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EDWARD C. HOOK

At the Second Conference on Compact Transformation Groups (University
of Massachusetts, Amherst, 1971) Reinhard Schultz posed the question of
whether equivariantly homeomorphic G-manifolds are necessarily equivariantly
cobordant, G being a compact Lie group. This paper is concerned with the
related question in which the assumed equivariant homeomorphism is replaced
by an equivariant homotopy equivalence, a weakening of the hypotheses
suggested by the well-known fact that unoriented cobordism class is a homotopy-
type invariant.

In Section 1 we consider the special case in which the action of G is assumed
to be free. Using standard techniques, we are able to prove that free G-mani-
folds having the same equivariant homotopy type are cobordant as free G-
manifolds; this result holds for all compact Lie groups G. The next section
considers the question for arbitrary actions of the cyclic group Z2 here Conner
and Stong have shown that the result is true. We give a slightly more explicit
proof of their result, which is primarily of interest for its implications con-
cerning semifree actions of odd-order groups and finite abelian groups.
The results in Section 2 suggest that the basic difficuity in generalizing the

result of Conner and Stong to other groups is the lack of a decent equivariant
transversality theorem. So glaring is this deficiency that one should be led
to conjecture that the result is, in general, false; in Section 4 we verify this
conjecture by constructing, for each odd prime p, a family of counterexamples.
The construction depends upon the discussion in Section 3 and the work of
Olum on the homotopy-type of lens spaces.
The author wishes to thank Professor R. E. Stong for several helpful con-

versations.

1. Free actions. Let G be a compact Lie group and denote by . the
cobordism ring of (unoriented) manifolds with free G-action. If B is a clas-
sifying space for principal G-bundles, there is a well-known isomorphism

(Bo)

(with, possibly, a shift in dimension) given by classifying the orbit map; here
,(Bo) denotes the unoriented bordism of Ba We should remark that a
class in ,(Bo) is determined by its Conner-Floyd characteristic numbers
[1], since we may choose a model for Ba in which the finite skeleta are honest
manifolds.
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These remarks lead immediately to a proof of the following theorem.

THEOREM 1.1. Let M1 and M. be closed n-dimensional G-manifolds, the
action oJ G being ]ree in each case. If there exists an equivariant homotopy-equiva-
lence ] M1 ---> M2 then [M1] [M2] in ,a.

ProoJ. Let M -- M/G denote the orbit map, i 1, 2. Since J is
equivariant, there is a unique map f making the diagram

M1 J,

MI/G ] M2/G

commutative, and it is easily verified that ] is again a homotopy-equivalence.
Because the Stiefel-Whitney numbers of a closed manifold are homotopy-type
invariants, it follows that wk(M/G) ]*wk(M/G) for all ] >_ 0. Since the
fundamental classes are related by the equation ],[M1/G] [M2/G], standard
argument shows that, given any map a M2/G ---> B,, the maps a and
] o a have precisely the same Conner-Floyd characteristic numbers; hence
[M1/G, ] o a] [M2/G, a] in ,(B). In particular, we may apply this result
with a M2/G -- Ba being a classifying map for G’s action on M2 since, ob-
viously, the map ] o a then classifies the action on M, we may conclude that
[M,] [M2] in n.

2. Actions of Z2 and related results. We turn now to the (very) special
case of manifolds with involution, with fixed-point sets allowed to be non-
VACUOUS.

Let ] M -- M be an equivariant homotopy equivalence, where M1 and M
are closed n-dimensional manifolds-with-involution, and let F(M) denote the
fixed-point set of Z in M, i 1, 2. Then F(M) is a disjoint union of smoothly-
embedded submanifolds of M and the restriction of ] to F(M) determines
a dimension-preserving one-to-one correspondence between the components
of F(M) and those of F(M), with corresponding components being homotopy-
equivalent via the appropriate (further) restriction of ]. It follows that cor-
responding components are cobordant, but we need a somewhat stronger
assertion, which is implied by the next lemma.

