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1. Introduction

Quadratic refinements of the intersection pairing on a Riemann sur-
face appear to have two mathematical origins: one in complex function
theory dating back to Riemann in the 1870’s, and one in topology stem-
ming from the work of Pontryagin in the 1930’s.

Pontryagin’s ideas were taken up and generalized by Kervaire [38]
in the late 1950’s, who, among other things, used them to produce an
example of a topological manifold of dimension 10 which does not ad-
mit a smooth structure. Analogous invariants for manifolds of other
dimensions were investigated by many topologists, most notably Ker-
vaire, Browder [10], Brown-Peterson [16, 15] and Brown [14], and play
an important role in the surgery classification of manifolds and in the
homotopy groups of spheres.

Riemann’s quadratic function occurred in his theory of ϑ-functions
and while its topological aspects were clarified in 1971 by Atiyah [8,
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Proposition 4.1] and Mumford [52], until recently quadratic functions
in higher dimensions have remained in the province of topology. Our
purpose in this paper is to bring to quadratic functions in higher di-
mensions more of the geometry present in Riemann’s work. There are
two issues involved, one having to do with constructing quadratic func-
tions, and the other having to do with the mathematical language in
which to describe them. As we explain below, our motivation for doing
this came from theoretical physics, and our theory owes much to the
papers [65, 66] of Witten.

In the case of Riemann surfaces, links between the topological ap-
proach of Pontryagin and the analytic approach of Riemann can be
made using index theory. In [8] Atiyah interprets Riemann’s quadratic
function in terms of the mod 2 index of the Dirac operator. It is also
possible to deduce Riemann’s results from the theory of the determinant
of the ∂̄-operator. Though this point of view seems relatively modern, it
is arguably the closest to Riemann’s original analysis. Riemann’s qua-
dratic function occurred in the functional equation for his ϑ-function.
The ϑ-function is (up to scale) the unique holomorphic section of the
determinant of the ∂̄-operator, and it’s functional equation can stud-
ied from the symmetries of the determinant line. In §2.2 we will give
a proof of Riemann’s results along these lines. Our proof also works
in the algebraic setting. While apparently new, it is related to that of
Mumford, and gives another approach to his results [52].

While it doesn’t seem possible to construct quadratic functions in
higher dimensions using index theory alone, there is a lot to be learned
from the example of determinant line bundles on Riemann surfaces.
Rather than trying to use the index of an operator, our approach will
be to generalize the index formula, i.e., the topological index. The in-
dex formula relates the determinant of the ∂̄ operator in dimension 2 to
the index of the Spinc Dirac operator in dimension 4, and ultimately,
quadratic functions in dimension 2 to the signature of 4-manifolds. Now
on a 4-manifold M the relation between Spinc-structures and quadratic
refinements of the intersection pairing has a simple algebraic interpre-
tation. The first Chern class λ of the Spinc-structure is a characteristic
element of the bilinear form on H2(M):

∫
M

x ∪ x ≡
∫

M
x ∪ λ mod 2.

The expression

(1.1) q(x) =
1
2

∫
M

(
x2 − xλ

)
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is then a quadratic refinement of the intersection pairing. It is useful to
compare this with the formula for the index of the Spinc Dirac operator:

(1.2) κ(λ) =
1
8

∫
M

(λ2 − L(M)),

where L(M) is the characteristic class which gives the signature when
integrated over M . Formula (1.1) gives the change of κ(λ) resulting
from the change of Spinc-structure λ �→ λ − 2x.

The fact that (1.2) is an integer also has an algebraic explanation:
the square of the norm of a characteristic element of a non-degenerate
symmetric bilinear form over Z is always congruent to the signature
mod 8. This points the way to a generalization in higher dimensions.
For manifolds of dimension 4k, the characteristic elements for the in-
tersection pairing in the middle dimension are the integer lifts λ of the
Wu-class ν2k. The expression (1.2) is then an integer, and its variation
under to λ �→ λ − 2x gives a quadratic refinement of the intersection
pairing. This can almost be described in terms of index theory. A
Spinc-structure on a manifold of dimension 4k determines an integral
Wu-structure, and the integer κ(λ) turns out to be the index of an op-
erator. But we haven’t found a good analytic way to understand the
variation λ �→ λ−2x. In dimension 4 this variation can be implemented
by coupling the Spinc Dirac operator to a U(1)-bundle with first Chern
class −x. In higher dimensions one would need to couple the operator
to something manufactured out of a cohomology class of degree 2k.

In this paper we refine the expression (1.2) to a cobordism invari-
ant for families of manifolds. The cobordism theory is the one built
from families E/S of manifolds equipped with an integer cocycle λ ∈
Z2k(E; Z) whose mod 2 reduction represents the Wu class ν2k of the
relative normal bundle. If E/S has relative dimension (4k− i), then our
topological interpretation of (1.2) will produce an element

κ(λ) ∈ Ĩi(S)

of a certain generalized cohomology group. The cohomology theory
Ĩ is a generalized cohomology theory known as the Anderson dual of
the sphere. It is the dualizing object in the category of cohomology
theories (spectra). When i = 2, the group Ĩ2(S) classifies graded line
bundles. By analogy with the case of Riemann surfaces, we think of κ(λ)
the determinant line of the Wu-structure λ on E/S. This “generalized
determinant” κ(λ) can be coupled to cocycles of degree 2k, and can be
used to construct quadratic functions.

The relationship between Wu-structures, quadratic functions, and the
Kervaire invariant goes back to the early work on the Kervaire invariant
in [12, 15, 16, 5], and most notably to the paper of Browder [10].
It was further clarified by Brown [14]. The relationship between the
signature in dimension 4k and the Kervaire invariant in dimension (4k−
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2) was discovered by Milgram [47] and Morgan–Sullivan [51]. Our
construction of κ(λ) is derived from [14, 47, 51], though our situation is
somewhat different. In [14, 47, 51] the emphasis is on surgery problems,
and the class λ is necessarily 0. In this work it is the variation of λ
that is important. Our main technical innovation involves a systematic
exploitation of duality.

Even though κ(λ) generalizes the determinant line, as described so
far our cobordism approach produces objects which are essentially topo-
logical. To enrich these objects with more geometric content we intro-
duce the language of differential functions and differential cohomology
theories. Let X be a topological space, equipped with a real cocycle
ι ∈ Zn(X; R), and M a smooth manifold. A differential function from
M to (X, ι) is a triple

(c, h, ω)

with c : M → X a continuous function, ω ∈ Ωn(M) a closed n-form,
and h ∈ Cn−1(M ; R) a cochain satisfying

δh = ω − c∗ι.

Using differential functions, we then revisit the basic constructions of al-
gebraic topology and introduce differential cobordism groups and other
differential cohomology theories. It works out, for instance, that the dif-
ferential version of the group Ĩ1(S) is the group of smooth maps from
S to U(1). Using the differential version of Ĩ2(S) one can recover the
category of U(1)-bundles with connection. In this way, by using dif-
ferential rather than continuous functions, our topological construction
refines to something richer in its geometric aspects.

The differential version of Hk(M ; Z) is the group of Cheeger-Simons
differential characters Ȟk−1(M) [20], and in some sense our theory
of differential functions is a non-linear generalization. We began this
project intending to work entirely with differential characters. But they
turned out not robust enough for our purposes.

The bulk of this paper is devoted to working out the theory of dif-
ferential function spaces. To make them into spaces at all we need to
consider differential functions on the products M × ∆n of M with a
varying simplex. This forces us at the outset to work with manifolds
with corners (see Appendix C). Throughout this paper, the term mani-
fold will mean manifold with corners. The term manifold with boundary
will have its usual meaning, as will the term closed manifold.

Using the language of differential function spaces and differential co-
homology theories the construction of quadratic functions in higher di-
mension can be made to arise very much in the way it did for Riemann in
dimension 2. A differential integral Wu-structure is the analogue of the
canonical bundle λ, a choice of λ/2 is the analogue of a ϑ-characteristic
(or Spin-structure), and κ(λ−2x) the analogue of the determinant of the
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∂̄-operator coupled to a holomorphic line bundle. For a more detailed
discussion, see §2.

Our interest in this project originated in a discussion with Witten.
It turns out that quadratic functions in dimension 6 appear in the ring
of “topological modular forms” [36] as a topologically defined mod 2
invariant. Modulo torsion, the invariants coming from topological mod-
ular forms, are accounted for by index theory on loop space. This sug-
gested that it might be possible to generalize Atiyah’s interpretation of
Riemann’s quadratic function to dimension 6 using some kind of mod
2 index on loop space. We asked Witten about this and he pointed
out that he had used quadratic refinements of the intersection pairing
on certain 6-manifolds in describing the fivebrane partition function in
M -theory [65, 66]. The fivebrane partition function is computed as the
unique (up to scale) holomorphic section of a certain holomorphic line
bundle, and the quadratic function is used to construct this line bundle.
We then realized that an analogue of determinant lines could be used
instead of mod 2 indices to generalize Riemann’s quadratic functions to
higher dimensions.

The organization of this paper is as follows. Section 2 is devoted to
background material and the statement of our main result. More specifi-
cally, §2.1 recalls the results of Riemann and Pontryagin. In §2.2 we give
a proof of Riemann’s results using determinants. Sections 2.3 and 2.5
introduce differential cocycles, which play a role in higher dimensions
analogous to the one played by line bundles in dimension 2. We state
our main result (Theorem 2.17) in §2.6, and in §2.7 relate it to Witten’s
construction. In §3 we review Cheeger-Simons cohomology. In §4 we
lay out the foundations of differential function complexes and differen-
tial cohomology theories. Section 5 contains the proof of Theorem 2.17,
and Appendix E contains a construction of a stable exponential charac-
teristic class for Spin bundles, taking values in cohomology with integer
coefficients, whose mod 2 reduction is the total Wu-class.

We had originally included in this paper an expository discussion,
primarily for physicists, describing the role of quadratic and differential
functions in the construction of certain partition functions. In the end
we felt that the subject matter deserved a separate treatment, which
we hope to complete soon.

Our theory of differential function spaces provides a variation of alge-
braic topology more suited to the needs of mathematical physics. It has
already proved useful in anomaly cancellation [30], and it appears to be
a natural language for describing fields and their action functionals. We
have many examples in mind, and hope to develop this point of view in
a later paper.
Acknowledgements. This work has benefited from discussions with
many people. We wish to thank in particular Orlando Alvarez, Dan
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Freed, Jack Morava, Tom Mrowka, C.R. Nappi, T. Ramadas, and Ed-
ward Witten. We especially want to thank Dolan and Nappi for making
available to us an early version of their paper [25].

2. Determinants, differential cocycles and statement of
results

2.1. Background. Let X be a Riemann surface of genus g. A theta
characteristic of X is a square root of the line bundle ω of holomorphic
1-forms. There are 2g theta characteristics of X, and they naturally
form a principal homogeneous space for the group of square roots of the
trivial line bundle. Riemann associated to each theta characteristic x a
parity q(x), defined to be the dimension mod 2 of the space of its holo-
morphic sections. He showed that q(x) is invariant under holomorphic
deformations and has remarkable algebraic properties—namely that

(2.1) q(x ⊗ a) − q(x)

is a quadratic function of a, and that the associated bilinear form

e(a, b) = q(x ⊗ a ⊗ b) − q(x ⊗ a) − q(x ⊗ b) + q(x)

is non-degenerate and independent of x. In these equations, a and b
are square roots of the trivial bundle. They are classified by elements
H1(X; Z/2), and the form e(a, b) corresponds to the cup product. One
can check that the expression (2.1) depends only on the cohomology
class underlying a, and so a choice of theta characteristic thus gives
rise, via Riemann’s parity, to a quadratic refinement of the intersection
pairing. Riemann derived the algebraic properties of the function q
using his ϑ-function and the Riemann singularities theorem. In the
next section we will deduce these results from properties of determinant
line bundles, in a way that can be generalized to higher dimensions.

Quadratic functions in topology arise from a famous error, an un-
witting testimony to the depth of the invariants derived from quadratic
functions. In the 1930’s, Pontryagin introduced a geometric technique
for investigating the homotopy groups of spheres [56, 55]. His method
was to study a map between spheres in terms of the geometry of the in-
verse image of a small disk centered on a regular value. It led eventually
to a remarkable relationship between homotopy theory and differential
topology, and one can find in these papers the beginnings of both bor-
dism and surgery theories.

Pontryagin’s first results concerned the homotopy groups πn+1S
n and

πn+2S
n, for n ≥ 2 ([56, 55]). Because of a subtle error, he was led to

the conclusion1

πn+2S
n = 0 n ≥ 2.

1They are actually cyclic of order 2
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The groups were later correctly determined by George Whitehead [64]
and by Pontryagin himself [57] (see also [58] and [37]).

The argument went as follows. A map f : Sn+2 → Sn is homo-
topic to a generic map. Choose a small open disk D ⊂ Sn not con-
taining any singular values, and let a ∈ D be a point. The subspace
X = f−1(a) ⊂ Sn+2 is a Riemann surface, the neighborhood f−1D is
diffeomorphic to the normal bundle to the embedding X ⊂ Sn+2, and
the map f gives this normal bundle a framing. The homotopy class
of the map f is determined by this data (via what is now known as
the Pontryagin–Thom construction). If X has genus 0, then the map f
can be shown to be null homotopic. Pontryagin sketched a geometric
procedure for modifying f in such a way as to reduce the genus of X
by 1. This involved choosing a simple closed curve C on X, finding
a disk D ⊂ Sn+2 bounding C, whose interior is disjoint from X, and
choosing a suitable coordinate system in a neighborhood of D. Pon-
tryagin’s procedure is the basic manipulation of framed surgery. It is
not needed for the correct evaluation of the groups πn+2S

n and, except
for the dimension 0 analogue, seems not to appear again until [49].

The choice of coordinate system is not automatic, and there is an
obstruction

φ : H1(X; Z/2) → Z/2
to its existence. As indicated, it takes its values in Z/2 and depends only
on the mod 2 homology class represented by C. As long as φ takes the
value 0 on a non-zero homology class, the genus of X can be reduced by
1. Pontryagin’s error concerned the algebraic nature of φ, and in [55] it
was claimed to be linear. He later determined that φ is quadratic [57],
and in fact

φ(C1 + C2) = φ(C1) + φ(C2) + I(C1, C2),

where I(C1, C2) is the intersection number of C1 and C2. Thus φ is a
quadratic refinement of the intersection pairing. The Arf invariant of φ
can be used to detect the non-trivial element of πn+2(Sn). This was the
missing invariant.

Around 1970 Mumford called attention to Riemann’s parity, and
raised the question of finding a modern proof of its key properties.
Both he [52] and Atiyah [8] provided answers. It is Atiyah’s [8, Propo-
sition 4.1] that relates the geometric and topological quadratic func-
tions. Atiyah identifies the set of theta-characteristics with the set of
Spin structures, and Riemann’s parity with the mod 2 index of the
Dirac operator. This gives immediately that Riemann’s parity is a Spin-
cobordism invariant, and that the association

(X, x) �→ q(x)

is a surjective homomorphism from the cobordism group MSpin2 of
Spin-manifolds of dimension 2 to Z/2. Now the map from the cobordism
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group Ωfr
2 = π2S

0 of (stably) framed manifolds of dimension 2 to MSpin2

is an isomorphism, and both groups are cyclic of order 2. It follows
that Riemann’s parity gives an isomorphism MSpin2 → Z/2, and that
the restriction of this invariant to Ωfr

2 coincides with the invariant of
Pontryagin. The key properties of q can be derived from this fact.

In [52], Mumford describes an algebraic proof of these results, and
generalizes them to more general sheaves on non-singular algebraic
curves. In [32] Harris extends Mumford’s results to the case of singular
curves.

2.2. Determinants and the Riemann parity. In this section we will
indicate how the key properties of the Riemann’s q(x) can be deduced
using determinants. Let E/S be a holomorphic family2 of Riemann
surfaces, and L a holomorphic line bundle over E. Denote by

det L

the determinant line bundle of the ∂̄-operator coupled to L. The fiber
of det L over a point s ∈ S can be identified with

det H0(Ls) ⊗ det H1(Ls)∗.

If K = KE/S is the line bundle of relative Kahler differentials (holomor-
phic 1-forms along the fibers), then by Serre duality this equation can
be re-written as

(2.2) det H0(Ls) ⊗ det H0(K ⊗ L−1
s ).

This leads to an isomorphism

det L ≈ det
(
K ⊗ L−1

)
,

which, fiberwise, is given by switching the factors in (2.2). An isomor-
phism L2 ≈ K (if one exists) then gives rise to automorphism

det L → det L.

This automorphism squares to the identity, and so is given by a holo-
morphic map

q : S → {±1}.
To compute the value of q at a point s ∈ S, write

(detL)s = Λ2d
(
H0(Ls) ⊕ (H0(Ls)

)
(d = dimH0(Ls)). The sign encountered in switching the factors is

(−1)d.

2In the language of algebraic geometry, E/S needs to be a smooth proper mor-
phism of complex analytic spaces. The manifold S can have singularities. In this
paper, we will not be dealing with holomorphic structures, and S will typically have
corners. The notion “smooth morphism” will be replaced with notion of “neat map”
(see C).
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It follows that
q(s) = (−1)dim H0(Ls)

and so we recover Riemann’s parity in terms of the symmetry of detL.
This key point will guide us in higher dimensions. Note that our ap-
proach shows that Riemann’s q : S → {±1} is holomorphic, and so
invariant under holomorphic deformations.

Riemann’s algebraic properties are derived from the quadratic nature
of det, i.e., the fact that the line bundle

B(L1, L2) =
det(1) det(L1 ⊗ L2)

det(L1) det(L2)
is bilinear in L1 and L2 with respect to tensor product. We will not give
a proof of this property (see Deligne [23] in which the notation 〈L1, L2〉
is used), but note that it is suggested by the formula for the first Chern
class of det L

(2.3) 2 c1(det L) =
∫

E/S
(x2 − xc1)

where x is the first Chern class of L, and c1 is the first Chern class of
the relative tangent bundle of E/S.

2.3. Differential cocycles. Now suppose E/S has relative dimension
2n. In order for the quadratic term in (2.3) to contribute to the first
Chern class of a line bundle over S, x must be an element of Hn+1(E; Z).
This motivates looking for mathematical objects classified by
Hn+1(E; Z) in the way complex line bundles are classified by H2(E; Z).
In the discussion in §2.2 it was crucial to work with line bundles and the
isomorphisms between them, rather than with isomorphism classes of
line bundles; we need to construct a category whose isomorphism classes
of objects are classified by Hn+1(E; Z).

Definition 2.4. Let M be a manifold and n ≥ 0 an integer. The
category of n-cocycles, Hn(M) is the category whose objects are smooth
n-cocycles

c ∈ Zn(M ; Z)
and in which a morphism from c1 to c2 is an element

b ∈ Cn−1(M ; Z)/δ Cn−2(M ; Z)

such that
c1 + δb = c2

There is an important variation involving forms.

Definition 2.5. Let M be a manifold, and n ≥ 0 an integer. The
category of differential n-cocycles, Ȟn(M) is the category whose objects
are triples

(c, h, ω) ⊂ Cn(M ; Z) × Cn−1(M ; R) × Ωn(M),
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satisfying

δc = 0(2.6)
dω = 0
δh = ω − c.

A morphism from (c1, h1, ω1) to (c2, h2, ω2) is an equivalence class of
pairs

(b, k) ∈ Cn−1(M ; Z) × Cn−2(M ; R)
satisfying

c1 − δb = c2

h1 + δk + b = h2.

The equivalence relation is generated by

(b, k) ∼ (b − δa, k + δk′ + a).

For later purposes it will be convenient to write

d(c, h, ω) = (δc, ω − c − δh, d ω).

Note that d2 = 0, and that condition (2.6) says d(c, h, ω) = 0. We will
refer to general triples

(c, h, ω) ⊂ Cn(M ; Z) × Cn−1(M ; R) × Ωn(M),

as differential cochains (of degree n), and to those which are differential
cocycles as closed. As will be explained in more detail in §3.2, these are
the n-cochains and cocycles in the cochain complex Č(n)∗(M) with

Č(n)k(M)

= {(c, h, ω) | ω = 0 if k < n} ⊆ Ck(M ; Z) × Ck−1(M ; R) × Ωn(M)

and differential given by

d(c, h, ω) = (δc, ω − c − δh, dω).

The kth cohomology group of Č(n)∗(M) is denoted

Ȟ(n)k(M),

and Ȟ(n)n(M), can be identified with the group of differential charac-
ters Ȟn−1(M) of Cheeger–Simons [20].

The operations of addition of cochains and forms define abelian group
structures on the categories Ȟn. The set of isomorphism classes of ob-
jects in Hn(M) is the group Hn(M ; Z), and the automorphism group of
the trivial object 0, is Hn−1(M ; Z). The set of isomorphism classes
of objects in Ȟn(M) is the group Ȟ(n)n(M). The automor-
phism of the trivial object (0, 0, 0) is naturally isomorphic to the group
Hn−2(M ; R/Z). There is a natural functor Ȟn(M) → Hn(M) which is
compatible with the abelian group structures. On isomorphism classes
of objects it corresponds to the natural map Ȟ(n)n(M) → Hn(M ; Z),
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and on the automorphism group of the trivial object it is the connecting
homomorphism

Hn−2(M ; R/Z) → Hn−1(M ; Z)

of the long exact sequence associated to

0 → Z → R → R/Z → 0.

Example 2.7. The category Ȟ2(M) is equivalent to the category
of U(1)-bundles with connection, with the group structure of tensor
product. One way to present a U(1) bundle is to give for each open set
U of M a principal homogeneous space Γ(U) (possibly empty) for the
group of smooth maps U → U(1). The points of Γ(U) correspond to
local sections of a principal bundle, and must restrict along inclusions
and patch over intersections. To add a connection to such a bundle
comes down to giving maps

∇ : Γ(U) → Ω1(U)

which are “equivariant” in the sense that

(2.8) ∇(g · s) = ∇(s) + g−1dg.

An object x = (c, h, ω) ∈ Ȟ2(M) gives a U(1)-bundle with connection
as follows: the space Γ(U) is the quotient of the space of

s = (c1, h0, θ1) ∈ C1(U ; Z) × C0(U ; R) × Ω1(U)

satisfying
ds = x

by the equivalence relation

s ∼ s + dt, t ∈ C0(U ; Z) × {0} × Ω0(U).

Any two sections in Γ(U) differ by an

α ∈ C1(U ; Z) × C0(U ; R) × Ω1(U)

which is closed—in other words, an object in the category Ȟ1(M). The
equivalence relation among sections corresponds to the isomorphisms in
Ȟ1(M), and so the space Γ(U) is a principal homogeneous space for the
group of isomorphism classes in Ȟ1(U) ie, the group of smooth maps
from U to R/Z. The function ∇ associates to s = (c1, h0, θ1) the 1-form
θ1. The equivariance condition 2.8 is obvious, once one identifies R/Z

with U(1) and writes the action multiplicatively.

Quite a bit of useful terminology is derived by reference to the above
example. Given a differential cocycle

x = (c, h, ω) ∈ Ȟn(M),
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we will refer to ω = ω(x) as the curvature of x , c = c(x) as the
characteristic cocycle (it is a cocycle representing the 1st Chern class
when n = 2), and

e2πi h = e2πi h(x)

as the monodromy, regarded as a homomorphism from the group of (n−
1)-chains into U(1). The cohomology class [x] ∈ Hn(M ; Z) represented
by c will be called the characteristic class of x. The set of differential
cochains

s ∈ Cn−1(M ; Z) × Cn−2(M ; R) × Ωn−1(M)
satisfying

ds = x

will be called the space of trivializations of x. Note that any differential
cochain s is a trivialization of ds.

The reduction of h modulo Z is also known as the differential char-
acter of x, so that

monodromy = e2πi (differential character).

The curvature form, the differential character (equivalently the mon-
odromy) and the characteristic class are invariants of the isomorphism
class of x, while the characteristic cocycle is not. In fact the differential
character (equivalently the monodromy) determines x up to isomor-
phism in Ȟn(M).

It is tempting to refer to the form component of a trivialization
s = (c, h, θ) as the “curvature,” but this does not reduce to standard
terminology. By analogy with the case in which s has degree 1, we will
refer to θ = ∇(s) as the connection form associated to s.

It is useful to spell this out in a couple of other cases. The category
Ȟ1(M) is equivalent to the category whose objects are smooth maps
from M to R/Z, and with morphisms, only the identity maps. The
correspondence associates to (c1, h0, ω1) its differential character. From
the point of view of smooth maps to R/Z, the curvature is given by
the derivative, and the characteristic cocycle is gotten by pulling pack
a fixed choice of cocycle representing the generator of H1(R/Z; Z). The
characteristic class describes the effect of f : M → R/Z in cohomology,
and determines f up to homotopy. A trivialization works out to be a lift
of f to R. If the trivialization is represented by (c0, 0, θ0), then the lift is
simply given by θ0—-the connection form of the trivialization. Finally,
as the reader will easily check, Ȟ0(M) is equivalent to the category
whose objects are maps from M to Z, and morphisms the identity maps.

2.4. Integration and Ȟ-orientations. Let M be a smooth compact
manifold and V → M a (real) vector bundle over M of dimension k. A
differential Thom cocycle on V is a (compactly supported) cocycle

U = (c, h, ω) ∈ Ž(k)k
c (V )
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with the property that for each m ∈ M ,∫
Vm

ω = ±1.

A choice of a differential Thom cocycle determines an orientation of
each Vm by requiring that the sign of the above integral be +1.

The integral cohomology class underlying a differential Thom cocycle
is a Thom class [U ] in Hk

c (V ; Z). There is a unique [U ] compatible with
a fixed orientation, and so any two choices of U differ by a cocycle of
the form δb, with

b = (b, k, η) ∈ Č(k − 1)k−1.

Using the ideas of Mathai–Quillen [59, 43], a differential Thom cocy-
cle3 can be associated to a metric and connection on V , up to addition
of a term d (b, k, 0).

Definition 2.9. A Ȟ-orientation of p : E → S consists of the fol-
lowing data

(1) A smooth embedding E ⊂ S × RN for some N ;
(2) A tubular neighborhood4

W ⊂ S × RN ;

(3) A differential Thom cocycle U on W .

An Ȟ-oriented map is a map p : E → S together with a choice of
Ȟ-orientation.

While every map of compact manifolds p : E → S factors through
an embedding E ⊂ S × RN , not every embedding E ⊂ S × RN admits
a tubular neighborhood. A necessary and sufficient condition for the
existence of a tubular neighborhood is that p : E → S be neat. A
neat map of manifolds with corners is a map carrying corner points of
codimension j to corner points of codimension j, and which is transverse
(to the corner) at these points. A neat map p : E → S of compact
manifolds factors through a neat embedding E ⊂ S × RN , and a neat
embedding has a normal bundle and admits a tubular neighborhood.
Every smooth map of closed manifolds is neat, and a map p : E → S of
manifolds with boundary is neat if f ◦ p is a defining function for the
boundary of E whenever f is a defining function for the boundary of S.
See Appendix C.

3The Thom form constructed by Mathai–Quillen is not compactly supported, but
as they remark in [43, 59] a minor modification makes it so.

4A tubular neighborhood of p : E ↪→ S is a vector bundle W over E, and an
extension of p to a diffeomorphism of W with a neighborhood of p(E). The derivative
of the embedding W → M gives a vector bundle isomorphism W → νE/S of W with

the normal bundle to E in S.
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Let E/S be an Ȟ-oriented map of relative dimension k. In §3.4 we
will define natural, additive integration functors∫

E/S
: Hn(E) → Hn−k(S)∫

E/S
: Ȟn(E) → Ȟn−k(S),

compatible with the formation of the “connection form,” and hence
curvature:

ω

(∫
E/S

x

)
=
∫

E/S
ω (x)

∇
(∫

E/S
s

)
=
∫

E/S
∇ (s) .

In the special case when E/S is a fibration over an open dense set, the
integration functors arising from different choices of Ȟ-orientation are
naturally isomorphic (up to the usual sign).

When E is a manifold with boundary and S is a closed manifold, a
map p : E → S cannot be neat, and so cannot admit an Ȟ-orientation,
even if E/S is orientable in the usual sense. Integration can be con-
structed in this case by choosing a defining function f : E → [0, 1]
for the boundary of E. An orientation of E/S can be extended to an
Ȟ-orientation of

E → [0, 1] × S.

Integration along this map is then defined, and gives a functor∫
E/[0,1]×S

: Ȟn(E) → Ȟn−k+1([0, 1] × S), (k = dimE/S),

which commutes with the differential d, and is compatible with restric-
tion to the boundary:

Ȟn(E)
R
E/S−−−−→ Ȟn−k([0, 1] × S)

res.

⏐⏐� ⏐⏐�res.

Ȟn(∂E) −−−−→R
∂E/S

Ȟn−k({0, 1} × S).

The usual notion of integration over manifolds with boundary is the
iterated integral ∫

E/S
x =
∫ 1

0

∫
E/[0,1]×S

x.
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The second integral does not commute with d (and hence does not give
rise to a functor), but rather satisfies Stokes theorem:

(2.10) d

∫ 1

0
s =
∫ 1

0
ds − (−1)|s|

(
s|{1}×S − s|{0}×S

)
.

So, for example, if x is closed,

(2.11) d

∫ 1

0

∫
E/[0,1]×S

x = (−1)n−k

∫
∂E/S

x;

in other words

(−1)n−k

∫ 1

0

∫
E/[0,1]×S

x

is a trivialization of ∫
∂E/S

x.

