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EQUIVARIANT COBORDISM AND DUALITY(1)
BY

EDWARD C. HOOK

ABSTRACT. We consider equivariant cobordism theory, defined by means of
an equivariant Thom spectrum; in particular, we investigate the relationship be-
tween this theory and the more geometric equivariant bordism theory, showing
that there is a Poincaré-Lefschetz duality theorem which is valid in this setting.

This paper is an attempt to present further evidence for the proposition that
the stable equivariant bordism theories introduced in [2] are the *‘correct’’ equivar-
iant bordism theories, in the sense that stabilization enables one to prove many
desirable theorems which are probably false prior to stabilization. As examples
of the kind of result we have in mind, we may take all theorems about bordism
whose proofs rely on transversality arguments.

In [2], we were concerned with the equivariant analogue of the Pontrjagin-

Thom isomorphism theorem; as our present test case, we ask whether there is a

Poincaré-Lefschetz duality theorem which is valid in this framework, eventually
finding that there is such a result. (The author is indebted to Professor R. E.
Stong for the crucial observation that ‘‘suspension introduces as much transverse-
regularity as one needs’’, as well as many other helpful comments.)

We begin, after recalling the major results in [2], by outlining the definition
of equivariant cobordism theory as the cohomology theory with coefficients in the
equivariant Thom spectrum MOC and then noting the existence of cup and cap pro-
ducts of the usual sort. These considerations enable us, in §2, to define Thom
homomorphisms in equivariant cobordism which we then show to be isomorphisms,
deducing as a corollary the existence of a Gysin sequence. These Thom isomor-
phisms also play a vital role in §3, where they occur in our initial definition of the
first of the duality isomorphisms. Finally, we show that this isomorphism is
actually given by cap product with the stable bordism fundamental class, from
which we are able to deduce painlessly the existence of the other duality isomor-

phism.

1. Preliminaries. Throughout, we shall use the definitions and results of

[2], so a brief summary of that paper seems in order. We present such a summary
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242 EDWARD C. HOOK

in the next few paragraphs and then proceed to the definition of equivariant cobor-
dism, followed by some elementary remarks concerning this theory.

Let G be a compact Lie group, and let R™(G) be the direct sum of countably
many copies of each of the irreducible finite-dimensional orthogonal representations
of G. There is an obvious action of G on R™(G) which induces an action of G
on BOn(R“’(G)), where in general BOn(W) is the space of all n-dimensional sub-

spaces of the representation W. There is also the *

‘tautological’’ n-plane bundle
y"? over BOn(RM(G)) which we may view as a G-vector bundle; it is, in fact,.the
universal equivariant n-plane bundle. Finally, since G’s action on y” is fiber-
wise orthogonal, we receive an action of G on the Thom space MOg = Dy"/Sy",
fixing the obvious basepoint.

Now let V be any finite-dimensional orthogonal representation, let D(V) be
the unit disk in V, S(V) the unit sphere and define 2(V) = D(V)/S(V), provided
with the evident action of G. By appealing to the universal property of the bun-
dles y", we obtain G-maps

G G
™, vl (V) A Mo, —+M0n+lvl

where |V| denotes the dimension of V. The spaces MOS (n > 0), together with

)

all of these ‘‘binding’’ maps, constitute the (orthogonal) Thom spectrum for the
group G, MO®. Once provided with MO, we may define a homology theory with
coefficients in MO by imitating the usual construction. Briefly, being given a
pair (X, A) of G-spaces, and an integer k, we consider the sets of basepoint-

preserving homotopy classes

[2(V), (X/A) A MOFy,_,]

where V is a G-representation; these sets form a directed system over the di-
rected set M(G) consisting of the isomorphism classes of finite-dimensional G-
representations, the maps of the system being defined using suspension and the
maps m_ . We define Hk(X, A, MO©) to be the direct limit of this system; in
[2], it was shown that these groups determine an equivariant homology theory in

the sense there defined. This theory is homotopy-theoretic equivariant bordism.
There is also a geometric version of equivariant bordism, the details of whose

construction may be found in [3]. This is an equivariant homology theory in the
sense of Bredon [1] but not in the sense of [2], in view of the paucity of suspen-
sion isomorphisms in this theory. There are, however, natural suspension homo-
morphisms and, in [2], we detailed the procedure by which one can use these

e

homomorphisms to ‘‘stabilize’’ equivariant bordism. In particular, we showed

the existence of an equivariant homology theory R$*S() which is the stabilization