LEMMA 2.1. Let FI be any component of F(M) and let F be the corresponding
component o] F(M). If , denotes the normal bundle of F in M i 1, 2,
then w(,) (f[)*w(,.) for all ]c >_ O.

Proo] [4]. Since both ] and ]ly, are homotopy equivalences, we have w,(M)
]*w,(M) and w,(F) (f[,)*w,(F). Moreover, for the usual reasons,

we have w,(r.ly) w,(F)w,(,.) where, in general, r denotes the tangent
bundle to the manifold Q; applying the ring homomorphism (]1)* to
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this equation, we obtain (Jl,)*w,(rol,) w,(F1)’(IIF,)*W,(92). But
(Jl,)*w,(r,l,.) w,(r,l,) w,(F1)w,(91) by our previous remarks;
thus, w, (F1)w, (91) w,(F1) (Jl,)*w,(gs) and the lemma follows easily. KI
With the usual abuse of notation, the lemma says that [F1 91] [F, 92]

in 9,(BO(n m)) whenever F1 and Fs are corresponding m-dimensional
cotnponents of the fixed-point sets; this is the stronger assertion mentioned
above.
We are now ready to prove the following theorem.

THEOREM 2.2 (Conner-Stong). I] ] MI ---+ Ms is an equivariant homotopy-
equivalence between maniJolds-with-involution, then MI and Ms are equivariantly
cobordant.

Remarlc 1. The reader may consult [4] for the original proof. Our proof
differs chiefly in that it is slightly more "geometric" so that one might hope
to generalize it.

Remarlc 2. The proof which follows was suggested by [5; Figure 1]. The
argument is precisely that needed to show that the unoriented cobordism class
of a manifold-pair is an invariant of the homotopy type of the pair.

Proo]. We assume for simplicity that F(M) and F(M,.) are connected;
the modifications necessary to prove the general case will be obvious. With
this additional assumption, we may find a manifold W such that OW
F(M1) IX F(M2); moreover, if l is the common dimension of F(M) and F(Ms),
we may choose W in such a way that there is an (n /c)-plane bundle over W
satisfying --- the notation being that previously estab-
lished. If we provide with the involution given by the antipodal map in the
fibres, thn the disk bundle D( is an equivariant cobordism between Dg and
Dg.. We form a manifold-with-boundary P from the disjoint union M
I IID II M. )< I by identifying Dg OD with a Z-invariant tubular
neighborhood of F(M) X {1} in M )< 11}, i 1, 2, and rounding off the
resulting corners. This manifold P obviously inherits an involution, providing
us with an equivariant cobordism between M II Ms and a certain manifold Q.
We could go on to describe Q more precisely, but (for our purposes) it suffices
to note that, by construction, the involution on Q is free. Therefore, Q bounds
as a manifold-with-involution, e.g., Q is the boundary of the mapping-cylinder
of the orbit map Q --> Q/Zs, provided with the obvious involution. It follows
that M1 and M are equivariantly cobordant, which completes the proof.
An examination of the above proof leads one immediately to a generalization

(of sorts). Let G be a finite group of odd order and suppose that M1 and
are semifree closed G-manifolds of dimension n. Then, again, any equivariant
homotopy-equivalence J M1 -- M. induces a nice one-to-one correspondence
between components of the fixed-point sets and we have the following theorem.

THEOREM 2.3. In this situation, i] the normal bundles oJ corresponding
components oJ the fixed-point sets are cobordant as G-vector-bundles, then M
and Ms are equivariantly cobordant.
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Proo]. We proceed, as in the proof of Theorem 2.2, to build an equivariant
cobordism between MIII M2 and a manifold Q on which G acts freely; we
have made precisely the assumption necessary to guarantee that this con-
struction is possible. We then appeal to the fact that the forgetful homo-
morphism 9, (Ba) -- 9, is an isomorphism (since G has odd order) to conclude
that Q bounds as a free G-manifold iff Q bounds as a manifold. But Q obviously
bounds as a manifold, since this is true of MIH M2. It follows that M1 and
M2 are equivariantly cobordant. Ill
Among the possible applications of this result, we might single out the

following corollary.