In low dimensions these integration functors work out to be familiar
constructions. If E → S is an oriented family of 1-manifolds without
boundary, and x ∈ Ȟ2(E) corresponds to a line bundle then∫

E/S
x

represents the function sending s ∈ S to the monodromy of x computed
around the fiber Es.

The cup product of cocycles, and the wedge product of forms combine
to give bilinear functors

Ȟn(M) × Ȟm(M) → Ȟn+m(M)

which are compatible with formation of the connection form (hence
curvature) and characteristic cocycle. See §3.2.

2.5. Integral Wu-structures. As we remarked in the introduction,
the role of the canonical bundle is played in higher dimensions by an
integral Wu-structure.

Definition 2.12. Let p : E → S be a smooth map, and fix a cocycle
ν ∈ Z2k(E; Z/2) representing the Wu-class ν2k of the relative normal
bundle. A differential integral Wu-structure of degree 2k on E/S is a
differential cocycle

λ = (c, h, ω) ∈ Ž(2k)2k(E)

with the property that c ≡ ν mod 2.

We will usually refer to a differential integral Wu-structure of degree
2k as simply an integral Wu-structure. If λ and λ′ are integral Wu-
structures, then there is a unique

η ∈ Č(2k)2k(E)
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with the property that
λ′ = λ + 2η.

We will tend to overuse the symbol λ when referencing integral Wu-
structures. At times it will refer to a differential cocycle, and at times
merely the underlying topological cocycle (the c component). In all
cases it should be clear from context which meaning we have in mind.

For a cocycle ν ∈ Z2k(E; Z/2), let Ȟ2k
ν (E) denote the category whose

objects are differential cocycles x = (c, h, ω) with c ≡ ν mod 2, and
in which a morphism from x to x′ is an equivalence class of differential
cochains

τ = (b, k) ∈ Č(2k)2k−1(E)/d
(
Č(2k)2k−2(E)

)
for which x′ = x + 2d τ . The set of isomorphism classes in Ȟ2k

ν (E) is
a torsor (principal homogeneous space) for the group Ȟ(2k)2k(M), and
the automorphism group of any object is H2k−2(E; R/Z). We will write
the action of µ ∈ Ȟ(2k)2k(M) on x ∈ Ȟ2k

ν (E) as

x �→ x + (2)µ,

with the parentheses serving as a reminder that the multiplication by 2
is formal; even if µ ∈ Ȟ(2k)2k(M) has order 2, the object x + (2)µ is
not necessarily isomorphic to x.5 A differential cochain

y = (c′, h′, ω′) ∈ Č(2k)2k

gives a functor

Ȟ2k
ν (E) → Ȟ2k

ν+dȳ(E)
x �→ x + dy

in which ȳ denotes the mod 2 reduction of c′. Up to natural equivalence,
this functor depends only on the value of ȳ. In this sense the category
Ȟ2k

ν (E) depends only on the cohomology class of ν.
With this terminology, a differential integral Wu-structures is an ob-

ject of the category Ȟ2k
ν (E), with ν a cocycle representing the Wu-class

ν2k. An isomorphism of integral Wu-structures is an isomorphism in
Ȟ2k

ν (E).
We show in Appendix E that it is possible to associate an integral Wu-

structure ν̄2k(E/S) to a Spin structure on the relative normal bundle
of E/S. Furthermore, as we describe in §3.3, a connection on νE/S

gives a refinement of ν̄2k(E/S) to a differential integral Wu-structure
ν̌2k(E/S) ∈ Ȟ(2k)2k

ν (E). We’ll write λ(s,∇) (or just λ(s)) for the
integral Wu-structure associated to a Spin-structure s and connection
∇. By Proposition E.9, if the Spin-structure is changed by an element

5It could happen that 2µ can be written as d(b′, k′), but not as 2d(b, k).
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α ∈ H1(E; Z/2) then, up to isomorphism, the integral Wu-structure
changes according to the rule

(2.13) λ(s + α) ≡ λ(s) + (2)β
∑
�≥0

α2�−1ν2k−2� ∈ Ȟ2k
ν (E),

where νj is the jth Wu class of the relative normal bundle, and β denotes
the map

H2k−1(E; Z/2) → H2k−1(E; R/Z) ↪→ Ȟ(2k)2k(E)

described in §3.2.
We now reformulate the above in terms of “twisted differential char-

acters.” These appear in the physics literature [67] as Chern-Simons
terms associated to characteristic classes which do not necessarily take
integer values on closed manifolds. We will not need this material in
the rest of the paper.

Definition 2.14. Let M be a manifold,

ν ∈ Z2k(M ; R/Z)

a smooth cocycle, and 2k ≥ 0 an integer. The category of ν-twisted dif-
ferential 2k-cocycles, Ȟ2k

ν (M), is the category whose objects are triples

(c, h, ω) ⊂ C2k(M ; R) × C2k−1(M ; R) × Ω2k(M),

satisfying
c ≡ ν mod Z

δc = 0
dω = 0
δh = ω − c

(we do not distinguish in notation between a form and the cochain
represented by integration of the form over chains). A morphism from
(c1, h1, ω1) to (c2, h2, ω2) is an equivalence class of pairs

(b, k) ∈ C2k−1(M ; Z) × C2k−2(M ; R)

satisfying

c1 − δb = c2

h1 + δk + b = h2.

The equivalence relation is generated by

(b, k) ∼ (b − δa, k + δk′ + a).

The category Ȟ2k
ν (M) is a torsor for the category Ȟ2k(M). We will

write the translation of v ∈ Ȟ2k
ν (M) by x ∈ Ȟ2k(M) as v + x.
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Remark 2.15. We have given two meanings to the symbol Ȟ2k
ν (M);

one when ν is a cocycle with values in Z/2, and one when ν is a cocy-
cle taking values in R/Z. For a cocycle ν ∈ Z2k(M ; Z/2) there is an
isomorphism of categories

Ȟ2k
ν (M) → Ȟ2k

1
2
ν
(M)

(c, h, ω) �→ 1
2
(c, h, ω),

in which 1
2ν ∈ Z2k(M ; R/Z) is the composite of ν with the inclusion

Z/2 ↪→ R/Z

t �→ 1
2
t.

The isomorphism class of a ν-twisted differential cocycle (c, h, ω) is
determined by ω and the value of h modulo Z.

Definition 2.16. Let M be a smooth manifold, and

ν ∈ Z2k(M ; R/Z)

a smooth cocycle. A ν-twisted differential character is a pair

(χ, ω)

consisting of a character

χ : Z2k−1(M) → R/Z

of the group of smooth (2k−1)-cycles, and a 2k-form ω with the property
that for every smooth 2k-chain B,∫

B
ω − χ(∂B) ≡ ν(B) mod Z.

The set of ν-twisted differential characters will be denoted

Ȟ2k−1
ν (M).

It is torsor for the group Ȟ2k−1(M).

2.6. The main theorem.

Theorem 2.17. Let E/S be an Ȟ-oriented map of manifolds of rela-
tive dimension 4k− i, with i ≤ 2. Fix a differential cocycle L4k refining
the degree 4k component of the Hirzebruch L polynomial, and fix a cocy-
cle ν ∈ Z2k(E; Z/2) representing the Wu-class ν2k. There is a functor

κE/S : Ȟ2k
ν (E) → Ȟi(S)

with the following properties:

i) (Normalization) modulo torsion,

κ(λ) ≈ 1
8

∫
E/S

λ ∪ λ − Ľ4k;
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ii) (Symmetry) there is an isomorphism

τ(λ) : κ(−λ) ≈−→ κ(λ)

satisfying
τ(λ) ◦ τ(−λ) = identity map of κ(λ);

iii) (Base change) Suppose that S′ ⊂ S is a closed submanifold and
p : E → S is transverse to S′. Then the Ȟ-orientationof E/S induces
an Ȟ-orientationof

E′ = p−1(S′) p′−→ S′

and, with f̃ denoting the map E′ → E, there is an isomorphism

f̃∗κE/S(λ) ≈ κE′/S′(f∗λ);

iv) (Transitivity) let
E → B → S

be a composition of Ȟ-oriented maps, and suppose given a framing of the
stable normal bundle of B/S which is compatible with its Ȟ-orientation.
The Ȟ-orientations of E/B and B/S combine to give an Ȟ-orientation
of E/S, the differential cocycle Ľ4k represents the Hirzebruch L-class for
E/S, and a differential integral Wu–structure λ on E/B can be regarded
as a differential integral Wu–structure on E/S. In this situation there
is an isomorphism

κE/S(λ) ≈
∫

B/S
κE/B(λ).

We use κ and a fixed differential integral Wu-structure λ to construct
a quadratic functor

qE/S = qλ
E/S : Ȟ2k(E) → Ȟi(S)

by
qλ
E/S(x) = κ(λ − 2x).

Corollary 2.18.

i) The functor qE/S is a quadratic refinement of

B(x, y) =
∫

E/S
x ∪ y

i.e., there is an isomorphism

t(x, y) : qE/S(x + y) − qE/S(x) − qE/S(y) + qE/S(0) ≈−→ B(x, y);

ii) (Symmetry) There is an isomorphism

sλ(x) : qλ
E/S(λ − x) ≈ qλ

E/S(x)

satisfying
sλ(x) ◦ sλ(λ − x) = identity map;
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iii) (Base change) The functor q satisfies the base change property iii)
of Theorem 2.17:

qE′/S′(f̃∗x) ≈ f∗qE/S(x);

iv) (Transitivity) The functor q satisfies the transitivity property iv) of
Theorem 2.17:

qE/S(x) ≈
∫

B/S
qE/B(x).

Remark 2.19. All the isomorphisms in the above are natural iso-
morphisms, ie they are isomorphisms of functors.

Remark 2.20. Suppose that E/S is a fibration of relative dimension
n, with Spin manifolds Ms as fibers, and E ⊂ RN × S is an embedding
compatible with the metric along the fibers. Associated to this data is
an Ȟ-orientation, differential integral Wu-structure, and a differential
L-cocycle. To describe these we need the results of §3.3 where we show
that a connection on a principal G-bundle and a classifying map deter-
mines differential cocycle representatives for characteristic classes, and
a differential Thom cocycle for vector bundles associated to oriented
orthogonal representations of G.

Let W be the normal bundle to the embedding E ⊂ S×RN . The fiber
at x ∈ Ms ⊂ E of the normal bundle W of E ⊂ S×RN can be identified
with the orthogonal complement in RN of the tangent space to Ms at
x. Because of this, W comes equipped with a metric, a connection, a
Spin-structure, and a classifying map

W −−−−→ ξSpin
N−n⏐⏐� ⏐⏐�

E −−−−→ GrSpin
N−n

(
RN
)
,

where GrSpin
N−n

(
RN
)

is defined by the homotopy pullback square

GrSpin
N−n

(
RN
) −−−−→ BSpin(N − n)⏐⏐� ⏐⏐�

G̃rN−n

(
RN
) −−−−→ BSO(N − n).

In the above, ξ Spin
N −n is the universal (N − n)-plane bundle, and

G̃rN−n

(
RN
)

refers to the oriented Grassmannian. The metric on W
can be used to construct a tubular neighborhood

W ⊂ S × RN ,

and the differential Thom cocycle and L-cocycle are the ones constructed
in §3.3.
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Fix once and for all a cocycle

c̃ ∈ Z2k
(
GrSpin

N−n

(
RN
)
; Z
)

representing ν̄2k. The the mod 2 reduction of c̃ represents the universal
Wu-class ν2k. We set

c = f∗(c̃)

ν = c mod 2 ∈ Z2k(E; Z/2).

We take λ to be the differential cocycle associated to characteristic class
ν̄2k and the Spin-connection on the normal bundle to E ⊂ RN × S.

Remark 2.21. To be completely explicit about the Ȟ-orientation
constructed in Remark 2.20 a convention would need to be chosen for
associating a tubular neighborhood to a (neat) embedding equipped
with a metric on the relative normal bundle. It seems best to let the
geometry of a particular situation dictate this choice. Different choices
can easily be compared by introducing auxiliary parameters.

Remark 2.22. Another important situation arises when K → S is
a map from a compact manifold with boundary to a compact manifold
without boundary. As it stands, Theorem 2.17 doesn’t apply since K →
S is not a neat map. To handle this case choose a defining function f
for ∂K = E, and suppose we are given an orientation and integral Wu–
structure λ of K/[0, 1]×S. Then by (2.10), for each differential cocycle
y ∈ Ȟ2k(K)
(2.23)

(−1)i+1 d

∫ 1

0
qλ
K/[0,1]×S(y) = qλ

K/[0,1]×S(y)|S×{1} − qλ
K/[0,1]×S(y)|S×{0}.

Since
E −−−−→ K⏐⏐� ⏐⏐�

S × {0, 1} −−−−→ [0, 1] × S

is a transverse pullback square, the base change property of q gives a
canonical isomorphism

(2.24) qλ
K/[0,1]×S(y)|S×{1} − qλ

K/[0,1]×S(y)|S×{0} ≈ qλ
E/S(y|E).

Combining (2.23) and (2.24), and writing x = y|E, gives

(2.25) (−1)i+1 d

∫ 1

0
qλ
K/[0,1]×S(y) = qλ

E/S(x).

In other words, writing the pair (E/S, x) as a boundary gives a trivial-
ization of qλ

E/S(x).
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Theorem 2.17 remains true when i > 2, but with the modification
that qλ

E/S is not a differential cocycle, but a differential function to

(Ĩi; ι). See §5 for more details.
The properties of qλ

E/S(x) lead to an explicit formula for 2qλ
E/S(x).

First of all, note that

qλ
E/S(λ) = κ(−λ) = κ(λ).

It follows that

qλ
E/S(0) = qλ

E/S(λ) = qλ
E/S(x + (λ − x))

= qλ
E/S(x) + qλ

E/S(λ − x) − qλ
E/S(0) + B(x, λ − x).

Using the symmetry qλ
E/S(λ − x) = qλ

E/S(x), and collecting terms gives

Corollary 2.26. Let E/S be as in Theorem 2.17. There is an iso-
morphism

2qλ
E/S(x) ≈ 2κE/S(λ) +

∫
E/S

x ∪ x − x ∪ λ.

We now exhibit the effect of q on automorphisms in the first non-
trivial case, i = 2. We start with

x = 0 ∈ Ȟ2k(E).

The automorphism group of x is H2k−2(E; R/Z), and the automorphism
group of q(x) = κ(λ) ∈ Ȟ2(S) is H0(S; R/Z). The map

q : H2k−2(E; R/Z) → H0(S; R/Z)

is determined by its effect on fibers

q : H2k−2(Es; R/Z) → H0({s}; R/Z) = R/Z s ∈ S.

By Poincaré duality, such a homomorphism is given by

q(α) =
∫

Es

α ∪ µ α ∈ Aut(0),

for some µ ∈ H2k(Es). After some work (involving either chasing
through the definitions, or replacing automorphisms with their map-
ping tori in the usual way), the quadratic nature of q implies that for
general x ∈ Ȟ2k(Es) one has

(2.27) q(α) =
∫

Es

α ∪ ([x] + µ) α ∈ Aut(x).

Again, with a little work, Corollary 2.26 gives the identity

2µ = −[λ].

This is a somewhat surprising formula. The theory of Wu-classes
shows that for each 2n-manifold M , the Wu class ν2k of the normal
bundle vanishes, and hence the cohomology class [λ] is divisible by 2.
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Our theory shows that the choice of integral Wu-structure actually leads
to a canonical way of dividing [λ] by 2, namely −µ.

The cohomology class µ arises in another context. Suppose that E/S
is the product family E = M × S, and the integral Wu-structure is
gotten by change of base from an integral Wu-structure on M → {pt}.
If x ∈ Ȟ2k(E) is arbitrary, and y ∈ Ȟ2k(E) is of the form (0, h, 0), then

(2.28) q(x + y) ≈ q(x) +
∫

E/S
y ∪ (x + µ ⊗ 1),

where µ ∈ H2k(M ; Z) is the class described above.

2.7. The fivebrane partition function. We will now show how Cor-
ollary 2.18 can be used to construct the holomorphic line bundle de-
scribed by Witten in [65]. We will need to use some of the results and
notation of §3.2, especially the exact sequences (3.3).

Suppose that M is a Riemannian Spin manifold of dimension 6, and
let J be the torus

J = H3(M) ⊗ R/Z.

The Hodge ∗-operator on 3-forms determines a complex structure on
H3(M ; R), making J into a complex torus. In fact J is a polarized
abelian variety—the (1, 1)-form ω is given by the cup product, and the
Riemann positivity conditions follow easily from Poincaré duality. These
observations are made by Witten in [65], and he raises the question of
finding a symmetric, holomorphic line bundle L on J with first Chern
form ω. There is, up to scale, a unique holomorphic section of such an L
which is the main ingredient in forming the fivebrane partition function
in M -theory.

Witten outlines a construction of the line bundle L in case H4(M ; Z)
has no torsion. We construct the line bundle L in general. As was
explained in the introduction this was one motivation for our work.

The group J is naturally a subgroup of the group

Ȟ(4)4(M) = Ȟ4−1(M)

of differential characters (§3.2) of degree 3 on M . In principle, the fiber
of L over a point z ∈ J is simply the line

qλ
M/pt(x) = qλ(x),

where x is a differential cocycle representing z, and λ is the integral Wu-
structure corresponding to the Spin-structure on M . The key properties
of L are a consequence of Theorem 2.17. One subtlety is that the line
qλ(x) need not be independent of the choice of representing cocycle.
Another is that the symmetry is not a symmetry about 0.

To investigate the dependence on the choice of cocycle representing
z, note that any two representatives x and x′ are isomorphic, and so
the lines qλ(x) and qλ(x′) are also isomorphic. Any two isomorphisms
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of x and x′ differ by an automorphism α ∈ Aut(x), and by (2.27) the
corresponding automorphism qλ(α) of qλ(x) is given by

qλ(α) =
∫

M
α ∪ ([z] + µ).

This means that as long as [z] = −µ the isomorphism

qλ(x) ≈ qλ(x′)

is independent of the choice of isomorphism x ≈ x′, and the lines qλ(x)
and qλ(x′) can be canonically identified. The desired L is therefore
naturally found over the “shifted” torus Jt, where t ∈ A4(M) is any
element whose underlying cohomology class is −µ, and

Jt ⊂ Ȟ(4)4(M)

denotes the inverse image of t under the second map of the sequence

H3(M) ⊗ R/Z → Ȟ(4)4(M) → A4(M).

The sequence shows that each space Jt is a principal homogeneous space
for J .

To actually construct the line bundle L over Jt, we need to choose a
universal Q ∈ Ȟ(4)4(M × Jt) (an analogue of a choice of Poincaré line
bundle). We require Q to have the property that for each p ∈ Jt, the
restriction map

(1 × {p})∗ : Ȟ(4)4(M × Jt) → Ȟ(4)4(M × {p})
satisfies

(2.29) (1 × {p})∗Q = p.

The line bundle L will then turn out to be

q(x) = qλ
M×Jt/Jt

(x)

where x = (c, h, G) is a choice of differential cocycle representing Q. We
first construct

Q0 ∈ Ȟ(4)4(M × J)
and then use a point of Jt to translate it to

Q ∈ Ȟ(4)4(M × Jt).

Write

V = H3(M ; R)

L = H3(M ; Z)

so that V is the tangent space to J at the origin, and there is a canonical
isomorphism

V/L = J.

Let
θ ∈ Ω3(M × V )
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be the unique 3-form which is vertical with respect to the projection

M × V → V

and whose fiber over v ∈ V is harm(v)—the unique harmonic form
whose deRham cohomology class is v. The form θ gives rise to an
element

θ̄ ∈ Ȟ(4)4(M × V )

via the embedding

Ω3/Ω3
0 → Ȟ(4)4(M × V ).

The restriction map

(1 × {v})∗ : Ȟ(4)4(M × V ) → Ȟ(4)4(M × {v})
has the property that for each v ∈ V ,

(2.30) (1 × {v})∗θ̄ = v.

This guarantees that (2.29) will hold for the class Q we are constructing.
We will now show that there is a class Q0 ∈ Ȟ(4)4(M × J) whose

image in Ȟ(4)4(M × V ) is θ̄. Note that the curvature (d θ̄) of θ̄ is a
translation invariant, and is the pullback of a translation invariant four
form

ω(Q0) ∈ Ω4
0(M × J)

with integral periods. Consider the following diagram in which the rows
are short exact:

H3(M × V ; R/Z) −−−−→ Ȟ(4)4(M × V ) −−−−→ Ω4
0(M × V )�⏐⏐ �⏐⏐ �⏐⏐

H3(M × J ; R/Z) −−−−→ Ȟ(4)4(M × J) −−−−→ Ω4
0(M × J).

The leftmost vertical map is surjective. We’ve already seen that the
curvature of θ̄ descends to M × J . An easy diagram chase gives the
existence of the desired Q0 ∈ Ȟ(4)4(M × J). Such a class Q0 is unique
up to the addition of an element

a ∈ kerH3(M × J ; R/Z) → H3(M × V ; R/Z) = H3(M ; R/Z).

When t ∈ A4(M×J) is an element whose underlying cohomology class
is −µ⊗1, the line bundle q(x) is independent of both the choice of Q and
the choice of x representing Q. The independence from the choice of x
amounts, as described above, to checking that q sends automorphisms
of x to the identity map of q(x). If α ∈ H2(M ×J) is an automorphism
of x, then by (2.27)

q(α) =
∫

M×Jt/Jt

α ∪ ([x] + µ ⊗ 1).
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The integral vanishes since the Künneth component of ([x] + µ ⊗ 1) in
H4(M) ⊗ H0(Jt) is zero. If Q′ = Q + Y is another choice of “Poincaré
bundle” then, by (2.28)

q(Q′) = q(Q) +
∫

M×J/J
Y ∪ (Q + µ ⊗ 1).

Once again, one can check that the integral vanishes by looking at
Künneth components.

Witten constructs L (up to isomorphism) by giving a formula for
monodromy around loops in J . We now show that the monodromy of
q(x) can be computed by the same formula.

Let γ : S1 → J be a loop, and consider the following diagram:

M × S1 γ̃−−−−→ M × J⏐⏐� ⏐⏐�
S1 −−−−→

γ
J⏐⏐�

pt .

The monodromy of q(x) around γ given by

exp
(

2πi

∫
S1

γ∗q(x)
)

.

By the base change property of q (Corollary 2.18, iii)), the integral above
can be computed as ∫

S1

qM×S1/S1(γ̃∗x).

Choose any framing of the stable normal bundle of S1. By transitivity
(Corollary 2.18, iv)), this, in turn, is given by

qM×S1/pt(γ̃
∗(x)).

We can compute this by finding a section, which we do by writing M×S1

as a boundary, extending γ̃∗(x)), and using (2.25).
The 7-dimensional Spin-manifold M × S1, together with the coho-

mology class represented by γ̃∗c defines an element of

M Spin7 K(Z, 4).

Since this group is zero, there is a Spin-manifold N with ∂N = M ×S1

and a cocycle c̃ on N extending γ̃∗c. We can then find

y ∈ Ȟ4(N)

whose restriction to M × S1 is γ̃∗(x). By (2.25)

qM×S1/pt(γ̃
∗(x)) = −d qN (y).
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This means that qN (y) is a real number whose reduction modulo Z is
1

2πi times the log of the monodromy. Note, by the same reasoning, that
qN (0) must be an integer since it gives the monodromy of the constant
line bundle qλ(0). So the monodromy of qλ(x) (divided by 2πi) is also
given by

qN (y) − qN (0) mod Z.

Using Corollary 2.26 we find

qN (y) − qN (0) =
−1
2

∫
N

G ∧ G − G ∧ F,

where G is the 4-form ω(y), and F is 1
2 the first Pontryagin form of

N—that is ω(λ(N)). This is (up to sign) Witten’s formula.
Several comments are in order.

(1) Our construction of the line bundle L works for any Spin manifold
M of dimension (4k − 2). The computation of monodromy we
have given only applies when the reduced bordism group

MSpin4k−1 K(Z, 2k)

vanishes. This group can be identified with

H2k−1(BSpin; Z)

and does not, in general, vanish.
(2) In the presence of torsion, as the manifold M moves through bor-

disms, the different components of the shifted Jacobians can come
together, suggesting that the “correct” shifted Jacobian to use is
not connected. We have constructed a line bundle over the en-
tire group Ȟ(4)4(M), but it is independent of the choices only on
the component indexed by −µ. This suggests that it is better to
work with a line bundle over the category Ȟ4(M). Of course these
remarks also apply in dimension 4k − 2.

(3) In our formulation the quadratic function arises from a symme-
try of the bundle. Its value on the points of order two in the
connected component of the identity of J can be computed from
the monodromy of the connection, but not in general. This sug-
gests that it is important to remember automorphisms of objects
in Ȟ4(M), and once again places priority on Ȟ4(M) over its set
of isomorphism classes.

(4) Formula (2.13) gives the effect of a change of Spin–structure on
L, and the resulting quadratic function.

3. Cheeger–Simons cohomology

3.1. Introduction. We wish to define a cohomology theory of smooth
manifolds M , which encodes the notion of closed q-forms with integral
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periods. More specifically, we are looking for a theory to put in the
corner of the square

(3.1)

? −−−−→ Ωq
closed(M)⏐⏐� ⏐⏐�

Hq(M ; Z) −−−−→ Hq(M ; R),

which will fit into a long exact Mayer-Vietoris type of sequence. Here
Ωq

closed(M) is the space of closed q-forms on M . There are two ap-
proaches to doing this, and they lead to equivalent results. The first
is via the complex of smooth cochains and is due to Cheeger and Si-
mons. The second is via complexes of sheaves, and is due to Deligne
and Beilinson. In this paper we follow the approach of Cheeger–Simons,
and ultimately generalize it to the theory of differential function spaces
(§4).6

3.2. Differential Characters. To construct the cohomology theory
sketched in the previous section, we refine (3.1) to a diagram of cochain
complexes, and define a complex Č(q)∗(M) by the homotopy cartesian
square

(3.2)

Č(q)∗(M) −−−−→ Ω∗≥q(M)⏐⏐� ⏐⏐�
C∗(M ; Z) −−−−→ C∗(M ; R).

More explicitly, the complex Č(q)∗(M) is given by

Č(q)n(M) =

{
Cn(M ; Z) × Cn−1(M ; R) × Ωn(M) n ≥ q

Cn(M ; Z) × Cn−1(M ; R) n < q,

with differential

d(c, h, ω) = (δc, ω − c − δh, dω)

d(c, h) =

{
(δc,−c − δh, 0) (c, h) ∈ Č(q)q−1

(δc,−c − δh) otherwise.

It will be convenient to write

Č(0)∗ = Č∗

and regard
Č(q)∗ ⊂ Č∗

as the subcomplex consisting of triples (c, h, ω) for which ω = 0 if
deg ω < q.

6Since writing this paper we have learned of the work of Harvey and Lawson (see
for example [33]) which contains another treatment of Cheeger–Simons cohomology.
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The Mayer-Vietoris sequence associated to (3.2)

→ . . . Ȟ(q)n(M) → Hn(M ; Z) × Hn(Ω∗≥q)

→ Hn(M ; R) → Ȟ(q)2k(M) → . . .

leads to natural isomorphisms

Ȟ(q)n(M) =

{
Hn(M ; Z) n > q

Hn−1(M ; R/Z) n < q,

and a short exact sequence

0 �→ Hq−1(M) ⊗ R/Z → Ȟ(q)q(M) → Aq(M) → 0.

Here Aq(M) is defined by the pullback square

Ak(M) −−−−→ Ωk
cl⏐⏐� ⏐⏐�

Hk(M ; Z) −−−−→ Hk(M ; R),

and is thus the subgroup of Hq(M ; Z)×Ωq
cl, consisting of pairs for which

the (closed) form is a representative of the image of the cohomology class
in deRham cohomology. This sequence can be arranged in three ways

(3.3)

0 → Hq−1(M ; R/Z) →Ȟ(q)q(M) → Ωq
0 → 0

0 → Hq−1 ⊗ R/Z →Ȟ(q)q(M) → Aq(M) → 0

0 → Ωq−1/Ωq−1
0 →Ȟ(q)q(M) → Hq(M ; Z) → 0.

In this, Ωj
0 denotes the space of closed j-forms with integral periods.

A cocycle for the group Ȟ(q)q is a triple

(cq, hq−1, ω),

for which
δhq−1 = ω − cq.

The equivalence class of
(cq, hq−1, ω)

in Ȟ(q)q(M) determines, and is determined by the pair

(χ, ω),

where
χ : Zq−1 → R/Z

is given by
χz = hq−1(z) mod Z.
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Definition 3.4. Let M be a smooth manifold. A differential char-
acter of M of degree (k − 1) is a pair (χ, ω) consisting of a character

χ : Zk−1 → R/Z

of the group of smooth k-cycles, and a k-form ω with the property that
for every smooth k-chain B,

(3.5) χ(∂B) =
∫

B
ω.

The group of differential characters was introduced by Cheeger-Si-
mons [20] and is denoted

Ȟk−1(M).
We will refer to Ȟk−1(M) as the (k − 1)st Cheeger-Simons cohomology
group. As indicated, the map

(cq, hq−1, ω) �→ (χ, ω)

gives an isomorphism

Ȟ(q)q(M) ≈ Ȟq−1(M).

