jth copy is oriented “oppositely” to W1 if εj = −1. Proceeding around a
positively oriented unbased meridian of K1 = ∂W1, one encounters these copies in succes-
sion. Label the jth copy with the number ij as it appears in b1. Similarly do the same for
{W2, . . . ,Wk}. Let W ′

i be the union of all copies appearing with the label i. Thus we have
formed a new boundary link (B′,W ′) where we shall say W ′ = (b1, . . . , bk)#(W). This
boundary link has many components as were involved in ∆∩L. Note that B′ is very likely
not a true link since for any fixed i, more than one of its components may have the label
i. Also note that since (B,W) has a basing b′ of type (x1, . . . , xk) this basing becomes a
generalized basing b′ of type (b1, . . . , bk) for (B′,W ′), by construction. Therefore we may
form Lb ⊕b′ B′ (remember that identical basings is sufficient to enable tangle addition of
links, whereas tangle sum of Seifert surfaces requires identical schemes). Since b′ separates
B′ into 2 pure tangles, Lb⊕b′ B

′ is indeed a true link with m connected components. The
result may be denoted (b, b′, B)#(L). The definition of this action is independent of the
pattern P of L. Indeed L need not have been an homology boundary link. In the next
section, we see how to endow B′ with a Seifert system with scheme S and calculate the
effect on θ. For now we consider examples of this action.

Figure 7
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Example 1: Connected Sum: If b = (x1, . . . , xm) then W ′ = W and (b, b′, B)#(L) is
merely the usual connected-sum L#B.

Example 2: Tying a local knot in L: If b = (b1) then B is a knot K and (b, b′, K)#(L)
is obtained by “seizing some strands” of L according to b1 and tying the whole thing in
the knot K as shown in Figure 7 for a link in S3 and b1 = x1x

−1
1 x2.

§3. Effect of Action on the Seifert form.

Suppose (L,V, b) is an m-component homology boundary link with pattern P and gen-
eralized basing b = (b1, . . . , bk) inducing a scheme S. Suppose that (B,W) is a boundary
link of k-components. In the previous section we described how to use parallel copies of
W to form (B′,W ′, b′) where b′ is of the same type as b. This allowed us to form the
tangle sum. Now we endow B′ with a new system W ′′ of Seifert surfaces with scheme
S so that the tangle sum can be performed on the surfaces as well. This will endow the
tangle sum with a surface system of pattern P . Consider ∆1 as in Figure 1 induced by
b. The word γ1 obtained by traversing ∂∆1 counter-clockwise is necessarily a product of

conjugates γ1 =
n∏

j=1

ξjw
±1
ij

ξ−1
j where P = (w1, . . . , wm) and b1 = x±1

i1
x±1

i2
. . . x±1

in
as shown

by example in Figure 8a (see Figure 5 and surrounding discussion). The corresponding
(trivial) scheme for the boundary link is shown in 8b. Now merely form parallel copies
of Vij , changing orientations and relabeling to achieve the identical γ1 as in 8a. This is
shown in 8c. Note that since B′ is a boundary link, ∂Vij is connected so these relabellings
will not be inconsistent. The (reduced) scheme of 8c is not quite the same as the (perhaps
unreduced) scheme of 8a so we must join the oppositely oriented copies of Seifert surfaces

that correspond to the conjugating elements in the word γ1 =
n∏

j=1

ξjw
±1
ij

ξ−1
j . Note that

this is done by attaching an “annulus” S2q−1 × [−1, 1] from ∂Vξ1 to ∂(−Vξ1). Note that
this last process does not change Hq so does not alter the Seifert form. Doing similar
modifications for ∆i, 1 ≤ i ≤ k, completes the description of (B′,W ′′, b′).

Definition 3.1. Given b, the result of acting on (L,V) by (B,W, b′) is the tangle sum
(Lb ⊕b′ B′,V ⊕W ′′) which is an m-component homology boundary link of pattern P .

To calculate the effect of this action on the cobordism class of the Seifert form, first we
will investigate the additivity of the Seifort form under tangle sum of links in S2q+1. We
find that this additive if q 6= 1 but, surprisingly, that additivity fails in general for q = 1.
Fortunately, since B′ is a boundary link the additivity will hold for L⊕B′.

Theorem 3.2. Suppose (L,V, b), (L′,V ′, b′) are links in S2q+1 with generalized basings of
identical type and scheme S. Suppose L is a true link of m components, image b′ intersects
every component of L′, the non-trivial tangle associated to b′ is pure and suppose that
{j1, . . . , jn | j1 < · · · < jn} is the subset of {1, 2, . . . , m} such that Vji intersects ∆. Then
(L⊕L′,V ⊕V ′) is a true m-component link and θ(V ⊕V) equals θ(V)⊕ i∗θ(V ′) where i∗ :
G(n, (−1)q) −→ G(m, (−1)q) is the natural map induced by the inclusion {j1, . . . , jn} −→
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Figure 8

{1, . . . , m}. If q = 1, it must also be assumed that H0(VL ∩VT = V ′L′ ∩V ′T ′) −→ H0(VL)⊕
H0(V ′L′) is a monomorphism where these symbols are explained below.

Proof. The basing b decomposes (L,V) into two tangles, one of which is the standard
trivial tangle of type b with surfaces of scheme S. Let VT be the intersection of V with this
tangle and VL be the intersection of V with the other tangle. Note that VT ∩VL is a union
of (2q − 1)-dimensional disks and spheres. It follows, if q 6= 1 that Hq(V) ∼= Hq(VL) ⊕
Hq(VT ) ∼= Hq(VL) since the components of VT are contractible. If q = 1, the observation
that H0(VT ∩ VL) −→ H0(VT ) is injective yields the same result. Moreover, since the
ambient space of a tangle is B2q+1, all linking numbers between elements of Hq(VL)
may be computed “inside” that tangle and agree with the linking numbers computed in
S2q+1. Therefore it makes sense to speak of θ(VL) and clearly θ(VL) = θ(V). Similarly
θ(V ′) = θ(V ′L′).

By the same token, the surface system V ⊕V ′ decomposes as VL ∪VL′ along a union of
(2q−1)-dimensional disks and spheres. Therefore, if q 6= 1, Hq(V⊕V ′) ∼= Hq(V)⊕Hq(VL′).
Again, since each tangle is a ball, no elements of Hq(VL′) will link any element of Hq(VL).
Hence θ(V ⊕ V ′) ∼= θ(V)⊕ i∗θ(V ′) as claimed.

If q = 1, then when two tangles are joined, the surfaces are joined by either boundary-
connected-sum or by identifying two circle boundary components. These circle boundary
components are ones which arise when a component of V ′T is a disk as in Figure 9. In
particular these circles are null-homologous in V and in V ′. If the two surfaces being
joined by \ or by identifying such circles are disjoint , then these operations do not affect
H1 (modulo the subgroup generated by the longitudes). Of course, int VL and int V ′

L′ are
disjoint (lying in disjoint tangles) but once one connection is made, there can be problems.
The final hypothesis of 3.2 ensures that there are no problems as can be seen by examining
a Mayier-Vietoris sequence for (VL ∪ V ′L′ ,VL,V ′L′). ¤
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Figure 9

Corollary 3.3. With respect to the notation of 3.1 and preceeding discussion, θ((Lb⊕b′B
′,

V ⊕W ′′)) = θ(L)⊕ i∗θ(W ′′).

Proof. Recall B was a k-component link with a trivial basing. Since B′ is formed from
parallels, b′ intersects every component of B′. If q = 1, since each surface of W ′ had a
single boundary component, H0(W ′′

B′ ∩W ′′
T ) −→ H0(W ′′

B′) is a monomorphism.
Now we need to calculate θ(W ′′). Since this depends only on W ′′ (not ∂W ′′) we see

that θ(W ′′) = θ((γ1, . . . , γk)#(W)) where (γ1, . . . , γk)#(W) is the surface system obtained
by forming parallel copies of {W1, . . . , Wk}, re-orienting and relabelling to achieve the
word γi when traversing ∂∆i. Here ∆ is a basing of type (x1, . . . , xk) for B. Said another
way, if we look at W ′′ in S2q+1 instead of E(B′), we see that it is indistinguishable
from (γ1, . . . , γk)#(W) (except for the extra “annuli” added to alter Figure 8c, which we
already remarked had no effect on θ). Therefore the problem reduces to studying the
effect of (γ1, . . . , γk)# on the Seifert form of a boundary link. This effect, although easily
described in terms of Seifert matrices, is normally quite radical. In this section we show
that it depends only on the classes of γi in the free group F 〈x1, . . . , xk〉 and that it satisfies
certain “functorial” properties.

Proposition 3.4. Suppose f : F 〈x1, . . . , xk〉 −→ F 〈x1, . . . , xm〉 is a homomorphism such
that f(xi) is represented by the word wi, 1 ≤ i ≤ k. Then f induces a homomorphism
f∗ : G(k, ε) −→ G(m, ε) which is geometrically defined by choosing a simple boundary link
with surface system V representing α ∈ G(k, ε) then letting f∗(α) ≡ θ((w1, . . . , wk)#(V)).
In addition (id)∗ = id and (g ◦ f)∗ = g∗ ◦ f∗.

Remark. Since G(m, (−1)q) has essentially been identified with S. Cappell and J. Shane-
son’s L-theoretic group Γ2q+2(ZF

ε−→ Z), 3.4 reflects the functoriality of the Γ-groups. In
section 5 we shall discuss these connections.