COROLLARY 2.4. Let G have odd order and suppose that ] MI -- M2 is an
equivariant homotopy-equivalence between mani]olds with semi]tee G-action.

is transverse-regular on F(M), then M and M2 are equivariantly cobordant.

Proo]. Again we may assume without loss of generality that the fixed-
point sets are connected. Then the usual manipulations with characteristic
numbers show that [F(M1), /] [F(M), id] in 9,(F(M2)), which obviously
implies that ]*. and are cobordant as G-vector-bundles. By the trans-
versality assumption, ]*, and are (equivariantly) isomorphic bundles so
that Theorem 2.3 may be applied to give the result. Ill
We should remark at this point that the examples in Section 4 seem to indicate

that these results are, in some sense, the best possible, at least for Z-actions,
p an odd prime.
As a final application of the techniques of this section, we consider semifree

actions of a finite abelian group G, obtaining a result analogous to Theorem 2.3.
Specifically, we have the next theorem.

THEOREM 2.5. Let G be a finite abelian group and let ] M ---) M be an
equivariant homotopy-equivalence between semi]ree G-mani]olds. I] the normal
bundles o] corresponding components o] the fixed-point sets are cobordant as G-
vector-bundles, then M and M are equivariantly cobordant.

Proo]. If G has odd order, this is a consequence of Theorem 2.3, and so we
may as well assume that the order of G is even. Exactly as before, we may
construct an equivariant cobordism between MIII M2 and a free G-manifold
Q and we need only show that Q bounds equivariantly. For this purpose,
we appeal to the well-known result that any group of even order contains at
least one element of order 2. Choosing such an element of G gives us a free
involution on the manifold Q; we may then regard Q as the boundary of the
mapping cylinder of the orbit map Q --> Q/Z.. Finally, since G is abelian, the
G-action on Q possesses an obvious extension to an action of G on this mapping
cylinder; thus, Q bounds as a G-manifold and the theorem follows. [::]

Finally we observe that the above argument (suitably reformulated) proves
a slightly different result. If the order of the abelian group G is even, a choice
of an element of order 2 in G determines an inclusion Z2 G and, hence, an
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action of Z on any G-manifold. Then, if ]" M1 --M is an equivariant homotopy
equivalence between semifree G-manifolds such that the normal bundles of
corresponding components of the fixed-point sets of Z. are cobordant as G/Z-
bundles, M1 and M are equivariantly cobordant.

3. A lifting problem. Suppose that G is a finite group and that X is
connected, locally path-connected space on which G operates freely. Then
the orbit map p X -- X/G is a covering map and G appears as the group of
covering transformations. If ] X/G ----> X/G is a given map, it may or may not
be possible to find a map f" X -- X which lifts , and even if a lifting exists,
it is not unique. In this section we consider the question of whether possesses
an equivariant lifting (assuming the existence of some lifting).
Assume, then, that ] is a lifting of f so that the diagram

x .f.>x

x/a
is commutative and choose a basepoint zo X. Then, for any
J o p(xo) J o p(zo) p o (xo) whieh implies hat ](xo) c7()(zo) for
a unique elemeng () G. Since ] o and ?() o are both lifgings of I and
since they agree at zo we must have ](z) o7()]() for all x X.

LEMMA 3.1. (1) For each liJting ] oJ J the Junction a G G is an endo-
morphism.

(2) I] ai, a e End (G) correspond to two different li]tings
o] ], then there is some g G such that ot i(g) o al where i(g) G G denotes
the inner automorphism determined by g.