The cup product in cohomology and the wedge product of forms lead
to pairings

Č(k)∗(M) ⊗ Č(l)∗(M) → Č(k + l)∗(3.6)

Ȟ(k)∗(M) ⊗ Ȟ(l)∗(M) → Ȟ(k + l)∗(3.7)

making Ȟ(∗)∗ into a graded commutative ring. As Cheeger and Simons
point out, the formula for these pairings is complicated by the fact that
the map from forms to cochains does not map the wedge product to the
cup product. For

ω ∈ Ωr, η ∈ Ωs,

let
ω ∪ η ∈ Cr+s

be the cup product of the cochains represented by ω and η (using, for
example, the Alexander–Whitney chain approximation to the diagonal).
Let

(3.8) B(ω, η) ∈ Cr+s−1

be any natural chain homotopy between ∧ and ∪:

δB(ω, η) + B(d ω, η) + (−1)|ω|B(ω, d η) = ω ∧ η − ω ∪ η

(any two choices of B are naturally chain homotopic). The product of
cochains (c1, h1, ω1) and (c2, h2, ω2) is given by the formula

(c1 ∪ c2, (−1)|c1|c1 ∪ h2 + h1 ∪ ω2 + B(ω1, ω2), ω1 ∧ ω2).

As described in section 2.3 the group

Ȟ(2)2(M)
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can be identified with the group of isomorphism classes of U(1) bundles
with connection on M , and the complex Č(2)∗(M) can be used to give
a more refined description of the whole category of U(1)-bundles with
connection on M . We refer the reader back to §2.3 for an interpretation
of the groups Ȟ(k)k(M) and of the complex Č(k)∗(M) for k < 2.

3.3. Characteristic classes. Let G be a compact Lie group with Lie
algebra g, and let W (g) be the Weyl algebra of polynomial functions
on g invariant under the adjoint action. We will regard W (g) as a
differential graded algebra, with differential 0, and graded in such a way
that W (g)2n consists of the polynomials of degree n, and W (g)odd = 0.
Using [53, 54] choose a system of smooth n-classifying spaces B(n)(G)
and compatible connections on the universal bundles. Write BG =
lim−→B(n)G,

C∗(BG; Z) = lim←−C∗(B(n)G; Z)

C∗(BG; R) = lim←−C∗(B(n)G; R),

∇univ for the universal connection and Ωuniv for its curvature. The
Chern–Weil homomorphism (with respect to the universal connection)
is a co-chain homotopy equivalence

W (g) ≈−→ C∗(BG; R).

Define Č∗(BG) by the homotopy Cartesian square

Č∗(BG) −−−−→ W (g)⏐⏐� ⏐⏐�Chern–Weil

C∗(BG; Z) −−−−→ C∗(BG; R).

The map Č∗(BG) → C∗(BG) is then a cochain homotopy equivalence,
and we can take Č∗(BG) as a complex of integer cochains on BG.
Specifically, an element Čn(BG) is a triple

(c, h, w) ∈ Cn(BG; Z) × Cn−1(BG; R) × W (g)n

and the differential is given by

d(c, h, w) = (δc, w − c − δh, dw) = (δc, w − c − δh, 0).

Suppose that M is a manifold, and f : M → BG is a map classifying a
principal G-bundle P → M . The map f is determined up to homotopy
by P . A characteristic class for principal G-bundles is a cohomology
class γ ∈ Hk(BG). Because of the homotopy invariance of cohomology,
the class f∗γ ∈ HkM depends only on P → M and not on the map f
which classifies P .

Now suppose we have, in addition to the above data, a connection
∇ on P (with curvature Ω), and that the map f is smooth. Choose
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a cocycle (c, h, w) ∈ Čk(BG) representing γ. As in [21] consider the
connection

∇t = (1 − t)f∗∇univ + t∇
on P × I, with curvature Ωt. Then the form

η =
∫ 1

0
w(Ωt)

satisfies

dη = w(Ω1) − w(Ω0)

= w(Ω) − f∗w(Ωuniv).

We can associate to this data the characteristic differential cocycle

(3.9) (f∗c, f∗h + η, w(Ω)) ∈ Ž(k)k(M).

The characteristic differential cocycle depends on a connection on P ,
a (universal) choice of cocycle representing γ, and a smooth map f
classifying P (but not the connection). Since the differential in W (g) is
zero, varying (c, h, w) by a coboundary changes (3.9) by the coboundary
of a class in Č(k)k−1(M). Varying f by a smooth homotopy also results
in a change of (3.9) by the coboundary of a class in Č(k)k−1(M). It
follows that the underlying cohomology class γ̌ of (3.9) depends only on
the principal bundle P and the connection ∇. In this way we recover
the result of Cheeger-Simons which, in the presence of a connection,
refines an integer characteristic class to a differential cocycle.

To summarize, given a principal G-bundle P → M and a cohomology
class γ ∈ Hk(BG; Z) one has a characteristic class

γ(P ) ∈ Hk(M ; Z).

A choice of connection ∇ on P gives a refinement of γ(P ) to a cohomol-
ogy class

γ̌(P,∇) ∈ Ȟ(k)k(M ; Z).

A choice of cocycle (in Č∗(BG)) representing γ, and a map M → BG
classifying P gives a cocycle representative of γ̌(P,∇).

Now suppose that V is an oriented orthogonal representation of G of
dimension n, and P → M is a principal G-bundle. Associated to the
orientation is a Thom class U ∈ Hn(V̄ ; Z). By the results of Mathai-
Quillen [43, §6], and the methods above, a choice of connection ∇ on
P gives a differential Thom cohomology class [Ǔ ] ∈ Ȟ(n)n(V̄ ), and the
additional choice of a map M → BG classifying P gives a differential
Thom cocycle Ǔ ∈ Ž(n)n(V̄ ).
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3.4. Integration. We begin with the integration map∫
S×R̄N /S

: Č(p + N)q+N
c (S × RN ) → Č(p)q(S).

Choose a fundamental cycle

ZN ∈ CN (RN ; Z)

(for example by choosing Z1 and then taking ZN to be the N -fold prod-
uct), and map

(3.10) (c, h, ω) �→
(

c/ZN , h/ZN ,

∫
S×R̄N /S

ω

)
,

where a/b denotes the slant product, as described in [62]. One checks
that the cochain ω/ZN coincides with the form

∫
S×R̄N/S ω (regarded as

a cochain), so the above expression could be written

(c/ZN , h/ZN , ω/ZN ).

It will be convenient to write this expression as

x/ZN

with x = (c, h, ω). It follows immediately that (3.10) is a map of com-
plexes, since “slant product” with a closed chain is a map of complexes.

Definition 3.11. Suppose that p : E → S is an Ȟ-oriented map of
smooth manifolds with boundary of relative dimension k. The “integra-
tion” map ∫

E/S
: Č(p + k)q+k(E) → Č(p)q(S)

is defined to be the composite

Č(p + k)q+k(E) ∪U−−→ Č(p + N)q+N
c (S × RN )

R
RN−−→ Č(p)q

c(S).

Remark 3.12. In the terminology of §2.3, when E/S is a fibration
over an open dense subspace of S, the map

∫
E/S commutes with the

formation of the “connection form”; ie

connection form

(∫
E/S

(c, h, ω)

)
=
∫

E/S
ω

in which the right hand integral indicates ordinary integration over the
fibers. In particular, the connection form of

∫
E/S(c, h, ω) depends only

on the orientation of the relative normal bundle, and not the other
choices that go into the Ȟ-orientation of E/S. As we will see at the
end of this section, up to natural isomorphism the integration functor
depends only on the orientation of the relative normal bundle.
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Suppose that
E1

fE−−−−→ E2⏐⏐� ⏐⏐�
S1 −−−−→

fS

S2

is a transverse pullback square in which fS is a closed embedding. An
Ȟ-orientation of E2/S2 induces an Ȟ-orientation of E1/S1, and the
resulting integration functors are compatible with base change in the
sense that

f∗
S

(∫
E2/S2

x

)
=
∫

E1/S1

f∗
Ex.

We now turn to our version of Stokes Theorem as described in §2.3.
Let p : E → S be an orientable map in which E is a manifold with
boundary, and S is closed. Choose a defining function

f : E → [0, 1]

for the boundary of E. Then

f × p : E → [0, 1] × S

is a neat map of manifolds with boundary, and
∂E −−−−→ E⏐⏐� ⏐⏐�

∂[0, 1] × S −−−−→
ι

[0, 1] × S

is a transverse pullback square. Choose an Ȟ-orientation of f × p, and
let ZI be the fundamental chain of I = [0, 1]. The expression∫ 1

0

∫
E/[0,1]×S

x :=

(∫
E/[0,1]×S

x

)/
ZI

satisfies Stokes theorem:
(3.13)

δ

∫ 1

0

∫
E/[0,1]×S

x =
∫ 1

0

∫
E/[0,1]×S

δx − (−1)|x|
(∫

E1/S
x −
∫

E0/S
x

)
where Ei = f−1(i). This follows easily from the formula

δ(a/b) = (δa)/b + (−1)|a|+|b|a/∂b

and naturality. For a discussion of this sign, and the slant product in
general, see §3.5.

When x is closed, (3.13) can be re-written as

δ

∫ 1

0

∫
E/[0,1]×S

x = −
∫

∂E/S
x.
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Put more prosaically, this says that up to sign∫ 1

0

∫
E/[0,1]×S

x

is a trivialization of ∫
∂E/S

x.

Returning to the situation of Remark 3.12, suppose given two Ȟ-
orientations µ0 and µ1 of E/S refining the same orientation of the rela-
tive normal bundle. To distinguish the two integration functors we will
write them as ∫

E/S
(− ) dµ0 and

∫
E/S

(− ) dµ1.

Choose an Ȟ-orientation µ of E × ∆1 → S × ∆1 restricting to µi at
E × {i}. For a differential cocycle α = (c, h, ω) ∈ Ž(p)q(E) set

β =
∫ 1

0

∫
E×∆1/S×∆1

p∗2α dµ,

with p2 : E × ∆1 → E the projection. By the above

dβ =
∫

E/S
α dµ1 −

∫
E/S

α dµ0.

Now with no assumption, β is a cochain in Č(p−n−1)q−n−1. But since
E/S is a fibration over an open dense set, and integration commutes
with the formation of the curvature form, the curvature form of β is
zero. It follows that

β ∈ Č(p − n − 1)q−n.

This construction can then be regarded as giving a natural isomorphism
between ∫

E/S
(− ) dµ0 and

∫
E/S

(− ) dµ1.

3.5. Slant products. In this section we summarize what is needed
to extend the definition of the slant product from singular cochains to
differential cochains. The main thing to check is that the slant product
of a form along a smooth chain is again a form (Lemma 3.15 below).

Suppose that M and N are smooth manifolds, and R a ring. The
slant product is the map of complexes

(3.14) Cp+q(M × N ; R) ⊗ Cq(N) → Cp(M ; R)

adjoint to the contraction

Cp+q(M × N ; R) ⊗ Cp(M) ⊗ Cq(N)

→ Cp+q(M × N ; R) ⊗ Cp+q(M × N) → R.
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There is a sign here, which is made troublesome by the fact that the
usual convention for the differential in the cochain complex does not
make it the dual of the chain complex (i.e. the evaluation map is not a
map of complexes). To clarify, the map (3.14) is a map of complexes,
provided the differential in C∗(M) is modified to be

b �→ (−1)|b|∂b.

Thus the relationship between the (co-)boundary and the slant product
is given by

δ(a/b) = (δa)/b + (−1)|a|+|b|a/∂b.

To extend the slant product to the complex of differential cochains

Č∗(M × N) ⊗ C∗(N) → Č∗(M)

amounts to producing maps

Ω∗(M × N) ⊗ C∗(N)
/−→ Ω∗(M)

C∗(M × N ; R) ⊗ C∗(N)
/−→ C∗(M ; R)

C∗(M × N ; Z) ⊗ C∗(N)
/−→ C∗(M ; R)

compatible with the inclusions

C∗(− ; Z) ↪→ C∗(− ; R) ←↩ Ω∗(− ; R).

This reduces to checking that the slant product of a form along a smooth
chain is again a form.

Lemma 3.15. Suppose that ω is a (p + q)-form on M ×N , regarded
as a cochain, and that Zp and Zq are p and q-chains on M and N
respectively. Then the value of ω/Zq on Zp is∫

Zp×Zq

ω.

In other words, the cochain ω/Zq is represented by the form∫
M×Zq/M

ω.

Proof. By naturality we are reduced to the case in which

M = ∆p

N = ∆q

and Zp and Zq are the identity maps respectively. The value of ω/Zq

on Zp is ∫
Zp⊗Zq

ω.
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But Zp⊗Zq is by definition the sum of all of the non-degenerate (p+q)-
simplices of ∆p ×∆q, with orientation derived from that of ∆p ×∆q. In
other words, Zp ⊗Zq is the fundamental chain of of ∆p ×∆q. It follows
that ∫

Zp⊗Zq

ω =
∫

Zp×Zq

ω.

q.e.d.

4. Generalized differential cohomology

4.1. Differential function spaces. In §3 we introduced the cohomol-
ogy groups Ȟ(q)n(S) by combining differential forms and ordinary coho-
mology. These groups are formed from triples (c, h, ω) with c a cocycle,
h a cochain and ω a form. For practical purposes an n-cocycle can be
regarded7 as a map to the Eilenberg-MacLane space K(Z, n). We take
this as our point of departure, and in this section shift the emphasis
from cocycles to maps. Consider a topological space X (with no partic-
ular smooth structure), a cocycle ι ∈ Zn(X; R), and a smooth manifold
S.

Definition 4.1. A differential function t : S → (X; ι) is a triple
(c, h, ω)

c : S → X, h ∈ Cn−1(S; R), ω ∈ Ωn(S)
satisfying

δ h = ω − c∗ι.

Example 4.2. Suppose X is the Eilenberg-MacLane space K(Z, 2),
which we can take to be CP∞, though we don’t make use of its smooth
structure. Choose a two-cocycle ιZ representing the first Chern class
of the universal line bundle L, and let ι be its image in Z2(X; R). As
described in Example 2.7, to refine a map c to a differential function
amounts to putting a connection on the line bundle c∗L. The U(1)-
bundle with connection is the one associated to

(c∗ιZ , h, ω) ∈ Z(2)2(S).

To form a space of differential functions we use the singular complex
of space XS—a combinatorial object that retains the homotopy type
of the function space. This requires the language of simplicial sets.
We have outlined what is needed in Appendix A. For further details
see [31, 45, 22]. Rest assured that we recover the complex for differen-
tial cohomology. (See Example 4.10, and Appendix D.)

7It is well-known [61] that for a CW complex S, the set [S, K(Z, n)] can be identi-
fied with the cohomology group Hn(S; Z). In particular, any cocycle is cohomologous
to one which is pulled back from a map to an Eilenberg-MacLane space. A more re-
fined statement is that the space of maps from S to K(Z, n) has the homotopy type
of the “space of n-cocycles” on S. For a more precise discussion see Appendix A
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Let
∆n = {(t0, . . . , tn) | 0 ≤ ti ≤ 1,

∑
ti = 1}

be the standard n-simplex. The singular complex of a space M is the
simplicial set sing M with n-simplices

sing Mn = {z : ∆n → M} .

The evaluation map (A.5)

| sing M | → M

induces an isomorphism of homotopy groups and of singular homology
groups. The simplicial set sing M always satisfies the Kan extension
condition (A.8), so the maps

πsimp
n sing M → πn| sing M | → πn(M)

are all isomorphisms.
The singular complex of the function space XS is the simplicial set

whose k-simplices are maps

S × ∆k → X.

Definition 4.3. Suppose X is a space, ι ∈ Zn(X; R) a cocycle, and
S a smooth manifold. The differential function complex

X̌S = (X; ι)S

is the simplicial set whose k-simplices are differential functions

S × ∆k → (X; ι).

Remark 4.4. Phrased slightly differently, a k-simplex of (X; ι)S is
a k-simplex

c : ∆k × S → X

of XS , together with a refinement of c∗ι to a differential cocycle. We will
refer to the differential cocycle refining c∗ι as the underlying differential
cocycle.

The differential function complex has an important filtration. Define
a filtration of the deRham complex of ∆k by

filts Ω∗(∆k) =
(
Ω0(∆k) → · · · → Ωs(∆k)

)
,

and let filts Ω∗(S × ∆k) be the subspace generated by

Ω∗(S) ⊗ filts Ω∗(∆k).

In other words, a form ω ∈ Ω∗(S×∆k) lies in filtration ≤ s if it vanishes
on all sequences of vectors containing (s+1) vectors tangent to ∆k. Note
that exterior differentiation shifts this filtration:

d : filts → filts+1 .
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Definition 4.5. With the notation of Definition 4.3, a k-simplex
(c, h, ω) of the differential function complex (X; ι)S has weight filtration
≤ s if the form ω satisfies

ω ∈ filts Ωn(S × ∆k)cl.

We will use the notation

filts(X; ι)S

to denote the sub-simplicial set of (X; ι)S consisting of elements of
weight filtration ≤ s.

Example 4.6. Continuing with Example 4.2, a 1-simplex of
(CP∞, ι)S gives rise to a U(1)-bundle with connection L over S × [0, 1],
which, in turn, leads to an isomorphism of U(1)-bundles

(4.7) L|S×{0} → L|S×{1}
by parallel transport along the paths

t �→ (x, t).

Note that this isomorphism need not preserve the connections.

Example 4.8. A 1-simplex of filt0(CP∞; ι)S also gives rise to a U(1)-
bundle with connection L over S × [0, 1]. But this time the curvature
form must be pulled back8 from a form on S. In this case the isomor-
phism (4.7) is horizontal in the sense that it does preserve the connec-
tions.

Remark 4.9. We will show later (Lemma D.2 and Proposition D.5)
that this construction leads to a simplicial homotopy equivalence be-
tween filts(CP∞; ι)S and the simplicial abelian group associated to the
chain complex

Z(2)2(S) ← C(2)1(S) ← C(0)0(S).

Thus the fundamental groupoid9 of filt0(CP∞; ι)S is equivalent to
the groupoid of U(1)-bundles with connection over S. The fundamen-
tal groupoid of filt1(CP∞; ι)S is equivalent to the groupoid of U(1)-
bundles over S and isomorphisms, and the fundamental groupoid of
filt2(CP∞; ι)S is equivalent to the fundamental groupoid of (CP∞)S

8By definition it must be of the form g(t)ω, where ω is independent of t. But it
is also closed, so g must be constant.

9A more precise description of the relationship between the category of line bundles
and the simplicial set (CP∞; ι)S can be formulated in terms of the fundamental
groupoid. Recall that the fundamental groupoid [60] of a space E is the groupoid
π≤1E whose objects are the points of E, and in which a morphism from x to y
is an equivalence of paths starting at x and ending at y. The equivalence relation
is that of homotopy relative to the endpoints, and composition of maps is formed
by concatenation of paths. The fundamental groupoid of a simplicial set is defined
analogously.
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which is equivalent to the category of principal U(1)-bundles over S,
and homotopy classes of isomorphisms.

Example 4.10. Take X to be the Eilenberg-MacLane space K(Z, n),
and let ιR ∈ Zn(X; R) be a fundamental cocycle: a cocycle whose un-
derlying cohomology class corresponds to the inclusion Z ⊂ R under the
isomorphism

Hn(K(Z, n); R) ≈ hom(Z, R).
We show in Appendix D that the simplicial set

filts(X; ι)S

is a homotopy equivalent to the simplicial abelian group associated with
the chain complex (§3.2)

Ž(n − s)n(S) ←− Č(n − s)n−1(S) . . . ←− Č(n − s)0(S).

The equivalence is given by slant product of the underlying differential
cocycle with the fundamental class of the variable simplex. It follows
(Proposition A.11) that the homotopy groups of filts X̌S are given by

πi filts X̌S = Ȟ(n − s)n−i(S),

and we recover the differential cohomology of S. In this way the ho-
motopy groups of differential function spaces generalize the Cheeger-
Simons cohomology groups.

Remark 4.11. We will also be interested in the situation in which
we have several cocycles ι of varying degrees. These can be regarded as
a single cocycle with values in a graded vector space. We will use the
convention

Vj = V−j ,

and so grade cochains and forms with values in a graded vector space V
in such a way that the Ci(X;Vj) and Ωi(X;Vj) have total degree (i−j).
We will write

C∗(X;V)n =
⊕

i+j=n

Ci(X;Vj)

Ω∗(S;V)n =
⊕

i+j=n

Ωi(X;Vj)

Z∗(X;V)n =
⊕

i+j=n

Zi(X;Vj),

and
Hn(X;V) =

⊕
i+j=n

H i(X;Vj).

We define filts Ω∗(S × ∆k;V) to be the subspace generated by

Ω∗(S;V) ⊗ filts Ω∗(∆k).
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As before, a form ω ∈ Ω∗(S × ∆k;V) lies in filtration ≤ s if it vanishes
on all sequences of vectors containing (s + 1) vectors tangent to ∆k.

We now turn to the analogue of the square (3.2) and the second of
the fundamental exact sequences (3.3). Using the equivalence between
simplicial abelian groups and chain complexes (see §A.3), we can fit the
differential function complex (X; ι)S into a homotopy Cartesian square

(4.12)

filts(X; ι)S −−−−→ filts Ω∗(S × ∆•;V)n
cl⏐⏐� ⏐⏐�

sing XS −−−−→ Z∗(S × ∆•;V)n.

By Corollary D.15

πmZ(S × ∆•;V)n = Hn−m(S;V)

πm filts Ω∗(S × ∆•;V)n
cl =

⎧⎪⎨⎪⎩
Hn−m

DR (S;V) m < s

Ω∗(S;V)n−s
cl m = s

0 m > s.

This gives isomorphisms

πk filts(X; ι)S ≈−→ πkX
S k < s

πk filts(X; ι)S ≈−→ Hn−k−1(S;V)/πk+1X
S k > s,

and a short exact sequence

Hn−s−1(S;V)/πs+1X
S � πs filts(X; ι)S � An−s(S; X, ι),

where An−s(S; X, ι) is defined by the pullback square

An−s(S; X, ι) −−−−→ Ω(S;V)n−s
cl⏐⏐� ⏐⏐�

πsX
S −−−−→ Hn−s(S;V).

4.2. Naturality and homotopy. We now describe how the the dif-
ferential function complex (X; ι)S depends on X, S, and ι. First of all,
a smooth map

g : S → T

gives a map
filts(X; ι)T → filts(X; ι)S

sending (c, h, ω) to (c, h, ω) ◦ g = (c ◦ g, c∗h, c∗ω). We will refer to this
map as composition with g.

Given a map f : X → Y and a cocycle

ι ∈ Zn(Y ;V),

composition with f gives a map

f̌ : filts(X; f∗ι)S → filts(Y ; ι)S
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sending (c, h, ω) to (c ◦ f, h, ω).

Proposition 4.13. Suppose that f : X → Y is a (weak) homotopy
equivalence, and ι ∈ Zn(Y ;V) is a cocycle. Then for each manifold S,
the map

f̌ : filts(X; f∗ι)S → filts(Y ; ι)S

is a (weak) homotopy equivalence.

Proof. When f is a homotopy equivalence, the vertical maps in the
following diagram are homotopy equivalences (two of them are the iden-
tity map).

sing XS −−−−→ Z∗(S × ∆•;V)n ←−−−− filts Ω∗(S × ∆•;V)n
cl⏐⏐� ⏐⏐� ⏐⏐�

sing Y S −−−−→ Z∗(S × ∆•;V)n ←−−−− filts Ω∗(S × ∆•;V)n
cl

It follows that the map of homotopy pullbacks (see (4.12))

(4.14) f̌ : filts(X; f∗ι)S → filts(Y ; ι)S

is a homotopy equivalence. If the map f is merely a weak equivalence,
one needs to use the fact that a manifold with corners has the homotopy
type of a CW complex to conclude that the left vertical map is a weak
equivalence. Since the formation of homotopy pullbacks preserves weak
equivalences the claim again follows. q.e.d.

Remark 4.15. Suppose that we are given a homotopy

H : X × [0, 1] → Y,

with H(x, 0) = f(x) and H(x, 1) = g(x). We then have a diagram of
differential function spaces

filts (X, f∗ι)S ��

f̌ ���������������
filts (X × I; H∗ι)S

��

filts (X; g∗ι)S��

ǧ���������������

filts (Y, ι)S .

By Proposition 4.13, the horizontal maps are homotopy equivalences,
and so the construction can be regarded as giving a homotopy between
filts f̌ and filts ǧ.

Given two cocycles ι1, ι2 ∈ Z∗(X;V)n, and a cochain b ∈ C∗(X;V)n−1

with δb = ι1 − ι2, we get a map

(4.16)
(X; ι1)S → (X; ι2)S

(c, h, ω) �→ (c, h + c∗b, ω).

This map is an isomorphism, with inverse −b. In particular, the group
Z∗(X;V)n−1 acts on the differential function complex (X; ι)S .
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Finally, suppose given a map t : V → W of graded vector spaces, and
a cocycle ι ∈ Zn(X;V). Composition with t defines a cocycle

t ◦ ι ∈ Zn(X; W ),

and a map of differential function complexes

(X; ι)S → (X; t ◦ ι)S .

Combining these, we see that given maps

f : X → Y t : V → W ,

cocycles
ιX ∈ Zn(X;V) ιY ∈ Zn(Y ; W ),

and a cochain b ∈ Cn−1(X; W ) with δb = t ◦ ιX − f∗ιY we get a map of
differential function complexes

(X; ιX)S → (Y ; ιY )S

(c, h, ω) �→ (f ◦ c, t ◦ h + c∗b, t ◦ ω)

which is a weak equivalence when f is a weak equivalence and t is an
isomorphism.

Remark 4.17. All of this means that the homotopy type of

filts(X, ι)S

depends only on the cohomology class of ι and and the homotopy type
of X. For example, suppose f and g are homotopic maps X → Y , and
that α, β ∈ Zn(X) are cocycles in the cohomology class of f∗ι and g∗ι
respectively. A choice of cochains

b1, b2 ∈ Cn−1(X, R)

δb1 = α − f∗ι
δb2 = β − g∗ι

gives isomorphisms

filts(X; α)S ≈ filts(X; f∗ι)S

filts(X; β)S ≈ filts(X; g∗ι)S ,

and defines maps

filts f̌ : filts(X; α)S → filts(Y ; ι)S

filts ǧ : filts(X; β)S → filts(Y ; ι)S .

A homotopy H : X × [0, 1] → Y from f to g, then leads to the diagram
of Remark 4.15, and hence a homotopy between filts f̌ and filts ǧ.
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4.3. Thom complexes. In this section we describe Thom complexes
and the Pontryagin-Thom construction in the context of differential
function complexes.

Recall that the Thom complex of a vector bundle V over a compact
space M is the 1-point compactification of the total space. We will use
the notation Thom(M ; V ), or V̄ to denote the Thom complex. (We
are avoiding the more traditional MV because of the conflict with the
notation XS for function spaces). When M is not compact, one sets

Thom(M ; V ) = V̄ =
⋃

Kα⊂M
compact

Thom(Kα; Vα) Vα = V |Kα .

Suppose V is a vector bundle over a manifold M . We will call a map
g : S → V̄ smooth if its restriction to

g−1(V ) → V

is smooth. We define the deRham complex Ω∗(V̄ ) to be the sub-complex
of Ω∗(V ) consisting of forms which are fiber-wise compactly supported.
With these definitions, the differential function complex

filts(X; ι)V̄

is defined, and a smooth map S → V̄ gives a map of differential function
complexes

filts(X; ι)V̄ → filts(X; ι)S

Definition 4.18. Let

W1 → X and W2 → Y

be vector bundles, and ι ∈ Zk
(
W̄2, {∞};W) a cocycle. A (vector)

bundle map W1 → W2 is a pullback square

W1
t−−−−→ W2⏐⏐� ⏐⏐�

X −−−−→
f

Y

for which the induced isomorphism W1 → f∗W2 is an isomorphism of
vector bundles. A differential bundle map is a differential function

ť = (c, h, ω) : W̄1 → (W̄2; ι
)
.

which is a bundle map. The complex of differential bundle maps

filts (W2; ι)W1 ⊂ filts
(
W̄2; ι
)W̄1

is the subcomplex consisting of vector bundle maps.
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In case W2 is the universal bundle over some kind of classifying space,
then a vector bundle map W1 → W2 is a classifying map for W1.

The set of bundle maps is topologized as a closed subspace of the
space of all maps from Thom(X; W1) → Thom(Y ; W2) (which, in turn
is a closed subspace of the space of all maps W1 → W2).

Suppose that B is a topological space, equipped with a vector bundle
V , and ι ∈ Zk

(
V̄ , {∞}) is a cocycle.

Definition 4.19. A B-oriented embedding is a neat embedding p :
E → S, a tubular neighborhood10 W ↪→ S of p : E → S, and a
vector bundle map W → V classifying W . A differential B-oriented
embedding is a neat embedding p : E → S, a tubular neighborhood
W ↪→ S of p : E → S, and a differential vector bundle map

ť : W → (V ; ι)

classifying W .

Let p : E ↪→ S be a differential oriented embedding. The construction
of Pontryagin-Thom gives a smooth map

(4.20) S → Thom(E, W ).

Composition with (4.20) defines the push-forward

p! : filts(V ; ι)W ⊂ filts (X; ι)Thom(E,W ) → filts(X; ι)S .