Proof. Although the matrix representing f∗(α) may be described in algebraic terms, it is
more intuitive to use Seifert surfaces. Suppose (L, {V1, . . . , Vk}) is a simple boundary link
in S2q+1 with θ(V) = α [Ko; Thm. 3.4]. We form (w1, . . . , wk)#(V) as described earlier.
Specifically, if w1 = xε1

i1
. . . xεn

in
, consider n parallel copies of V1, the jth of which is oriented
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oppositely to V1 if εj = −1. Proceeding around a positively-oriented meridian to ∂V1, one
encounters these copies in succession and assigns the label ij to the jth copy. Do the same
for V2 through Vk to complete the definition of (w1, . . . , wk)#(V). Finally set f∗(α) equal
to θ((w1, . . . , wk)#(V)). ¤

We need to show f∗(α) is independent of the representatives wi and of (V1, . . . , Vk). For
simplicity let (w1, . . . , wk)#(V) be abbreviated w#(V). First, suppose (J, {W1, . . . , Wk}) is
another such representative of α. We may form a connected sum of L with the concordance
inverse of J in such a way that L# − J is a simple boundary link admitting the system
V\−W, and θ of this system is α−α = 0 by 3.3. But it is easy to see that w#(V\−W) =
w#(V)\w#(−W), so that the block sum of θ(w#(V)) and −θ(w#(W)) is represented by
θ(w#(V\ − W)). It suffices to show the latter is zero. Since θ(V\ − W) = 0, there is a
choice of basis of Hq of each component of V\−W with respect to which the Seifert matrix
is composed of blocks Nij each of the form

(
0 Cij

Dij Eij

)

as described in [Ko; p.668]. Thus, with respect to the “same bases”, the (i, j) block of the
Seifert matrix for w#(V\−W) will consist of sub-blocks each of which is some ±Ns,t. But
such a block is congruent to one of the form

(
0 A
B C

)

by merely re-ordering basic elements. Thus θ(w#(V\−W)) = 0, so θ(w#(V)) = θ(w#(W))
as desired.

Now suppose wi and zi are words which are equal in the free group. It suffices to consider
the case that zi is obtained from wi by inserting xjx

−1
j somewhere in wi. Suppose (L,V)

and V ′ = w#(V ) are as above in the definition of f∗. Let V ′′ = z#(V), so V ′′ is V ′
together with 2 more copies of Vi (oppositely oriented) which form part of V ′′j . Consider
the product (S2q+1× [0, 1], L× [0, 1],V ′× [0, 1]). This is the product concordance from L to
−L together with the product “cobordism” from V ′ to −V ′. Now in S2q+1×{0} insert the
extra manifolds, Viq−Vi, to form V ′′ and in S2q+1× [0, 1] insert the product Vi× [0, 1] in
such a way that ∂(Vi×[0, 1]) = Viq−Vi. Then the resulting collection is what we might call
a boundary cobordism from (L,V ′′) to (−L,−V ′). In particular, we may look at the union
of V ′′ with −V ′ together with ∂V ′ × [0, 1] as a collection W of closed 2q-manifolds. The
argument of [Ko; Lemma 3.3 and page 671] applies to show θ(W) = 0 = θ(−V ′)⊕ θ(V ′′).
Therefore θ(V ′) = θ(V ′′) showing that f∗(α) is only dependent on the class of wi in the
free group.

The “functorial” properties of f∗ are straightforward to verify. ¤

We can now evaluate the effect of our actions on θ.
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Theorem 3.5. Suppose (L,V, b) is an m-component homology boundary link of pattern
P with fixed generalized basing (b1, . . . , bk) for which the loops {∂∆1, . . . , ∂∆k} intersect
V in the words {w1, . . . , wk} (see section 1). Suppose (B,W) is a k-component boundary
link. Then the result of acting on (L,V, b) by (B,W) has Seifert form equivalent to

θ(V)⊕ f∗(θ(W))

where f∗ : G(k, (−1)q) −→ G(m, (−1)q) is induced by f : F 〈x1, . . . , xk〉 −→ F 〈x1, . . . , xm〉
given by xi −→ wi.

Proof. The result of the action is (Lb ⊕b′ B
′,V ⊕W ′′) as defined previously so, by 3.3, θ

is θ(V)⊕ θ(W ′′). But θ(W ′′) = θ((w1, . . . , wk)#(W)) as remarked below 3.3. Then apply
3.4. ¤

Figure 10

Theorem 3.6. Given any scheme S = (η1w1η
−1
1 , . . . , ηmwmη−1

m ) inducing the pattern P
and any α ∈ G(m, (−1)q) (subject to the usual signature restrictions if q = 2), there is an
m-component ribbon link (R,V) and an (ordinary) basing b such that (R,V, b) has scheme
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S (and pattern P ) and θ(R,V) = 0. By acting on (R,V) appropriately by a boundary
link with Seifert form α, one obtains an homology boundary link (L,V ′, b′) with scheme S,
pattern P and θ(L,V ′) = α.

Figure 11

Proof. According to [CL; Thm. 2.3], every pattern P is the pattern of a ribbon homology
boundary link in S2q+1. More precisely, for every m-tuple of words (ηiwiη

−1
i ) represent-

ing a pattern P , there is a ribbon homology boundary link R, a map g∗ : π1(ER) →
F 〈x1, . . . , xm〉 and a basing b = (u1, . . . , um) such that g∗([ui]) = [ηiwiη

−1
i ]. But then

there exists a map g : ER →
m∨

i=1

S1 inducing g∗ such that pulling back points under g yields

(via the Thom-Pontryagin construction) V = (Vi) a system of Seifert surfaces (perhaps dis-
connected) for R such that, with respect to b, (R,V) has scheme (ξ1r1ξ

−1
1 , . . . , ξmrmξ−1

m )
where ξiriξ

−1
i = ηiwiη

−1
i in the free group F . We shall now alter V by moves called

elementary reductions and enlargements, until (R,V, b) has scheme S. To explain these
moves, consider Figures 10–13. A general scheme (∆i,∆i ∩ V) is shown in 10a which can
be encoded by the unreduced word ξiriξ

−1
i . The first elementary reduction (Figure 10b)

fuses adjacent copies Vj and −Vj allowing for a potential cancellation of any occurence of
xjx

−1
j or x−1

j xj in ri. The first elementary expansion involves adding a small S2q−1× [0, 1]
as a new component of Vj as shown in 11. This allows for the insertion of xjx

−1
j or x−1

j xj

in ri. The second elementary reduction and its inverse are shown in Figure 12. Using this
move we may alter V to assume ξi = ni and ri = wi as elements of the free group. Using
the first moves, we can assume ri = wi as words. Finally, the third elementary reduction

16



Figure 12

Figure 13

(respectively expansion) is shown in Figure 13a (13b). Using this move we can assume V
has precisely the given pattern S. These moves do not change the Seifert form of V except

17



for the second elementary reduction, which changes Vj by an ambient 1-handle addition
and thus do change the cobordism class of the Seifert form. The resulting (R,V, b) may
not be satisfactory since Vj may not be connected. We must alter V further to remedy
this. However before proceeding note that the Thom-Pontryagin construction applied to
(R,V) yields a map g′ homotopic to g. If A and B are two components of Vj , choose
a path δ in E(L) from the positive side of A to the negative side of B, which meets V
transversely and misses the basing disk b.

Let ∗ denote the wedge point of
m∨

i=1

S1 and let y denote the mid-point of the jth circle

so (g′)−1(y) = Vj . The image of δ under g′ represents an element of π1

(
m∨

i=1

S1, y

)
. Since

g′∗ is surjective, the path δ can be altered so that its image under g′ represents zero in π1.
Thus δ hits V in a pattern such that the corresponding word may be reduced to the empty
word by deleting occurences of xix

−1
i or x−1

i xi. Hence by tubing of Vi along δ, say, we
may alter Vi so that it misses δ until δ is a path in complement of V connecting A to B.
Then A may be joined to B by tubing. The resulting (R,V, b) is the desired ribbon link
with scheme S. Moreover, if g′′ represents the associated Thom-Pontryagin map, then
g′′∗ = g′∗ = g∗ by the same argument as that of [Ko; 2.2].

Since {ηiwiη
−1
i | 1 ≤ i ≤ m} normally generates the free group, there are disjointly

embedded loops γ1, . . . , γm in E(R) sharing the common basepoint ∗, disjoint from b
(each of which travels to a component Ri, traverses a meridian, returns along nearly
the same path and sets off again, et cetera) such that g∗([γi]) = xi. These loops γi

induce a generalized basing b where γi = ∂∆i. Choose a boundary link (B,W, b′) with
θ(W) = α (and trivial basing b′). Act on (R,V, b) by (B,W, b′). The result, by 3.1, is
an m-component homology boundary link of scheme S with Seifert form equivalent to
θ((R,V))⊕ id∗(α) = θ(R,V)⊕ α by 3.5.

We must now see that θ(R,V) = 0. Recall the system of Seifert surfaces induces, by

the Pontryagin construction, a map g : E(R) −→
m∨

i=1

S1 such that the inverse image of

{1} on the ith circle is Vi. Now, the proof of Theorem 2.3 [CL] shows (see the proof of
Theorem 3.1 of [L1] for a more complete argument) that R may be chosen to possess slice

disks {D1, . . . , Dm} = D in B2q+2 such that π1(E(R))
j∗−→ π1(E(D)) is an epimorphism

(isomorphism if q 6= 1). Extend g over the boundaries of the tubular neighborhoods of
the Di in the obvious way. Since H2(π1(E(D))) = 0, a theorem of Stallings [St] ensures
that j∗ induces an isomorphism modulo the intersection of the finite terms of the lower-

central series. Since free groups are ω-nilpotent, g extends to ĝ : E(D) −→
m∨

i=1

S1. After

modifying ĝ by an isotopy rel g, let Wi be the inverse image of {1} on the ith circle. Then
∂Wi is Vi together with various copies of D2q glued along the components of ∂Vi. This
collection {Wi} shows that θ(V) = 0 as in [Ko; Lemma 3.3 and page 24]. ¤

Recall that we have failed to establish addivity of Seifert form under tangle sum when
q = 1. The following shows that this will hold for ordinary connected sum of classical
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links if those links are obtained from acting on ribbon links by boundary links and the
connected sum avoids the boundary link tangles. This establishes details of certain claims
of additivity in Chapter 3, section B of [CO2].