Proo]. (1) Since G is finite, it suffices to verify that
for all gl g G. But, for any x X

(glg2)](X) ](glg2x) Of(gl)?(g2x)

since G acts freely on X, the assertion follows.
(2) Because ]1 and ]. are both liftings of ], there is a unique go G such that

] go o ]1 This implies that for arbitrary g G and x X

since G acts freely, it follows that a i(go) ) a,
Remark. Note that the function

G X End (G) -- End (G) (g, q) i(g)
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describes an action of G on the set End (G). The lemma implies that, given
a map J X/G X/G which can be lifted, the endomorphisms a7 which cor-
respond to the various liftings of ] comprise exactly one orbit of this action.
Since a lifting f" X -- X is equivariant precisely when a7 ida one sees
that End (G)/G is the natural habitat of the obstruction to finding an equi-
variant lifting.

There is an alternate (and, perhaps, more useful) description of the endo-
morphism a?. With the above notation, let [0; 1] -- X be any path satisfying
(0) Xo, (1) ](Xo). Then p o "[0; 1] -- X/G is a path with p o (0)
p(xo), p o (1) p o ](Xo) f(p(xo)) and so determines an isomorphism

(p o )* ,(x/a, /(p(zo))) - (x/a, p(zo)).

For simplicity we consider the case in which X is simply-connected, in which
case any map can be lifted. Then the above isomorphism is independent of
the particular path chosen; moreover, there is the usual isomorphism
X "I(X/G, p(xo)) -- G obtained by lifting loops at p(xo) to paths beginning
at Xo and examining the terminus.

LEMMA 3.2. In the simply-connected case, the diagram

is commutative.

Remarlc. The result in the general case is analogous. The only real change
is that everything must be done modulo the image of the appropriate version
of the fundamental group of X.

Proo]. This is a routine exercise in applying the definitions involved. Let
b :[0; 1] -- X/G represent [#] e rI(X/G, p(xo)) and suppose ; :[0; 1] -- X is
a lifting of # with (0) Xo. Then (1) gxo for a unique g G, and we obtain
that h[] g so that a o ,[b] a(g). To compute the other composite, we
note that

(p o )* o/[1 [(p o ) (/ o ) (p o )-11
where * denotes the usual composition of paths. We next observe that

(] o ) (a:(g) o -1) is a path in X which lifts (p o ) (/o h) * (p o )-1
and satisfies

(] o ) (,(e) o -)(0) (0) Xo

and
,(fo),(aT(g) o- (1) 7(g) oq-(1)

() o (0) ()Xo.
Hence, by definition, k (p )* ][] a(g) and the lemm is proved.
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The above considerations assume a particularly pleasant form in the case
where X is simply-connected and the group G is abelian. In this ease, there is
a (unique) preferred isomorphism ..... ’I(X/G, x2) -- -I(X/G, x) for all
x, z. X and one obtains the following proposition.

PROPOSITION 3.3. IJ X is a simply-connected, locally path-connected space
on which the finite abelian group G acts ]reely, then a map ] X/G ---+ X/G possesses
an equivariant lilting i] and only i] the composite

(X/G, Xo) ] > (X/G, /(Xo)) o,o,> (X/G, Xo)
is the identity Jot some (and hence every) choice oJ the basepoint Xo . X/G.
We can also take a slightly different view of these results; again, we consider

the case of a simply-connected X and a finite abelian G. Suppose that J X/G --X/G is a homotopy-equivalence. Then the composite o.(o) o l, -(X/G, Xo)
--> r(X/G, Xo) is an isomorphism and so corresponds to an automorphism
a G -- G. Let o G -- Homeo (X) denote the given free action of G on X;
then o o a G -- Homeo (X) gives a new free action of G on X and we have
the result that any lifting of J is an equivariant map ]" (X, p) --, (X, o o a).
This observation is particularly interesting in case (X, p) happens to be an
equivariant CW-complex (in the sense of Illman), since in that case one has
Illman’s strengthening of a result due to Bredon.