4.4. Interlude: differential K-theory. Before turning to the case
of a general cohomology theory, we apply the ideas of the previous
section to the case of K-theory. The resulting differential K-theory
originally came up in anomaly cancellation problems for D-branes in M -
theory [30, 29]. The actual anomaly cancellation requires a refinement
of the families index theorem, an ongoing joint work of the authors and
Dan Freed.

Let F be the space of Fredholm operators. We remind the reader
that the space F is a classifying space for K-theory and in particular
that any vector bundle can be obtained as the index bundle of a map
into F . Let

ι = (ιn) ∈
∏

Z2n(F ; R) = Z0(F ;V)

be a choice of cocycle representatives for the universal Chern character,
so that if f : S → F classifies a vector bundle V , then the characteristic
class chn(V ) ∈ H2n(S; R) is represented by f∗ιn.

Definition 4.21. The differential K-group Ǩ0(S) is the group

π0 filt0 (F ; ι)S

10Recall from footnote 4 that a tubular neighborhood of p : E ↪→ S is a vector bun-
dle W over E, and an extension of p to a diffeomorphism of W with a neighborhood
of p(E).
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Remark 4.22. In other words, an element of Ǩ0(S) is represented
by a triple (c, h, ω) where c : S → F is a map, ω = (ωn) is a sequence
of 2n-forms, and h = (hn) is a sequence of (2n − 1) cochains satisfying

δh = ω − c∗ι.

Two triples (c0, h0, ω0) and (c1, h1, ω1) are equivalent if there is a (c, h, ω)
on S × I, with ω constant in the I direction, and with

(c, h, ω)|{0} = (c0, h0, ω0)

(c, h, ω)|{1} = (c1, h1, ω1).

We will use the symbol čh(V̌ ) to denote the differential cocycle un-
derlying a differential function V̌ : S → (F ; ι).

The space ΩiF is a classifying space for K−i. Let

ι−i = (ι−i
2n−i) ∈

∏
Z2n−i(ΩiF ; R)

be the cocycle obtained by pulling ι back along the evaluation map

Si × ΩiF → F
and integrating along Si (taking the slant product with the fundamental
cycle of Si). The cohomology classes of the ι−i

2n−i are the universal even
(odd) Chern character classes, when i is even (odd).

Definition 4.23. The differential K-group Ǩ−i(S) is the group

π0 filt0
(
ΩiF ; ι−i

)S
Remark 4.24. As above, an element of Ǩ−i(S) is represented by a

triple (c, h, ω) where c : S → ΩiF is a map, ω = (ωn) is a sequence
of 2n − i-forms, and h = (hn) is a sequence of (2n − i − 1) cochains
satisfying

δh = ω − c∗ι−i.

Two triples (c0, h0, ω0) and (c1, h1, ω1) are equivalent if there is a (c, h, ω)
on S × I, with ω constant in the I direction, and with

(c, h, ω)|{0} = (c0, h0, ω0)

(c, h, ω)|{1} = (c1, h1, ω1).

These differential K-groups lie in short exact sequences

0 → K−1(S; R/Z) → Ǩ0(S) →
∏

Ω2n(S) → 0

0 → K−1(S) ⊗ R/Z → Ǩ0(S) → A0
K(S) → 0

and

0 → K−i−1(S; R/Z) → Ǩ−i(S) →
∏

Ω2n−i(S) → 0

0 → K−i−1(S) ⊗ R/Z → Ǩ−i(S) → A−i
K (S) → 0,
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where A−i
K is defined by the pullback square

A−i
K (S) −−−−→ ∏

Ω2n−i
cl (S)⏐⏐� ⏐⏐�

K2n−i(S) −−−−→
ch

∏
H2n−i(S; R).

So an element of A−i
K (S) consists of an element x ∈ K2n−i(S) and a

sequence of closed 2n − i-forms representing the Chern character of x.
Bott periodicity provides a homotopy equivalence

ΩnF ≈ Ωn+2F
under which ιn corresponds to ιn+2. This gives an equivalence of differ-
ential function spaces

filtt (ΩnF ; ιn)S ≈ filtt
(
Ωn+2F ; ιn+2

)S
and in particular, of differential K-groups

Ǩ−n(S) ≈ Ǩ−n−2(S).

This allows one to define differential K-groups Ǩn for n > 0, by

Ǩn(S) = Ǩn−2N (S) n − 2N < 0.

In [42] Lott defines the group K−1(S; R/Z) in geometric terms, and
proves an index theorem, generalizing the index theorem for flat bundles
in [7]. Lott takes as generators of K−1(S; R/Z) pairs (V, h) consisting
of a (graded) vector bundle V with a connection, and sequence h of odd
forms satisfying

dh = Chern character forms of V .

Our definition is close in spirit to Lott’s, with c corresponding to V , c∗ι
to the Chern character forms of the connection, h to h and ω = 0. In a
recent preprint [41], Lott constructs the abelian gerbe with connection
whose curvature is the 3-form part of the Chern character of the index
of a family of self-adjoint Dirac-like operators. In our terminology he
constructs the degree 3 part of the differential Chern character going
from differential K-theory to differential cohomology.

4.5. Differential cohomology theories. In this section we build on
our theory of differential functions and define differential cohomology
theories. We explained in the introduction why we wish to do so.

Let E be a cohomology theory. The spaces representing E cohomol-
ogy groups (ΩnF in the case of K-theory, Eilenberg-MacLane spaces for
ordinary cohomology) fit together to form a spectrum.

Definition 4.25 (see [40, 35, 27, 28, 1]). A spectrum E consists of
a sequence of pointed spaces En, n = 0, 1, 2, . . . together with maps

(4.26) sE
n : ΣEn → En+1
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whose adjoints

(4.27) tEn : En → ΩEn+1

are homeomorphisms.

Remark 4.28. By setting, for n > 0

E−n = ΩnE0 = Ωn+kEk,

a spectrum determines a sequence of spaces En, n ∈ Z together with
homeomorphisms

tEn : En → ΩEn+1.

If X is a pointed space and E is a spectrum, then E-cohomology
groups of X are given by

Ek(X) = [X, Ek] = [ΣNX, EN+k]

and the E-homology groups are given by

Ek(X) = lim
N→∞

πN+kEN ∧ X.

Example 4.29. Let A be an abelian group, and K(A, n) an Eilen-
berg-MacLane space. Then [S, K(A, n)] = Hn(S; A). To assemble these
into a spectrum we need to construct homeomorphisms

(4.30) K(A, n) → ΩK(A, n + 1).

By standard algebraic topology methods, one can choose the spaces
K(A, n) so that (4.30) is a closed inclusion. Replacing K(A, n) with

lim−→ΩNK(A, N + n)

then makes (4.30) a homeomorphism. This is the Eilenberg-MacLane
spectrum, and is denoted HA. By construction

HAn(S) = Hn(S; A)

HAn(S) = Hn(S; A).

Example 4.31. Now take E2n = F , and E2n−1 = ΩF . We have a
homeomorphism E2n−1 = ΩE2n by definition, and a homotopy equiva-
lence E2n → ΩE2n+1 by Bott periodicity:

E2n −→ Ω2E4k = ΩE2n+1.

As in Example 4.29, the spaces En can be modified so that the maps
En → ΩEn+1 form a spectrum, the K-theory spectrum.

Multiplication with the fundamental cycle ZS1 of S1 gives a map of
singular chain complexes

C∗En → C∗+1ΣEn → C∗+1En+1.
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Definition 4.32. Let E be a spectrum. The singular chain complex
of E is the complex

C∗(E) = lim−→C∗+nEn,

and the singular cochain complex of E (with coefficients in an abelian
group A) is the cochain complex

C∗(E; A) = hom(C∗E, A) = lim←−(C∗+nEn) ⊂
∏

C∗+nEn.

The homology and cohomology groups of E are the homology groups
of the complexes C∗(E) and C∗E. Note that these groups can be non-
zero even when k is negative.

Now fix a cocycle ι ∈ Zp(E;V). By definition, this means that there
are cocycles ιn ∈ Zp+n(En;V), n ∈ Z which are compatible in the sense
that

ιn = (s∗n ιn+1) /ZS1 .

Once in a while it will be convenient to denote the pair (En; ιn) as

(4.33) (En; ιn) = (E; ι)n.

Definition 4.34. Let S be a manifold. The differential E-cohomology
group

E(n − s)n(S; ι)
is the homotopy group

π0 filts (En; ιn)S = π0 filts (E; ι)S
n .

Remark 4.35. We will see in the next section that the spaces

(En; ιn)S

come equipped with homotopy equivalences

(4.36) filts+n(En; ιn)S → Ωfilts+n+1(En+1; ιn+1)S .

Thus there exists a spectrum

filts(E; ι)S

with (
filts(E; ι)S

)
n

= filts+n(E; ι)S
n = filts+n(En; ιn)S ,

and the higher homotopy group

πt filts (En; ιn)S

is isomorphic to

π0 filts−t (En−t; ιn−t)
S = E(n − s)n−t(S; ι).

Example 4.37. We will show in Appendix D that when E is the
Eilenberg-MacLane spectrum H Z, one has

H Z(n)k(S) = Ȟ(n)k(S).
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4.6. Differential function spectra. In this section we will establish
the homotopy equivalence (4.36). As a consequence there exists a differ-
ential function spectrum filts (E; ι)S whose nth space has the homotopy
type of filts+n (En; ιn)S .

There is one point here on which we have been deliberately vague,
and which needs to be clarified. Differential function complexes are not
spaces, but simplicial sets. Of course they can be made into spaces by
forming their geometric realizations, and, since they are Kan complexes,
no homotopy theoretic information is gained or lost by doing so. But
this means that the notation Ωfilts+n+1 (En+1; ιn+1)

S is misleading, and
that the object we need to work with is the space of simplicial loops.

For any simplicial set X let ΩsimpX be the simplicial loop space of
X; the simplicial set whose k-simplices are the maps of simplicial sets
h : ∆k• × ∆1• → X• for which h(x, 0) = h(x, 1) = ∗. Using the standard
simplicial decomposition of ∆k• × ∆1• , a k-simplex of ΩsimpX can be
described as a sequence

h0, . . . , hk ∈ Xk+1

of (k + 1)-simplices of X satisfying

∂ihi = ∂ihi−1(4.38)
∂0h0 = ∂k+1hk = ∗.

There is a canonical map ∣∣ΩsimpX
∣∣→ Ω |X|

which is a homotopy equivalence if X satisfies the Kan extension con-
dition (A.8). The simplicial set filts+n+1

(
ĚS

n+1; ιn+1

)
satisfies the Kan

extension condition, and in this section we will actually produce a sim-
plicial homotopy equivalence

(4.39) filts+n(En; ιn)S → Ωsimp filts+n+1(En+1; ιn+1)S .

Let

ES×R

n+1,c

be the space of “compactly supported” functions, i.e., the fiber of the
map

ES×R̄

n+1 → E
S×{∞}
n+1 ,

in which R̄ = R∪{∞} is the one point compactification of R. Of course,
ES×R

n+1,c is simply the loop space of ES
n+1, and is homeomorphic to ES

n .
Define a simplicial set filts(En+1; ιn+1)S×R

c by the homotopy Cartesian
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square
(4.40)

filtn+s+1(En+1; ιn+1)S×R
c −−−−→ filtn+s+1 Ω∗

c (S × R × ∆•;V)n+p+1
cl⏐⏐� ⏐⏐�

sing ES×R

n+1,c −−−−→ Z∗
c (S × R × ∆•;V)n+p+1

The vector space Ω∗
c

(
S × R × ∆k;V) is the space of forms which are

compactly supported (along R), and the subspace

filtt Ω∗
c

(
S × R × ∆k;V

)
consists of those whose Kunneth components along ∆k × R of degree
greater than t vanish.

We will construct a diagram of simplicial homotopy equivalences

(4.41)

filtn+s+1(En+1; ιn+1)S×R
c −−−−→ Ωsimp filtn+s+1(En+1; ιn+1)S⏐⏐�

filts+n(En; ιn)S .

Choosing a functorial section of the leftmost map gives (4.39).
For the left map of (4.41), note that the homeomorphism ES×R

n+1,c ≈ ES
n

prolongs to an isomorphism of simplicial sets sing ES×R

n+1,c ≈ sing ES
n

which is compatible with the maps

filtn+s+1 Ω∗
c (S × R × ∆•;V)n+p+1

cl → filtn+s Ω∗ (S × ∆•;V)n+p
cl

Z∗
c (S × R × ∆•;V)n+p+1 → Z∗ (S × ∆•;V)n+p

given by “integration over R” and “slant product with the fundamental
class of R̄.” By Corollary D.18 these maps are simplicial homotopy
equivalences. Passing to homotopy pullbacks then gives a homotopy
equivalence

(4.42) filtn+s+1(En+1,c; ιn+1)S×R ∼−→ filts+n(En; ιn)S .

For the weak equivalence

(4.43) filtn+s+1(En+1,c; ιn+1)S×R → Ωsimp filtn+s+1(En+1; ιn+1)S

first apply the “simplicial loops” to the diagram defining
filtn+s+1(En+1; ιn+1)S to get a homotopy Cartesian square

Ωsimp filtn+s+1(En+1; ιn+1)S −−−−→ Ωsimp filtn+s+1 Ω∗ (S×∆•;V)n+p+1
cl⏐⏐� ⏐⏐�

Ωsimp sing ES
n+1 −−−−→ ΩsimpZ∗ (S × ∆•;V)n+p+1 .
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The adjunction between sing and “geometric realization” gives an iso-
morphism

(4.44) sing ES×R

n+1,c → Ωsimp sing ES
n+1.

A k-simplex of ΩsimpZ∗ (S × ∆•;V)n+p+1 consists of a sequence of co-
cycles

c0, . . . ck+1 ∈ Z∗
(
S × ∆k;V

)n+p+1

satisfying the relations corresponding to (4.38). On the other hand, a
k-simplex of Z∗

c (S × R × ∆•;V)n+p+1 can be identified with a cocycle

c ∈ Z∗
(
S × ∆1 × ∆k;V

)n+p+1

which vanishes on S × ∂∆1 × ∆k. Restricting c to the standard trian-
gulation of ∆1 × ∆k leads to a map of simplicial sets

(4.45) Z∗
c (S × R × ∆•;V)n+p+1 → ΩsimpZ∗ (S × ∆•;V)n+p+1 ,

which by explicit computation is easily checked to be a weak equivalence.
Similarly, a k-simplex of

Ωsimp filtn+s+1 Ω∗ (S × ∆•;V)n+p+1
cl

consists of a sequences of forms

(4.46) ω0, . . . ωk+1 ∈ filtn+s+1 Ω∗
(
S × ∆k;V

)n+p+1

cl

satisfying the analogue of (4.38). A k-simplex of

filtn+s+1 Ω∗
c (S × R × ∆•;V)n+p+1

cl

can be identified with a form ω on S × ∆1 × ∆k whose restriction to
S × ∂∆1 ×∆k vanishes, and whose Kunneth components on ∆1 ×∆kof
degrees < n+s+1 vanish. Restricting ω to the simplices in the standard
triangulation of ∆1×∆k leads to a sequence (4.46), and hence to a map
of simplicial abelian groups
(4.47)

filtn+s+1 Ω∗
c (S × R × ∆•;V)n+p+1

cl → Ωsimp filtn+s+1 Ω∗ (S × ∆•;V) ,

which, also by explicit computation, is easily checked to be a weak
equivalence.

The equivalences (4.44), (4.45), and (4.47) are compatible with pull-
back of cochains, and the inclusion of forms into cochains, and so
patch together, via homotopy pullback, to give the desired weak equiv-
alence (4.43).
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4.7. Naturality and Homotopy for Spectra. We now turn to some
further constructions on spectra, and the analogues of the results of
§4.2.

Definition 4.48. A map between spectra

E = {En, tEn } and F = {Fn, tFn }
consists of a collection of maps fn : En → Fn , which are compatible
with the structure maps (4.27), in the sense that the following diagram
commutes

En
fn−−−−→ Fn

tEn

⏐⏐� ⏐⏐�tFn

ΩEn+1 −−−−→
Ωfn+1

ΩFn+1.

Remark 4.49. The set of maps is topologized as a subspace of∏
FEn

n .

Given f : E → F and a cocycle

ι ∈ Zp(F ; R),

composition with f gives a map

f̌ : filts(E; f∗ι)S → filts(F ; ι)S .

Proposition 4.50. Suppose that f : E → F is a (weak) homotopy
equivalence, and ι ∈ Zp(F ; R) is a cocycle. Then for each manifold S,
the map

f̌ : filts(E; f∗ι)S → filts(F ; ι)S

is a (weak) homotopy equivalence.

Proof. This is a consequence of Proposition 4.13. q.e.d.

As in §4.2, Proposition 4.50 implies that a homotopy between maps of
spectra f, g : E → F leads to a filtration preserving homotopy between
maps of differential function spectra.

Given two cocycles ι1, ι2 ∈ Zp(E; R), and a cochain b ∈ Cp−1(E; R)
with δb = ι2 − ι1, the isomorphisms (4.16)

filts+n(En; ι1n)S → filts+n(En; ι2n)S

fit together to give an isomorphism

filts(E; ι1)S → filts(E; ι2)S .

It follows that given a map f : E → F , and cocycles ιE ∈ Zp(E; R),
ιF ∈ Zp(F ; R), and a cochain b ∈ Cp−1(E; R) with δb = f∗ιF − ιE we
get a map of differential function spectra

filts(E; ιE)S → filts(F ; ιF )S
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which is a weak equivalence if f is. It also follows that the (weak)
homotopy type of

filts(E, ι)S

depends only on the cohomology class of ι and and the homotopy type
of E in the sense described in Remark 4.17.

Remark 4.51. Associated to a space X is its suspension spectrum,
Σ∞X, with

(Σ∞X)n = lim−→ΩkΣn+xX.

One can easily check that the space of maps from Σ∞X to a spectrum
E is simply the space EX

0 , with components, the cohomology group
E0(X).

Remark 4.52. If E = {En} is a spectrum, one can construct a new
spectrum by simply shifting the indices. These are known as the shift
suspensions of E, and we will indicate them with the notation ΣkE. To
be specific (

ΣkE
)

n
= En+k.

Note that k may be any integer, and that ΣkE is the spectrum repre-
senting the cohomology theory

X �→ E∗+k(X).

Remark 4.53. Sometimes the symbol ΣkE is used to denote the
spectrum with

(4.54)
(
ΣkE
)

n
= lim−→ΩnΣkEn.

The spectrum described by (4.54) is canonically homotopy equivalent,
but not equal to ΣkE.

4.8. The fundamental cocycle. Recall that for any compact S, and
any cohomology theory E there is a canonical isomorphism

(4.55) E∗(S) ⊗ R = H∗(S; π∗E ⊗ R).

When E is K-theory, this isomorphism is given by the Chern character.
The isomorphism (4.55) arises from a universal cohomology class

iE ∈ H0(E; π∗E ⊗ R) = lim←−Hn(En; π∗+nE ⊗ R),

and associates to a map f : S → En representing an element of
En(S) the cohomology class f∗in, where in is the projection of iE to
Hn(En; π∗+nE). We will call the class iE a fundamental cohomology
class–the term used in the case of the Eilenberg-MacLane spectrum,
with En = K(Z, n). A cocycle representative of iE will be called a
fundamental cocycle. More precisely,
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Definition 4.56. Let E be a spectrum. A fundamental cocycle on
E is a cocycle

ιE ∈ Z0(E; π∗E ⊗ R)
representing the cohomology class corresponding to the map

π∗E → π∗E ⊗ R

a �→ a ⊗ 1

under the Hurewicz isomorphism

H0(E;V) ≈−→ hom(π∗E,V).

Any two choices of fundamental cocycle are cohomologous, and so
lead to isomorphic differential cohomology theories. Unless otherwise
specified, we will use Ě(n) to denote the differential cohomology theory
associated to a choice of fundamental cocycle.

When ι is a choice of fundamental cocycle, the square (4.12) leads to
short exact sequences
(4.57)

0 → Eq−1(S; R/Z) → Ě(q)q(S) → Ω∗(S; π∗E)q
cl → 0

0 → Eq−1(S) ⊗ R/Z → Ě(q)q(S) → Aq
E(S) → 0

0 → Ω∗(S; π∗E)q−1/Ω∗(S; π∗E)q−1
0 → Ě(q)q(S) → Eq(M) → 0.

The group Aq
E(S) is defined by the pullback square

Aq
E(S) −−−−→ Ω(S; π∗E ⊗ R)q

cl⏐⏐� ⏐⏐�
Eq(S) −−−−→ Hq(S; π∗E ⊗ R).

Remark 4.58. Any cocycle in E is a specialization of the fundamen-
tal cocycle in the sense that given any cocycle ι1 ∈ Z∗(E;V)0, there is
a map (the Hurewicz homomorphism)

t : π∗E ⊗ R → V

and a cocycle b ∈ C−1(E;V) with

δb = ι1 − t ◦ ι.

4.9. Differential bordism.

4.9.1. Thom spectra. Let R∞ be the vector space with basis
{e1, e2, . . . }, and

MO (k) = Thom (Grk (R∞) , Vk)

the Thom complex of the natural k-plane bundle (Vk) over the Grass-
mannian Grk (R∞). The “translation map”

T : R∞ → R∞

T (ei) = ei+1
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induces a map

Grk (T ) : Grk (R∞) → Grk+1 (R∞)
V �→ Re1 ⊕ V.

The space lim−→k
Grk (R∞) is a classifying space for the stable orthogonal

group, and will be denoted BO.
The pullback of Vk+1 along Grk (T ) is Re1 ⊕ Vk, giving closed inclu-

sions

Sk : ΣMO (k) → MO (k + 1)

Tk : MO (k) → ΩMO (k + 1) .

The spaces
MOk = lim−→

n

Ωn MO (k + n)

form a spectrum–the unoriented bordism spectrum, MO .
More generally, given a sequence of closed inclusions

tk : B(k) → B(k + 1),

fitting into a diagram

(4.59)

· · · −−−−→ B(k) −−−−→ B(k + 1) −−−−→ · · ·⏐⏐�ξk

⏐⏐�ξk+1

· · · −−−−→ Grk (R∞) −−−−→
Grk(T )

Grk+1 (R∞) −−−−→ · · ·

the Thom complexes
B(k)ξ∗kVk

come equipped with closed inclusions

ΣB(k)ξk → B(k + 1)ξk+1

leading to a spectrum X = Thom(B; ξ) with

(4.60) Xk = lim−→Ωn Thom(B(n + k); ξn+k).

For instance, B(k) might be the space G̃rk (R∞) of oriented k-planes
in R∞, in which case the resulting spectrum is the oriented cobordism
spectrum MSO .

Spaces B(k) can be constructed from a single map ξ : B → BO, by
forming the homotopy pullback square

B(k) −−−−→ B

ξk

⏐⏐� ⏐⏐�ξ

Grk (R∞) −−−−→ BO.

The resulting spectrum Thom (B; ξ) is the Thom spectrum of ξ.
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4.9.2. Differential B-oriented maps. Let X = Thom(B; ξ) be the
Thom spectrum of a map ξ : B → BO, and S a compact manifold.
Suppose that we are given a cocycle ι ∈ Zn(X;V) for some real vector
space V.

Definition 4.61. Let p : E → S be a (neat) map of manifolds of
relative dimension n. A B-orientation of p consists of a neat embedding
pN = (p, p′N ) : E ↪→ S × RN , for some N , a tubular neighborhood
WN ↪→ S × RN , and a vector bundle map

tN : WN → ξN−n

classifying WN .

Remark 4.62. Two B-orientations are equivalent if they are in the
equivalence relation generated by identifying

ξN−n ← WN ⊂ S × RN

with

ξN+1−n ≈ ξN+1 × R1 ← (WN × R1) ≈ WN+1 ⊂ S × RN+1.

Definition 4.63. A B-oriented map is a neat map p : E → S
equipped with an equivalence class of B-orientations.

Definition 4.64. Let p : E → S be a (neat) map of manifolds of
relative dimension n. A differential B-orientation of p consists of a
neat embedding pN = (p, p′N ) : E ↪→ S × RN , for some N , a tubular
neighborhood WN ↪→ S × RN and a differential vector bundle map

tN : WN → (ξN−n; ιN−n)

classifying WN .

Remark 4.65. In short, a differential B-orientation of p : E → S is
a lift of p to a differential B(N − n)-oriented embedding E ⊂ RN × S.

Remark 4.66. Two differential B-orientations are equivalent if they
are in the equivalence relation generated by identifying

(ξN−n; ιN−n) tN←− WN ⊂ S × RN

with

(ξN+1−n; ιN+1−n)
tN+1←−−− (WN × R1) ≈ WN+1 ⊂ S × RN+1

where tN = (cN , hN , ωN ), tN+1 = (cN × Id, hN+1, ωN+1), and

hN = hN+1/ZR1

ωN =
∫

R1

ωN .
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Definition 4.67. A differential B-oriented map is a neat map

E → S

together with an equivalence class of differential B-orientations.

Remark 4.68. Let p : E → S be a differential B-oriented map of
relative dimension n. Using §4.3, the construction of Pontryagin-Thom
gives a differential function

(4.69) S → (Thom(B, ξ)n, ι−n) .

In fact the homotopy type of

filts (Thom(B, ξ)n, ι−n)S

can be described entirely in terms of differential B-oriented maps

E → S × ∆k.

The proof is basically an elaboration of the ideas of Thom [63], and we
omit the details. We will refer to this correspondence by saying that the
differential B-oriented map p : E → S is classified by the differential
function (4.69).

Remark 4.70. Our definition of differential B-orientation depends
on many choices (a tubular neighborhood, a differential function, etc.)
which ultimately affect the push-forward or integration maps to be de-
fined in §4.10. These choices are all homotopic, and so aren’t made
explicit in the purely topological approaches. A homotopy between
two differential B-orientations can be thought of as a differential B-
orientation of E ×∆1 → S ×∆1, and the effect of a homotopy between
choices can be described in terms of integration along this map.

4.9.3. BSO-orientations and Ȟ-orientations.
Let BSO = lim−→ G̃rk (R∞) be the stable oriented Grassmannian, as

described in §4.9.1, and choose a Thom cocycle U ∈ Z0(MSO). The
resulting notion of a BSO-oriented map is a refinement to differential
algebraic topology of the topological notion of an oriented map. We
there have formulated two slightly different notions of a differential ori-
entation for a map E → S: that of a differential BSO-orientation and
that of an Ȟ-orientation. For practical purposes these two notions are
equivalent, and we now turn to making precise the relationship between
them.

Fix a manifold S.

Definition 4.71. The space of Ȟ-oriented-maps of relative dimen-
sion n is the simplicial set whose k-simplices are Ȟ-oriented maps E →
S×∆k of relative dimension n. We denote this simplicial set A(S), and
define filtt A(S) by restricting the Kunneth component of the Thom
form along the simplices.
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Definition 4.72. The space of differential BSO-oriented maps of
relative dimension n, is the simplicial set with k-simplices the differential
BSO-oriented maps E → S × ∆k of relative dimension n. We denote
this space B(S) and define filts B(S) similarly.

We also let B̃(S) be the space whose k-simplices are the k-simplices
of B(S), together with a differential cochain

(b, k, 0) ∈ C(N − n)N−n−1(E),

and define filtt B̃(S) by restricting the Kunneth components as above.
Forgetting about (b, k, 0) defines a filtration preserving function

B̃(S) → B(S)

and taking (b, k, 0) = (0, 0, 0) defines a filtration preserving function

B(S) → B̃(S).

Suppose that E/S×∆k is a k-simplex of B(S). That is, we are given

(ξN−n; UN−n)
(c,h,ω)←−−−− W ↪→ S × ∆k × RN .

Then W ↪→ S × ∆k × RN together with (c∗UN−n, h, ω) is a k-simplex
of A(S). This defines a forgetful map

filts B(S) → filts A(S).

We define a map
filts B̃(S) → filts A(S)

in a similar way, but with the Thom cocycle

(c∗UN−n, h, ω) + d(b, k, 0).

Note that there is a factorization

filts B(S) → filts B̃(S) → filts A(S),

and that
filts B(S) → filts B̃(S) → filts B(S)

is the identity map.

Lemma 4.73. For each t, the maps

filts B̃(S) → filts A(S)

filts B̃(S) → filts B(S)

are acyclic fibrations of simplicial sets. In particular they are homotopy
equivalences.

Corollary 4.74. For each s, the map filts B(S) → filts A(S) is a
simplicial homotopy equivalence.
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Proof of Lemma 4.73. We’ll give the proof for

filts B̃(S) → filts A(S).

The situation with the other map is similar. By definition, we must
show that a lift exists in every diagram of the form

(4.75) ∂∆k• ��

��

filts B̃(S)

��
∆k• ��

∃
���

�
�

�
�

filts A(S).

The bottom k-simplex classifies an Ȟ-oriented map

p : E → S × ∆k

W ↪→ S × ∆k × RN

(c, h, ω) ∈ Z(N − n)N−n(W ),

and the top map gives compatible BSO-orientations to the boundary
faces

∂iE → S × ∂i∆n

(ξN−n; UN−n)
(fi,hi,ωi)←−−−−−− ∂iW ↪→ S × ∂i∆k × RN−n

and compatible differential cocycles

(bi, ki, 0) ∈ C(N − n)N−n(f∗
i ξ),

satisfying

(c, h, ω)|∂iW = (f∗
i UN−n, hi, ωi) + d(bi, ki, 0).