EQUIVARIANT COBORDISM AND DUALITY 243

of NE( ), the bordism theory of ‘‘singular G-manifolds’’ in a space with no restric-
tions on the isotropy subgroups.
Proceeding by analogy with the development of ordinary bordism theory, we

next proved the existence of a Pontrjagin-Thom construction

®S: %5;5( ) = H,(; MO©);
this is a natural transformation of equivariant homology theories, preserving the
N4-module structures which are present. (Here, as elsewhere, s denotes Thom’s
unoriented cobordism ring.) If we define a pair (X, A) of G-spaces to be admis-
sible if X is Hausdorff and A <& X is an equivariant cofibration, then the major

result of [2] may be stated as follows:

Theorem 1.1. For any admissible pair (X, A), the homomorphism
N G:S ) G
D a4y RTV(X, A) — HX, A;MOT)

is an Nyemodule isomorphism.

We -shall make repeated use of this theorem (as well as some of the observa-
tions necessary for its proof) in § 3.

The above result suggests that we define equivariant cobordism to be the
cohomology theory with coefficients MO, and this is the course that we follow.
Suppose we are given a pair (X, A) of G-spaces and an integer k, and let V, W

be finite-dimensional orthogonal G-representations. Then we define a function
¢/ ZW) AX/A), MOF) ) — [Z @ V) A (X/4), MOy 4 v a]

to be the composite

[2(V) A (x/4), MOC | ]
[v]+k

T W) A (V) AX/A), SW) A MOC, ]
|y 42, |W] ) G M
AN [EWweae V) AX/A), MO|WI+IVI+/€]’

where the first map is given by suspension. We note that if V contains a two-
dimensional trivial representation, then all of the sets above are abelian groups
and qSV'W is a group homomorphism. It is readily verified that we obtain in this
way a directed system over M(G) and we define H*¥(X, A; MO®) to be the abelian
group which is the direct limit of this system. It is clear that this construction
is functorial on P(G) (the category of pairs of G-spaces) and, letting ¥ denote

the category of abelian groups, we have

Theorem 1.2. The sequence of contravariant functors {H¥( ; MO®): P(G) —
U| &k € 7} determines an equivariant cobomology theory, i.e. the following state-

ments are true:
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) if fo [1:(X, A} — (Y, B) are equivariantly homotopic as maps of pairs, then

[5 =7t HMY, B; MO®) — HA(X, 4; MOC)
forall k €7,

2) if (X, A) is admissible, then there is an exact sequence

HEX, A;MOC) 2 mk(x; MOS) 2 k(4. MOS)

for each k €7, the homomorphisms being induced by the inclusions;
(3) for each [P] € M(G) and each pointed G-space X there is a natural sus-
pension isomorphism

&v): HAE(P) A x; MOS) — H*=IPl(x; MOO),

for all k € 71, where rﬁ*( ; MO©) denotes the reduced theory determined by
H*( ; MO©).

Proof. The validity of (1) is an evident éonsequence of the definitions. To
verify (2), note that this sequence is the direct limit of a collection of correspond-
ing exact sequences of homotopy sets. Finally (3) is immediate: there is an
obvious identification

[(E0) A S A X), MOfy|,, ] = [S(v @ P) A X, MOF, |, 1p] e | p| )b
which gives us the desired isomorphism. O

We should remark that the equivariant Puppe sequence, together with (1)—(3)
above, enables us to construct a long exact cohomology sequence for any admis-
sible pair (X, A). In the sequel we will assume this construction to have been
carried out when the need arises.

We wish now to discuss an important property of the spectrum MO® which
we have not yet mentioned and then apply our observations to define cup and cap
products. We proceed by straightforward imitation of the usual definitions.

Let y" (resp. y™) denote the universal G-vector bundle over BOn(RM(G))
(resp. BO,_(R™(G))). We may form the bundle y” x y™ in the usual way, obtaining
an equivariant (n + m)-plane bundle over BOn(RM(G)) x BO_(R™,G). Classifying
this bundle gives us a G-map

0, . BO,(R(G) x BO_R™(G) — BO__(R™(G));
as always, this map gives rise to a G-map of Thom spaces
. n m G
"n,m' M(y Xy ) _’M0n+m'

But M(y” x y™) = My™ A My™, so we actually have maps

. G G G gt
9 m.MOn /\MOm——>MOn+m, n,mel,

n,
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and it is these maps which allow us to define the necessary products.