Theorem 3.7. Suppose (L,V) is an homology boundary link with scheme S in S3 which
is obtained from the boundary link (B0,W0) acting on the ribbon link (R0,V0, b0). Sim-
ilarly suppose (L′,V ′) is another such obtained from (B1,W1) acting on the ribbon link
(R1,V1, b1). Finally suppose that b = (x1, . . . , xm) is a (normal) basing of (L,V) and b′

of (L′,V ′) (with respect to which L ⊕ L′ is the ordinary connected sum of links) each of
which is disjoint from their respective boundary link tangle summand. Then θ(L ⊕ L′) =
θ(L,V)⊕ θ(L′,V ′).

Proof. Since b and b′ lie entirely within the “ribbon link tangle” summands of L and L′

respectively, (L⊕L′,V⊕V ′) is merely the result of acting on (R0,V0, b)⊕(R1,V1, b
′) first by

(B0,W0) and then by (B1,W1) (or vice-versa). By 3.5, θ(L,V) = θ(R0,V0)⊕f∗(θ(B0,W0))
and θ(L′,V ′) = θ(R1,V1) ⊕ f ′∗(θ(B1,W1)) where f∗ is defined by the way ∂∆i ⊂ b0

intersects V0 and f ′∗ by the way ∂∆i ⊂ b1 intersects V1. Similarly θ(L⊕ L′) is, using our
first remark, θ(R0⊕R1)⊕f∗(θ(B0,W0))⊕f ′∗(θ(B1,W1)). Since θ(R0,V0) = θ(R1,V1) = 0
by the proof of 3.6, we need only show that θ((R0,V0, b)⊕(R1,V1, b

′)) is zero. Since b and b′

are ordinary basings we may use the well-known fact that the connected-sum of two ribbon
links is a ribbon link. By 1.1, R0 ⊕R1 is an homology boundary link with surface system
V0⊕V1. Then the proof of 3.6 shows that θ(R0⊕R1) = 0. Hence θ(L⊕L′) = θ(L)⊕θ(L′)
as desired. ¤

Figure 14

Example 3.8. We will show how to construct a 2-component homology boundary link
in S2q+1 with arbitrary Seifert form α and with pattern (x, yw), where w is an element
of the subgroup of F 〈x, y〉 generated by {x, x−1, yxy−1, yx−1y−1} (and also lies in the
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commutator subgroup). First we construct a ribbon homology boundary link with the
correct pattern. This link will be a fusion of a 3 component trivial link [C1, C2] and in
fact what has been called a strong fusion of a 2-component trivial link by U. Kaiser [Ka]. As
an aside, we note the fascinating fact that Theorem 3.15 of [Ka] proves that the patterns
(x,wy) of type above are the only ones possible for a strong fusion of a 2-component
boundary link. Express w as a word in {x, x−1, yxy−1, yx−1y−1} so w = w1 . . . wn. Form
a trivial link of n components in S2q+1 by nesting as in Figure 14a.

Figure 15

The “first” component is innermost, et cetera. Orient the ith component counter-
clockwise if wi = x or yxy−1, otherwise clockwise. Join all components corresponding
to wi = yx±1y−1 to the left as in 14b, respecting orientation, and join all components
corresponding to wi = x±1 to the right as shown in 14b. The result is a trivial link of 2
components {J1, J2}. Form a ribbon knot K1 by “fusing” J1 to J2 using a single “band”
b (tube if q > 1) that originates at ∗1, dives down through all the nested circles and
terminates at ∗2 as shown in Figure 15. Lastly add a trivial component K2 as shown in
Figure 15.

Then there is a system of Seifert surfaces V = (Vx, Vy) for the homology boundary link
R = {K1,K2} such that µ1 spells the word x while µ2 spells yw. The Seifert surface Vx

for K1 is a union of “disks with holes” and tubes as shown in Figure 16. The tubes are
nested and run along b, each terminating as a longitude of K2. Vy is a union of “cocoons
with holes” and tubes as shown in Figure 17. The tubes are nested (with each other and
with the tubes of Vx) and run along b, terminating in longitudes of K2. Thus R is the
desired ribbon link with surface system.

Now, as in the proof of 3.6, we must find paths {γ1, γ2} which spell {x, y}. These
are shown in Figure 18. Now, for example, suppose α were the Seifert form for the split
link {J1, J2}. Then the desired homology boundary link with pattern (x,wy) and form
equivalent to α would be as shown in Figure 19.
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Figure 16

Figure 17

We remark in passing that the links in [CO2; A. The Simplest Examples] are of this
general type with w = [x, y−1]m, γ1 = [x, y−1] γ2 = the empty word and α the form of a
knot J . In addition the examples in Section B, Figure 3.12 of that paper are of the same
family with γ1 = y−1[y−1, x]m−1, γ2 being the empty word and α being the form of a
knot J .

§4. Blanchfield forms of Simple Homology Boundary Links.
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Figure 18

Figure 19

We follow the development of [Du] where Blanchfield forms were defined for boundary
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links and mimic developments of [H1, 14–15, 122–124] [H2, page 372]. Suppose L is
an m-component homology boundary link in S2q+1 equipped with a homomorphism φ :
π1(E(L)) −→ F 〈x1, . . . , xm〉. Then (L, φ) induces a regular covering space X̃ of X = E(L)
whose group of deck translations is identified with the free group. X̃ is unique up to
covering space isomorphism and the identification is unique up to a global conjugation in
the group of deck translations. If φ were surjective then X̃ would merely be the usual
connected covering space associated to the kernel of φ. Any such cover is covered by the
(π1(E(L)))/(π1(E(L)))ω

∼= F 〈x1, . . . , xm〉 cover. If φ is not surjective then X̃ is a disjoint
union of copies of the connected cover associated to φ : π1(E(L)) ³ imageφ. Let A = Z[F ]
endowed with the involution

∑
niwi =

∑
niw

−1
i , let H∗(X,A) denote the right A-module

H∗(X̃ ; Z), and M = Hq(X, A). If q = 1, some modification is necessary. There seem to
be two ways to proceed. The first is to consider the quotient module M = H1(X̃)/H1(∂X̃)
which is the same as the quotient of H1(X,A) by the A-submodule, denoted L, generated
by lifts of longitudes which must lie in kernel φ if L is an homology boundary link. Later
in this section we shall explicitly investigate this situation and see that a Blanchfield form
can be defined on this module. The second way is to restrict to those (L, φ) for which there
exists a ribbon homology boundary link (R,ψ) and a degree one map relative boundary

f : E(L) −→ E(R) such that ψ ◦ f∗ = φ. If Ẽ(L) and Ẽ(R) are the covering spaces

associated to φ and ψ, let Z̃ be the mapping fiber of f̃ : Ẽ(L) −→ Ẽ(R) [Wh, p. 43].
Let M denote the A-module H∗(Z̃ ; Z) in this case. In 4.4, we shall show that these two
Blanchfield forms, while not isomorphic, are equivalent in the relevant Witt group.

Now we return to the general case. Let Λ denote the Cohn localization of A with
respect to the augmentation ε : A −→ Z (see [Du]). Recall that A

i−→ Λ is an embedding
with the property that any square matrix over A which is invertible when augmented, is
invertible over Λ. Recent work of M. Farber and P. Vogel has identified Λ as the ring of
“rational functions” in non-commuting variables [FV]. We wish now to restrict ourselves
to “simple” homology boundary links.

Definition 4.1. (compare [Du, §6] [Ko; 2.8]) An homology boundary link (L,V) in S2q+1

is simple if each Seifert surface Vi is (q − 1)-connected.

Then we define a (−1)q+1-Hermitian “Blanchfield linking form” B : Hq(X,A) −→
HomA(Hq(X,A), Λ/A) (see B′ in [Du, 624]) as follows. Consider the intersection form
Cq(X̃)⊗Z Cq+1(X̃) −→ A denoted by ·, inducing I : Hq+1(X, Λ/A)⊗Z Hq(X, A) −→ Λ/A

given by I(C ⊗ α, y ⊗ β) = β̄

( ∑
λ∈F

(C · yλ)λ
)

α where α, β ∈ Λ/A, C ∈ Cq+1(X̃), y ∈

Cq(X̃). Consider also ∂∗ : Hq+1(X, Λ/A) −→ Hq(X, A). Then set B(x, y) = I(∂−1
∗ x, y).

In case A were commutative this agrees with [CO, §1] and [H1; 120] but differs slightly
from [Du; 624]. The pair (M,B) shall be referred to as the Blanchfield form associated
to (L, φ). One key point of [Du] was to ensure that ∂∗ : Hq+1(X, Λ/A) −→ Hq(X,A)
be an isomorphism by showing Hq+1(X, Λ) ∼= Hq(X, Λ) ∼= 0. Suppose q > 1 and let
W be a wedge of m circles. Then φ induces φ : X −→ W and φ̃ : X̃ −→ W̃ . Since

23



φ is an integral homology equivalence up to and including dimension 2q − 1, φ̃ is a Λ-
homology equivalence in the same range (see page 624 of [Du]). But W̃ is a 1-complex
so Hq+1(X, Λ) ∼= Hq(X, Λ) ∼= 0. If q = 1, since f : E(L) −→ E(R) is an isomorphism on
integral homology, f̃ is an isomorphism on Λ-homology and so H∗(X, Λ) = 0.