THEOREM 3.4 [2]. Let G be a compact Lie group and suppose that X and Y
are equivariant CW-complexes. Then a G-map J X --, Y is an equivariant
homotopy-equivalence iJ and only if Jot each closed subgroup H oJ G the restriction
J" X’--> Y" induces a one-to-one correspondence between the path-components
oJ x* and Y" and isomorphisms ]* r(X’, x) -- r(Y’, f(x)) Jor all t >_ 1
and every x X*.
Here X" denotes the fixed-point set of the subgroup H. In our situation,

this result has the following consequence.

COROLLARY 3.5. Suppose G is a finite abelian group and X is a simply-
connected ]ree equivariant CW-complex. I] ] X/G -- X/G is a homotopy-
equivalence and Aut (G) is the corresponding automorphism, then any lilting
f" X ---+ X o/] is an equivariant homotopy-equivalence between (X, p) and (X,
p o of).

Proo]. It suffices to check that ] is a weak homotopy-equivalence in the
ordinary sense, but this is obvious in view of the commutative diagram

,(x, Xo) ]’ > ,(x, ](Xo))

",(X/G, p(xo)) ) rn(X/G, ](p(xo)))

in which the vertical maps are isomorphisms for n >_ 2. El
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The above result holds, in particular, if X is a smooth G-manifold, since
Illman has shown that such X are equivariant CW-complexes.

4. Some examples. Our primary goal in this section is to apply the results
in Section 3 to prove the following theorem.

THEOREM 4.1. Let p be an odd prime and let n Z/. Then there is a closed
connected 4n-mani]old M4" admitting distinct Z,-actions pl p. :Z -- Diff (M)
such that (M’, pl) and (Mn, p2) are equivariantly homotopy-equivalent but not
equivariantly cobordant.

After establishing this result, we shall indicate briefly some of its extensions.
The proof of Theorem 4.1 depends heavily upon the work of Olum [3]; in

this paragraph we summarize the necessary results. We regard S2k-1 as the
unit sphere in Ck, points of the latter space being denoted by (zo, zl, z_l)
with z C. We fix a positive integer m and adopt the notation " exp (2-i/m).
Then if q q_ are positive integers less than and relatively prime to m,
the map- S- --. S2- defined by (Zo, zl z_i) (Zo, ’z,
-’z-i) generates a free Zm-action on S-1, and the orbit space of this action
is, by definition, the lens space L-(m; q, q_). Since the fundamental
group of this lens space is isomorphic to Zm the basepoint is irrelevant and
we suppress all mention of it. Then there is a preferred generator a

r(L-(m; q q_l)) represented by the inclusion of the 1-skeleton in
the standard CW-decomposition of this manifold.

THEOREM 4.2 [3; Theorem V]. Let L Lk-(m; ql q-) and let
r Z satis/y 0 <_ r < m. I1 r r(L) -- -(L) is the endomorphism determined
by (o) o, then is induced by a sell-map o]L and the degrees o] all maps
inducing exhaust the set o] integers congruent to r (mod m). Moreover, two
sell-maps o]L are homotopic iff they induce the same endomorphism o] r(L)
and have the same Z-degree.

COROLLARY 4.3. With the same notation, there exists a homotopy-equivalence
] L ---) L inducing on ri(L) iff r 1 (mod m). Note that, in particular,
there are sel]-homotopy-equivalences o] L2-(m; q q_) inducing nontrivial
automorphisms o] the ]undamental group whenever (k, (m)) > 1.

Now let p be a fixed odd prime and let n Z/. Because (2p) p 1, one
has (2n, (2p)) > 2 and so there exist nontrivial solutions of the congruence
rn -= 1 (mod 2p). Choose a nontrivial solution ro satisfying 0 < ro < 2p
and let L- be any of the lens spaces L-i(2p; ql q2._). Then there
is a homotopy-equivalence ].. L’- -- L- which induces o on r(L4"-)
and which lifts to an equivariant homotopy-equivalence
(S"-’, p to) where p g -- Diff (S-1) is the action which defines L’-l(2p;
q, q-,).
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We wish to view fro in a slightly different manner. Note that, because of
the usual isomorphism Z. ----- Z2 X Z, giving a free action of Z2 on a space X
is equivalent to specifying free actions of both Z2 and Z on X, these actions
being required to commute. In our situation, we receive two distinct free
ctions , o Z D (S-), ech commuting with the ntipodl in-
volution, nd an equiwriant homotopy-equiwlence ] (S’-’, ) (S4-’,