Let X be a compact G-space and let A, B be G-stable subsets of X with the
property that all of the pairs (X, A), (X, B), and (X, A U B) are admissible. Note
that the diagonal map A, : X = X x X induces a G-map

A: X/(A U B) — (X/A) N (X/B).

Now, suppose we are given a € H(X, A; MO®), B € H™(X, B; MO®); choose rep-
resentative maps [: (V) A (X/A) — Mof¢ , g 2(V3) A (X/B) — MOC

I Vl.‘m 2 .V2\+m
and consider the composite

S A S Axzau B MR s A S) A x/a) A (x/B)

& S(v) AKX/A N (V) AX/B)

9 .
fng G G WVlsnlVolem
- MO|Vll+n A MOlV21+m - MO|V11+IV2|+n+m’

The homotopy class of this map represents an element of H”*"(X, A U B; MO0©),
which is easily seen to depend only upon o and f3; we shall call this element the
cup product of a and 8 and denote it by a U . This product has all of the ex-
pected properties, as the reader may verify; we content ourselves with mentioning

only one of these properties, which we shall need later.

Proposition 1.3. Let f: (Y; Y|, Y,) = (X; X, X,) be an equivariant map,
and let

7R, XU X, MO9) — (Y, Y U Y3 MO©),

i HRX, X s MOC) — HE(Y, Y MOC)  (i=1,2)
be induced by [. If a€H"(X, X,) and B € H*(X, Xz), then
Maup)=fi@ U 1P

Proof. This is immediate from the definitions. O

With the assumptions above, we may also define a cap product. This time,
let o € H™(X, A; MO®) and B € Hk(X, A U B; MO®) be given; then there is an
element anpB € H, _ (X, B; MO©), called the cap product of a and . To de-
fine this element, we once again choose representative maps [: 2(V ) A (X/A)

— MO® , g UV, — (X/A U B) A mo¢ ; then a representative map
| Vil+n 2 |val-#

for a N B is defined by the composite
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A
(V) A (V) ___i 2(v)) A (X/A U B) A MO|G‘,2|_,e
ML S, A/A) A (x/B) A MOFy, |,
2
= (X/B) A T(v)) A (x/4) A MOF, |,

1AfAL G G
—— (X/B) A MO|V11+n A Moivzl-k

1/\"|V1|+n,|Vzl-k

G
(X/B) A MO|V1|+|V21_(k_n)'

This is easily seen to be well defined; we leave to the reader an investigation of
the properties of this product, as its mere existence is sufficient for our present

purposes.

2. The Thom isomorphism. We wish to show that the considerations of the
preceding section enable us to define Thom homomorphisms for the theory
H*( ; MO®). Having done this, we will prove that these are, in fact, isomorphisms
in all of the cases which we consider, The proof of this assertion will be model-
led on the proof in [2] of the corresponding statement concerning stable bordism.
Let :fk be an equivariant vector bundle over the compact Hausdorff G-space
X. Then &* is classified by a G-map

u: X — BOk(Rm(G))

which is unique up to equivariant homotopy. This map is covered by a G-map

7: (D€, $&) — (Dyk, syh),
where D¢ is the disk bundle of &, S¢ the boundary sphere bundle, and similarly
for yk. Collapsing the sphere bundles, we receive a map #: ME — MOg, whose
G-homotopy class represents an element Uf € Hk(Drf, S&;, MO©), to which we
shall refer as the Thom class of the bundle &. This class we have constructed
is natural in an appropriate sense. Specifically, let f: Y — X be a G-map, so
that we may form the bundle /*¢ over Y. Then there is a G-map [: (D(f*&),
S(f*8) — (D, S&) covering [ and it is immediate from the definitions involved
that U/*g = /A*(Ug), where

[*: H*DE, S& MOC) — HED(/*8), s(/*6); MOC).

is the homomorphism induced by f. Note that we could just as well use the

above procedure to define a relative Thom class.
The other property of the Thom class which we shall need requires somewhat

more preparation. Suppose that &k, n? are G-vector bundles over X and form
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& @n, their Whitney sum. There is a commutative diagram (in fact, a pullback

diagram)

A~

m

1
D¢ & np) ——— D
D& @) — 7

7721 7 ”
D¢ ——TL \—ai ’

in which all the maps are bundle projections and we have homomorphisms

3 HY (D&, SEMOC) — HY(D( @ ), Dlnyn|,); MO),
ﬂT: H*(Dn, Sn; MO°) — H*(D(¢ & 7), D(n; flsn); MO%).

Note that D(ﬂ”; 7)]55) U D(n’;:ﬂsn) = S(£®7), so that the following assertion at
least makes sense.