Strictly speaking, the above extension of DuVal serves to define only the Blanch-
field form associated to the “free” cover of E(L) associated to the epimorphism φ :
π1(E(L)) ³ F 〈x1, . . . , xm〉 induced by V . An arbitrary homomorphism φ′′ : π1(E(L)) −→
F 〈x1, . . . , xm〉 factors as

π1(E(L))
φ
³ π1(E(L))/(π1(E(L)))ω

ψ
³ F 〈x1, . . . , xk〉

f
↪→ F 〈x1, . . . , xm〉

where ψ is onto and f is injective. Suppose (M, B) is the Blanchfield form associated to
φ. The Blanchfield form associated to φ′ is defined to be (M ′, B′) where M ′ = M ⊗ZH

ZF 〈x1, . . . , xk〉 where H = π1/(π1)ω and if x, y ∈ M , α, β ∈ F 〈x1, . . . , xk〉, B′(x⊗α, y⊗
β) = β̄ψ∗(B(x, y))α. Alternatively it is easily seen that DuVal’s work and the definitions
above extend trivially to these “reduced free covers” and so the previous definition may
be used and agrees with this one. The Blanchfield form (M ′′, B′′) associated to φ′′ is then
given by M ′′ = M ′ ⊗

ZF [x1,...,xk]

ZF [x1, . . . , xm] and B′′(x⊗α, y⊗β) = β̄f∗(B(x, y))α. Here

the covering space associated to φ′′ is a union of disjoint copies of that associated to φ′.
The fact that this definition of B′′ agrees with the obvious generalization of DuVal (given
by our original formula for B), is obtained in a manner precisely like the proof immediately
preceeding Theorem 1.9 of [CO2].

Another key point for DuVal was that the module on which B is defined be of type S.
We shall presently see that this is the case, also implying that they are Z-torsion free [Du;
Proposition 4.1].

We shall show that the Blanchfield form is determined by the Seifert matrix for a
simple homology boundary link (L,V) where by the Blanchfield form of (L,V) we mean

that associated to the map E(L)
φ−→

m∨
i=1

S1 by the Pontryagin construction applied to V.

For such a simple homology boundary link let Y = E(L)−
m⋃

i=1

Wi where Wi is an open

tubular neighborhood Vi × [−1, 1] of Vi. Let Z be the complex obtained by identifying
all those boundary components of V which are an ith longitude, i = 1, . . . , m. Then

Hj

(
m⋃

i=0

Wi

)
∼= Hj(Z) if j 6= 0, 1, 2q−1. By Alexander Duality, Hq(Y ) ∼= Hq(S2q+1−Z) ∼=

Hq(Z) ∼= Hom(Hq(Z),Z) ⊕ Ext(Hq−1(Z),Z) ∼= Hom(Hq(V) ; Z) if q 6= 1 (note if q = 2,
Hq−1(Z) is torsion-free). Therefore Hq(V) ∼= Hq(Y ) are free abelian of the same rank.
Choose a basis {αik | 1 ≤ k ≤ r(i)} for Hq(Vi), 1 ≤ i ≤ m.

Since the isomorphism above is detected by ordinary linking number in S2q+1, we may
choose a basis {α̂jn} for Hq(Y ) such that lk(αik, α̂jn) = δijδkn.

Suppose now that (L,V) is an m-component simple homology boundary link in S2q+1.
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Then there is a continuous map f : E(L) −→
m∨

i=1

S1 and points pi on the ith circle such

that f−1(pi) = Vi. Such an f induces homomorphism f∗ = φ as above. If f∗ is onto then
the covering space X̃ so induced may be constructed as in [H1, page 14] by splitting E(L)
open along V . Then there is a Mayer-Vietoris sequence:

A⊗Hq(V) d−→ A⊗Hq(Y ) i−→ Hq(X; A) ∂−→ A⊗Hq−1(V)

where d(γ ⊗ αj) = γxj ⊗ (ij+)(αj) − γ ⊗ (ij−)(αj) for αj ∈ Hq(Vj) and ij± the two
inclusions Vj −→ Y . Since L is simple, Hq−1(V) = 0. By our remarks above, if q 6= 1
then with respect to the bases {αik}, {α̂jn}, the matrix of (i+)∗ : Hq(V) −→ Hq(Y )
is merely θ where θ is the Seifert matrix for V relative to {αik}. Moreover the map
d : A

P
r(i) −→ A

P
r(i) is given by the matrix ∆ = Γθ + εθT where ε = (−1)q, Γ is

the block diagonal matrix (x1Ir(1), . . . , xmIr(m)) with Ir(i) the identity matrix of rank
r(i). Therefore ∆ yields a presentation matrix for the module Hq(X ; A). Since θ + εθT

is unimodular, ∆ is invertible when augmented. Therefore, by definition of the Cohn
localization Λ, ∆ is invertible in the larger ring Λ. In particular d and ∆ are injective,
establishing that Hq(X, A) is of type S when q > 1.

We may now compute the Blanchfield form, mirroring [H1; 122–123]. Suppose Cik

denotes a fixed translate of the (q + 1)-chain [−1, 1]× αik in X̃. Note that ∂Ckn = xk ⊗
α+

kn−1⊗α−kn = d(αkn), so for any w ∈ Hq(V)⊗A, w =
∑

wknαkn and ∂(
∑

wknCkn) = dw.
Now, to compute B(z, y) where z = ir = i(

∑
rknα̂kn) and y = i(

∑
sjmα̂jm), set w = d−1r

or wkn = (∆−1 · r)kn. Then one sees that z = i ◦ ∂(
∑

(∆−1 · r)knCkn). Thus

B(z, y) = I
(
i
(∑

(∆−1 · r)knCkn

)
, i

(∑
sjmα̂jm

))

=
∑

j,m

s̄jm





∑

k,n

I(Ckn, i(α̂jm))


 (∆−1 · r)kn


 .

But I(Akn, i(α̂jm)) = δjkδmn(1− xk) so

B(z, y) = s̄T (I − Γ)∆−1r mod A

where r and s are here viewed as column vectors. Summarizing, we have shown the
following for q > 1. The proof for q = 1, using our first definition of Blanchfield forms, is
immediately below.

Theorem 4.2. If (L,V) is a simple homology boundary link in S2q+1, then with respect
to the generators i(α̂kn) as defined above, the Blanchfield form is represented by the square
matrix (I − Γ)(Γθ + (−1)qθT )−1 where θ is the Seifert matrix with respect to αkn and
Γ is the block diagonal matrix defined above, and I is the identity matrix. The module
Hq(X,A) is presented by the matarix Γθ + (−1)qθT .
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While the terminology is fresh in the reader’s mind, we turn to the case q = 1. We
shall show that there is a Blanchfield pairing on the quotient module H1(X̃)/H1(∂X̃) ∼=
H1(X, A)/L. Since H1(∂X̃) is generated by lifts of longitudes, the inclusion-induced map
H1(∂X − V ) ⊗ A −→ H1(∂X̃) is onto. The argument of [H2; p. 373] works almost word
for word even though that argument concerned the Blanchfield form on the universal
abelian covering space. One special argument is necessary to establish that the map
i : H1(X − V ) ⊗ A −→ H1(X̃) of the Mayer-Vietoris sequence is onto in our case. For

this consider the map φ : X −→
m∨

i=1

S1 such that φ−1({pi} ∈ S1) = Vi, which induces

φ̃ : X̃ −→ W̃ where W is the wedge. Therefore there is a map of chain complexes as below

H1(X̃) ∂−−−→ H0(V )⊗A
d0−−−→ H0(Y )⊗A

ε−−−−−−−−−−→ Zyφ̃

y
∼=

y
∼=

y
∼=

H1(W̃ ) ∂−−−→ H0(∪{pi})⊗A
(d0)

′
−→ H0

(
W −

m⋃
i=1

{pi}
)
⊗A −→ Z.

Since W̃ is contractible, (d0)′ is injective. Since the middle vertical maps are isomorphisms,
d0 is also injective implying that i above is onto.

Hillman’s arguments result in the exact sequence

H1(V )
H1(∂V )

⊗A
d−→ H1(Y )

H1(∂X − V )
⊗A

i−→ H1(X̃)
L −→ 0

where the first two terms are shown to be free A-modules of the same rank (rank H1(V )−
rankH1(∂V ) + m). Moreover, if {αik} is a basis for H1(V )/H1(∂V ) represented by loops
on V and α̂ik the corresponding elements in H1(Y ) such that lk(αik, α̂jn) = δijδkn, then
clearly {[α̂jn]} generates H1(Y )/H1(∂X − V ) since each Vi is homotopy equivalent to
a 1-complex. Furthermore this set is linearly independent because if

∑
njnα̂jn = γ ∈

H1(∂X − V ) then 0 = lk(αij , γ) = nij since H1(∂X − V ) is generated by longitudes and
the Vi give null-homologies for the longitudes (disjoint from α+

ij). Therefore the matrix of
d is given by the same square matrix as in the case q > 1 and all of our conclusions for
that case apply. In particular H1(X̃)/L is of type S and is Z-torsion-free. In this way
we recover 4.2 for the case q = 1, at least under our first definition of the Blanchfield
form. ¤

By [Du; Prop. 4.1, 4.2, 4.3] the Blanchfield forms defined herein are (−1)q+1-linking
forms (M, B) in the sense of [V1]. A “Witt” group of such ε-linking forms is then de-
fined by DuVal [Du; §8] which we shall denote by Lε(A,Σ) where ε = (−1)q+1, A =
Z[F 〈x1, . . . , xm〉] and Σ is the group of square matrices which, when augmented, are
invertible over Z. Then it is not difficult to see that
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Corollary 4.3. The matrix correspondence of 4.2 induces a homomorphism G(m, (−1)q)
ψ−→ Lε(A, Σ), ε = (−1)q+1, which sends a representative of the Seifert matrix of an

homology boundary link (L,V) to the class of its Blanchfield linking form (when q = 2
we have taken an index 2m subgroup of the usual G(m,−1) so the definition of Lε(A, Σ)
would need to be similarly restricted in this case).

We can now show that the two Blanchfield forms defined in case q = 1 are “cobordant”
(equal in G(m,−1)). They are certainly not isomorphic, for, in the case that L were itself
a ribbon homology boundary link in S3, our second Blanchfield form could be taken to
be defined on the trivial module, whereas the first Blanchfield form would, in general, be
non-trivial.

Theorem 4.4. In case q = 1, the Blanchfield form B, defined on H1(X̃)/H1(∂̃X), is

equivalent in G(m,−1) to the Blanchfield form B′, defined on the kernel H1(X̃)
f̃∗−→

H1(Ẽ(R)) (see the beginning of this section for terminology).