o ,) which lso commutes with the antipodal mp. If we define DX to be
the disk-bundle of the canonical line bundle over RP(4n 1), then D is
smooth 4n-mnifold with boundary S-’ and the above Z-ctions on S’-’
possess obvious extensions to free actions p Z D (Dk); moreover,
] extends to n equiwriant homotopy-equivlence ], (Dk, p,’) (Dk, p’).
We my lso realize S-’ as the boundary of D C C, extending the actions
p, p o 0. to (unitary) actions p() p on the disk; then ],0 gives rise to an
equivariant homotopy-equivalence ] (D’, p()) (D, p()) in an obvious
manner. Finally, we define M to be Dk D, where these manifolds are
to be identified along their common boundary; piecing together all of the above
data, we obtain actions p, p Z D (M) and an equivariant map ] (M’,

(U%
LEMMA 4.4. The map ] is an equivariant homotopy-equivalence.

Proo]. In view of the Bredon-Illman result (Theorem 3.4), it is enough to
show that ] is a weak homotopy-equivalence in the ordinary sense. To ac-
complish this, we first note that a straightforward Mayer-Vietoris argument
establishes that ], H, (M; Z) H,(M; Z) is an isomorphism in all dimensions.
Then, choosing u basepoint Xo S-, we observe that the homomorphism
(Dk, Xo) (M, Xo) is an imorphism for k 4n 2; since the diagram

,(DX, Xo) ) ,(M, Xo)

q ).l
,(DX, l,(Xo)) (M, ](Xo))

is commutative, it follows that 1 r(M, Xo) (M, ](Xo)) is an isomorphism
fork 4n 2. Because4n 2 2, the fact thatlisaweakhomotopy-
equivalence now follows in the usual way from the relative Hurewic theorem,
and this proves our assertion.
Theorem 4.1 is now clearly a consequence of the following lemma.

LEMMA 4.5. (M, p) and (M, p) are not equivariantly cobordant.

Proo]. This is immediate. The fixed point set of any alleged equivariant
cobordism between (M, p) and (M, p) would have, as one of its components,
a smoothly-embedded arc joining the fixed-point in (M, p) to that in (M, p)
and one could conclude that the normal representations of Z at these fixed-
points are equivalent unitary representations. But these representations are
exactly the representations p(), p() which are obviously inequivalent. The
assertion follows.
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Remark 1. There is another procedure for constructing the manifolds M4".
I_et T R4n/1 -- R4n/1 be the orthogonal involution whose matrix with respect
to the standard basis is diag (-1, -1, -1, 1) and let R :R
denote reflection in the hyperplane spanned by the first 4n standard basis
vectors. Then R o T R’/ -, R/ restricts to a free involution on the unit-
sphere S and it is easily verified that the orbit space of this involution is
exactly the manifold M4". One can also describe Z-actions on Sn which induce
the actions pl, p. on Mn.
Remark 2. Our construction will also yield 2/-dimensional examples of the

same sort for any k such that the congruence r 1 (mod 2p) has a nontrivil
solution.
Remark 3. If F is a connected nonbounding m-manifold and n Z/, the

(4n m)-manifold M* F obviously admits Z-actions which are equi-
variantly homotopy-equivalent but not equivariantly cobordant. Using this
observation, one can obtain examples in every even dimension greater than or
equal to 4 and every dimension greater than or equal to 9. Do there exist
examples in the remaining dimensions greater than or equal to 2? (Trivially,
there can be no 1-dimensional examples.)
Remark 4. The manifolds M* are not simply-connected (in fact, they are

nonorientable) and, therefore, the procedure in Remark 3 cannot produce
simply-connected example. Are there any simply-connected examples?
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