Lemma 2.1. Uy g, =73(U,) uai(U,).

Proof. Choose G-maps f,: X — BO,(R¥(G)), [,: X — BO_(R™(G)) classify-
ing £ and 7 respectively. Then the composite

2w x 2 50 (R™(G) x BO_(R¥(G)

ek,q

B (o5}
> Ok+q(R (G)
classifies ¢ @ 7. The corresponding map of D(¢ @7) into Dy**7 factors as the

composite
(7, 7) i/,
1 1
» DEx Dy =3 Dy* x Dy? — Dy*+4;

hence the map of M({ @ 7)) into MOgm which represents U, g
factor as the composite

D¢ & 7) K<D(cf® n)>A<D(r§€Bn) >

SEon  \nltals,) DG”T?I;"

n is easily seen to

27T Dg Dy _lﬁ Mo¢ A moS 4, oS
Sf S77 q k+q’

Since this map obviously represents 7%(U,) U *(U ), the lemma follows. O
We now define the Thom homomorphlsm for the G-vector bundle & over X
in the way which suggests itself. Let #: D€ — X be the projection, which is an

equivariant homotopy equivalence for the usual reasons. Then, if X & X is
a G-cofibration, define a homomorphism

% H(X, X5 MO®) — H"+ (D¢, D(§1XO) USEMOC), el

I
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to be the composite
%
4
H™(X, X3 MO©) s H™DE, D(£] Xo); MO©)

-Uu, 3 G
——=> H"HDE, D], ) U SEMO™).
0
We shall refer to this homomorphism as the (cobordism) Thom homomorphism for
the bundle &* and the pair (X, XO); it is natural in an obvious sense, because of
the above-mentioned naturality of the Thom class.

We isolate the crucial properties of the Thom homomorphism in our next result.

Lemma 2.2. (a) If & is a product bundle over X, with fibre the finite-dimen-
sional representation Q, then & coincides with the suspension isomorphism
AQ).

(b) 17 & cind n? are bundles over X and m: D¢ — X is the projection,
then 1&®M = (17 o¢

Proof. (a) This is a straightforward computation (b) This statement requires

a bit of interpertation. Specifically, we wish to show that, for any n € Z,

S9N . gn(x, X,) — H"+*+4(D(¢ @ n), D& ® nlxo) u S ®n)

may be computed as the composite of

£ X, Xg) — HHDE, DIEly ) U SE)

and

%
w7
r 1 HPRDE, D¢, ) U SE) — HHR(D(E @ 1), DE @ n|xo) U S ®n)

0

where we have dropped all mention of MOC. To this end we shall need the re-

sult of Lemma 2.1, so we use the notation introduced for the proof of that asser-
tion, Let x € H™(X, X)) be given. Then

EON(x) = (%) U U g, =7 (x) U 3 (U,) UAT(U,)
— At U A (U) U ATW,) = 7 (@] () U U) L AT U,)

S A CORVE HUME

Since 7,: D(§ ®@n) — D& is the projection of the disk bundle associated to
min and since ﬁ’{(Un) = Un’;n (by naturality), we have

A U ) <6 ),
which proves (b). O

With this result in hand, we can easily prove
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Theorem 2.3. Let (X, X)) be an admissible pair with X a compact Hausdorff
G-space, and let &* be an equivariant vector bundle over X. Then, for any
n€l,

51 HP(X, X o; MOO) — H?*R(DE, D€l ) S& MO

is an isomorphism.

Proof. Since X is compact and Hausdorff, the bundle & is stably invertible,
i.e. there is a G-vector bundle 7 over X such that £ @ 7 is isomorphic to a pro-
duct bundle. Choose such a bundle 7 and suppose that the fibre of thc correspond-
ing product bundle is the finite-dimensional representation Q. Then by the
above lemma, 6(Q) =597 =717 0+¢, Since (Q) is an isomorphism, ¢ is at
least monic. By the same argument, 17 is monic. We immediately deduce that
both ¢ and 717 must be isomorphisms, concluding the proof. O

As an application of this result, we show, that there is a Gysin sequence in
equivariant cobordism. If fk is a G-vector bundle over the compact Hausdorff

G-space X, we define the Euler class of &, e(£), by the requirement that

e(&) = o™ (U) € HH(X; MO©)

where 0: X — D€ is the zero-section and i: D€ — (D&, S&) is the inclusion.