Write
∂E =

⋃
i

∂iE ∂W =
⋃
i

∂iW =
⋃
i

W |∂iE .

The compatibility conditions imply that the functions fi together form
a vector bundle map

∂f : ∂W → ξN−n.

By the universal property of BSO(N−n), ∂f extends to a vector bundle
map

f : W → ξN−n,

inducing the same (topological) orientation on W as the one given by
the Thom cocycle (c, h, ω). In particular, this implies that f∗U(N − n)
and c represent the same cohomology class.
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To construct a lift in (4.75), it suffices to find a cocycle h′ ∈
CN−n−1(W̄ ; R) with

(4.76)
δh′ = ω − f∗UN−n

h′|∂iW = hi,

and a differential cochain (b, k, 0) ∈ C(N − n)N−n−1(W̄ ) satisfying

(4.77)
(b, k, 0)|∂iW = (bi, ki, 0)

(c, h, ω) = (f∗UN−n, h′, ω) + d(b, k, 0).

To construct h′, first choose any h′′ ∈ CN−n−1(W̄ ; R) with h′′|∂iW = hi

for all i. Then the cocycle

(4.78) δh′′ − ω + f∗UN−n

represents a relative cohomology class in

HN−n(W̄ , ¯∂W ; R) ≈−→ H0(E, ∂E; R).

Now this latter group is simply the ring of real-valued functions on the
set of path components of E which do not meet ∂E. But on those com-
ponents, the expression (4.78) represents 0, since the image of f∗UN−n

in ZN−n(W̄ ; R) and ω represent the same cohomology class. It follows
that (4.78) is the coboundary of a relative cochain

h′′′ ∈ CN−n−1(W̄ , ¯∂W ; R).

We can then take
h′ = h′′ − h′′′.

A similar argument, using the fact that HN−n−1(W̄ , ¯∂W ; R/Z) = 0
leads to the existence of (b, k, 0) satisfying (4.77). q.e.d.

The fact that acyclic fibrations are preserved under change of base
makes the result of Proposition 4.73 particularly convenient. For in-
stance, a single Ȟ-oriented map E/S defines a 0-simplex in A(S), and
Proposition 4.73 asserts that the inverse image of this 0-simplex in
filts B̃(S) is contractible. This means that for all practical purposes
the notions of an Ȟ-oriented map and a BSO-oriented are equivalent.
This same discussion applies to many combinations of geometric data.

4.10. Integration. In this section we define integration or push-forward
in differential cohomology theories. We will see that because of the re-
sults of §4.9.3 and Appendix D this recovers our theory of integration of
differential cocycles (§3.4) in the case of ordinary differential cohomol-
ogy. At the end of this section we discuss the integration in differential
K-theory.
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The topological theory of integration is simply the interpretation in
terms of manifolds of a map from a Thom spectrum to another spec-
trum. Thus let X = Thom(B; ξ) be a Thom spectrum, and R a spec-
trum. Consider

Thom(B × Rm; ξ ⊕ 0) = X ∧ (Rm)+

and suppose there is given a map

µ : X ∧ (Rm)+ → ΣmR.

In geometric terms, a map

S → (X ∧ (Rm)+)−n

arises from a B × Rm-oriented map E → S of relative dimension n, or
what amounts to the same thing, a B-oriented map, together with a
map x : E → Rm, thought of as a “cocycle” representing an element of
Rm(E). The composition

S → (X ∧ (Rm)+)−n

µ−→ (ΣmR)−n ≈ (R)m−n

is a map y representing an element of Rm−n(S). Thus the geometric
interpretation of the map µ is an operation which associates to every
B-oriented map E/S of relative dimension n and every x : E → Rm, a
map y : S → Rm−n. We think of y as the integral of x.

Remark 4.79. The notation for the spectra involved in discussing
integration tends to become compounded. Because of this, given a spec-
trum R and a cocycle ι ∈ C∗(R;V) we will denote pair (Rn; ιn) as

(Rn; ιn) = (R; ι)n.

For the differential theory of integration, suppose that cocycles ι1, ι2
have been chosen so as to refine µ to a map of differential cohomology
theories

µ̌ : (X ∧ (Rm)+; ι1) → (R; ι2) .

The map µ̌ associates to every differential B-oriented map E → S of
relative dimension n together with a differential function x : E → Rm,
a differential function y : S → Rm−n. We will refer to y as the push-
forward of x and write y = p!(x), or

y =
∫ µ

E/S
x

to emphasize the analogy with integration of differential cocycles. When
the map µ is understood, we will simply write

y =
∫

E/S
x.
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Remark 4.80. The construction p! is a map of differential function
spaces ∫ µ

: (X ∧ (Rm)+; ι1)S−n → (R; ι2)S
m−n .

The weight filtration of
∫ µ can be controlled geometrically, but in the

cases that come up in this paper it is something that can be computed
after the fact.

The push-forward construction is compatible with changes in R. Sup-
pose f : P → R is a map of spectra, and that there are maps

µP : X ∧ (Pm)+ → ΣmP

µR : X ∧ (Rm)+ → ΣmR

and a homotopy

H : X ∧ (Pm)+ ∧ ∆1
+ → ΣmR

between the two ways of going around

(4.81)

X ∧ (Pm)+
µP−−−−→ ΣmP⏐⏐� ⏐⏐�

X ∧ (Rm)+
µR−−−−→ → ΣmR.

Suppose also that cocycles

ιP ∈ Zk(P ;V) ιR ∈ Zk(R;W)

have been chosen so that f refines to a map of differential cohomology
theories

f̌ : (P ; ιP ) → (R; ιR) .

Then differential pushforward maps∫ µP

(− ) : (X ∧ (Pm)+; µ∗
P ιP )S

−n → (P ; ιP )S
m−n∫ µR

(− ) : (X ∧ (Rm)+; µ∗
RιR)S

−n → (R; ιR)S
m−n

are defined, and the results of §4.7 give a canonical (weight filtration
preserving) homotopy between

f̌ ◦
∫ µP

(− ) and
∫ µP

f̌∗(− ).

Remark 4.82. In case B = pt, the Thom spectrum X = S0 repre-
sents framed cobordism, and every spectrum R comes equipped with a
natural map

X ∧ (Rm)+ → ΣmR,

namely the structure map of the spectrum. This map is compatible
with every map of spectra P → R in the sense described above. Thus
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pushforward maps exist in every cohomology theory for a differential
framed map E → S, and these are compatible with all maps between the
cohomology theories.

Example 4.83 (Ordinary differential cohomology). Let X be the ori-
ented bordism spectrum MSO and R the Eilenberg-MacLane spectrum
HZ, with Rm = K(Z, m). Choose a Thom cocycle U ∈ Z0(MSO ; Z) ⊂
Z0(MSO ; R) and a fundamental cocycle x ∈ Z0(HZ; Z) ⊂ Z0(HZ; R).
We take

µ : MSO ∧K(Z, m)+ → ΣmHZ

to be a map representing

ι = u ∪ xm ∈ Zm(MSO ∧ K(Z, m)+; Z) ⊂ Zm(MSO ∧ K(Z, m)+; R).

Let

E → S

(ξN−n; UN−n) Ǔ←− W ⊂ S × RN

be a differential BSO-oriented map. Given a differential function

x̌ : E → (K(Z, m); ιm)

form the differential BSO ×K(Z, m)-oriented map

(4.84) (ξN−n ⊕ 0; UN−n ∪ ιm) Ǔ∪x̌←−−− W ⊂ S × RN .

The map (4.84) is classified by a differential function

S → (MSO ∧K(Z, m)+; U ∪ ιm)−n ,

and composing this with
∫ µ gives a differential function∫ µ

E/S
x̌ : S → (K(Z, m − n); ιm−n) .

Replacing E → S with E ×∆k → S ×∆k leads to a map of differential
function complexes∫ µ

: filts (K(Z, m); ιm)E → filts (K(Z, m − n); ιm−n)S .

On the other hand, associated to the differential BSO-orientation of
E/S is an Ȟ-orientation of E/S, and, as described in Appendix D the
differential function complexes

filts (K(Z, m); ιm)E and filts (K(Z, m − n); ιm−n)S
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are homotopy equivalent to the simplicial abelian groups underlying the
chain complexes

Ž(m − s)m(E) ←− Č(n)m−1(E) . . . ←− Č(m − s)0(E) and

Ž(m − n − s)m−n(S) ←− Č(m − n − s)m−n−1(S) · · ·
←− Č(m − n − s)0(S),

respectively. As the reader can check, our conventions have been chosen
so that integration of differential cocycles and integration of differential
functions to an Eilenberg-MacLane space agree under this correspon-
dence.

Example 4.85 (The case of differential K-theory). We now turn to
the pushforward map in differential K-theory. Let p : E → S be a
map of relative dimension 2n with a “differential Spinc-structure” on
the relative normal bundle. The theory described above gives a map

p! : Ǩ0(E) → Ǩ−2n(S) ≈ Ǩ0(S).

Actually p! sends a differential vector bundle V̄ on E, i.e., a differential
function

V̄ = (c, h, ω) : E → (F ; ι) ,

to a differential vector bundle on S. In this section we will describe this
map in some detail.

If we drop the “differential” apparatus, we get the topological push-
forward map

ptop
! : K0(E) → K0(S).

We remind the reader how that goes.
To define the topological pushforward, embed E in R2N × S, and let

π : ν → E

be the normal bundle. Clifford multiplication

ν × S+(ν) → ν × S−(ν)

defines a K-theory class

∆ ∈ K0(ν, ν − E).

Let
ν ≈ D ⊂ R2N × S

be a tubular neighborhood of E. We have canonical isomorphisms

K0(ν, ν − E) ≈ K0(D, D − E) ≈←− K0(R2N × S, R2N × S − E).

If V is a vector bundle representing an element of K0(E), then

∆ · π∗V
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is an element of K0(ν, ν − E), and the topological pushforward of V is
the image of ∆ · π∗V under

K0(ν, ν − E) ≈ K0(R2N × S, R2N × S − E) → K0(R̄2N × S) −→ K0(S).

We can now turn to differential K-theory. To get a “differential p!”
we need a differential Spinc-structure–that is, a refinement of ∆ to

∆̂ = (c∆, h∆, ω∆)

where

c∆ : ν̄ → F
is a map classifying ∆, and

h∆ ∈ Codd(ν; R), ω∆ ∈ Ωev
cl (ν̄)

satisfy

δh∆ = ω∆ − c∗∆ι,

where ι is a choice of Chern character cocycles as in §4.4. We now
imitate the topological construction. Let V̌ = (c, h, ω) represent an
element of Ǩ0(E). Then π∗V̌ ∈ Ǩ0(ν), and we define p!V̌ to be the
image of ∆̌ · π∗V̌ under

Ǩ0(ν̄) ≈ Ǩ0(R2N × S, R2N × S − D) → Ǩ0(R̄2N × S) → Ǩ0(S).

5. The topological theory

5.1. Proof of Theorem 2.17. We now turn to the proof of Theo-
rem 2.17. Our approach will be to reformulate the result in terms of
a transformation of differential cohomology theories. In fact we need
only construct a transformation of cohomology theories–the refinement
to the differential versions is more or less automatic. It is rather easy
to show that many transformations exist which will do the job (see
Proposition 5.8). But it turns out that results of Milgram [47], and
Morgan–Sullivan [51] make it possible to single one out. In this first
section we prove Theorem 2.17, but do not single out a particular κ.
The remaining sections are devoted to making a particular choice.

The input of the functor κ is an Ȟ-oriented map E → S equipped
with a “twisted” differential cocycle giving an integral Wu-structure,
and a differential L-cocycle. We first turn to interpreting this data in
terms of cobordism.

Choose a map

BSO → K(Z/2, 2k)
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representing the Wu class, ν2k, of the universal bundle, and BSO〈βν2k〉
by the homotopy pullback square

BSO〈βν2k〉 λ−−−−→ K(Z, 2k)⏐⏐� ⏐⏐�
BSO −−−−→ K(Z/2, 2k).

Let MSO〈βν2k〉 be the associated Thom spectrum. The group

MSO〈βν2k〉i−4k(S)

is the cobordism group of maps E → S of relative dimension (4k − i)
equipped with an orientation of the relative stable normal bundle, and
an integral Wu-structure.

The Thom spectrum of the vector bundle classified by the projection
map

BSO〈βν2k〉 × K(Z, 2k) → BSO

is the smash product

MSO〈βν2k〉 ∧ K(Z, 2k)+.

The group
(MSO〈βν2k〉 ∧ K(Z, 2k)+)i−4k (S)

is the cobordism group of maps E → S of relative dimension (4k − i)
equipped with an orientation of the relative stable normal bundle, an
integral Wu-structure, and a cocycle x ∈ Z2k(E).

The functors κ and qλ in Theorem 2.17 are constructed out of maps
from MSO〈βν2k〉 and MSO〈βν2k〉∧K(Z, 2k)+ to some other spectrum.
There are many possible choices of this other spectrum, and we will work
with one which is “universal” in the sense that it receives a map from any
other choice. This universal spectrum theory is the Anderson dual of the
sphere [4, 68], which we denote Ĩ. Roughly speaking, Anderson duality
is like Pontryagin duality, and for any spectrum X, any homomorphism
πnX → Z is represented by a map X → ΣnĨ. More precisely, there is a
(splittable) short exact sequence

(5.1) Ext (πn−1X, Z) � [X, ΣnĨ] = Ĩn(X) � hom (πnX, Z) .

The spectrum Ĩ is defined in Appendix B. By (5.1), one has

Ĩk(pt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k < 0
Z if k = 0
0 if k = 1
hom(πst

k−1S
0, Q/Z) k > 1

where
πst

k−1S
0 = lim−→πk−1+NSN
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denotes the (k − 1)st stable homotopy group of the sphere. It follows
from the Atiyah-Hirzebruch spectral sequence that for any space M ,
one has

Ĩ0(M) = H0(M ; Z)

Ĩ1(M) = H1(M ; Z)

Ĩ2(M) = H2(M ; Z) × H0(M ; Z/2).

In particular, the group Ĩ2(M) contains the group of complex line bun-
dles. In fact, thinking of Z/2 as the group ±1, the whole group Ĩ2(M)
can be identified with the group of graded line bundles, the element of
H0(M ; Z/2) corresponding to the degree. Since the map HZ → Ĩ is a
rational equivalence, we can choose a cocycle

ι̃ ∈ Z0
(
Ĩ; R
)

restricting to a fundamental cocycle in Z0 (HZ; R). This makes Ĩ into
a differential cohomology theory. The differential cohomology group
Ĩ2(2)(M) can be interpreted as the group of horizontal isomorphism
classes of graded U(1)-bundles with connection.

To a first approximation, the functor κ is derived from a map of
spectra

(5.2) MSO〈βν2k〉 → Σ4kĨ .

But there is one more complication. In order to establish the symmetry

(5.3) κ(−λ) ≈ κ(λ)

we need to put a Z/2-action on MSO〈βν2k〉 in such a way that it cor-
responds to the symmetry

λ �→ −λ.

In §5.4 we will describe a Z/2-equivariant Eilenberg-MacLane space,
K(Z(1), 2k), with the following properties:

(1) The involution

τ : K (Z(1), 2k) → K (Z(1), 2k)

has degree −1;
(2) there is an equivariant map

K (Z(1), 2k) → K(Z/2, 2k),

with Z/2 acting trivially on K(Z/2, 2k), corresponding to reduc-
tion modulo 2.



398 M.J. HOPKINS & I.M. SINGER

Using this, we define a Z/2-equivariant BSO〈βν2k〉 by the homotopy
pullback square

BSO〈βν2k〉 λ−−−−→ K (Z(1), 2k)⏐⏐� ⏐⏐�
BSO −−−−→

ν2k

K (Z/2, 2k) .

The associated Thom spectrum MSO〈βν2k〉 then acquires a Z/2-action,
and the existence of the symmetry isomorphism (5.3) can be guaranteed
by factoring (5.2) through a map

(5.4) MSO〈βν2k〉hZ/2 → Σ4kĨ .

We have used the notation

XhZ/2 = X ∧Z/2 EZ/2+

to denote the homotopy orbit spectrum of of a spectrum X with a Z/2-
action.

The spectrum MSO〈βν2k〉hZ/2 is also a Thom spectrum

MSO〈βν2k〉hZ/2 = Thom
(
BSO〈βν2k〉 ×Z/2 EZ/2; V

)
,

with V the stable vector bundle classified by

(5.5) BSO〈βν2k〉 ×Z/2 EZ/2 → BSO ×BZ/2 → BSO .

The group
π4k MSO〈βν2k〉hZ/2

is the cobordism group of 4k-dimensional oriented manifolds M ,
equipped with a map t : π1M → Z/2 classifying a local system Z(1),
and a cocycle λ ∈ Z2k(M ; Z(1)) whose mod 2-reduction represents the
Wu-class ν2k.

Fix a cocycle L4k ∈ Z4k(BSO ; R) representing the component of the
Hirzebruch L-polynomial of degree 4k. By abuse of notation we will
write

U ∈ Z0(MSO〈βν2k〉hZ/2; R) L4k ∈ Z0(BSO〈βν2k〉 ×Z/2 EZ/2; R)

for the pullback along the maps derived from (5.5) of the Thom cocycle
and L4k, respectively.

The group of maps (5.4) sits in a (splittable) short exact sequence

(5.6) Ext
(
π4k−1 MSO〈βν2k〉hZ/2, Z

)
� Ĩ4k

(
MSO〈βν2k〉hZ/2

)
� hom

(
π4k MSO〈βν2k〉hZ/2, Z

)
,

whose rightmost terms are the group of integer-valued cobordism in-
variants of manifolds M of the type just described. One example is the
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signature σ = σ(M) of the non-degenerate bilinear form

(5.7) B(x, y) =
∫

M
x ∪ y : H2k (M ; Q(1)) × H2k (M ; Q(1)) → Q.

Another is ∫
M

λ2.

By definition, λ is a characteristic element for the bilinear form (5.7),
and so ∫

M
λ2 ≡ σ(M) mod 8.

Proposition 5.8. Any map of spectra

κ : MSO〈βν2k〉hZ/2 → Σ4kĨ

whose underlying homomorphism

π4k MSO〈βν2k〉hZ/2 → Z

associates to M4k, λ ∈ Z2k(M ; Z(1)), the integer

(5.9)
1
8

(∫
M

λ2 − σ

)
,

gives a family of functors

κE/S : Ȟ2k
ν (E) → Ȟi(S)

having the properties listed in Theorem 2.17 and Corollary 2.18.

Because of the sequence (5.6) the set of maps κ satisfying the con-
dition of Proposition 5.10 is a non-empty principal homogeneous space
for

Ext
(
π4k−1 MSO〈βν2k〉hZ/2, Z.

)
Before going through the proof we need one more topological result.

The change of an integral Wu-structure by a 2k-cocycle is represented
by a map

(BSO〈βν2k〉 × K(Z, 2k)) ×Z/2 EZ/2 → BSO〈βν2k〉 ×Z/2 EZ/2.

We’ll write the induced map of Thom spectra as

(λ − (2)x) : (MSO〈βν2k〉 ∧ K(Z(1), 2k)+)hZ/2 → MSO〈βν2k〉hZ/2.

Of course, the map (λ − (2)x) − (λ) factors through

MSO〈βν2k〉 ∧ K(Z(1), 2k)hZ/2 → MSO〈βν2k〉hZ/2.

We will be interested in

b(x, y) = (λ − (2)(x + y)) − (λ − (2)x) − (λ − (2)y) + (λ)

which is a map

MSO〈βν2k〉 ∧ K(Z(1), 2k) ∧ K(Z(1), 2k)hZ/2 → MSO〈βν2k〉hZ/2.
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Lemma 5.10. If κ : MSO〈βν2k〉hZ/2 → Σ4k Ĩ is any map satisfying
the condition of Proposition 5.8, then the following diagram commutes
up to homotopy

MSO〈βν2k〉 ∧ K(Z(1), 2k) ∧ K(Z(1), 2k)hZ/2
U∪x∪y−−−−→ Σ4k H Z

b(x,y)

⏐⏐� ⏐⏐�
MSO〈βν2k〉 −−−−→

κ
Σ4k Ĩ .

Proof. Since

π4k−1 MSO〈βν2k〉 ∧ K(Z(1), 2k) ∧ K(Z(1), 2k)hZ/2 = 0,

it suffices to check that the two ways of going around the diagram agree
after passing to π4k. The clockwise direction associates to (M, λ, x, y)
the integer

qλ(x + y) − qλ(x) − qλ(y) + qλ(0),
where we have written

qλ(x) = κ(λ − (2)x) = 1
2

∫
M

(x2 − xλ).

The counter-clockwise direction is∫
M

x ∪ y.

The result follows easily. q.e.d.

Proof of Proposition 5.8. By construction, Ĩ comes equipped with a fun-
damental cocycle ι̃ ∈ Z0(Ĩ; R) which necessarily restricts to a fundamen-
tal cocycle in H Z. Now the signature of the bilinear form (5.7) coincides
with the signature of M . Indeed, let M̃ → M be the double cover clas-
sified by the homomorphism t : π1M → Z/2. Then by the signature
theorem, σ(M̃) = 2σ(M), and the claim then follows by decomposing
H2k(M̃ ; Q) into eigenspaces under the action of Z/2. It follows that the
cohomology class of κ∗ι̃ coincides with that of

(5.11) α = U · (λ2 − L4k)
8

,

so after choosing a cochain whose coboundary is the difference between
κ∗ι̃ and α, we have a map of differential cohomology theories(

MSO〈βν2k〉hZ/2; α
)→ Σ4k

(
Ĩ; ι̃
)

.

Since H4k−1
(
MSO〈βν2k〉hZ/2; R

)
= 0, this choice of cochain has no

effect on the maps of fundamental groupoids we derive from it.
Choose a point b ∈ EZ/2. We use b to define a map

ib : MSO〈βν2k〉 = MSO〈βν2k〉 ∧ {b}+ ↪→ MSO〈βν2k〉 ∧ EZ/2+.
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And to keep the notation simple, we will not distinguish in notation be-
tween α and ι∗bα. Suppose that E/S is an Ȟ-oriented map of manifolds
of relative dimension (4k− i). The functor κE/S is constructed from the
map of fundamental groupoids of differential function complexes

(5.12) π≤1 filt0 (MSO〈βν2k〉i−4k; α)S → π≤1 filt0
(
Ĩi; ι̃
)S

.

In principle, a differential integral Wu-structure on E/S defines a 0-
simplex of the differential function space

filt0 (MSO〈βν2k〉i−4k; α)S ,

in such a way as to give a functor

(5.13) Ȟ2k
ν (E) → π≤1 filt0 (MSO〈βν2k〉i−4k; α)S .

The functor κE/S is just the composition of (5.13) with (5.12). We
have said “in principle” because the geometric data we specified in the
statement of Theorem 2.17 is not quite the data which is classified by
a differential function from S to (MSO〈βν2k〉; α)i−4k. To remedy this,
we use the technique described in §4.9.3 to produce a diagram

Ȟ2k
ν (E) ∼←− Ȟ2k

ν (E)geom → π≤1 filt0 (MSO〈βν2k〉i−4k; α)S ,

in which the left map is an equivalence of groupoids. The functor κE/S

is then constructed as described, after choosing an inverse to this equiv-
alence.

The category Ȟ2k
ν (E)geom is the fundamental groupoid of a certain

simplicial set S2k
ν (E). To describe it, first note that by the results of

§4.9.3 we may assume that the Ȟ-orientation of E/S comes from a
differential BSO-orientation

(ξN−i+4k, UN−i+4k)
(c,h,ω)←−−−− W ⊂ S × RN ,

and that the differential cocycle11 L4k refines the map classifying W to
a differential function

E
(c0,h0,ω0)−−−−−−→ (BSO ; L4k).

A k-simplex of S2k
ν (E) consists of a differential function

(5.14) E × ∆k (c1,h1,ω1)−−−−−−→ (BSO〈βν2k〉; λ)

11We are using the symbol L4k to denote both the universal signature cocycle
and the chosen refinement to a differential cocycle on E. We hope this causes no
confusion.
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of weight filtration 0, for which the map c1 fits into the commutative
diagram

E × ∆k
c1 ��

��

BSO〈βν2k〉

��
E �� BSO(N − i + 4k) �� BSO .

The functor

(5.15) Ȟ2k
ν (E)geom = π≤1S2k

ν (E) → Ȟ2k
ν (E)

sends (5.14) to the slant product of (c∗1λ, h1, ω1) with the fundamental
class of ∆k. Using the results of Appendix D one checks that (5.15) is
an equivalence of groupoids.

Write

Ǔ = (c∗UN−i+4k, h, ω)

λ̌ = (c∗1λ, h1, ω1) .

The lift c1 of the map classifying W , and the differential cocycle

Ǔ ·
(
λ̌2 − L4k

)
8

combine to make
E × ∆k → S × ∆k

into a differential BSO〈βν2k〉-oriented map, with respect to the cocycle
α. This defines

S2k
ν (E) → filt0 (MSO〈βν2k〉i−4k; α)S ,

and hence κE/S as described above.
It is now a fairly routine exercise to verify that this functor κE/S and

the resulting q have the properties claimed by Theorem 2.17. Property i)
is immediate by assumption. For property ii), write the action of Z/2
on EZ/2+ as b �→ −b. Consider the diagram of differential function
complexes, in which the vertical maps are obtained by smashing the
identity map with the inclusions {b} → EZ/2 and {−b} → EZ/2

filt0 (MSO〈βν2k〉i−4k; α)S

b�� ����������������

S2k
ν (E)

����������������
��

���������������� filt0
(
(MSO〈βν2k〉 ∧ EZ/2+; α)i−4k

)S κ �� filt0
(
Ĩi; ι̃
)S

filt0 (MSO〈βν2k〉i−4k)
S

−b
		 ����������������

.

The map of fundamental groupoids induced by the upper composition
is κE/S(λ), by definition. Since κ factors through the quotient by the
diagonal Z/2-action, the bottom composition is κE/S(−λ). The fact
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that the vertical arrows are homotopy equivalences means that there is
a homotopy between the two ways of going around. Choose one. By
definition this homotopy is an isomorphism

τ(λ) : κ(−λ) ≈−→ κ(λ)

in the fundamental groupoid

π≤1

(
Ĩi, ι̃
)S

.

Any two homotopies extend over a disk, and so define the same isomor-
phism in the fundamental groupoid. The compositions of the homo-
topies τ(λ) and τ(−λ) also extend over the disk, and so is the identity
map

τ(λ) ◦ τ(−λ) = identity map of κ(λ).

For the base change property iii) note that if E/S is classified by a
differential function

S → (MSO〈βν2k〉i−4k; α) ,

then the map
S′ → S → (MSO〈βν2k〉i−4k; α)

is the map classifying a differential BSO〈βν2k〉-orientation of E′/S′.
The result then follows easily.

Now for the transitivity property iv). Suppose that E/B has relative
dimension m and is classified by a differential function

(5.16) B → (MSO〈βν2k〉, α)−m ,

and that B/S has relative dimension �. Let

(5.17) S0 ∧ (MSO〈βν2k〉−m)+

denote the unreduced suspension spectrum of MSO〈βν2k〉−m. Inter-
preting (5.17) as the Thom spectrum Thom(MSO〈βν2k〉−m; 0), we can
regard the differential framing on B/S together with the map (5.16) as
classified by a differential function

(5.18) S → (S0 ∧ (MSO〈βν2k〉−m)+, α−m

)
−�

.

We will use the structure map

(5.19)
(
S0 ∧ (MSO〈βν2k〉−m)+ ; α−m

)→ Σ−m (MSO〈βν2k〉; α)

of the differential spectrum (MSO〈βν2k〉; α). Composing (5.18) with
(5.19) gives a differential function

S → (MSO〈βν2k〉; α)−m−�
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classifying a differential BSO〈βν2k〉-orientation on E/S. In this way
E/S acquires an Ȟ-orientation. One easily checks that the differential
cocycle refining the pullback of α is

1
8
Ǔ ∪ (λ̌2 − Ľ4k)

The transitivity isomorphism is then derived from a choice of homo-
topy between the two ways of going around the diagram of differential
function spectra

Σ−�
(
S0 ∧ (MSO〈βν2k〉−m)+, α−m

) −−−−→ Σ−m−� (MSO〈βν2k〉; α)⏐⏐� ⏐⏐�
Σ−�
(
S0 ∧ (Ĩ4k−m)+, (ι̃)4k−m

)
−−−−→ Σ4k−m−� (I, ι̃) .

The clockwise composition associates to the differential function classi-
fying E/B the value

κE/S(λ),

and the counter-clockwise composition gives the value∫
B/S

κE/B(λ).

It remains to establish the properties of q stated in Corollary 2.18.
Properties ii)– iv) are formal consequences of the corresponding prop-
erties of κ. Property i) follows from Lemma 5.10 using methods similar
to those we’ve been using for the properties of κ. q.e.d.

Remark 5.20. The proofs of the symmetry, base change, and transi-
tivity properties didn’t make use of the condition on κ stated in Propo-
sition 5.8. These properties are built into the formalism of differential
bordism theories, and would have held for any κ.

5.2. The topological theory of quadratic functions. We now turn
to the construction of a particular topological κ

κ : MSO〈βν2k〉hZ/2 → Σ4kĨ

satisfying (5.9). To describe a map to Ĩ requires a slightly more elab-
orate algebraic object than an abelian group. There are several ap-
proaches, but for our purposes, the most useful involves the language
of Picard categories (see Appendix B.) Here we state the main result
without this language.