Proof of 4.4. We are given that f : (E(L), ∂E(L)) −→ (E(R), ∂E(R)) is a degree 1 map
of simple Poincaré pairs in the sense of Wall [W; §2]. Let X = E(L) and Y = E(R). By
Lemma 2.2 of [W] the horizontal short exact sequence below is split exact, and since f is
a homeomorphism on ∂X, the upper map is an isomorphism

H1(∂X;A)
∼=−−−−−→ H1(∂Y, A)yiX

yiY

0 −→ M
j−→ H1(X;A)

f̃∗−−−−−→ H1(Y ; A) −→ 0.

g∗

It follows that the following is exact

0 −→ ker iX −→ ker iY −→ M −→ cok iX −→ cok iY −→ 0.

But since H2(X; ∂X; A)
f̃∗−→ H2(Y, ∂Y ; A) is onto, it is easily seen that ker iX −→ ker iY

is surjective. Therefore 0 −→ M −→ cok iX −→ cok iY −→ 0 is exact, and in fact split
exact.

The latter observation necessitates showing that g∗, when restricted to the image of
H1(∂Y ;A), is an inverse to f∗, that is to say, if α ∈ H1(∂Y ;A) then g∗iY (α) = iXf−1

∗ (α).
This may be shown directly using the fact that g∗(β) is given by the Poincaré dual of
f∗ of the Poincaré dual of β. Thus g∗iY (α) = (f∗(iY α)∧) ∩ ΓX where ( )∧ denotes
Poincaré dual and ΓX is the fundamental class. But (iY α)∧ = δY (α̂) ([GH; 28.18]), and
f∗δY (α̂) = δXf∗α̂. By the same fact, (δXf∗α̂) ∩ ΓX = iX(f∗α̂ ∩ Γ∂X). Finally f∗(f∗α̂ ∩
Γ∂X) = α̂∩ f∗Γ∂X by [GH; 24.14], which in turn equals α since f is a homeomorphism on
∂X. Therefore there is an isomorphism

H1(X; A)/H1(∂X; A) ←− M ⊕H1(Y ; A)/H1(∂Y ;A)
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given by (m, y) −→ m+g∗(y). Since we have already established that H1(X; A)/H1(∂X;A)
and H1(Y ; A)/H1(∂Y ; A) are of type S, it follows that M is Z-torsion-free and of type L
[Du; 3.1i], hence of type S [Du; 4.1]. Consider the intersection forms IX , IY used to define
the Blanchfield forms. It is a small exercise to show that IX(α, g∗β) = IY (f∗α, β) using the
fact that f is degree 1. Thus BY (f∗α, β) = BX(α, g∗β). It follows that BX(m, g∗y) = 0 for
all m ∈ M and y ∈ H1(Y ; A)/H1(∂Y ; A), and that BX(g∗y1, g∗y2) = BY (y1, y2). Hence
BX is isomorphic to BY (on H1(Y ;A)/H1(∂Y ; A)) plus the Blanchfield form on M (which
we have called B′). But BY is trivial in G(m,−1) as shown in the proof of Theorem 3.6
(a ribbon S-link is scheme null-cobordant). Hence BX

∼= B′ in G(m,−1). ¤

Proposition 4.5. Suppose f : F 〈x1, . . . , xk〉 −→ F 〈x1, . . . , xm〉 is an homomorphism.
Then there is a commutative diagram

G(k, ε)
ψk−−−−→ L−ε(Z[F 〈x1, . . . , xk〉], Σ)

yf∗

yf∗

G(m, ε)
ψm−−−−→ L−ε(Z[F 〈x1, . . . , xm〉], Σ)

where the left-hand f∗ is defined in 3.4 and the right-hand f∗ is the usual homomorphism in-
duced by an augmentation-preserving, involution-preserving ring homomorphism f , namely
f∗((M, B)) =

(
M

⊗
ZF 〈x1,...,xk〉

ZF 〈x1, . . . , xm〉 , B′
)

where B′(x⊗α, y⊗β) = β̄f∗(B(x, y))α

for x, y ∈ M and α, β ∈ F 〈x1, . . . , xm〉.

Proof of 4.5. We know that f∗ is realized by taking parallel copies of Seifert surfaces for
a boundary link of k-components and labelling them appropriately as in 3.4. Therefore
we go from the Blanchfield form associated to the standard epimorphism φ : π1(E(L)) ³
F 〈x1, . . . , xk〉 defining the usual free cover of the exterior of the boundary link, to one
associated to f ◦φ : π1(E(L)) −→ F 〈x1, . . . , xm〉. Thereby the result is reduced to showing
that the one definition of the Blanchfield form, namely that given by 4.3, is the same as
the other one we gave. We leave the details to the reader. ¤

This allows us to re-state our major theorems 3.5 and 3.6 in terms of Blanchfield linking
forms. To do so we need the algebraic fact that ψ (see 4.2) is onto. In our exposition this
is postponed until just before Theorem 5.7. We beg the reader’s indulgence.

In summary, any pattern and any linking form may be realized by acting on a (simple)
ribbon link with a simple boundary link. The following, in particular, justifies Theo-
rem 3.16 of [CO1] which was there used for several computations.

Theorem 4.6. (see Theorem 3.5) Under the hypotheses of Theorem 3.5, the result of
acting on (L,V, b) by the boundary link (B,W) has Blanchfield linking form equivalent to
the sum of the linking form of (L,V, b) and the image under f∗ of the linking form of
(B,W). Here we also assume that (L,V) and (B,W) are simple.
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Theorem 4.7. (see Theorem 3.6) Given any pattern P , any q ≥ 1 and any λ ∈ Lε(Z[F
〈x1, . . . , xm〉], Σ), ε = (−1)q+1, (subject to the usual restriction if q = 2), there is a simple
m-component homology boundary link (L,V) in S2q+1 with pattern P and Blanchfield
linking form equivalent to λ. This link is obtained by acting on a ribbon link with pattern
P by a simple boundary link with linking form λ.

§5. Scheme Cobordism classes of homology boundary links.

Definition 5.1. Suppose (L,V) and (L′,V ′) are m-component homology boundary links
in S2q+1 which “have the same scheme” S in the sense that there exist basings b, b′ of type
(x1, . . . , xm) (i.e., ordinary basings) inducing the scheme S = (w1, . . . , wm). Then we say
that (L,V) is scheme-cobordant to (L′,V ′) if in S2q+1 × [0, 1] there is a link concordance

g :
m∐

i=1

S2q−1 × [0, 1] ↪→ S2q+1 × [0, 1] from L to L′ and a set IV = {IV1, . . . , IVm} of

connected compact, oriented (2q + 1)-dimensional manifolds embedded in the exterior of
the concordance such that ∂(IVi) = Vi ∪ (−V ′

i ) ∪ (∂Vi × [0, 1]) for i = 1, . . . , m and such
that the intersection of IV with a tubular neighborhood of the concordance is a product
of its intersection with ∂E(L) (or ∂E(L′)) by [0, 1].

In the case that the scheme is (x1, . . . , xm) (boundary links) this agrees with [Ko; §2].
This is clearly an equivalence relation, abbreviated L ∼ L′. We have already sketched a
proof that any ribbon homology boundary link with scheme S is scheme-cobordant to a
trivial link with scheme S. It is known that any even-dimensional homology boundary
link is scheme-cobordant to the trivial one [C3] [De2].

Proposition 5.2. If q > 1, the addition (L,V) ⊕ (L′,V ′) of two m-component homology
boundary links of reduced scheme S (S-links) given by the tangle sum using any basings
b, b′ of type (x1, . . . , xm) which induce S, is a well-defined, commutative and associative
operation on scheme-cobordism classes of S-links. Any ribbon homology boundary link with
scheme S acts as identity.

Proof. Firstly, the tangle sum using a basing of type (x1, . . . , xm) and reduced scheme is
just the usual connected-sum along arcs which do not intersect V as defined in [Ko; §2],
together with the boundary-connected-sum along the same arcs to join up each sheet of
the Seifert surfaces. The proof of [Ko; Prop. 2.11] works to show that ⊕ is well-defined up
to scheme-cobordism since the present situation is so clearly related. The commutativity
and associativity are clear from the “connected-sum along arcs” definition. Any ribbon
homology boundary link with scheme S will serve as identity. ¤

Theorem 5.3. (compare [De, 5.2 and 6.2]) Any homology boundary link (L,V) with
scheme S is scheme-cobordant to a simple homology boundary link with scheme S.

Proof of 5.3. The proof in [Ko; 2.8] generalizes to these generalized Seifert surfaces, but
our Lemma 6.10 is needed to get the scheme-cobordism. ¤
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Definition. The set of scheme-cobordism classes of homology boundary links (L,V) in
S2q+1 with scheme S will be denoted C(m, q, S) (or sometimes merely C(S) or C(q, S)).
(We will shortly see that, if q > 1, this is an abelian group and will use the same symbol
for the group).

Proposition 5.4. The cobordism class of the Seifert form θ : C(m, q, S) −→ G(m, (−1)q)
is a well-defined and, if q > 1, additive function sending the identity to the identity.

Proof. We have shown additivity in 3.2. The well-definedness is proved as in ([Ko]; see
just prior to Theorem 3.4).

Theorem 5.5. If θ((L,V)) = 0 then (L,V) ∼ 0.

After proving 5.5 we will get immediately that C is a group.

Corollary 5.6. If q > 1 and S is reduced, C(m, q, S) is a group and θS is an isomor-
phism. Thus the group of scheme-cobordism classes of homology boundary links with re-
duced scheme S is isomorphic to G(m, (−1)q).