Then we have

Theorem 2.4. There is a (natural) long exact sequence
e HPSE) — R0 B ) — H(sE) —

where all coefficients lie in MOC and the homomorphism E is given by E(x) =

x uel(é).

Proof. We begin with the long exact cobordism sequence for the pair (D€,

$é):
e 150 L 0, 5O L om0 L ownse O .

We have isomorphisms
& B R(X) = HYUDE, SO, o HMDE) — H™(X)

where o: X — D€ is the zero-section as before; it is then immediate that there

is an exact sequence of the desired sort which is clearly natural. Hence it only
remains to identify the homomorphism E: H™~*(X) — H™X), and this is a straight-
forward computation. Let x € H"~*(X); then by definition,

E(x) = 0" (1) = 07" U U )
= 0" (@ (x) U i*llé) =07 (x) U o*z’*Uf =x U eld),

as desired. O
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3. The duality theorems. Our goal in this section is to prove that there is a
Poincaré duality isomorphism relating the stable G-bordism of a closed G-manifold
M and the G-cobordism of M. More generally, we prove a Poincaré-Lefschetz
duality theorem in this setting. Our proof is modelled on one of the standard proofs
of the corresponding theorem concerning ordinary bordism and cobordism, but there
are some complications which arise from the lack of a decent equivariant S-duality
theory. Overcoming these difficulties will occupy our attention for much of the
remainder of this paper.

We need a preliminary definition and a lemma. Let f: N* — M™ be a smooth
G-map between G-manifolds. An equivariant imbedding a: N — D(W) x M([W] € M(G))

is said to be “‘an imbedding over f’’ if and only if the diagram

D(W) x M
o b
NYe——— M

is commutative.

We remark that given [ as above, there always exist imbeddings over f. We
simply choose some imbedding e: N — D(W) and define a: N — D(W) x M by
a(n) = (e(n), f(n)).

Lemma 3.1. Let f: N® — M™ be a smooth G-map and let
a;: N -—»D(Vl)xM, az:N—-vD(Vz)xM

be imbeddings over f. Then there is a level-preserving G-imbedding

A:Nx1—DV, @&V, xMxI
such that Aln, 0) = (ptl Oal(n), 0, /(n), 0), Aln, 1) =(0, pry © az(n), f(n), 1),
pry ©Aln, 1) = [(n).

Proof. Define A(n, t) = ((1 - O)pr; o a (n), tpr; ©a,(n), f(n), £). This map
has the desired properties. O

Now suppose that M” is a G-manifold; choose an equivariant imbedding ¢:
M™ — D(W) for some [W] € M(G) and let vy4 denote the normal bundle of this
imbedding. We shall define, for each k£ € Z, homorphisms

Dy RS —H¥I=koy Do) G suy)
and
B, HIYI=RDu y, Dyl U sv,) = RES W)

which are mutually inverse.
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We first define D,. Let f: (NlQl*k, ON) — (D(Q) x M, S(Q) x M) represent
an element x € mg:S(M) and let [ denote the composite of / and the homotopy
equivalence (D(Q) x M, S(Q) x M) — (D(Q) x DV¢’ S(Q) x DV¢) given by the

zero-section. Choose an imbedding over [, say

a: (N, IN) — (D(V) x D(Q) x Dvy, D(V) x S(Q) x Dvy);
there is then an equivariant collapsing map

k: 2(V) A Z(Q) A (DVqS/D(VqS'aM) U SV¢) — Dv//av/

where vy is the normal bundle of Ay Classifying v, gives us a map

% (Du/, SV/) —.(Dy|V|+|W|—k, Sy|V|+IW|-k)’

and we have a map

,: Dy, Dl |5y ) — (D(Q), $(Q))

obtained in evident fashion from the map f: N — D(Q) x M; these combine to give

a map
W (Dv ) v ) — (D(Q) x DyIVIHIWI=k, 3(p(0) x D) VIsIWI-y),

Finally, there is the usual map

o: (D(Q) x DylVIHWI=, 3(D(Q) x Dyl VI+IWl-1y)
oyl VW= g ol v,
the composite of the last two maps induces a basepoint-preserving G-map
/ - G
D/ oPvy = MOTglulv 4| W] -

which, when composed with «, yields a basepoint-preserving G-map
~ G
[ 20V A S(Q) A (Dyy/Dlvglgy) USvy) — MOYg| fv|4|w]-kr

~N
The G-homotopy class of [ represents an element Dk(x) € H|W|'k(DV¢ ) D(V¢l M) U Sy

and it is easily verified that we have defined in this way a function

¢)’

D RS — HIWI=RD 4, DOy 15,0 U sv ).