Let ν̄2k be the composite

BSO ν2k−−→ K(Z/2, 2k) → K(Q/Z(1), 2k),
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and BSO〈ν̄2k〉 its (equivariant) homotopy fiber. The space BSO〈ν̄2k〉
fits into a homotopy Cartesian square

BSO〈ν̄2k〉 −−−−→ K(Q/Z(1), 2k − 1)⏐⏐� ⏐⏐�β

BSO −−−−→
ν2k

K(Z/2, 2k).

The Z/2-action corresponds to sending η to −η, and the associated
Thom spectrum MSO〈ν̄2k〉hZ/2 is the bordism theory of manifolds N
equipped with a homomorphism t : π1N → Z/2 classifying a local
system Z(1) and a cocycle η ∈ Z2k−1(N ; Q/Z(1)) for which βη ∈
Z2k(N ; Z(1)) is an integral Wu-structure.

To ease the notation, set

B = BSO〈βν2k〉 ×Z/2 EZ/2

B̄ = BSO〈ν̄2k〉 ×Z/2 EZ/2.

Let C be the groupoid whose objects are closed B̄-oriented manifolds
(M, η) of dimension (4k − 1), and whose morphisms are equivalence
classes of B-oriented maps

(5.21) p : M → ∆1

equipped with B̄-orientations η0 and η1 of ∂0M = p−1(0) and ∂1M =
p−1(1) which are compatible with the B-orientation in the sense that

βηi = λ|∂iM , i = 0, 1.

The equivalence relation and the composition law are described in terms
of B-oriented maps to f : E → ∆2 equipped with compatible B̄ orien-
tations of f−1(ei), i = 0, 1, 2. Write

∂iE = f |p−1∂i∆2 .

Then for each such E/∆2 we set

(5.22) ∂0E ◦ ∂2E ∼ ∂1E.

Remark 5.23. Strictly speaking we define C to be the quotient of
the category freely generated by the maps (5.21), by the relations (5.22).
This category happens to be a groupoid; every morphism is represented
by some map (5.21), and the composition law can be thought of as
derived from the operation of gluing together manifolds along common
boundary components. It works out that the identity morphism IdN is
represented by the projection

N × ∆1 → ∆1.

Proposition 5.24. The set of homotopy classes of maps

(5.25) MSO〈βν2k〉hZ/2 → Σ4kĨ
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can be identified with the set of equivalence classes of pairs of invariants

κ4k : {morphisms of C} → Q

κ4k−1 : {objects of C} → Q/Z

satisfying

(5.26)
κ4k(M1/∆1 � M2/∆1) = κ4k(M1/∆1) + κ4k(M2/∆1)

κ4k−1(N1 � N2) = κ4k−1(N1) + κ4k−1(N2),

(5.27) κ4k(M/∆1) ≡ κ4k−1(∂0M) − κ4k−1(∂1M) mod Z,

and for each B-oriented f : E → ∆2 equipped with compatible B̄ orien-
tations of f−1(ei), i = 0, 1, 2,

(5.28) κ4k (∂0E) − κ4k (∂1E) + κ4k (∂2E) = 0.

Two pairs (κ4k, κ4k−1) and (κ′
4k, κ

′
4k−1) are equivalent if there is a map

h : {objects of C} → Q

with

h (M1 � M2) = h (M1) + h (M2) ,

h(N) ≡ κ′
4k−1(N) − κ4k−1(N) mod Z

and for each M/∆1,

h (∂0M) − h (∂1M) = κ4k(M/∆1) − κ4k(M/∆1).

Remark 5.29. In order to keep the statement simple, we have been
deliberately imprecise on one point in our statement of Proposition 5.24.
With our definition, the disjoint union of two B-oriented manifolds
doesn’t have a canonical B-orientation. In order to construct one, we
need to choose a pair of disjoint cubes embedded in R∞. The more
precise statement is that for any B-orientation arising from any such
choice of pair of cubes, one has

κ4k(M1 � M2) = κ4k(M1) + κ4k(M2)

κ4k−1(M1 � M2) = κ4k−1(M1) + κ4k(M2).

In particular, the value of κi on a disjoint union is assumed to be in-
dependent of this choice. For more on this, see Example B.11, and the
remark preceding it.

Remark 5.30. Proposition 5.24 can be made much more succinct.
Let (Q → Q/Z) denote the category with objects Q/Z and in which a
map from a to b is a rational number r satisfying

r ≡ b − a mod Z.

Then the assertion of Proposition 5.24 is that the set of homotopy
classes (5.25) can be identified with the set of “additive” functors

κ : C → (Q, Q/Z)
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modulo the relation of “additive” natural equivalence. The language of
Picard categories is needed in order to make precise this notion of “ad-
ditivity.” We have chosen to spell out the statement of Proposition 5.24
in the way we have in order to make clear the exact combination of
invariants needed to construct the map (5.25).

Aside from the fact that the integral Wu-structure on the boundary
has a special form, Proposition 5.24 is a fairly straightforward conse-
quence of Corollary B.17. We now turn to showing that this boundary
condition has no real effect.

Lemma 5.31. The square

(5.32)

BSO〈ν̄2k〉 −−−−→ BSO⏐⏐� ⏐⏐�
BSO〈βν2k〉 −−−−→ BSO ×K(Q(1), 2k),

is homotopy co-Cartesian. The components of the bottom map are the
defining projection to BSO and the image of λ in

Z2k(BSO〈βν2k〉; Q(1)).

Proof. It suffices to prove the result after profinite completion and
after localization at Q. Since

K(Q/Z, 2k − 1) → K(Z, 2k) and

pt → K(Q, 2k)

are equivalences after profinite completion, so are the vertical maps
in (5.32) and so the square is homotopy co-Cartesian after profinite com-
pletion. The horizontal maps become equivalences after Q-localization,
and so the square is also homotopy co-Cartesian after Q-localization.
This completes the proof. q.e.d.

Passing to Thom spectra gives

Corollary 5.33. The square

MSO〈ν̄2k〉 −−−−→ MSO⏐⏐� ⏐⏐�
MSO〈βν2k〉 −−−−→ MSO ∧ (K(Q(1), 2k)+)

is homotopy co-Cartesian.

Finally, passing to homotopy orbit spectra, and using the fact that

ι2 × 1 : K(Q(1), 2k) ×Z/2 EZ/2 → K(Q, 4k) × BZ/2

is a stable weak equivalence (its cofiber has no homology), gives
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Corollary 5.34. The square
MSO〈ν̄2k〉hZ/2 −−−−→ MSO ∧BZ/2+⏐⏐� ⏐⏐�
MSO〈βν2k〉hZ/2 −−−−→ MSO ∧ (K(Q, 4k) × BZ/2)+

is homotopy co-Cartesian.

Corollary 5.35. The map

MSO〈ν̄2k〉hZ/2 → MSO〈βν2k〉hZ/2

is (4k−1)-connected. In particular, there are cell decompositions of both
spectra, for which the map of (4k − 1)-skeleta

(5.36)
(
MSO〈ν̄2k〉hZ/2

)(4k−1) → (MSO〈βν2k〉hZ/2

)(4k−1)

is a weak equivalence.

Proof of Proposition 5.24. We will freely use the language of Picard cat-
egories, and the results of Appendix B.

Choose a cell decomposition of B̄, and take

MSO〈ν̄2k〉(t)hZ/2
= Thom

(
B̄(t); V

)
.

Let MSO〈βν2k〉(t)hZ/2 be any cell decomposition satisfying (5.36). Finally,
let

π′
≤1(MSO〈βν2k〉hZ/2)(1−4k)

be the Picard category whose objects are transverse maps

S4k−1 → (MSO〈βν2k〉(4k−1)
hZ/2 = MSO〈ν̄2k〉(4k−1)

hZ/2 ,

and whose morphisms are homotopy classes, relative to

S4k−1 ∧ ∂∆1
+

of transverse maps of pairs(
S4k−1 ∧ ∆1

+, S4k−1 ∧ ∂∆1
+

)
→
(
MSO〈βν2k〉hZ/2,MSO〈βν2k〉(4k−1)

hZ/2

)
.

By the cellular approximation theorem, and the geometric interpreta-
tion of the homotopy groups of Thom spectra, the Pontryagin-Thom
construction gives an equivalence of Picard categories.

π′
≤1(MSO〈βν2k〉hZ/2)(1−4k) → π≤1 sing

((
MSO〈βν2k〉hZ/2

)
(1−4k)

)
.

Now, by definition, a pair of invariants (κ4k, κ4k−1) is a functor (of
Picard categories)

(5.37) π′
≤1(MSO〈βν2k〉hZ/2)(1−4k) → (Q → Q/Z) .

It is easy to check, using the exact sequences

Ext
(
π4k−1 MSO〈βν2k〉hZ/2, Z

)
� A � hom

(
π4k MSO〈βν2k〉hZ/2, Z

)
,
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(where A either the group of homotopy classes of maps (5.25), or the
natural equivalences classes of functors (5.37)) that this gives an iso-
morphism of the group of equivalence classes of pairs (κ4k, κ4k−1) and
the group of natural equivalence classes of functors of Picard cate-
gories (5.37). The result now follows from Corollary B.17. q.e.d.

5.3. The topological κ. By Proposition 5.24, in order to define the
map

κ : MSO〈βν2k〉hZ/2 → Σ4kĨ ,

we need to construct invariants (κ4k, κ4k−1), satisfying (5.26)–(5.28). In
the case λ = 0, these invariants appear in surgery theory in the work
of Milgram [47], and Morgan–Sullivan [51]. The methods described
in [47, 51] can easily be adapted to deal with general λ. We will adopt
a more homotopy theoretic formulation, which is more convenient for
our purposes.

Suppose that M/∆1 is a morphism of C, and let σ be the signa-
ture of the non-degenerate bilinear form

∫
M x ∪ y on the subgroup of

H2k(M ; Q(1)) consisting of elements which vanish on the boundary. Be-
cause of the boundary condition the image of λ in H2k(M ; Q(1)) is in
this subgroup, and so ∫

M
λ2

is also defined. We set

(5.38) κ4k(M) =
1
8

(∫
M

λ2 − σ

)
.

We will show in Proposition 5.66 of §5.4 that the “Wu-structure”

η ∈ Z2k−1(N ; Q/Z(1))

on an object N ∈ C gives rise to a quadratic refinement

φ = φN = φN,η : H2k(N ; Z(1))tor → Q/Z

of the link pairing

H2k(N ; Z(1))tor × H2k(N ; Z(1))tor → Q/Z.

The function φ is a cobordism invariant in the sense that if M/∆1 is a
morphism in C, and x is an element of H2k(M ; Z(1)) whose restriction
to ∂M is torsion, then

(5.39)
φ∂0M (∂0x) − φ∂1M (∂1x) ≡ 1

2

∫
M

(x2 − xλ) mod Z

∂ix = x|∂iM .

Note that the integral is well-defined since it depends only on the image
of x in H2k(M ; Q(1)), which vanishes on ∂M . Note also that the integral
vanishes when x is itself torsion.
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We define κ4k−1(N) by

(5.40)
e2πi κ4k−1(N) =

1√
d

∑
x∈H2k(N ;Z(1))tor

e−2πiφ(x)

d = #H2k(N ; Z(1))tor.

With these definitions property (5.26) is immediate, and property
(5.28) is nearly so. In the situation of (5.28), note that ∂E is homeo-
morphic to a smooth manifold whose signature is zero since it bounds
an oriented manifold. Novikov’s additivity formula for the signature
then gives

σ (∂0E) − σ (∂1E) + σ (∂2E) = σ (∂E) = 0

which is property (5.28).
For (5.27) we need an algebraic result of Milgram [47, 51, 50]. Sup-

pose that V is a vector space over Q of finite dimension, and qV : V → Q

is a quadratic function (not necessarily even) whose underlying bilinear
form

B(x, y) = qV (x + y) − qV (x) − qV (y)
is non-degenerate. One easily checks that qV (x)− qV (−x) is linear, and
so there exists a unique λ ∈ V with

qV (x) − qV (−x) = −B(λ, x).

By definition
qV (x) + qV (−x) = B(x, x).

Adding these we have

(5.41) qV (x) =
B(x, x) − B(x, λ)

2
.

The class λ is a characteristic element of B(x, y).
Suppose that L is a lattice in V on which qV takes integer values,

and let
L∗ = {x ∈ V | B(x, y) ∈ Z ∀y ∈ L}

be the dual lattice. Then L ⊂ L∗, and qV descends to a non-degenerate
quadratic function

q : L∗/L → Q/Z

x �→ qV (x) mod Z.

We associate to q the Gauss sum

g(q) =
1√
d

∑
x∈L∗/L

e−2πi q(x)

d = |L∗/L| .
Finally, let σ = σ(qV ) denote the signature of B.
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Proposition 5.42. With the above notation,

(5.43) g(q) = e2πi(B(λ,λ)−σ)/8.

Proof. The result is proved in Appendix 4 of [50] in case λ = 0. To
reduce to this case, first note that both the left and right hand sides
of (5.43) are independent of the choice of L. Indeed, the right hand side
doesn’t involve the choice of L, and the fact that the left hand side is
independent of L is Lemma 1, Appendix 4 of [50] (the proof doesn’t
make use of the assumption that qV is even). Replacing L by 4L, if
necessary, we may assume that

B(x, x) ≡ 0 mod 2 x ∈ L,

or, equivalently that

η =
1
2
λ

is in L∗. Set
q′V (x) =

1
2
B(x, x).

The function qV and q′V are quadratic refinements of the same bilinear
form, q′V takes integer values on L, and

qV (x) = q′V (x − η) − q′V (η).

The case λ = 0 of (5.43) applies to q′V giving

g(q′) = e2πiσ/8.

But

g(q′) =
1√
d

∑
x∈L∗/L

e−2πi q′(x)

=
1√
d

∑
x∈L∗/L

e−2πi q′(x−η)

=
1√
d

∑
x∈L∗/L

e−2πi q(x)−q′(η),

and the result follows since

q′(η) =
B(λ, λ)

8
.

q.e.d.

Proposition 5.44. The invariants (κ4k, κ4k−1) defined above satisfy
the conditions of Proposition 5.24:

(5.45)
κ4k(M1/∆1 � M2/∆1) = κ4k(M1/∆1) + κ4k(M2/∆1)

κ4k−1(N1 � N2) = κ4k−1(N1) + κ4k−1(N2),

(5.46) κ4k(M/∆1) ≡ κ4k−1(∂0M) − κ4k−1(∂1M) mod Z,
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and for each B-oriented f : E → ∆2 equipped with compatible B̄ orien-
tations of f−1(ei), i = 0, 1, 2,

(5.47) κ4k (∂0E) − κ4k (∂1E) + κ4k (∂2E) = 0.

Proof. As we remarked just after defining κ4k−1 (equation (5.40)),
property (5.45) is immediate, and (5.47) follows from Novikov’s addi-
tivity formula for the signature. For property (5.46), let M ′/∆1 be a
morphism in C, and M/∆1 any morphism for which

M/∆1 + Id∂1M ′ ∼ M ′/∆1.

Note that this identity forces ∂1M to be empty. Applying (5.47) to
N×∆2 → ∆2 one easily checks that both the left and right sides of (5.46)
vanish for Id∂1M ′ . It then follows from (5.45) that to check (5.46) for
general M ′/∆1, it suffices to check (5.46) for morphisms M/∆1 with
the property that

∂1M = φ.

We apply Milgram’s result to the situation

V = image
(
H2k(M, ∂M ; Q(1)) → H2k(M ; Q(1))

)
= ker

(
H2k(M ; Q(1)) → H2k(∂M ; Q(1))

)
,

L = image
(
H2k(M, ∂M ; Z(1)) → V

)
,

with qV the quadratic function

φ(x) = φM (x)
∫

M

x2 − xλ

2
.

Poincaré duality gives

L∗ = V ∩ image
(
H2k(M ; Z(1)) → H2k(M ; Q(1))

)
.

The right hand side of (5.43) is by definition

e2πi κ4k(M).

We need to identify the left hand side with

κ4k−1 (∂0M) − κ4k−1 (∂1M) = κ4k−1 (∂0M) .

Write

A = H2k(∂M ; Z(1))tor,

A0 = image
(
H2k(M)tor → H2k(∂M)tor

)
.

and let B be the torsion subgroup of the image of

H2k(M) → H2k(∂M).

Then
L∗/L = B/A0.
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By cobordism invariance (5.39) the restriction of φ∂M to B is compatible
with this isomorphism, and so

1√|L∗/L|
∑

x∈L∗/L

e−2πi q(x) =
1√|B/A0|

∑
x∈B/A0

e−2πiφ∂M (x).

By Lemma 5.49 below, the subgroup B coincides with the annihilator
A∗

0 of A0, and so we can further re-write this expression as

1√|A∗
0/A0|

∑
x∈A∗

0/A0

e−2πi φ∂M (x).

The identification of this with

κ4k−1(∂M) = κ4k−1(∂0M)

is then given by Lemma 5.48 below. q.e.d.

Lemma 5.48. Suppose that A is a finite abelian group, and

q : A → Q/Z

a (non-degenerate) quadratic function with underlying bilinear form B.
Given a subgroup A0 ⊂ A on which q vanishes, let A∗

0 ⊂ A be the dual
of A0:

A∗
0 = {x ∈ A | B(x, a) = 0, a ∈ A0} .

Then q descends to a quadratic function on A∗
0/A0, and

1√|A|
∑
x∈A

e−2πi q(a) =
1√|A′/A0|

∑
x∈A∗

0/A0

e−2πi q(a).

Proof. Since q(a) = 0 for a ∈ A0, we have

q(a + x) = q(a) + B(x, a).

Choose coset representatives S ⊂ A for A/A0, and write S0 = S ∩Aast
0 .

The set S0 is a set of coset representatives for A∗
0/A0. Now write

1√|A|
∑
x∈A

e−2πi q(a) =
1√|A|
∑
x∈S

∑
a∈A0

e−2πi q(x+a)

=
1√|A|
∑
x∈S

⎛⎝e−2πi q(x)
∑
a∈A0

e−2πiB(x,a)

⎞⎠ .

By the linear independence of characters∑
a∈A0

e−2πiB(x,a) =

{
0 B(x, a) �= 0
|A0| B(x, a) = 0.
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It follows that

1√|A|
∑
x∈S

⎛⎝e−2πi q(x)
∑
a∈A0

e−2πiB(x,a)

⎞⎠ =
|A0|√|A|
∑
x∈S0

(
e−2πi q(x)

)
.

This proves the result, since the bilinear form B identifies A/A∗
0 with

the character group of A0, giving

|A/A∗
0| = |A0|

and
|A| = |A0| · |A∗

0/A0| · |A/A∗
0| = |A0|2 |A∗

0/A0| .
q.e.d.

We have also used

Lemma 5.49. With the notation Lemma 5.48, the subgroup A∗
0 co-

incides with the torsion subgroup of the image of

H2k(M) → H2k(∂M).

Proof. Poincaré duality identifies the Q/Z dual of

(5.50) H2k(∂M) ← H2k(M)

with

(5.51) H2k−1(∂M ; Q/Z) → H2k(M, ∂M ; Q/Z).

Thus the orthogonal complement of the image of (5.50) is the image
of (5.51). The claim follows easily. q.e.d.

5.4. The quadratic functions. We now turn to the relationship be-
tween integral Wu-structures and quadratic functions. That there is a
relationship at all has a simple algebraic explanation. Suppose that L is
a finitely generated free abelian group equipped with a non-degenerate
symmetric bilinear form

B : L × L → Z.

A characteristic element of B is an element λ ∈ L with the property

B(x, x) ≡ B(x, λ) mod 2.

If λ is a characteristic element, then

(5.52) q(x) =
B(x, x) − B(x, λ)

2
is a quadratic refinement of B. Conversely, if q is a quadratic refinement
of B,

q(x + y) − q(x) − q(y) + q(0) = B(x, y),
then

q(x) − q(−x) : L → Z
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is linear, and so there exists λ ∈ L with

q(x) − q(−x) = −B(x, λ).

We also have
q(x) + q(−x) = 2 q(0) + B(x, x).

If we assume in addition that q(0) = 0 then it follows that q(x) is given
by (5.52). Thus the set of quadratic refinements q of B, with q(0) = 0
are in one to one correspondence with the characteristic elements λ of
B.

We apply the above discussion to the situation in which M is an
oriented manifold of dimension 4k,

L = H2k(M ; Z)/torsion,

and
B(x, y) =

∫
M

x ∪ y.

By definition, the Wu-class

ν2k ∈ H2k(M ; Z/2)

satisfies ∫
M

x2 =
∫

M
x ν2k ∈ Z/2, x ∈ H2k(M ; Z/2).

Thus the integer lifts λ are exactly the characteristic elements of B, and
correspond to quadratic refinements qλ of the intersection pairing.

Lemma 5.53. The function

qλ(x) = 1
2

∫
M

(x2 − xλ)

defines a homomorphism

π4k MSO〈βν2k〉 ∧ K(Z, 2k) → Z.

Proof. The group π4k MSO〈βν2k〉∧K(Z, 2k)+ is the cobordism group
of triples (M, x, λ) with M an oriented manifold of dimension 4k, λ ∈
Z2k(M ; Z) a lift of ν2k and x ∈ Z2k(M ; Z). The group π4k MSO〈βν2k〉∧
K(Z, 2k) is the quotient by the subgroup in which x=0. Let (M1, λ1, x1)
and (M2, λ2, x2) be two such manifolds. Since

x1 ∪ x2 = 0 ∈ H4k(M1 � M2)

we have
qλ1+λ2(x1 + x2) = qλ1(x1) + qλ2(x2),

and so qλ is additive. If M = ∂N and both λ and x extend to N , then

qλ(x) =
1
2

∫
M

x2 − xλ =
1
2

∫
N

d(x2 − xλ) = 0,

and q is a cobordism invariant. The result now follows since q(0) = 0.
q.e.d.
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We will now show that the homomorphism

π4k MSO〈βν2k〉 ∧ K(Z, 2k) → Z

(M, λ, x) �→ 1
2

∫
M

x2 − xλ

has a canonical lift to a map

(5.54) MSO〈βν2k〉 ∧ K(Z, 2k) → Σ4kĨ .

It suffices to produce the adjoint to (5.54) which is a map

MSO〈βν2k〉 → Σ4kĨ (K(Z, 2k)) .

Since MSO〈βν2k〉 is (−1)-connected this will have to factor through the
(−1)-connected cover12

MSO〈βν2k〉 → Σ4kĨ (K(Z, 2k)) 〈0, . . . ,∞〉.
To work out the homotopy type of Σ4kĨ (K(Z, 2k)) 〈0, . . . ,∞〉 we will

follow the approach of Browder and Brown [10, 12, 14, 13].
For a space X and a cocycle x ∈ Z2k(X; Z/2) the theory of Steenrod

operations provides a universal (2k − 1)-cochain h with the property

δh = x ∪ x + Sq2k(x).

Taking the universal case X = K(Z, 2k) x = ι, this can be interpreted
as as an explicit homotopy making the diagram

Σ∞K(Z, 2k) ι∪ι−−−−→ Σ4k H Z

ι

⏐⏐� ⏐⏐�
Σ2k H Z −−−−→

Sq2k
Σ4k H Z /2.

Passing to Postnikov sections gives an explicit homotopy making

(5.55)

Σ∞K(Z, 2k)〈−∞, 4k〉 ι∪ι−−−−→ Σ4k H Z

ι

⏐⏐� ⏐⏐�
Σ2k H Z −−−−→

Sq2k
Σ4k H Z /2

commute.

Proposition 5.56. The square (5.55) is homotopy Cartesian.

Proof. This is an easy consequence of the Cartan–Serre computation
of the cohomology of K(Z, 2k). q.e.d.

12The symbol X〈n, . . . , m〉 indicates the Postnikov section of X having homotopy
groups only in dimension n ≤ i ≤ m. The angled brackets are given lower precedence
than suspensions, so that the notation ΣX〈n, . . . , m〉 means (ΣX) 〈n, . . . , m〉 and
coincides with Σ (X〈n + 1, . . . , m + 1〉).
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It will be useful to re-write (5.55). Factor the bottom map as

Σ2k H Z → Σ2k H Z /2 → Σ4k H Z /2,

and define a spectrum X by requiring that the squares in

Σ∞K(Z, 2k)〈−∞, 4k〉 −−−−→ X −−−−→ Σ4k H Z

ι

⏐⏐� ⏐⏐� ⏐⏐�
Σ2k H Z −−−−→ Σ2k H Z /2 −−−−→

Sq2k
Σ4k H Z /2

be homotopy Cartesian. Then (5.55) determines a homotopy Cartesian
square

Σ2k−1 H Z /2
β−−−−→ Σ2k H Z

β Sq2k

⏐⏐� ⏐⏐�
Σ4k H Z −−−−→ Σ∞K(Z, 2k)〈−∞, . . . , 0〉,

in which the horizontal map is the inclusion of the fiber of ι, and the
vertical map is the inclusion of the fiber of the map to X. Taking
Anderson duals then gives

Proposition 5.57. The diagram (5.55) determines a homotopy
Cartesian square

(5.58)

Σ4k ĨK(Z, 2k)〈0, . . . ,∞〉 b−−−−→ Σ2kHZ

a

⏐⏐� ⏐⏐�
HZ

χ Sq2k

−−−−→ Σ2kHZ/2.

By Proposition 5.57, to give a map

X → Σ4kĨK(Z, 2k)〈0, . . . ,∞〉
is to give cocycles a ∈ Z0(X; Z), b ∈ Z2k(X; Z), and a cochain c ∈
C2k−1(X; Z/2) satisfying

χSq2k(a) − b ≡ δc mod 2.

In case X = MSO〈βν2k〉 and a = U is the Thom cocycle, the theory of
Wu classes gives a universal c for which

δc = χSq2k a + ν2k · U.

Taking b = −λ · U leads to a canonical map

(5.59) MSO〈βν2k〉 → X → Σ4kĨK(Z, 2k).

Proposition 5.60. The adjoint to (5.59)

(5.61) MSO〈βν2k〉 ∧ K(Z, 2k) → Σ4k Ĩ
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is a lift of the homomorphism

1
2

∫
M

(
x2 − xλ

)
.

Proof. We’ll use the notation of (5.55) and (5.58). The maps

Σ∞K(Z, 2k)〈−∞, . . . , 0〉 (ι,ι2)−−−→ Σ2k H Z∨Σ4k H Z

Σ4k Ĩ (K(Z, 2k)) 〈0, . . . ,∞〉 (a,b)−−−→ H Z∨Σ2k H Z,

are rational equivalences, and by construction

ι ◦ Σ4kĨ(b) = 2 ι ◦ Σ4kĨ(a) = 0

ι ∪ ι ◦ Σ4kĨ(b) = 0 ι ∪ ι ◦ Σ4kĨ(a) = 2.

It follows that the rational evaluation map

Σ4kĨ (K(Z, 2k)) 〈0, . . . ,∞〉 ∧ Σ∞K(Z, 2k)〈−∞, . . . , 0〉 → Σ4kĨ → H Q

is (aι2 + bι)/2. This means that

MSO〈βν2k〉 ∧K(Z, 2k) → Σ4kĨK(Z, 2k)∧K(Z, 2k) → Σ4kĨ → Σ4k H Q

is given by
(U · x2 − U · λ · x)/2,

and the claim follows. q.e.d.

Remark 5.62. The topological analogue of a characteristic element
is an integral Wu-structure, and the object in topology corresponding
to an integer invariant is a map to Ĩ. We’ve shown that an integral
Wu-structure gives a function to Ĩ. That this function is quadratic is
expressed in topology by the following diagram which is easily checked
to be homotopy commutative (and in fact to come with an explicit
homotopy):

(5.63)

MSO〈βν2k〉 ∧ K(Z, 2k) ∧ K(Z, 2k)
R

x∪y−−−−→ Σ4k H Z

(x+y)−(x)−(y)

⏐⏐� ⏐⏐�
MSO〈βν2k〉 ∧ K(Z, 2k) −−−−→ Σ4kĨ .

There is more information in the map (5.61). Consider the following
diagram in which the bottom vertical arrows are localization at H Q and
the vertical sequences are fibrations

(5.64)

MSO〈βν2k〉 ∧ K(Q/Z, 2k − 1) −−−−→ Σ4k−1I⏐⏐� ⏐⏐�
MSO〈βν2k〉 ∧ K(Z, 2k) −−−−→ Σ4kĨ⏐⏐� ⏐⏐�
MSO〈βν2k〉 ∧ K(Q, 2k) −−−−→ Σ4k H Q .
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The top map is classified by a homomorphism

π4k−1 MSO〈βν2k〉 ∧ K(Q/Z, 2k − 1) → Q/Z.

In geometric terms, this associates to each integral Wu-structure on an
oriented manifold of N of dimension (4k − 1) a function

φ4k−1 = φ4k−1(N, − ) : H2k−1(N ; Q/Z) → Q/Z.

One easily checks (using (5.63)) that this map is a quadratic refinement
of the link pairing

φ4k−1(x + y) − φ4k−1(x) − φ4k−1(y) =
∫

N
x ∪ βy.

The bottom map is classified by a homomorphism

φ4k : π4k MSO〈βν2k〉 ∧ K(Q, 2k) → Q.