Proof of 5.6. We showed θ surjective in 3.6. Define the inverse of L to be an element in
the inverse image of −θ(L). Then θ(L⊕−L) = θ(L)⊕−θ(L) = 0 so L⊕ (−L) ∼ 0 by 5.5.
Therefore C is a group. But θ has been shown to be additive, injective and surjective so
it is an isomorphism. ¤

Proof of 5.5. It suffices to assume that (L,V) is a simple m-component homology bound-
ary link in S2q+1 where q > 1 and θ(V) = 0. We shall first show that (L,V) is “S-slice”,
that is that the components of L bound disjoint 2q-dimensional disks ∆ = {∆1, . . . , ∆m}
in B2q+2 and there is a collection of (2q + 1)-manifolds W embedded disjointly in the
exterior of ∆ such that

∂Wi = Vi ∪ (∂Wi ∩N(∆))

and the intersection of ∂W with the boundary of a tubular neighborhood (S1 ×∆) of ∆
is a product (V ∩ (S1 × {p}))×∆ for p ∈ ∂∆. The desired result follows easily from this.

Suppose φ : E(L) −→
m∨

i=1

S1 is induced by V. Let S(L) be the result of stably-framed

surgery on the components of L. Thus S(L) = E(L)
⋃

∂E(L)

(
m∐

i=1

D2q × S1

)
and we can

extend φ to S(L) by φ̂
∣∣
D2q×S1= φ

∣∣
p×S1 for p ∈ ∂D2q. To show that (L,V) is “S-slice”

it suffices to show that the triple (S(L), stable framing, φ̂∗) is the boundary of (Y 2q+2,
stable framing, ψ∗) where ψ∗ : π1(Y ) −→ F 〈x1, . . . , xm〉, H∗(Y ) ∼= H∗(\S1 ×D2q+1) and
π1(Y ) is normally generated by the meridians of L (their images in π1(S(L))). For then
(Y, ∂Y ) is transformed to (B2q+2, S2q+1) by attaching m 2-handles along the meridians
and thus W is seen to be the exterior in B2q+2 of a null-concordance ∆ = {∆1, . . . , ∆m}
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for L. Since φ̂∗ extends, the reverse of the Pontryagin construction applied to ψ yields the
necessary Wi.

To produce Y , begin with B2q+2 and attach m 2q-handles h1, . . . , hm along the com-
ponents of L in such a way that the resulting (2q + 2)-manifold Z is stably-parallelizable.
Then ∂Z ≡ S(L). Note H∗(Z) ∼= H∗(\m

i=1D
2 × S2q). It only remains to find disjointly

embedded 2q-spheres representing a basis for H2q(Z) (which have trivial normal bundle
since q 6= 1) and perform framed surgery on these, resulting in the desired Y . We also need
to ensure that φ̂∗ extends to the exterior (in Z) of these 2q-spheres and π1(∂Y ) −→ π1(Y )
is a “normal surjection”. Consider the Seifert surface Vi capped off along each of its
boundary (2q− 1)-spheres by copies of the 2q-disk which are parallels of cores of the han-
dles {h1, . . . , hm}. Then these capped-off manifolds, V̂i may be ambiently surgered along
q-spheres to yield the desired 2q-spheres, exactly as in the injectivity part of the proof of
Theorem 3.5 of [Ko]. This necessitates q > 1. Finally note that π1 of the complement in
B2q+2 of a set of Seifert surfaces pushed-in slightly is a free group on a set of “meridians”
xi to these surfaces. Since φ∗ is onto, each of these is in the normal closure of the meridians
of L. In fact we may take ψ∗ to be what amounts to the identity map. Note that the
ambient surgeries on q-spheres are of high codimension and irrelevant to π1. ¤

We may now summarize all of these relationships in Diagram 20. We assume q > 1.
When q = 2, the index 2m subgroups must be used as previously discussed.

C(m, q, (x1, . . . , xm))

T θ

y B

C(m, q, S) θS−−−→ G(m, (−1)q)
ψ−−−→ L(−1)q+1

(Z[F ], Σ)

BS

Diagram 20

Here C(m, q, (x1, . . . , xm)) can be seen to be identical to Ko’s group, C2q−1(Bm), of bound-
ary cobordism classes of boundary links with chosen Seifert surface systems. Here T (α)
is defined to be the result of a simple boundary link with Seifert form α acting on a rib-
bon homology boundary link with scheme S. Both θ and θS are isomorphisms by [Ko,
Thm. 3.5] and by 5.6, so T is also an isomorphism. The map B is an isomorphism for
q ≥ 3 by Theorem 9.1 of [Du] and Theorem 2.7 of [Ko]. It follows that ψ and Bs are
isomorphisms for q ≥ 3. But since, if q 6= 2, the domain and range of ψ depend only on
the parity of q, ψ is an isomorphism for q = 1. Since the index 2m subgroup of G(m,+1)
used when q = 2 is merely the subgroup of matrices A such that the blocks Aii have
signatures multiples of 16, and this is carried over naturally to the L-group, ψ is seen to
be an isomorphism in all cases, with the understanding, when q = 2, that we restrict to
the subgroup of L. It follows that B and Bs are isomorphisms onto this subgroup for
q = 2. Thus all maps are isomorphisms if q 6= 1.
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When q = 1, C(m, q, S) and C(m, q, (x1, . . . , xm)) are not groups but merely sets of
equivalence classes, all maps are defined, ψ is a isomorphism and θ, θs, B, Bs are surjective.

Therefore we have

Theorem 5.7. (compare [Du; Thm. 9.1]) If q > 1, the group C(m, q, S) of scheme-
cobordism classes of m-component homology boundary links (with surface systems of re-
duced scheme S) in S2q+1 is isomorphic to L(−1)q+1

(Z[F ],Σ) (when q = 2, replace L
by the appropriate index 2m subgroup). This isomorphism is given by the Blanchfield
form associated to the free cover associated to the system of Seifert surfaces. Hence
C(m, q, S) ∼= C(m, q, {x1, . . . , xm}) for all reduced schemes S.

Let C(m, q) stand for C(m, q, {x1, . . . , xm}). Let F stand for Z[F 〈x1, . . . ,m〉] ε−→ Z.
Let Γ2q+2(F) stand for the homology-surgery group of Cappell and Shaneson [CS2] and
Γ̃2q+2(F) be its quotient by the image of L2q+2(F 〈x1, . . . , xm〉) i−→ Γ2q+2(F). Recall that
Cappell, Shaneson and DuVal established the exact sequences below [Du; p. 633–634].

0 −→ Γ̃2q+2(F)
φ−→ C(m, q) −−−−−→ L2q+1(F ) −→ 0

∥∥∥
yB

∥∥∥

0 −→ Γ̃2q+2(F) −→ L(−1)q+1
(A,Σ) −→ L2q+1(F ) −→ 0

Therefore we can conclude the following using 5.6 and 5.7. The first exact sequence below
was (essentially) obtained by DeMeo (unpublished) in [De; Thm. 7.2]. There he deals
with a group analogous to the Fm-cobordism classes of Cappell and Shaneson but the
equivalence to scheme-cobordism classes is not hard to deduce (see 6.10).

Theorem 5.8. If q > 2, there are exact sequences for any reduced scheme S

0 −→ Γ̃2q+2(F)
φS−→ C(m, q, S) −−−−−→ L2q+1(F ) −→ 0

∥∥∥
yBS

∥∥∥

0 −→ Γ̃2q+2(F) −→ L(−1)q+1
(A, Σ) −→ L2q+1(F ) −→ 0

where BS is the Witt class of the Blanchfield linking form associated to the free covering
space dictated by the system of Seifert surfaces. Moreover φS = T ◦ φ (see 5.6) so that
φS(α) is obtained by allowing the boundary link φ(α) to act on a ribbon homology boundary
link of scheme S.

Proof of 5.8. Merely replace C(m, q) in the Cappell-Shaneson-DuVal sequence by
C(m, q, S) using the isomorphism T of Diagram 20. ¤
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§6. Classification of Homology Boundary Links Modulo Homology Boundary
Link Concordance.

In this section we investigate the question of when two homology boundary links of
pattern P are concordant respecting that pattern. In the proof of 6.3, we shall see that
this is the same as asking that for some Seifert surface systems the links are scheme-
cobordant, indicating that this is the proper analogue of boundary link cobordism of
boundary links, and justifying the equivalent name of homology boundary link cobordism.
This necessitates computing the effect on Seifert form of choosing different Seifert surface
systems. This mirrors the analysis of Ko in the case of boundary links, but is much more
complicated.

Definition 6.1. Two P -links (links of pattern P ) L and L′, are P -cobordant , or pattern-
cobordant or homology boundary link cobordant if there is a concordance C from L to L′

and an epimorphism g : π1(E(G)) ³ F such that g◦i : π1(E(L)) ³ F and g◦i′ : π1(E(L′))
are epimorphisms.

It follows that the “pattern” of the concordance is P . Let P(m, q, P ) denote the set of
P -cobordism classes of m-component homology boundary links in S2q+1 with pattern P .

Suppose (w1, . . . , wm) is in the equivalence class of the fixed pattern P .

Definition 6.2. Autwi F is the subgroup of automorphisms of the free group F on m
letters which send wi to a conjugate of wi for 1 ≤ i ≤ m.

Theorem 6.3. For any fixed pattern P and any representative (w1, . . . , wm) of P , there
exists a bijection θ : P(m, q, P ) −→ G(m, (−1)q)/ Autwi F where the action is defined as
in 3.4 (and if q = 2 we mean the usual index 2m subgroup of G). θ(L) is defined by
finding (for any scheme S compatible with (w1, . . . , wm)) a system of Seifert surfaces V
for L which induces the scheme S (for some basing) and setting θ(L) = θS(V). Similarly
the map given by the Blanchfield Form of a simple representative induces a bijection B :
P(m, q, P ) −→ L(−1)q+1

(Z[F ],Σ)/ Autwi F where the action is as in 4.5.

A translation of 6.3 in terms of Γ-groups yields the following.