(One first checks that, given the map [, the above construction is independent of
the particular imbedding a, which is used; this is an application of Lemma 3.1.
Then a standard argument shows that a cobordism leads to a homotopy of the
resulting maps, the imbeddings being carefully chosen.)

In order to define Bk’ we first note that there is a collapsing map
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o 2(W) —“Dv¢/D(V¢)|aM) USVQ,);

furthermore, there is the map 7 x 1: Dvy — M x Dvy which collapses to give a

map

®: DV¢/D(V¢I8M) uSr, — Mt A DV¢/D(V¢|6M) U Sv¢.

Now, given an element of HIW"k(DVd), D(VQS | sm) USvy), choose a representative

map
G
g: (V) A DV'¢/D(V¢18M) U Svd) _'MOIVI+IW|"€°

Consider the composite

S A S0 X S0 A Duy /Dyl U Sy,

Au
DS A MY A DY, /Dy l5) U s,

~

== MP A Z(V) A Dy /Dy lgy) Y Sy,

1A
28 Mt A MO|GV|+|Wl—k;

the homotopy class of this map represents an element of H,(M) and hence an

element of %f’S(M). This construction defines a function
Y Wi-k _, nG:S .
Dy: HYI=4Dv 4, Dy 15, U Sv ) — RES(an);
the necessary verifications are trivial.

It is reasonably clear that D, and Bk are group homomorphisms, so that we

shall not verify this in proving
Theorem 3.2, For each k €17, D, and Bk are inverse isomorphisms.

Remarks. (1) In case G = {1}, so that we are dealing with ordinary bordism

and cobordism, the isomorphism
. ~ Wi~k .
H,(M; MO) =~ i (Dvy, Dvylgy) USL 5 MO)

is an immediate consequence of Atiyah’s observation that M/& and
Mv¢/M(v¢|aM) are S-dual,

(2) The following proof is a straightforward generalization of the proof we
gave for Theorem 4.1 in [2].

Proof. We compute the composites Bk °D, and D, © Bk’ showing them to
be the relevant identity automorphisms,

First, consider Bk °D,. Let f: (NlQl+k, ON) —(D(Q) x M, S(Q) x M) represent
an element of %g’S(M), and choose an imbedding

as: (N, dN) — (D(V) x D(Q) x Dy, D(V) x S(Q) x D )
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as in the definition of D,. We shall first construct the element of Hk(M) which
corresponds to Bk ODk[N, {1 under the Pontrjagin-Thom isomorphism. We claim
that this element may be obtained in the following fashion, the notation being that

previously established. We have a map f=pr,ofon: DV/ — M and hence a map

(f, ): Dv,— M x Dv,; in defining D,IN, f] we produced a map i: Dy, — D(Q) x
Dy|v|+lw{‘k. It is easily checked that the composite
(D .
Dv, i~—> Mx D, Ei M x D(Q) x D)/l‘/l"|wl"e
2, ool vlIwl-k

sends c?Dv/ into M x Sy|Q|+|V|+IWI"k, so that there is an induced map

G
Dl///aDl/f—» Mt A MO‘Q“‘\/\”W\-I@'
We also have a collapsing map

Ko( 1A1IAT)

S0 A 5@ A S0 8D, by sap,

composing the last two maps mentioned yields a map

F: (V) A 2(Q) A SW) — M* A MOy v, |w)-k

representing an element of H,(M). It is immediate from the definitions involved
that this element is the desired one, so we need only produce the corresponding
bordism element. For this purpose note that we have, in the above construction,
imbedded N in D(V) x D(Q) x D(W) and that the normal bundle of this imbedding
is just Ve It is easily checked that, if we apply the Pontrjagin-Thom construction
to the bordism element [N, /] and the given imbedding of N into D(V) x D(Q) x
D(W), the resulting element ®[N, /] € H|Q‘+k(D(Q) x M, S(Q) x M) is represented