Thinking of π4k MSO〈βν2k〉 ∧K(Q, 2k) as the relative homotopy group

π4k (MSO〈βν2k〉 ∧ K(Z, 2k),MSO〈βν2k〉 ∧ K(Q/Z, 2k − 1))

we interpret it in geometric terms as the bordism group of manifolds
with boundary M , together with cocycles

x ∈ Z2k(M ; Z)

y ∈ Z2k−1(M ; Q/Z)

satisfying:
β(y) = x|∂M .

Because of this identity, the cocycle x defines a class x ∈ H2k(M, ∂M ; Q)
and in fact

φ4k(M, x, y) = φ4k(M, x) =
∫

M
(x2 − xλ)/2.

The compatibility of the maps φ with the connecting homomorphism
gives

φ4k−1(∂M, y) ≡ φ4k(M, x) mod Z.

The functions φ4k and φ4k−1 share the defect that they are not quite
defined on the correct groups. For instance φ4k is defined on the middle
group in the exact sequence

· · · → H2k−1(∂M ; Q) δ−→ H2k(M, ∂M ; Q) → H2k(M ; Q) → · · ·
but does not necessarily factor through the image of this group in

H2k(M ; Q).

The obstruction is

φ4k(M, δx) =
1
2

∫
∂M

x · λ.
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Similarly, φ4k−1 is defined on H2k−1(N ; Q/Z), but does not necessarily
factor through H2k(N ; Z)torsion, and the obstruction is

φ4k−1(N, x) =
1
2

∫
N

x · λ, x ∈ H2k−1(N ; Q).

Both of these obstructions vanish if it happens that the integral Wu-
structures in dimension (4k − 1) are torsion. This is the situation con-
sidered in §5.2.

We still haven’t quite constructed functions φN,η needed in §5.3. For
one thing, we’ve only described the compatibility relation in the case
of a manifold with boundary. To get a formula like (5.39) one simply
considers maps of pairs(

S4k−1 ∧ ∆1
+, S4k−1 ∧ ∂∆1

+

)
→ (MSO〈βν2k〉 ∧ K(Z, 2k),MSO〈βν2k〉 ∧ K(Q/Z, 2k − 1))

instead of relative homotopy groups. We also haven’t incorporated the
symmetry. We now indicate the necessary modifications.

We need to work with spaces and spectra13 equipped with an ac-
tion of the group Z/2, with the convention that an equivariant map is
regarded as a a weak equivalence if the underlying map of spaces or
spectra is a weak equivalence.14 With this convention the map

X × EZ/2 → EZ/2

is a weak equivalence, and a spectrum E with the trivial Z/2-action
represents the equivariant cohomology theory

X �→ E∗
Z/2(X) = E∗(EZ/2 ×Z/2 X).

Let Z(1) denote the local system which on each Z/2-space EZ/2×X is
locally Z, and has monodromy given by the homomorphism

π1EZ/2 × X → π1BZ/2 = Z/2.

We’ll write H Z(1) for the equivariant spectrum representing the coho-
mology theory

X �→ H∗
Z/2(X; Z(1)) = H∗(EZ/2 ×Z/2 X; Z(1)),

and more generally HA(1) for the equivariant spectrum representing

H∗(EZ/2 ×Z/2 X; A ⊗ Z(1)).

The associated Eilenberg-MacLane spaces are denoted K(Z(1), n), etc.
Since

Z/2(1) = Z/2,

13In the terminology of [40] these are naive Z/2-spectrum.
14This is sometimes known as the “coarse” model category structure on equivari-

ant spaces or spectra. The alternative is to demand that the map of fixed points be
a weak equivalence as well.
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the spectrum H Z /2(1) is just H Z /2, and reduction modulo 2 is repre-
sented by a map

H Z(1) → H Z /2(1).
Note that if M is a space and t : π1M → Z/2 classifies a double cover

M̃ → M , and local system Z(1) on M , then

EZ/2 ×Z/2 M̃ → M

is a homotopy equivalence (it is a fibration with contractible fibers) and
we have an isomorphism

H∗(M ; Z(1)) = H∗
Z/2(M̃ ; Z(1)).

As described in §5.1 we define an equivariant BSO〈βν2k〉 by the ho-
motopy pullback square

BSO〈βν2k〉 λ−−−−→ K (Z(1), 2k)⏐⏐� ⏐⏐�
BSO −−−−→ K (Z/2, 2k) ,

and in this way give the associated Thom spectra MSO〈βν2k〉 and

MSO〈βν2k〉 ∧ K(Z(1), 2k)+
= Thom (BSO〈βν2k〉 × K(Z(1), 2k), ξ ⊕ 0)

Z/2-actions. The group

π4k (MSO〈βν2k〉 ∧ K(Z(1), 2k)+)hZ/2

= π4k Thom
(
(BSO〈βν2k〉 × K(Z(1), 2k)) ×Z/2 EZ/2, ξ ⊕ 0

)
is the cobordism group of 4k-dimensional oriented manifolds M ,
equipped with a map t : π1M → Z/2 classifying a local system Z(1),
a cocycle λ ∈ Z2k(M ; Z(1)) whose mod 2-reduction represents the Wu-
class ν2k, and a cocycle x ∈ Z2k(M ; Z(1)). As in the non-equivariant
case, the integral Wu-structure λ ∈ H2k(M ; Z(1)) defines the quadratic
function

φ4k = φM,λ(x) = 1
2

∫
M

(x2 − xλ) x ∈ H2k(M ; Z(1)),

and a homomorphism

π4k MSO〈βν2k〉 ∧ K(Z(1), 2k)hZ/2 → Z.

An analysis of the Anderson dual of Σ∞K(Z(1), 2k) leads to a canonical
refinement of this to a map

MSO〈βν2k〉 ∧ K(Z(1), 2k)hZ/2 → Ĩ ,

and checking the rationalization sequence leads to the desired quadratic
refinement of the link pairing in dimension (4k − 1).
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The the analysis of Ĩ(K(Z(1), 2k)) works more or less the same as in
the non-equivariant case. Here are the main main points:

(1) With our conventions, a homotopy class of maps

MSO〈βν2k〉 ∧ K(Z(1), 2k)hZ/2 → Σ4kĨ

is the same as an equivariant homotopy class of maps

MSO〈βν2k〉 ∧ K(Z, 2k) → Σ4kĨ .

We are therefore looking for an equivariant map

(5.65) MSO〈βν2k〉 → Σ4kĨ (K(Z(1), 2k)) .

(2) By attaching cells of the form Dn × Z/2, the Postnikov section
X〈n, . . . , m〉 of an equivariant spectrum or space can be formed.
Its non-equivariant homotopy groups vanish outside of dimensions
n through m, and coincide with those of X in that range. If E is
a space or spectrum with a free Z/2-action, and having only cells
in dimensions less than n, then

[E, X〈n, . . . , m〉] = 0.

The same is true if E is an equivariant space or spectrum with
πkE = 0 for k > m. Since the equivariant spectrum MSO〈βν2k〉
is (−1)-connected, this means, as before, that we can replace (5.65)
with

MSO〈βν2k〉 → Σ4k Ĩ (K(Z(1), 2k)) 〈0, . . . ,∞〉
= Σ4kĨ (Σ∞K(Z(1), 2k)〈−∞, . . . , 4k〉) .

(3) The cup product goes from

H∗
Z/2(X; Z(1)) × H∗

Z/2(X; Z(1)) → H∗
Z/2(X; Z)

and is represented by a map of spectra

H Z(1) ∧ H Z(1) → H Z .

(4) The adjoint of

H Z(1) ∧ H Z(1) → H Z → Ĩ

is an equivariant weak equivalence

H Z(1) → Ĩ H Z(1).

(5) The square

Σ∞K(Z(1), 2k)〈−∞, 4k〉 ι∪ι−−−−→ Σ4k H Z

ι

⏐⏐� ⏐⏐�
Σ2k H Z(1) −−−−→

Sq2k
Σ4k H Z /2

is a homotopy pullback square.
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(6) As a consequence, so is

Σ4kĨ (K(Z(1), 2k)) 〈0,∞〉 ι∪ι−−−−→ Σ2k H Z(1)

ι

⏐⏐� ⏐⏐�
H Z −−−−→

χ Sq2k
Σ2k H Z /2.

The following proposition summarizes the main result of this discus-
sion. As in §5.2 we’ll use the notation

B = BSO〈βν2k〉 ×Z/2 EZ/2

B̄ = BSO〈ν̄2k〉 ×Z/2 EZ/2.

Proposition 5.66. Let N be a B̄-oriented manifold of dimension
(4k − 1). Associated to the “Wu-cocycle” η ∈ Z2k−1(N ; Q/Z) is a qua-
dratic function

φ = φN = φN,η : H2k(N ; Z(1))tor → Q/Z

whose associated bilinear form is the link pairing

H2k(N ; Z(1))tor × H2k(N ; Z(1))tor → Q/Z.

If M/∆1 is a B-oriented map of relative dimension (4k − 1), equipped
with compatible B̄ orientations on ∂0M and ∂1M , and x is an element
of H2k(M ; Z(1)) whose restriction to ∂M is torsion, then

(5.67)
φ∂0M (∂0x) − φ∂1M (∂1x) ≡ 1

2

∫
M

(x2 − xλ) mod Z

∂ix = x|∂iM .

Appendix A. Simplicial methods

A.1. Simplicial set and simplicial objects. A simplicial set X• con-
sists of a sequence of sets Xn, n ≥ 0 together with “face” and “degen-
eracy” maps

di : Xn → Xn−1 i = 0, . . . , n

si : Xn−1 → Xn i = 0, . . . , n − 1

satisfying

djdi = didj+1 j ≥ i

sjsi = sisj−1 j > i

djsi =

⎧⎪⎨⎪⎩
si−1dj j < i

identity j = i, i + 1
sidj−1 j > i + 1.

The set Xn is called the set of n-simplices of X•.
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Remark A.1. Let ∆ be the category whose objects are the finite
ordered sets

[n] = {0 ≤ 1 · · · ≤ n}, n ≥ 0
and whose morphisms are the order preserving maps. The data describ-
ing a simplicial set X• is equivalent to the data describing a contravari-
ant functor

X : ∆ → Sets
with X[n] corresponding to the set Xn of n-simplices, and the face and
degeneracy maps di and si corresponding to the values of X on the maps

(A.2)
[n − 1] ↪→ [n]

[n] � [n − 1]

which, respectively, “skip i” and “repeat i.”

Remark A.3. A simplicial object in a category C is a contravariant
functor

X• : ∆ → C.

Thus one speaks of simplicial abelian groups, simplicial Lie algebras,
etc.

One basic example of a simplicial set is the singular complex, sing S
of a space S, defined by

(sing S)n = set of maps from ∆n to S,

where
∆n = {(t0, . . . , tn) | 0 ≤ ti ≤ 1,

∑
ti = 1}

is the standard n-simplex with vertices

ei = (0, . . . ,
i
1, . . . , 0) i = 0, . . . , n.

The face and degeneracy maps are derived from the linear extensions
of (A.2).

Definition A.4. The geometric realization |X•| of a simplicial set
X• is the space ∐

Xn × ∆n/ ∼
where ∼ is the equivalence relation generated by

(dix, t) = (x, dit)

(six, t) = (x, sit)

and

di : ∆n−1 → ∆n

si : ∆n → ∆n−1

are the linear extensions of the maps (A.2).
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The evaluation maps assemble to a natural map

(A.5) | sing S| → S

which induces an isomorphism of both singular homology and homotopy
groups.

The standard (simplicial ) n-simplex is the simplicial set ∆n• , given as
a contravariant functor by

∆n([m]) = ∆ ([m], [n]) .

One easily checks that
|∆n

• | = ∆n.

A simplicial homotopy between maps f : X• → Y• is a simplicial map

h : X• × ∆1
• → Y•

for which ∂1h = f , and ∂0h = g.

A.2. Simplicial homotopy groups.

Definition A.6. Let X• be a pointed simplicial set. The set πsimp
n X•

is the set of simplicial maps

(∆n
• , ∂∆n

• ) → (X•, ∗)
modulo the relation of simplicial homotopy.

There is a map

(A.7) πsimp
n X• → πn(|X•|).

The k-horn of ∆n• is the simplicial set

V n,k
• =

⋃
i�=k

∂i∆n
• ⊂ ∂∆n

• .

Definition A.8. A simplicial set X• satisfies the Kan extension
condition if for every n, k, every map V n,k

• → X• extends to a map
∆n• → X•.

Proposition A.9. If X• satisfies the Kan extension condition then
(A.7) is an isomorphism.

A.3. Simplicial abelian groups. The category of simplicial abelian
groups is equivalent to the category of chain complexes, making the lin-
ear theory of simplicial abelian groups particularly simple. The equiva-
lence associates to a simplicial abelian group A the chain complex NA
with

NAn = {a ∈ An | dia = 0, i = 1, . . . n}
d = d0.
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The inverse correspondence associates to a chain complex C∗, the sim-
plicial abelian group with n-simplices⊕

f :[n]→[k]
f surjective

Ck.

Remark A.10. The normalized complex NA of a simplicial abelian
group A is a subcomplex of the simplicial abelian group A regarded as
a chain complex with differential

∑
(−1)i∂i. In fact NA is a retract of

this chain complex, and the complementary summand is contractible. It
is customary not to distinguish in notation between a simplicial abelian
group A and the chain complex just described.

It follows immediately from the definition that

πsimp
n A = Hn(NA).

Moreover, any simplicial abelian group satisfies the Kan extension con-
dition. Putting this together gives

Proposition A.11. For a simplicial abelian group A•, the homotopy
groups of |A•| are given by

πn|A•| = Hn(NA).

Fix a fundamental cocycle ι ∈ Zn (K(Z, n); Z).

Proposition A.12. The map

sing K(A, n)X → Zn(X × ∆•)
f �→ f∗ι

is a simplicial homotopy equivalence.

Proof. On path components, the map induces the isomorphism

[X, K(Z, n)] ≈ Hn(X; Z).

One can deduce from this that the map is an isomorphism of higher
homotopy groups by replacing X with ΣkX, and showing that the map
“integration along the suspension coordinates” gives a simplicial homo-
topy equivalence

Zn(ΣkX × ∆•) → Zn−k(X × ∆•).

This latter equivalence is a consequence of Corollary D.13. q.e.d.

Appendix B. Picard categories and Anderson duality

B.1. Anderson duality. In this appendix we will work entirely with
spectra, and we will use the symbol πkX to denote the kth homotopy
group of the spectrum. In case X is the suspension spectrum of a space
M this group is the kth stable homotopy of M .
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To define the Anderson dual of the sphere, first note that the functors

X �→ hom(πst
∗ X, Q)

X �→ hom(πst
∗ X, Q/Z)

satisfy the Eilenberg-Steenrod axioms and so define cohomology theo-
ries which are represented by spectra. In the first case this cohomology
theory is just ordinary cohomology with coefficients in the rational num-
bers, and the representing spectrum is the Eilenberg-MacLane spectrum
HQ. It the second case the spectrum is known as the Brown-Comenetz
dual of the sphere, and denoted I [11]. There is a natural map

(B.1) HQ → I

representing the transformation

hom(πst
∗ M, Q) → hom(πst

∗ M, Q/Z).

Definition B.2. The Anderson dual of the sphere, Ĩ, is the homotopy
fiber of the map (B.1).

By definition there is a long exact sequence

· · · hom(πn−1X, Q/Z) → Ĩn(X)

→ hom(πnX, Q) → hom(πnX, Q/Z) · · · ,

from which one can extract a short exact sequence

(B.3) Ext (πn−1X, Z) � Ĩn(X) � hom (πnX, Z) .

The sequence (B.3) always splits, but not canonically.
By means of (B.3), the group hom (πnX, Z) gives an algebraic ap-

proximation to ĨnX. In the next two sections we will refine this to an
algebraic description of all of Ĩn(X) (Corollary B.17).

For a spectrum E, let Ĩ(E) denote the function spectrum of maps
from E to Ĩ. Since [

X, Ĩ(E)
]

=
[
X ∧ E, Ĩ

]
,

there is a splittable short exact sequence

Ext (πn−1X ∧ E, Z) � Ĩn(X ∧ E) � hom (πnX ∧ E, Z) .

If E = HZ, then Ĩ(E) = HZ, and the above sequence is simply the
universal coefficient sequence. One can also check that Ĩ(HZ/2) =
Σ−1HZ/2, that the Anderson dual of mod 2 reduction

HZ → HZ/2

is the Bockstein
Σ−1HZ/2 → HZ,

and that the effect of Anderson duality on the Steenrod algebra

[HZ/2, HZ/2]∗
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is given by the canonical anti-automorphism χ.

Remark B.4. If X is a pointed space, we will abbreviate Ĩ (Σ∞X)
to Ĩ(X).
B.2. Picard categories.

Definition B.5. A Picard category is a groupoid equipped with the
structure of a symmetric monoidal category in which each object is
invertible.

A functor between Picard categories is a functor f together with a
natural transformation

f(a ⊗ b) → f(a) ⊗ f(b)

which is compatible with the commutativity and associativity laws. The
collection of Picard categories forms a 2-category15 . If C is a Picard
category, then the set π0C of isomorphism classes of objects in C is an
abelian group. For every x ∈ C, the map

Aut (e) → Aut(e ⊗ x) ≈ Aut(x)
f �→ f ⊗ Id

is an isomorphism (e is the unit for ⊗). This group is also automatically
abelian, and is denoted π1C.

For each a ∈ C, the symmetry of ⊗ gives an isomorphism

(a ⊗ a → a ⊗ a) ∈ Aut(a ⊗ a) ≈ Aut(e) = π1C
which squares to 1. Write ε(a) for this element. The invariant ε descends
to a homomorphism

π0C ⊗ Z/2 → π1C,

known as the k-invariant of C. The Picard category C is determined
by this invariant, up to equivalence of Picard categories (see Proposi-
tion B.12 below). A Picard category with ε = 0 is said to be a strict
Picard category.

Example B.6. A map ∂ : A → B of abelian groups determines
a strict Picard category with B as the set of objects, and in which a
morphism from b0 to b1 is a map for which ∂a = b1 − b0. The operation
+ comes from the group structure, and the natural transformations ψ
and α are the identity maps. We’ll denote this groupoid with the symbol

(A → B) =
(
A

∂−→ B
)

.

It is immediate from the definition that

π0

(
A

∂−→ B
)

= coker ∂

π1

(
A

∂−→ B
)

= ker ∂.

15A 2-category is a category in which the morphisms form a category
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One can easily check that the Picard category (A → B) is equivalent,
as a Picard category, to

(
π1

0−→ π0

)
. Every strict Picard category is

equivalent to one of these forms.

Example B.7. If E is a spectrum, then each of the fundamental
groupoids

π≤1En

is a Picard category, in which the ⊗ structure comes from the “loop
multiplication” map

En × En → En.

To make this precise, first note that the space En is the space of maps
of spectra

S0 → ΣnE,

and a choice of “loop multiplication” amounts to a choice of deformation
of the diagonal S0 → S0 × S0 to a map S0 → S0 ∨ S0.

Let Lk(Rn) denote the space of k-tuples of linearly embedded n-cubes
in In. The “Pontryagin-Thom collapse” gives a map from Lk(Rn) to
the space of deformations of the diagonal (here Sn denotes the space
Sn)

Sn →
k∏

Sn

to a map

Sn →
k∨

Sn.

Set
Lk = lim−→

n→∞
Lk(Rn).

The space Lk is contractible, and by passing to the limit from the above,
parameterizes deformations of the iterated diagonal map of spectra

(B.8) S0 →
k∏

S0

to

(B.9) S0 →
k∨

S0.

It is easy to see that a choice of point x ∈ L2 for the monoidal
structure, a path x → τx (τ the transposition in Σ2) for the symmetry,
and a path in L3 for the associativity law give the fundamental groupoid

π≤1En

the structure of a Picard category. This Picard category structure is
independent, up to equivalence of Picard categories, of the choice of
point x, and the paths.
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Remark B.10. The space of all deformations of (B.8) to (B.9) is
contractible, and can be used for constructing the desired Picard cat-
egory structure. The “little cubes” spaces were introduced in [44, 9],
and have many technical advantages. As we explain in the next exam-
ple, in the case of Thom spectra they give compatible Picard category
structures to the the fundamental groupoids of both the transverse and
geometric singular complexes.

Example B.11. Suppose X = Thom (B; V ) is a Thom spectrum.
Let singgeom XS−n be the simplicial set with k-simplices the set of B-
oriented maps E → S × ∆k. The groupoid

π≤1 singgeom XS
−n

then has objects the n-dimensional B-oriented maps E → S, and in
morphisms from E0 to E1 equivalence classes of B-oriented maps

p : E → S × ∆1

with p|∂i∆1 = Ei/S, i = 0, 1. In principle π≤1 singgeom XS−n is a Pi-
card category with the the ⊗-structure coming from disjoint union of
manifolds. But this requires a little care. Recall that a B-orientation
of E/S consists of an embedding E ⊂ S × RN ⊂ S × R∞, a tubular
neighborhood W ⊂ S×RN , and a map E → B classifying W . To give a
B-orientation to the disjoint union of two B-oriented maps, E1 ⊂ S×RN

and E2 ⊂ S × RM we need to construct an embedding

E1 � E2 ⊂ W1 � W2 ⊂ S × RP

for some P . Regard Rk as the interior of Ik, and choose a point

IP � IP ⊂ IP P � 0

in L2 = lim−→L2(RP ). Making sure P > N, M , we can then use

W1 � W2 ⊂ IP � IP ⊂ IP .

The rest of the data needed to give E1�E2 a B-orientation is then easily
constructed. The Pontryagin-Thom construction gives an equivalence
of simplicial sets

singgeom XS
−n → sing XS

−n

and an equivalence of Picard categories

π≤1 singgeom XS
−n → π≤1 sing XS

−n = π≤1X
S
n .

All Picard categories arise as the fundamental groupoid of a spectrum:

Proposition B.12. The correspondence

E �→ π≤1E0

is an equivalence between the 2-category of spectra E satisfying

πiE = 0 i �= 0, 1
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and the 2-category of Picard categories. (The collection of such spectra
E is made into a 2-category by taking as morphisms the fundamental
groupoid of the space of maps.)

Proof. We merely sketch the proof. The homotopy type of such a
spectrum E is determined by its k-invariant

(B.13) Hπ0E → Σ2Hπ1E.

Now the set of homotopy classes of maps (B.13) is naturally isomorphic
to

hom (A ⊗ Z/2, B) .

One can associate to a Picard category with k-invariant ε, the spectrum
E with the same k-invariant. Using this it is not difficult to then check
the result. q.e.d.

Remark B.14. Clearly, the functor

E �→ π≤1En−1

gives an equivalence between the 2-category of Picard categories, and
the 2-category of spectra E whose only non-zero homotopy groups are
πn−1E and πnE.

B.3. Anderson duality and functors of Picard categories. We
now relate this discussion to Anderson duality. First a couple of easy
observations.

Lemma B.15. The maps

[X, ΣnĨ] −→
[
X〈n − 1,∞〉, ΣnĨ

]
←−
[
X〈n − 1, n〉, ΣnĨ

]
[
X〈n − 1, n〉, ΣnĨ〈n − 1,∞〉

]
−→
[
X〈n − 1, 0〉, ΣnĨ

]
are isomorphisms.

Proof. This follows easily from the exact sequence

Ext (πn−1X, Z) � Ĩn(X) � hom (πnX, Z) .

q.e.d.

Since
ΣnĨ〈n − 1, . . . ,∞〉 ≈ ΣnHZ,

we have

Corollary B.16. There is a natural isomorphism

Ĩn(X) ≈ Hn (X〈n − 1, n〉; Z) .
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Now the Picard category

π≤1

(
ΣnĨ
)

n−1
≈ π≤1 (ΣnHZ)n−1) = π≤1K(Z, 1)

is canonically equivalent to

(Z → 0) ≈ (Q → Q/Z) .

Combining this with Proposition B.12 then gives

Corollary B.17. The group Ĩn(X) is naturally isomorphic to the
group of natural equivalences classes of functors of Picard categories

π≤1Xn−1 → (Q → Q/Z) .

Appendix C. Manifolds with corners

In this section we briefly review the basics of the theory of manifolds
with corners. For more information see [18, 26, 19] and for a discus-
sion in connection with cobordism see [39]. In our discussion we have
followed Melrose [46].
C.1. t-manifolds. Let Rn

k ⊂ Rn be the subspace

Rn
k = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, 1 ≤ i ≤ k} .

Definition C.1. The set of points x = (x1, . . . , xn) ∈ Rn
k for which

exactly j of {x1, . . . , xk} are 0 is the set of j-corner points of Rn
k .

Definition C.2. A function f on an open subset U ⊂ Rn
k is smooth

if and only if f extends to a C∞ function on a neighborhood U ′ with

U ⊂ U ′ ⊂ Rn.

A map g from an open subset U ⊂ Rn
k to an open subset U ′ ⊂ Rm

l
is smooth if f ◦ g is smooth whenever f is smooth (this only need be
checked when f is one of the coordinate functions).

Remark C.3. The definition of smoothness can be characterized
without reference to U ′. It is equivalent to requiring that f be C∞ on
(0,∞)k × Rn−k ∩ U with all derivatives bounded on all subsets of the
form K ∩ U with K ⊂ Rn

k compact.

Definition C.4. A chart with corners on a space U is a homeomor-
phism φ : U → Rn

k of U with an open subset of Rn
k . Two charts φ1, φ2

on U are said to be compatible if the function φ1 ◦ φ−1
2 is smooth.

Lemma C.5. Suppose that φ1 and φ2 are two compatible charts on
a space U . If x ∈ U , and φ1(x) is a j-corner point, then φ2(x) is a
j-corner point.

Definition C.6. An atlas (with corners) on a space X is a collection
of pairs (φa, Ua) with φa a chart on Ua, Ua a cover of X, and for which
φa and φa′ are compatible on Ua ∩Ua′ . A C∞-structure with corners on
X is a maximal atlas.
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Definition C.7. A t-manifold is a paracompact Hausdorff space X
together with a C∞-structure with corners.

Definition C.8. A j-corner point of a t-manifold X is a point x
which in some (hence any) chart corresponds to a j-corner point of Rn

k .

Let U be an open subset of Rn
k . The tangent bundle to U is the

restriction of the tangent bundle of Rn to U , and will be denoted TU .
A smooth map f : U1 → U2 has a derivative df : TU1 → TU2. It follows
that if X is a t-manifold, the tangent bundles to the charts in an atlas
patch together to form a vector bundle over X, the tangent bundle to
X.

If x ∈ X is a j-corner point, then the tangent space to X at x contains
j distinguished hyperplanes H1, . . . , Hj in general position, equipped
with orientations of TxX/Hi. The intersection of these hyperplanes is
the tangent space to the corner at x and will be denoted bTx. In a
general t-manifold, these hyperplanes need not correspond to distinct
components of the space of 1-corner points, as for example happens with
the polar coordinate region

0 ≤ θ ≤ π/2

0 ≤ r ≤ sin(2θ).

In a manifold with corners (Definition C.12) a global condition is im-
posed, which guarantees that the tangent hyperplanes do correspond to
distinct components.

C.2. Neat maps and manifolds with corners.

Definition C.9. A smooth map of t-manifolds f : X → Y is neat
if f maps j-corner points to j-corner points, and if for each j-corner
point, the map

df : Tx/bTx → Tf(x)/bTf(x)

is an isomorphism.

The term neat is due to Hirsch [34, p. 30], who considered the case
of embeddings of manifolds with boundary.

Remark C.10. The condition on tangent spaces is simply the re-
quirement that f be transverse to the corners.

Example C.11. The map

Im → Im+1

(x) �→ (x, t)

is “neat” if and only if t �= 0, 1.

Definition C.12. A t-manifold X is a manifold with corners if there
exists a neat map X → ∆n for some n.
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Remark C.13. The existence of a neat map X → ∆n for some n is
equivalent to the existence of a neat map X → Im for some m.

Remark C.14. In this paper we have restricted our discussion to
manifolds with corners, for sake of simplicity, but in fact our results
apply to neat maps of t-manifolds.

Proposition C.15. The product of manifolds with corners is a man-
ifold with corners. If X → M is a neat map, and M is a manifold with
corners, then so is X.

C.3. Normal bundles and tubular neighborhoods. Suppose that
f : X → Y is a neat embedding of t-manifolds. The relative normal bun-
dle of f is the vector bundle over X whose fiber at x is Tf(x)Y/df (TxX).
An embedding of t-manifolds does not necessarily admit a tubular neigh-
borhood, as the example

[0, 1] → [0, 1] × R

x �→ (x,
√

x)

shows. However, when f is a neat embedding, the fiber of the relative
normal bundle at x can be identified with bTf(x)Y/df(bTxX), and the
usual proof of the existence of a normal bundle applies.

Proposition C.16. Suppose that X is a compact t-manifold, and
f : X → Y is a neat embedding. There exists a neighborhood U of
f(X), a vector bundle W over X, and a diffeomorphism of W with U
carrying the zero section of W to f .

The neighborhood W is a tubular neighborhood of f(X), and the
derivative of the embedding identifies W with the relative normal bundle
of f

Wx ≈ Tf(x)Y/df (TxX) ≈ bTf(x)Y/df(bTxX).

Proposition C.17. Let f : X → Y be a neat map of compact t-
manifolds. There exists N � 0 and a factorization

X → Y × RN → Y

of f through a neat embedding X ↪→ Y × RN .