Theorem 6.4. Suppose q > 2. For any fixed pattern P and any representative (w1, . . . , wm)
of P , there are functions

Γ̃2q+2(ZF → Z)/ Autwi F
φS−→ P(m, q, P ) π−→ L2q+1(F )

such that π is surjective and φS is an injection with image π−1(0). Here Γ̃ is a gamma
group modulo the image of L2q+2.

Most of the rest of this chapter will be devoted to proving 6.3. We should note that this
answer surprised us. We had thought that the answer would be G/ Aut0 F where Aut0 F
are those automorphisms inducing the identity on homology. This is tempting to conclude
given the work of Cappell and Shaneson and the following propositions.
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Definition 6.5. A splitting map for the m-component homology boundary link (with
basepoint) (L, ∗) is an epimorphism φ : π1(E(L), ∗) −→ F , where F is free of rank m,
such that, for some meridional map µ : F −→ π1(E(L), ∗) (µ(xi) is an ith meridian), φ ◦µ
induces the identity map on abelianizations. Clearly φ is a splitting map with respect to
some µ if and only if φ is a splitting map with respect to each possible µ.

Let Aut0(F ) be the group of automorphisms of F which induce the identity on abelian-
ization.

Proposition 6.6. If φ is a splitting map for (L, ∗) then for any ψ ∈ Aut0(F ), ψ ◦ φ
is a splitting map for (L, ∗). If φ and φ′ are splitting maps for (L, ∗) then there exists
ψ ∈ Aut0(F ) such that φ′ = ψ ◦ φ.

Proof of 6.6. The first claim is obvious. For the second claim, let G = π1(E(L), ∗) and
let π be the quotient map G −→ G/Gω. By our remark above, φ and φ′ are splitting
maps with respect to some µ. By Stallings’ theorem, φ and φ′ induce isomorphisms φω,
φ′ω from G/Gω to F such that φ = φω ◦ π, φ′ = φ′ω ◦ π. Setting ψ = φ′ω ◦ φ−1

ω we see that
φ′ = ψ ◦ φ. Moreover, upon abelianization, ψ(xi) ≡ ψ(φµ(xi)) ≡ φ′ω ◦ φ−1

ω ◦ φ ◦ µ(xi) ≡
φ′ω ◦ π ◦ µ(xi) ≡ φ′(µ(xi)) ≡ xi. ¤

Recall that a scheme S of basing type (x1, . . . , xm) has pattern P if the circles {∂∆i |
i = 1, . . . , m} = {γi | i = 1, . . . ,m} trace out words (w1, . . . , wm) in F × . . . × F which
has pattern P . Recall that if (w1, . . . , wm) and (w′1, . . . , w

′
m) have pattern P then w′i =

ψ(giwig
−1
i ) for some ψ ∈ Aut0(F ) and some gi ∈ F . If (L,V) is an homology boundary

link with pattern P , and (r1, . . . , rm) is an m-tuple of words of F such that f(xi) = ri

defines an element of Aut0(F ), then we can define a new system (L,V ′′), denoted f#(L,V),

as follows. Assume ri = x
εi1
i1

. . . x
εik
ik

. Merely replace each Vi by a disjoint union
k∐

j=1

εij Vi

of parallel copies of Vi, with orientation varying according to εij = ±1, the relabelling the
nth copy with the letter in. Set V ′

i equal to the union of the components labelled with j.
Since each Vi was connected, S2q+1−V ′ is connected. Thus we can tube components of V ′

i

together to form V ′′
i which is connected. This (L,V ′′) is the desired surface system. This

is very similar to the f#L defined in §3 except that here we are not changing the link L,
merely making the Seifert surfaces more complicated. Note, however that f#L depends
on more than f and as such involves arbitrary choices. The following is then immediate
from the definitions.

Proposition 6.7. Suppose ri are words such that the endomorphism defined by f(xi) = ri

lies in Aut0(F ). If (L,V) induces the splitting map φ (by the Pontryagin construction),
then f#(L,V) induces the splitting map f ◦ φ.

Given 6.6 and 6.7 it is very tempting to think that θ gives, somehow, a well-defined
bijection from P(m, q, P ) to G(m, (−1)q)/ Aut0 F . It does not. To correctly analyze the
situation, it is helpful to introduce an intermediate, more algebraic, notion.
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Given (w1, . . . , wm) which represents a pattern P , consider pairs (L, φ) where L is an
homology boundary link and φ : π1(EL) ³ F is an epimorphism such that, for some
meridians µi, φ(µi) = wi. Given two such (L0, φ0), (L1, φ1) we say (L, φ0) ∼ (L1, φ1)
if there is a concordance C from L0 to L1 and an epimorphism ψ : π1(EC) ³ F which
restricts on π1(EL0) to φ0 and on π1(EL1) to φ1 (after an inner automorphism of π1(EL1)
to change the basepoint of π1(EC)). Let H(m, q, wi) or simply H(wi) represent the set
of equivalence classes. This set was defined by Cappell and Shaneson in the case wi = xi

and by De Meo in general [De].
Now fix a pattern P . The group Aut0 F acts on the disjoint union qH(wi) (taken

over all (w1, . . . , wm) which are in the equivalence class of the pattern P ) as follows:
f#([L, φ)] = [(L, f ◦ φ)].

Lemma 6.8. The forgetful map F : qH(m,q,wi)
Aut0 F −→ P(m, q, P ) is a bijection. Here the

disjoint union is over the set of all m-tuples (wi) in the equivalence class of P .

Proof of 6.8. First note that F is well-defined on H(wi) since the equivalence relation ∼
is stronger than P -cobordism. It is independent of the action of Aut0 F since the action
changes only the splitting map, not the link.

Since F is obviously surjective, we need only show injectivity. Suppose (L, φ) ∈ H(wi),
(L′, φ′) ∈ H(w′i) and suppose that L is homology boundary link concordant to L′. Thus
there exists a concordance C from L to L′ and an epimorphism g : π1(EC) ³ F such
that ψ = g ◦ i is a splitting map for L and ψ′ = g ◦ κ ◦ i′ is a splitting map for L′ (here κ
is an automorphism of π1(EC) to change basepoints). Since (L, φ) ∈ H(wi), there exist
meridians µi ∈ π1(EL) such that φ(µi) = wi.

By 6.6 there exist elements f , f ′ of Aut0 F such that f#(L, φ) = (L, f ◦φ) = (L,ψ) and
(f ′)#(L′, φ′) = (L,ψ′). Therefore it suffices to show that (L,ψ) ∼ (L,ψ′) in H(f(wi)).
Note that ψ(µi) = f(wi) so indeed (L,ψ) ∈ H(f(wi)). Now choose meridians µ′i ∈ π1(EL′)
such that κ ◦ i′(µ′i) = i(µi). Then ψ′(µ′i) = g ◦ κ ◦ i′(µ′i) = g ◦ i(µi) = ψ(µi) = f(wi) so
(L′, ψ′) ∈ H(wi), and the concordance (C, g) shows [(L,ψ)] = [(L′, ψ′)]. ¤

Note that if [(L, φ)] ∈ H(wi) and f ∈ Autwi F , f#(L, φ) is still in H(wi). For, if f(wi) =
ηiwiη

−1
i , then choose ξi such that f ◦ φ(ξi) = η−1

i and observe that f ◦ φ(ξiµiξ
−1
i ) = wi.

Lemma 6.9. For any m-tuple (w1, . . . , wm) inducing the pattern P , the inclusion map
H(wi)

Autwi
F

i−→ qH(wi)
Aut0(F ) is a bijection.

Proof of 6.9. First we show surjectivity. Suppose (L, φ) ∈ H(w′i). Since (w′i) is in the
same pattern P as (wi), wi = f(ηiw

′
iη
−1
i ) for some f ∈ Aut0 F . Choose meridians µi such

that φ(µi) = w′i. Consider f#(L, φ) = (L, f ◦ φ). Choose ξi such that φ(ξi) = ηi. Then
f ◦ φ(ξiµiξ

−1
i ) = f(ηiw

′
iη
−1
i ) = wi, showing that (L, f ◦ φ) ∈ H(wi). Thus i is onto.

Now suppose (L0, φ0) and (L1, φ1) ∈ H(wi) and i((L0, φ0)) = i((L1, φ1)). It follows
that there is a g ∈ Aut0 F such that g#[(L1, φ1)] = [(L0, φ0)] in H(wi). In particular
this implies (L1, g ◦ φ1) lies in H(wi)!! This places strong restrictions on g since (L1, φ1)
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also lies in H(wi). Suppose µi are meridians such that φ1(µi) = wi. Then there must be
meridians ηiµiη

−1
i such that g ◦ φ1(ηiµiη

−1
i ) = wi. But this immediately implies g(wi) is

conjugate to wi. Therefore g ∈ Autwi
(F ) and (L0, φ0) is equal to (L1, φ1) in the domain

of our map i, concluding our proof that i is injective. ¤

Lemma 6.10. Suppose S = (w1, . . . , wm) is a scheme. The Pontryagin construction
yields a bijection p : C(m, q, S) −→ H(m, q, wi). Therefore H(m, q, wi) is naturally a
group if q > 1.

Proof of 6.10. First we show p is well-defined. Suppose (L,V) and (L′,V ′) are S-links
for which the Pontryagin construction using basings b, b′ (see 5.1) yields splitting maps φ
and φ′ respectively where b and b′ induce the scheme S. If (L′,V ′) is scheme-cobordant
to (L,V) via C and IV, then we can show that (L, φ) ∼ (L′, φ′) in H(wi) by using the
basepoint of b and applying the Pontryagin construction to IV to yield a homomorphism
ψ : π1(EC, b∗) −→ F such that ψ◦i = φ and ψ◦κ◦i′ = φ′ where κ is a change of basepoint
from b∗ to b′∗. Thus p is well-defined.

The map p is onto by the techniques of the proof of Theorem 3.6, which shows that
given any link (L,V) and splitting map g such that g∗(µi) = [wi] and S = (w1, . . . , wm) is
any scheme, V can be modified, preserving g∗, until V induces S precisely.