by the composite

(V) A Z(Q) A ZW) — DV//aDV/ — 2(Q) A M+ A MO|GV|+|W|-k

where the first map is the collapse mentioned previously and the second is induced

by the composite

, 1
v, (fﬂ M x DV/ ﬁ» M><D(Q)><Dylvl*’|w|"e

D
—=, D(Q) x M x Dyl VI+IWI-k,

when we perform the appropriate collapses. But it is then clear that
o(Q)~'®IN, /1=[F] € H,(M) where

o)1 H)g| 1 (D(@) x M, S(Q) x M) — H (M)
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is the inverse of the suspension isomorphism for the representation Q. (See [2]
for the construction of O(Q)'I which we use here.) By the definition of the
stable Pontrjagin-Thom construction, we then have that Bk o Dk[N, /1=
@)~ YF]1=IN, fl. Thus Bk °D, is the identity automorphism.

In order to compute D, °D,, let

G

g SV A Dy /Dl lgy) U Svy) —= MOy | 1wk
represent an element of H‘W"k(qus, D(Vd)l am) Y Svy). Then, for some [Q] €
M(G), we may view g as a map of pairs

g: (D) x Dy, D(V) x Dvy)) — Gyl V= k(0), ),

and we may find a submanifold LIVI+I¥[ ¢ p(v) « Dv 4 such that gl, is amap
of pairs

gl : (L, L) — Dyl VI+VI=k(g), 5 IVIsI¥l-k(g)).

Furthermore, if we vary g within its G-homotopy class, we may assume that

there is a commutative diagram

D(V) x Dl/d)/a(D(V) x Dvy)

L/dL ™
I )
(L, dL) e (Dy, Sy)

in which the vertical maps are all collapsing maps and we have adopted the ab-
breviation y = y|v| +|Wl'k(Q).

We have a map

D(V) x DV¢ — M x D(V) x DV¢: (v, w) — (@), v, w)

and this restricts to give a map 7:L —Mx L. Then the composite
2 1
L s el Dy(Q) — M* A My,
in which the final map is the standard quotient map, is seen to send JdL into
the basepoint in M A My; hence there is an induced basepoint-preserving G-
map L/dL — M* A My. Finally, there is a collapsing map 2(V) A (W) —

L/dL; the last two maps compose to yield a basepoint-preserving G-map

H: 2(V) A Z(W) — M* A My

and hence an element of Hk(M). We assert that it is obvious that the correspond-
ing element of %g:S(M) is just —D_k[g].
Thus, to compute Bk[g], it suffices to apply the inverse of the Pontrjagin-
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Thom construction to the map H defined above. For this purpose, consider the

G-vector bundle & = priy over M x BOWI |- & ,(Q); it is clear that ¢ is stably -

invertible. In fact, there is a G-vector bundle ¢~ such that ¢ ® &~ isa product

bundle with fibre Q. Let g: L — D¢ be defined by g = (1 x gl) o7, as above,

and let p: D — B¢ be the projection. Then we may form the G-manifold

D(§* *£7), which comes to us provided with a G-map into D(p*£7) = D(Q) x BE.

Let h: D(§*p*&™) — D(Q) x M be the composite of this map and the projection

of D(Q) x B¢ onto D(Q) x M. Then a representative of the element D,lgl €

?RG (M) is the bordism element [D(§*p*¢&™), bl € ?RIG R k(Z(Q) A MY); a proof of
Using this representative for D [g] it is an easy matter to compute D,

D lel. Note that D(§*p*£7) is given with an imbedding into D(Q) x D(V) x DV¢

and that the normal disk bundle of this imbedding may be identified with D(Q) x

this assertion may be found in [2].

L. To make use of this observation, we remark that the composite

D©) x L €L pig)  pylVIslul-k(g) 2 plol4lv]siw]-4

obviously induces a basepoint-preserving G-map

2(0) A(L/IL) = MOfG |1y, jw| - -

If we compose the latter map with the collapsing map,
2(0) A 2(v) ADry/Dlvyly,) v Svy) = 2(Q) A(L/dL),

we clearly receive a representative of D, O-D-k[g]. But it is equally clear that
the above map is just the “‘Q-fold’’ suspension of the map g with which we
began. This demonstrates that D, © Bk is the identity automorphism, concluding
the proof of the theorem. O

As an immediate consequence of this theorem, we have the Poincaré-Lefschetz

duality theorem.