C.4. Transversality.

Definition C.18. A vector space with j-corners is a real vector
space V together with j codimension 1, relatively oriented subspaces
{H1, . . . , Hj} in general position:

i) each of the 1-dimensional vector spaces V/Hi is equipped with an
orientation;

ii) for all α ⊆ {1, . . . , j}, codimHα = s, where Hα =
⋂

i∈α Hi.
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Example C.19. The tangent space to each point of a t-manifold is
a vector space with corners.

Suppose that (V ; H1, . . . , Hj) and (V ′; H ′
1, . . . , H

′
l) are two vector

spaces with corners, and W is a vector space.

Definition C.20. Two linear maps

V −→ W ←− V ′

are transverse if for each α ⊂ {1, . . . , j}, β ⊂ {1, . . . , l} the map

Hα ⊕ H ′
β → W

is surjective.

The space of transverse linear maps is a possibly empty open subset
of the space of all maps.

Definition C.21. Suppose that Z and M are t-manifolds, and that
S is a closed manifold. Two maps

Z
f−→ S and M

g−→ S

are transverse if for each z ∈ Z and m ∈ M with f(z) = g(m), the maps

TzZ
Df−−→ TsS

Dg←−− TmM s = f(z) = g(m)

are transverse.

Lemma C.22. The class of “neat” maps is stable under composition
and transverse change of base.

Appendix D. Comparison of H Z(n)k(S) and Ȟ(n)k(S)

The purpose of this appendix to prove that the differential coho-
mology groups defined in §4.1 using the Eilenberg-MacLane spectrum
coincide with the differential cohomology groups defined in §3.2 using
the cochain complex.

The proof is in two steps. The first is to replace the differential
function space

filtk−n (K(Z, k); ιk)
S

with a simplicial abelian group. To describe the group, recall from §3.2
the cochain complex Č∗(S) with

Čk(S) = Ck(S; Z) × Ck−1(S; R) × Ωk(S),

and
d(c, h, ω) = (δc, ω − c − δh, dω).

Let Žk(S) be the group of k-cocycles in Č∗(S). We define

filts Č∗(S ×∆k) = Ck(S ×∆k; Z)×Ck−1(S ×∆k; R)× filts Ωk(S ×∆k)



436 M.J. HOPKINS & I.M. SINGER

(see the discussion preceding Definition 4.5). The coboundary map in
Č∗(S × ∆k) carries the filts to filts+1. Let

filts Žk(S × ∆m) = filts Čk(S × ∆m) ∩ Žk(S × ∆m).

Thus filts Žk(S × ∆m) consists of triples (c, h, ω) for which c and ω are
closed,

δh = ω − c,

and for which the weight filtration of ω is less than or equal to s.
Associating to a k-simplex of filts (K(Z, k); ιk)

S its underlying differ-
ential cocycle gives a map of simplicial sets

(D.1) filts (K(Z, k); ιk)
S → filts Žk (S × ∆•) .

Lemma D.2. The map (D.1) is a weak equivalence.

Proof. By definition, the square

filts (K(Z, k); ιk)
S −−−−→ filts Žk (S × ∆•)⏐⏐� ⏐⏐�

sing K(Z, k)S −−−−→ Zk(S × ∆•)

is a pullback square. The left vertical map is a surjective map of sim-
plicial abelian groups, hence a Kan fibration, so the square is in fact
homotopy Cartesian. The bottom map is a weak equivalence by Propo-
sition A.12. It follows that the top map is a weak equivalence as well.
q.e.d.

For the second step note that “slant product with the fundamen-
tal class of the variable simplex” gives a map from the chain complex
associated to the simplicial abelian group

(D.3) filtk−n Žk (S × ∆•)

to

(D.4) Ž(n)k(S) ←− Č(n)k−1(S) . . . ←− Č(n)0(S).

Proposition D.5. The map described above, from (D.3) to (D.4) is
a chain homotopy equivalence.

Together Propositions D.2 and D.5 then give the following result:

Proposition D.6. The map “slant product with the fundamental
class of the variable simplex” gives an isomorphism

H Z(n)k(S) ≈−→ Ȟ(n)k(S).
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Proof of Proposition D.5. Let A∗ be the total complex of the following
bicomplex:

(D.7)
...

...
filtk−n Žk(S × ∆2)
P

(−1)i∂∗
i

��

filtk−n−1 Čk−1(S × ∆2)
d��

��

. . .��

filtk−n Žk(S × ∆1)

��

filtk−n−1 Čk−1(S × ∆1)��

��

. . .��

filtk−n Žk(S × ∆0) filtk−n−1 Čk−1(X × ∆0)�� . . .��

By Lemma D.9 below, the inclusion of the leftmost column

filts Žk (S × ∆•) → A∗

is a quasi-isomorphism. By Lemma D.10 below, the inclusion B
(0)
∗ ⊂ A∗

is also a quasi-isomorphism. One easily checks that map “slant-product
with the fundamental class of ∆•” gives a retraction of A∗ to B

(0)
∗ , which

is therefore also a quasi-isomorphism. This means that the composite
map

(D.8) filts Žk (S × ∆•) → A∗ → B
(0)
∗

is a quasi-isomorphism. But the chain complex B
(0)
∗ is exactly the chain

complex (D.4), and the map (D.8) is given by slant product with the
fundamental class of the variable simplex. This completes the proof.
q.e.d.

We have used

Lemma D.9. For each m and s the simplicial abelian group

[n] �→ filts Čm(S × ∆n)

is contractible.

Lemma D.10. Let B
(i)
∗ be the ith row of (D.7). The map

∆0 → ∆n

given by inclusion of any vertex induces an isomorphism of homology
groups

H∗(B
(0))
∗ ) ≈−→ H∗(B

(i))
∗ ).

The inclusion of B0∗ into the total complex associated to (D.7) is there-
fore a quasi-isomorphism.
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Proof of Lemma D.9. It suffices to separately show that

[n] �→ Cm(S × ∆n), [n] �→ Cm−1(S × ∆n; R)

and
[n] �→ filts Ωm(S × ∆n)

are acyclic. These are given by Lemmas D.11 and D.12 below. q.e.d.

Lemma D.11. For any abelian group A, the simplicial abelian group

[n] �→ Cm(S × ∆n; A)

is contractible.

Proof. It suffices to construct a contracting homotopy of the associ-
ated chain complex. The construction makes use of “extension by zero.”
If f : X → Y is the inclusion of a subspace, the surjection map

C∗Y → C∗X

has a canonical section f! given by extension by zero:

f!(c)(z) =

{
c(z′) if z = f ◦ z′

0 otherwise.

Note that f! is not a map of cochain complexes. Using the formula

∂∗
i (∂0)!c =

{
c i = 0
(∂0)!∂∗

i−1c i �= 0

one easily checks that

h = ∂0! : Cn(M × ∆k) → Cn(M × ∆k+1)

is a contracting homotopy. q.e.d.

Lemma D.12. For each s ≥ 0 and t chain complex

filts Ωt(S × ∆•)

is contractible.

Proof. We will exhibit a contracting homotopy. We will use barycen-
tric coordinates on

∆n = {(t0, . . . , tn) | 0 ≤ ti ≤ 1,
∑

ti = 1},
and let vi be the vertex for which ti = 1. Let

pn : ∆n \ v0 → ∆n−1

(t0, . . . , tn) �→ (t1/(1 − t0), . . . , tn/(1 − t0)))

be radial projection from v0 to the 0th face. Then

pn ◦ ∂0 = Id

pn ◦ ∂i = ∂i−1 ◦ pn−1 i > 0.
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Finally, let
g : [0, 1] → R

be a C∞ bump function, vanishing in a neighborhood of 0, taking the
value 1 in a neighborhood of 1. The map

h : Ωt(S × ∆m−1) → Ωt(S × ∆m)

ω �→ g(1 − t0) (1 × pm)∗ω

is easily checked to preserve filts and define a contracting homotopy.
q.e.d.

Proof of Lemma D.10. It suffices to establish the analogue of Lemma
D.10 with the complex Č∗ replaced by C∗, C∗ ⊗ R, and filts Ω∗. The
cases of C∗ and C∗ ⊗ R are immediate from the homotopy invariance
of singular cohomology. For filts Ω∗, the spectral sequence associated to
the filtration by powers of Ω∗>0(S) shows that the ith-homology group
of

filts Ωk(S × ∆m)cl ← filts−1 Ωk−1(S × ∆m) ← . . .

is {
Hk−i

DR (S; R) ⊗ H0
DR(∆m) i < s

Ωn
cl(S) ⊗ H0

DR(∆m) i = s,

so the result follows from the homotopy invariance of deRham cohomol-
ogy. q.e.d.

The results in §4.6 require one other variation on these ideas. For a
compact manifold S and a graded real vector space V, let C∗

c (S ×R;V)
denote the compactly supported cochains, Ω∗

c(S × R;V) the compactly
supported forms, and filts Ω∗

c(S × ∆k × R;V) the subspace consisting
forms whose Kunneth component on ∆k × R has degree ≤ s. The
following are easily verified using the techniques and results of this ap-
pendix.

Corollary D.13. The map “slant product with the fundamental class
of ∆•” is a chain homotopy equivalence from the chain complex under-
lying

Zk(S × ∆•;V)

to
Zk(S;V) ← Ck−1(S;V) ← · · · ← C0(S;V).

Corollary D.14. “Integration over ∆•” is a chain homotopy equiva-
lence between the chain complex underlying the simplicial abelian group
filts Ω∗(S × ∆•;V)k

cl and

Ω∗(S;V)k
cl ←− Ω∗(S;V)k−1 ←− . . . ←− Ω∗(S;V)k−s.
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Corollary D.15. The homotopy groups of filts Ω∗(S × ∆•;V)0cl are
given by

πm filts Ω∗(S × ∆•;V)0cl =

⎧⎪⎨⎪⎩
H−m

DR (S;V) m < s

Ω∗(S;V)−s
cl m = s

0 m > s.

Corollary D.16. Let [∆m × R] be the product of the fundamental
cycle of ∆m with the fundamental cycle of the 1-point compactification
of R. The map from

Zk
c (S × ∆• × R;V)

to
Zk

c (S × R;V) ← Ck−1
c (S × R;V) ← · · · ← C0

c (S × R;V)
sending f ∈ Zk(S × ∆m × R;V) to f/[∆m × R] is a chain homotopy
equivalence.

Corollary D.17. “Integration over ∆• × R” is a chain homotopy
equivalence between chain complex underlying the simplicial abelian
group filts Ω∗

c(S × ∆• × R;V)k
cl and

Ω∗(S;V)k−1
cl ←− Ω∗(S;V)k−2 ←− . . . ←− Ω∗(S;V)k−s−1.

Corollary D.18. The maps “integration over R” and “slant product
with the fundamental class of R̄” give simplicial homotopy equivalences

filts Ω∗
c (S × ∆• × R;V)k

cl → filts−1 Ω∗ (S × ∆•;V)k−1
cl

Z∗
c (S × ∆• × R;V)k → Z∗ (S × ∆•;V)k−1 .

Proof. We will do the case of forms. The result for singular cocycles is
similar. It suffices to show that the map of underlying chain complexes
is a chain homotopy equivalence. Now in the sequence

filts Ω∗
c(S × ∆• × R;V)k

cl

R
R−→ filts−1 Ω∗(S × ∆•;V)k−1

cl
R
∆•−−→
{

Ω∗(S;V)k−1
cl ←− Ω∗(S;V)k−2 ←− . . . ←− Ω∗(S;V)k−s−1

}
,

the second map and the composition are chain homotopy equivalences
by Corollaries D.14 and D.17 respectively. It follows that the first map
is also a chain homotopy equivalence. q.e.d.

Appendix E. Integer Wu-classes for Spin-bundles

Let S be a space, and V and oriented vector bundle over S. Our aim
in this appendix is to associate to a Spin-structure on V an integer lift of
the total Wu-class of V , and to describe the dependence of this integer
lift on the choice of Spin-structure. We begin by describing a family
of integer cohomology characteristic classes νSpin

k (V ) for Spin-bundles
V , whose mod 2-reduction are the Wu-classes of the underlying vector
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bundle. The classes νSpin
k (V ) are zero if k �≡ 0 mod 4. The νSpin

4k satisfy
the Cartan formula

νSpin
4n (V ⊕ W ) =

∑
i+j=n

νSpin
4k (V ) νSpin

4j (W ),

making the total Spin Wu-class

ν∗
t = 1 + νSpin

4 + νSpin
8 + . . .

into a stable exponential characteristic class.
The characteristic classes νSpin

k , while very natural, don’t quite consti-
tute integral lifts of the Wu-classes. They are integer cohomology classes
lifting the Wu-classes, defined by cocycles up to arbitrary cobound-
ary, while an integral lift is represented by a cocycle chosen up to the
coboundary of twice a cochain. We don’t know of a natural way of
making this choice in general, so instead we work with an arbitrary one.
Fortunately, the formula for the effect of a change of Spin-structure
does not depend on this choice of lift. We have decided to describe the
characteristic classes νSpin

k partly because they seem to be interesting
in their own right, and partly as a first step toward finding a natural
choice of integer lift of the total Wu-class of Spin-bundles.

E.1. Spin Wu-classes.

E.1.1. Wu-classes. Let V be a real n-dimensional vector vector bundle
over a space X, and write U ∈ Hn(V, V −{0}; Z/2) for the Thom class.
The Wu-classes νi = νi(V ) ∈ H i(X; Z/2) are defined by the identity

νt(V ) U = χ(Sqt)(U)

in which
Sqt = 1 + Sq1 +Sq2 + . . .

is the total mod 2 Steenrod operation, χ the canonical anti-automor-
phism (antipode) of the Steenrod algebra,

νt = 1 + ν1 + ν2 + . . .

the total Wu-class of V . One checks from the definition that the Wu-
classes satisfy

(1) (Cartan formula)

νt(V ⊕ W ) = νt(V ) νt(W );

(2) If V is a real line bundle with w1(V ) = α then

νt(V ) =
∑

α2n−1.

Indeed, the first part follows from the fact the χ is compatible with the
coproduct, and the second part follows from the formula

χ(Sqt)(x) =
∑

x2n
.
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These two properties characterize the Wu-classes as the mod 2 coho-
mology stable exponential characteristic class with characteristic series

1 + x + x3 + · · · + x2n−1 + · · · ∈ Z/2[[x]] = H∗(RP∞; Z/2).

E.1.2. Complex Wu classes. Now consider complex analogue of the
above. We define

νC
t = 1 + νC

1 + νC
2 · · · ∈ H∗(BU ; Z)

to be the stable exponential characteristic class with characteristic series

1 + x + · · · + x2n−1 + · · · ∈ Z[[x]] = H∗(CP∞; Z).

So for a complex line bundle L, with first Chern class x,

νC
t (L) =

∑
n≥0

x2n−1.

One easily checks that

νC(L) ≡ ν(L) mod 2.

so the classes νC
t is a stable exponential integer characteristic class lifting

the total Wu class in case the vector bundle V has a complex structure.

E.1.3. Wu-classes for Spin bundles. Because of the presence of tor-
sion in H∗(BSpin; Z), specifying a stable exponential characteristic class

νSpin
t = 1 + νSpin

4 + νSpin
8 + · · · ∈ H∗(BSpin; Z)

bundles is a little subtle. Things are simplified somewhat by the fact
that the torsion in H∗(BSpin) is all of order 2. It implies that

H∗(BSpin; Z) −−−−→ H∗(BSpin; Z)/torsion⏐⏐� ⏐⏐�
H∗(BSpin; Z) ⊗ Z/2 −−−−→ (H∗(BSpin; Z)/torsion) ⊗ Z/2

is a pullback square and that H∗(BSpin; Z) ⊗ Z/2 is just the kernel of

Sq1 : H∗(BSpin; Z/2) → H∗+1(BSpin; Z/2).

One also knows that H∗ (BSpin; Z) / torsion is a summand of
H∗(BSU ; Z). So to specify an element of H∗(BSpin; Z) one needs to
give a ∈ H∗(BSpin; Z/2) and b ∈ H∗(BSU ; Z) with the properties

(1) Sq1(a) = 0;
(2) The image of b in H∗(BSU ; Q) is in the image of H∗(BSpin; Q);
(3) b ≡ a mod 2 ∈ H∗(BSU ; Z/2) = H∗(BSU ; Z) ⊗ Z/2.
We take a to be (the restriction of) the total Wu-class νt ∈

H∗(BSpin; Z/2). Property (1) is then given by the following (well-
known) result.

Lemma E.1. If V is a Spin-bundle then νk(V ) = 0 if n �≡ 0 mod 4,
and Sq1 ν4k = 0.
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Proof. Since V is a spin bundle Sqk U = wkU = 0 for k ≤ 3. Using
the Adem relations

Sq1 Sq2k = Sq2k+1

Sq2 Sq4k = Sq4k+2 +Sq4k+1 Sq1

= Sq4k+2 +Sq1 Sq4k Sq1

we calculate

ν2k+1U = χ(Sq2k+1)U = χ(Sq1 Sq2k)

= χ(Sq2k)χ(Sq1)U

= χ(Sq2k)Sq1U = 0

and

ν4k+2U = χ(Sq4k+2)U = χ(Sq2 Sq4k+1)U + χ(Sq1 Sq4k Sq1)

= χ(Sq4k)χ(Sq2)U + χ(Sq1)χ(Sq4k)χ(Sq1)U

= χ(Sq4k) Sq2 U + Sq1 χ(Sq4k) Sq1 U

= 0.

This gives the first assertion. For the second, use the Adem relation

Sq2 Sq4k−1 = Sq4k Sq1

and calculate

Sq1 ν4kU = Sq1 χ(Sq4k)U = χ(Sq4k Sq1)U

= χ(Sq2 Sq4k−1)U

= χ(Sq4k−1) Sq2 U = 0.

q.e.d.

We would like to take for b ∈ H∗(BSU ; Z) the restriction of νC
t .

Unfortunately that class is not in the image of H∗(BSpin). Indeed, νC
t

is the stable exponential characteristic class with characteristic series

f(x) = 1 + x + x3 + · · · + x2n−1 + . . . .

which is not symmetric. But if we symmetrize f by setting

g(x) =
√

f(x)f(−x) = 1 − x2

2
− 9x4

8
− 17x6

16
+ · · · ∈ Z[12 ][[x]]

then g(x), being even, will be the characteristic series of a stable expo-
nential characteristic class

χ ∈ H∗(BSO ; Z[12 ]).
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Lemma E.2.
The restriction of χ to H∗(BSU ; Z[12 ]) lies in H∗(BSU ; Z).

Proof. We will use the result of [36, 6] that a stable exponential
characteristic class for SU -bundles is determined by its value on

(1 − L1)(1 − L2)

which can be any power series

h(x, y) ∈ H∗(CP∞ × CP∞)

satisfying
(1) h(0, 0) = 1;
(2) h(x, y) = h(y, x);
(3) h(y, z)h(x, y + z) = h(x + y, z)h(x, y).

We will call h the SU -characteristic series. The SU -characteristic series
of χ is

δg(x, y) :=
g(x + y)
g(x)g(y)

.

The lemma will follow once we show that δg(x, y) has integer coefficients.
Now

g(x, y)2 = δf(x, y) δf(−x,−y).
Since the power series

√
1 + 4x has integer coefficients, it suffices to

show that
δf(x, y) δf(−x,−y)

is a square in Z/4[[x]]. For this, start with

f(x) − f(−x) = 2xf(x2)

≡ 2x f(x)2 mod 4 Z[[x]]

≡ 2x f(x) f(−x) mod 4 Z[[x]]

to conclude that

f(x) ≡ f(−x) (1 + 2xf(x)) mod 4 Z[[x]].

Write
e(x) = 1 + 2xf(x) = 1 + 2

∑
n≥0

x2n
.

Then
e(x + y) ≡ e(x)e(y) mod 4 Z[[x]]

(in fact e(x) ≡ e2x mod 4 Z[[x]]). This implies

δf(x, y) ≡ δf(−x,−y) mod 4 Z[[x]],

and so

(E.3) δf(x, y) δf(−x,−y) = δf(x, y)2 mod 4 Z[[x]].

q.e.d.
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Continuing with the construction of νSpin
t , we now take the class b

to be the stable exponential characteristic class with SU -characteristic
series g(x). It remains to check that b ≡ a ∈ H∗(BSU ; Z/2), or, in
terms of SU -characteristic series, that

δg(x, y) ≡ δf(x, y) mod 2 Z[[x]].

But this identity obviously holds after squaring both sides, which suf-
fices, since Z/2[[x]] is an integral domain over Z/2.

To summarize, we have constructed a stable exponential character-
istic class νSpin

t for Spin bundles, with values in integer cohomology,
whose mod 2-reduction is the total Wu-class. Rationally, in terms of
Pontryagin classes, the first few are

νSpin
4 = −p1

2

νSpin
8 =

20 p2 − 9 p2
1

8

νSpin
12 =

−80 p3 + 60 p1p2 − 17 p3
1

16
.

It frequently comes up in geometric applications that one wishes to
express the value of a stable exponential characteristic class of the nor-
mal bundle in terms characteristic classes of the tangent bundle. We
therefore also record

νSpin
4 (−T ) =

p1

2

νSpin
8 (−T ) =

−20 p2 + 11 p2
1

8

νSpin
12 (−T ) =

80 p3 − 100 p2p1 + 37 p3
1

16
,

where in these expressions the Pontryagin classes are those of T (and
not −T ).

E.2. Integral Wu-structures and change of Spin-structure. Sup-
pose S is a space, and ν ∈ Zk(S; Z/2) a cocycle. Recall from §2.5 that
the category Hk

ν(S) of integer lifts of ν is the category whose objects are
cocycles x ∈ Zk(S; Z) whose reduction modulo 2 is ν. A morphism from
x to y in Hk

ν(S) is a (k − 1)-cochain c ∈ Ck−1(S; Z) with the property
that

2 δc = y − x.

We identify two morphisms c and c′ if they differ by a (k − 1)-cocycle.
The set Hk

ν (S) of isomorphism classes of objects in Hk
ν(S) is a torsor

for Hk(S; Z). We write the action of b ∈ Hk(S) on x ∈ Hk
ν (S) as

x �→ x + (2) b.
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There is a differential analogue of this notion when S is a manifold.
We define a differential integral lift of ν to be a differential cocycle

x = (c, h, ω) ∈ Ž(k)k(S)

with the property that c ≡ ν modulo 2. The set of differential integral
lifts of ν forms a category Ȟk

ν(S) in which a morphism from x to y is
an element c ∈ Č(k)k−1/Ž(k)k−1 with the property that

2 δc = y − x.

The set of isomorphism classes in Ȟk
ν(S) is denoted Ȟ(k)k

ν(S). It is a
torsor for the differential cohomology group Ȟ(k)k(S). As above, we
write the action of b ∈ Ȟ(k)k(S) on x ∈ Ȟ(k)k

ν(S) as

x �→ x + (2) b.

Suppose now that V is an oriented vector bundle over S, and ν a
cocycle representing the total Wu-class of V . By Proposition E.1, if
w2(V ) = 0 the category H∗

ν (S) is non-empty, and an integer lift of
the total Wu class can be associated to a Spin-structure. We wish
to describe the effect of a change of Spin-structure on these integral
lifts. In case S is a manifold, and V is equipped with a connection,
we can associate a differential integral lift of the total Wu-class to the
Spin-structure. We are also interested in the effect of a change of Spin-
structure on these differential integral lifts.

Choose cocycles z2k ∈ Z2k(BSO ; Z/2) representing the universal Wu-
classes. To associate an integer lift of the total Wu-class to a Spin-
structure we must choose cocycles z̄2k ∈ Z2k(BSpin; Z) which reduce
modulo 2 to the restriction of the z2k cocycles to BSpin. The classes z̄
could be taken to represent the classes νSpin constructed in the previous
section, though this is not necessary. We represent the cocycles z2k and
z̄2k by maps to Eilenberg-MacLane spaces, resulting in a diagram

BSpin
z̄=

Q
z̄2k−−−−−→ ∏

k≥2 K(Z, 2k)⏐⏐� ⏐⏐�
BSO −−−−−→

z=
Q

z2k

∏
k≥1 K(Z/2, 2k).

Choose a map S → BSO classifying V , s0 : S → BSpin a lift corre-
sponding to a Spin-structure on V , and α : S → K(Z/2, 1) a 1-cocycle
on S. Let s1 be the Spin-structure on V gotten by changing s0 by α. We
want a formula relating z̄(s0) and z̄(s1), or, more precisely, a formula
for the cohomology class represented by

z̄(s1) − z̄(s1)
2

.

We first translate this problem into one involving the long exact se-
quence of homotopy groups of a fibration. Write P0 → B0 for the
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fibration

(E.4) BSpinS → BSOS

and P1 → B1 for

(E.5)

⎛⎝∏
k≥1

K(Z, 2k)

⎞⎠S

→
⎛⎝∏

k≥1

K(Z/2, 2k)

⎞⎠S

.

Then (E.4) and (E.5) are principal bundles with structure groups

G0 = K(Z/2, 1)S and

⎛⎝∏
k≥1

K(Z, 2k)

⎞⎠S

respectively. We give P0 the basepoint corresponding to s0, B0 the base-
point corresponding to V , and P1 and B1 the basepoints corresponding
to z̄(s0) and z(V ). These choices identify the fibers over s0 and z̄(s0)
with G0 and G1, and lead to a map of pointed fiber sequences

G0 −−−−→ P0 −−−−→ B0⏐⏐� ⏐⏐� ⏐⏐�
G1 −−−−→ P1 −−−−→ B1

derived from (z̄, z). Our problem is to describe the map

π0G0 = H1(S; Z/2) → π0G1 =
∏
k≥1

H2k(S; Z).

In general this can be difficult; but for elements in the image of π1B0 →
π0G0 the answer is given by the composite π1B0 → π1B1 → π0G0.
In [48] (stated in the language of Spin-structures) Milnor shows that
π1B0 → π0G0 is surjective. So in our case, every element of π0G0 is in
the image of π1B0. This leads to our desired formula.

We now translate this discussion back into the language of Spin-
structures and characteristic classes. The element of π0G0 = H1(S; Z/2)
is the cohomology class represented by α. To lift this to an element of
π1B0 is equivalent to finding an oriented stable vector bundle W over

S × S1

satisfying

W |S×{1} = V

w2(W ) = α · U
where U ∈ H1(S1; Z/2) is the generator. This is easily done. We take

W = V ⊕ (1 − Lα) ⊗ (1 − H)

in which Lα is the real line bundle whose first Stiefel-Whitney class is
represented by α, and H is the non-trivial real line bundle over S1.
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(This proves Milnor’s result on the surjectivity of π1B0 → π0G0.) The
image of this class in π1B1 is the total Wu-class of W , which is

(E.6) νt(V )
ν(Lα ⊗ H)
ν(Lα)ν(H)

.

Writing

νt(V ) = 1 + ν1 + ν2 + . . .

w1(Lα) = α

w1(H) = ε

and remembering that ε2 = 0, one evaluates (E.6) to be

νt(V )

∑
n≥0(α + ε)2

n−1

(1 + ε)
∑

n≥0 α2n−1
= νt(V )

∑
α2n−1 + ε

(∑
α2n−1
)2

(1 + ε)
∑

α2n−1

= νt(V )
1 + ε
∑

α2n−1

(1 + ε)

= νt(V )

⎛⎝1 + ε
∑
n≥1

α2n−1

⎞⎠ .

The image of this class under π1B1 → π0G1 is computed by taking the
slant product with the fundamental class of S1 and then applying the
Bockstein homomorphism. This leads to

(E.7) β

⎛⎝νt(V )
∑
n≥1

α2n−1

⎞⎠ = ν̄t(V ) β

⎛⎝∑
n≥1

α2n−1

⎞⎠ ∈
∏

H2n(S; Z).

This proves

Proposition E.8. Suppose that V is a vector bundle over a space S,
s a Spin-structure on V , α ∈ H1(S; Z/2). Let ν̄t be any integer lift of
the restriction of the total Wu class to BSpin. Then

ν̄t(s + α) = ν̄(s) + (2) β

⎛⎝νt(V )
∑
n≥1

α2n−1

⎞⎠
= ν̄(s) + (2) νt(V )

∑
n≥1

β(α2n−1)

In this expression, the factor “(2)” is formal. It is written to indicate
the action of

∏
H2n(S; Z) on the set of integral Wu-structures. The

number 2 serves as a reminder that the action of x on the cohomology
class w underlying an integral Wu-structure is w �→ w + 2x.

An analogous discussion, using differential cohomology, leads to the
following
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Proposition E.9. Let S be a manifold and s : S → BSpin represent
a Spin-structure on a stable oriented vector bundle V with connection
∇. Write ν̄(s,∇) ∈ ∏k≥0 Ȟ2k

ν (S) for the twisted differential cocycle
associated to s, ∇ and the cocycle ν̄ (see §3.3). If α ∈ Z1(S; Z/2), then

ν̄(s + α,∇) = ν̄(s,∇) + (2) β

⎛⎝ν(V )
∑
k≥1

α2k−1

⎞⎠
where, again, the factor “ (2)” is formal, indicating the action of∏

Ȟ(2k)2k(S) on the set of isomorphism classes of ν-twisted differential
cocycles, and β denotes the map∏

H2k−1(S; Z/2) →
∏

H2k−1(S; R/Z) ⊂
∏

Ȟ(2k)2k(S).
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