Now suppose p((L,V)) = p((L′,V ′)). Then there exists a concordance C and an epi-
morphism ψ : π1(EC) ³ F such that ψ ◦ iC = φ and ψ ◦ κ ◦ i′ = φ′ as usual. Let f ,

f ′ be the maps from EL, EL′ respectively to
m∨

i=1

S1 induced by V, V ′ as above where

f∗ = φ, (f ′)∗ = φ′. Under an identification ∂+EC ≡ ∂N(L)× [0, 1] = ∂N(L′)× [0, 1], we

can extend f and f ′ to F : ∂EC −→
m∨

i=1

S1 by letting F = f ◦ p1 (p1 = projection onto

1st factor) on ∂N(L)× [0, 1]. This is possible because f and f ′ induce the same scheme.
Notice that F∗ necessarily agrees with ψ, and F extends over E(C) since F∗ is extended by
ψ. After a small perturbation, the inverse of the Pontryagin construction then produces
the “Seifert surfaces” IV which exhibit that (L,V) is S-cobordant to (L′,V ′). Hence p is
injective.

To see that H(m, q,wi) is a group, note that clearly H depends only on the image of
wi in F . Thus we can choose a reduced scheme S compatible with wi, and apply 5.6. ¤

Corollary 6.11. If S = (w1, . . . , wm) then there is an action of Autwi F on the set
C(m, q, S) of scheme cobordism classes of S-links, with respect to which the bijection p of
6.10 is equivariant.

Proof of 6.11. Given f ∈ Autwi F simply define f#[(L,V)] to be p−1(f#(p([L,V]))).
It is then also clear that the geometric description of f#([L,V]) in terms of copies of the
Seifert surfaces (see above 6.7) realizes this action and hence that the geometric description
of the action is independent, up to scheme cobordism, of the choices involved. ¤
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Lemma 6.12. Suppose (w1, . . . , wm) represents the reduced scheme S. The isomorphism
given by taking the Seifert form, θS : C(m, q, S) −→ G(m, (−1)q) , is equivariant with
respect to the actions of Autwi

F defined in 6.11 and 3.4 respectively.

Proof of 6.12. By Theorem 3.6 and Corollary 5.6, we may assume that an arbitrary
scheme cobordism class (L,VL) takes the form of a boundary link (B,VB) with Seifert form
α acting on a ribbon homology boundary link (R,V, b) for which the loops {∂∆1, . . . , ∂∆m}
intersect V in words which reduce to {x1, . . . , xm} in the free group. Of course θS(L,VL) =
α. Now consider acting on (L,VL) by f ∈ Autwi

F such that f(xi) = ri. By 6.11, we may
use the geometric definition of f#(L,V) as described above 6.7. But changing the Seifert
surface system of L does not change the fact that it is obtained as the boundary link
(B,VB) acting on ribbon link because L itself is unchanged by f#. However now (B,VB)
is acting on (R,V ′, b) and the loops {∂∆1, . . . , ∂∆m} now intersect V ′ in words which
reduce to {f∗(x1), . . . , f∗(xm)} = {r1, . . . , rm} in the free group. Thus θS(f#(L,VL)) =
θ(R,V ′) ⊕ f∗(α) by 3.5. Since (R,V ′) is clearly still a ribbon homology boundary link,
θ(R,V ′) = 0. Hence θS(f#(L,VL)) = f∗θS(L,V) as desired. ¤

We have now completed the proof of 6.3. Given any pattern P and any representa-
tive (w1, . . . , wm) of P , we may combine 6.8–6.11 to show that the forgetful map from
C(m, q, S)/ Autwi F to P(m, q, P ) is a bijection. Lemma 6.12 then completes the argu-
ment. Theorem 6.4 then follows formally from 6.3 and the functoriality of the Γ-groups
and L-groups. ¤

Corollary 6.13. Two homology boundary links L, L′ are homology boundary link cobor-
dant if and only if there exist Seifert surface systems such that (L,V) and (L′,V ′) are
scheme-cobordant (see 5.1).

§7. Zp-Homology Boundary Links in Zp-Homology Spheres.

Suppose S is a closed, oriented (2q + 1)-manifold which has the Zp-homology of S2q+1

(let J = Z(p), the integers localized at p). Suppose L = {K1, . . . ,Km} is an ordered,
oriented, embedded collection of (2q − 1)-spheres in S (whose longitudes are torsion in
H1(E(L)) if q = 1). Then we call (L,S) a link in a Z(p)-homology sphere. If L admits a
system V = {V1, . . . , Vm} of “Seifert surfaces” where ∂Vi is homologous to the ith longitude
in H2q−1(∂E(L);Zp) then we call L a Zp-homology boundary link (see [H1]). We restrict
to such L with (q− 1)-connected “Seifert surfaces” as before and continue to use the term

simple. The Pontryagin construction associates to (L,V) a map E(L) −→
m∨

i=1

S1 as before

and hence a free covering space X̃. Then Hq(X̃ ; Z(p)) is an A-module (A = Z(p)[F ])
and we may define on it a Blanchfield form, as in §4, taking values in Λ/A where Λ is the
Cohn localization of A

ε−→ Z(p). The specific analysis using the Mayer-Vietoris sequence
also holds to show that this Blanchfield form is determined by a “Seifert matrix”. Here, to
avoid speaking of linking numbers one can define θ(αij , αkl) to be the coefficient of α̂kl for
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i+αij , that is the matrix of i+ with respect to the dual bases {αij}, {α̂ij} for Hq(V ; Z(p))
and Hq(E(L)−V ; Z(p)). Observing that i+α− i−α = ±Σ(α · αij)α̂ij where the latter is
the intersection form on Hq(V ; Z(p)), one sees that the matrix of i+ is θ and the matrix of
i− is θ±I where I is the intersection matrix on Hq(V ; Z(p)) with respect to {αij} (we do
not stop here to get the sign correct). Then the map d is represented by ∆ = Γθ ± I − θ.
Note that ∆ is invertible when augmented since I is invertible. Hence the entire proof of
Theorem 4.2 goes through using the matrix (I − Γ)(Γθ + I − θ)−1.

Recall that new invariants of links were introduced in [CO1], [CO2] to show that
not all links are concordant to boundary links. The initial step of the definition of
those invariants entailed associated to the link L = {K1, . . . , Km}, a covering link L̃ =
{K̃1, K̃21, K̃22, . . . , K̃2p, K̃31, . . . , K̃m1, . . . , K̃mp} consisting of the lifts of the components
of L in a p-fold cyclic cover of S2q+1 branched over K1 (p prime). In case L were a simple
homology boundary link with surface system V, L̃ would be a simple Zp-homology bound-
ary link in the Z(p)-homology sphere S. Then we have the Blanchfield form B = B(L,V) in
Lε(Z[F 〈x1, . . . , xm〉],Σ) and the Blanchfield form B̃ = B(L̃, Ṽ) in Lε(Z(p)[F ′], Σ′) where
F ′ is free on 1 + (m− 1)p letters. One might then define a Zp scheme-cobordism relation
on the set of Zp-homology boundary links in Z(p)-homology spheres and see that the op-
eration of forming covering links of the type above carries scheme-cobordism classes to Zp

scheme cobordism classes. Therefore one expects a functorial relationship between B and
B̃. In fact, since every element of Lε(ZF, Σ) is represented by a simple boundary link, one
can geometrically define a transfer .

Proposition 7.1. If φ : F 〈x1, . . . , xm〉 −→ Zp sends x1 to 1 and xi to 0 if i > 1, there is
a transfer homomorphism tr : Lε(ZF, Σ) −→ Lε(Z(p)F

′,Σ′) where F ′ is kerφ. Moreover,
for any simple homology boundary link (L,V), and covering link (L̃, Ṽ) defined by p-fold
branched cover (branching over K1), B(L̃, Ṽ) = tr(B(L,V)).

Proof. One way to show this is to note that the free (F ) covering space X̃ of X = E(L)
associated to V has precisely the same underlying space as the free (F ′) covering space
of E(L̃) associated to Ṽ. Therefore the module on which B(L̃, Ṽ) is defined is merely
Hq(X̃) ⊗ Z(p) considered as a module over Z(p)F

′ via φ : Z(p)F
′ ↪→ Z(p)F . The pairing

itself therefore admits a purely algebraic definition (which we shall not give here) in terms
of B(L,V).

Another way is to define transfer using boundary links, then establish its independence
of pattern. Use 4.7 and 5.6 to replace (L,V), up to scheme-cobordism, by (L′,V ′), the
action on a ribbon homology boundary link (R,W) with identical scheme, by a boundary
link (L′′,V ′′) with B(L′′,V ′′) = B(L,V). Since L is scheme-cobordant to L′, L̃ will be
Zp scheme-cobordant to L̃′ and hence B(L̃) = B(L̃′) (neither fact have we proved herein
but appeal by analogy to the integral case). Moreover we now argue that the covering
link of (L′′ acting on R) is the same as the action of the covering link of L′′ acting on
the covering link of R. This is done by observing that the punctured 2-disk ∆ used to
decompose L′ into two angles will lift to a punctured 2-disk and decompose the covering
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link. Upon re-doing our additivity theorem, one calculates that B(L̃) = B(R̃) ⊕ B(L̃′′).
Since R is scheme-cobordant to 0, B(R̃) = 0. Finally B(L̃′′) = tr(B(L′′)) by definition of
the transfer on boundary links. Thus B(L̃) = tr(B(L)) as desired. ¤

Proposition 6.1 was used in [CO2; §3] to calculate our invariants associated to covering
links. The invariants there were images of B(L̃, Ṽ) in Lε(Z(p)F

′
abelian ; Σ′), that is, ordinary

Blanchfield forms associated to the universal abelian covering space of E(L̃) (in fact to
successfully compute we always reduced to a Z covering space, which invariants correspond
to the image of B(L̃, Ṽ) in W ∗(Z(p)[t, t−1] ; determinant = 1).)
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