Corollary 3.3. Let M™ be a compact G-manifold. Then, for each k € 7, there

is an isomorphism
P RES (M) gk mn, au”; MOO).

Proof. To define ?k’ we choose an equivariant imbedding ¢: M — D(W) as

before. Then we have isomorphisms

G ZulVI=kDy DGyl g,) U Sv 3 MOO)

and

¢ VIR, DOy l5,) U Svg s MOS) 2 g kGyn, aun, MOS),
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we let ‘(Pk be the composite of these isomorphisms. O

We can say even more about ¥ ,; in particular, ?k is actually independent of

the imbedding ¢ which we used in kits definition. This is a consequence of the
following considerations.

First note that for any G-manifold M” there is a distinguished class [M, oM]
€ %S’S(M, OM) which is represented by the bordism class of the identity map
(M, M) — (M, OM). We shall refer to this class as the stable bordism fundamen-

tal class of M. We wish to prove

Theorem 3.4. Let M” be a G-manifold and let x € H*~*(M, dM; MO®). Then
?Z Yx) = x n [M, oml.

Proof. This statement deserves some amplification; we are using the
Pontrjagin-Thom isomorphism here to replace [M, dM] by a certain homology
element and we are to show that ?Zl coincides with taking the cap product with
this element.

Our first task is to specify our homology version of [M, dM]. To produce
this element, choose an imbedding ¢: M — D(W) as usual; then the element we

want is that which is represented by the composite

1A g G
2L, (M/OM) A MOlWl-n'

SN D Mg /MOy |50 S (/0M) A Moy /M g,

Here the first map is the usual collapsing map, the second map is induced by the
obvious map Dvy — M x DV¢ and the third map is constructed using a represen-
tative of the Thom class of v, over (M, OM). Call this composite F: 3(W) —

M/IM) A MOS .
(M/oM) W=

Now suppose we are given x € H” ®(M, dM) and choose a representative
G
f: ZV) A (M/OM) — MOTy| |, _ )

for x. A representative map for x N [M, IM] is then easily constructed; it is

just the composite

S(V) A (W) N s vy A (M/3mM) A MO‘GW‘_”

WAL S (p) A Mt A (/) A MOy _,
=L oMt A ) A /M) A MOy _
VAL i+ A MO[le+<n-k) A MO\Gw\-n

1N® G
— Mt A MOIY| 4 w) -k’
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where the unnamed homeomorphism interchanges 3(V) and M?* and the other maps
are as previously defined.

It is then easy to show that the above composite may also be computed as the

composite
SW) A S0 TED S 0) A /M) A My /Mg
1NAAL

— ZW) A MY A M/IM) A My /My gy)

LMt A S0 A (/M) A /M L)

G G NG G )
MY A MOlVl+(n-k) A MOlW‘-n MY A MO‘V‘Jer‘_k,

this follows essentially from the definition of F and the existence of various
(obviously) commutative diagrams. The argument is completed by the observation
that the composite of the first three maps above may also be computed as the

composite
S A S0 LED S (1) A M A Mo /M g)

ZL Mt A S A Myy /Mgl g,,)

-l—/—\L/—\--A—» Mt A E(V) A DV¢/D(V¢‘6M) A MV¢,/M(V¢'|8M)

IAATAL e A Sv) A M/OM A My /Mg | 5,05

where A is induced by the diagonal map Dv¢ — Dv¢ x Dvg and 7 is induced
by the bundle projection 7: Dvy — M. If we now make the indicated replacement,
then it is clear from the definitions involved that the map we have been considering
is a representative for 9);' 1(x), and this proves the theorem. O

This theorem allows us to prove the existence of the usual companion iso-

morphism to ?k above.
Corollary 3.5. Let M™ be a compact G-manifold with bordism fundamental
class [M, oM] GWS’S(M, OM). Then
- N M, om): 1= *(M; MO®) — RE5(u, IM)
is an isomorphism for each k € 7.

Proof. This follows immediately from the existence of the commutative

diagram
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a* n—-k ]* n=k i* n=k a*
ety HPTR(M, OM) S HPTR(M) o H™TR(OM) Z— ...

-, ou] (i, oml | -Niou]

K 9 ]*
v H (M) ——— —H, (M, M) -5 H, (M) 5

with exact rows, the above theorem, the Five Lemma and the naturality of the

Pontrjagin-Thom construction. O
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